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ABSTRACT

A theory of Fabry-Perot resonances designed to be useful

at small Fresnel numbers is given. This '-eory is applied to the

case where the interferometer mirrors are ot arbitrary curvature

and have circular ipertures. Asymptotic formulas are derived

for the diffraction output and phase shifts in the limit of small

Fresnel numbers. These formulas demonstrate the mode discrimina-
tion properties of the interferometers when operated in this re-

gime. Nunerical results are presented covering a wider rapge of

Fresnel numbers.



tTROIYJCT ION

The resonance -roperties of Fabry-Perot (F.P.) inter-

ferometers at Fresnel numbers of the order of, and greater than,

unity have been treated in a number of papers, (1-6) The recent

use of "diffraction output coupling" as an efficient method of

transverse mode suppression when the Fresnel numbers are less

tharn unity (7 ) has motivated us to extend the theory so as to

describe resonators operating in this range. We have previously

presented numerical results for small Fresnel numbers, on diffrac-

tion outputs and phase shifts for F.P. interferometers consisting

of plane mirrors with circular apertures. 8

In this article we give a theory of F.P. resonances

designed to be useful at small Fresnel ntumbers. This theory

is applied to the case where the interferometer mirrors are of

arbitrary (small) curvature and have circular apertures.

Asymptotic formulas are derived for the diffraction output and

phase shifts in the limit of small Fresnel numbers. These formulas

demonstrate the mode discrimination properties of the interferom-

eters when operated in this regime. Numerical results, in addition

to those previously reported (8) .are presented on the diffraction

output and phase shifts for curved circular mirrors for small

Fresnel numbers. The theory is presented in such a way (in terms

of a canonical integral equation) that it applies to a general

class of aperture shapes.
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FORMULATION OF THE PROBLEM

The geometry which is considered consists of a symmetric

pair of mirrors, each of radius of curvature, R, whose subtending

planes are separated along the axis of the resonator by a distance,
L. The aperture shapes are taken to be circles of radius a . (See

Figure 1). We are interested in the resonance properties of this

electromagnetic cavity, in particular, the complex resonant freq-

uencies and the corresponding field configurations. The informa-

tion contained in the complex resonant frequencies can be expressed

in terms of the single pass diffraction output and phase shift of

the resonant fields.

Consider an arbitrary field configuration at plane (1)

of Figure 1. This field may be regarded as the sum of two fields,

one moving to the right, (1)f+(x,y), and one to the left 1 ) f_(x,y).

The field moving to the right reflects from the other mirror and

results in a configuration 2I)f_(x,y), representing a field moving

to the left at plane (2). The resonances of this open structure

are defined by the requirement that after a double transit the

field reproduces itself, or, after a single pass it reproduces

itself up to the sign change -1, that is

(2)f.(x,y) = - 1)f(x,y) (Y)

More generally, we have:

(2)f_(x,y) = reiK(k)L (1) f (xy), (2)

where K(k)L is a complex number, independent of x and y, but a

function of the geometry and propagaLion constant and r is the

mirror reflectivity. The single pass phase shift, 0, is given

by:
The method of analysis can be extended to other aperture shapes,

in particular, rectangles.

Because the structure is open, the _esonant frequencies are
complex. The imaginary part of the frequency is the inverse of
the lifetime of the corresponding "mode".
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0 Re K(k)L,, (3)

and the single pass fractional power output (due to diffraction),

1_ j - ,2 is determined by

112 = eiK(k)I 2 (4)

The resonant values of the frequency, Re Ck, and gain

coefficient, lImk, are determined by the resonance condition ()

or

riK(k)L

The quantity of interest, K(k), is determined by the

solution of the integral equation which is obtained by propagating

the field from plane (1) to plane (2) and using equation (2).

The following approximations Pllow a relatively simple formulation

of the problem:

(1.1 The mirror radius of curvature, R, is large enough that

it is consistent to take the electric (or magnetic)

field vector to be always perpendicular to the resonator

axis. This reduces the real situation to a scalar

problem where the total field is determined by a single

transverse component.

(2) For a field on a plane intersecting the rim of a mirror

(such as plane (1) or (2) in Fieure 1) moving toward the

mirror, the reflected field moving away from the~ mirror,

at the point (x,y) on this planie is:

(a) ze~ro, for x 2_y 2> a 2(Kirchoff-approximation,

(b) equal in amplitude to the reflection coefficient,

r, times the incident field, and increased in
$ 2 ( 2 2

phase factor by the aw.ount exp ,2 - * a -(l.&xI
L a .



4.

for x' y- K a . This phase is the amount that

would be accumulated by a ray moving parallel to

the axis.

(c) (L/a) 2 » (a2 /L) = Fresnel number.

Because of the axial symmetry the solutions must be of the form:

f(x,y) = Rn(p)ein@, where

x = aý cos 0

y = ap sin 0.

Using assumptions (a), (b) and (c) and the resonance condition

(!), we obtain the integral equation:

R (i_ 2 4ReN.l_ 2 L/R--,2Jn (2-N') (5)
Yn,m Rn,m) 0 • dp' Rn,m(,')eieNn

The propagation factors exp(iK nmL) are obtained from the eigen-

values -nnm of equation 5 by the relation:

exp(iK n,mL) -- nm 2--N exp'ikL - i 7 (n-l) . (6)

In the above relations, the Fresnel number, N, is given by:

N -- a 2/L (7)

Canonical Integration Equation

The integral equation (5) may be identified with a

canonical form:

b
O-0(x) K(',xx') (W) -(x') .(x') dx'. (8)

a

This same form arises when the aperture shape corresponds to

separable coordinate systems other than circular, in particular,

rectangular. For the specific case of circular apertures the

Set Appendi.x A.
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particular identifications that are necessary in order to convert

th2 integral equation (5) into the form (8) are:

x P 2 , (9a)

K(s) = n' . -n/2 Jn(2 •)

n
*2 (9b)

1- PT$IT + I 2)

n-7
.(x) = x Rn(x) exp.-i-NLx/Rj, (9c)

- 2n! in,m /(-N)n, (9d)

(x) = exp'i-Nx(l-L/R)I,, (9e)

n

-(x) = x (9f)

2
-. = (-N) , (9g)

a = 0, b = 1. (9h)

Two methods for obtaining solutions to equation (8) will be
presented. One is particularly convenient for getting the asymp-

totic behavior in the limit of small -, and expansions in power

series of the Fresnel number useful for -N < I. The other is

useful as a basis for machine computations in order to obtain
the resonance properties for values of the Fresnel number up

to unity.
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ASYMPTOTIC SOLUTIONS

In this section we investigate the eigenvalues, F, and

the eigenfunctions, 4(x), of the canonical integral equation (8)

in the limit ri-4 0. Correspondence will be made with the asymp-

totic properties of the resonances of the circular aperture F.P.

interferometer in the limit N -+ 0, by means of the relations (9a)

to (9h).

The eigenvalues F, eigenfunctions ,' (x) and the kernal

K(nxx') are expanded in power series in the parameter -j:

X

=- zm, (10)
m=o

W E. m (

m=o

and

K('ixx') = km xm x~m .,m. (12)
m=0

When these three expansions are substituted into the integral

equation (8), we obtain, upon equating coefficients of equal

powers of -1:

S S

S#mO(x) s-m - (x) k xm Cs (13a)

where

Cs'm = dx' -(x') x'm 0(x') A(z'), (13b)
S -m

and

s - 0, 1, 2, (13c)

We observe, from equations (13) that either -re(x) is of the form:
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mr(x) = 0(x) (Polynomial of degree m),

orF 0. Calling the first solution (O)ým(x) and the second
(1) w find

Seither 4m (x) is of the form :

(1).
m(X) ` 0(x) (Polynomial of degree m + 1),

or 01 = . Continuing in this way we see that there are an in-

finite number of modes , (x)' with the corresponding eigen-

values (i)F, which have the expansions:

""(x) x) 0( x (14)
M=O

m=

(i)- rex ()•(~M,M = - x (15)

= - m TIM- (16)

m= o

Substituting these relations into the integral equation (8) and

equating coefficients of equal powers of n, and then equating

coefficients of equal powers of x, we finally obtain the relations:

s-mS-m-"i
sm(i) (i)ps-i -- k (i) (17)

" n Psi-n'm m - s-m,n n tn-n'
n=o n-=o

where

t = 0 (x)x -(x) dx, (18)
a

PnIm 0 for n negative (19)

s 0, 1, 2, ... (20)

m 0 0, 1, 2, ... s-l, s. (21)
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t .".-- '- ^. ~ \ / ~�' . L�L I-- .. A .A. .LI L. 1 7-- --1 %-C: A-LM., A- t^LI..- .I.,,,e M•-S '•

they determine the quantities Pipm aid ( which through

equations (14), (15) and (16) give the eigfnfunctions and eigen-

values. The quantities tm and km are known. The wav. functions

are determined up to an arbitrary normalization factor. A con-

venient normalization, which is used below, is:

-() = 0(0). (22)

This normalization implies:

(i)p (23)
m,O n,0

The coefficients necessary in order to get the first

two terms in the -, expansions of (i) and (i).-(x) are, for the

cases i = 0, and i - 1:

CASE 1 i 0

-_ k to 
(24a)

0? 1 k 2t 1/t (241)

tlP 1 kIti/k0t (24c)

CASE 2 i = 1
1 = h (tjt -t 9)(25a)

0 t 0 i0

(IP 0 1 IPo) P- to/tI (25b)

k•j

(iP 1 2 /IPoo) PZtl (t 2 t 1 - 3 tto) (25c)

(IpIPI2 t2IPl/iPo) It 0 k- 2  (25d)

1)1 2.P12 t3 o Ip(
L. _ 1 0 _125 .
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We now specialize to the case of circular apertures.

Using the relations (9a) - (9h), and equation(6),we have, for the

propagation factor:

exp i K Lb=

xexp likL-- (n-1) 1
n'. 0 L (26)

1 0(N )2

The quantity ml- 0 is determined by equation (17) as a function of

the k's and t's. The latter quantities are given, asymptotically,

by:

njJ+ exp 2-(1-L/R)N n-l-.) 0(N 2 ) (27)

-j

The formir are given by:

k) (-)j n!/(j!) (n - j). (28)

As the Fresnel number gets very small, the quantity m approaches

a constant (independent of N) and hence the dependence on the Fresnel

number of the single pass diffraction loss is determined by:

rx 'O ft -Of 'N n - 4 m - 2
exp K L, ] N-0n-O (29)

This relation illustrates the strong mode discrimination in the

l imit of small Fresnel numbers.
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MORE GENERAL EXPANSIONS

The complete expansion in powers of the Fresnel number

for the lowest modes (m=0) for any value of n can be obtained

from s.imple recurrence relations. Thus, we have from equation

(17) for i = 0, m- 0

k 0 s

s Po n=o ps, n' (30)

where

P k st
P-S T Poo (31)

0 0

and the quantities p sn for n -' s are related to previousiy

determined quantities by the expression:

k s-n s-n
p -- ! J -p( 2
son 0 j=o s-nj j-n o 11l j Ps-j,n,

which is obtained from equation 17 for i-0, by setting m~n.

The corresponding complete expansion for the higher

modes (i > 0) cannot be obtained in terms of simple recurrence

relations, but rather require the solution of simultaneous algebraic

equations. In order to obtain numerical results for the case

that the Fresnel number is not much less than unity an alternative

method of analysis to that described above may be employed. This

method treats groups of modes on an equal basis and hence while

not as satisfactory for the lowest mode is more easily mechanized

for machine computation.

Referring to the canonical integrai equation (8), for

the Mth degree of approximation we represent the kernal K( ), by

the Mth degree polynomial:

M
n on k .(nnmon (33)
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The integral equation becomes:

M b
(x) k n x 0 (x) 0(x') (x') (x')dx'. (34)

n=o a

The solutions of this integral equation must be of the form:

Mn

(x) = W(x) M Pn X (35)
n=o

The coefficients Pn are determined by substituting (35) into (34)

and equating coefficients of equal powers of x. In this way one

gets the M-1 homogeneous equations for the M-1 unknowns Po'... PM:
MM

nn kn ,n t pn m (36)

m=o

where, as before:

t = 0(x) x (x)dx. (37)
a

The M-1 eigenvalues 7-, are solutions of the determintal equation:

kn -n tn-m - = 0 (38)

This method of solution has been described by She and Heffner(9).
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RESULTS

From equations (24) to (28) for the asymptotic propaga-

tion factors for the first four modes are given by:

expii K L, (-N) exp iZ" - - -N gI (39a)
0,0

exp'i K1 ,° L1 = ('N)2 exp i - 4 (39b)

expji KOil LI = (-N) 3 exp i - --Ng' (39c)

LI 16-N exp 16N

ex ii K, 1 (N) 4 e i - Ng (39d)

where is the geometrical phase shift given by

i = - 2-NL/R, (39e)

and

g = - L/R. (39f)

It is generally true that the phase shift, relative to the geo-
metrical phase shift is linear in the quantity Ng asymptotically

for small enough N. As was mention above, the asymptotic depend-
ence on the Fresnel number of the single pass diffraction loss is

determined by:

expIi K L N N2 n4- 2  (40)

The results for a wider range of Fresnel numbers is

illustrated in figures (2) to (5). In figures (2) and (3) we

have plotted l2 -expi KL" 2 for the first two modes, (nO, m-O)

(n=., m=0) respectively, versus the Fresnel number a /L. The

reciprocal of 1-1 is the single pass gain required to reach

the threshold of oscillation in the mode. The fractional dif-
fracted power output per transit is 1 - VV* The quantity
g (1 - L/R) measures the mirror curvature. The case g - 0
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corresponds to a confocal arrangement and the case g = I to flat

mirrors. For small enough values of the Fresnel number the losses
are insensitive to the value of g. The detailed dependence on g

for the larger values of N is given in expanded scale in the lower

right hand corners of figures (2) and (3). It is seen, that for

the losses, the asymptotic expressions (39) become quite accurate

for Fresnel numbers less than 0.1 for the lowest mode and 0.2 for

the first excited mode.

In figures (4) and (5) we have plotted the phase shift
(relative to the geometrical phase shift versus the Fresnel number

for the first two modes. It is seen that the asymptotic expres-

sions (39) give the phase shift quite accurately for Fresnel numbers

less than 0.1.
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APPENDIX A

DERIVATION OF RESONANCE INTEGRAL EQUATION

If a field distribution is given over the plane z'=O,

then the field at the point (x,y,L), which satisfies the scalar

Helmoltz equation is:

f(x,yL) = j dx'dy' f(xy',zy ) r G(xy,L,x' ,y' ,z')

z1=0

(A-1)

where G(x,y,L; x' ,y' ,z') is the Greens function for the scalar

Helmoltz equation which vanishes in the plane z'=O and represents

outgoing waves. This Greens function is given by:

G(x,y,L,, x' ,y' ,z') ke~ - (v~

_ __--_ _

ik \j(x-x') 2+(yy,) 2 -4(L+z,) 2
e (A-2)

/(x') 2.(y y, ) 2+(L-z,) 2

Thus, equation (1) may be written

eikR
f(x,y,L) = T- ikL dx'dy' f(x',y',o) R (A-3)

where R = x-x') 2 + (yy,) 2 + L2.

If the mirror diameter, 2a is small compared to the

distance L, then we may make the expansion:
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r
Rý L 1 1 xx)+yy) + [a (441

L L -7

In the argument of the exponential term, the dropping

a.4%
of the remainder 0 (V) is justified if

kL 0 a4- <<-

This implies the requirement:

N =2a << (A-4)

To get the form of equation (5) we must include the

additional phase shift and the reflectivity of the mirrors.

Using assumption (2) of the section "Formulation of the Problem"

we have

(2) e . 1 'dp" d ' (1) f _(ý,,Q ,)exp(_2iŽ pIZ)

( [L+a2/R]J o 0

S- a 22 _,2 2_
exp - [2 t- cos

(A-5)

Using the relation:

2-
2(in inu iz

2-J(i) jn (z) - du e e cos a, (A-6)
0

and taking N << R/,, we get the form of equation (5).
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