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ABSTRACT

A theory of Fabry-Perot resonances designed to be useful
at small Fresnel numbers is given. This theory is applied to the
case where the interferometer mirrors are our arbitrary curvature
and have circular ipertures. Asvmptotic formulas are derived
for the diffraction output and phase shifts in the limit of small
Fresnel numbers. These formulas demonstrate the mode discrimina-
tion properties of the interfercmeters when operated in this re-
gime. Numerical results are presented covering a wider rarge of
Fresnel numbers.
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+NTRODUCTION

The resonance roperties of Fabry-Perot (F.P.) inter-
ferometers at Fresnel numbers of the order of, and greater than,

(1-6) The recent

unity have been treated in a number of papers.
use of "diffraction output couplinrg' as an efficient method of
transverse mode suppression when the Fresnel numbers are less

than unity(7) has motivated us to extend the theory so as to
describe resonators operating in this range. We have previously
presented numerical results for small Fresnel numbers, on diffrac-
tion outputs and phase shifts for F.P. interferometers consisting

(8)

of plane mirrors with circular apertures.

In this article we give a theory of F.P. resonances
designed to be useful at small Fresnel numbers. This theory
is applied to the case where the interferometer mirrors are of
arbitrary (small) curvature and have circular apertures.
Asymptotic formulas are derived for the diffraction output and
phase shifts in the limit of small Fresnel numbers. These formulas
demcnstrate the mode discrimination properties of the interferom-
eters when operated in this regime. Numerical results, in addition

)

output and phase shifts for curved circular mirrors for small

to those previcusly rezpor:ted(8 , are presented on the diffraction
Fresnel numbers. The theory is presented in such a way (in terms
of a canonical integral equation) that it applies to a general
class of aperture shapes.
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FORMULATION OF THE PROBLEM

The geometry which is considered consists of a symmetric
pair of mirrors, each of radius of curvature, R, whose subtending
planes are separated along the axis of the resonator by a distance
L. Thez aperture shapes are taken to be circles of radius a*. (See
Figure 1). We are interested in the resonance properties of this
electromagnetiic cavity, in particular, the complex resonant freq-
uencies** and the corresponding field configurations. The informa-
tion contained in the complex resonant frequencies can be expressed

in terms of the single pass diffraction cutput and phase shift of
the resonant fields,

Consider an arbitrary field configuration at plane (1)
of Figure 1. This field may be regarded as the sum of two fields,
one moving to the right, (l)f+(x,y), and one to the left (1)f_(x,y).
The field moving to the right reflects from the other mirror and
results in a configuration (z)f_(x,y), representing a field moving
to the left at plane (2). The resonances of this open structure
are defined by the requirement that after a double transit the
field reproduces itself, or, after a single pass it reproduces
itself up to the sign change -1, that is

@Dt x,y) = = W (x,y) (1)

More generally, we have:

(2) f_ (X,Y) = relK(k)L (l) f*(x:Y) ’ (2)

where K(k)L is a complex number, independent of x and y, but a
function of the geometry and propagation constant and r is the
mirror reflectivity. The single pass phase shift, §, is given
by:

*

The method of analysis can be extended to other aperture shapes,
1n particular, rectangles.

Because the structure is open, the _esonant frequencies are
complex. The imaginary part of the frequency is the inverse of
the lifetime of the corresponding 'mode''.




and the single pass fractional power output (due to diffraction),

1- ]l?

, is determined by

2 - feikaoy 2 @)

The resonant values of the frequency, Re ck, and gain

coefficient, Imk, are determined by the resonance condition (1),

or

colKGOL _ +

The quantity of interest, K(k), is determined by the

solution of the integral equation which is obtained bv propagating
the field from plane (1) to plane (2) and using equation (2).

The following approximations z2llow a relatively simple formulaction
of the prcoblem:

(1)

(2)

The mirror radius cf curvature, R, is large enough that
it is consistent to take the electric (or magnetic)
field vector to be always perpendicular to the resonator
axis. This reduces the real situation to a scalar
problem where the total field is determined by a single
transverse component.

For a field on a plane intersecting the rim of a mirror
(such as plane (1) or (2) in Figure 1) moving toward the
mirror, the reflected field moving away from the mirror,
at the point (x,y) on this plane is:

(a) z<ro, for xz - y2 > a2 (Kirchoff-approximation,

(b) equal in amplitude to the reflection coefficient,
r, times the incident field, and increased in

- -
]

. 2 2 2
phase factor by the amount exp ;2'1 g? (1' ﬁ-zx'i
L

a ry




9 2 D
for x° + y* ¢ a“. This phase is the amount that

would be accumulated by a ray moving parallel to
the axis.

(c) (L/a)2 >> (aZ/L‘) = Fresnel number.

Because of the axial symmetry the solutions must be of the form:

in@

f(x,y) = Rn(p)e , where
X = ag cos @
y = ap sin 8.

Using assumptions (a), (b) and (c) ang the resonance condition
(1), we obtain the integral equation:

1

: i-N
Y R (¢) = . ¢'de! Rn,m(;')e

;2 ei"NZl-ZL/Rf;'ZJn(Z'N;;’)
n,m n,m o

The prornagation factors exp(iKn mL) are obtained from the eigen-
,m

values Y of equation 5 by the relation:

n,m

exp(iK_ L) = 5 _ 27N exp ikL - i%(n~1)j.
In the above relations, the Fresnel number, N, is given by:

N = aZ/L?

Canonical Integration Equation

The integral equation (5) may be identified with a

canonical form:

b
To(x) = 7 O(x) K(exx") O(x") ~(x") .(x") dx'.
a
This same form arises when the aperture shape corresponds to
separeble coordinate systems other than circular, in particular,

rectangular. For the specific case of circular apertures the

A

*
Seo Appendiz A,

(5)

(6)

(7)

(8)




particular identifications that are necessary in order to convert
the integral equation (5) into the form (8) are:

2
X =p,
R(2) =n! £T™2 5 2 2
¢ :2
=1 "TTT;:TT + YTTEITTTEIYT ceeny
_n
(%) = x 2z Rn(x) exp’-i7NLx/R],
T = 2n! ‘yn’m/(i‘N)n,
P(x) = exp.i~Nx(1-L/R):,
A(x) = x5,
2
M (ﬂN) ’
a=0,b=1

Two methods for obtaining solutions to equation (8) will be
presented. One is particularly convenient for gettisg the asymp-
tetic behavior in the limit of small -, and expansicns in power
series of the Fresnel number useful for N ¢ 1. The other is
useful as a basis for machine computations in order to ob:iain

the resonance properties for values of the Fresnel number up

to unity.

(9a)

(9b)

(9¢)

(9d)

(9e)

(9£)

(9g)

(%h)




ASYMPTOTIC SOLUTIONS

In this section we investigate the eigenvalues, [, and
the eigenfunctions, % (x), of the cancnical integral equation (8)
in the limit n 9 0. Correspondence will be made with the asymp-
totic preperties of the resonances of the circular aperture F.P.
interferometer in the limit N & 0, by means of the relations (9a)
to (%h).

The eigenvalues I, eigenfunctions 7 (x) and the kernal

K(nxx') are expanded in power series in the parameter =:

P= I I (10)
m=0
S CR IR SR (1)
m=0
and
K(axx') = = k_x" x'™ -0 (12)
m=0

When these three expansions are substituted into the integral
equation (8), we obtain, upon equating coefficients of equal

powers of =:

S s
. ﬁm(x) TS-m =9(x) = km X" Cs m’ (13a)
m=0 m=o *
where
Cy = . dx'(x") x'™ B(x') - ("), (13b)
’ S-m
and
s-0,1,2, ... . (13¢)

We observe, from equations (13) that either -m(x) is of the form:




.m(x) = P§(x) - (Polynomial of degree m),
or Fo = 0. Calling the first solution (O)‘m(x)’ and the second
(1), (1), .
“m(x) we find, either “m(x) is of the form:
(1);m(x) = @(x) * (Polynomial of degree m + 1),

or Iy = 0. Continuing in this way we see that there are an in-

(1),

finite number of modes “(x)? with the corresponding eigen-
values (i)F, which have the expansions:

i) s (D,
( x) T o 1)?’m(l't) U (14)
. m=1i ,. ;
(l)lm(X) = 000 nz (l)pm 2 X (15)
(=0 ’
m=0

Substituting these relations into the integral equation (8) and
equating coefficients of equal powers of n, and then equating
coefficients of equal powers of x, we finally obtain the relations:

M) (1) S )
S0 ‘n ps-i-n,m - km - ps-m,n tam? (17)
n=o0 n=o
where
_ b 2 m
t = PT(x)x (x) dx, (18)
M a
pn’m 2 0 for n negative (19)
s =0, 1, 2, ... (20)

m=0, 1,2, ... s-1, s. (21)




BrAisatdAne MNT7) thvniicah MY (v TV ne T ee An b e s o thn c~nliitsAme cinrmo

M‘-‘\Aukbullc’ \4+7 /J w1 UuE,ll\h‘[ \.Ulu!JLCLC Ly WUT LC Lttt [ (AR RN T SN X L4 AL
) . i i), .

they determine the quantities ( )p and ( . which through

’ !

equations (14), (15) and (16) give the eigenfunctions and eigen-
values. The quantities t and km are known. The wave functions
are determined up to an arbitrary normalization factor. A con-

venient normalization, which is used below, is:

() = 8(0). (22)

This normalization implies:

(1) -
Pm,O - "n,0 ° (23)

The coefficients necessary in order to get the first

two termmws in the -, expansions of (i)_(x) and (i)f are, for the
cases i = 0, and i = 1:
CASE'1 i =20
o 2
o C koto (24a)
? <
Ofl = k1t1~llt0 (249)
o] o B i
PII/ Poo E :<1t1/kgt,,J (24¢)
CASE 2 i =1
k, 2 .
R R 15 (25a)
o]
1 1 o i
( POI/ P.o) tO/t1 (25b)
ey, /e ):f‘_g____(tt -t t) (25¢)
12 00 POt1 271 3¢
1
. P t
1 1 o 12} -2 <
te,ste ) - - £ (25d)
11 00 tlko \IPQO t].
-1 1
S LS b P11 e
1k T 2 TR, BT o (25¢)




We now specialize to the case of circular apertures.
Using the relations (9a) - (%h), and equation (6),we have, for the

propagation factor:

exp i K le
| n

M

(,‘TV) n+2m"'1 m T -
T expi}kL-iy(nél) + Z”iNL/R] (26)

n.

: \
1« o)
The quantity mfo 1s determined by equaticn (17) as a function of

the k's and t's. The latter quantities are given, asymptotically,

by:
1 f 11 2
. , PRI {
tj = m exp[iZT'(l-L/R)N‘%:‘}q)i = O(N%) 27)
J
The former are given by:
k. = (-3 nl/GYH (@ - (28)

J

As the Fresnel number gets very small, the quantity mTO approaches
a constant (independent of N) and hence the dependence on the Fresnel

number of the single pass diffraction loss 1is determined by:
| A,
(expli Kn,m L]f §:6 Nem 4m-2 (29)

This relation illustrates the strong mode discrimination in the

limit of small Fresnel numbers.




10.

MORE GENERAL EXPANSIONS

The complete expansion in powers of the Fresnel number
for the lowest modes (m=0) for any wvalue of n can be obtained
from simple recurrence relations. Thus, we have from equation
(17) for i =0, m = O

- k, 8
s "5, o Ps,n o (30)
where
Peg = ;E ;E Poo’ (31)
o) o)

and the quantities Ps n for n ~ s are related to previously
b

determined quantities by the expression:
n . 1
P = = . t. - = T, )
s,n ‘o 3 ps-rl,_] j-n : ) " pS-J,n, (32)

which is obtained from equaticn 17 for i-=0, by setiing m=n.

The corresponding complete expansion for the higher

modes (i > 0) cannot be obtained in terms of simple recurrence
relations, but rather require the solution of simultaneous algebraic
equations. In order to obtain numerical results for the case

that the Fresnel number is not much less than unity an alternative
method of analysis to that described above may be employed. This
method treats groups of modes on an equal basis and hence while

not as satisfactorv for the lowest mode is more easily mechanized

for machine computation.

Referring to the canonical integrai equation (8), for
the Mth degree of approximation we represent the kernal K( ), by
th

D

Mth degree polynomial:

K () - k0.
m ne ©° (33)




11.

The integral equation becomes:

M b
T =D kT A0 e L (x') (x")dx!.

(34)
n=o0 a
The solutions of this integral equation must be of the forp:
M n
2 (x) = P(x) = P X" . (35)
n=o
The coefficients P are determined by substituting (35) into (34)
and equating coefficients of equal powers of x. In this way one
gets the M+1 homogeneous equations for the M+1 unknowns PO,--- PM:
M
~ = = .n 36)
Ph= - kn‘ tn~ﬂlpnﬁ (36)
m=0
where, as before:
b 2 n
t_ = P (x) x  (x)dx. (37)
n o a
The M-1 eigenvalues [, are solutions of the determintal equation:
-—n - - P
kn, tm =0 (38)

This method of solution has been described by She and Heffner(g).




RESULTS

From equations (24) to (28) for the asymptotic propaga-
tion factors for the first four modes are given by:

expii Ky (L1 = (“N) exp i‘:§ -5 - N g (39a)
exp.i Kl,o L = %(*N)2 exp i:§ - - - % -Ng (39b)
exp.i 1(0,1 L = %7(”N)3 exp il& - i - ~Ng_ {(39c)
exp i Ky | L0 - (M exp 11§ - 12 N, (39d)

where § is the geometrical phase shift given by

9

g

kL - 2—-NL/R, (3%e)

i

and
1 - L/R. (391f)

1]

It is generally true that the phase shift, relative to the geo-

metrical phase shift is linear in the quantity Ng asymptotically
for small enough N. As was mention above, the asymptotic depend-
ence on the Fresnel number of the single pass diffraction loss is

determined by:

2 ,
-, - I~ p2n-bam-2
exp.1i Kn,m L ' N o N (40)

The results for a wider range of Fresnel numbers is
illustrated in figures (2) te (5). In figures (2) and {3) we
have plotted gy;z = lexp:i KLllz for the first two modes, (n=0, m-=0)
(n=1, m=0) respectively, versus the Fresnel number a2/L'. The

reciprocal of :7!2 is the single pass gain required to reach

|
tt.e threshsld of oscillation in the mode. The fractional dif-

fracted power output per transit is 1 - i,i‘. The quantity

g = (1 - L/R) measures the mirror curvature. The case g = 0




corresponds to a confocal arrangement and the case g = ! to flat
mirrors. For small enough values of the Fresnel number the losses
are insensitive to the value of g. The detailed dependence on g
for the larger values of N is given in expanded scale in the lower
right hand corners of figures (2) and {3). It is seen, that for
the losses, the asymptotic expressicns (39) become quite accurate
for Fresnel numbers less than 0.1 for the lowest mode and 0.2 for
the first excited mcde.

In figures (4) and (5) we have plotted the phase shift
(relative to the geometrical phase shift versus the Fresnel number
for the first two modes. It is seen that the asymptotic expres-

13.

sions (39) give the phase shift quite accurately for Fresnel numbers

less than C.1.
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DERIVATION OF RESONANCE INTEGRAL EQUATION

1f a field distribution is given over the plane z'=0,
then the field at the point (x,v,L), which satisfies the scalar
Helmoltz equation is: )

2/

£(x,y,L) = [ dx'dy' f(x',y',2") v G(x,y,L,x',y',2")
z'=0
(A-1)
where G(x,y,L; x',y',z') is the Greens function for the scalar

Helmoltz equation which vanishes in the plane z'=0 and represents
outgeing waves. This Greens function is given by:

L[ etk Joxex) 2e(ymy) ez ?
G(x,y,L, x' 9y' ,Z') = =

Vix-x") 2+ (y-y") 2+ (L-2") 2

-

Lik Jx-x") 2+ (y-y") 2o ety
- h , (A-2)
Vix-x")2e(y-y") 212"

-~

Thus, equation (1) may be written

1 _ kR
f(x,y,L) = 5= ikL Sjdx'dy' f(x',y',0) -Ez— ’ (A-3)

where R = \k;;x')z + (y-—y')2 + LZ.

1f the mirror diameter, 2a is small compared to the
distance L, then we may make the expansion:
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r . A
RzL! lgx-X) +(Y-Y)‘ + ]!
] P
L L Ly
In the argument of the exponential term, the dropping
4\
of the remainder 0 (25) is justified if
L
\

4
ol&,] «< -
(f‘)

This implies the requirement:

2 / 2
_a L\
N=rs <3 ) (A-4)
To get the form of equation (5) we must include the
additional phase shift and the reflectivity of the mirrors.
Using assumption (2) of the section '"Formulation of the Problem"

we have

PDe .0 - r[;f‘i/;]’zaz Soa” et W0 onenp(2 kerd
a B o o
exp i [}:aij] - [;2 - ;'2-2,,' cos (9-9'%.
(A-5)
Using the relation:
2-(-i)" J (2) = - ;2“du elnu iz oo a, (A-6)

and taking N << R/, we get the form of equation (5).
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results are presented covering a wider range of Fresnel
numbers.
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