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ABSTRACT

The predictions of general relativity regarding interplanetary time-delay
measurements are explored in detail. We conclude that a fourth test of
the theory is now feasible since the modifications of general relativity in-
troduce an extra delay of about 200 psec when radar waves are reflected
from either Mercury or Venus near superior conjunction. The uses of such
measurements to investigate the solar corona, a possible time dependence
of the gravitational constant, and the precession of Mercury's perihelion

are also discussed.
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EFFECTS OF GENERAL RELATIVITY
ON INTERPLANETARY TIME-DELAY MEASUREMENTS

I. INTRODUCTION

Although Einstein's theory of general relativity forms the basis of almost all cosmological
arguments and has profound philosophical implications, it has been subject to very few experi-
mental tests. The reason is not hard to find. On a laboratory scale, the deviations between the
Einsteinian and, for example, the Newtonian predictions are almost always too minuscule to be
detected. In fact, only three tests have been made since Einstein's theory was given its definitive
form in 1916, all having been suggested in his original papers. Two relate to the interaction of
matter with electromagnetic waves; the third relates to the interaction of matter with matter.
The gravitational red-shift experiment, which belongs to the first category, really tests only
the principle of equivalence and the Einstein prediction is obtained in other theories as well
(see, for example, Nordstr6m1). The most accurate such experiment was performed by Pound
and Sniderz who employed the Mossbauer effect to detect the change in frequency of gamma rays
alternately "rising" and "falling" in the earth's gravitational field. Their results indicate con-
firmation of prediction to about 1 percent. The second test, the prediction of the bending of the
path of starlight as it passes near the sun, has been subjected to repeated study during solar
eclipses from 1919 to the present. Such is the difficulty of this experiment, that the results of
the various observers are consistent with each other and with the predicted value to only about
25 percent.3 Most serious reviewers are therefore of the opinion that this prediction of general
relativity has not yet been verified definitively. The third test involves the prediction that the
perihelion of Mercury's orbit undergoes precession of 43 seconds of arc per century, in excess
of the amount calculated from Newtonian theory. The Einstein value seems to have been verified
to within about 2 percent (see Clemence4).

A fourth test of general relativity has now been made possible by advances in radar astron-
omy. This test involves measuring the time delays between transmitting radar pulses toward
either Venus or Mercury and detecting their echoes. These measurements must be taken at dif-
ferent relative orientations of the earth, the sun, and the target planet, with the most crucial
ones being those near superior conjunction when the radar waves pass closest to the sun. For
such configurations, as will be shown in Sec.II, predictions based on general relativity indicate
that the time delays will be increased by as much as 200 psec because of the influence of the sun's

gravitational field on the speed of radio wave propagation. The increase at inferior conjunction,



on the other hand, amounts to only about 10 usec. Hence the difference, which is the significant
measurable quantity, is almost as large as the maximum value of the increase®

The actual test will entail a meticulous comparison of all the observations with the theoretical
predictions. The unknown parameters (such as the initial conditions of planetary motion, and the
masses and radii of the planets) will be estimated from the data using the statistical theory of
parameter estimation.! The values of the parameters so determined will then be reinserted into
the theory, and the resulting predictions of time delays will be compared with the observations.
If the residuals, observed minus theoretical values, are smaller than or comparable to the meas-
urement errors, then we conclude that the experiment "supports" the theory; whereas, if the
residuals seem to be systematically larger than the estimated errors, then either we have over-
looked some effects on our measurements or the basic theory is inadequate. We could, of course,
perform the same type of analysis using the Newton instead of the Einstein theory as a basis for
the comparison. In order to ascertain a priori whether the set of proposed measurements con-
stitutes a test that can distinguish between two theories, we calculate the expected values of the
measurements on the basis of both, given comparable initial conditions, to determine whether
the differences exceed the anticipated measurement errors. That the radar experiments being
proposed here will in fact provide a meaningful test of Einstein's theory can most readily be
shown analytically by calculating the difference ATr between the proper-time delay predicted in

general relativity and the corresponding flat-space value.

II. APPROXIMATE DETERMINATION OF AT,

We wish to calculate the proper-time-delay difference ATr’ given the configuration earth-
sun-planet. First we calculate the delay predicted in general relativity. If the coordinates are
denoted by x”(p = 1 - 4), then the differential equations for the light rays (which travel along

geodesic zero lines) are
dx dx -0
P U “ds ds ’

g dxt dx” : (2.1)

where the Christoffel symbols
by

p LTI are given in terms of the metric tensor g}w(p, p, o, v=1-—+4)

* This relativistic influence on delay had been investigated previously for configurations near inferior coniunction,s
but at that time the delay measurement errors were several orders of magnitude larger than the general relativity
effect. (In addition, even if the errors were comparable to or somewhat smaller than the change introduced by
relativity, no experimental test of the theory could have been made. The sensitivity of the time-delay measure-
ments to errors in the Astronomical Unit (AU) and in the radius of Venus cannot be distinguished from the sensi-
tivity of the delays to changes in the relativistic contribution. Even in principle, better than a 1-psec measure-
ment accuracy is required to separate these effects near inferior conjunction. But at that level a whole host of
obscuring influences come into play, for example, topographical variations on the planetary surface. A realistic
test of general relativity using only measurements made near inferior conjunction can therefore not be expected

to be feasible for the foreseeable future.)

{ We assume, of course, that the data are redundant, i.e., that there are far more measurements than are necessary
to determine specific values for the parameters. :
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The contravariant metric tensor g’L is symmetric and satisfies
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The metric tensor g a is found by solving Einstein's field equations. Schwarzschild6 found
a solution to these equations which in empty space is static, has spherical symmetry, and be-
comes the flat metric at infinity. Thus, a spherically symmetric distribution of matter will give
rise to a gravitational field outside it which is described by Schwarzschild's solution. We there-
fore use this solution to represent the gravitational field of the sun.

In order to proceed further, we choose a coordinate system in which to calculate. It might
be thought that our end result — the proper-time delay between pulse transmission and echo
reception — would be independent of the choice of coordinate system. However, this conclusion
is not valid per se because of our assumption that the positions of the earth and planet, relative
to the sun, ar_egTven. Our result will be independent of the coordinate system only if we spec-
ify the planetary positions in an invariant manner. Such a description can be given in terms
of the line element ds* (The radial coordinate of each body in a given coordinate system can
be determined from a prescribed value of ds; the angular variables can be treated in a similar
invariant manner.) But this description would in a sense be begging the question. Our goal is
really to compare the general relativity prediction with the flat-space prediction, whereas we
presumably know the planetary positions only in the Newtonian framework. Determining the
corresponding relativistically invariant positions is not easy. It would probably require a re-
analysis of the optical data upon which the "Newtonian" positions were based. For simplicity,
and since we are trying only to establish the meaningfulness of the proposed test, we shall choose
the usual coordinate system (see, for example, Bergmann7) to represent the Schwarzschild
solution and shall henceforth ignore the "coordinate-system problem," except for a comment

preceding Eq. (2.17). In rectangular coordinates, we find7

ar
¢}

4y~ 11—+
g45

==8§ = 9 x x ; r;s=1-+-3 , (2.6)

* This approach was suggested by L. Witten.



where

s
= X =
XS = r El x4 COt > (27)
and
GMS
ro = ~41.5km , (2.8)
€

since G is the gravitational constant, Mg the mass of the sun, and <, the speed of light.
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(¥, =) Fig. 1. Geometry of path of radar pulse:
rectangular coordinates.
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Using Egs. (2.1) and (2.6), we can find the round-trip coordinate-time delay between pulse
transmission and echo reception. An approximate result can be obtained almost immediately by
assuming that the "spatial" path is a straight line (see Fig. 1) and choosing the coordinate axes
so that this path is parallel to the x-axis. We also assume, for simplicity, that the earth re-
mains stationary between transmission and echo detection. Although affecting the time delay
slightly, this assumption has a negligible effect on ATr. (However, see »Sec. III.)

The straight-line path assumption has two effects on the calculated time delay:

(a) The decrease in path length (see Fig. 1) causes the actual delay to be
underestimated.
(b) The closer approach to the sun of the straight-line path results in the
light ray passing through a higher gravitational potential, and suffering
therefore a greater decrease in speed and a consequent increase in
delay.
We can estimate quantitatively the contribution of each. For the first effect listed, we compare
the length of the straight-line path with the two straight-line segments, one tangent to the actual
light-ray path at the earth's position, the other tangent to the actual path at the planet's position,
as shown in Fig. 1. The mutual inclination of these two segments, which represents the total
angular deflection of the ray, we call y. As was originally shown by Einstein, even for d equal
to one solar radius (d = RS), the angle y is no more than 1.75 seconds of arc, i.e., about 8.5 X 10~
radians. Assuming, again for simplicity, that |xp] = |xe|, it is easy to show that the actual path
length L' satisfies the inequality

L € Y
1 ~ — & 2
L€ L!'< €~|,(1+ 2) L(1+_8_) B (2.9)

where L is the length (expressed in light time) of the straight path, and € is defined in the fig-

ure. Hence,
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AL;L'—L<L%§9X1O_12L ) (2.10)

Even for L = 103 sec, we find AL to be only about 9nsec which is completely negligible consider-
ing presently achievable accuracies.
To estimate the contribution of the second effect, we use a crude approximation to the gen-

eral relativistic expression for the speed of a light wave in the presence of a gravitational po-

tential &:
e zco<1 + 2—“2) ) (2.11)

(o
(e]

where o is its speed in the absence of a gravitational field. The difference Ac between the speed
of a light wave at the point A of closest approach to the sun along the straight-line path and the
speed at the intersection A' of the two line segments that are tangent to the actual path at earth

and planet, respectively, is then given by

Ac = c(A) — c(A) = 2 [#(A) - @(A")]
O
2GMg oy " _2GMy g e
c d d +ad)| = ¢ 2 :
o o o o) dO
where

L .

Ad = ZsmemL-’Bi . (2.13)

Equation (2.12) represents an upper bound on the maximum difference in speed along the two
paths. Hence, a gross upper bound on the effect AL on time delay of assuming a straight-line

path is given by

2
AL <L 2€ xp (£> X . (2.14)
CO (e}

For L = 103 sec, we find AL <2 X 10_6 sec even when do = RS ~ 2.3 sec. Hence, this effect of
the approximation is also negligible.

This type of result is actually a general one for refraction phenomena where the change in
index is small: The effect of the change in path on the time delay is of higher order in the change
of index than is the effect of the change in speed.

Having justified our straight-line path assumption, we now calculate the coordinate-time
delay t explicitly. Since we have determined the path, albeit by assumption, we need only the
second of Egs. (2.1) to determine t. Considering the rectilinear nature of the path and its direc-

tion parallel to the x-axis, we find from Egs. (2.6) and (2.7) that

2o 2 2 _
g44c0dt +g“dx =0 ,

i.e., that
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14 0 X r
1+ =
=7 2
or

Since t increases monotonically over the round trip, whereas x first decreases monotonically

and then increases monotonically, we find that the round-trip delay t. is given by

X X X K o 2
t =—§pd—x+§ed—":zged_xzi§e’1+—°(1+x—)]dx . (2.16)
r c C c c b o 2
X X X o vYx r
€ p p p
Using Dwight® leads to*
2 2r xe+re Xe x
t. = — {x —x)+—o[210g (__)_(____p)] , (2.17)
r ¢ e “p c e\x +r r r
o o p ' 'p e 'p

where in consideration of our straight-line path,

r2 |- x® a2 | (2.18)
e,p e,p (6]

What we seek, of course, is not the coordinate-time delay, but the proper-time delay Te

which is measured by the earth observer. As is well known,7

S
Tr = c—if fas (2.19)
(0] S1

where s1 is the (four-dimensional) position of the earth at transmission, and s2 is the corre-

sponding position at echo reception. Since, for the earth, the geodesic is given by
ds® = g dxMdx” (2.20)
pv ’ )

and since we assumed that the earth remains stationary between pulse transmission and echo

reception, we find

ds® = g44cozdt2 ) (2.21)

and hence,T

t i
™2 42 o )
t1 e

But (t2 - ti) is just the left side of Eq. (2.16), and we obtain, finally,

*If a harmonic coordinate system were employed (see Fock9), Eq.(2.17) would not contain the nonlogarithmic
term inside the brace. !0 However, in the harmonic coordinate system the numerical values for the planetary
positions are related fo the relevant invariant quantities in a different way than in our coordinate system. As we
explained earlier, these differences are of no intrinsic importance.

T The contribution of the earth's orbital motion to the ratio 7/(ty — t}) is actually ro/(2rg). But this contribution
is the same as the corresponding contribution to the flat-space delay. Since we are here concerned only with
the difference in these delays, neglect of the earth's motion is not serious.
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P e o
Z)cz—xp xp
- = . (2.23)
(xZ +dZ)i/Z (XZ +d2)1/2
e o p o

The calculation of the corresponding flat-space delay Tes is trivial; the result is simply

= Ci x —x) , (2.24)

Tts o © p

and hence the difference ATr is given by

2r X, + (xe2 + d02)1/2 [ Zxe - xp xp ]
At~ —— {2 log — = . (2.25)
3 €y 4fx? +d2)1/2 x2 +a5y172 (xz + a2
p P o e o P o

This expression simplifies considerably in several cases. Near superior conjunction, for

example, we find™

4ro ‘lxexp 3xe — Xp
At ~ —= |log, |—5= | - (T—) ; 4 <<z, lxpl . (2.26)
o d e
o
and near inferior conjunction,
4ro xe Xe — xp
ATI‘ ~ C— lloge (X_) — (T)] . dO << Xe, Xp . (227)
o P e
At elongation, Eq.(2.25) reduces to
4r0 2xe > 2
At~ —— |log (———)—1 B x =0 : d™" << x . (2.28)
r o e do P o e

This last form is valid only for Mercury since, for Venus, - do at elongation.

Although €44 and €rg contribute equally to the dominant logarithmic term in the expression
for AT, their relative contributions to the second term vary with the path of the radar pulse.
The maximum magnitude of the difference between these contributions is, however, too small
to be reliably detected experimentally in the near future.

In Fig. 2, we show the values of AT as a function of the angle between the earth-sun line
and the earth-Mercury line. This function, of course, is double-valued, one branch corre-
sponding to the planet's being on the same "side" of the sun as the earth, the other branch to the
planet's being on the opposite side. Both branches are shown. Figure 3 presents the same re-
sults for Venus. In constructing these figures the orbital eccentricities were neglected, and the

round-trip delays corresponding to several of the orientations were included.

III. RIGOROUS DETERMINATION OF A7

We now proceed to a rigorous derivation of Eq. (2.25). That is, here we shall make a formal

expansion of the solution to the equations of motion in powers of i Using Eqgs. (2.1) and (2.6),

2

*Note the identity: —loge [—x + (x2 4 d2)]/2] = |oge [x + (x2 + d2)]/2] - |oge d
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and making the transformation from rectangular to polar coordinates, we find“ the equations

of motion of a light ray to be

podt 2 -p,dr2 2 de,2 _
M) —e MG —r(FEr =0

podt _

e ds_k "

2 do¢ _ ™
r ds_h s (3.1)

where r and ¢ are polar coordinates in the plane of motion of the light ray, and t is the time

coordinate. The quantity et stands for

Zro
et =1-— m— (3.2)

)

whereas k and h are constants of integration with s being a parameter.

Our goal can be accomplished as follows: We assume as before that the positions of the earth
and target planet are given and that the earth remains stationary between transmission and detec-
tion of the radar pulse, and we calculate the round-trip time delay twice, once using the values
v with the plus sign holding for the temporal
component and the minus sign for the spatial components. Each of these values for the difference

for gpv given in Eq. (2.6), and once letting glw = %0
in coordinate time is then separately converted to the appropriate proper-time delay. The two
values are then subtracted, yielding ATr' One aspect of the subtraction operation deserves
special mention: The distance of closest approach is different in the two calculations and the
relation between them must be established to the proper accuracy.

Let us do the flat-space calculation first. We refer to Fig. 4 for the appropriate geometry.
For convenience, we orient the x-y axes such that, for the flat-space path, the point on the path
closest to the sun lies on the y-axis. (This orientation, as before, introduces certain algebraic
simplifications in the calculations.) We denote this distance of closest approach by do in the flat-
space case, and by d in the curved-space calculation.

For the flat-space case, of course, we could deduce the result by inspection. However, to

illustrate the general method we proceed as follows: Here Egs. (3.1) reduce to

dt,2  ,dr.2  2,de 2 _

(dS) _(ds) r('a_s‘) =0 >

dt

as -k

2 do _

r ﬁ_h . (33)

Combining the second and third yields

dt _ 2 k
de "% n (3.4)

whereas multiplying the first by (ds/d<p)2 leads to

(G512 = (g2 -0 . (3.5)

* Throughout we use units in which B, is unity.



Substituting (3.4) into (3.5) yields

2
4 k dr 2 2
2o e [ANE . =0 i
r hz (qu) r
i.e.,
dr2 kX 4_ 2 .
(dq:) —hzr =T ; (3.6)
Defining
= h
R=¢ (3.7)
we obtain
dr Rdr
do =+ = % (3.8)
(ﬁ _rz)i/z r(r? — RH)1/2
RZ

Since ¢ is monotonically increasing for the first half of the round trip and monotonically de-
creasing for the second half, whereas r first decreases to do, then increases to rp, etc., we
see that the minus sign applies for the first part of the one-way trip and the plus sign for the

second, etc. We will calculate explicitly only the one-way delay: The two paths are identical
so that the total delay tfs is just twice the one-way result. Integrating (3.8) yields8

. -1 R . -1 R
@ = x cos (r)+(,ok s 0 < cos (r)\< 5 (3.9)

(S1E]

where the minus sign holds for 0 < ¢ < 7/2 and the plus sign for 7/2 < ¢ < 7. We can determine
R and @y in terms of the boundary conditions:

= —cos” [} 4
Pe = r P
e
N -1( R
(pp = cos (—rp) + Py . (3.10)

These equations can be solved in a straightforward manner to obtain R and Py By subtracting

the first from the second and taking the cosine of both sides, we obtain

cos (<Pp = <ﬂe) = XN [RZ — (I‘e2 - R2)1/2 (I‘p2 - Rz)i/z]

Eliminating the radicals, we find

22,2 2, ,. 2 2
[rerpcos(q)p—(pe)—R] —(re—R)(rp—R)

Hence,

rr sin(e —¢)
5 e'p p_"e . (3.11)

2 2 172
[r‘e + rp = Zrerp cos ((pp = <pe)]

10



The value of @ then follows directly from Eqgs. (3.10). The denominator in (3.11) is simply

r,cos¢g, +r cos (r — <pp) =r cosg, —rp cos <pp »

p

whereas the numerator is

do(re cos g, — rp cos qop) s

since
r sin =r_sin =d
e Pe P gDp o

Hence,

R=d_, (3.12)

(3.13)

since sin_ix + cos_ix = 7/2, when x < n/2; and sin—ix — cos-ix = 7r/2, when 7/2 < x < 7. These

results also follow from the fact that

dr
AR =0
de | _
r-do
Thus,
dr do(do2 B RZ)i/Z
a— = _R,_—— =0 = R= do
4 r=do

Since ¢ = 1r/2 when r = do, by our choice of axes, we have

L -1 _ T
g o008 (U, =0T 3
To obtain the time delay tfs explicitly, we use Eqs. (3.4) and (3.5):

2

dr2  dg¢,2 dr,2 R” (r  2)_, R

Cqg) = (FF) (do!) = K (RZ r )—1 & (3.14)
Using Eq. (3.12), we find

gt =g ——DAE . (3.15)

2 2.1/2
fr =4

Again, we find t increases monotonically, whereas r decreases monotonically from Xy to do
and then increases monotonically to rp. The plus sign therefore holds for the second part and
the minus sign for the first. Remembering the factor of two needed to convert to the round-

trip value, we find8

11



r 6
dr rdr 2 2,1/2 2 2.1/2
t :zge—r—+z§p————=z[(r —dY)VE e —d5e , (3.16)
fs d (rz_dz)i/z g (rz_dz)i/z e o p o
0 o) o o
But, as mentioned above,
do =r,sing = rp sin qop i (3.47)
and hence, reinserting B explicitly, we find
t, = £ (x.—x) (3.18)
fs c, e p ’ .

since xp is negative for the configuration of Fig. 4.
Now we proceed analogously for the curved-space case. Combining the second and third
members of Egs. (3.1), we find the analog to Eq. (3.4):

do -8 ' T 1 - (3.19)

Multiplying the first by (ds/d<p)2, as before, leads to

2 dr,2 2

podt -p dr ~
(g —e MG, —rt =0 (3.20)
Substituting (3.19) into (3.20) yields

2
-i 4k_2_e-p(dr Z_rZ

e 'r w) =0 B
i.e.,
dr 2 Y
(d—) S e“(e Fp = -r )
@ h
&
=p? B _ 22 (3.21)
h
Again defining R as in Eq. (3.7), we obtain
del= & Bdp (3.22)

r(rZ = RZeH)1/Z

As before, we note that for the configuration drawn in Fig.4, ¢ increases as r first decreases
from g to d and then increases from d to rp. Then ¢ decreases as r first decreases from
rp to d and then increases from d to ro Since the round-trip is symmetric, we will consider

only the one-way case and multiply the result by two. We have, therefore,

Rdr
<p=—5 ;. e rad p.< o< e(d)
(r? Rzep)1/2 e

1]

Rdr ) B )
5(2 Rzep)i/z p dgrsr, 1 gldsese, - (3.23)

Let us first consider the case r, >r >d. By changing the integration from r decreasing to r

increasing, we have

12



g ZS' Rdr
r(rz [ RZep)i/Z
But

r
ep': 1__0
r

¥

and since r = d at (dr/d<p) = 0, we find from Eq. (3.21) that

a® [, _ %) _,
2 —r ) - ’

R
i.e., that
% o a?
B Zro ’
=3
or
o d To
R~ 2r 1/2~d(1+d)
1-—0) -
(- 3

[e]

We determine d from the initial conditions, after integrating Eq. (3.23).
we substitute Egs. (3.2) and (3.24) into (3.23):

“ d S’ dr
2r i/2 5 Se 1/2
i o 2 d ( o)
rjr" — ——— (1 — —
2r o

- d3/25‘ : dr
I i

But

rd—a®= (r—-a) (&% + rd + d%

Hence,

(3.24)

For this latter purpose,

(3.25)

(3.26)

" =d3/25‘ dr

(r(r — )]/ [rd(c + d) - Zro(rz +rd + a2)1/2

Since Ty << d, we expand:

¢ (% — a2y1/? d " r(r+d

and also find®
i.d
)

dr 4 -1,d -
— 1 . == CO8 |— : 0 L cos <
S r(rz_dz)i/z d r

13

(3.27)

(3.28)



To evaluate the second integral, we note that

1 1

1 1
e rd)  ar?  der e+ q) S
Hence,
Yo -1,d 2 dr 1 1 1
<p%(1+—d)cos |;|+rod Sm[d—rz—?—rer . (3.30)
Using Dwight8 and Grobner and Hofreiter,12 we find
¢ =cos™ 9] + r—(‘; (2 — q)1/2 [ri(ﬁ:—g)] + o (3.31)

We could determine the constants of integration, d and @10 in terms of the boundary conditions.

Equivalently, let ¢ ; be the angle at which r = d. Then, we have
y d g

2r +d
ooty dy T 2 214/2 e
$q = Pe = COS |r | + g (fe —4) [r(r +d) !
e e e
2r +d
. -1,d Yo 2 21/2
¢p = @q = cOS IT' # (rp —d°) rp(rp ) (3.32)

Since we are solving only to first order in r,, we can replace d by do in the coefficients of ro

Adding the two members of Eq. (3.32), we find

cos(cos_il—dl +cos—1|—d|) 5 i [dz——(rz—dz)i/2 (rz—d2)1/2]
r r B p o e 0
p e e p
o
= COS(«)p — 9 +d—o f sm(<pp -9 (3.33)
where
w2 -a2 or 44y @2-a}2 2r +4)
b e 22 3-—S2__180 s 0 (3.34)
= r (r +d) r (r +d)
pp o e’e o
From Eq. (3.33) it follows that
r 2)11/2
rerp li — [cos(<pp — (pe) + d_o f sm((pp - (pe)] l
= . iz (3.35)
r2+r2—2rr cos (¢ —¢)+—Ofsin(cp — @)
e p ep p e do p e
which is the analog of Eq.(3.11). Expanding the right side of (3.35) leads to
r r_ sin — 0 f
ol e'p (wp ?.) L o
r2+r2—2r r cos( — )]1/2 do
(re b e’p L
rr sin(¢_ —e¢ )
b4 Ctn(<pp—(pe)— 5 Ze P P : ] (3.36)
T + rp - Zrerp cos(<pp — (pe)
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Using Eqs. (3.11) and (3.412), we find

1 d
d~d [1+52¢ = —ctn(ep — o) (3.37)
o d 1/2 p e i y
o [re F IR cos((pp—(pe)]
But from the law of cosines, we have
[r2+r2—2rr cos (¢ —¢)]1/2:x - X (3.38)
e p ep p e e "p ]
It also follows from the above that
do2 + xexp
COS(wp—«Je)- = )
e
and that
i oWFe = %)
sm(wp—<pe) = —
e p
Hence,
d d” +x x o X X
o) B [ e p ] o e’ p
= xp rerp do(xe — xp) (xe — xp)
which implies that
ro xexp
d~d [1——2 (ﬁ)f] . (3.39)
do e p

Thus, d > do since f > 0 and Xp < 0. But we expect this (see Fig.4), and thus at least our analysis
is not obviously in error. To find ¢4 Wwe can use either of Egs.(3.32). Let us take the first:

d r X x r 2r. 4.d
-1| o o e’ p o . 2 2.1/2 e o
¢,= ¢ _+cos [—— <7_ )f]+——-(r —d") [——
d e ro dore X xp dO e o re(re + do)
We note that if
cos'la=B ;

and

cos_1(A+£):B+6 |
then for €, 6 << 1,
A+e=cos(B+6)~cosB—6sinB ,
and

é_cosB—(A+e)__ €
a sin B - sinB

In our case,
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Hence,
cos B = I‘_ 2 sinB = I‘_ 3

and

r d T X —X
e o e e p

-1 do ro £ % 14 d r X X i
cos [_ L ( e E_) f] = cos (r_o) + d g [__p__( e_ )] f(_e)
e oe l¥e Xp Xe

But, from Egs. (3.10), (3.12), and (3.13), we find

and therefore,
r x f r 2r +d
= X + 9 . +_9 % € o
a2 7a_ \x—=x d *elr (r +d)
[6) e p [¢) e e o
Using the expression for f from Eq. (3.34), we get

x (2r_+d ) x (2r_+d )
il . g e o

f=_r‘(r +d) Jrr‘(r‘ +d ) :
P p o e‘"e o
and
2 2
r x“2r_+d) x7(2r_+d)
E _"0 - -117p P o __e e o
P4z~ T X~ %) | T Fd) " T.r. +d) (3.40)
o pp o ee o
Is this result reasonable? If Bo © rp, then X, == by our original assumption, and therefore

94 = m/2 as we would expect from symmetry arguments. If |xp| << x,, we find ¢4 > n/2. This
deduction is also in accordance with expectations (or so it seems on cursory inspection!). At
least (3.40) has the expected symmetry properties under reflection through the y-axis.

To obtain the time delay, we proceed as before. From Egs. (3 19) and (3.21) we find

2 Z 2 2 2
(22 (gny2 . (dn)? ot Bo (5 e”) ,
@ R
and
2 1/2
de i " R e
r 1 te (1 - e ) . (3.41)

r

Thus, the coordinate delay from r = ¥y tor =4d, is

r -
1 e e "dr
ted-fd g2 172 (3.42)
(-2 )
2
:

and the corresponding delay tdp fromr=dtor-= rp is

r -
1 p e "dr
tap = » g2 aAE (3.43)
2
X
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To evaluate the indefinite integral to first order in ro, we find, using Egs. (3.2) and (3.24), that

- d
e R 0 o
RZ 1/2~(r —d”) [r+ro(2+r+d)]
(1- % ) :
r
Hence,
r r g d dr
e rdr e 2dr e o)
t .= —E 0 ¥ p ==t g . (3.44)
ed S 2 2.1/2 O[S 2l <2 1/2 SI 2 21/2]
d (r” —d%) do (r —do) do (r+d0)(r —do)
Integrating yieldss’
» & (rz_dz)i/z (rz_dz)i/z
ty=irZ a2 lanog 2—€ 0 e 0
ed ~ e o €e d (r_+d)
o e [¢)
Thus, the total two-way delay t. is given by
B 2 2 2.1/2 2 2,1/2
tr:Z(ted+tdp)—c—0~[(re—d) +(rp—d) l
4r r +(r2——d2)1/2 r +(r‘2—d2)1/2
% ° |6 e e o p p o
g
e d d
o (o) [6)
; (rez—doz)i/z (rS—dj)i/Z
*E[(r S A (R ; (5.:45)
e o p o
where we have reinserted co explicitly. In view of Eq.(3.39), we can write:
% ¥
dzde—Zro(—x =2 )f ,
[¢) - p
which leads to
3¢
w2-a®2x lt4r — P | . (3.46)
e e ox (x_ —x_)
e’e p
Similarly,
X
(I‘Z _d2)1/2 z——xp [1 + I‘o x(x—(_g_-x—) f] . (3.47)
& pre p
We can therefore rewrite Eq. (3.45) as
4r r +x r —x x X
t :i(x _x)+—‘0 ].Og L g (p p)_1 —e__p ) (348)
r ¢ e p ¢ e d d 2\r r
o o / o o e p

which is exact up to terms of order (ro/co)z.
Both Eqgs. (3.18) and (3.45) represent the time delays in coordinate time. However, as be-
fore, we seek the proper time measured by the earth observer. We therefore use Eq. (2.19) to

convert each of these results to proper time. Consider Eq. (3.18) first. Here Eq. (2.20) becomes
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dat = cjdtz , (3.49)

since we have assumed that the earth remains fixed which implies that (dr)2 = (dw)2 = 0. For

the nonflat metric, we have

2r
g 2 o 2
ds = CO (1 e ?) dt , (350)

since the temporal part of the metric depends on the gravitational field. Thus

t, 2r 1/2 £
r T r r
[6) e e
and to first order in ro we find
2 4ro r, + Xq rp - xp 1 %e xp Xo — xp
B 5 o= (xe—xp)+—C lloge( d )( -y )_E(r—_?—+_—r )] » (3.52)
0 o [6) o e p e
whereas
¥ ‘Z(X - X ) (3.53)
fs ¢ ‘e p ' ’
0
Since
log(X=%) = 10 e
2 g r+x !
d
we can write
Zro re + xe er - xp xp
AT = Ty~ Tes ™ 2 [2 1Oge(r + X >_( r —r_)] ) (3.54)
o P P € P

The above formula was derived on the assumption that the planet and earth are on opposite
sides of the y-axis. Suppose both are on the same side; then the left side of the second equation

of (3.32) should read Pq (pp. Hence

cos (cos-1 |—d| —cos™ ! |—d|) i o [dZ +(r? —dz)i/2 (r? —d2)1/2]
r r rr p e
e p ep
To
= cos(q:p - (pe) + d—o f! sm(<pp — <pe) | (3.55)
where
w2—dHY2 2p 4a) @2-d3Y2 (2r 44
= —8 0 e o 'p o p o (3.56)
r (r +d) r (r +d)
ee o p'p o
As previously, we find
r X X
at ped [1_—°<&)f-l (3.57)
o 2 \x —x
d0 e p
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We also obtain the analog of Eq. (3.45) as:
4y

2 2 24/ 2 2.1/2 o
1 = - e — P oy A—
t] = 2(t g tdp) - [(re d“) (rp d®)*’°1 +
o o
re+(rez—d02)1/2 ) (rez—c102)1/2 (rpz—doZ)VZ
X ylog + 5 - - (3.58)
er Jr(I_Z_dZ)i/Z 2 (re+do) (xp+ do)
p p o)
But, in analogy with Eqgs. (3.46) and (3.47), we find
(rz_dz)i/z_ (r 2 _d2)1/2 Nx —x —p
e p e p o
Hence,
2 4ro re + X 1 xe 3€
s Ry Y= [“%(ﬁ)— E(T - r_p)] ,
o e o p p e 'p
and finally,
4ro 1:‘e + Xq 1 2xe — Xp xp
AT = ¢ [loge(r +x )_E ( r _r—)] ' ki
o P p € p
Comparing (3.59) and (3.54), we find that, in general,
4r0 re + Xq 1 2xe - xp xp ro2
BFy =75 [loge(r ¥ x )_E( T _r—)]+o—2 : 13.58)
o p p e p c,

Considering Eq. (2.18), we see that the result (3.60) is in precise accord with Eq. (2.25).

At this point we should mention that in an interplanetary radar experiment, in addition to the
time delay, the Doppler shift of the radar wave is also measured; but, although the effect on
time delay of the change in c¢ is cumulative, the corresponding general relativistic effect on
Doppler cancels out over the round trip.* In our development thus far we have assumed that the
earth remains stationary. Whereas such an approximation has no significant effect on Arr, the
change Afr in Doppler attributable to Arr comes about solely because of the time variation of
ATr introduced by the relative motions of earth and planet. Since, to first order in v/c, the

Doppler shift Af is related to the transmitted frequency f and to the time delay 7 by
of = —f1 (3.61)

and since ATr is most sensitive to changes in do’ we can approximate Afr by

8A'rr ado
Z_\fr z—f(T) (W) " (3,62)
o
where by straightforward differentiation of Egs. (3.60) and (3.11), we find
AT 4r 2X —X X
adr: codo[r(r1+x)_r(r1+x)+% e3 __§] ’ (3.63)
o o e‘"e e PP o) T rp

* If a suitably calibrated frequency-measuring device were stationed on one of the inner planets or in orbit in
their vicinity, then the general relativistic effect on frequency, the so-called gravitational red shift, would
indeed be detectable, amounting to a change in frequency at X-band of about 20 cps at the orbit of Venus. Of
course, when the receiver is inside earth's orbit, the change is a violet shift.
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and

ad ) ) COS(wp— ?o)

- =r.r (¢ —¢)

ot ep’p e 2 2 _ B 1/2
[re + rp Zrerp cos(cpp q)e)]

s o
- rer', sin (<pp—<ﬂe) (3.64)
[r2+r2—2rr cos (¢ —(p)]3/2 . .
e p ep p e

Near superior conjunction, this approximation to Afr reduces to

8r
Af ~xf 2
r c

(e}

xexp(wp =@
d ( X_)
P

X_ — g (3.65)
oe

where the minus sign is to be used for the pre-superior-conjunction configuration and the plus
sign for the post-conjunction configuration. Even at X-band frequencies and with grazing in-
cidence (do R Rs), Eq. (3.65) yields only a 3.6-cps effect. Furthermore, since the planetary
orbits are not coplanar, the magnitude of Bdo/at will in general be less than indicated by
Eq. (3.64). At do B 3Rs, the closest approach possible with the Haystack antenna (see Sec.1V),
Afr would fall to about 1cps or less. 5Aside from the questions of frequency stability and of
other influences on the Doppler shift,” it is doubtful that the center frequency of the Doppler-
broadened echo from a rotating planet could be located with sufficient accuracy to detect Afr

reliably.

IV. OTHER INFLUENCES ON TIME DELAYS

Are the relativistic effects on interplanetary time delays likely to be obscured by others?
The most important candidates in this latter category are the imprecise knowledge of plan-
etary orbits and the presence of interplanetary plasma. A moment's reflection suffices to
show that the orbits of the earth and the target planet can be determined with more than the
required precision from optical and time-delay measurements distributed around the orbits of
both planets. For example, time-delay observations of Mercury from earth could be made at
all positions of Mercury along its orbit with the radar wave never passing near the sun. Ob-
servations along one half could be obtained from elongation to elongation through inferior conjunc-
tion, and along the other half during a corresponding elongation-inferior conjunction-elongation
period, but with the earth on the opposite side of its orbit. In addition, since the received power
varies with the inverse fourth power of the interplanetary range, measurements made near in-
ferior conjunction will undoubtedly be more accurate than the corresponding ones made near
superior conjunction. Hence, the precision of orbital determination should be at least as high
as the accuracy with which one can make the crucial time-delay measurements near superior
conjunction. More generally, we can see from this analysis that the sensitivity of the time delays
to changes in A-rr will be different from the corresponding sensitivities to changes in the initial
conditions of the orbits and in the planetary masses and radii. A parameter characterizing
AT, could therefore be estimated from the data simultaneously with the other relevant ones,
without incurring any appreciable accuracy penalty from inseparability of effects. The topo-
graphical variations on the target planets are probably small enough so that even the most ac-

curate measurements will not be significantly degraded thereby.
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The effect A-rm of the interplanetary medium on the two-way time delay can be represented
5

by
_8.2x10'

AT
fzc
o

X
. gxe N() df sec (4.1)

p

where N is expressed in electron/cm3, f in cps, ¢ in cm/sec, and £ in cm. Equation (4.1) is
valid only if f lies sufficiently above the plasma frequency of the medium; this condition will

hold for all our considerations. Using recently compiled results on the solar corona (see Fig. 11*
in Erickson“), we find that during a "quiet-sun" period, N(r) can be represented reasonably

well by

5 Rs 2 3
N(r) = 5 X 10 (—;-) el /cm ;i ro=12+d (4.2)
from r = 4RS tor = ZORS. Inside this range the actual N increases more rapidly with decreasing
r, whereas outside it decreases more rapidly with increasing r. For a period of maximum solar
activity, Fig. 11 of Erickson13 shows that N is probably about a factor of five higher in the radial

range represented by Eq. (4.2). Substituting Eq. (4.2) into (4.1), yields8

24 x X

_ 6.5 x10 = e -1("p

ATm Rie——— [tan ( d) — tan (T sec . (4.3)
f-d

Here d, X and x_ are expressed in centimeters and are defined as in Fig. 1. For d << Xg» |xp|

and with xp < 0, we find

6.5 x 1024
N e T

AT (4.4)
m de

For the Arecibo Ionospheric Observatory's frequency of 430 Mcps, the lowest at which inter-
planetary time-delay measurements are currently being made, Eq.(4.4) yields A-rm ~4 X 1074 sec
for observations of Mercury near superior conjunction with d ~ 4Rs. (This latter value corre-
sponds to an angular distance from the sun of 1°, the smallest at which Arecibo measurements
can be made.) In this case, ATr would equal about 1.4 X 10_4 sec, as can be seen from Fig. 2,
and would most likely be masked by the uncertainty in A-rm. Although ATm varies inversely with
d, whereas the corresponding dependence in AT, is logarithmic, the difference AT = AT is
nowhere large enough and positive for a really reliable and accurate result to be obtained solely
from Arecibo data. Since, for sufficiently high f, A'rm varies as the inverse square of the radar
frequency, this plasma effect will be reduced by a factor of almost 400 (and will therefore be
unimportant) for measurements made at the 8350-Mcps frequency of the newly constructed, but
not yet fully instrumented, Haystack radar facility. The Jet Propulsion Laboratory Goldstone
radar, operated at a frequency of 2388 Mcps, could probably also make these time-delay measure-
ments in a "quiet-sun" period without undue interference from the solar corona. However, during

a maximum of solar activity, it is doubtful whether measurements at 2388 Mcps could be used

* Note the caption on this figure: "A complication of data...." It unwittingly summarizes the experimental
situation quite well.
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alone to perform an accurate test of general relativity: The plasma would cause an increase in
time delay at d = 4R of about 0.7 x 10™*sec and at d = 20R  of about 0.15 x 1074 sec, with an un-
certainty of perhaps a factor of two or three.” But in the latter case, AT is only 0.7 X 10—4 sec.
In any event, simultaneous equivalently accurate measurements at two well-spaced frequencies
will allow the plasma effect to be deduced and subtracted since ATm is frequency dependent and
A-rr is not.

Other possibly relevant effects on the delays are easily disposed of. A previous study5 has
shown that the earth's and planet's atmospheres and ionospheres will not significantly affect time
delays, even for f = 430 Mcps. The effect of the earth's gravity and motion on the laboratory
clock is unimportant for this experiment, since the clock rate remains constant over a year to
within about one part in 1010. The gravitational effects of the earth, moon, and target planet on
the delays are much smaller than those of the sun, but in any case the former (excepting the
moon) could be neglected since these contributions will be almost identical in each measurement
and consequently indistinguishable from a small decrease in the planet's radius. Similarly, any

bias introduced into the time delay by the radar system will not affect this experiment, provided

only that such bias is independent of the relative orientations of the earth, sun, and planet. Any
lack of precision in the determination of c¢ in terms of terrestrial units (such as in km/sec) is
clearly irrelevant to our experiment since time delays only are of concern.

In making the time-delay measurements, we must consider the radio interference introduced
by the sun. For the Haystack facility, the antenna beamwidth is sufficiently narrow and the near
sidelobes are of sufficiently low gain that the beam can be directed within a half-degree of the
solar limb without the radio emanations introducing a significant increase in the over-all system
noise temperature. For Arecibo, the closest possible approach is about 1°, partly because of
the larger radio diameter of the sun at 430 Mcps and partly because of the higher-gain sidelobes
of the Arecibo antenna.

On the basis of these analyses, we can feel reasonably confident that the time-delay experi-
ments discussed here will provide a meaningful test of Einstein's theory of general relativity.
Because the magnitude of the effect decreases slowly with the distance of closest approach of the
radar wave to the sun (logarithmic dependence on d), we have the possibility of testing not only
a single numerical prediction, but the functional form of A-rr as well. We require, of course,
the ability to measure time delays at superior conjunction with an error of no more than about

10 psec. The upgraded Haystaék facility is expected to provide such a capability.“'

Repeated
measurements extended over a period of several years should then enable the maximum effect
to be determined to about 1 percent and the effect at greater distances of closest approach to
correspondingly lower accuracies (see Fig.2). We need not worry about constant biases in the
radar system limiting our use of statistics to improve accuracy since, as shown above, constant
biases serve only to introduce an error in the estimate of the planet radius.

In principle, this relativistic effect on time delay could also be observed either by using space
probes in orbit about the sun, or by placing transponders on a planet. At present, each of these

approaches would be more difficult and more costly to implement than the one discussed here.

*Since for r > 20R;, N(r) decreases more rapidly with increasing r than is indicated in Eq.(4.2), we might find
Aty ford = 20Rs to be somewhat less than estimated.

1t may be possible to estimate the plasma effect on delay adequately by simultaneously observing the deflection
of low-frequency (<100 Mcps) signals from suitable radio stars near the line-of-sight to the target planet. How-
ever, a variety of plasma conditions having different effects on delay can lead to the same over-all deflection of
the radio star emanations.
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V. ADDITIONAL SCIENTIFIC "FALLOUT"

The time-delay measurements proposed to test the predictions of general relativity con-
cerning the effect of gravitational fields on light rays also have other scientific implications.
The orbital accuracies achievable will represent not only a very significant improvement over
present knowledge, but will enable a somewhat independent and more accurate determination to
be made of the precession of Mercury's perihelion position. With the measurements distributed
fairly uniformly about the orbits of both earth and Mercury, the standard deviation o(w) of the
error in perihelion precession is given by15

5 2 X 107 1 o(7)
olw) ® =7 — —L sec of arc/100 yr , (5.1)

(Nt3) 1/2 ae "min

where N is the number of measurements made per year, t is the total time span of the observa-
tions in years, o(r) is the standard deviation of the single-measurement error, ¥ st is the mini-
mum range to Mercury, and a (in astronomical units) and e are the semimajor axis and eccen-
tricity, respectively, of Mercury's orbit. (The numerical coefficient merely represents the
conversion from radians per revolution to seconds of arc per century.) With N = 50, t = 3,

(1) = 10psec, 7_ . = 350sec, a=0.38, and e = 0.2, we find
min

o(w) =~ 0.2 sec of arc/100 yr (5.2)

which is considerably smaller than the error currently attributed to the conventional determina-
tion of the centennial value of the precession.

In order to determine to this accuracy the anomalous (non-Newtonian) contribution to the
precession, we must of course know the Newtonian contribution to a comparable degree of ac-
curacy. Two major impediments to this determination are the uncertainty in our knowledge of
the sun's quadrupole moment and of Venus's mass.” The former problem has been discussed
elsewhere.16 The latter can probably be solved by using earth-Venus time-delay observations
from which the perturbations of Venus on the orbit of earth should enable Venus's mass to be
determined accurately enough. Knowledge of the mass of Mercury may also be improved sig-
nificantly in virtue of its effect on the orbits of earth and Venus.

The determination of the radii of both Venus and Mercury will also be refined substantially,
in fact by about two orders of magnitude. If the optical diameter of Venus were determinable
with an accuracy of about #5km, then the height above the surface of the Venusian cloud layer
could be deduced with reasonable accuracy; such a result would be of great importance for the
study of planetary atmospheres.f The combination of accurate radii and mass determinations
will, of course, yield correspondingly accurate densities for Mercury and Venus. These values

are of interest to studies of planetary formation.

* Although it is claimed by Jet Propulsion Laboratory analysts that their tracking data on Mariner Il yielded five-
place accuracy in the determination of the mass of Venus, there is the possibility that systematic errors may result
in this accuracy being more apparent than real.

t There is also the possibility that the X-band radar waves are reflected from a cloud layer and the S-band and
lower frequency waves from the surface. In such a case, simultaneous delay measurements at X-band and at a
lower frequency might enable the height of the reflecting layer to be determined.
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Highly accurate determinations of the mean anomalies of the inner planets will allow a rea-
sonably strict limit to be placed on the possible time dependence of the gravitational constant G.
[The theoretical conjecture (first made by Dirac”) that G may decrease with time is based
partly on the apparent expansion of the universe.] If the mean anomalies could be determined
each year with an error no greater than 0.02 seconds of heliocentric arc, which should be achiev-
able if individual time-delay measurements are made with errors of 10 psec or less, then a var-
iation in G of about five parts in 1010 per year would be discernible after several years of ob-
servations.” Of course, one must also have clocks with the requisite long- and short-term
stabilities. Since the theoretical estimates of the rate of change of G vary down to a part in
10“ per year (see, e.g., Dickew), this test will probably not be crucial unless the measure-
ments are either improved in accuracy or continued over many years.

As stated in Sec.IV, the solar corona affects time-delay measurements by an amount in-
versely proportional to the square of the radar frequency. In particular, accurate delay measure-
ments made at about 400 Mcps, for example at Arecibo, would afford an excellent opportunity
to study the solar corona. The integrated electron densities could be determined as a function of
d and from these results the average radial electron density could be deduced. Short-term
fluctuations could be studied by making frequent measurements and long-term trends observed
by extending the study over the length of the solar cycle. The solar-corona plasma will also
influence the Doppler shift of the radar waves via an effect analogous to the one discussed at the
end of Sec.IIl. As in that discussion, we conclude that the time-delay differential holds more
promise at present as a tool for investigating the corona. However, Doppler observations may
enable the detection of dense plasma "wedges" moving perpendicular to the path of the radar
wave. Bending caused by the plasma would be significant only close to the solar limb where
measurements cannot be made. Hence this effect too seems to be of less interest than the time-
delay measurements.

Faraday rotation effects, caused by the different propagation speeds of the ordinary and
extraordinary modes, would also enable certain characteristics of the solar magnetic field to be
investigated. The detailed deductions are somewhat complicated, however, because sign re-
versals in the magnetic field tend to cancel in their effect on Faraday rotation. In summary,
such radar experiments could probably provide all the solar corona information currently ex-

pected from the forthcoming Sun-Blazer probes.

* Note that the effect of a change in G on the mean anomaly is proportional to the square of the elapsed time,
whereas the corresponding effect on the Astronomical Unit is merely proportional to the time. (In this discussion,
we are, of course, referring to nongravitational (e.g., atomic) measures of time.)
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