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ON FACTORING THE CORRELATIONS 
OP  DISCRETE MULTF/ARIABLE STOCHASTIC   PROCESSES 

by Ralph Ambrose Wiggins 

Submitted to the Department of Geology and Geophysics on 
March 2, 1965 in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy. 

ABSTRACT 

This thesis is an extension of the theory of 
discrete scalar time series analysis to multivariable 
processes. This extension is facilitated by expanding 
the algebra of polynomial matrices (matrices with poly- 
nomial elements r. 

Multivariable processes may have a multiplicity 
of eith T» the independent or the dependent variable. Such 
processed are called multi-dimensional or multi-channel, 
respectively. All multi-dimensional processes may be 
formally mapped into matrix notation. Once this mapping 
is made the properties of all multivariable linear opera- 
tors and autocorrelations can be studied in terms of the 
polynomial matrices that represent their z-transforms. 

Polynomial matrices can be decomposed into three 
related forms:  the spectral factorization, the Smith- 
McMillan canonical form, or the Robinson canonical form. 
Each of these representations leads to the concept of an 
invertible or minimum delay wavelet. 

The algorithms for finding the spectral factori- 
zation and for finding the Smith-McMillan canonical form 
can be extended to provide an analytic factorization of a 
multi-channel autocorrelation in term of invertible wave- 
lets. In addition the autocorrelation may be approximately 
factored by a recursive least-squares algorithm, or by a 
projection technique. 

Of the factorization methods available, the re- 
cursive algorithm is the most efficient and is therefore 
extended to include t-he more general problem of signal 
shaping in the presence of noise. 

Finally, as an illustration, the problem of 
designing a finite optimum two-dimensional band-pass, band- 
reject filter is solved and the characteristics of a few 
particular realizations of such filters are presented. 

Thesis Supervisor:  Stephen M. Simpson, Jr, 
Title:  Lecturer in Geology and Geophysics 
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1.  INTRODUCTION 

Geophysics may be viewed as the study of the 

properties of the earth by the interpretation of signals 

that are affected by the structure of the earth. These 

signals may be of almost any conceivable type -- seismic, 

tidal, electric current, electromagnetic, or light — and 

may have a wide variety of sources. In each case the com- 

plexity of the media that modulates the signals will intro- 

duce ncise into the system (we define noise as any portion 

of a signal which does not contain information that we de- 

sire). In addition, the information may be difficult to 

interpret because the signal shapes are difficult to 

recognize. 

The idea of applying the concepts of statistical 

analysis to signal interpretation has become widely accepted 

during the last decade. A large portion of this analysis 

has taken the form of applying linear filters to incoming 

data to enhance and shape the desired information. Because 

of its versatility, the least-squares optimum (Wiener) fil- 

ter was frequently applied. However, a problem arose in 

the computation of such filters for geophysical applica- 

tions. Geophysical signals are usually multivariable; that 

is, the signals are characterized by having more than one 

independent variable (dimension) or by having more than one 

dependent variable (channel). In most cases, to adequately 

process such multivariable signals one should use raulti- 
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variable filters. However, the solution of the discrete 

least-squares filter problem is a set of simultaneous equa- 

tions, with one equation for each coefficient. Thus the 

magnitude of the problem quickly overloaded the capacity 

of even the largest computers available. This limitation 

on the size of possible filters greatly restricted their 

usefulness. 

The computational problem was reduced by an order 

of magnitude In storage space and execution time by 

Robinson (1963a) when he was able to extend a recursive 

method introduced by Levinson (19^7) to multivariable 

filter generation. This development has led to greatly 

renewed Interest in the applications of optimum filtering. 

The crucial step in optimum least-squares filter 

design is the factorization of the autocorrelation of a 

process. This factorization is the problem to which this 

thesis is addressed. 

There are now four known techniques for factorinc 

the autocorrelations of multivariable processes. As indi- 

cated above, the least-squares approximate factorization 

has been known for some time (for example, see Wadsworth, 

et al., 1953). However, before the discovery of the re- 

cursive computation algorithm, it was not considered to be 

useful. In fact it was this consideration that led Wiener 

and Masani (1957 and 1950) to develop a projection technique 

of approximate factorization. Experience now shows that 

12 



this technique is not competitive with the recursive method, 

Quenouille (1957) presented an analytic factorization al- 

gorithm which, when placed upon a rigorous mathematical 

basis, has proven to be a very valuable tool for under- 

standing and manipulating multivariable time series and 

autocorrelations. Another analytic factorization method 

is developed here based upon the Smith canonical form for 

polynomial matrices following a similar development by 

Youla (I96I). Neither of these analytic methods are compu- 

tationally competitive with the least-squares recursive 

algorithm although they are invaluable for instilling 

theoretical insight into the factorization problem. 

All of the factorization schemes that are consid- 

ered are stated for discrete processes with finite auto- 

correlations. Since these factors (which we call wavelets) 

are also finite they are members of the Hardy class 

(Wiener and Masani, 1957* P. 113). Because we are dealing 

with finite wavelets we are able to obtain specific results 

which are of a more constructive nature than those found 

in some more generalized approaches. As such this thesis 

may be considered as a complement to recent works on stoch- 

astic processes such as Helson and Lcwdenslager (1958), 

Robinson (1962), and Wiener and Masani (1957 and 1958). 

This thesis tnen is primarily an examination and 

evaluation of the methods of factoring multivariable auto- 

correlations. Prom another point of view, however, it may 



be thought of as a treatise on polynomial and rational 

matrices, that is, on matrices whose elements are either 

polynomial or rational. This is a subject that has re- 

ceived surprisingly little attention in the literature. 

For this reason it is given a rather thorough development 

here in the first three chapters. 

The final chapters are devotea to an expansion 

of the least-squares approximate factorization to the 

calculrition of filters with specified noise suppressing 

and signal shaping properties. Computational examples are 

Included that illustrate some of the forms that such 

computations may take. 

The presentation that follows assumes a basic 

knowledge of scalar, i.e. single-variable, time series 

analysis (see Lee, I960; Robinson, 1962; Wiener, 19^9; or 

Whittle, 1963). Most of the primary ideas, such as wave- 

lets, all-pass systems, minimum phase, minimum delay, 

convolution, autocorrelation, and predictive decomposition 

are reviewed briefly when they are first encountered but 

are not developed rigorously. The material here is not 

Intended to be a review of time series analysis, but is 

intended to be an extension of the concepts of scalar time 

series to multivariable time series.  On the other hand, 

much of the detail considered is not necessary for an over- 

all grasp of multivariable time series analysis. Thus the 

reader who is unfamiliar with the subject may profitably 

14 



skip over several sections. These sections Include 4,221 

(the details of the factorization of an elementary auto- 

correlation matrix), 4.223 (the Smith-McMillan factorization 

technique), 4,232 (the Wlener-Masani approximate factori- 

zation by projections), and 5«12 (the details of the re- 

cursive algorithm for least-squares filters). 

15 

-^■■iimipii gpfmi 



2.  DEFINITIONS AND NOTATION 

Processes may have multiple independent or depen- 

dent variables.  In sections 3.^ and ^4.3 a technique is 

developed for mapping processes with several independent 

variables into a form with several dependent variables and 

only one independent variable. This mapping is given in 

order to simplify the analysis and notation of the factori- 

zation problem.  However, there are important differences 

between these two representations that should be recalled 

when applications are made of factorization. This chapter 

is devoted primarily to an examination of these differences. 

In addition, a few general notational questions are exam- 

ined, 

2.1 Dimensionality of Processes 

A dimension is defined as a measurable extent. 

In this thesis the number of dimensions of a process will 

indicate the number of orthogonal measurable directions, 

i.e., the number of independent variables. Most processes 

that have been considered in communication theory and in 

economic analysis are one-dimensional time series. However, 

In geophysics higher dimensioned processes are often en- 

countered that may or may not have a time-like dimension. 

For example, the output of a single vertical seismometer 

is a one-dimensional time process. The output of a linear 

row of seismomenters is a two-dimensional process — one 

time dimension and one space dimension.  On the other hand 

16 
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(neglecting small, higher order effects) the acceleration 

of gravity at each of these seismometer locations repre- 

sents a one-dimensional spatial process. 

In nearly ^,11 of our analysis we shall assume 

that one of the dimensions, or directions, of a process is 

a preferred (time-like) direction. We do this for several 

reasons,  (l) In many processes there actually exists a 

preferred direction. It is only natural to take advantage 

of the physical significance of this direction.  (2) The 

use of vector notation greatly simplifies the representation 

of processes with a preferred direction.  (3) Present digi- 

tal computers have one-dimensional storage memories. Thus 

when a process is mapped into a computational scheme, we 

must necessarily choose a preferred direction. 

Whittle (195^* P. ^3^) has pointed out that there 

is a basic difference between a preferred direction that 

has time, or time-like, physical significance and a direc- 

tion that is chosen merely for notational purposes. A time- 

like direction is Inherently one-sided. That is, the 

state of a process at any time can be dependent only upon 

past values of the process. However, purely spatial proc- 

esses are usually not one-sided. This distinction is im- 

portant when designing operators for processes. 

The importance of the preferred direction is em- 

phasized when we define the geometrical structure of the 

sampling of the independent variables of a process. We can 

17 
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think of this structure as an array of sample points in a 

multi-dimensional space. For nearly all applications we 

will restrict these points to being equally spaced along 

straight lines that are parallel to the preferred direction. 

This is equivalent to saying that the process will have 

equal digitization "ncrements in the preferred direction 

and fixed sampling   Ltions in the other directions. Al- 

though the digitization increment is fixed,, the sampling 

instants for the various positions need not be in phase. 

For most applications in this paper, we will re- 

quire that the lines form regular patterns in the other 

dimensions. The simplest, and most useful, pattern is 

that of a rectangular grid. However, other patterns 

(triangles, parallelograms, hexagons, and combinations of 

these in higher dimensions) are frequently encountered, 

2.2 Order of Processes 

Processes may have multiple dependent variables 

as well as multiple independent variables. In general, 

the dependent variables need not have any dimensional 

relationship. For example, one variable may represent the 

electric field while another may represent the magnetic 

field. The order of a process is the number of dependent 

variables that represent a process at each point in space. 

Thus, a linear array of 3 component seismometers would be 

a 3rd order, 2-dimensional process. 

li: 



Throughout this paper we will refer to processes 

of order greater than 1 as multi-channel or matrix-valued. 

The latter designation stems from the fact that we will 

use a matrix representation to group the variables of a 

process. 

The one-dimensional, multi-channel process is of 

special interest since its configuration best reflects the 

importance of the preferred direction. This fact sometimes 

prompts us to view each of the space samples of a multi- 

dimensional process as one channel for a higher-ordered 

multi-channel process. Thus, a linear array of 12 three- 

component seismometers might be viewed as a 3rd order, 2- 

dimensional process, or, viewing each seismometer as pro- 

viding a separate time series (channel), we may view this 

as a 36th order, one-dimensional process. 

Even though a mapping from a multi-dimensional 

process to a higher-ordered, one-dimensional process is 

possible, the basic differences between these representa- 

tions should be emphasized. First, we usually think of a 

discrete, multi-dimensional process as a manifestation of 

a continuous function. Thus, it is possible to approximate 

values between the digitization positions by some form of 

interpolation. Second, in a multi-dimensional process we 

can think of extending the space dimensions to infinity. 

The formal structure of a multi-channel process allows 

neither of these possibilities. 

19 
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2.3 Subscript Notation 

Subscripts will be used to indicate the variables 

of a process.  In general, there will be two groups of sub- 

scripts. The first group will refer to indexing of the 

independent variables; the second group will refer to in- 

dexing of the dependent variables. We will adopt the con- 

vention that the first subscript in the first group will 

always stand for the preferred direction. Thus a component 

of a process X may be referred to as 

or, if the preferred direction refers specifically to time, 

it will be written 

' t l       1 'k k   ' 

Since matrices are at most 2-dimensional, the sec^ d group 

will have at most 2 indices. We will always consider that 

the first of these 2  indices will be the row index, and 

that the second will be the column index. 

In order to simplify our writing we shall adopt 

a vector notation for the subscripts 

i =  li » ii > • • • f   1»^j 

k = (k-^lcj 

so that the process may also be referred to as 

20 
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Frequently it is desirable to order the spatial 

sampling positions (i.e. the sampling positions in the 

non preferred direction) sequentially. Thus we may use one 

subscript for all spatial variables: 

("t.i'k 

This subscript takes on a different value for each sampling 

position. Finally, for much of our work we will be con- 

cerned only with the dimensional indices and will suppress 

the matrix Indices and the parentheses. 

2.4 Flow Diagram Notation 

The Important decomposition and factorization 

theorems in the following chapters are illustrated by flow 

diagrams. In general, these diagrams are self explanatory, 

however, a description of some of the conventions used will 

facilitate their interpretation. 

1. Square boxes indicate operations. 

2. Rounded boxes illustrate results of 

operations. 

3. Sol'd lines between boxes indicate the 

primary lines of logical flow as well 

as transference of data between steps, 

4. Dotted lines between boxes indicate only 

the transference of data between steps, 

5. Boxes drawn with heavy lines indicate the 

beginning and the ending of the algorithm. 

21 



3.  STRUCTURE OF DISCRETE LINEAR OPERATORS 

The operators that we consider are finite moving 

average devices that may be represented by the diagram 

Input Linear 
Operator -^ Output 

If the input is a spike (a delta function appropriate to 

the Geometry Involved) then the output is a wavelet with 

real coefficients which completely describes the properties 

of the linear operator. In fact the output of the linear 

operator for a general input is Just the convolution of 

the input with the wavelet. 

In this chapter we will study those characteris- 

tic properties of a wavelet by which it may be classified. 

The approach used here is to factor a wavelet into simpler 

components and then to use the properties of these compo- 

nents to delineate the classification of the wavelet. The 

complexity or existence of the factorization is the key 

problem.  In the scalar one-dimensional case there Is a 

unique natural factorization from which the general proper- 

ties are easily deducible. In the matrix-valued one- 

dimensional case there are a multiplicity of such factori- 

zations. In the multi-dimensional case there is no 

natural factorization. Thus, our treatment for these 

cases will vary markedly. 
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3,1 z-Transform 

The z-transform of a discrete finite wavelet is 

defined simply as the quasipolynomial 

M 
a (z) =  Z a , z  ,   - «?< N < M < «> 

i=N i 

whose coefficients a. are the values of the wavelet at 

the i— sample time. For the general multi-dimensional 

processes we have 

M 
J . .11- 

J"NJ 

a(z,z-|, •••^ z ) —  J. (a, .       . jz Z-.  ... z 
i ==N  ■L>-L-i*»»»»-L

n   -      n 

- oo < N < M. < öo . 

A quasipolynomial a(z) may always be transformed into a 

polynomial by multiplying it by the proper pc.ver of z . 

The z-transform of a wavelet will be indicated specifically 

by writing the wavelet as a function of z as indicated 

above. 

Two important properties of the z-transform will 

be exploited frequently: 

1. Convolution in the time-space domain corres- 

ponds to multiplication in the z domain. 

2. The z-transform evaluated on the unit circle, 

z = e" ^,,  corresponds to the Fourier trans- 

form of the wavelet. 

23 



Much or the analynic in this chapter is based 

on the algebra of quasipolynomials that corresponds to 

the z-transforms of wavelets, 

3.2 One-Dlmenslonal Scalar Wavelets 

One-dimensional scalar wavelets of the Hardy 

class have been treated extensively in the literature, 

(Wold, 1938; Wiener and Hasani, 1957; Robinson, 1962; 

Whittle, 1963; Robinson and Treltel, 1964) and, therefore, 

the treatment here will be brief and heuristic. 

3.21 Spectral Decomposition 

Let us consider the one-sided wavelet 

^0' ^1' • • • * ^j->   • 

The z-transform of this wavelet 

a(z) = an + a, z + ... + a zn y u   1 n 

can be factored, according to the fundamental theorem of 

algebra, into the form 

a(z) = a0(l - a:L z) ... (1 - an z) 

v/here 1/a^ i = 1, ..., n are the zeros of the polynomial 

a(z) . These roots,  l/a^, are generally complex but since 

the coefficients of a(z) are real, the roots must occur 

in complex conjugate pairs. 
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3.22  Invertibility 

DofInltion 3.2-1. A one-sided 'wavelet a(z)  is siid to be 

invertlble if there exists a one-sided wavelet a  (z) 

such that a(z) a" (z) = 1 . 

The condition that the Taylor expansion of 

l/a(z) will converge is that a(z) has no zeros inside 

the unit circle. Thus if 11/^41 > 1 1 = 1, ..., n then 

a(z) is invertlble. 

Jury (1964) reviews several simple techniques for 

testing for the invertibility of a wavelet. One of the 

simpler conditions involves polynomial divisions to find 

the number of roots inside the unit circle. The procedure 

begins by performing the division 

a(z) 
= Qo + 

a-^z) 

zn a(l/z) ^  0   zn a(l/z) 

where a1(z)  is the remainder. Then we find the other 

q.  i=l, ,,., n-2 according to 

qi = z^1 a^l/z) 

^+1 (2) 

z11"1 a,{l/z) 

Now the number of roots inside the unit circle is equal to 

the number of products P.  which are negative, where ?, 

is defined as 

k l0 
-  1 ^    -  1 

qk-l| 
-  1 
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3.23 Robinson Canonical Form «xnd All-Pass Systems 

Theorem 3.2-1 (Robinson Canonical Form). Any wavelet 

a(z) can be uniquely represented In the Robinson Canonical 

Form 

a(z) = p(z) a0(z) 

where a0(z) Is Invertlble and p(z)  Is an all-pass 

system. 

Let us review a few properties of all-pass 

systems. 

Theorem 3.2-2. An all-pass discrete system has unit gain 

at all frequencies, i.e.  I p(e~ ,,l) = 1 for all real tw . 

Theorem 3.2-3. An all-pass system is trivial if  p(z)| = 1 

for all z; that is, if p(z)  is constant. 

Theorem 3.2-4. The Inverse system to a non-trivial all- 

pass system is not one-sided. 

The invertlble factor a0(z)  is completely det- 

ermined by the amplitude spectrum of a(z)  (see 4.122). 

3.24 Delay 

The delay of a one-sided wavelet a.  is a measure 

of how the operator redistributes the energy of an input 

process in forming the output. It may be defined in terms 

of the partial energy 

I 
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Robinson (1962) has proven the following Minimum 

Delay Theorem. 

Theorem 3»2-3 (Minimum Delay). The delays of the set of 

wavelets a. (z) which have the same invertible Robinson 

canonical form a0(z) are greater than or equal to the 

delay of a0(2) . Equality holds if and only if the all- 

pass system p(z) is trivial. That is, the partial ener- 

gies obey the relation 

I a. . < I a0 .   for all k 
j=0 1'J   j=0 U,J 

where 1 is the wavelet index and J is the time index. 

3.25 Phase 

The Fourier transform of a wavelet yields fre- 

quency information about the outputs of an operator with 

respect to the inputs. This iiiformaticn is presented in 

the form of an amplitude change and a phase lag. 

If we examine the Fourier transform of a wavelet 

a(e-im) = a0 + a! e'hl)  + a2 e"
1^ -h ... + an e"

11™ 

= a(u.) eiCD^) 

we see ^hat the polar representation leads to the concept 

of a phane lag characteristic -on(tw) . 
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We arc  now in a position to formulate the 

minimum-phase theorem: 

Theorem 3.2-6 (Minimum phase).  The phase-lags of the set 

of wavelets a.(z)  which have the invertible Robinson 

canonical form a0(z) are greater than or equal to the 

phase-lag of a0(z) . Equality holds if and only if the 

all-pass system p(z)  is trivial. Furthermore, the 

phase-lag difference is 

ffi. (0) - ^.(TT) = m.n 

where m.  is the number of zeros of a.(z)  that are in- 

side the unit circle. 

An interesting result that follows directly from 

the theorem above is 

Corollary 3.2-6. The cosine transform a(cos u) of a 

wavelet is non-negative if the wavelet a(z) has no zeros 

inside the unit circle (i.e. is minimum phase or minimum 

delay) and if the wavelet is normalized so that a(l) > 1 . 

The number of zeros of a(z)  inside the unit circle is 

equal to the number of zero crossings of the cosine- 

transform a (cos u)) , 

The proofs to both the Minimum Phase Theorem and 

its Corollary follow directly from examining th^ nature of 

the definition of phase (Robinson and Treitel, 1964). 

Figure 3.2-1 illustrates the behavior of the 

2b 
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phase-lag curve for a 3-term wavelet for various positions 

of the zeros near the unit circle.  In this case the zeros 

were placed on the imaginary axis so that the discontinuity 

for the middle curve lies at (« = TT/£ , Because of this 

discontinuity we may  interpret the wavelet either as mini- 

mum phase or maximum phase. 

3.3 One-Dimensional Matrix-Valued Wavelets 

Various aspects of matrix-valued wavelets, or 

polynomial matrices, have been treated by a number of 

authors. This section will review in some detail many of 

their important results as well as extend the theory in 

certain areas. 

3.31 Polynomial Matrix Notation 

Let us begin by reviewing the basic notation and 

terminology used in describing polynomial matrices. 

Let A be an arbitrary matrix. Then: 

A1 denotes transpose 

A denotes complex conjugate 

A denotes complex conjugate transpose 

A' denotes inverse 

Det A 

or A    denotes determinant of A 

\dj A    denotes adjugate of A.  (The adjugate of A 

is the transposed matrix of cofactors of A. 
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Note that AdJ A/bet A = A-1  if 

Ut A / Ü .) 

A diagonal matrix A with diagonal terms a,, a0, ..., a 

Is written as A = dlag fa,, a-,, ...» a |» Column vectors 

are represented by x» ]L>     etc., or in the alternative 

fashion x = (x,, x , ..., x )'  whenever it is desirable 

to Indicate the components explicitly. The symbols 1 or I, 

0 . and 0 „ represent the n x n identity matrix, the —n       n,m „ , 

n-component zero vector and the n x m zero matrix. 

A matrix A(z)  is polynomial or quasipolynomial 

If each of its elements is a polynomial or quasIpolynomial 

in z . A(z)  is rational if each of its elements Is the 

ratio of two polynomials or quaslpolynomlals in z . 

A(z)  is said to be real if X(z) = A(z) , 

Unless stated otherwise, all matrices considered here will 

be real. 

The non-negative integer r(A)  is the rank of 

the rational matrix A(z) for a given value of z    if 

(1) there exists at least one submlnor of order 

r which does not vanish identically, and 
(2) all minors of order > r vanish identi- 

cally. 

The rank of an n x n matrix A(z)  is the same for all 

z except for a finite set of points z.,  1=1, ,.., p 

in the z plane at which the rank may decrease.  These 

points are known as the latent zeros of the matrix A(z) 
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(see section 3.32).  The maximum number of latent zeros for 

an n x n matrix A(z)  is p = n m where m is the maxi- 

mum number of zeros in any quasipolynomial element of 

A{z} .  If p < n m the matrix A(2)  is called degenerate. 

A nonsquare matrix does not possess an inverse in 

the ordinary sense. However, it may have either a right 

or left inverse.  Thus, if A is m x n, A possesses a 

ri^ht inverse A~ ,  su h that A A~ = !_ if and only if ' m 

m < n and r(A) = m . 

An elementary polynomial matrix is a polynomial 

matrix possessing either a right or left polynomial inverse. 

A square matrix A(z)  is elementary if and only if its 

determinant is independent of z and non-zero, 

A(z)  is analytic in a region of the z plane 

if all of its elements are analytic in this region. 

The point zQ    is a pole of A(z)  if som ele- 

ment of A(z) has a pole at z = z0 , 

If z0 is a pole of the rational matrix A(z), 

each element of A may be expanded in partial fractions 

and after collecting all those terms having poj.es at zr 

there is obtained for z0 / co 

A(z) =  (z - z0)"
k Ak + (z - z0)"

k+1 Aj^ + ... + 

+ (z - ZQ)'1 A1 + A0(z) (3.3-1) 

32 

i pnp, 



where AQCZ^)  IS finite, A. / 0,  and A., 1 £ i £ ^ 

are constant matrices.  If z0 = oo ,  (z - zQ)~      is re- 

placed by 2 , 1 < i < k . All of A0(z), A^., ..,, k^ 

are uniquely defined by their construction from A(z) , 

Definition 3,3-1. If A(z)  is given by equation 3.3-1, 

then k is the order of the pole of A(z) at z = z0 . 

Definition 3.3-2. A complex rational matrix is said to ha 

reveree-hermitian if A (z) = A(l/ z)  (the function A is 

symmetric with respect to the unit circle). Hence, on the 

unit circle,  z = eU),    A^e1"') = A(eiu)) and k{eiw)     is 

hermitian in the ordinary sense. For real A(2) , this 

condition simplifies to A'(l/z) = A(z) and will be called 

reverse-symmetrical, A real scalar function f(z) satis- 

Tying f(l/z) = f(z) is also called reverse-symmetrical. 

It is most convenient for typographical reasons 

to let 

A#(z) 2 A*(l/ i). 

This notation is used throughout the remainder of this 

paper. Notice that A##(z) = A(z),  (A B)# = B# A# , 

Definition 3.3-3. A rational m x n matrix A(z) is said 

to be reverse-unitary if 

A(z) A*(z) = lm . 

A reverse-unitary matrix is also called all-pass. 
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Definition 3.3-4. A matrix A(z)  Is said to be regular 

If it is analytic inside the unit circle I z I < 1 . A 

matrix A(2) is said to be Hurwitzlan if it is analytic 

Inside and on the unit circle  zI ^. 1 . 

3.32 Spectral Decomposition 

The decomposition of polynomial matrices that Is 

discussed In this section is very closely related to that 

of the Spectral Theorem of Linear Algebra (Hoffmax and 

Kunze, 1961, pp. 275-6) which is stated for normal opera- 

tors. Thus we will call the decomposition theorem the 

Spectral Theorem, 

Before stating this theorem we shall investigate 

the properties of the latent zeros and vectors of a poly- 

nomial matrix. These properties will account for the 

principle restrictions placed upon the theorem. 

3.321 Latent zeros and vectors 

Let us consider the n x n square polynomial 

matrix 

A(z) = AQ + A,z + ... + A z 

The latent zeros z.  of A(z) are those values of 

z = z.  i = 1, ..., p (p = nm if A{z) is non-degenerate) 

for which Det A(z) = 0 . Since the determinant has real 

coefficients, complex roots may only occur in conjugate 
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pairs, 

Prazer, et al,, (pp. 61-65, 19^7) prove the 

following properties concerning polynomial matrices at the 

zero positions z. : 

(a) The matrix A(z,)  is necessarily singular. 

When z^ 4s an unrepaated root, A(z.) has rank 

r( A(z^) ) = n - 1 . 

(b) When A(z^) has rank r( A(z^) ) = n - q, 

at least q of the roots z,, Zp, ,.,, z  are equal to 

(c) The matrix A(z ) does not necessarily have 

rank n - q when z.  Is a root of multiplicity q . 

(d) When A(z-) has rank r( A(z.) ) = n - 1 

the adj^'gate AdJ A(z,) has unit rank,  r(AdJ A(z.) ) = 1. 

Hence it is expressible as a product of the form 

AdJ A(z^) = u^ v| 

v/here u. and v^ are column vectors (called latent 

vectors) of length n and are constants appropriate to the 

selected zero z. . At least one element of each vector 

is non-zero. 

finally, if we let 

_ ,m 
DrnA(z/)  = -VA(2) 

drm 

*- ~  "I 
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we have 

(e) When A(z-)  has rank r( A(z,) ) = n - q, 

where q > 1, the adjugate matrix AdJ A(z) and its 

derivatives up to and including Dq~ AdJ A(z.) are all 

null. However, the matrix Dq~ AdJ A(z.) has rank q 

and is expressible as a product of the form 

D^1 AdJ A(z^) = u^ ^ 

where u, and ^    are n x q matrices. The columns of 

these matrices can then be used to form q pairs of latent 

vectors u,    and v. , 

3.322 Spectral Theorem 

It is frequently convenient to introduce the 

concept of 2-term operators which correspond to polynomial 

matrices of degree 1. If we examine one of these 2-term 

operators 

I - Uz , 

we see that it is closely related to the characteristic 

value problem that is usually formulated in terms of X : 

U - IX. 

Thus we may apply our existing knowledge of the character- 

istic zeros and vectors of constant matrices to the more 

general case of polynomial matrices. This approach is used 

in the spectral theorem. 
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Theorem 3>3-l (Spectral), Let A(z) be an n x n real 

polynomial matrix of rank n and degree m 

A(z) = A0 + A1z -•-... + Amz
m . 

Then A(z) may be represented as 

A(z) = C0(z) (I - l^z) ... (I - U^2) 

s G0(z) G1(z) ... G^(z) (3.3-2) 

or as 

A(z) = (I - a^z) ... (I - ^z) (r0(z) 

= ^(z) ... ^(z) ä0(z) (3.3-3) 

where C-)(z) and tf (z) are elementary, if, for every 

zero z,  of multiplicity q, r( A(z.) ) = n - q, where 

Proof.  (Claerbout (personal communication) has developed 

a similar factorization.) 

First, consider equation 3.3-2. Since 

AB  =  AB|, the latent roots z.  1=1, ..., p 

of A(z) must be the union of the latent roots of 

C-, Gp, ..., G . The n latent vec^rs of A(z) and 

G (z) are given by 

AdJ A(z.) = AdJ (G0 G1 ... G^) 

= AdJ Gt(zJ) AdJ (G0 G1 ... C^^) 

= ilj Ij AdJ (ro Gi ••• c^-l)  J = 1> ..., n . 

(3.3-4) 
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Thus the n latent vectors Jf. are the same for A(z.) 

and ^/(^.j) • Therefore, if we determine a cet of n 

zeros of A(z) that have n independent latent vectors, 

we may recombine them by the well-known formula (Frazer, et 

al., pp. 66-68) 

U 

and 

-1 

(iLi)..^) 

U  7"1 U"1 
4s \/ Ts 

z.   0 

0 
n 

-1 

(üa)..(V 

(3.3-5) 

i - v. 

The 2-term polynomial G»(z) is a factor of A(z). For, 

if we substitute the matrix U  into the polynomial A(z) 

A(V = Ao + Ai "t+ •■•+ A
m
u,il (3-3-6) 

= Ao + Ai "^I1 ^ + ••• + A
m\OmuI1 

we see that A(U^) =  0 identically. Thus C-(z) = I - U z 

will right-divide A(z) with a remainder of zero (Frazer, 

et al., 19^7, p. 60) and therefore is a factor of A(z). 

(Q.E.D.) 

The factorization is continued then by removing 

n^(z) by right division, determining n more independent 

latent vectors and constructing a second 2-term wavelet 
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G ,  , This process is repeated until a0(z),  an elemen- 

tary matrix, remains. 

Alternately, we may factor on the basis of the 

ü,  latent vectors. Thus, let us consider equation 3«3-3. 

Here again the latent zeros of A(z) and the factors 

ti (z) are the same. The latent vectors of A'(z) are 

given by 

Adj A'(z.) = AdJ Cll  ... ^ ?r0)' 

= AdJ ^(Zj) AdJ (Gw ... ^ G0)' 

= 1 j u•  AdJ (^^ ... ^ ??o)i      (3.3-7) 

Thus f.,  ü latji t v jotors of A^-^) co^rcrno-iin: to 

z., i = 1, 2, ..., n are the same as the n latent 

vectors of ß,(z) . As before, if we choose n zeros 

such that the associated latent vectors are Independent 

then they may be recombined as 

SB«  = (»i)---^) 

z.  0 -rl 

0 r 
(ll)---(on) 

-1 

6.3-8) 

and used to remove G^^) from A(2) by 13ft division. 

If the ze^s and vectors are independent then 

the choice of which n zeros to associate with each 2-term 
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factor is arbitrary. Altogether, there may be  (nm)'.//, \m 

different factorizations.  Once the choice is made, of 

course, the order of factorization must be preserved since 

multiplication is not commutative, in general.  In some 

instances the choice of zeros must be made under certain 

restrictions so that the full factorization may be realized. 

As indicated above, this restriction consists of choosing 

the zeros so that the latent vectors u^.  or b_.  are inde- 

pendent for each set of n vectors. Such a choice may 

always be made if for every zero z.  of multiplicity 

qp r( A(z1) ) = n - q1 where q/c^ < I Q.S.D. 

The details of this factorization are illustrated 

in Figure 3.3-1. The right half shows the decomposition 

in terms of ?\ and the left half shows the decomposition 

in terms of ut • 

In general it is not necessary to go through the 

Intermediate steps of forming 2-term factors to construct 

a polynomial matrix from its latent roots and vectors. 

This more direct approach is the subject of the Spectral 

Corollary. 

Corollary 3.3-1 (Spectral). Let A(z) be an n x n real 

polynomial matrix of rank n and degree m 

A(z) = A0 + A, z + ... + Am z 
m 
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Then A(z)  is completely described by 

a) the elementary matrix rLQ(z) 

b) the latent zeros z.  i = 1, 2, ..., p, and 

c) the p (p < m n) corresponding latent 

vectors u,     or v  if for every root z. 

of multiplicity q,  r( A(z.) )  = n - q . 

Notice that this corollary is not so general as 

the spectral theorem in its treatment of multiple zeros 

with Identical latent vectors. 

Proof (Suggested by Quenouille, 1957* PP. >-2j) Let us 

firsl: consider the case for which A(z)  is non-degenerate. 

I.e. that ^(z)  is a constant non-singular matrix and the 

degree of the determinant, Det A(z),  is p = m n . 

Consider the factored form of A(z) 

m. 
A(z) = A0 (I - U:L z - ... - Um z

m) 

= A0 G(z) (3.3-9) 

where Ui = ~ Ao Ai • Then* ^  we inquire about the solu- 

tions to the equation 

m 
u-U, uz-.,.-U uz  = 0, m (3.3-10) 

we see that solutions are possible only if the determinant 

I - U, z - ... - U z111  = 0 1 m (3.3-11) 

is zero.  It is zero at the p locations z.  1 = 1, ..., p 

which are the latent zeros of Ci(z) and consequently of 
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A(z) .  Therefore the solution vectors of equation 3.3-10 

are the latent vector:: of f(z).  Since 

Adj A(^)  - AdJ (A0 0(2^)) 

= AdJ G(2t) Aaj A( 

- u^ v» AdJ A0 , (3.3-12) 

the solution vectors are also latent vectors of A(z) . 

Now Join the latent vectors and latent zeros Into the 

modal matrix 

p = run 

u = (u^ (u2) ... (up) 

and the zero matrix 

7 = diag I 2^, z0, ... z. 

n  , 

f 
(3.3-13) 

S • 1l o2. ] 
and substitute these matrices into equation 3.3-10 for u 

and z: 

U, U 7 + . .. + U U 7m = U 
1 m (3.3-14) 

Clearly v;e can solve this set of simultaneous equations for 

U,, U0, ... U  if the columns of U Z    are independent. 

This does not occur when a zero of multiplicity q has 

fewer than q independent latent vectors, that is, if a 

multiple root has Identical latent vectors. 

Alternately, we may choose to use the vectors 

v,  for the reconstruction. For this case we would factor 

A(z) as 
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A(z)  =  (I - V1 z - ... - Vm  2,n) A0 

= ^ (z) A0 (3.3-15) 

Where ^ = " Ai Aö  • Sir-^e the latent zeros of ?T(z) 

are the same as for A(z), and since the latent vectors 

of A'  are 

AdJ A'(zt) = Adj (^(z,) A0)' 

= Adj ?r> (z,)  Adj A^ 

= v u' Adj A^ (3.3-16) 

we may reconstruct the matrix 0.(z) by the simultaneous 

equations 

Vj U 7 -r V' I; 7m = lr 
m (3.3-17) 

where 

\s    = (vj (v0) ... (v^) (3.3-18) 

The same- restraints hold here as held for the u vectors. 

If G (z),  the elementary matrix multiplier, is 

not constant, then the number of zeros is p < mn . We can, 

however, proceed as above to find CL(z)  and then deter- 

mine ^rp2) by the formula 

a0(z) = A(z) G'^z) 

for the factorization ir. terms of the u vectors, or by 

the formula 

C{Az)    . r^z) A(z) 0 
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for the factorization in terms of the v vectors. 

Q.E.D, 

These factorizations are illustrated in Figure 

3.3-2. The boxes enclosed in dottea lines represent com- 

pletely equivalent representations of the matrix, 

Example 3*3-1«  (after Claerbout, personal communication) 

A(zC) = 

Consider the polynoruxal matrix 

2 - 20z + ^Oz2 -1 +  9^ - 20z2 

I4z ~ 58z2  1 - llz + 28z2 

The determinant is 

A(z)  = 2 - 28z + l42z2 » 308z3 + 240zi+ 

= 2 (1 - 2z) (1 - 3z) (1 - 4z) (1 - 5z) 
(3.3-19) 

The adjugate matrix Is 

Adj a(: ) = 1 - llz + 28z2  1 - 9z + 20z2 

- I4z + 58z2  2 - 20z + 50z2 

(3.3-20) 

Substituting z1 = 0.5 into Adj A(z) gives the latent 

vectors u,  and v, 

Adj A(0.5) = 2.5  1.5 

7.5  ^.5 

0.5 1 

3 

b A 

Likewise, if we substitute for the other roots we will find 
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all the latent vectors: 

Zero 

1/2 

1/3 

1/1 

1/5 

Latent vector    u 

(1, 3)' 

(1. ^)' 

(0, 1)' 

(1, 6)' 

Latent vector v 

(5, 3)' 

(2, 1)' 

(1, D' 

(1, 0)' 

Now let us follow the reconstructions considered in the 

Spectral Corollary. 

First, we may pre-divide by A0 to find 

A(z) = 2 -1 

(- 

3      1 
z  - 

4 -4 

0 1 \ -14    11 58 -28 

= A0 ^ I - U1z - U2z
£ (3.3-21) 

Set up the matrices U and Z and substitute into the 

the transpose of equation 3.3-14 

1/^ 3/2 

1/3 4/3 
0 1/h 

1/5 6/5 

1/4 3/4 

1/9 4/9 
0 1/16 

1/25 6/2b 

ui 

U2 

1 

1 

0 

1 

3 

1 

6 

(3.3-22) 

and obtain the values of U-,  and U« given above in 

equation 3.3-21. 

Similarly, we may post-divide A(z) by A0 to find 
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A(z)  = I - 10  1 

L-7 ^ 

Y^  -  V2z
£ 

-23 

29 

-5 2     -1 

1 0 

'0 (3.3-23) 

5/2 3A 5A 3A  ■ 

2/3 1/3 2/9 1/9 vl 2 

1/9 1/k 1/16 1/16 
V2 

1 

1/5 0 1/25 0 1 

We set up the matrices If and 7    and substitute into 

equation 3.3-17 

"   3" 

1 

1 

0 

(3.3-24) 

to obtain the values of V,  and V- given above in 

equation 3 3-23« 

Equations 3.3-21 or 3.3-23 may also be 

reconstructed using the algorithm of the Spectral Theorem. 

We will illustrate the process for only the u latent 

vectors. Recall that this factorization is in the form 

A(z)  = A0 (I - U1 z) (I - U2 z) 

= A0 G1(z) a2(z) . 

We arbitrarily choose the zeros z = 1/4, 1/5 to obtain 

2  " 0 1 4 0 -6 1 

.1 6^ _0 5. _ 1 0 

= "5 o' 

6 i\ 

Mr. 

■m^. mtc^pt/ßim 9 w" S **9 -w- - ggtg; 



and 

I - 5 0 

6 4 

If we now post divide a(z)  (from equation 3.3-21) we find 

a. I - -2  1 

-20 7 

which has latent vectcrs 

zero 

1/2 

1/3 

latent vector JJ 

(1, -4)' 

(1> -5)' 

Of course, this is not the only possible factor!' 

zation. Altogether, there are 

(nm)'. 

(nl)m = 24 = 6 

different representations. Using the method illustrated 

above we find that 
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1   0 

0   1 

3 

•14 

.1 

11 

I - 

I - 

I - 

I - 

I - 

I - 

4 -4 

^3 -28 

"-2 1 

_-20 7. 

4 o" 

. 10 2_ 

0 1 

-10 7 

"   4 o' 

4 3_ 

1 1 

-8 7 

"   4 0 

-2 5_ 

z 2 

I - 
5 0 

6 4_ 

-1 l" 

24 c 

3 6 

-4 t 

2 0 

-6 4 

-1 1 

12 6 

Example 3.3-2.  (Multiple roots) 

Consider the polynomial matrix 

A(z) = 3-62+32' 

1 - 2 z + z2 

2 -1 1 - 4 z + z 

2 ~ 8 z + 7 z' 

Using the standard factorization techniques we find that 

this has latent zeros and vectors 
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zero latent vector u 

1/2 
1/? 

1 

1 

(1> 1) 

(1. 1) 

(1. 0) 
(i, o) 

If we set up the reconstruction equation 3.3-1^ 

1/2 1/? iA iA ui 
1 1 

1/2 1/2 i/h iA S3 
1 1 

1 

1 

0 

0 

i 

i 

0 

0 
4 

1 

1 

0 

0 

we find that the left hand side is singular. However, if 

we use the algorithm outlined for the Spectral Theorem and 

use the zeros 1/2    and 1 for each of the 2-term factors, 

we find 

A(z) = fl  - •1  -1 

0  -2 

I - •1  -1 

0 -2 

Thus, this approach is slightly more general. 

3.33 Invertibility 

Definition 3»3-5« A one-sided matrix-valued wavelet A(z) 

is said to be invertible if there exists a one-sided left- 

or right-inverse wavelet A (z) . 

Let us consider only square matrix-valued wavelets. 

The inverse of such a wavelet is given by 

A-^z) 3 AdJ A 
Det A & . 
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The condition for invertibility is that the determinant 

of A(z) has a stable inverse. This condition when applied 

to the determinant of a finite wavelet is exactly the same 

as that applied to the scalar wavelet. That is, the zeros 

of the determinant of A(z) must be outside the unit 

circle in the z plane (see section 3.22). 

3.34 Smith-McMillan Canonical Form 

This canonical form for rational matrices in- 

volves the terms contained in the determinant and the rank 

of the matrix.  It is the subject of the classical Smith- 

McMillan Theorem (Gantmacher, p. 134, 1959  and McMillan, 

p. 581, 1952). 

Theorem 3»3-2 (Smith-McMillan). Let A(z) be an m x n 

complex rational matrix of normal rank r . Then there 

exist two elementary polynomial matrices C(z) and F(z) 

of orders m x r and r x n,  respectively, such that 

A(z) = C(z) diac 
(V 5i(z)    M2)       ^„(z) 

F(2) 
Li'1(z)    ^(z)        -ifr(z) 

= C D P (3.3-25) 

where 

a) ^(2) and '''^(z) are relatively prime 

polynomials with unit leading coefficients,  1 < k < r; 

W 
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b) Each ^(z) divides ^^TI
2
)» 

1 £ ^ £ r "" ^ and each *# (z) divides S_i(zK 

2 < -t < r; 

c) The diagonal matrix D(z) appearing in 

equation 3.3-25 is, subject to a) and b), uniquely 

determined by A(z) . It is, in fact canonic; 

d) If A(z) is real, the n's, -ir's, C(z), 

and P(z) may also be chosen real; 

e) The finite point z = ZQ is a pole of A(z) 

of order k if and only if it is a zero of '^(z) of 

order k . 

f) The order of z = oo    as a pole of A(z)  is 

the same as the order of 1/z =0 as a pole of A(l/z) . 

A rational matrix is said to be Smith-McMillan 

canonic If it is square, non-singular and diagonal with 

properties a) and b) listed above. The rational 

functions "],/*■,, cop/*?' •••, "V^r are Seneraliz-d 

invariant factors of A(z) . Clearly, since C and D 

are elementary, Det A(z) = Det D(z) . A set of polynomials 

are said to be relatively prime if their largest conmon 

denominator is 1, 

Frazer, et al., (pp. 87-92, 19^7) or Gantmacher 

(pp. 134-139, 1959) show in detail the technique for the 

reduction of a matrix to canonical form. The method em- 

ployed is reminiscent of the elimination methods for in- 
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vertinc a matrix. We will illustrate it with a polynomial 

matrix example. 

Example 3*3-3» Reduction of a polynomial matrix to can- 

onical form. 

Let us consider the matrix 

A(z) 2 + z 

1 

z 

6 + z 

a) Put a one in the first diagonal position. This is 

accomplished by multiplying A cm the left by 

"■[: 
i 

o 

to obtain 

kl » [* 1   6 + z" 

|_2 + z   z 

b) Reduce the other terms In the first row and column to 

zero. This accomplished by multiplying A, on the left by 

So ' r   ,,        o 
L-(2 + z) 1. 

to obtain 

['   V2   1 LO -zd - 7z - 12j 

and multiplying Ap on the right by 
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3.J1* 

0, I       -(6 + z) 

0 -1 

to obtain 

.0 zc + 7z + 12_ 

c)    Now,  If we let 

C  (z)    »     (S2 S1) 

P  (z)    =    0 -1 

'    »      ["2+2 

L   1 

"l      -6 - zl 

.0 -1 J 

1 

0 

we obtain the Smith-McMillan canonical form 

A(z) = C D P 

where 

p        0        -I 
[o   (z+3)(z + 4)J 

Clearly C and F are elementary matrices and 

D Is canonic. That is, 1 divides (z + 3)(z + 4) and 

Tiet  D(z) ■ Det A(z) . 

i 
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3.33 Robinson Canonical Form and All-Pass Systems 

Theorem 3»3,"3 (Robinson Canonical l?orm). Any full-rank 

wavelet A(z) can always be uniquely represented by the 

Robinson canonical form 

A(z) = A0(z) P(z) 

where k0(z)    is invertible and ?(z) is regular reverse- 

unitary (i.e. all-pass). More generally. If A(z) is an 

n x m matrix and has rank r < n, m, then its canonical 

form becomes 

A(z) = A0(z) h r,m-r P(z) 

where P(z) is a regular reverse-unitary m x m matrix. 

Matrix reverse-unitary (all-pass) systems have 

similar properties to scalar all pass systems. Wo shall 

state several theorems concerning them now (Robinson. 

1962, and Youla, 1962). 

Theorem 3.3-^. An n x m matrix P(z) of rank r is 

analytic in the entire z plane together with its inverse 

(either left, right, or both) if and only if it is an 

elementary polynomial matrix. 

Proof: The "if" part is obvious. According to the 

Smith-McMillan Theorem (3.3-2), the analyticity of P(z) 

for all z implies that all of the denominator terms, 

♦., of the canonical form be constant. Now the existence 
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3 * jj 

of a left or right Inverse implies that either n = r or 

m * r, respectively. The canonic form for P (z) is 

diag Vz), ♦r^).  ... *i^) 

The analytlcity of P'1(z) in the entire plane iraplles 

that y^, 1 « 1, ..,, r is constant. Therefore P(z) 

is the product of three elementary polynomial matrices, 

of rank r . Q.E.D. 

Theorem 3.3-^. A reverse-unitary rational matrix Is 

bounded on the unit circle. 

Proof: Suppose P(z) is m x n and P(2) P-(z) « 1 . 

Thus PCe^) P*(eitt,) - ln, and, writing out the diagonal 

elements In expanded form, 

Ij^W*^! 2 - 1   (*- 1. 2 ") . 

•'• IWpkU1*)| < 1   (r- 1. 2 m; 

k«l, 2, ..., n), 

for all ö> . Q.B.D. 

Theorem 3.3-6. The only regular reverse-unitary matrices 

P(z) with regular Inverses are constant v  .tary matrices 

(trivial all-pass systems). If P(z) Is real It Is real- 

orthogonal . 

Proof: Suppose P(z) P#(z) ■ lnf say, where P(z) Is a 
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regular n x m reverse-unitary matrix. The analyticlty 

of its right inverse inside the unit circle implies that 

of "P(l/ z) in the same region and therefore that of 

P(z) outside the unit circle Including infinity. Now the 

poles of P(z) are the complex conjugates of those of 

P(z) . Hence P(z)  is analytic in the entire z plane 

and bounded at infinity. By Liouville's Theorem it must 

be a constant unitary matrix. If P(z) is real it must 

be real orthogonal by definition. Q.E.D. 

3.36 Delay 

The delay of a one-sided matrix-valued wavelet 

A^    is a measure of how the operator redistributes the 

energy of an input process. It Is defined in terms of 

the partial energy 

1 
t.    =  E  tr(A, A«) . 

The following theorem is a discrete analog of a 

theorem given by Robinson (pp.83-88, 1962). Since his 

proof is rather long and Involved, it will not- be repeated 

here. 

Theorem 3*3-7 (Minimum Delay). The delays of the set of 

wavelets A1(z) which have the same invertible Robinson 

canonical form AQ(Z) are greater than or equal to the 

delay of A0(z). Equality holds if and only if the all- 
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3,3? 

pass system P(2)  is trivial. That is, the partial ener- 

gies obey the relation 

where J is the time index. 

3.37 Phase 

As in the scalar case, the Fourier transform of 

the operator A(z) is determined by restricting our atten- 
"iui 

tion to z = e   . We may proceed to express each poly- 

nomial element of the matrix in terms of an amplitude 

characteristic and a phase characteristic. The question 

then arises whether there are any simple measures of this 

phase matrix, other than the determinant of the polynomial 

matrix, which would correspond to invertlblllty. That is, 

can we formulate a minimum phase theorem for matrix-valued 

wavelets ? 

An empirical investigation was made of this ques- 

tion which gave negative answers for all measures tried. 

These measures included 1) the trace of the phase'-lag 

matrix, 2) the phase-lag of the traue of the polynomial 

matrix, and 3) the norm of the phase-lag matrix as a 

function of o» . In every case counter-examples could be 

found for which the wavelet was Invertlble but the measure 

tried did not give a minimum. 
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Another approach which might prove more success- 

ful would be to define a matrix amplitude characteristic 

C(«i) and a matrix phase characteristic $ (m)    such that 

A(e  ) = G{uu) e xx ' 

This has not been investigated. However, should it prove 

to have a minimum phase property associated with inverti- 

billty, this measure would have limited application because 

of the difficulty of computation and cognition of such 

characteristics. 

3.^ Multi-Dimensional Wavelets 

Our treatment of multi-dimensional wavelets will 

te brief on two accounts. First, there is no general 

factorization available for raulti-dimensional polynomials; 

and second, in almost all problems with which we are con- 

cerned the multi-dimensional process can be mapped into an 

equivalent higher ordered one-dln.enslonal matrix-valued 

process 1 • 

The absence of any factorization can be illus- 

trated by attempting to factor the polynomial 

a(x,y) =   a00   
+ aoi x  + a02 ^ 

+ a10 y + all ^ + al2 x2y 

2       2      2 2 + a20 y + a21 xy + a22 x y 
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3.41 , 3#*i 

If this were factorable, we should be able to find two 

polynomials, 

b(x,y) = b00 + b01x    and   --(jc#y) = CQQ + c01x 

bl6*  f bll^ c10y + c11xy 

such that b c =» a . But a has 9 degrees of freedom and 

b and c combined have only 8. Thus, unless there are 

special relationships between the elements a.., a(x,y) 

is cnfactorable. 

3.^1 Invertibility 

Definition 3.4«1. A scalar multi-dimensional wavelet 

a(z) is said to be invertlble about its origin z » 0 

if there exists a wavelet a (z) such that 

a(z) a"1^) « l . 

The condition for making an expansion about 

z = 0 of a* (z) is that a(z) does not go to zero 

inside the unit hypercircle 

2 zl ••• zn\    '    1   ' 

3.42 Phase 

Perhaps the simplest measure of invertibility 

involves the phase-lag of the wavelet* The multi- 

dimensional Fourier transform is found by restricting z 

to the unit hypercircle. Thus 

61 



3.^2 

-im      -iutl      -i(in 

and by finding the polar representation of this we can find 

a raultl-dimensional phase-lag characteristic, 

-^(u), u^, ...f mn)   . 

Theorem 3.4-u. tMinimum Phase). If the phase-lag character- 

istic ~o{w)    tor  the wavelet a(ij Is the same for all 

tu, « n or 0  1 = 1, .,., n,  then the wavelet a(z) is 

invertible. 

Figure 3.'/-I Illustrates two phase-lag plots for 

two-dimensional wavelets. The variable z^ corresponds 

to the phase-variable u), . Notice that when a hyper- 

surface a(2) = 0 cuts across the unit hypercircle, the 

phase Is discontinuous along the intersection. This is 

analogous to the case of a zero on the unit circle for 

one-dimensional scalar wavelets. 
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3.42 

Invertlble wavelet:    1,0 -f 0,3 z + 0,5 z. 

Non-lnvertlble wavelet:    1,0 •♦• 0.5 z + 0,7 z, 

Figure 3^ - Is    Two dlaensional phMe-lag charactei'letlcs 
for two wavelets.    The phase-lag la dlaeontinuoua 
aeroaa the zero hyper-aurface in the aecund caae. 

i 

i 

:- 
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3.^3 

3.^3 Mapping Into one-diraensional representation 

Much of the algebra of multi-dimensional operators 

and autocorrelations represents a special case of the gen- 

eral matrix-valued, one-dimensicnal algebra. For this 

reason« we seek to map multi-dimensional convolution into 

a matrix-valued notation rather than to develop the algebra 

in multi-dimensional notation. Thus, this section will 

give an extensive account of a mapping from muIti-dimensional 

notations to one-dimensional notation. 

As pointed out in Chapter 2,  this mapping 

necessarily assumes a preferred, or time-like, direction. 

It is this dimension that remains undisturbed after the 

mapping. Thus, rather than thinking of a multi- 

dimensional wavelet as a lump in multi-dimensional space, 

we may visualize it as a set of time-wavelets associated 

with various spatial positions. Then we take the logical 

step of placing these time-wavelets into a vector repre- 

sentation. This process is illustrated for a three- 

dimensional wavelet in Figure 3.^-2. Notice that before 

the vector representation can be accomplished, we must 

make some arbitrary ordering of the spatial points. 

Now let us consider convolution. If the opera- 

tor wavelet, a,  is mapped into a vector of time wavelets, 

a, and the output, y, is mapped into a similar vector, 

£, then the input, x, must be mapped into a matrix, X • 
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3.43 

t^.lg 

Prtftrrcd Dirtcfion 
t 

z-transform In 
Preferred - Direction 

%,igCg)   I ao,o^)        ai,o^) 

ao,o^)       ai,i(2)      ai,s>(z) 

Put the indices of a* 4 (z) 

|   in some arbitrary aonotonic order 

 ? 
aj(z) :    a1(2)   a^z) 

SgCz)   a4(2)   a5(2) 

Spread these tine-wavelets Into a 

vector representation 

1 
a(z) -   a1(z), a2(z), a3(z)f a4(z), a5(z) 

Plf^rc 3.^-2:     Mappinc of a multi-dimensional wavelet 
into vector notation. 
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3.^3 

This process is Illustrated in Figure 3.4-3. Each column 

of X represents the configuration for the dot product 

for one spatial lag of the convolution. We can think of 

this mapping for each column as the superposition of the 

spatially reversed a grid onto the x grid at some lag. 

The lag for a particular column corresponds to the order- 

ing of the output grid. 

Let us now put the methods discussed above on 

a formal basis. Since there are no well-defined operators 

for this mapping, we will use short mnemonic words to 

represent each operator. These operators will be used 

only to define such mappings as described above. 

In nearly all of these discussions the scalar 

elements may be replaced by matrices, however, to avoid 

undue confusion we will make the definitions in terms of 

scalar quantities. 

REV - Reversing operator 

REV reverses the positive sense of all dimensions 

of a process: 

Rsvcxp - x.i 

REV(X(z)) = X(l/z) 

where we define  -_! » (-i, -i^, ..., -iN) 

I/Z      m       (1/Z,    1/2]L,     ...,    1/ZN)     . 

66 



3.^3 

1' « *#*%#*2 t,!^ 

^ 

* » convolution i 
z-'fransfora In Preferred Direction 

and order the Indices. 

 r 
a^z) a3(z) ^ XjCz) x3(z) 

agC«) a4(2) a5(z)     ^(z) 

yi(z) y^(z) yyC«) 

y2(z) y5(2) ygC*) yio(z^ 
y3(«) y6(«) y9(2) 

i 
Nap wavelets into matrix notation 

(a. represents a.(z), etc.) 

F j# a2' a3' a4 a.., a 
^ 

T 
X1 Xg 0    x3 0    0    0    0    0    0 
0x2X20x2 ooooo 
000X2X^X^000 
0 0 0 0 Xj x2 0 x3 0 0 
0    0    0    0    0    0    0    Xj^ x2 x^ 

ks v2 y3 y* y5 y6 y7 y8 ys yio 

Figure 3.4 - |i     M^ppin^ of multi-dimensional convolution 
into matrix representation» 
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3.^3 

SHIFT - Origin shifting operator 

SHIFT alters the origin of a process by adding 

a value to each index of the process: 

SHIFT (J, X^ = Xi + ^ 

SHIFT (i, X(z)) » X(2) E
J
 z^ ... zN

N 

WINDOW - Window operator 

WINDOW isolates a portion of a process, y, 

by superimposing the grid of a process X onto the grid 

of Y . The indexing of the new process is that of the 

window grid X • We assume that Y has zeros wherever X 

extends beyond the defined limits cf Y . 

WINDOW  (X, Y) » Z 

For example consider the 2-dimensional process 

Xi " x0,-l  x0,0  x0,l 

xl,-l  xl,0  xl,l 

Yi = y-l,0  y-l,l 

y0,0   y0,l 

yl,0   yl,l 

Then the WINDOW operator behaves as 
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3.^3 

Zi    =    WINDOW (X,  Y) 

0 yO,0 yo,i 

0 yi,o yl,l 

'    Z0,-l ^0,0 zo,i 

Zl,-1   Zl,0   zl,l 

ORDER - Ordering operator 

ORDER converts a vector of ^ » (t, i^, ..., !„) 

into another vector (t,J) such that j takes on a 

unique value for each of the grid positions (i*, ,,,,  iN) 

of a finite process: 

ORDER (Xt ,     i ) - Xt , 

The actual process used to select the order of 

enumeration is entirely arbitrary and need not be speci- 

fied until a specific application is made. 

MAPI - Mapping operator 

MAPI maps a multi-dimensional process into a 

vector-valued process. Consider a multi-dimensional 

process A. . ■ ORDER (A. ,) 1 < J < N then 

MAPI (At j) - Ät 

" I ^,1* At,2' ••" At,N I ' 

MAP2 - Napping operator 

MAP2 corresponds to the matrix mapping of X(z 
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3.^3 

that was made in Figure 3.^-3. It is defined in terms of 

the operators above. 

X » MAP2 (a,x) 

= MAPI / ORDER (Xt k)] 

where Xt^k = MAPI /ORDER WINDOW ( SHIFT(k, a), REV(xl\ ' 

That is, x+ u represents the columns of the matrix X 

located in an array like that of the convolution of a 

and x . The individual columns of Xt .  are formed by 

shifting the grid of a by an amount k, superimposing It 

on the spatial reverse of x, and then ordering and map- 

ping this intersection according to the Indices of a , 

Now, in terras of the z-transforms 

a(z) x(z) = y(z) 

corresponds exactly to 

MAPI (a(z)) MAP2 (a, x(z)) = MAPI (y(z)) 

where a(z) represents the z-transform of a in the 

preferred direction only. 
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4. 

U.    FACTORIZATION OP AUTOCORRELATIOI© 

The operation of autocorrelation is generally 

defined as the expected value of the cross-product of a 

process with itself as a function of time and spatial lags. 

It has the very useful property of removing all phase in- 

formation from a stochastic process. If a time-aeries may 

be characterized as the convolution of a white light process 

with a wavelet« then the autocorrelation of the process 

Isolates the amplitude properties of the wavelet.  This is 

because the autocorrelation of white light is zero except 

for a pulse at lag zero. These properties of stochastic 

processes have been treated by many authors and from many 

different viewpoints. Some of the salient works include 

Riesz (1907 and 1952), PeJer (1916), Kolnogorov (1941a and 

b), Karhuenen (194? and 1949), and Szego (1959). Wold 

(1938) stated the decompositional properties in terms of 

stochastic time series as follows: 

Theorem 4.1-1 (Wold Decomposition). Any stationary process 

Xt can be uniquely represented as the sum of two mutually 

uncorrelated process X^ « Ut + Vt, where üt is deter- 

ministic, and Vt is the convolution of a one-sided wave- 

let with a stationary white-light process. 

Robinson (1962) and Wiener and Iteaanl (1957) have 

extended this theorem to specify a particular decomposition 

in terms of an Invertible wavelet. 
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With this brief discussion of the motivation 

of autocorrelations (for more detailed discussions see 

Wiener, 19^9; Whittle, 195^; Wiener and Masani, 19t)7 and 

1953; and A istey. 196^) we will go directly to a discussion 

of their properties and factorization!:.  In general, most 

of the factorizations are made In terms of correlations 

of finite lengthj however, some of the cases are easily 

extendible to Infinite lengths. 

^.1 One-Dimensional Scalar Autocorrelations 

The theory o"" one-dimensional scalar autocorrela- 

tions is well known. Thus we need only state results in 

this section for the purpose of giving an intuitive intro- 

duction to the following sections. 

Let r(z) represent a real autocorrelation of 

length m-f m + 1 

r(z) ^ r-ra z"
m + ... + r_1 z"

1 + r0 + ^ z + ... + rm z
1" 

then 

a) r(z) Is reverse-symmetric, that Is 

r(z) = r#(z) 

= r(l/z) . 

b) r(e" ) is non-negative, that is, the 

cosine transform of the autocorrelation is 

non-negative. 



4 ] 

c) ro _ ri with equality holding only if the 

input process is periodic, i.e. deterministic. 

d) The real freouency zeros, that is, the zeros 

on the unit circle, j z « 1, are of even 

multiplicity. 

e) For every zero z. of r(z) inside the unit 

circle, there is a corresponding zero 1/z. 

outside the unit circle. 

It is interesting to note that since the cosine 

transforms of autocorrelation functions and of minimum de- 

lay wavelets are both non-negative (see Section 3.25)* the 

center point and right half of a scalar autocorrelation 

forms a minimum-delay wavelet. 

(Kunetz (1964) has proven that a synthetic 

seismogram which includes all multiple reflections forms 

one side of an autocorrelation function. In view of the 

results obtained above, we can sharpen his result to say 

that a synthetic seismogram which includes all multiples 

and the initiating pulse is minimum delay, if, and only 

if, the initiating pulse is minimum delay (Kunetz took this 

pulse to be a unit spike, which is certainly minimum 

delay).) 
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4,11 Factorization Theorem 

An autocorrelation function may always be factored 

to give a wavelet a(z) such that its autocorrelation, 

3(2) a#(z), equals rhe original autocorrelation. In 

general the factorization is not unique but it may be made 

unique by requiring that a(z) be a one-s^.ded invertible 

wavelet, i.e. minimum delay. Then this wavelet is the 

Robinson canonical minimum-delay form of all other factori- 

zations. These properties are stated more rigorously in 

the factorization theorem. 

Theorem 4,1-1 (Autocorrelation Factorization). Let r(z) 

be a real scalar autocorrelation of degree + m . Then 

there exists a real polynomial (wavelet) a(z) of degree 

m such that 

a) r(z) « a(z) a#(z) . 

b) a(z) and a (z) an both analytic inside 

the unit circle Iz I < 1, i.e. a(z) is 

one-sided invertible, minimum delay, or mini- 

mum phase. 

c) a(z) is unique up to within a trivial all- 

pass system multiplier, i.e., if b(z) also 

satisfies a) and b), then b(z) ■ p a(z) 

where p is a constant such that p p « 1 . 
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4.12 , 4.121 

d) Any factorization of the form r(z) « c(z)c#(z) 

In which c(z) Is not Invertlble Is given by 

c(z> - a(z) p(z) 

p(z) being an arbitrary regular all-pass 

system. 

Since the proofs of parts c) and d) are very similar to 

that for matrix-valued autocorrelations we will defer the 

proof of those parts until the next section (also see 

Robinson, 1963. P. 179). The proofs of j -rts a) anrt b) 

consist of showing that a factorization with the needed 

properties exist. We will state three factorizations here 

but will defer again until the next chapter for the dis- 

cuss ion of approxiamte factorizations since the scalar 

methods are Just special cases of the matrix-valued tech- 

niques» 

4.12 Methods of Factorization 

4.121 Woldian or spectral analysis 

As pointed out at the beginning of section ft.l* 

every zero, a.; of the polynomial r(z) is associated 

wi ,.i a zero l/hi  . Thus if we choose the m zeros 

a1 i « 1. ..., m which fall outside the unit circle to 

form the polynomial, a(z), then this polynomial will 

certainly concur with p&rts a) and b) of the factori- 

zation theorem. 
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4.122 Kolmogorov 

If we have the square-gain (that is, the cosine 

transform), r(e' )- of the system, then the wavelet, 

a(z}.  Is given by 

a(z) » E  a.z 
1-0  1 

exp 
L    -TT  e "Z j 

(Robinson, 1963b or Karhunen, 1949). 

4,123 Zero-phase 

Thj zero-phase factorization is also based upon 

the cosine spectrum, however, it does not produce a wave- 

let that satisfies part b) of Theorem 4.1-i. if we 

desire the wavelet to be two-sided and symmetrical then 

we need only take the square root of the spectrum 

ji(e" ) » /^(e" "^ . This wavelet has zero phase. 

The spectral and Kolmorgorov factorizations are 

equivalent (Robinson, 1954). The spectral technique is not 

a good computational method because of the well known 

difficulties in finding the zeros of a polynomial. The 

Kolmorgorov technique becomes approximate in computer 

applications since we must compute some continuous func- 

tions digitally. It has, however, been successfully 

applied to factorization problems (Qalbralth, 1963). 
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4.2 

4.2 One-Dlnienalonal Matrix Autocorrelations 

The matrix-valued autocorrelation function is 

very similar to the scalar function. 

Let R(z) be an n x n quasipolynomial auto- 

correlation matrix of rank r, then 

a) R(z) is reverse-synnetric, i.e. R(z) - R#(2). 

b) R(e *) is non-negative definite, i.e. 

b R(z) b > 0 for every n vector b and 

every value of z on the unit circle. 

c) The determinant of Rfz), d(z) ■ Jet R(z) 

is reveree-syametrical d(z) « d#(z) . 

d) The Smith-McMillan canonical form satisfies 

D(z) « D#(z) . 

e) The real frequency zeros. I.e. the zeros on 

the unit circle, of the diagonal elements 

of D(z) (and of d(z)) are of even multi- 

plicity. 

Prow. Statement a) is obvious. If we let X(z) re- 

present an arbitrary finite process, then 

R#(z) - (X(z) X#(z))# 

- X##(z) X#(z) 

- X(z) X#(z) 

. R(z) 
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Statement b) follows if we note that on the unit circle 

the determinate of R(z) Is 

|x(eltt})X#(e
ltt,)|- |x(ellw)| |x {e'1*)] 

- Ix(eitu)| 171^)1 

> 0 

unless R(z) Is null. 

Statement c) follows directly from a). For statements 

d) and e) we let R(z) » C(z) D(z) P(z) be the Smlth- 

McMlllan canonical form of R(z) , Now, since R(z) = 

R#(z), C(z) D(z) P(z) - P#(z) D#(z) C#(z) . But D(z) 

and D#(z) are both canonical to the same matrix R(z) 

and therefore by the Smith-McMillan Theorem must be the 

same. Thus every diagonal element of D(z) Is reverse- 

symmetric, and consequently any zero z.  Is accompanied 

by a zero 1/z. . However, If z. Is a zero of R(z) 

then It must also have been a zero of X(z) . Since X(z) 

Is real. It has a real canonic form D,(z) and 

D(z) « D1(z) (D1)# (z) 

But since D,  Is real, every root z. must be accompanied 

by Its complex conjugate z^ . Therefore for every root 

I zJ s i on the unit circle we must have four roots z., 

1/z., z^, and 1/ z. . But z. = 2./ z., z. « l/zi    if 

Iz.l * 1 . Thus all roots on the unit circle must occur 

in pairs. Q.E.D. 
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4.21 Factorization Theorem 

A matrix-valued autocorrelation may always be 

factored into the product of a wavelet with its reverse- 

transpose. This factorization is made unique if we re- 

quire that the wavelet be one-sided and invertible, i.e. 

minimum delay. This review is stated more concisely in 

the Matrix-valued Factorization Theorem, 

Theorem 4.2-1 (Matrix-Valued Autocorrelation Factorization). 

Let R(z) be a real n x n quasipolynomial autocorrela- 

tion matrix of rank r , Then there exists a real n x r 

polynomial matrix A(z) such that 

a) R(z) m    A(z) A#(z) 

b) A(z) and A"1(z), its left inverae, are 

both analytic inside the unit circle. If 

R(z) is full rank and non-degenerate, A(z) 

is minimum delay. 

c) A(z) is unique up to within a real-orthogonal 

matrix multiplier on the right (a trivial all- 

pass system), i.e., if A1(z) also satisfies 

a) and b), then A1(z) ■ A(z) T where T 

is r x r, constant ana unitary, T T* * 1 

d) Any non-minimum delay factorization of the 

form R(z) - C(z) C#(z) in which C(») is 

n x ■, m > r, and polynomial, is given by 
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the Robinson canonical form 

C(z) - A(Z) [ lr I 0^1 P{z)  . 

P(2) being an arbitrary rational regular 

m x m reverse-unitary matrix (that is, P{z) 

is an m x m all-pass system). 

The proof to this important theorem is divided 

into two parts. First we prove parts c) and d). Then 

parts a) and b) are proven in the next section by 

demonstrating factorization algorithms which produce wave- 

lets having the given properties. Pour such algorithms are 

known. Two produce A(z) by analytical manipulations and 

two give A* (Z) by approximate techniques. 

Proof. Consider statement d) first. Let C(z)«A(z)Q(z) 

where A(z) satisfies a) and b). Then 

C(z) C#(z) = A(z) Q(z) Q#(z) A#(z) 

■ A(z) A#(Z) 

Q(z) Q#(z) » lr 

where Q(z) ■ A~ (z) C(z)  is obviously analytic inside the 

unit circle, i.e.  P(z) is an arbitrary m x m reverse- 

unitary matrix that incorporates Q(z) in its first r 

rows; i.e.. 

«<z) - [XT  | 0r.m-r] p<z) 
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Now let us consider statement c). Let A(z) 

and A1(z) be two matrices satisfying a) and b), and 

let A(z) « A1(z) Q(z) . Then 

A(z) A#{z) - A1(z) (A1)# (z) 

. A1(z) Q(z) Q#(z) (A1)# (z) 

Q(z) Q#(z) - lr 

where Q(z) * A^iz)  A(z) is analytic inside the unit 

circle. But we also have Q(z) « (A1)# (z) A^Cz) and it 

is therefore analytic outside the unit circle. By Theorem 

3.3-6, Q(z) is a constant real orthogonal matrix. 

4.22 Analytic Factorization Methods 

Both of the analytic factorizations depend upon 

the factorization of an elementary autocorrelation matrix. 

We will discuss this technique first. The algorithm was 

first presented by Oona and Yasuura (1954, pp. 125-177) 

and later expanded u^n by Youla (1961, pp. 176-178) for 

paraconjueata-hermitlan matrices. The following statement 

has been altered to account for the properties of reverse- 

Symmetrie matrices. 

4.221 Elementary autocorrelation matrix 

Consider an r x r positive elementary quasi- 

polynomial reverse-symaetri matrix, i.e., an elementary 

autocorrelation matrix, R(z) . Because of fe_ positive 
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nature of R(e a,), all its diagonal elements are reverse- 

symnetrlc and positive on the unit circle. Let 

^l 5, ^2 —*   • • •' — ^r be the maxlraura degrees of the diag- 

onal entries arranged in non-decreasing order. Since 

R(z) is reverse-syinnetric, the q's are  non-negative 

integers. Again invoking the positive character of 

R(e tt5),  it follows that no element in R(z) has degree 

exceeding qr . Thus qr = 0 if and only if R(z)  is a 

constant symmetric positive-definite r x r matrix, in 

which case it can be written as AA  by a number of stand- 

ard techniques. Excluding this relatively trivial situa- 

tion, we will assume q,> 0 , ^r 

We begin by interchanging the rows and columns 

of R(z) so as to make its diagonal elements 

(R)ai, (R)22* ..., (R)rr possess the degrees q-, q2, 

q,,, respectively. Call the rearranged matrix Rn(z) . 
r x 

Then there exists a permutation matrix K such that 

R1 (z) = K R(z) K' (^.2-1) 

1 
R,  is also elementary, reverse-symmetric and positive. 

I 
Next we force each diagonal term to have degree 

q . Let us bepin by defining a non-increasing sequence 

of non-negative integers  (ri, (T^,   ..., a^,    by 

..., 

^l " qr " qi  i = li 2, ..., r 

(4.2-2) 
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and the r x r diagonal matrix H(z) by 

H(z) » dlag j^d - z 1) ^ (1 - z^)    2f   ..., (1 - z r) rJ. 

(^.2-3) 

where k. « + 1 chosen so that the degree of the non- 

diagonal termb do not exceed q„ . Note that  a- » 0 , r r 
The r x r matrix 

^(z) =. H(z) ^(z) H#(«)       (4.2-4) 

is quaslpolynomial, reverse-synmetric and positive. 

Moreover all of its diagonal elements have the same degree 

qr . Since R^ is elementary, it is clear that 

Det R^z)    «    OCz*^) (4.2-5) 

where 

<r--   <r1+   ^+ ... +   <rT (4#2.6) 

But from equation 4.2-2 

<r <    (r - 1) qr . (4.2-7) 

R2(z)    may be written in expanded form as 

.  % "qr -1 ^r 
R2(z) -T«     z    1  +  ...-i-T^zJ'+T9+T1z-f... + Tz 

r ^ 

(4.2-8) 

where the T's are constant r x r matrices. The impor- 

tant observation is that T   is singular, i.e. Det T, 
qr 

0   for otherwise equation A.2-8 would yield 
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rq 
Det R2(2) » G(z r) (4.2-9) 

which contradicts equations 4.2-5 and 4.2-7. This deduc- 

tion implies that T   contains a principal minor G of 

order s x s which is non-singular and such that the minor 

7J    created by adding the (s + l)th row and column to G 

is singular« Thus we may add a linear combination of the 

first s rows of T   to the (s + l)th row and the 
qr 

same linear combination of the first s columns to the 

(s + 1/th column such that (T )s+1   ^ is reduced to 
r   * 

zero and no other diagonal term is affected. Hence for 

the correct choice of a constant r x r non-singular 

matrix K,, 

^a  = Kl Ta Kl (4.2-10) 

has a zero element in the (s+1, s+1) place. Prom 4,2-8 

qr 
R3(z) = ^ R2(z) K^ »  E  (^ T1  K^z1 

^'^ (4.2-11) 

has a diagonal element in the (s+l, s+1) position of 

degree < q , 

The matrix 

R4(z) = H'^z) R3(z) H;
1(z)       (4.2-12) 

is reverse-symmetric, positive and elementary. According 

to the definition of R0 (see equation 4,2-4)  (RoK - is 

divisible by (1 - z *) ^ (l - z m) m, and according 
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to the definition of R3(z) (see equation 4.2-11) and the 

definition of K^ fMz) differs from RgCz) only in its 

(s + l)th row and column. More specifically, 

s 

(R3U,s+l " ^2^,8+1 
+ J^l ^h.i  I1*1* 2'    •"  r)' 

(^.2-13) 

the c's being scalars. By construction ^ > <^ > ... > 

O* ,    thus every term on the right-hand side of equation 

4.2-13 is dlvlsable by (1 - z B^1)    s+1 (l - z m) m, 

(k = 1, 2, ..., r) , The same considerations apply to the 

(s + l)th row, whence, for all I   and m,  (JU), „ is 

divisible by (1 - z *) l    (1 - z ^ m, and R4(z) is 

a quasipolynomlal matrix. Since 

Det R4(z) « Det^2 K2) Det(ri(z)) . constant, 

R^(z) is elementary* 

But R^(z) is sin^ler than R1(z) because the 

degree of its (b+1, s+1) entry Is at least 1 less than 

the same entry in the latter matrix, while all other corres- 

ponding diagonal elements have the same degree as before. 

Consequently, after one cycle of the algorithm. 

R(z) » ^(z) R4(z) (C1)#(z) 
(4.2-14) 

where 

-1 u-l/_x «--1 C1(z) - Kx  H'x(z) K'-1 H(Z) 
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is an eleircntAry polynomial matrix and R^(z) is at 

least 1 deg:  less than R(2) . 

We now replace R(z) by Rh(z) and repeat the 

algorithm. After a maximum of rqr cycles R(2) is re- 

duced to a constant symmetric positive-definite matrix 

R^ ~ CC1 , so that finally 

R(z) =* A(z) A#(z) 

where 

A(2) = G:L(z) G2(Z) ••' G  (z) C 
rq, 

This factorization does not guarantee that A(z) 

is one-sided. This is because of the ambiguity in the defi- 

nition of H(z) . Tc the author's knowledge ao one-sided 

factorizations exist for cases in which this algorithm 

does not give a right-sided factorization. For example, 

the elementary autocorrelation 

R(z) = -z -1 + 3 - z 

1 - z 

-z -1 

*:] 
may be factored either as 

R(z) = -z -1 + 1 

1 

X 1 - z 

1 

or as 

R(z)  =   ["l 

10 

-Z-1 -v 1 1 

L 1 - z 

:] 

:] 
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<: 

CLCMfNTARV 
KOtWELATION MATKIX 

It (I) 
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«4(1) 

) 

' 

Pifwrc 4,2 - 1: Elementary autocorrelation matrix 
factorization. 
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but no right-sided form has been found. 

The important steps in this reduction are shown 

in Figure 4.2-1, 

Example 4.2-1. Let us consider the elementary autocorrela- 

tion matrix 

R(z) \-2z-K 6- 22      -4z"2+l4z"1-l4+ 4z 
14+14Z-4Z

2
   8z"2-32z"1+50-32z+8z2. 

We will follow the steps of this factorization in detail. 

Recursion 1. 

Since the degrees of the diagonal terms of R(z) 

are already in ascending order we may skip the first step. 

•Rius 

R^Cz) = R(z) 

Next we make all of the terms have the same degree by form- 

ing the product 

RJ1)(Z) . HW RW Hi1), H^1) = diag[l.z, l] 

2z"2-10z'1+l6-10z +222   -42"2+l8z'1-28+l8z-4z2 

-4z2 +I8z'1-28fl8z"1-4z2   8z"2-32z'1+50-32z+8z2 

2 
The matrix for the z  terms is 

,(1) 

[.: ■:] 
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Thus the diagonal term ^Jo o can be reduce<i to z«ro 

by the product 

R^Cz) . K^^ RJ^ (K}
1
')' where ^ - Tl 

12    1 

-2z"1 - 10z"1 + 16 - 10z + 2z2    -2z"1 + 4 - 2z 

- 2z"1 + 4 - 2z 2 

Finally we remove the H multipliers to obtain: 

-1 
K^hz)    - H^)  R^HI1

) 
-1 

I 

•2z'1 + 6 - 2z 

2 - 2z 

-2z"1 + 2 

These steps can now be combined so that 

R(z)  -  C1 R^
1) (G^ 

where 

-1 /i\-l o, . HW ' 4^x HM 

-2+2z        1 

Recursion 2, 

Our beginning point is the matrix Mp''    from the 

last recursion* This time we must exchange the-positions 
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uf the diagonal terms so that they will have ascending 

degreess 

(2) K«1) R^ K«1)'  where K 

[: :] 
L.-a

+ 
2 

2 

2-22 

-22" + 6 - 2z ] 
Here we must now multiply by IT ' = dlag [(l-z" ),1J In 

order for the off diagonal terms to be the same degree as 

the diagonal terms. 

R|2)(z)    -     ^RpH*2' 

-22"1 + 4 - 2z 

-2z'1 +4-22 

-22'1 +4-22 

-22'1 +6-22 

(2) Prom the coefficients of 2 we may select K£ ' such that 

the degree of (Ri ')„ „ Is reduced, 

RJ2) = K«2' RJ2' K,'2'1   where K<2) - f 1   0" 

[.: :] 
-2z'1 + 4 - 2z'1 

:] 
and, proceeding as before, we have 

H i
2) -  (H«2))"1 R<2>  (Hi2))"1 

2 

0 

0 
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This set of operations may also be grouped 

-1 -1 
c2 - K(2)"

A nW KW'X H(2) . 

Now we see that the factorization of R(z) its  given by 

R(z) - A{z) A#(z) 

where A(z) - ^ r2 v^) 

ST - z-1 + 1 

2z"1 - 3 + 2z 

1 

-2 + 2z 

4.222 Spectral analysis 

We will begin by illustrating the decooposition 

for an n x n full rank (r ■ n), non-degenerate (p-2Bn 

zeros in the determinant, where m is the greatest number 

of zeros in any of the quasipolynomial elements) auto- 

correlation. 

Let us assume that statement a) is true. We 

begin then by examining the latent zeros and vectors of 

R(z) in terms of those of A(z) . The latent roots as 

specified by the determinat 

|R(z)| - |A(z) A#(Z)| 

- |A(z)| JACz"1)!  . (4.2.15) 

are zj     1 » 1, 2, ..., p where the z, are roots of 
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A(z) . The latent vectors are either 

AdJ R(z1) = AdJ (ACz^ Ä#(z1)) 

« AdJ A#(zi) AdJ ACz^^) 

= AdJ A#(z1) Uj v^ (4.2-16) 

-Hi 4 
or 

AdJ RCz^1) * ^ u[ AdJ kiz^1) 
w 

If we choose the p zeros outside the unit circle we will 

satisfy condition b). These zeros and their associated 

vectors v^ may be used to construct ITfz) according to 

either of the two methods Illustrated In the proofs to 

Spectral Theorem or the Spectral Corollary (Section 3.32). 

We must now determine the constant multiplier A0 from 

the autocorrelation 

R(z) - E(z) A0(A0)#?f#(z) 

(^.2-17) 

Thus we can only determine AQ to within a real orthogonal 

multiplier. 

The factorization used above Is similar in intent 

to the Woldlan factorization for scalar autocorrelations. 

The Qquence of operations Is illustrated in Figures 4,2-2 

or 4.2-3. 
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Figure 4.2-2:  Spectral factorization of a matrix auto- 
correlation according to Theorem 3,3-1« 
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Figure 4.2 - 3:  Spectral factorization of a anatrix auto- 
correlation according to Corallary 3.3-1. 
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If R(2) is full-rank but degenerate, p < nm, 

then the factorization Is not complete when we reach 

equation 4,2-17. In this case we will have 

Ji{z)    » ^(z) R(z) ^(z) 

where K(z) is an elementary autocorrelation matrix which 

must be factored according to the method of Section 4.221 

tc give 

H(z) » V0{z)(tlQ).{z)  . 

The complete factorization is 

A(z) - Ä(z) tf0(z) . 

If R(z) is not full rank, then the factorization must be 
* 

done in terms of full rank submatrices of R(z) • Thus, 

we partition R(z) symmetrically about the main diagonal 

such that each r^ x ri    submatrix «^(z) is full rank. 

For example 

R(z) 

f-r * 

"oo 

*-rl' 

»01 »02 t 
r 

4- 
ri 

r2 
t 

»10 »11 »12 

«20 »21 »22 

(4.2-18) 
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Each of the diagonal submatrice (R)ii* is then factored 

according to the spectral theorem technique (given earlier 
A 

in thlc section) to obtain the r. x r. matrices Cj^f2) • 

Now form the matrices 

C(z) 

* 
G00 

A 

S- r-ri 
A 

C22 0r2,  r-r2 

(4.2-19) 

and the left inverse 

O"1^) =  C Goo 

^ 
;-i 
G22 

0r-r2, r2 
0v-vv r1 

(4.2-20) 

where C is a constant diagonal r x r matrix. 

Now, the matrix 

:-l :-i K(z) = G"-L(z) R(z) ^(z) 

is an r x r elementary quasipolynomlal matrix (this will 

not be proven here) which may be factored according to 

Section 4.221. 

Thus 

K(z,  - G0(z) (C0)#(z) 
A A 

and     A(z) = C(z) ^0(z) Q.E.D. 
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Example 4,2-2, (Pull rar-, non-degenerate c^se) 

Consider the autocorrelation matrix 

R(Z) -2z"1 + 6 - 2z 

1 - z 

•z'1 + 1 

•z"1 + 2 - z 

We begin by finding the latent roots z. and latent 

vectors v. and w. by the technique outlined in the 

section 3*32. 

R(z)  - 2z"2 - 9z"1 + 14 - 9z + 2z2 

- (1 - 2z)(l - z)(l - z'1)^ - 2z"1) 

Substituting these root*» into AdJ R(z) we find 

zero vector w vector v 

A (1,   1) (-1,  2) 
1 (0,   1) (0,  1) 
1 (0,   1) (0,   1) 
2 (-1,  2) (1,  1) 

We choose one of the roots on the unit circle and the 

root outside the unit circle to find A . Using the no* 

tation of section 3*32« we have 

[: :i [: f [: ;1 
K 1 
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Thus    ?f(z) =  I - V z 

1 - 1/2 z l/£ z' 

0 1 - z 

and 

*-l -1 A0A6    =    *    & R^) ^  <z) 

(l-3/2z+l/^z2)2 

1-z      1/^z -2z"1f6-2z       -z"1*! 

-1, 0        l-l,/5zj  L 1-  z       -z  ■t+2-z_ 

-z"^! 0 

1/^z"1 -l/Zz'Kl 

[2      i]   F2      0 

0      ij   [l       1 

Consequent .y we find the desired ndnimum delay wavelet 

A(z) - ^(z) An 

2-z        1 

0        1-z 
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4.223    Smlth-HcMillan 

This factorization la based upon the Smith- 

McMillan canonical form. The algorithm Is very slmllrr to 

a factorization technique for paraconjugate-hermltlan ma- 

trices given by Youla (196l). The system is quite elegant 

in its conception since the algorithm is Independent of 

the rank and degeneracy of the autocorrelation; however, a 

fla»^ renal  30 that for some cases a one-sided factoriza- 

tion cannot be guaranteed even for the full-rank non- 

degenerate matrix autocorrelation. 

Before doing the factorization we must investi- 

gate several mor" properties 01 quaslpolynomlal matrices. 

Definition 4.2-1, Let a(z) be an n x m rational matrix 

of normal rank r . A decomposition of the form 

a(z) » P(z) A(z) Q(z) 

is said to be an inner-standard factorization if 

a) ^(z) is r x r, canonic and analytic to- 

gether with its Inverse in the entire z 

plane with the possible exception of a finite 

number of points on the unit circle.  ^ 

b) P(z) is n x r and analytic together with 

its left inverse Inside and on the unit; circle. 

c) Q(z) is r x m and analytic together with its 

right inverse outside and on the unit circle. 
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Interchanging the roles of P and Q gives rise to an 

outer-standard factorization. Obviously any inner-standard 

factorization of a(z) generates an outer-standard factori- 

zation of G'Cz), G-1^) and a(l/z) . For example G1 (z) = 

Q'(z) A(2) P'CzK etc. 

It follows from the Smith-McMillan Theorem that 

any rational matrix G(z) possesses an inner- and outer- 

standard factorization. For, let G(z) = C(z) D(z) F(z) 

where C and F are elementary and D is canonic. By 

factoring the cp's and f's (see Smith-McMillan Theorem, 

section 3.3^) appearing in the diagonal elements of D(z) 

into the product of three quasipolynomials, the first 

without zeros I z| < 1 » the second without zeros 

|z| /I, and the third without zeros in (z | > 1* it is 

possible then to write D(z) = D+(z) A(z) D"(z): D+(Z) 

and its Inverse are analytic in |zj < 1,  ^(z) and £  (z) 

in Izl / 1, and D'(Z) and its inverse in |z| > 1 . 

Now, choosing P(z) = C(z) D+(z) and Q(z) = D"(z) P(Z) 

we have the desired breakdown. 

Lemma 4.2-1. Let G(z) possess two right-stanuard factori- 

zations G « P, A1 Q, . Then, 

a) A(z) = ^(z) 

b) P1(z) = P(z) M"1(z) and Qa(z) = N(Z)Q(Z), 

where M(z) and N" (z) are any two r x r 

elementary quaslpolynomial matrices which 
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transform A(z) Into Itself, vis, 

M(z) A(z) N'^z) - A{z)  . 

Proof., We have 

G-PAQ-P1A1Q1 (4.2-21) 

Then 

^l1 Pl1 P^  "    Ql Q"1 (4.2-22) 

By definition the right hand side of equation 4.2-22 is 

analytic in | z ( > 1 . Thus Q^"1 is analytic in the 

entire z plane. According to equation 4,2-21 the inverse 

of Q1Q"
1
 is A"1 P'1 P1A1 » QQ^1 and is therefor© 

also analytic in the entire z plane. By Theorem 3.3-4 

Q^"  is therefore an elementary r x r quasipolynoraial 

matrix N(z) , Similarly pr^P is an r x r elementary 

quaslpolynomlal matrix N(z) • Prom equation 4.2-21 

M(z)A(z) N'1(z) - ^(z)  . 

Since A(z) and A1(z) «re both canonic, ^(z) - A. (z) 

by the Smith-McMillan Theorem, Thus 

M(z) - ^(z) N(z) S1^) 

Q1(z) - N(z) Q(z) 

P^z) - P(z) ^(z) N'^z) ^(P) 

= P(z) M"1(z) Q.B.D. 
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Corollary 4.2-1. The canonic matrix A(z) appearing in 

either an inner-standard or outer-standard factorization of 

an n x m matrix a(z) of rank r(a) is equal to the 

r x r identity matrix lr if and only if a(z) is 

analytic ind r(G) is constant on the unit circle. In 

this case, if P Q and P, Q, are any two standard 

factorizations of G, ^(a) = P(z) N"1(z) and (^(z) = 

N(z) Q(z), N(z) being an arbitrary r x r elementary 

quasipolynomial matrix. 

Proof. The if part is immediate. The analyticity of a(z) 

on the unit circle implies that all of the denominator terms 

of ^(z) are unity. This in turn leadb to the conclusion 

that r(G) is constant on the unit circle only if the 

numerator quasipolynomials in ^(z) are unity. Thus 

A(z) = 1 . The remaining statements are consequences of 

Lemma 4.2-1. Q.E.D. 

Corollary 4.2-la. If G(z) is reverse-symmetric then 

N(z) = M#(z) 

where M(z) Is any r x r elementary quasipolynomial 

matrir satisfying A(z) M#(z) - M(z) ^(z) . 

Proof. Since G(z) = G#(z), Q#(z)A(z) P#(z) is also a 

right standard factorization of G(z) by arguments similar 

to those used for theorem 3.3-4. Thus, according to 

Lemma 4.2-1 
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P*(z) 3 N(z) Q(z) 

Q.(z) « P(s) M-^z) 

P#(z) » N(z) M^Cz) P#(z) 

Since P#(z) has a right inverse, 

N(z) - M#(z) 

and according to Lemma 4.2-1 

A{z)  M#(z) . M(z) Ä#(z) . Q.E.D. 

The factorization algorithm discussed here is 

based upon the Smith-McMillan canonical form for the auto- 

correlation matrix. Unfortunately, because of the arbi- 

trariness of the sequence of steps involved in finding a 

particular realization of the Smith-McMillan canonical 

form, the solution is not unique. The solution matrix 

7(z) is not one-sided (and therefore not analytic inside 

the unit circle). This matrix X(z) will differ fro« the 

proper answer by a unitary matrix. 

Step 1. Reduce the matrix R(z) to its Smith-McMillan 

canonic form. Since  R(z) is a quasipolynoraial matrix, 

this procedure is a standard but arbitrary one as illus- 

trated in section 3.34. Thus we will have 

R(z) - C(z) D(z) P(z) . 

Step 2. According to Theorem 4.2-1, D(z) is of the form 

that It may be factored as 
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ii ,22:- 

D(z) =» D+(Z) A(2) D"(2) 

= D+(z) A(z) Dt(z) 

where 

(1) D (z) Is r x r, diagonal and analytic, 

together with its inverse (D )" (z) for 

Let 

z| < 1 , 

(2) A»(z) = A(z) = 0(z) %(z) in which all 

diagonal elements of 6(z) are reverse- 

symmetric. Furthermore, A(z) is canonic 

and non-zero for | z j /I , 

P(z) = C(z) D+(z) 

Q(z) = Dt(z) F(z) 

Then we have an inner-standard factorization 

R(z) = P(z) A(z) Q(z) 

Step 3. Now we wish to factor Zi(z) . Since R(z) is 

reverse-syiranetric, a second left standard factorization is 

R(z) = Q*(z) A*{z)  P#(z) 

and according to Lemma 4,2-1 and its Corollaries 

Q#(z) =» P(z) VT1^) (4.2-23) 

where M" (z) is an r x r elementary quasipolynomial 
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matrix such that 

^(z)"1 M(2) A(z)    -    N(z) (4.2-24) 

Is also quaslpolynomlal 

Thus we may write 

R(z) , P(Z) M"
1(z)A(z) P#(z) 

- P 9 0"1 M'1 0 9# p# 
(4.2-26) 

or 

9"1 P"1 R p;1 9;1 . 9"1 M*1 9        (4.2-26) 

Hence 

?i(z)  a 9":L(z) M"1(z) 9#(z) 

Is r x r, reverse-symmetric and non-negative on the unit 

circle (by the properties of equation 4,2-26). Actually 

we can say a good deal more. Let us write equation 4.2-24 

in terms of its elements: 

, ,  , .  ^(z)     , ,  , x  («^(z) (M)rk(z) a-  , (M)rjc(2) ss  • 
(A)rr(z) (e)2r(z) 

Since each element must be quaslpolynomlal 

(M)rlc(z) 

(e)rr(z) 

must also be quaslpolynomlal. Thus M(z) is a quasi- 

polynomial matrix. But ^(z) - M" (Z) « constant, i.e.. 
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I5(z)  ic a positive reverse-synsnetric r x r elementary 

quasipolynomial matrix.  In Section ^4.221 we demonstrated 

that suoh a matrix is factorable as 

l^(z) = S(2) S#{z)   , 

8(2) being an r x r elementary quasipolynomial matrix. 

After this is achieved, a factorization for R(z) is 

obtained as R(z) = ?r(z) A#(z) with 

X{z)    = P(z) P(z) S(z) 

= C(z) D+(z) P(z) S(z) . 

where A(z) differs from the desired factorization A(z) 

by a unitary matrix. By straight forward algebra 

^(z) /r#(z)    =    C D+ P S S# fi# ot C# 

+      -1      2     -4- 
=     C D    M ■L  P, D, C# 

=     P M"1 A P# 

=    Q# A P# 

«     R 

The pertinent computational steps involved in 

this algorithm are illustrated in Figure 4,2-4, 

The advantage of this factorization is that the 

degenerate and singular autocorrelation matrices need not 

be treated as special cases (as contrasted to the spectral 
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approach). If an algorithncan be found for forming the 

Smith-McMillan canonical form so that the factorizations 

raust be one-sided then this formulation would become more 

Important than the spectral approach. 

Example 4.2-3. As in Example 4,2-2 we will consider the 

autocorrelation matrix 

R(2) = 
-2z"1 -»- 6 - 2z  -z"1 + 1 

-1 1- z  -z+2- 

Step 1 of thp factorization consists of reducing H(z) to 

the Smith-McMillan canonical form. Since this process 

was illustrated in Example 3.3-3 we will merely give a 

particular result: 

where 

R(z) m    C{z)  D(z) P(z) 

C(z) = 
1 0 

2 - 9/2z + 7/2z2 - z3  1^ 

D(z) = diag [l, z"2 - 9/2Z'1  + 7 - 9/2z + z2] 

and P(z) 
r^z-1 + 

L   4z - 

6 - 2z   -z"1 ■{   1 ^ 

2z 

Notice that the factorization has been made in such a way 

that C(z)  is one-sided. 

Step 2 consists of forming the left-standard factorization 

from the Smith-McMillan canonical form. We write 

1ÜÜ 



4.223 

D(z) = diag [l, (1 - l/2z)(l - z) 2 (1 - z'l){l  - l/^z"1)] 

= D+ e e# D^ 

where   D+ » diag [l, (1 - l/?z)l 

8  - vT   diag [l, (1 - z)] . 

Now, the left standard factorization R = ? A q    is given 

by setting 

and 

C D1 

I1 
[2 - 9/^z + 7/Öz2 - z3 

Q   =    Dt    P 

-1      ^  - 2z        -z-1 r^z-1 + e 
[-2 + 5z - 2z' -1/2 

0   1 1 - l/2zj     , 

::] 
A -   e   8# 

Step 3 involves extröoting the elementary reverse-symnetric 

polynomial l!(z) from the left-standard factorization. 

We have 

R ■ P 4 Q 

- P M*1 A P# 

where M*1 » P-1 Q# (see equations 4.2-23 and 4.2-25). 

Thus we compute N -1 

M -1 
r-2z"1+ 6- 2z 

-?   -1 
-2z g+  5z - 2 

_ 8z"1- 9fl4z- 9z2+8z3   4z"2-l6z"1+25-l6z+4z2. 

Now, we also had 
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R p e e"1 M"1 e e# p. 

p e Ivi e# p# 

where    ^ = e"1 vT1  6 

'^z'K  6- 2z 

„ 2z"1- 7+ 7z-2z2 

-2z"2+ 7z"1- 7+ 2z 

4z*'2-l6z"1+23-l6z+4z2 

This is indeed an elementary reverse-symmetric polynomial 

matrix. The next step is the factorization of this matrix 

into the form Nf = S S# . A very similar elementary auto- 

correlation matrix was factored in the Zixample 4.2-1. The 

result is 

i    1 
-2+2z J . 

S(z) = 
r*-\i 

2z    -:H-2z 

The factorization of R(z)  is given by 

vihere 

R(z) 

A(z) 

=    A(z)    A#(z) 

=    P(2)     P(z)    S(z) 

. si K+1 
L     J-/2 - l/2z       l/2z  - 1/2^ 

This is not a one-sided factorization as we had 

obtained in the spectral decomposition example; however, 

this solution can be forced to be one-sided by post- 

multiplying it be the proper unitary matrix. 
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4.23 Approximate Factorization Methods 

The factorization methods outlined in the last 

two aectiomare exact, but are difficult computationally. 

The spectral apprrach suffers from the well-known 

difficulties of determining the zeros of polynomials. 

The ümith-McMillan canonical form approach is complicated 

and has not yet been refined to give one-sided factorizations. 
- 

In this section we will discuss two approximate 

schemes fordetermining the Taylor expansion of the inverse 

«"1 operator a (z) from the autocorrelation R(z). Both of 

these techniques depend upon the fact that 

tr^z) R(Z)  = A0 ä0#^
2) 

is one-sided (specifically, right-sided). Thus if we have 
I 

an approximation 
| 

thet< vie can improve the approximation be examining the 

non-zero right side of 

>li(z) R(z) . C(z) . 

The first technique Is a recvrslwmethod that 

may be associated with least-squares. It was advanced 

independently by Robinson (1963a) and J, P, Burg (personal 

communication) based oi the work of Levinson (1947). 
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The second technique is an iterative meohod based 

on the vector projections of linear algebra. It was 

developed by Wiener and Masani (1957 and IS' ) and by 

Masani (I960). Wunsch (1965) has also published a 

heuristic interpretation of the projection technique. 

Both computational schemes have been programmed and tested 

for computational efficiency. For all cases tested, the 

projection technique was an order of magnitude slower than 

the least-squares recursive method. 

4,231 Least-squares 

The approxiuate least-squares wavelet, A„  , 
M 

of degree M 

^M ' AQ,n + ^1,1* z + ••• + ^M 
z 

has the properties that 

a) A0,K   = ^ ' and 

b) ^^M = 0 i=l, ..., M  where 

eM^J  = VZ> R(z) ' (4.2-27) 

If we write out the equations for C. M i = 1, ..., M 1, n 

^M,« R-Mfl +   •••  + ^1,1^ Ro =     "^M Rl 

^M,M R-Mf2 +   ••• + Ai)\j[ Ri -    "^o^.l R2 
(4.2-27a) 

^M,M R0   + ••• + Ai)Vi  R^i   = -^o,M RK 

we üee that thifc defines a set of nM simultaneous 
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equations which can always be solved for ^M(z) • We will 

provide a recursive technique for extending the length 

(degree) of i4M(z) without directly resolving the set of 

simultaneous equations given above. 

For the recursion we sill need a second wavelet 

Vz) - VM 
+
 
B
I,M
Z+

 •'•*Bn.Hz* 
that has the properties 

a) *0.M ' ^ ' and 

b) ^ JH » 0 i = -1, ...» -M where 

ÄM(l/z) R(Z) - «M(z) (4.2-28) 

and where ^ u i = "1» ..., -M is given by 

Bl,M R-Mfl +   ••• + VM R0 ■ ^0,M R-M 

fil,M R-M*-2 +   ••• + fiM,M Rl - 'B0tM R-Mfl 
•                                         • 

• • 
• 
• 
• 

fii,M Ro      + ••' + 3n,M RM- 1 - ■*0,M R-l 

(4.2-28a) 

In the spectral factorization of the autocorrelation 

(see section 4.222) we obtained the minimum delay wavelet 

(I(z) by choosing all of the roots outside the unit circle. 

We could also have formed a maximum delay wavelet B(z) 

by choosing all of the roots inside the unit circle such 

that R(2) « 3(z) B0 B^ S#(Z) . Thus S#(z)  is minimum 

delay. The wavelets ^M(z) and ÄM(z) are the least- 

squares approximations to the wavelets H"  (z) and BI (z). 
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It can be shown  (Robinson,  1963b)  that    ^M(z)    and   ^(2) 

are also minimum delay. 

Notice that if weight and add   ^M(z)    and   ^M(z), 

we find 

K AH{z) + zmi 1 BH{l/z)  R(z) = K eM(z) + z^1 t lMiz)       . 

Thus,   if we choose    K    and   It    so that 

a) K=  ^  '    CMfl,M+^?0,M    =    0 

/.     define    Ka^ =  "V^M ^M    ' 

b) 1?=  ln  ,     K C0jM + ?.M.1>M =  0 

/. define 1^^ = -^.M.ljM «Ö,M ' 

we find a recurrence relationship 

W*) " Vz) + 2MflKb,M^M^) • 

These polynomials are multivalued counterparts 

of the polynomials orthogonal of the unit circle treated 

by Geronimus (i960) and Szego (1959). 

Likewise note that 

There are two other relationships that are 

important computationally. First, if R(z) is symmetric 
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(see Section 4.31)  then    ^M(z) = ^M^    ^or ot)Vious reasons. 

Second,  for all cases 

cMfl,M        &-M-l,M  * 

Proof.  (According to J, P. Burg, personal conraunlcation.) 

We first map equations 4.2-27a and 4,2-28a into matrix 

notation: 

pOjM' •••, ^M^' 0] RMfl [e0,M' 0' ••" ^ eMfl,M] 

(4,2-29) 
where 

"mi lMH 

R -1 R0  ...  RM 

R-M-l R-M ' * '  R0 

4 
i 

1 
i 

The solution to the next recursion will then give 

pMH,^!' 3n,vH'i' •"> Bo,mi\%mi m [0' •••' 0' ?o,Mfi] . 

(4.2-30) 
Equations 4.2-30 show that the first and last rows 

of *MJI 
are 

e
0,Mfl    [^0,Mfl'   •••, ^Mfl,»-.!] 

and ^0,Mfl    [^MH,^!1   •••*A0,Mfl]     ' 
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Since    ft    is ayrametrical,    ft"    is also symmetrical,  and 

therefore 

\e0,Mfl    AM-ltftolj       " ^0,Wfl fiWH,Wfl (4'2-31) 

(note that    IQ M    and   ? must be non-singular for 

all    M    since    ft    is non-singular.) 

There exists an n x n matrix Q such that 

if RJM - Q . then e^^ - 0 . If R^i = Q , then 

^Mfl ^M *    However,  since 

ÄMfl,Mfl    "    ?0,MH ^Mfl^Mfl eO,Mfl 

(from equation 4.2-31)  if    A^^^ = 0,     then B^^ = 0 

and   5Ml.1(2) = Ä
M(Z)   •    For an arbitrary    RWfl    we can 

write 

RMfl    =     (RMfl  " «> + «    • 

If we substitute this into equations 4.2-29 we find 

eMfl,M    =    RMfl  ' Q 

*.M.1,M=     &mi  " Q), Since    R-M=  RM 

=    CWH,M     . Q.E.D. 

The left part of the flow diagram in Figure 5.1-6 

shows the steps involved in the recursive computations. 
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4,232 Wlener-Masani Projections 

The projection technique for factoring a matrix 

valued autocorrelation involves the theory of linear 

algebra. It will be convenient for our development to 

consider vectors of matrices rather than polynomials with 

matrix coefficients, i.e., we will work in the time domain 

rather than in the z-transform domain. 

Let us begin by defining the elements A.  of 

a complete subset M of the linear space of vectors of 
■ 

matrices S 

^t * ^ At+1' '••' At+n' *•• 

That is, each element A.  of ft is a time shifted 

reproduction of the minimum delay operator A^ 

(RoDinson, p. 75, 1962). 

We shall also define an inner product 

" Ri-j 

This definition conforms to all the requirements for a 

linear product: 

a) (A^ Aj)' « {Ay  A1) , 

b) (Ai, Ai)  > 0 if ^ / 0 , 

c) (a A., A.) = a(Ai' A^) where a is a scalar, 

d) ^ + Aj, Ak) = (A^ Ak) + (Aj + A^) . 
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Spaces which are linear, complete, and contain an inner 

product are called closed linear manifolds« Neumann (p. 51* 

1950) states the following definition and theorem 

concerning projections*. 

Definition 4.2-2.  If  M is a closed linear manifold 

in S,  if B € S, and if B = ^ + B^, where B, £ M 

and B2 € -M . Then B,  is called the projection of 

B on M and the operation of projecting B on M is 

denoted by P« B = B, . 

Theorem 4.2-2. A necessary and sufficient condition '^hat 

an operator E be a projection P is that 

a) E is single valued, linear with domain 

in S , 

b) (E Ai' Aj) =  (Ai* E A.) for every k^ 

and A. in S , 

c) E E = E , 

M is uniquely defined by E . 

Finally Neumann (1950) states the crucial 

projection theorem. 

Theorem 4.2-3» (Projection).  If E, = PM  and E0 = ?„ , 
-——-——-       1    M,        2    Mp 

then the sequence of operators E,, E2E1, E^E^E,, EpE^E^E-. 

has a limit E ;  the sequence E2, E^^Eg, E^Eg, EjEoE^p 

has the same limmit E ;  and E = P« w . M1M2 
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Wiener and Masanl (p. 106, 1958) state the 

following corollary. 

Corollary 4.2-3» If P is the projection on M X ».U ^, 

then 

P « I — En " Eo + £-• Kp + E0E-i — • • • 

The convergence being in the strong sense. 

Wiener and Masani (1958) then give a lengthy 

development to generalize this equation to include an 

infinite number of projections. They find 

at m 0» 

P=I-£E. +  r  E.E. -   E   £.£.£, + ... 
1-1 i  1,J=1 i J  i,J,lü-l i - k 

(4.2-33) 

where the projection operator is defined by the inner 

product 

The normalization that they use to insure 

convergence is the requirement that (RjJi i " ^k • 

To make this normalization, we factor each of the diagonal 

terms such that 

( R(z) )iti    - ai(z) ri  ai#(z)   1-1, ..., n 

where a1(z) is normalized so that its constant term is 

equal to one. Now let 

a(z)    =    diag    ^(z), a2(z),   ..., an(z)" 

N/F      =    diag    f/r^,     yrj,       ...,v/r^   j  , 
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then the normalized autocorrelation is 

R(z) = v^V1^) R(z) a^fzjv'r "1 

Our problem then, is to f in'l the vector, A   , 

that is orthogonal to each of the A,  t = 1, ..,, «' , 

Thus we substitute A into the projection sequence 4.2-33: 

i=l 1   i,>l 1 ^      l,J,ic=l 1 J ^ 

= I A - E (A,^)^ + E (A^AJHA^A^ 

" ^ (^^(A^HAJ,^)^ + ... 

Therefore the orthogonal operator 

is given in terms of the autocorrelation only: 

h"   =    "ft-i +    *    ft-J ftj-i    "  .   ^1   Ik ftJ-k fti-J +   '•' 

= I 

For computational purposes we define a vector 

Ci , which represents the J— projection of the 1— 

term of A..    Clearly then, the first projection is 
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tu and the (j + 1}— projection is 

ei,J+l = "C1,J Ri " C2,J Rl-1 " ••* " Ci-fl R0 " '•• 

^i,J+l * ^i,J + Ci,J+l      i - 1, 2, ... 

The iteration is continued until C. . becomes smaller 
i» J 

than some given value. 

The only problem that remains is that of scaling 

A,m so that is represents the inverse c (see equation 

4.2-31). We have 

R(z) - ^(z) Ä0 A^iCz) 

and     R{z) »        Z{z) kQ  A^ ^#(z) 

from the spectral factorization of a nc.i-degenerate 

autocorrelation.    But we had 

R(z)    »     v/r-la"1^) R(z) a^Cz)^1 

:. Ziz) AQAJ Ä#(Z) = a(z)v<~ ^1(z)Ä0A^1(z)v^ a#(2) 

and ^(z)    -  v/r     >ia,(z)yr'1a":i(z)     . 

This development is intended to be a quick 

summary of the projection technique. It is by no means 

rigorous. The step from the Neumann theorem to the actual 

projection definitions that converge is certainly not 

immediate. One must either follow the path that Wiener 

and Masani (1958) did, or generalize Neumann's scalar 

theorems to matrix üpacj. 
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4.3 Multi-Dimensional Autocorrelation 

Since the properties of matrix-valued multi- 

dimensional autocorrelations follow directly from those 

of scalar autocorrelations we will limltthe discussion 

here to scalar values. 

The properties of multi-dimensional auto- 

correlations have the same features that we observed 

for one-dimensional correlations. 

Let R{z)  = R(z, Z,, ,.., z. ) be a 

(k+1)-dimensional scalar autocorrelation function, then 

a) R(z.) iö centro-synmetric;  that is, 

R(z,z1,-..,zk) = R(l/z, l/z1,..., l/zk) . 

b) R{z)    is non-negative definite on the 

unit hyper-circle |z z, ... z. I = 1 . 

4.31 Mapping into One-Dimensional Representation 

Perhaps the most important thing that we will 

establish here is the mapping of multi-dimensional 

autocorrelations Into a matrix representation. We will 

begin by making the transformation in terms of the 

mapping operators defined in Section 3«i+3 and then 

proceed to direct transformation from multi-dimensional 

to matrix valued autocorrelations. 
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The roapptng is illustrated In Figure 4,3-1, The 

configuration of the autocorrelation matrix is the same 

that we would obtain if we had treated the process, x(z), 

as three separate wavelets, x^Cz), x^fz), and x^z) 

and defined the autocorrelations as 

x^z) 

x0(z) 

x3(z) 

jx^Cz), x2#(z), x3#(z)j r0(z) r^z) r2(z) 

r-iCz) r0(z) r3(z) 

r_2(2) r^(z) r0(z) 

However, for each spatial lag we must take the sum of the 

correlations of all the wavelets that overlap at that lag. 

The matrices shown in Figure 4,3-1 fulfill this require- 

ment. They are defined formally by 

MAP2(x, x(z)) ' MAP2(x, x(z))' R(z) . 

Frequently, in practical applications we are 

presented with the multi-dimensional autocorrelation r(z) 

and we wish to map it directly into the matrix represen- 

tation K(z) . The procedure here is very similar to that 

taken above. We map the spatial positions of the process 

Into a vector and form the symbolic product 

2 

kN 

[x1 x2 ^N] ri,\  ri,2 ••• rl,N 

r-,l r2,2 2,N 

.rN,l rN,c ••* rN,N 
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^ji 

® t,1l'i2 t#1^»l^ 

® 

{^)= autocorrelation 

i 

x1(z) x3(z) 

z-Transform In preferred direction 

and order the Indices, 

J 
x1#(z) x3tt(z) r^z.' -3(2) 

Xo(z) xp#{z) r_2^z) r0^z^ r2^z^ 

i 
r.ii

z)    r-i(z) 

f^ap wavelets into matrix notation, 

 1  
1 A2 v ^3 0 Q I x, x« 0 x. 

0 x, x-, 0 x0 0 ' 
3  j 

0 0 0 xi x2 X3I 

x1# 0  0 

x2# x;i# 0 

0  x2, 0 

x3# 0  x1# 

0  x3# x^, 

0  0  x-^ 

r0 rl r2 

r.l r0 r3 
r-o r_3 ^o 

Figure 4,3 - 1:  Mapping of a multi-dimensional 
autocorrelation into a matrix representation. 
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Then the subscripts of each element r. . define the 

spatial separation for that term. If the spatial process 

Is stationary, that la. If r, , depends only upon the 

spatial separation between position 1 and position J, 

then R(z)  Is symmetric. This leads to a number of 

simplifications. 

4.32 Methods of Pactorizatlon 

Except for one method of factorization, all of 

the techniques that are used are made in terms of the 

matrix mapping of the autocorrelation. The fact that the 

autocorrelation matrix Is symmetrical may lead to some 

Important simplificat ons in some cases. For exmmple, in 

the elementary autocorrelation matrix factorization, 

syrametricallity forces the algorithm to give a one-sided  , 

wavelet. Also, in the least-squares approximate technique 

the operator >tM(z) - ^M(Z)* 

It is instructive to consider the meaning of 

the minimum delay wavelets that one obtains fron the 

matrix factorization. Each row of the matrix A(z) will 

be a vector representation of a spatial minimum phase 

wavelet. This vector representation la the same as that 

used for mapping the original process. The origin of 

the wavelet is located at the spatial position corresponding 

to the diagonal terra in the matrix. Thus the autocorrelation 

of a spatial process having n lattice points will 

125 

§ 

i 



ä 
I 
I 

produce n minimum phase wavelets;  and each wavelet well 

have its origin at a different lattice point. 

Occasionally in physical problems we know that 

the factorization should have zero-phase, i.e., should be 

symmetrical in  all directions. For this case we may proceed 

as in the one-dimensional scalar case. Thus we need only 

evaluate the expression 

^-i«)  . y^üy . 

That is, we find the cosine-transform of r. , take its 
- 

square root, and retransform back to space-time. 
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5.  LEAST-SQUARE FILTERING IN THE PRESENCE OP N0I3S 

In Chapter 4, a number of techniques were 

discussed for finding a minimum delay wavelet from a plven 

autocorrelation. Of the techniques discussed, the least- 

squares approximation was found to be the best method in 

the sense of computational efficleacy. In this chapter, 

the least-squares decompositional method will be extended 

to Include signal shaping (in addition to straight predic- 

tion) in the presence of random noise with a given 

coherency. This approach will give an optimum linear 

operator for a given length and output lag. 

The normal equations for the one-dimensional 

matrix-valued process only will be developed here. As was 

illustrated in the last two chapters, all other dimension- 

alities are but a special case for this representation, 

5»1 Derivation and Recursive Solution of the Normal 
Equations 

Tha  solution of the problem of determining the 

optimum least-squares linear operator is based upon the 

following assumptions: 

a) The known n x m matrix-valued signal St 

is the additive combination of K uncorrelated stationary 

random processes 3. t . 
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b) The    n x m    matrix-valued noise    N+.     is a 

random process with zero mean,    E /N4 )   =  0    _  ,  and known \  i// n.m 
/ \ \    / > 

covarlance,    E (tt.  Nl \ . 

c) The observed random process, X^. , is the 

additive combination of the signal and the noise 

xt ■ st + Nt . 

d) The observed random process is convolved 

with an undetermined -t x n matrix-valued wavelet F. 

i = 1, ..., M to obtain ühe t x m matrix-valued 

actual output Yt . 

e) The -t x m matrix-valued desired output, 

Dt , is the additive combination of K independent desired 

out-putf» 15. .  where 15. +    is unccrrelated with 1t> . , 
1,V 1,1/ J fZ 

i / J . I.e. 

5.11 Normal Equations 

The linear least-squares operator wavelet is 

determined by requiring that the norm of the difference 

between the actual output and the desired output is 

minimum for all time. That is, we require that RQ be 

minimized, where 

c0   & w *% n 

= E(tret n)' 
120 
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et " Dt - Yt • 

and E stands for expected value. 

To find the minimum, we take the derivative of 

C0 with respect to the coe. fIclents of the wavelet P^ 

j = 1, ..., M and set It equal to zero. Thus 

_w   =0    J ■ 1* •••a  M 
J 

Implies that the error e.  Is normal to the Input X-*^: 

E\el Xi-J+l) ' 0    3*1,   ..., M . 

This orthogonality was the basis for the development of the 

Vlener-Masani projections (see Section 4.232), This Is also 

the origin of the name "normal equations.11 

Now, let us expand the normal equations: 

E \el xl-<+i) ^ 0 ^ - 1' ••" M 

* E ( (Di " Ji ** ^l^i-J+l ) 

Also, we have 3^-3^ ^ and E (n^S   - 0 . Thus the 

normal equations have the form 

E ("i ^i-j+i+ "i-j+i) 

- ^ Fk (si-iofi + "i-icfiXsi-j+i + "i-j+i))- 0 

E(Ii ** (Sl-k+1 Si-^ + "i-^i Nl-^i))- E (Di ^-J+i) 
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i^k E(sj.ks6)^ E(Nj-kNi)= E(vis6) 

for J = 1, ..., M . Prom the assuptions we see that 

E<sj-ksi) ■ J, E (^l.J-k sl.o) 

■K^-k^)- ^ E
 Kj-k si.o) • 

Tiierefore the autocorrelation of St Is the sum of the 

autocorrelations of S, , . If we define an auto- 

correlation 

"i - E (Sl sö) + E (Ni wo) 

and a cross-correlation 

Gi =  E(Dis6)' 
then the normal equations may be written in the simple 

form 

M 
T    Fi RJ-k = GJ-1 ' J ' 1* ...* M •  (5.1-1) 

ye may also obtain a simple form for the 

expected error C0 : 

e0 = tr E^Sl) j 

- tr E(e1 (Dj- ^F^j.^)') 

= tr E ^e. Dw since  e. is normal to 
Xi-k:+l for k s i*«««* M 
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c'0 

{Di Dl " Jl Fk Xl-k+l 
Di) ^0 =* tr E ^ Df D» - ,.Z, F,. X. 

tr E (D, Di - ^ Pk a-.,) _   (5il. 
2) 

The normal equations that were obtained above are 

very closely related to the sinwltaneous equations defined 

in Section 4.231 for A,  M 

M 

j « o, .,.,11: 

where 40^M = I , and e^M - 0 , J - 1, ..., M . For If 

there Is no noise, ^ * 0 for all 1 , and If we make the 

desired output equal to the Input one lag ahead In time 

(that is, we ask the filter to predict the next value of 

the process) then the n x n filter wavelet ¥1    1 - 1,..,M 

Is Identical to the wavelet -^ M 1-1, ..., M and the 

equations above for J « 1, ..., M are the same as 

equation 5.1-1. Also, the equation for the expected error 

PQ M  Is the same as equation 5,1-2. 

The filter -^ M 1 * 1, ..., M Is called the 

least-squares approximate prediction filter with unit 

prediction distance. The difference between the actual 

value and the predicted value Is the output of AA  „ 

1*0, ..., M . Thus It Is called the prediction error 

filter or the foresight error filter. 
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On  the other hand, had we first reversed the 

direction of time and then solved for the prediction error 

filter as above, we would have obtained the filter 

M 

where 50 M « I and 7 M = 0 J = 1, ..,, M . Since this 

filter actually predicts the past from future values of the 

process, it is called the hindsight error filter. 

Example 5.1-1» Let us consider a symbolic two-dimensional 

scalar problem of signal shaping in the presence of noise. 

The problem is specified by the arrays illustrated in 

Figure 5.1-1. That is, we wish to design a filter which 

produces the desired output array when convolved with the 

signal array and which produces a zero  output array when 

convolved with the noise array. 

The actual design of the filter is based on the 

two-dimensional autocorrelations of the signal and of the 

noise, and on the two-dimensional crosscorrelation of the 

desired output with the signal. These arrays are shown 

in Figures 5.1-2 and -3. 

These arrays are then mapped into matrix 

notation (see Cnapter 4.31) and substituted into the 

normal equations. The recursive procedure described in 

the next section was then followed to compute the 20 x 20 
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Autocorrelation of the Signal Array 

0 ü 0      0      0 0 0 0 ooo a 0 0 0      0      0 0 0 

0 0 0      0      0 0 0 0 0      0      0 0 0 u 0      0      0 0 0 

■i 0 QUO 0 0 0 MO    0      0 0 0 0 100 100    0 0 0 

0 u 

too 

lOU 100 100 

0    100 10^ 

0 0 £ 'MOIOOJ^ 

^00 MO MO 

tAOO 0 100 100 IvO 100    0 

ilOO    0    MO 100 

0 

0 MO SOO "»a 0 

100 u 100    0    100 w ̂  MD tap -Äp >J00 \o   100   0/ «rt »o 
100 100 0    100 ^ *> 

^ 40* zz~ '7 ̂  MC jAs4/*o| (to 0 

0 
^ ̂

ojA 4o joe ^> .ioo 300 MO lOotfatMO 1 0 0 

a n taofoofho J00<QJ JOO j^wote looflW JOO MjWW >• 0 

e 0 inoMysoo MO 100 
^ 

^^S^bi «MO JOO Mp ̂ TM^ <£ ><> 
0 iJ 'M^^\MO MO i^ <» ̂ ooaowA *** «^ 7 0yao  o MO 100 

0 Ä ^ 100  ^ c &- Foo ^00 ^O^^w tt»1 Ä 100    0    100 0 100 

0 100 100    0    100 X c iOO MO MO MO m ̂ s Q |1J0 JBO    0 100 0 

0 0 100 100 100 100 0 5» «00)00 MO, 7 0 0 MO 100 MO 0 0 

0 0 0    110 100 0 0 0 0      0    100 0 0 0 0     0     0 0 0 

0 0 0      0      0 0 0 0 0      0      0 0 0 0 0      0      0 0 0 

0 0 0      0      0 0 0 0 0      0      0 0 0 0 0      0      0 0 0 

Autocorrelation of the Noise Array 

0 0 t> 0 0 u 0 0 0 0 0 0 0 0 u 0 0 Q 0 

0 0 J 0 0 0 0 ?'i p ^i      0 0 0 25 25 0 0 0 0 

0 0 0 0 u 0 ib ? jO ^A o 0 & to ib 0 0 0 0 

0 0 0 0 0 0 <b r * fr^ltf \M ^ l?'' 0 0 0 0 

0 0 0 0 u ?b 
^ 

•*> W) 'lodL/ ^ 50 25 0 0 0 0 

0 0 0 0 0 ib y •A » uty/ 50 50 25 0 0 0 0 

0 0 0 0 I-, *y < bO 50 It) 15« 50 50 25 0 0 0 0 

0 0 0 0 i-i r ■jo 50 50 250 1W I50 •JO 50 ib 0 0 0 c 
0 0 0 0 ü *» * 50 J «> r 50 50 50 ib 0 0 0 0 

0 0 0 0 ?% *> * »j |M0 2)0 50 10 50 y ib 0 0 0 0 

0 0 0 0 lb » 50 1« I-JO to 50 P & ib 0 0 0 0 

0 0 0 0 l<i » V» 1«' 50 *i f i'j 0 0 0 0 0 

0 0 0 0 lb iO 
^ n* H ■ib ib 0 0 0 0 0 

0 0 c 0 a* u. n ol y* / 
*b 0 a 0 0 0 0 

0 0 0 0 f> > sjsi 0 o\ ̂ otrf r ib 0 0 0 0 0 0 

0 0 0 0 3b l\ 0 0 0 XJ '25 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 5.1 - 2:    Complete 2-dimensional autocorrelations 
of the signal array and of the noise array. 
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term filter shown In Figure 5.1-^• This recursion was 

carried out by first extending the length of the filter In 

a positive direction and then extending It In a negative 

direction alternately until the final length was reached. 

After eacK extension, the expected error was computed. 

A plot of these values Is also shown In Figure 3*1-4. 

Finally, to gain a visual Idea of the quality 

of the filter» it was convolved (In two dimensions) with 

*.he signal array and with the noise array to produce the 

two output arrays shown In Figure 5.1-5. Only the center 

portions of the convolutions are shown. 

Figure 5.1 - 3: Complete crosscorrelatlon of the signal 
array with the desired output array. 
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Length of Filter 

Figure 5.1  - i*:     Optimum    20-row x 2C-coiuran    filter com- 
puted from the correlations in Figures 5.1-2 and 
5.1-3.    The expected error is for 

20 x 20 term filters. 
20 x 1,  20 x 2, 

.. f 
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Convolution of Filter with Sign«! Array 
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Convolution of Filter with Noise Array 
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• 
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Figure 3*1 - 5:  Actual outputs of filter when it Is con- 
volved with the signal array and with the noise array. 
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5.12 Recursive Computation Algorithm 

The recursive sche.ne that was presented in 

nectlon ^.231 can be expanded to apply to the extension 

of the length of the wavelet P^^ . In addition, Simpson 

(Simpson, et al., 1963) has proposed a similar recursive 

scheme to shift the laf between the desired output D^ 

and the input X, . Thus this recursion allows and 

efficient search for the optimum lag. 

5r121 Extension of filter length 

The recursive algoritnm will be stated in terms 

of the z-transform. The normal equations for PM(
Z) may 

be written as 

PM(z) R(2) « *M(z) 

where c< ^ = Gj-i 3 ~  ^* ••,, M " 

If we weight i?M(l/z) and add it to PM(z) 

we find 

[PM(Z) + z^1 Kp^ v1^)] m - KM *2Mfl *?.***& 

Since ^ M = 0 i = -1, ..., -M , if we choose Kp^ 

such that 

eMfl,M + KP,M 0,M " "M 0M ' 

then we obtain the recursive relationship 
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INPUTS 

Figure 3.1 - 6:  Recursion to extend the length of an 
optimum least-squares filter. The numbers on the 
boxes illustrate a possible computational sequence. 
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This recursion is Illustrated in detail in Figure 5.1-6. 

Similarly, if we had wished to extend FM(
Z)  in 

the other direction, we would weight A„iz)    and add it to 

PM(z) 

PM(Z) + VM VZ)  =  eM(z) + ^M CM(z) ' 
* 

where we choose K« w such that P,M 

e0,M +  VM e0,M =  G-'l 

and we have extended the length of PM(
Z
)  in the negative 

direction according to 

5.122 Shift of output origin 

This recursion is slightly more complicated than 

the sliRple length extension. Our objective is to find a 

filter F!
1
'^) such that 

rfrhz)   R(?) = tjfhz) 

where    tyfo    =    G, 2       J =  1.   ...,   M      given    PM(z)    as 

described in the last section. The first step is to shift 

FM(z) and B  (1/z) right one unit and subtract 
M        M-l 

Z
[
P
M(
Z
) -****.* Bn-iW]*M   -   Vz) 
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where ^ M = G^.o i = 2* ...» M . Thus the error that 

Is Introduced by shifting PM(z) is compensated for, 

1=2, ..., M, by subtracting ^M.^C
2
) multiplied on the 

left by Pu M • Now we add a weighted version of ^M.IC
2
) 

to adjust the value of Y*  M to be 0^ : 

z [PM(Z) - zM PM.M Vl^/^ + SSM Vl**)] R<Z)  " 

V2» + ^{M eM-l(Z> 
Thus if we {.it 

^l^* ^»M C0,M-1 ' a -1 

we find that 

#)(,) Z [PM(Z) - zM "«.M Vl«1/2) + VM^M-I^L • 

Similarly, we could have chosen to left shift the 

cross-correlation to solve for Pi '(z) 

t^Uz)    R(z)  -  cjfl) (2) 

;.(-i) where C^i' ' 0j J - 1* ..., M. Thla filter is given by 

F^lUz)    -    l/z [FM(Z)  - P1 ^ z 4J|.1(a) + 

where   yj - K,,,^ Vl,ll-1   "    QM '    «* 

^lt M-l (i/z); 

üi (F2,I! ' Pl,|| ^l,!!-!^ Ki*  '   '   ' 

* (vn,n " PX,II ^11-1,11-1^ R-r 
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•fe 3.2 ComputatlGi.al Properties 

The normal equations derived in the first part 

of this section will certainly provide the optimum linear 

least-squares filter for a given specification of a problem. 

The success of the application of such filters depends to 

a large extent upon the design of the specifications so 

that a small expected error is obtained. The rest of this 

chapter will be devoted to examining some qualitative 

design criteria for scalar least-squares problems. Most 

of the conclusions may be easily extended to multi-variable 

problems. 

In most least-squares filter problems theifeare 

at least three parameters that are left to the discretion 

of the designer: 
■ 

1) The inclusion of an arbitrary amount of 

white noise to represent uncertainty in the 

design criteria. 

2) The specification of the shape of the 

desired output process, 

3) The  specification of the lag between the 

desired output and the input process. 

A set of coirputatlonal experiments were performed 

to test the effects of the variation of these and other 

parameters. In each experiment, after an autocorrelation 
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series and a crosscorrelatlon series were specified, the 

expected errors for all filters with lengths less than 

some naximum (50 points In these exaiaples), and with all 

relevent lags, were computed. The array of expected 

errors were normalized between 1. and 0, and were 
2        2 

contoured In terms of decibels (10 log10 C  where C Is 

the expected error). Thus each experiment provides a 

complete test of the effect of the output lag. 

Nearly all of the experiments were performed 

using the wavelets shown in Figure 5.2-1. The mixed 

delay and minimum delay wavelets showu have the same 

amplitude spectrum. The mixed delay wavelet was chosen 

with a large dynamic range so that the expected error 

plots would have definite character. 
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Wovtltt   x t Zeros in the z-Plane ofx(z) 
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Ki ^ure t>.2 - 1:     'lime (ionain,  z-tranaform,  ar.U amplitude 
spectrum of a mixed delay wavelet and itc oqulvalent 
minimum delay form. 
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5.21 White Noise 

The first experiment involved signal shaping 

in the presence of white noise. Since the autocorrelation 

of white noise is a spike at zero lag and zeros elsewhere, 

white noise is included by adding a constant to the center 

term of the autocorrelation. 

The filters for which the expected errors were 

computed were asked to compress the mixed delay wavelet 

shown in Figure 5.2-1 into a spike while rejecting varying 

amounts of white noise. The resulting expected error 

arrays are shown in Figure 5»2-2, The primary point to 

notice here is that as the relative power of the white 

noise is increased, the filter shape becomes stable for 

shorter lengths but the expected error approaches a 

constant greater than zero. This constant is related to 

the relative powers of the white noise and the wavelet. 

The position of the minimum relative to the output lag is 

also somewhat dependent upon the amount of noise added. 

^ 
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5.22 Delay Properties of the Input Wavelet 

Although it is usually not readily alterable, the 

delay of the input wavelet will certainly affect the design 

of the filter problem. This experiment illustrates the 

effect. For each case the least-squares filter was asked 

to compress the energy of the input wavelet into a spike. 

The contours of the expected error arrays are shown in 

Figure 5.2-3. The first plot is for the minimum delay 

wavelet shown in Figure 5.2-1. The second plot is for the 

mixed delay wavelet, and the third plot is for a maximum 

delay wavelet obtained by taking the time reverse of the 

minimum delay wavelet. 

Clearly the location of the minimum is strongly 

affected by the delay of the Input wavelet. The relation- 

ship between the position of the expected error minimum 

and the delay is not simple. A longer set of experiments 

showed that this position of the minimum is most highly 

depen lent upon the zeros that are far from the unit circle 

and least dependent upon zeros close to the v it circle. 

That is, the change in position of the minimum when a 

distant root is reflected about the unit circle is much 

greater than when a root with nearly unit magnitude is 

reflected. It is possible to say« though, that for all 

the possible minimum positions for wavelets with a given 

amplitude spectrum, .he minimum delay —»velet will have 

the position closest to the left side or the plot, and 
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the naxlmum delay wavelet will have the position closest to 

the right side. As the expected error at these optimum 

lags approach zero the optimum position will approach lag 

one for a minimum delay wavelet. 

5.23 Desired Output Spectrum 

The last set of experiments tests the effect 

on the expected error of the shape of the desired output 

wavelet relative to that of the input wavelet. The 

definition of such an experiment is necessarily very 

vague since it is difficult to define a measure of relative 

shape. For the examples shown in Figure 5.2-4 the 

amplitude spectrum cf the desired output was varied relative 

to that of the input wavelet. 

The input wavelet for all of the cases was the 

mixed delay wavelet shown in Figure 5.2-1. The desired 

output for the first case had the ?ame amplitude spectrum 

as the input wavelet but was maximum delay. The desired 

output for the second case was a spike., that is, it had 

a unit amplitude spectrum. For the last case the desired 

output was a 20-term minimum delay wavelet that had an 

amplitude spectrum that was approximately reciprocal to 

the amplitude spectrum of the input case. 

This set of exanples verifies the conclusion 

that one would make intuitively, i.e. that the closer 
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the spectrum of the desired output wavelet is to that of 

the input wavelet, the better the filter is able to perform. 

5.24 Output Lag and Filter Length 

All of the examples illustrated in Figures 5.2-2, 

-3» and -4 illustrate properties of expected error verses 

output lag and filter length. We can draw the following 

conclusion:  The expected error is a non-increasing function 

of filter length for any particular lag of the desired output 

relative to the input. The value of the expected error 

levels out to some value which depends on the output lag. 

Indeed the expected error is strongly dependent upon the 

output lag and may vary quite rapidly for small changes In 

the output lag. Generally, as the length of the filter 

becomes long with respect to the lengths of the input and 

desired output wavelets, the expected error curve, plotted 

with respect to the output lag, has one relative minlmuai. 

The discussion above may be sharpened somewhat 

by examining the results of Claerbout and Robinson (1964). 

They showed that the sum of the expected errors for al"1 

possible lags of the desired output relative to the input 

is independent of the length of the filter If the problem 

involves no noise suppression. Thus as the filter becomes 

longer the total expected error will be spread over a 

greater region. Consequently, there must be some lag for 
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vhic*; t)r t  expected error approaches zero at least as l/fo 

where In .s the length of the filter. 

The examples illustrated in Figures 5.2-2, -3, 

and ~M  show thiat the performance of an optimum filter Is 

strongly dependent upon the design of the input parameters. 

Thus the successful application of least-squares techniques 

should include all possible means of optimizing the design 

of tne problem before finding the optimum filter for a 

particular case. 
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6. GEOFHYSICML APPLICATIONS 

The mathematics developed In the preceedlng three 

chapters is general in its applicability to gecpJiysical, as 

well as non-geophysical, problems. Since the range of 

possible applications is great, this chapter will be restric- 

ted to two examples for which the setup of the problems do 

no*  require long derivations. 

The first example is an illustration of the use- 

fulness of the zero-phase raulti-dimensional factorization. 

The second example is of a two-dimensional least-squares 

problem that is derived with a slightly different initial 

criteria than that used in Chapter 5. The end result, 

however, is a set of normal equations for which the recur- 

sive procedures given in Chapters 4 and 3 are applicable. 

6.1 World-Wide Average Gravity Anomalies 

The Army Map Service (1959) has reported on a 

statistical analysis of available world-wide gravity data. 

Part of the results reported were numerical estimates of 

the average gravity covariance for continental regions and 

for oceanic regions. These estimates are shown in Figure 

6,1-1. The curves are an eye-ball smoothing of the data. 

If we follow the assuption of the Army Nap Service 

that the shape of gravity anomalies are stationary with 

respect to azimuth, then the curves illustrated would 
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represent one-half of the cross-section of the two- 

dimensional autocorrelatian of an average gravity anomaly. 

Clearly we should be able to apply the zero-phase (see 

Section 4.32) factorization technique to determine the 

average synmetrlcal gravity anomaly. This was carried out 

as follows: 

1. A two-dimensional autocorrelation array was 

made by sampllm': the curves in Figure 6.1-1 at 1*  intervals. 

2. The two-dimensional cosine transform was 

computed. 

3. Since the sample arrays are covarience 

estimates» they may not represent possible autocorrelation 

functions« that is, son» values of the cosine transform 

may be negative.  In this example, a few small values for 

the oceanic samples were negative. These values were 

arbitrarily set positive.  (As a check, these values were 

also set to zero. The resultant solution was modified 

only slightly.) 

4. The square root of each value In the trans- 

form was taken. 

5. These values were than inverse transformed 

to obtain an average gravity anomaly. 

Cross-sections of the resultant average gravity 

arrays are plotted in Figure 6.1-2. A preliminary Inter- 

pretation was made by determining the depth of a point 

l^t) 
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source that would give the same gravity values at 0* ana 

at 1% Such sources would have a depth of ^60 km for the 

continental regions and «-80 km for the oceanic regions. 

The anomalous masses would he ~10£ larger in the oceanic 

regions than in the continental regions. 

The point source interpretation does not account 

for the large values of the oceanic anomaly out to 7°. 

The total mass of an anomalous body is proportional to the 

volumn under the two-dimensional gravity anomaly. Using 

this property as a criterion for comparing masses, we see 

that the oceanic anomalous masses are approximately 3*3 

times as large as the continental masses. 
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6.2 uHk PilterlnK 

The Idea of band-pass or band-reject filtering 

is perhaps one of the oldest concepts in one-dimensional, 

scalar filter design. This concept can be readily ex- 

tended t? two-dimensional filtering by defining band- 

pass or band-reject areas in the two-dimensional Fourier- 

transform domain (sometimes called the w-k plane). One 

very simple form of such filters has wide application in 

exploration seismology for descrimination between plane 

waves on the basis of the direction of arrival of the wave 

(see Fail and Grau, 1963; or Embree, et al., 1963). 

In this section we will consider the  general 

problem of optimally designing a discrete two-dimensional 

filter from band-pass and band-reject area specification 

in the ui-k plane. 

Let us first consider the two-dimensional band- 

pass filter. The criterion for designing this filter is 

that we wish to minimize the square of the difference 

between the desired band-pass configuration and the actual 

Fourier-transform of the filter. Thus, if we let f. 

J = 1, ..., n represent a discrete filter with lattice 

points at (x*, t.) J = 1, ...* n, and d((u>t) represent 

the desired band-pass configuration, then the error to be 

minimized is 
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?, = J  /    ^ f 1  ^^V1^^ - d{^k)   dm dk  (6.2-1) 

where a*  = aa . Taking the derivative of r,    with respect 

to f., we find a minimum give.i by 

)f>. 
d? = o 

J 
J=l, ..., n 

or 

TT  rTT ■ / r ^ (-tt.toct) . 

E rj e ■  J  J' - d((i»,k) d^ dk 

(6.2-2) 

which leads to the particularly simple result: 

,TT  , TT 

J -V" /" «i(mviccj) d^k) d^dk 
4TT ^-TT J--n 

Thus the filter coefficients are determined by the 

Fourier-transform of the desired band-pass configuration. 

The expected error f,. Is given by (beginning from equation 

6.2-1) 

c = r" r dKk) r E r. ii<<,,vkxJ) - ^7^ 
'-TT y-TT L J    J 

which gives (according to equation 6.2-2) 

d* dk 

f  f   d2^,^) dt« dk 
•'-TT •'-rr 

r f 
J J 
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This is reminiscent of the expression for the expected 

error that was found in chapter 5.11. 

The simplicity of this method of filter compu- 

tation makes it feasible to examine the properties of such 

filters in several ways. Figures 6,2-1 and -2 Illustrate 

several of the possible computations that are useful in 

studying the properties for any given m-k configuration. 

Each of the figures contains 4 contour plots that represent 

1. The coefficients for a square 13 x 13 term 

filter. 

2. The actual Fourier transform of the 13 x 13 

term filter contoured in decibels. This plot is super- 

imposed upon a diagram of the desired pass region. 

3. The array defined by 

ei ' f^ / f  /  ^C«»^) d» <** 

contoured at values of e, - 0,00001, 0.0001, 0.001, 0.01, 

and 0,1 , The value at any point in thi^ array is Just 

the value by which the normalized expected error is decreased 

by the addition of that polut  to the filter. Thus *heae 

contours represent the optimum filter shapes for minimizing 

both the expected error and the number of filter ccefficients. 

It is interesting to notice that the maxima in the e.  array 

are parallel to the boundaries of the pass region in the 

u>-k definition of the filter. 
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T 1 1 r—r 
0  10 20 30 40 50 

. Length of Troctt 
Pl-vre 6.2 - 1:  The filter coefficients for an optlwuia 

least-squares band-pass filter; the contours (in deci- 
bels) of the actual .--k plane reponse of the filter: 
the array of expected errors for all rectangular fil- 
ters smaller than $1  x bl terms; and the optimum 
filter shapes for this pass-band configuration. 
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T—i 1 r 
0  10 20 30 40 50 

Length of Tracts 
Figure 6.2 - 2:  The filter coefficients for an optimum 

least-square» band-pass filter; the contours (in deci« 
bels) of the actual oj-k plane response of the filter; 
the a^ray of expected errors for all rectangular fil- 
ters smaller than 51 x 51 terms; and the optimum 
filter shapes for this pass-band configuration. 
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4, The array o normalized expected errors for 

all possible rec-angular dimensions of the filters smaller 

than 51 x 51 terms. The center dotted line represents 

the optimum length for any given number of traces while the 

area between the outer dotted lines include all dimensions 

which are quite close to the optimum rectangular shape. 

In nearly all physical problems the contribu- 

tions to the error in pome parts of the w-k plane are 

more important than the contribution in other parts of the 

plane. Let us define a weighting function W(«),k) that 

expresses this importance. The larger \l{m,k)    is in any 

given area, the more important the error is in that area. 

Let us introduce W(uü,k) into the least-squares band-pass 

problem: 

« « / JV  W{a.,k) I T: fj e^V**^ - d(i),k)| am  dk 

Setting the derivatives of ß to zero as before, we find 

^7 0 

•TT -n 
/ f      W(«,k) ei(tt,Vkxt)  ' 

TE f J e"1^"^ - d((»,k)] da. dk 

we find 

i i 

i 
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TT      * TT 

I        W(a),k)  exp 3[üü(tt-t.)  - kCx^-xj] duüdk 

•TT       *TT 

J       f       W(«u,k) d(u),k)  exp iruit.-kx.]  diudk 
-TT    ^—TT 

Purthennore, the expected error becomes 

t    =  J   j    w(u),k) d(u),k)| E fj e"i^tj"kxj) - d(t»,k)| datdk . 

Thus we find a set of simultaneous equations which 

must be solved for the f^ Clearly, since the coefficients 

multiplying f. depend upon (t.-t.) and (x.-x.) they 

have the same synmetry properties that were stated for 

raulti-dimünsional autocorrelations. If follows then that 

once the integrals have been evaluated, the recursive 

computation procedure given in Chapter 5,121 can be used 

to solve the simultaneous equations. 

Figure 6,2-3 shows the w-k transform of three 

filters competed by the least-squares method. In each case 

the weighting function, W(tiu,k), was zero everywhere except 

in the PASS and REJECT regions. It was held constant ever 

each of these regions. In the three examples shown, the 

ratio of the weighting function in the REJECT region to 

that in the PASS region (which is labelled N/5 in the 

figure) was set at 1,, 10,, and 100., respectively. The 

remarkable improvement in the filter performance &B  the 

164 



6.2 

N/S =  1. 

N/S «  10, 

N/S =  100. 

t 
tu 

0-- 

FiGure 6.2 - 3:     Contours   (in decibels) o? the tü-k plane 
transforms of 3 least-sqi'ares optimum band-pass ariQ 
band-reject filters calculated with various values for 
the noise-to-signal weighting Parameter. 
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/ 

Figure 6,2 - 4:  Coefficients for third filter (N/S = 100.) 
illustrated in Fig, 6,2-3, 

ratio increases reflects the fact that we are much more 

interested in the reject region having very nearly zero 

amplitude at all points while we are less concerned with 

small fluctuations in the pass-region. The filtercoef- 

ficients for the last filter are given in Figure 6.2-4. 

As a final Illustration of the effectiveness of 

these filters when applied to data, a set of traces was 

constructed which contained noise whose spectrum is pri- 

marily In the REJECT region and signals that are in the 

PASS region. These traces were convolved with the trans- 

form filter illustrated in Figure 6,C-1 and with the leaste- 

squares filter illustrated at the bottom of Figure 6.2-3. 

The results are shown In Figure 6.2-5. The signals had 

stepouts of 1,3, 1,0, and 0,5 digitization units per trace. 

Thus the signals that were on the edges of the pass band 

of the transform filters were attenuated by ^-2. On the 

other hand, because of the difficulty of constructing 
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Sample of noise + signal traces. 

Noise + sicnal traces convolved with band-pass filter 
(see Pig. n,2-2). 

Noise + signal traces convolved with band-pass, band- 
reject filter (see Pig. 6.2-4). 

i 
= 

Picure 6,2 - 5: Exarnple of application of band-pass and 
band-pass, band-reject filters to simulated noise and 
signal traces. 

noise that is completely restricted to the REJECT region, 

some very low frequency waves were actually amplified by 

the least squares filter. 
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APPENDIX 

PROGRAM LISTINGS 

Nearly all of the subroutines used for the com- 

putations made for this thesis were performed by programs 

from the set documented by Simpson (1965). A complete 

description of the writing format, the abbreviations, and 

other programs referred to will be found in the work cited 

above. 

All of the subroutines listed here were written 

for the purpose c?  Investigating polynomial matrices and 

their spectral deconjposltlon. Several of the programs 

(BRAINY, MATML3, and SIMEQC) are, however, much more 

general In their application. 
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iUMOUfI«tr   OIIM'C   Ittt^l.**/«*.NCA.ta,Al.»11.811 

 «BSTK«Cr  

TITtl   -   0MH4C 
csmuft OMCOIU «•»im« riMts co^ti« icuME Mfm«. 

OHMC     CCN#UTCS   ruf   KATKII   PKOOUCT 

ni»C   I   /    I   •   A      •     • 

LANCUUU 
EOUtPMENT 
STQHACC 

CUTHO« 

MMEMt     /     IS  •  CO^PKl  VECTW  OF   LEttCTN    ^IR«. 
»      IS   *   Cai«PLfü     Nl«»  ST MC«     MTftlR,   «MO 
BIS«   CO*",!.ti     >«/««   B*  HC«     MATRIX. 

- fniTBAN   II   SUBRUUTI'tE 
- 704,   F090.    »Öl*   IM«|N  r««M|   ONLTi 
- 91   <«tn|STf«S 

- «.«.   MlGCiNS r/6« 

 US«OI —■ 

TMNSFM   VECTO«   COMT«IMS   «OUTIMES   -  MOI   «Nf 
«MO  FORT««1*   SYSTEM  «UUTIMES   -   MOT   «MV 

FORTR«N  US«Ct 
C«lt  DilK«C   ltR.2l.MZR«.MC«.«R.«ltB««Bn 

INPUTS 

iRin 

Ulli 

N/R« 

MC« 

«Rill 

«Mil 

OUTPUTS 

BRIM 

min 

EIRMPUS 

l<l*....N2R«     CONTAINS   tW   REAL   PART  OF   THE   VECW.     t. 

l't....,N/R«     CONTAiMS   TME   IMACINARV  PART  Of   THE   VECTOR 
I. 

NOMHEM  (f   ElEMfcMTS   i*     t     «NO  NUM<«E«  OP   ROMS  IM     «  «MO ft. 
"UST   RE  GRTMM»   t 

NUMBER   OP   COIUMNS   IN     «     «NO     B. 
MUST  NE   GRTMM«   I 

l«l....,M/«A*MvA     CtHlTAIMS   THE   REAL   PANT   OP    THE   B«TRI«     * 
STORED ClOSElv  SPACED fl* COtUNMS. 

I«l N/R«>MC«     COMT«|NS   THE   IMAGINARY  PART  OP   THC 
MATMII     «     STORED  ClOSElY   SP«CEr  BY  COIUKNS. 

I>lt...<4/R«*NC«     CONTAINS   THE   RE*l   PART  OP   THE   HATRII     B 
STORED  CLOStLT   SPACED BY  COLUMNS. 

l>lt....NIRA«1CA     CINTtlNS   THE   INtCIMMY   PMT  OP   THE 
MAT« IX     B     SIORtO  CIM.'ELY   SPACE I    BY CUCUMNS. 

i. INPUTS   • ;«m>?.   fiiit'i.   N/R«.i   NC«>; 
«•I l...?)>l..t.     «11l...2l«/.,0. 

OUTPUTS   -   Ml l...?l'0.,ft.      Hil I....2MS.. ). 
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• OUMftC 

MC«      ?l 

PHiCR»« i,istimis 
oi «"»C 

tt»»&f    ?i 

5 
I 

C   ?.    IN^UlS      -   /Hi|...j|«j.,i.      /IU...i>'0..0.      Mi«»"^      MC»-t 
C Wl l...?l>l..«.      AM 1...^)«?.. 1. 

c 
I 
C   »«OGHAM   FOlLOtfS   BUH» 
c 
c 
c ou*"t niMfNSiuN 
c 

c 
C   ««IN!.   IN   St»!««   VMUBlfS. 
C 

•«•NIK* 
■■MCA 

C 
C   fOH*   US(fUL   CUMMNATIONS 
c 

NM«N«lt 
!•■! 

C 
C 00 MULTIPLICATION 
c 

DO ;o u«i.N 
00   10   IAn>UtNM,N 
SMI lASI'/MI l/l*ARMAni-ni UI*A|(|ABI 
MIIIAHI«/«! IZOAII lAHM/ll IfKARIIABI 

10        CONTINUt 
20        CONTINUE 

C 
C   THAT'S   ALL 
C 

RITUftN 
fHO 
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••••••••••■••••••••• »«OMAN llST!*6S •*••••••••••«••••••••••« 
L«V(C • •    ItVCC • 

>•• 

• ItVCC   iSUMOUTtüfl 

ClftVfC 
iuMOuri'vc L«vfc ui.ia.il('»iic*.ii>*»«OJ«.iiFu«uii.uii 

 kBSfKMT  

IITIE   -  lAVEC 
lÄfflf   VlCTMS   fOt   A   POLVttOHiH   M«Tft|l 

LtVEC     FilOS  IM*     II     l»T(Nf  VICTmS     Ulli     M     Will     Of 
«   PCM.VIIOMIAL   WfiTtl«     •(/) 

T 
«ojucm i * i in» i   t   •   um • viii . 

CtVCN   TME   COHPLfX   LATENT   ICflOS     Uli.   I«1.....U     «NO   THf 
MATKII   COEFFICIEtITS  Of   THE   «OJUC« IC  0»     »Ul.     THE 
VFCTOrtS   ME   SCALED   SO   THAT   THf   f l«SI  HON-ZEHQ  ClEMCNT   IS 
EQUAL   10   II..0.1. 

LANGUAGE - Ff}«T«AN   II   SUBHOUTIME 
EOUIMENT - 70«.   T09C.   T09*   IHAIN  FAAPE   ONlTt 
STOAACE - 17*  «ECISTEMS 
SMfO 
AUTHOR - A.A. MlGCINS   10/AA 

 USAGE  

TRANSEFI  WECK»   CONTAINS  «QUTINSS  -  CHOOSE. il»L TE «.NA MA.NAIAB 
ANO  »OATAAN  SVSTfN  ROUT INES  -   NOT   ANV 

EOATAA« USAGE 
CALL   LAVEC   ILI./A.II.NACA.L^A.AOJA.IIFU.UN.UII 

INPUTS 

LI LENGTH  Qf   VECTOR  OF   LATENT   IEROS 

lülll l«t.....Ll     IS  REAL   FART OF   TNC   VICTOR  OF   LATENT  IEROS« 
I.     OF     All I. 

Ilitl l*l.....LI      IS   |N«oll«ARV  FART  OF   tME   VECTOR  OF   LATENT 
imos,   i.   OF   AIII. 

SRCA NUMBER   OF   RONS   OR   COLUMNS   IN   THE   FAIRKES  OF      AOJ». 
HUSV   8f   CRTHN>   I 

LFA LENGTH OF  FQLVNOMIALS   IN  »OJA,      I.E.   THE  NUMBE«  OF 
COEFFICIENT   MATRICES   IN   «OJA. 

MUST   HE   CRTHN>   I 

AOJAIII        t«l,..^.NRCA>NRCA*lFA     CONTAINS  Tl-C  NRTRII COEFFICIENTS 
OF   THE   AOiU«lATE   OF     AIII. 

HFU -0. IF   THE     Ullt     VECTORS  ARC   CESIREO. 
NOT>0.   IF   THf     vill     VECTORS  ARC   CESIREO. 

OUTFUTS 

URIII |.|.....N»C»»ll     CONTAINS   THE   REAI   FARTS  OF   THE   LATENT 
VECTORS     UIJI.   J-l LI.      IF      MFU'O.     IIR     VlJI      If 
I If»     NUT*   0. 

UIMI l«I.....NRC«*LI     CONTAINS   THE    IMArfNARV   FARTS OF   THE 
LATENT   VCCTOHS     UIJI.   J*| II     IF      IIFlfO.      UR     VlJI 

t IF     I IFU     NOT«   0. 
C 
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I 

I 
»•••••••••■••••••••• pwuoatM I ISTtNGS •••.••••••4 

l»>«6£      H (»»Of-      /I 

c 
t €»»»»nFs 
c 

c N«Cft«l    LP««2    «nj((i...7i>l.it. 
C OUTPUTS   -   U«ll.../1'l..l. 
c uiii...}i>o..o. 
c 
c 2. INPUTS   - ii'i   /m i...?i«2.t'>   iiii...J>»i.t-'i.    nfu«o. 
c N«C«-?   iP«*?    «OJ«I I...«I*I t.i o.i    i  .*t66r.    .min 
C 10..   I.It   <   .M>C00     -.1)1)1) 
c Hutf  IM«!    «oj«    is srn*EO »i 
C »fljftl I...8I.1..0..0.. I.i-.«6666r. .«i-.11111.-.))))) 
C OUTPUTS   -   Ulil...»l«l.,-0.t.I..-0.6 
C Ul. 1...*>«Ü..    I.S.O..'1.8 
C 
C ).   INPUTS     -   ll't     HU...2I*-I..2.     mi...7i*0..0.     lifv-O. 
c ftiflc«»;   LP«>?    *OJ*I I...II»II..O. i    I-.I.O.I 
C 10.,I.».   I   .Id.i 
C OUTPUTS   -   U«ll...4l>l..-.)))).0..l. 
c uiiI...«I•n.lo.to.,o. 
c 
c 
C 4.    INPUTS     -   S»«   «S   CltMPK    }.   EXCEPT     /IFU*I. 
C OUTPUTS   -   U<ll...<kl*   l.tO.d..). 
C Ulli...«I*   O..O..fl..O. 
C 
C 
C PHOC«*"   FOliOMS   «ElOX 
c 

01«ENS ION  {■121.2II2l.tOJAI?I.UPI2I.Ul 121 
•••'MCA 
I-IP» 
NN'N«N 
LN*l*N 
CALL   CHOOSE    IIIFU.    UllN.l.lN.    ILNXL.IN.LI 
CALL   MATH«   t«0J«,NN.l    .«OJ*l 

oo ?o n«i.i/ 
2IIC«/«(III 
I|M«/MI|I 
J2-I 
00 40     l2«t.N 
J)«J2 
R)>Kl 
00   20      |}*I«N 
CALL    IPLVEV   IL   .«DJAIJ)I.ZRE.IIM.U«IK)liUIIK)II 
K)*ll)*l 

20        J)<J)*ILILN 
CALL   "»««ll      IN.URIR1I.UMI.IUMII 
IP   (»BSMU»«l-|.E-OM    »0,)0,*S 

10        CALL   NAKA»      (N.LI IK II.UMX.IUNXI 
IF    lASSPIUKXI-I.E-O*)   «0.40.*« 

40        .V«J2MLNXL 
♦S        CONTINUE 

«♦»Kl 
00   «0      14-I.N 
UIIL«U*IK4I 
UlL>UllK4l 
ASSU>uaL«UAL*UlL»UlL 
IP   IABSU-I.E-061   9C.40.9« 

%0        R».«»»l 
4f        CONTINUE 

K9.N|*^-t 
00   t>0      i*>R4,K'> 
uRi^um i)i 
U|T«UI(ISI 
Ulli lil>IUM>UIIL»UIT*UIL l/AHSU 

60 Uli IM*IUIT>U«L-URT*UIL 1/AaSU 
70        m.»|»N 

CALL   MATKA   IAOJA.L.NN.AOJAI 
RETURN 
END 

17^4 
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»•»»•I» 
(mUC»*"  USfINGS 

P4TH11 

•               »<»T»»ll ISUHHOUTlnf) 
t               *»^ 
•••«T"H 

CJUNt «00 
m Mfm.} 
l^ftT luriHi (»»,•>.i.*«.*«.ii:N8m,tc.c;»*ooi 

-- —*8$III*CT  

riftf - «uTtiij 
o(Nf«»i »»tm« «luinn ic*iii>N 

MATlH«     «ULTiniES   «N     N  BT   M     «««1*11.      A,     ftV  «It     N  «V   t 
*»«t«|«.     «,     10 OBTAIN  AN    N BV  L     KuuuC r  nAtau,     c. 

M L l 
1 1         1    1 1   t 

N 1 A t    •   1    1 ■ H    IC) 
< 1       IBI  m 

I   1 
1   I 

1    1 

lAHGUAOE 
EQuifMENr 
sroMACf 
smo 

AUTHOR 

A      IS   ASSUMED   TO   St   STQftEO   B»   COll-NS.      9     HAT   BE   STORfO 
f ITME«  BV  COLUMilS  CM  My  ROMS.     C     Mill   BE   STORED HT 
cmuMNS. 

- f»l»   SUBROUTINE      «EOHTRAN   II   £OH#«l|BLEt 
• 704.    7090,    704*   IMAIN   FRA^E   ONlTI 
- 74  REGISTERS 
- ABUUT    ii m»M.io5»N»)oi»t  *  no MACHINE CVCIES UN THE 

7040. 
• N.A.   MlGCIMS 4/?7/64 

 USAGE  

TRANSOM   VECTOR   CONTAINS   ROUTINES   -   (NOT   ANV1 
AND  fQRTHAN   SYSTEM  ROUTINES   -   (NUT   ANTI 

FORTRAN  USAGE 

CAll   MATMLI   IN.H.^.AA.BB./ENRTR.CC.C/IFAOOI 

INRUTS 

N NUMB(R   OF   ROMS   IN     A 
"IIS I   HE   CRTHN«   I 

« MBER   Cf   COLUMNS   IN 
MUST   BE   GRTHN.   I 

NUMBER   CF   COIUMNS   IN 
MUST   HE   GRTHN«   I 

ANO     C. 

A,      ROMS   IN     B. 

fl      ANO     C. 

AAMi 

RBin 

/FNBTR 

G/FAOO 

OUTPUTS 

CCIII 

l>lt....N*M     CONTAINS   THE   MATRII     All.jl    l«l...N. 
J'l...M     STORED   CIUSEIT   SPACED   HV   COIUMNS. 

■•l«....M*l      CONTAINS   THE   MATRII     Bll.Jt    i>I...Mt 

J*l...l      STORED  EITHER   3v  ROhS  IR  COIUMNS. 

■0.   If     «R      !S   STORED  R» COLUMNS. 
NOT'O.    IF     RR      IS   STORED  BV   ROMS. 

GRTPN  0.   IF   THE   RRUOUCT   IS   TO  BE   AOOEO   INTO   TMf   OUT»UT 
AREA. 

ISTHN-O.    1^   THE   fRCOUCT   RERIACES   THE   OUT»UT   AREA* 

l = l,....N«l      CONTAINS   THE   PRODUCT   MATRI«     CU.JI, 
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S»«Tfl \ 

maOmu , | sfni.s 
»MHl » 

I PI ',1 ?> io«r.i     ^i 

H*»«>t£!. 

i ■■!»-.'<.    J = l.,.l      Stn«fc  tl-isiiv   sp»r>'  (*> 
Cl.'lU"Ni . 

1.    INPtiTS     -   N«l   «• I   l 'I      »»II    '.J. 
OufPuTS   -   tn I! "ft. 

Httll)*^.       ■'•NiilK   0.      C/HUU'O. 

^.    'NPuTS      -   NM   K-?   l'?      *«<!...61    ■    1 .i I. . 1. .^.,'. , 1. 
/    »»fiTR.O. («Hll..,*!     i     l.,S.,J.,f. 
G.'f*ni)«l. CCU...61    '   1 ,.o.,o. .o.,o. ,u. 

OtiTPU'S   •   CCU...61    »    IK, i6.,B., IT.,«., 16. 

i.   INPUTS     -   s»"e   «s  f«»"Pii   ?.  fictP»     /r\Hm   i.    r./F»on'0. 
mitputs  - cr«i,..fe)   »   7.,??.,A.,|9.,S«..,??. 

PPl!',«»"«   fUlL0i.S     itlü* 

mi 

NOP 

•«1 

ICQP 

HI» 

Hf H 
Ml« 

BCi 
S«l) 
SXÜ 
sin 
CL» 
»on 
St» 
Cl » 
»on 
s't 
C! » 
ton 
st» 
St» 
St« 
LOO 
CLA« 
C«S 
>P» 
NDK 
li)U 
sia 
Cl»« 
sin 
sto 
«c» 

«XS 
P«I 

s«* 
Cl»» 
LOÖ 
ift. 
«r.« 
sto 
»Ci 
SID 
IDO« 
MPT* 

»IS 
STU 
LUU« 
KPT» 

«9S 
P»« 

I 1« 
A<T 
S«'J 
t «'. 
I «I) 
m« 
v I« 

o 
o 
0 
I,"4tHl» 

««1.1 

»1 
»A 

^.* 
»I 
BB 

7.* 
■ I 

LPB 
CC 
CCl 
NOP 
8,•• 
/mu 
• M 

st; 
t p« 

i.«. 
•( 
Nl 

/.* 
I 
. I 
BUT . I 

?.' 
«ID 
fc,* 

Hüüd 

on«»« 
?.* 
!,♦ 
I ' 
BOI 

:, ♦ 
«.* 
i 
.• 
• *?.1,  • 
o.i 
NX I.» 
BOf , 1 
6'lt ,; 
IP« 

N«"l . 1, 1 
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»»«nG«»« l IS! IN&S 
•           »»T«H 

iPAGE      il 

mt 
nu 

"0«Q n» 
SM) 
m« 

•*"1 '11 
110 

LP» SI/ 
• A Li)a 
R« fKl» 
CC f «P 

S'Ü 
OiW TU 
M tr» 

ni 
l«0 
LID 
(.KiO 
TB« 

•01 »ff 
iKO Pll 
Sfi sr/ 
mo ^/f 
Kl P/F 

(ND 

«Aim) 

BTI,? 
••I ./.•• 
mil,; 
I   R 
• '• 1.11 • • 
B'll,? 
••.♦ 
••. I 

»•»I   !?•■>• 

inoPf*.i 
(Hl.t 
««?,? 

, I 

(P/I6f      II 

«••H   'IK     I 

••««OHICCI, 
••.»cm*•> 
•••«CRIAH) 
•••COtlCCI 
• ..»DBK C I 
• • ■ I   00   " 

HOP   If    CIFtOO   LilMS'O. 

• »••L   «T   «f GINNING. 
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ro«*tt 
Moc,"»»» i i STimr.s 

»0"»l«l 

• »OMtl<«   ISUHtOUtlHEl 

nuf - »O««I*I 

«   l *"bO«-ö»»«l«    M   i »«(Ml*->««»• I«    |S   ^tfiiti    IK   MHICM   l»CH 
rm» H * »OiriOMiftt, o« tgui v«it \ii».   iris« OOITNC"I»I 
M*VJN0   MtTHll    CMlf f It IfNtSI.        THF    MflHOO    USt U    IS    »I 
fiirnvioi n»  int  iMvf^sioN riCMNu«» atscMiato *» 
MOUlJfH   «»O   SO^INS»!    i#H(;BH««-nUi «    IN   MICHC«   «t&tB«». 
SCCOKO   fOlflOMf    GQStf CHISD«!    \mi,       TMJS   nffNilON   M«S 
M«Df   NV    J.   Clir«»nuT,    SI«I|S?ICS    INSIITUIt.   UNIVMSITT 
U»   U»»S«l*>    SMfOfN,    »\'D   R.    J»NS',ü\,   KfStMrh   |i|ST|ruTt 
n»   MttiuNii  ocrftsi.   i'otoMOi»,   StfOfN. 

l«*»Cu»Of 
(guirafNi 
%TO««Cf 
»«to 
AUTHC« 

- ».)«l«t*   ||    SUrtMilUT lit 
- in« o*   7040  i«4!<« fmmf  fmti 
- ill   «CGISTM* 

- n.k. «ic&iNi ««IU   BO JftftSSOM    «'** 

 US4GI  

m. NS»»« v»CtO« CONttiNS «nufiMts - sukiNr.Movr ,UTK& 

F0«r««<4  UV*Gt 
C»n   i»n"»isiN«ri.t »4t»,i.«cj,i»Jiur.,oi t»ui,S»»tl i 

IH'UlS 

I»* 

41 I ' 

SMC» I I I 

OOl'UU 

140J 

4CJWCI I I 

•iHMHM   OF   «QMS   OH   COliWNS    IN   TMC   »4f«|tt\   U»   •, 
•»USI   Pf    C'JtHN«    I 

ItN&IM   Of     tHt    rOlTNO"l4li    1*1    (    li.C.    tMf    NUMtf*    Of    H4T«|I 
PUl »«liJ»14l   COfff ICIfNlS   1*1   «I. 

MUSI    »f    G«»HN«     I 

l'l...N«C4,|...MIIC4t I...IP«   IS   tMf    VtCTQ«   Of   «*4I«H 
tntf» ICItNf S   fO«    »M€   l»Ql»>«0»I4l . 

^UST   HI   iTa«tO   CCOifJ.»   »»C«IO. 

l»l...«HC*«IMC*»nWC«l«ll.Hl-|l*l I      IS   rG,«l»U>4T|0N   r)^4Cf 
««CfOfO    f.»    I>0<«4IN. 

IfNCtH   or   l»(H»«lO*!4i S    IN   4i)Jür.4lt   -!»   4. 
•    INaC4l*ll»4-ll*t 

i>I...NItC4l |.,.N«C4.|...L4UJ    IS    'ff    VfCTIH   Of   M4IHII 
COffFICUNfS   fO«    THf    40JUC4IE   0»   4. 

0|I»01M»    l«l ...140J*1»4-I    IS   TMf   vfCTO*   Of   COfffiCKNlS   Uf    ««t 
PO^VNCMl   Ofrf«»lN4NT   Of    4. 

f«4"PlfS 

I INPUTS MftC4   •    I      1*4   •   i      41 I...I , I ... t . I...7)    •    I..I, 
OUt»uTS   •    140J   •    I      4CJU0I I... 11I•••!t I... I t    •   I. 

Of'POLiI.../I    •    l.tl. 

- ■»'»C4    •    I      lP4    •    ? 
u i...i,i...i,i.../)  •  I••I.i".•i ..*,.u..«.,i. 

- 140J   •   I      DflPOl    11...11   •    t..l.«l7. 
4njucn...?.i.../. I...?I    • i. >-i ..o., i..«. .a. 

INPuIS 

'»UfPUlS 

INPUTS -   '«€4   •   /      IP4   •    1 
41 1.../, I...?, I... I I I..;.. 1. 
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•           PO»** IS                               • 
l»HI|GH<"   t 

tust    a 

c       oufpufs - i»oj • i 
C                                    *l>JUCll., 
c 

c 

0€T»Ütl1)    •   -». 

(P4GE     ;i 

!• • • 2• • - !• • I * 

OmftSiUN   AISI.tOJUGIBI. ot rpoi m t S'tCt I «I 
CAIL   SETKS    (M«C»,Nfll»»,l *l 
CALL   SM«S   !•<•«,•••(.»«♦l.Nt.t.A.HOI 
CALL   SftHV   (NN'LAtN^lAtllNLAiNNl«! I 
I*    IM-l)    S.S.ft 
coi«rt«iuf 
L»DJ»l 
AOJUr.ltlM. 
C«Ll   «OWf    ILttttOETPOL > 
GO   TO   «0 

POL»MO«r«I 

6 CALL   mwt      INtllA.t.^ACFI 
?000 1*1. 

no «o L'i.»« 
c c»LCui»!t coerfitifNfs »<«> of £>»«»ctnnsnc 

M'l 
CO   ?0   ».•Iffii.H.HH 
PL««0. 
NNI*K*NN-I 
00   10    i't.HHl.Ht 

10 
Pf TPOUKl!.n*/f lüATMi 1 

;o m««ii»i 
IF   IL-«ll   ?S.Mt*0 

?* totnmit 
C   SUSTHACT    l»(«l«(OtNlIT¥   MATHII 

CALL   MOVt    ISMLAI.SPACf.AOJUGI 
00   )0   I'titN«!«! 
«I«l 
00   10   «•■•INLAt.hN 
AOJUGIK1•AOJUCIRI-Of n»Ol(K t 1 

}0 «l'MM 
C   "Ulil»l»   BY   IHPUl   K*!«!« 

CALL   rt«»lNY    l»«.S,lA,»,N.lAi).»OJU&.S»ACf t 
7010 l-l. 

LAO>LAO*LA-l 
*0 '.NlAl'NMAI^NNLA-Nf» 

C     CH*NG(   SIGN  Of   ütTl«HtN«NT   tHO   «OJUGATE If   H 

s 

i 

40        CO*MNUf 
iFimnofIN.;!) fto.fto^ro 

ftO        CO^TINUf 
00   ftt    t'ltLAO 

6t DITPOLIlt«-0£TPOl(I» 
DO   *2    i.l.NHS»! 

ft/ «OJUCIl)'-AOJUCII) 
rO        CONUHU! 

LAOJ'LAD~lA*| 
BO        «ETUHKI 
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■ ••••••■*•••>*•••■•• PR')r.R*N LISTINGS »••«••••..». 

SI"tOC • •    SIMfOC 

• SI«*fOC   liUHHOUIIHf I 
> l»»fl 
CSIHSC 

SU««nUII«    il»»£QC    (N«»OI'»,NM»»,1»CH.»«,»l tB-tHI ,Jf t.IS.f «Rl 
C 
c 
C   tlTll   -   Sll)£QC 
C SOIUIIO«»   0^   CO>l«>lH   SINUl r«NfOÜ4   tOU»TliNS 
c 
c 
C SIXIOC      SOlVfi   tMf   r.U"",lf«   SIHuLMNtOuS   fOUATIONS 
c 
c «   «     .     « 
c 
C FOR      X,   MM(Rf      •      H*S NRAH      ><0K%   AND NRAB      CQIUHNS. 
C                                                                            «     ««S N«»B     ROKS   «NO "«CB        COIU^NS, 
C                                                                                  «      •»S NR»H      RUMS   «NO NCH         COLUMNS. 
C 
C IHt    SUIUIION   M«»RM, >,       IS   STORK)   I'i ». 
c 
c fnc soiufiüN at  tHf MttRia egii*tiiN is »CCOMPIISMEO BV 

r. UPPER    IRUNGULAMIf «UflN   OF    THE      *      MATRIX   USING   A 
C «UÜIFIfC   «AXIMü»-   PIVOT    (ONI»    THE     INOIVIDUAt   COLUMNS   ARE 
C StAOCHtC   FOB   A   MA«|Mü«|      FOR   EACK  REOUCIIDN.      THE 
C OMMMINANt    JS   COMPtiTFO   AT   IMf    SA«?    I! Mf.      JF    IHE   M«T«(« 

C A       IS   SINOKIAR   A   /FRÜ   VAI UF   Of    TMl    DETERMINANT    IS 
C «nuttNEC 
c 
C BUTH   THE      A      AND      H      MATRICES   ARE   DfSTRUYEO   8t   SIMtQC. 
C 
c 
C   LANGUAGE -   FORTRAN   I!    SUBROUTI Mi 
C   EOUIPMENf      -    F0<»,    70*0,    TO1»*   (MAIN   FRAME   ONL * I 
C   $tO«4Cf -   6T«>   REGISTERS 
C   SPUO -   RfLATlVElV    SLOK 
t   AUTHOR -   R.A.   WIGGINS T/O* 
C 
C 
C  USAGE  
C 
C 
C t«A*SMR WECTU« CONTAINS ROUTINES - NOT AN* 
C       AND FORTRAN SfSTfM ROUTINES - NO» »NT 

C 
C 
C   FORTRAN   USAGE 
C CALL    SIMEQC    INRAOIM.NRAS.NCB.AR.Af,BR,B|,0»T,ISiEROt 

C 
c 
C    INPUTS 
C 
C NRADIM           THE   DIMENSION« 0   %Uf   riF   T^-E   C0LU»•^S   UF    'ME      A     ANU     B 
C MATRICES.       THAT    IS,    THE   CALLING   «-«ri'.RAM   MOULD   CONTAIN 
C STATEMENT'   I HE 
C OINENSION   ARINRAOIM,IGNOROI.   A|(NRAO|M,IGNORD; 
C DIMENSION   «RfNR^OlM,ICNOBDI ,   B!(NRAPIM,fGNOROI 
C KHfRE      JGNORO     MAT   RE   ANT   CONSISTENT    VALUE.      IF   TMt 
C MATRICES   ARE    STUREO   ClOSllT   SPACEn   THEN     NKAUIM   .   MUH 
C AND      AH,    Al.    B«.       AND      Bl      MA*   ¥1   DIMENSIONED   AS 
C VECTORS. 
C MUST   Bf   GRTHN«      Nt»AB. 
C 
C NBA«                 NUMBER   CF    ROWS    IN      *      AND     B,      NUMBER   OF    COLUMNS    IN      A. 
t MUST    ftf    GRTHN«    I    . 
C 
C NCH NUMBER   OF   tOI üM<S    I'.      tf. 
C MUST   BE   GRTKN«    I    . 
C 
C ARII.M !*l NR4B,       J<I..,..N«AH      CONTAINS   THE   REAL   PART   OF      A 
C STORED  BV   COLUMNS. 
C NüTE-      AR       IS   ALSO   AN   OUTPUT. 
C 
C Alll Jl    l«l NRAB,   l>I.....NRAfl  CPNTAINS IHt JMACINARY PART 
C OF  A  STOBEO BT CUI UMNS 
C NOTE-  At  IS Al SD AN OUTPUT, 
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• SIMfOC 
MOC«»« l I snscs 

• SI>»fOC 

t9tGt      ?l 

MU.JI l-l •»«•II.      J"l «B     COHTiiNS   fM€   «€»l   »MT   Of      « 
STORED nv  COIUHNS. 

IS   0€Sf«O»tD  BV     SI««(JC. 

Blll.Ji LI,....MM.      J«I,,..,NC8     CONt/IINS   tMf    IIUGINAftV   »MT 
0»     S     STOAEO B»  COIUW» 

IS   OCSTWOVEO  BY      SMfQC. 

S^ACCMI      t«l I«««B     IS   T{M»<1MMT  COMMUTATION   SPACE. 
1 

OUTPUTS 

MU.JI I'? NBAB.      J'l <«CB     CONTAINS   THC   «EAL   PMT   OF      * 
STOREO   BY   COLUMNS. 

AIII.JI I*I,....NNAB.      J»l NCR     CONTAINS   THE    IMAGINARY   PANT 
Of      «      STOREO  •▼   COLUMNS. 

OfTIH l'\,...,i     CONTAINS   THE   RtAl   AND   IMAGINARY   PARTS.   RESMtC- 
TIVELY.   OF   THE   DETERMINANT   OP      A. 

(:RR       «0. IF ALL OR. 
«?. IF  A  IS SINGULAR I0ETII...2I ■ O.i. 

EIAMPtfS 

1. INPUTS  - NRA0IM>2  NRAfl«!  NCB>2 
AHIII«?.  A|(lk.1.  Mil...<!■/..).  Btit...2H~ .-2. 

OUTPUTS - ARII...2I*I.>.B  Al I I...21-0..-1.«  DETU...2I«2..i. 
ERR-0. 

2. INPUTS  - NRADIH>2  NRAB«2  NCB-2 
Ai«I...*»•!..-I.,-I.,-I.  BRII...«l>I..O. ,0.tl. 
Ail 1.,.♦»•!.. %.,    I..-2.  BHI,..*l«0..0.f0.,0. 

THAI IS.  A • I 1 I.. 1.1  <-!.. I.i I 
t l-l.. 1.1  1-1.. 2.1 I 

OUTPUTS - ARII...AI—O.S. 2.. t.. 0.    CfTtl...2) * l-l..1.1 
Al)I...Al—2.^.-1.. 0.. I.    ERR'O. 

THAT IS.  I ■ I «-.S.-2.)l  it..0.1 » 
I i 2..-1.01  (0..t.l t 

I.   SANE   NUNBMS   AS   EXAMPLE   2.   BUT   M|TH   A   0IFFE«ENT   DIMENSION. 
INPUTS     -   NRAOIM«)     NRAB.2     NCB«? 

AH)|...AI«1..-1..0..-I..-|..0. 
AD |...6l«l.. »..0., I..-2..0. 
BMI t««*4>'*l«. 0..0.. 0.. l.tO. 
Rl I 1. . .6I«0.. 0..0.. 0., CO. 

OUTPUTS AM«I...AI«-O.S. 2..0..I..0..0. 
Allt...*l<-2.5,-|..n.>C..I..O. 

CfTH...2l   ■   l-l..1.1 
IRR-O. 

A.   SECOND  «Olt   IS   COMPLEl   CONJUGATE   OF   FIRST   «Oh. 
INPUTS     -   NRA0IN.2     NRAS>2     NCB'I 

A«)l...*l.   1.,    |..-1.,-1.     »RIS...2).   I..   2. 
«III...4I«   t.,-1..   1..-1.     6H1...2I«   1..-2. 

THAT   IS.   A   ■   i   II..   I.I   l-l..    I.I   I     8   •   I   II..   2.1   I 
I   II.,-1.1   I-I..-I.I   I I   (I..-2.*   t 

OUTPUTS   -   ARII...21*1.S.O.        DET   •   10..-A.»     ERR«.©. 
All I...21«   0...S 

S.   SINr-ULA«   CASE. 
INPUTS     -   *RA0IM.2     NRAB«2     NCB-l 

ARM...Al«   I..:..-I..-I.      "«II...21»   1..0. 
«ill   ..♦!.   I..i..-l..-i.     BIII...2I«  O.»0. 

OUTPUTS   -   DfTll...2I.O..O.     ERR«2.      AR.AI   CCNirAIN   MEANINGLESS 
NUMBERS. 

PRUGRAP   FOLLOMS   BELOM 

OUPPY   DIMENSIONS 
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SINCOC 
imoo«.»»' l IMINGS 

Slt'lOC 

IMGC      II I »«Of      It 

ot«fitsiON Mmt*i«2i,Mi;i,ftiiji.otiui.iscn 
c 
C   ••INC   IH   SC»l»«   ¥»«l««lts 
c 

ND>NH*D|M 

«■■«ell 

:   IF      N«*n   <   1      COMPUTE   0!«KUV   «NO  It»« 
: 

IF    IN-l!    i,?,* 
i CONTlNUt 

Off II t>AR 
Rftl?(»*| 
cffpxiof niKOf n iKOf ri?i*Df fi?ti 
J«l 
DO   )   I'l.n 
»ftlJI>i!tHIJI«Of II I l«BIU)*Of Tt?l I/Of TM 
*ll J)>inilJI*Of Tl I l-BKIJKOfTl^n/Of TM 

i J«J»NO 
GO   10  MO 

«. CONTINllf 

:   CONPuTf    fM{   NftUtD  C0MBIN4TI0N&   «NO   St I   UP   T*(    INMUl   VALUES. 

SHO'H'tO 
«NO»«»NO 
Of T I 11 • 1 . 
Of tl7l«0. 
|t«-l 
NDH«l»0 
00   10   l-I.N 

10        ISIII«! 

no      >INOCX OF  m»C' 
NOITR|«NO*< ITn-M 

If KM 

FIND   LAPGfSt    VtLUf    1*1   IHIS   CüLU"N   mtlh   iNOF«   GMTHN«    I'd 

100     CONTINUF 
iK'ir« 

110      CONflNUf 
IS1«<IS<I«» 
ISiR*>IS|lt»NDI fHI 
«««».«HMSI«»»«»««!!'. I1»I»*IIISI«»I«*HI^I««I 
IF    lAMI-AMdl       I?0,i10,l)0 

liO      CONtlNUf 
*NI««M<T 
ICC'ISI« 
ISI■«(•'SIITRI 
IS< ITKI'ICC 

HO     CON"INUE 
\n*in*i 
IF IU-NI 

1*0     wONMNUE 
ICC'ISIITBI 

1000   0*1. 

I IQrllO. 1*0 

;   OIVU)f   »11   TfPMS   TO   TMf   «l&MT   OF    ICt   8T   üUr.UNH    IEON 

icc»»icc»Nünpi 
««|T«.«ai ICC«) 
tl I TR.tl I ICC«) 

?00     CONT!Nl/f 
icc»»fC(.«»Nn 
IF MCC»-NNOI /lO,/ia,//0 

tlO     CONTINUE 
«•ICC***OI tCC»l 
«I ICC«**M ICC«» 
»•nct.*i»(*«icc»««mf«»«iicc4*«i IT«!/««« 
»nitc«i«ii»i !CC«*t<4ir«-Micct**iiTm/*«j( 
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•         SIHfOC                            • 

IMCf     »1 

GO   TO   tOO 
HO C0NI|1(U( 

ICC«*ICC 
aa CONTIWJI 

»RiCCB'SttllCCBI 
ftiiCC§*<tillCC8l 
BftiiccBi>irtRicca**aiift»»iiccB**iir«i/«M« 
f»tiiCC<»i.(«iiccB»»mr«-B«iccB«»iiT*i/»«< 
rccB»iccB»MO 
IF (icc>-ti>in»    2)0,no,i^o 

1*0 
fOlO 

c 
C   IHC 
c 

CM. 

XfiNI    IMf   i>(TE«M|*t«f«r 

• Sl^fOC • 

l»AOt      *> 

Df riiotnii 
CEI2«OfTl?l 
DMI ii*nf n**Bir<i-nEr?**iirft 
c;{T<;i>oiii«*iif«»oeT?*ARim 

c 
C Su«T«»t» THIS ROM FROM «II SUCLEtOIIG MOMS 
C 

IR'ITR 
IW     CONTINUf 
mo Q'i. 

IR«IR*l 
IF   IIR-NI      /60.J60. IIO 

760     CONTINUE 
ICCt<ISJ iRI*NO!TRl 
ICCS-ICC^NOITR» 
«RICL»»RtICC»» 
t!ICC*«l< ICCti 

2 TO     CONTINUE 
ICC»«ICC*»NO 
if ncc«-NNOi   ;io.,>«o.?9o 

?«0     CONTINUE 
ICCS«ICCS»NO 
*RI ICCAI'MI ICCAI-IMI ' f CS i •»» ICC-» I ( ICCSi«t|ICCI 
*nicc*M»i i icc*!-i»«nrt;t»*iicc»»i nccsi.RRicc 
co ro ?TO 

HO     CONTINUE 
ICCB^IilIRI 
ICCS'ICC 

100     CONTINUE 
RR)ICCHl'BHI ICCM-IBM ICCSI»»RICC-9I IICCSI«*llwCI 
R|(ICCRt'RKICCRl-IBR«ICCS>»«l!CC»R|tirCSI««RICC) 
!CC»«ICCi»»Nn 
ICCS«ICCS»WO 
IE   MCCB-KND)      JOO.IOO./SO 

»10     CONTINUE 
C 
C LOOP TO NEXT ROM 
C 

ITR'ITRM 
SDITRI'NOITRMNÜ 
IE   IIT4-NI      100.100,»0 

MO     CONTINUE 
C 
C    IE   OETtRMINANT    IS   {IRQ,   LEAVE 
C 

IE    llWSMDMUn»*RSMDEIi?n-l.t   61      444,«44,))0 
110      CONTINUE 

c 
C   NO«   CLERR   THE   UPRER   TRKNGlE 
C 

ITR>N 
NOIfRl>NND-Na 

140  CONTINUE 
IR'ITR 

»♦4  CONTINUf 
;oio Q«I. 

IR'IR-I 
If    I IRI    1?0, WO, »SO 

I«      CONTINUE 
ICCB*ISIIRI 

183 



BM:f.lt»K   I IS! IN(,S 
•       smoc 

«pa«    s> 

S I «f cc 

ip«or 

ICCS'IS« n«» 
ICC»»ICC*»NO|I«l 
t«ICC.»«( KCAt 
• I ICC«il<ICC«) 

160      CUNTI*>^ 
««I |rc»M««i ICCfl)-IB«< iCCSI-«MltC-«l < li<  .» »«I lu I 
BJI iccm.RM iccBi-imt iccM»««icc»nm sccs»»»iicf i 
ICCB»ICCR»i»D 
iccs«iccs»Nn 
I»   iiccs-«"<ni     »«0, ifco. »♦% 

|TH>|TR-I 
NOITBI.NDItHI-ND 
If    ItTK-ll       ia0t)80.1«0 

c 
C   UNSC«»"Blf   It    ItUi   * 
c 

|R«| 
MOICI») 

itO     COUUHui 

«00     CONTIMUC 
ISItt**ISI l«l t«»ülCl 
ABI l«l>Bl>( iSIR*) 
•I(t«l«B|(ISI«»I 

IB-IB»! 
IF    URN 

*I0     CONTINU* 
IR*I 
NOICIS^OICUNO 
it  (Nnicj-RNoi 
CONfINUf 

T'S   «11 

*00.<.00, «.10 

iOCtlO.hlO 
**0 

c 
C    fH« 
c 

SOD CONfI NU» 
RETURN 
CONTINUt 

CO   TO   SOO 
tNO 
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SNIMAC 
MOCMtM   lltTINCS 

S»ei"»C 

• St«."«   ItUMQUTINtl 
• l»Ml 
CSMINAC 

SUBHOUtl'«    S*M.H«C   (^/./«./l.tllU.u«,ul.t».»«.S>«Cf .t««l 

 «isiaACf  

MTU   -   SNIRAC 
SVNTHtSI/f   lIHSOft   MATIIII   f«QH  COM^lfl   ViCTMS   «tO   ?l»OS- 

SHIK«C   towsfnutrv A HMO» ifoiTikOMim «»m» mot* 
TH|   COftPLfl   L«lf*tT   VtCTMS     Ulli      »NO   l»TFNf   /CMOS     /til. 
ilNCf   IHE   »CKTNOHlAi   «»HI»   MILL   rtt   «»l.   'Mt   MOft-KfAL 
ItTcmf   WCCTOMS   »NO   /EROS  MUSI   »Mt»*   IN CONJUGATE   P«I«S. 

IE   ME   EOBM   THE   NO0»L   MAT« IX 

1    lUittl 
«    JU«?M 
( M 

1                         • 
i    IUI«H 

L»NOU»CE 
EQUIPMENT 
SIOliCE 
SPEED 
»UTK-»» 

»NO   THE   SPECTRAL   MATRIX 

/      •     OI«C   I   /tll./i?l)..../4MI    I 

THEN   THE     N  •*  N     MATRIX CUEMICUNTS.   AIM.   l«l*...«Li 
ARE   GIVEN  BY   THE   SIMULTANEOUS  EQUATIONS 

L 
AIII*U*/ ♦...♦ »UI»U*I   •  U. 

HHfRE  l*N ■ M . 
SNLHAC  SETS U> «NO SOLVES THESE tOURTIONS. 

- FORTRAN II SUSROUTtME 
- T04. TOIO. TO"»* INAIN FRAME QNLVI 
- »»(I REGISTERS 

- R.A. MlGGI>S   8/6* 

•üS»CE  

TRANSFER VECTOM CONTAINS ROUTINES - OIXMAC. MM*« MOVREV, SIHEOC 
«NO FORTRAN SYSTEM ROUTINES - NOT ANY 

FORTRAN USAGE 
C»LL   SNLMAC   IN/,/R./I.NRU,UR,Ul.LA,AA.SPACE.f«RJ 

INFt'4 

/Rill 

i 

/Mil 

NRU 

* 
URIil 

NUMBER   OF  LATENT   ZEROS  »NO   VECTORS. 
>   M   IN   T>-E   ABSTRACT. 
MUSI   BE   CRTHN>   I 

(•l,....N/     CONTAINS   THE  REAL   FARTS  OF   THE   LATENT   /EROS 
/ill. 

I'I....|N/      CONTAINS   THE   IMAGINARY   FAIliS   UF    THE   LATSN« 
/EROS     /III. 

«UMRER   OF   ELEMENTS   IN   EACH   VECTOR     Ulli. 
MUST   BC   CRTHN«   I.   MUST   BE   A   MULTIPLE   UF      HI. 

1-1 NRU.N/     CONTAINS   THE   RFAL   PARTS  OF   THE   LATENT 
VICTORS     Ulli      ST!»RFO  CLOSELY   SPACED. 
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C Uli I• 

PdOGI»»  HSfltCS 
SWI-ÄC 

tP*i.t      H 

1 = !,... ,K«U»»(/      CONfAl-aS   1hl    IMCI1MT   P«« f S   OF    Titf 
i»it«iT yK?n«s   udt    sro^tn cicuiv snao 

• »Hf   l«TINr   VfCTüH     UM!      COHdf SPIHOS   fU   tH€   LiTflf   «OOf     /III. 
BUTH   VfCTUHS   »".iSr   CUNI»£«I   fH»   CM««Plt«   CO» JUCATF S   KHICIfiT. 

SP*tt I I )      I» I ;*M/*?*I*{*,WUI**4U 
SP»Ct. 

is TiMONtRv coMPurtriGN 

CUfPUl'. 

■ «III 

f •<« 

t ««••nEs 

IS   IHf   «lUMef*  OF   COEFFICUNf   "afilCFi  FOUNÜ. 
■ imu/iut»! 
« i«i    I«I ine tbsr«*cT. 

l*lt....N*U*N«UnA     CONTttVS   TM{   COEMICIINl   HAtKICfS 
• in.  i*o...i.    sin«€D CLOSfiv s»tcco sv coiuw^s MMCHE 
«mi • iüEMrirv «ttiriii. 

•n.  IF All OK. 
•?.  IF TM» SIMULItlfOUS tOUAIIOM) Mt IIWUl«« - THIS 

Hk*Pt.H%   IF  U(|I«UUI  MH€»t  /III'IIJ). 

i, INPUTS -*•/•? /«i i...;)«;.,). in t...;>«c..o. 
N«U«I  lMtU**?»*l*tt«  UIU...?|.0.,0. 

OUTPUTS - l»»«  «ail...ll«l..-9..4.  CUP'O. 

?. INPUTS  - W»?  t«IU«.2l«f|»2.  ill I..-?l>l..-t.  "MIO»/ 
URI t...« I <«..-<»., «.,-1.  tlll...«l<0..4. ,0. ,-4. 

OUTPUTS - I»«/  *«it...ai>l..0..0..l..-.lll!).-.4..tlllt,-.4*M? 
E"*'0. 

I. INPUTS  - «■*  ;RII...«l>2.,2.,t.,S.  /III...«I-».,-I.,-*,,♦. 
NRU-?  U«i l...*l«4..-).,S.,-).,«0.,)4. ^0. (i«. 

Ulll...fll-n.t <J.,0.,-<»., O.I-I.I O.i I. 
OUTPUTS - I.»»«  fRR.O. 

«•i i...i?i>t..o..o.«i.>-.ti}6«. .MOia. .oreeit.no?*. 
.006«*.-. i4r<M. .01 us, .jrHt* 

PPUr.RAM FOllUNS BELU« 

OUPPY 0|MANSIONS 

ot»miON /Ri2i.ni;i.ijRi?ituit;i,*Ri?i,sP«CEm 

BRINr,   IN   Tut   SCHtR   PMtMtTERS 

l«NZ 
N^^RU 

SET   UP   THE   lOHRINRIIUNS  NEEDED 

P»l/N 
l»«P»l 
IN*1*N 
K«l*lii*N 
NSI«^)«*| 

I«I>1 
l«R>UI*LL 
tBI«l*R*LL 

ISP>I8R»IN 
IUR|<|RR 
iUll«lH| 

Itil'IRI 
C 
C   SET   UP   KICNT   SIDE   OF   SÜHILTRNEOUS  FOURTIONS 

186 

^P 



"I 
I 

BLANK PAGE 



P(liX,»»*   I liTING^. 

c. 

iNlMC 

«»WC      »I 

CAii M«r«« IUI.N.I ,SP«CCI mi M 
C 
C   SfT   UP   UM   SlOf   Of   $I>H)IT««({0WS   lau«»liJNS 
C 

00   10      IM." 
C«Ll   UM»«»C   l/«,/J,4,NfSP*CII liWHiSP»t»MLHI,SP»CKI»«n. 

I   SPACflltllll 
IUm>i*NI 
lUiloUlt 
tUt*|Ut*iY 

10      UH>l«lin«i 
?000   ii'l. 

c 
C    SOlVt    fH|    »OUAIICHi 
c 

C*ll   M»mC   IL.t.N.SP«Ct( lilH.SPiCCilAn.SOACHIBMI.SPACHIIin. 
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13. Abstract (Continued) 

provide an analytic factorization of a multi-channel auto- 
correlation In terms of Invertlble wavelets. In addition 
the autocorrelation may be approximately factored by a re- 
cursive least-squares algorithm, or by a projection tech- 
nique. 

Of the factorization methods available, the re- 
cursive algorithm Is the most efficient and Is therefore 
extended to Include the more general problem of signal 
shaping In the presence of noise. 

Finally, a» an Illustration, the problem of de- 
signing a finite optimum two-dimensional band-pass, band- 
reject filter Is solved and the characteristics of a few 
particular realizations of such filters are presented. (U) 
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