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ABSTRACT

The kinetics of free radical polymerization were treated theoretically under the
assumption that the reaction temperature increases at constant rate (Tr = const). From
The Arrhenius relationships for the kinetic rate constants, approximate corresponding
functions of time were derived, which transformed the kinetic equations accordingly.

A differential equation describing the sum of the concentrations of all free radicals
appearing in such a system was solved by approximation, and from the resulting series
the conditions for the lower as well as the upper bound of the stationary state assump-
tions were obtained. Defining the required precision by a large number N, where the
relative error caused by the stationary state assumptions cannot exceed the quantity 1/N,
the stationary state criterion obtained could be expressed by the following inequality:

f [I]kt N2

kd 64

where f is the efficiency constant, [I],kd and kt are the functions of time defining the
corresponding concentration of initiator, and the kinetic rate constants for initiator
decomposition and termination.

If the constant rate of temperature increase, T approaches zero, the reaction becomes
a polymerization carried out at constant temperature. Under such conditions the derived
criterion turns into another criterion valid for constant temperature. This new expression
is identical to the corresponding formula derived previously (References 1, 2, and 3).
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INTRODUCTION

In our previous work (References 1, 2, and 3) a stationary state criterion for free
radical polymerization was derived from the rigorous solution of the kinetic equations
characterizing the system. The mathematical analysis was carried out under the
assumption that a constant temperature was maintained during the polymerization. Since
the kinetic rate constants are functions of temperature, according to the Arrhenius
relationship, it is important to evaluate the appropriate parameters, by carrying out
the experiments at different temperatures.

During the last decade many attempts have been made to study the kinetics of free
radical polymerization at varying temperatures, and to derive the Arrhenius parameters
from a single experiment. It was found that the most favorable technique was to increase
the temperature of reaction at constant rate during the polymerization (References 1
through 5). The growing importance of this method calls for the extension of the mathe-
matical analysis made previously to include also the new experimental conditions. Such
a treatment was carried out in the current work and a generalized stationary state
criterion was derived. The new formulas obtained are valid if the rate: dT/dt = const,
where T = temperature, and t = time. If this rate approaches zero, the new expressions
for the stationary state become the old formulas obtained previously (References 1, 2,
and 3) for free radical polymerization at constant temperature.

KINETIC SCHEME FOR FREE RADICAL INITIATED POLYMERIZATION

The process of free radical polymerization may be considered to involve the following
steps (Reference 6):

Initiator decomposition and initiation

kdI- 2R* (I)

R" + M -- M (2)

Propagation
kM - + M " P M .( )

n n+i

Termination k fc
M .+ M tc Mn~ (4)

k td
M; + M k Mn + Mm (5)

ktr
R. + R. RR (6)

ktn
R. + M. RMA (7)

where kd, ka, kp, ktc.., are the corresponding kinetic rate constants.

I
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Similar to the method utilized previously (References 1, 2, and 3), the rate constants
of termination will be assumed as kt and ktn = 2kt. The relatively small contri-
bution of the terms ktr[R']2 and ktn R ][ M-] to the total termination makes the possible
error introduced by such an assumption negligible. The system defined by Equations 1
through 7 leads to the following differential equations:

d[R1 2k (8)rird[ .[I-k 0 R1[MI-2k, [RI? 2k, [R. 1 (

and

dt

Adding both sides of Equations 8 and 9, one can obtain:

d r 2kd[I - 2ktr 2  (10)

where

r =[R.] + [M] 0 1)

is the sum of concentrations of all free radicals.

The rate of the initiator decomposition derived from Equation 1,

d, [I ]k (12)

leads to the following expression for [I]:
t

[1] I exp(-f kddu) (13)

where 1o is the initial value of [I] From Equations 10 and 13 one can obtain:

tdr Zk exp (-f kddu)- 2ktr2 (4dt 2kd d(14)

0

Analogously to the method applied in the previous work (References 1, 2, and 3), the
stationary state will occur if the rate dr/dt in Equation 14 is much smaller than either
of the other two terms appearing in this equation. With such an assumption, dr/dt can
be omitted, and the concentration can be expressed as follows:

rI ) 1 2 Iexp (-Ift kddu) (15)

0

2
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Since such an assumption is only justified, if r is very close to rs, another condition
has also to be fulfilled simultaneously:

r I-h (16)

and
I1 r I = Ihl !5 (17)

rs • =N

where N is a large number defining the degree of precision, and 1/N is the maximum
deviUtion of r/rs from unity. The criterion for the stationary state can be derived

according to the conditions defined by Equation 17, if the expression for r is known
explicitly. To obtain such an expression one has to solve differential Equation 14.

It has to be borne in mind, that the temperature of the system under consideration

is no longer constant, and must be defined as a function of time as follows:

T To + tt (18)

where To is the initial temperature and T = (dT/dt) = const. According to the Arrhenius
relationship, any kinetic rate ks can be expressed as:

k = A exp (-_E) (19)

where the constant parameters As, Es, and R are respectively, frequency factor,
activation energy, and gas constant. T is expressed in 'K. Since T varies with time,
ks is also a function of time. This function defined in Equation 19 will now be expanded
into the following series:

k8 A exp{ 9 ('TL1} (20)
EsO n= ) TO .

In general (i' t/To)<<1, and Equation 20 reduces to:

ks As S- e - p e LSTrot (21)

Two quantities, constant during a single experiment, will nowbe introduced. The
initial value of ks at T =To:

k 0 A (x E (22)

and
f E 5T 2(3s RTo(23)

3
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Applying these two experimental constants, the Arrhenius formula, Equation 19, can be
transformed into the following approximate function of time:

ks = ks,° exp(f t) (24)

which is simple and convenient for further calculations. In general, the term (Tk t/To)
appearing in Equation 20 is a small number over the entire period of the reaction, and
the approximation, Equation 21, is justified.

Applying the formalism given by Equations 22, 23, and 24 one can express the kinetic
rates of kd and kt as follows:

kd = kdo exp(fdt) (25)

where

Kdo Ad exp ( od (26)

- RTo) (27)

and

kt = kt,o exp(ftt) (28)

where

k Atexp (Eo (29)

(30)

Equations 25 through 30 can be used to transform Equation 14 into a new equation:

dr = 2k I exp d+ t - fd ] - 2k 9 tt r (31)
dt d,oI~X 0 'd fd d / t'O

Then by dividing both sides of Equation 31 by kd, and introducing a new variable, x,
one gets

kd
x (32)
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and the following differential equation is obtained:

dr -x -P 2
ae -bx r (33)

where p, a, and b are constants defined as follows:

P=fd - ft =I E t (4fd__=_ I Ed (34)

kd Ed

= 210 exp do (35)

and

b 2k1 0 d) (36)

In general p<l, and ]1-0j<<1. According to the initial conditions, xo kd,o/fd, and
r(xo)=O. For reasonable values of T', xo is usually a small number. In the current work
it will often be considered as 10-2.

APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS
OF THE SUM OF FREE RADICALS

Equation 33 was solved rigorously in the previous work (References 1, 2, and 3) for
p = O. For p 0 0 no rigorous solution was achieved. However, methods exist which
provide an approximate solution of Ekjuation 33, and enable one to derive a criterion for
the stationary state; one of these methods will be introduced in the following:

Under stationary state assumptions, Equation 33 reduces to:

09 -bxPr.2 0 (37)

Hence:

1i2 K
rs  e 2 e 2 (38)

The function r appearing in Equation 33 will now be replaced by a new function, g, defined
as

r = rS•g (39)

From Equations 33, 38, and 39 one can derive a differential equation for g:

x Pdg 2 2 + (40)
-- -2ce x g + (p- )(2 (40)

where c = (ab)

5
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The relationship given by Equation 39 can also be expressed by the following series:
0)

r I -g = I+2 (-I) g (41)
V I+ g n=1

In the interval in which stationary state assumption is justified, tgi<<l. Hence:

- z 1-2g (42)
$

and according to Equation 17:

Igi (43)

Finally, within the same interval g&<4, and Equation 40 reduces to:

x Pdg Z -2C& T X g + .(I _1) (44)

This new approximate equation can be solved, if at least one fixed point (boundary
condition) is known. Unfortuately, the initial conditions cannot be applied for this case.
Since the initial value of g is g(xo)= 1, this function cannot be considered small for
x = xo. Thus, at the very beginning of the polymerization, the approximation, Equation
44, is not justified. However, it will be shown in the following that this formal objection
can be disregarded if special conditions do exist, and that these special conditions are
also identical to the stationary state conditions. Therefore, the following method will
be applied. At first a new differential equation will be solved in which the function g(x)
in Equation 44 will be replaced by another function y(x):

d 72
dy 'Y--2-S=-2cO x y + •-(.--) (45)

where y(xo) = 1.

Integration of Equation 45 leads to the following expression:

X

Y(x) = JLF(x)feF(-L(-I d+F(x)F(x) (46)

where
x P (47)

NO = 2C frX dx

Since F(x) itself is a transcendental function, the general integral appearing in Equation
46 can only be given by approximation, or can be expanded into a series which employs
successive integration by parts:

Jr P ' "2'2 P F~z) lr re~ [TzT(p_) =,,
eF~z](--•--l~dz '-9- z~z [-'-l9F( (48)

Z 2ct z J

6
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Then by denoting

z P
U(Z) :eTzTU()= 2c (49)

such a transformation repeated n times leads to the following expression:

f (z)(-dz = eF(z) Sk(z) - Rn(Z) (50)

where

Sk (Z) uk(z)bkPk(z) (51)

k -i

Pk(z) : a Z (52)i=O

Rn(Z) feF(z)d[bnun(z)Pn (z)] (53)

and bk and aki are constants. According to Equations 50 through 53 the function y(x)
given in Equation 47 becomes

- S- S(X) + ['- 41 x0Aexp[IF(x0) -FW]- Rn(X, x0 ) (54)
k=1 k=I

where Rn(x, xo) Rn(X)-Rn(xo). For the sake of convenience Equation 54 will be

expressed:

ny(x} =I• Tk (xl-Rn(x,xo) (55)
k=l

where
T ' = 1 (x) + [I -S 1(xo)]exp[F(xo)-F(x)] (56)

T = LS (x)- S (57)
k =I 4 k 4 Skx [0

and
x

Rn(XXo) f eF(z)bnd [un (z) Pn(z)7 (58)

xo7
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For x >>, Pk(X) : ak, 0. Hence for large values of x:

Sk N ) bkak,o uk (x) (59)

On the other hand, if x is small, xkpk(x) • ak, k, and

S V4 a i) T (60)

where ak = bkak, k - Since xo is a small number,

[o~xo) 1k
Sk(Xo) N O -O) j (61)

Finally, for large values of x:

T -U(X)+ [I- I exp (62)

and

-T 4 ba k W 1 - -- ) --- W (63)k•I 4 bkak,oU 4 k x expF 0

For small values of x:

T," pu(x) + - exp[F(xo)-F(x)] (64)

T 4 Ia k I kexp [F(xo)-F(%)] (65)
k•l 4"k' k- k ) 4kxo

Remembering that y(x) and g(x) are not identical, the conditions justifying the stationary
state will be mathematically applied to the y(x). To find such conditions means to find an
interval Xmin- _ x max, within which ly(x)l 5 1/2N. One has also to regard the needs
of the experimenter, that is, to have a stationary state which (1) appears almost simul-
taneously with the beginning of the reaction (short period of induction), and (2) which is
valid over a considerable period of time. The first condition enables one to neglect the
period of induction and to evaluate the experimental curves by assuming that the
simplifying conditions are valid practically from the beginning. The second condition
ensures that proper measurements can be carried out during a period of time in which a
substantial part of the initiator underwent polymerization. Such a stable stationary state
will appear, if xmin is very close to xo, and if Xmax is a large number which covers a
substantial period of the reaction.

8
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The function y(x) given in Equation 46 will now be expressed by the mean value of the
integral:

=I F(C)- FWx x F(xo)-F(x)
y) p In (2--) -x + x + 0 (66)

where xo<C<x.

By substituting x = xo into Equation 66, the resulting value of y(x ) is unity. Therefore,

Equation 66 satisfies the initial conditions for y(x). A short induction period means:
Y(xmin) < 1/2N also If Xmin is very close to x0 . Such a condition can be achieved only

if the expression appearing in the exponent of Equation 66, F(x)-F(x ), which is zero

for x = xo will increase rapidly as x starts to exceed xo. Therefore, it is important to
examine the function F(x)-F(x ) closely, to derive conditions assuming a short period
of induction.

MATHEMATICAL ANALYSIS
OF EQUATION 46 AND THE EXPRESSION F(x) - F(xo), USING EQUATION 47,

ACCORDING TO THE STATIONARY STATE CONDITIONS

Let z 2t, then the integral

z p
I(z) f --e T z T dz (67)

transforms into

1--p p
1(t) =  2 t dt (68)

Successively integrating I(t) by parts gives rise to the following series expansion:

p- " f'P -t [ t t 2

1(t) - 2 + ± + +" (69)2~2-- 2 • X3

1
By substituting t =2 z Equation 69 becomes

2 -' -'Zp
I(Z) p zF (1,2--, z) (70)I-z) -22-

where

F (abx) + "a+ o(a+I)x 2 a(a+0)(a+2)x 3  (71)II bbI ! b(b+l)2! b(b+l)(b+2)3!

9
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1F1(a, b, x) is known as the confluent hypergeometric function (Reference 7). Since the
confluent hypergeometric function is absolutely convergent for all values of a, b, and x,
real or complex, excluding b = 0, -1, -2, ... , the integral I(z) always exists except for
p = 2 + 2n (n = 1,2,... ). In general, p varies only within the interval o!< p < 1. Hence,
the integral I(z) is always defined.

Equations 47 and 70 clearly lead to:

X z p

F(x)-F(xo) = 2cf ezTz--dz
X0

P x
.4c X264 I?-P2)xl 2 F (1,2- P - 0 72

2-P 1 1 1 02 2
62p I IF (I22 P x) (72)

For very small values of x, the confluent hypergeometric function approaches unity, and:

. P
4c 2 - X1721

F(x) -F(xo 2 " c (73)

if o < xo< x << 1. Under such conditions, namely, when x and xo are very small and x is

close to xo, then F(x) - F(x ) can only be very large if c is sufficiently large, that is:

F(x)-F(xo) > M

where M is a large number, if

4c > M(2- p) (74)
.P I p

,--m I--T2 2

X - X0

Therefore, one may expect a short induction period only if c is a very large number.
Hence, the following mathematical analysis will be carried out under the assumption
that c is very large. Let us now evaluate the function F(x)-F(xo ) for large values of x.
Since the integral

x z p
24 e 2 Z exists for all values of x, then:

xo
X X OD

f f +f + f =I+ +12+3 (75)
X0 O 0 X0

10
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After repeated integration by parts, I yields the following series expansion:

x z P

I, = f e z dz
CD

P -x
-4cF [I- _Px + P(2+p p(2+p)( 4 +p) +(

- 4c;2 e9 2~ 3 (76)
K K

Therefore, if x >>l,

-P -.
I, r -4cx 2e 2 (77)

The value of I is readily available from tables of integrals and is given asm

OD Z P 2_P

12 2cfe T z 2 dz = 2 2 crl-P), (78)
0

where r (x) f G- dt is the well known gamma function. Since
o

x<< 1, I3 may be approximated according to Equation 73. That is:

o _ z .P_ I -E_
= 2C e 2 z 2 dz = 4c 2 (79)

3T 2 -p ^9
0

Combining Equations 77, 78, and 79 one obtains:

2 P P x P

F(x)-F(xo) = 2 c (I--, _ )-4cx 1 2 4c Xo0 2
2

2 -2P
--. 2 c1"( --- ) (80)

Since p 1 and r (1) = ,,, Equation 80 may be expressed:

3

F(x)-Fx 0 ) 22 cvf'r, if X >>1. (81)

From the above, it can readily be seen that the function F(x)-F(xo) approaches its

asymptotical value 2c,/j very rapidly. This property of F(x) is illustrated in Figure 1 for

11
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the case p = I and x. = 0. By imposing these conditions and substituting z = t2 , F(x)

transforms into the normal distribution function. That is:

X z P 2.r_•

F(x) = 2cfe_ 2z 2dz = 4c f e 2 dt (82)
0 0

= 4c V-2-ifS(t)dt = 2cY(x) (83)

0

where

t 2I --i:

f2- Tre

Let us now consider the expansion of y(x) as expressed by Equations 56, 57 and 58:

y(x) = T, + T2 + T3 - R3 (84)

where

Tt = -- U(X)(-- + I U (Xo)(Po( -I)I.F(x0o-F(x) (85)

0

22

-U (K) + 2 X"0FOx (86)
8 X0

S3 pX-4pz4p p-2p p
RT83f d1,[U3(X) 2 + + - ()

I 3 P3-P4•+P P2-2P P )F(xo) -F(x)

-8u ' 3( 2 TZ Xo ( 87)

00  z z

12
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Let ^ and R be defined by the following equations:
max min

mx 2 and ^d >> I (89)

U-(Xmax) N- max

and

P ^ F(xo )- F(- min) I

minU(Xmin) =o m

in which
< kmin' and ýmin Is close to xo (90)

Since Rmax and Xmin are dependent upon c, the conditions Xmax >>1 and Xmin close to x°
are easily satisfied by adjusting c.

Since Xmin is very close to x0 , Equation 90 gives rise to the following inequality:

4x u(xo) << I(1
4x0

Hence:

+ F(xo) - F(x)T 4 < • U X)( - I (92)

It can readily be seen that for sufficiently large c the term e F(xo F (x) decreases

AA

rapidly and may be neglected if x >> xmin" Then:

if a X (93)T1= 2N mrin = = max

where •min and ^m~ax are defined by Equations 89 and 90 respectively. Examining T.

and T~in the interval Xmin X x x max one observes that:

T _ )5 (94)

and

T3" <_ )3 (95)

14
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The integral R3. appearing in Equation 88 may be expressed by the mean value theorem as
follows:

3 22

R [•u_(x) p -4P+4p + -2p
x X

3 2 ) 2F( -F(2)

-u 3 (N) o 34 + z Xo (96)
03 X2 (96)J

X0 o

where xo g gx.

Consequently:

IRIS - if'-. xK 5 X
3 = 2N m in = = max (97)

Since N is a very large number, the terms T., T, and R, may be neglected and the

following relationships arise:

Iy(x)I $ IT,(x)I :-2 , if s x <__ Xmas (98)

Recalling that the validity of the stationary state assumption can be expressed by the

inequality ¶y(x) s L where x <. x it is obvious from Equation 98 that
!N' mi - -max'

A
the stationary state exists in the interval ^min< x 5 Xma^ Hence, Equations 89 and 90

define the lower and upper bounds of the interval in which the stationary state exists.

Assume the exponential term in Equation 90 is the leading one, that is:

P U(xmin ) << eF(xo)-F(x) W =1(4 Xmin m- (9

This additional condition on Equation 90 forces Xmin to approach x, thus decreasing

the induction period. By using Equation 99, the expression for xmin is simplified to:

' -F 'TX (2-p) In2N
Xmin o0  4c (100)

It should be pointed out that the condition in Equation 99 is not a necessary one. It

means that the stationary state may also exist without satisfying Equation 99. If

Equation 99 cannot be satisfied, but the approximation exmin/2 v- I is valid, the

general Equation 90 reduces to a simplified transcendental equation:
p p

e+ xp [_ 4c (Xmin 2  o 2' 2)] (101)

cx min 2

15
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It must be emphasized that the stationary state conditions above were not derived from
the proper function g(x), but from a hypothetical one, y(x). One of many ways to show
that g(x) - y(x) in the stationary state interval is to prove the existence of a point R
such that xmin X = Xmax and g(x) .y(k). It is obvious that if such a point x exists, then

Sg(x)1 < N in some interval containing 2, and therefore, one may neglect the term
g3(x) appearing in Equation 40 in such an interval. This neglect of g2 (x) in Equation 40

leads to Equation 44 and finally to Equation 45, the defining equation of y(x). Hence, the
derived stationary state conditions will be proper for the function g(x) if, under the
given conditions, the following relationships hold:

Y(Xmin) • g(Xmin)
or

IY(xmin) - g(Xmin)I << I g(Xin) (102)

Now consider the interval x.=S x 5 xmin. Since xmin is close to x and x 5 1, x is
mn0 0

a small number, and the approximation e x I holds in this interval. Using this
approximation, Equation 33 reads as follows:

dr = a - bx-Pr2 (103)
dx

By introducing a new function v, defined implicitly by:
dv

r d x (104)
b V

Equation 103 transforms into a new second order differential equation:

d V P Pv 2 0 (105)
dxW x dx

where cl = ab.

This equation may be solved readily for any p, but, for the sake of additional sim-
plicity only the case p = 1 will be considered. Thus, Equation 105 reads:

d2v + I dv c2v =0 (106)

By utilizing a new variable z defined by:

I 2X Z (107)

4c

16
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Equation 106 is expressed by:

d V + VI = 0 (108)
dz? z dz

which is the modified Bessel equation of zero order. This eguation has two independent

solutions Io(z) and Ko(z). Hence,

v(z) = C IO(Z) + C2 Ko(Z) (109)

where C, and C. are arbitrary constants, and Io(z) and Kd(z) are modified Bessel
functions of zero order (Reference 8).

Since
dI T(Z )d0z) I,(z) (010)
dz

and
dKo(Z)0z, -K (z) (III)

d z

where I (z) and K, (z) are modified Bessel functions of the first order, the function r
defined by Equation 104 can be written:

2b CI11(z)+C2 K,(z)

The stationary state condition L = 0 applied to Equation 103 yields the following r.
dx

function:

(. (ax if P (113)

or in terms of z:

Z (114)
2 b

Dividing Equation 112 by Equation 114 one obtains:

r I_- = C111(z)-CK1(z) (115)

rs I + g CCIJz ) + C2 Ko(Z)
1

Since the initial conditions require r(z. )=O; where zo = 2 ex, 2., C, = K (z.) and C. = I (zo).
Finally:

r KI(zo)II (z)-1 1(zo)K,(z) (6)
rs KI (Zo)o(Z) + ,(z1o) K(6Z)

17



AFML-TR-64-405

From Equation 91 one obtains:

2cx >> (117)

10

ifp= lande e .x

In the case of large arguments, one may express the functions Io (z), I• (z), K. (z) and
K, (z) by the following series (Reference 9):

,/2rZ 8z 21 (8 z), 3! 18z),9z

(Z•z= , z [ _ _ 5(3)X _ (3X5)(21)
o I. 8z 2!(8Z)2  3 !(8z)3 (119)

K z) 7re- I- r (I1)19) (I1)(9)(25)(10

SI+ _ --_ _ + (3" ")((121

/2-r z _ L 8 __2_(_Z)2_!_8_

8z 2! (8z) 2  3!(8z)3 + (121)

Using the above expansions one obtains:

I-g
+ g

Z 5 0+ 3 15 15 3 15 _ _8zo 2;C8zo)*"'[8-Z 2 ,(8z2 "-z-6z[-•Z -21-C8z-)I-' .I[, -2!'z' +...0Z-O[ 215~+~~ 3c~ 15 (122)z0z- z,+, ) ...1[,+-L+ 9 +...I+ zo-z[, ... I+L
8z !8o2 8z 2!(8z)2J 8z0 2! (8zo)

2  I 8z -2!(8z)
2  (22

Neglecting all terms involving I/z 2 and solving for g, one obtains:

I 2(ZO- Z)( + ,I)

gz z (123)1 + •_ _ n_ _ L e 2(ZD-z)
8zo 8z 4z
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Finally, from the above it can readily be shown that:

Y ( X m in ) - g -4 X m in < <( 1 4mm<mI (I24)
g( Xmin) I

Hence, it is concluded that at xmin the y function and the g function are almost identical
and that approximating the g function by the y function in the interval xmin < x < Xma

is justified. Thus the stationary state conditions derived for y(x) hold for the function
g(x) and express the true stationary state conditions of the system under consideration.

DERIVATION OF STATIONARY STATE CRITERION

According to Equation 89 the upper bound of the stationary state leads to the following
inequality:

_P x
4cx (125)

Substituting the kinetic parameters defining x and c (Equations 32 through 36 and 40)
into Equation 125 one can obtain the following formula:

'I ~RTokd 2 do)

8(k )> N exp 2E]'( " J (126)
d

This inequality can be considered as a stationary state criterion for polymerization
under the current conditions. In general, the initial concentration, I0, has also to be
multiplied by the factor of efficiency of initiation, f. For the sake of simplicity, this
factor was disregarded in this theoretical investigation.

Equation 126 will now be transformed into a simpler formula. At first, the integral
appearing in Equation 13 will be solved, and the concentration of initiator, r I], at any
time will be expressed:

[] 10 9X [ RTO(kdo-r kd) (127)
EdT

By substituting Equation 127 into Equation 126 one can obtain another inequality defining
the stationary state conditions:

"a(Ldt )_?. N (128)

Equation 128 shows that the validity of the stationary state conditions, within an error

1/N, is given by the value of a simple ratio (f r I I kt)/kd), which has to be greater than
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or equal to N2/64. It follows that the stationary state conditions will always cease to be
valid before the initiator is entirely decomposed. It is obvious that the duration of the
stationary state increases as the value of the initial concentration of the initiator, I4, in-

creases. On the other hand, by increasing the value of I0, one will obtain lower values
for the average degree of polymerization of the resulting polymer. Therefore, the higher
the required degree of polymerization, the shorter is the duration of the stationary state.

From the general criterion defining the stationary state conditions under the assump-
tion that the temperature of reaction increases at a constant rate , T, Equation 126, one
can derive another criterion for T = 0, which defines the corresponding polymerization
at constant temperature. For this purpose a function v will be introduced, defined as:

2Ed' (129)
R To

By keeping time constant, and varying only T, the quantity (Edt)/(RTO 2 ) appearing in
Equation 129 is now a constant, and the newly introduced function, v, is proportional
to T. Under such conditions it is obvious that if T approaches zero, v also approaches
zero. By denoting the exponent appeasing in Equation 126 as G, and substituting Equation
129 into Equation 126,this exponent can be expressed by

G = I k t( eV- ) (i30)
2 d,o V

Since

lim -ev- (31v _.o• -0 (V

the exponent G k t, if one maintains a constant temperature of reaction.

The appropriate criterion for stationary state derived from Equations 126 and 131 can be
given by the following inequality:

a ( IOkt )2 N exp kt(132)

where kt and kd are constant during the reaction. Equation 132 is identical to the
corresponding expression derived previously (References 1, 2, and 3) for free radical
polymerization at constant temperature.

The period of induction of the stationary state can be derived from the inequality
given in Equation 89. The resulting formula will be given, in general, by a transcendental
equation. However, in order that this period be extremely short, the general
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expression must be reduced to an approximate one, according to Equation 94 and the
derived relationship is:

P X P X0

In 2N < 4c( 9 2_ - 2 (133)

By substituting the original parameters into c, p, x, and x. , Equation 133 can be
transformed into an approximate formula defining a short period of induction:

In 2N S (-Tokt,okd,o) 2 t (134)

An identical formula could easily be derived from a corresponding expression obtained
in a previous work (References 1, 2, and 3) for polymerization at constant temperature.
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