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for the degree of Doctor of Philosophy.

ABSTRACT

This thesis 1s an extension of the theory of
discrete scalar time series analysis to multivariable
processes. This extension is facilitated by expanding
the algebra of polynomial matrices (matrices with poly-
nomial elements§

Multivariable processes may have a multiplicity
of elth r the independent or the dependent variable. Such
processes are called multi-dimensional or multi-channel,
respectively. All multi-dimensional processes may be
formally mapped into matrix notation. Once this mapping
is made the properties of all multivariable linear opera-
tors and autocorrelations can be studied in terms of the
polynomial matrices that represent their z-transforms.

Polynomial matrices can be decomposed into three
related forms: the spectral factorization, the Smith-
McMillan canonical form, or the Robinson canonical form.
Each of these representations leads to th« concept of an
invertible or minimum delay wavelet.

The algorithms for finding the spectral factori-
zation and for finding the Smith-McMillan canonical form
can be extended to provide an analytic factorization of a
multi-channel autocorrelation in term of invertible wave-
lets., In addition the autocorrelation may be approximately
factored by a recursive least-squares algorithm, or by a
projection technique.

Of the factorization methods available, the re-
cursive algorithm 1s the most efficient and is therefcre
extended to include tire more general problem of signal
shaping in the presence of noise.

Finally, as an illustration, the problem of
designing a finite optimum two-dimensional band-pass, band-
reject filter is solved and the characteristics of a few
particular realizations of such filters are presented.

Tnesis Supervisor: Steplien M. Simpson, Jr.
Title: Lecturer in Geology and Geophysics
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1. TINTRODUCTION

Geophysics may be viewed as the study of the
properties of the earth by the interpretation of signals
that are affected by the structure of the earth. These
signals may be of almost any conceivable type -- seismic,
tidal, electric current, electromagnetic, or light =-- and
may have a wide variety of sources. In each case the com-
plexity of the media that modulates the signals will intro-
duce ncise into the system (we define noilse as any portion
of a signal which does not contain information that we de-
sire). In addition, the information may be difficult to
interpret because the signal shapes are difficult to

recognize.

The idea of applying the concepts of statistical
analysis to signal interpretation has become widely accepted
during the last decade. A large portion of %this analysis
has taken the form of applying linear filters to inconing
data to enhance and shape the desired information. Because
of its versatility, the least-squares optimum (Wiener) fil-
ter was frequently applied. However, a problem arose in
the computation of such filters for geophysical applica-
tions. Geophysical signals are usually multivariable; that
is, the slgnals are characterized by having more than one
independent variable (dimension) or by having more than one
dependent variable (channel). In most cases, to adequately

process such multivariable signals one should use multi-
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variable filters. However, the solution of the discrete
least-squares filter problem is a set of simultaneous equa-
tions, with one equation for each coefficient, Thus the
magnitude of the problem quickly overloaded the capacity

of even the largest computers available. This limitation
on the size of possible filters greatly restricted their

usefulness.

The computational problem was reduced by an order
of magnitude 1n storage space and execution time by
Robinson (1963a) when he was able to extend a recursive
method introduced by Levinson (1947) to multivariable
filter generation. This development has led to greatly

renewed interest in the applications of optimum filtering.

The crucial step in optimum least-squares filter
design 1s the factorization of the autocorrelation of a
process., This factorization is the problem to which this

thesls 1s addressed.

There are now four known techniques for factoring
the autocorrelations of multivariable processes. As indi-
cated above, the least-squares approximate factorization
has been known for some time (for example, see Wadsworth,
et al., 1i953). However, before the discovery of the re-
cursive computation algorithm, it was not considered to be
useful., 1In fact it was this consideration that led Wiener

and Masani (1957 and 1958) to develop a projection technique

of approximate factorization. Experience now shows that

12




this technique 1s not competitive with the recursive method.

Quenouille (1957) presented an analytic factohrization al-

gorithm which, when placed upon a rigorous mathematical
basis, has proven to be a very valuable tool for under-
standing and manipulating multivariable time series and
autocorrelations. Another analytic factorization method
is d:veloped here based upon the Smith canonical form for
polvnomial matrices following a similar development by
Youla (1961). Neither of these analytic methods are compu-
tationally competitive with the least-squares recursive
algorithm although they are invaluable for instilling
theoretical insight into the factorization problem.

All of the factorization schemes that are consid-
ered are stated for discrete processes with finite auto-
correlations. Since these factors (which we call wavelets)
are also finite they are members of the Hardy class

(Wiener and Masani, 1957, p. 113). Because we are dealing

with finite wavelets we are able to obtain specific results
which are of a more constructive nature than those found
in some more generalized approaches. As such this thesis
may be considered as a complement to recent works on stoch-

astic processes such as Helsun and Lowdenslager (1958),

Robinson (1962), and Wiener and Masani (1957 and 1958),

This thesis tnen is primarily an examination and
evaluation of the methods of factoring multivariable auto-

correlations. From another point of view, however, it may




be thought of as a treatise on polynomial and rational
matrices, that is, on matrices whose elements are either
polynomial or rational. This is a subject that has re-
ceived surprisingly little attention in the literature.
For this reason it 1is given a rather thorough development

here in the first three chapters.

The final chapters are devotea to an expansion
of the least-squares approximate factorization to the
calculztion of filters with specified noise supyressing
and si;nal shaping properties. Computational examples are
included that illustrate some of the forms that such

computations may take.

The presentation that follows assumes a basic
knowledge of scalar, 1l.e. single-variable, time series
analysis (sece Lee, 1360; Robinson, 1962; Wiener, 1949; or
Whittle, 1963). Most of the primary ideas, such as wave-
lets, all-pass systems, minimum phase, minimum delay.
convolution, autocorrelation, and predictive decomposition
are revieved briefly when they are first encountered but
are not developed rigorously. The material here 1s not
intended to be a review of time series analysis, but is
intended 1o be an extension of the concepts of scalar time
series to multivariable time series. On the other hand,
much of the detail considered is not necessary for an over-
all grasp of multivariable time serles analysis. Thus the

reader who is unfamiliar with the subject may profitably

14




skip over several sections. These sectlons include 4.221

(the details of the factorlzatlon of an elementary auto-
correlatlion matrix), 4.223 (the Smith-McMillan factorizatlon
technique), 4.232 (the Wiener-Masani approximate factori-
zatlion by projections), and 5.12 (the details of the re-

cursive algorithm for least-squares filters).

15




2. DEFINITIONS AND NOTATION

Processes may have multiple independent or depen-
dent variables., In sections 3.4 and 4.3 a technique is
developed for mapping processes with several independent
variables into a form with several dependent variables and
only one independent variable. This mapping is given in
order to simplify the analysis and notation of the factori-
zation problem. However, there are important differences
between these two representations that should be recalled
when applications are made of factorization. This chapter
is devoted primarily to an examination of these differences.
In addition, a few general notational questions are exam-

ined.

2.1 Dimensionality of Processes

A dimension is defined as a measurable extent.
In this thesis the number of dimensions of a process will
indicate the number of orthoeonal measurable directions,
i.e., the number of independent variables. Most processes
that have been considered in communication theory and in
economic analysis are one-dimensional time series. However,
in geophysics higher dimensioned processes are often en-
countered that may or may not have a time-like dimension.
For example, the output of a single vertical seismometer
is a one~dimensional time process. The output of a linear
row of seismomenters is a two-dimensional process =-- one

time dimension and one space dimension., On the other hand

16
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(neglecting small, higher order effects) the acceleration
of gravity at each of these seismometer locations repre-

sents a one-dimensional spatial process.

In nearly ~11 of our analysis we shall assume
that one of the dimensions, or directions, of a process is
a preferred (time-like) direction. We do this for several
reasons. (1) In many processes there actually exists a
preferred direction. It is only natural to take advantage
of the physical significance of this directlon. (2) The
use of vector notation greatly simplifies the representation
of processes with a preferred direction. (3) Present digl-
tal computers have one-dimensional storage memories. Thus
when a process is mapped into a computational scheme, we

must necessarily choose a preferred direction.

Whittle (1954, p. 434) has pointed out that there
is a basic difference between a preferred direction that
has time, or time-like, physical significance and a direc-
tion that is chosen merely for notational purposes. A time-
like direction is inherently one-sided. That is, the
state of a process at any time can be dependent only upon
past values of the process. However, purely spatial proc-
esses are usually not one-sided. This distinction is im-

portant when designing operators for processes.

The importance of the preferred direction is em-
phasized when we define the geometrical structure of the

sampling of the independent variables of a process. We can

17
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think of this structure as an array of sample points in a
multi-dimensional space. For nearly all applications we
will restrict these points to being equally spaced along
straight lines that are parallel to the preferred direction.
This 1s equivalent to saying that the process will have
equal digitization "ncrements in the preferred direction
and fixed sampling itions in the other directions. Kl-
though the digitization increment is fixed, the sampling

instarts for the various positions need not be in phase.

For most applications in this paper, we will re-
quire that the lines form regular patterns in the other
dimensions. The simplest, and most useful, pattern is
that of a rectangulaf grid. However, other patterns
(triangles, parallelograms, hexagons, and combinations of

these in higher dimensions) are frequently encountered,
2.2 Order of Processes

Processes may have multiple dependent variables
as well as multiple independent variabZes. In general,
the dependent variables need not have any dimensional
relationship. For example, one variable may represent the
electric field while another may represent the magnetic
field. The order of a process 1s the number of dependent
variables that represent a process at each point in space.
Thus, a linear array of 3 component seismometers would be

a 3rd order, 2-dimenslional process.

1t




Throughout this paper we will refer to processes
of order greater than 1 as multi-channel or matrix-valued,
The latter designation stems from the fact that we will
use a matrix representation to group the variables of a

process,

The one-dimensional, multl-charnel process is of
special interest since its configuration best reflects the
importance of the preferred direction. This fact sometimes
prompts us to view each of the space samples of a multi-
dimensional process as one channel for a higher-ordered
multi-channel process. Thus, a linear array of 12 three-
component seismometers might be viewed as a 3rd order, 2-
dimensional process, or, viewing each seismometer as »ro-
viding a separate time series (channel), we may view this

as a 36th order, one-dimensional process.

Even though a mapping from a multi-dimensional
process to a higher-ordered, one-dimensional process is
possible, the basic differences between these representa-
tlors should be emphasized. First, we usually think of a
discrete, multi-dimensional process as a manifestation of
a continuous function. Thus, it is possible to approximate
values between the digitlzation positions by some form of
interpolation. Second, in a multi-dimenslonal process we
can think of extending the space dimensions to infinity.
The formal structure of a multi-channel process allows

neither of these possibilities.

19




2.3 Subscript Notation

Subscripts will be used to indicate the variables
of a process. In general, there will be two groups of sub-
scripts. The first group will refer to indexing of the
independent variables; the second group will refer to in-
dexing of the dependent variables. We will adopt the con-
vention that the first subscript in the first group will
always stand for the preferred direction. Thus a component

of a process X may be referred to as
(x )
i,il, o0 0y iN kl’k2

or, if the prelerred direction refers specifically to time,

it will be written

Since matrices are at most 2-dimensional, the sec~ 1 group
will have at most 2 indices. We will always cousider that
the first of these 2 indices will be the row index, and

that tne second will be the column index.

In order to simplify our writing we shall adopt

a vector notation for the subscripts

E

(1,17, +ouy 1y)

k

(Kysky)
so that the process may also be referred to as

(x,)

2




Frequently it 1s desirable to order the spatial
sampling positions (i.e. the sampling poslitions in the
non preferred direction) sequentially. Thus we may use one

subscript for all spatial variables:

This subscript takes on a different value for each sampling
position. Finally, for much of our work we will be con-
cerned only with the dimensional Indices and will suppress

the matrix indices and the parentheses.

2.4 Flow Diagram Notation

The important decomposition and factorization
theorems in the following chapters are illustrated by flow
diagrams. 1In general, these dlagrams are self explanatory,
however, a description of some of the conventions used will

facilitate their interpretation.

1. Square boxes indicate operations.

2. Rounded boxes illustrate results of
operations.

3. Sol‘d lines between boxes indicate the
primary lines of logical flow as well
as transference of data between steps.

4, Dotted lines between boxes indicate only
the transference of data between steps.

5. Boxes drawn with heavy lines indicate the
beginning and the ending of the algorithm.

21




3. STRUCTURE OF DISCRETE LINEAR OPERATORS

The operators that we consider arc finite moving

average devices that may be represented by the diagram

T

Linear
Operator

Input ———————2>» Qutput o

If the input is a spike (a delta function appropriate to
the geometry involved) then the output is a wavelet with
real coefficients which completely describes the properties
of the linear operator. In fact the output of the linear
operator for a general input is Jjust the convolution of

the input with the wavelet.

In this chapter we will study those characteris-
tic properties of a wavelet by which it may be classified.
The approach used here is to factor a wavelet into simpler
components and then to use the properties of these compo-
nents to delineate the classification of the wavelet. The
complexity or existence of the factorization is the key
prroblem, In the scalar one-dimensional case there is a
unique natural factorization from which the general proper
ties are easily deducible. In the matrix-valued one-
dimensional case there are a multiplicity of such factori-
zations. In the multi-dimensional case there is no
natural factorization. Thus, our treatment for these

cases will vary markedly.

no
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3.1 z-Transform

The z~transform of a discrete finite wavelet 1is

defined simply as the quasipolynomial

M
a(z) = I
i=N

alzl 9 -0 Nir-l(@

whose coefficients ai are the values of the wavelet at

the LEE sample time. For the general multi-dimensional

procestes we have
M, 11

a(Z,Zl, s 00y Zn) = i {:N (al,i
JJ

i
1 n
l, oo ny in)z zl e Zn

- ® < N, <M, <00,

J J

A quasipolynomial a(z) may always be transformed into a
polynomial by multiplylng it by the proper pc.er of =z

The z-transform of a wavelet will be indicated specifically
By writing the wavelet as a function of 2z as indicated

above,

Two important properties of the z-transform will

be exploited frequently:

1. Convolution in the time-space domaln corres-
ponds to multiplication in the 2z domain.

2. The =z-transform evaluated on the unit circle,

~iw
e

7 e , corresponds to the2 Fourler trans-

form of the wavelet.

23




Much of the analysis in thls chapter is based
on the algebra of quasipolynomials that corresponds to

the z-transforms of wavelets.

3.2 One-Dimensional Scalar Wavelets

One-dimensional scalar wavelets of the Hardy
class have been treated extensively in the literature,

(Wwold, 1938; Wiener and Masani, 1957; Robinson, 1962;

Whittle, 1963; Robinson and Treitel, 1964) and, therefore,

the treatment here will be brief and heuristic.

3.21 Spectral Decomposition

Let us consider the one-sided wavelet
ao, al’ e 0o o9 an .
The z-transform of this wavelet.

a(z) = ay+ a2+ o.0 4 ay ke

can be factored, according to the fundamental theorem of

alzebra, into the form

a(z) = ag(l - ayz) oe. (1 - a, z)
where l/fzi i=1, ..., n are the zeros of the polynomial
a(z) . These roots, 1/&1, are gznerally complex but since

the coefficients of a(z) are real, the roots must occur

in complex conjugate pairs.

ok




3.22 Invertibllity

Definition 3.2-1. A one-sided wavelet a(z) 1s sald to be

invertible if there exists a one-sided wavelet a-l(z)

such that a(z) a_l(z) =1.

The condition that the Taylor expansion of
1/a(z) will converge is that a(z) has no zeros inside
the unit circle. Thus if |1/bi' >1 1=1, ..., n then

a(z) 1is invertible.

Jury (1964) reviews several simple techniques for
testing for the invertibility of a wavelet. One of the
simpler conditions involves polynomial divisions to find
the number of roots inside the unit circle. The procedure

begins by performing the division

a(z) al(z)
T A RS
z a(1l/z) z a(1l/z)

where al(z) is the remainder. Then we find the other

qy 1=1, 0o, n - 2 according to

a; (2) _ 3y (2)
"1 a; (1/z) 01 a; (1/2)

qi =

Now the number of roots inside the unit circle is equal to

the number of products Pk which are negative, where Pk

1s deflined as
P, = [lqol - %] Tafiu -1 ... Taiizr- -1 .
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3.23 Robinson Canonical Form and All-Pass Systems

Theorem 3.2-1 (Robinson Canonical Form). Any wavelet

a(z) can be uniquely represented in the Robinson Canonical

Form
a(z) = p(z) ay(e)

where ao(z) is invertible and p(z) 1is an all-pass

systen.

Let us review a few properties of all-pass

systems.

Theorem 3.2-2. An all-pass discrete system has unit gain

at all frequencies, i.e. Ip(e-im)| =1 for all real w .

Theorem 3.2-3. An all-pass system is trivial if 'p(z)l =1

for all z; that is, if p(z) 1is constant.

Theorem 3.2-4. The inverse system to a non-trivial all-

pass system is not one-sided.

The invertible factor ao(z) is completely det-

ermined by the amplitude spectrum of a(z) (see 4.122).
3.24 Delay

The delay of a one-sided wavelet a; is a measure
of how the operator redistributes the energy of an input
process 1n forming the output. It may be defined in terms

of the partial energy

g _ge—— e e — P R P e T T
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Robinson (1962) has proven the following Minimum

Delay Theorem.

Theorem 3.2-5 (Minimum Delay). The delays of the set of

wavelets ai(z) which have the same invertible Robinson
canonical form ao(z) are greater than or equal to the
delay of ao(z) . Equality holds if and only if the all-
pass system p(z) 1s trivial. That is, the partial ener=-

gles obey the relation
2 2
) )
L oa; 4 2 ) a9 4 for all k

where 1 1s the wavelet index and J 1s the time index.

3.25 Phase

The Fourier transform of a wavelet ylelds fre-
quency information about the outputs of an operator with
respect to the inputs. This informaticn 1s presented in

the form of an amplitude change and a phase lag.

If we examine the Fouriler transform of a wavelet

-1iw -1iw -12w -inw
ale 7)) = ag+ a; e +a, e + ..ot a e

a (Ul) eifD ((U)

we see .hat the polar representation leads to the concept

of a phase lag characteristic -o(w) .

2T




We ar. now in a position to formulate the

minimum-phase theorem:

Theorem 3.2-6 (Minimum phase). The phase-lags of the set

of wavelets ai(z) which have the invertible Robinson
canonical form ao(z) are greater than or equal to the
phase-lag of ao(z) . Equality holds if and only if the
all-pass system p(z) 1is trivial. Furthermore, the

phase-lag difference is

mi(O) - mi(n) = mm

where m, is the number of zeros of ai(z) that are in-

i
siae t'ie unit circle.

An interesting result that follows directly from

the theorem above is

Corollary 3.2-6. The cosine transform af(cos v) of a

wavelet 1s non-negative if the wavelet a(z) has no zeros
inside the unit circle (i.e. is minimum phase or minimum
delay) and if the wavelet is normalized so that a(l) > 1 .
The number cof zeros of a(z) inside the unii circle is
equal to the number of zero crossings of the cosine-

transform a(cos w) .,

The proof's to both the Minimum Phase Theorem and
its Corollary follow directly {rom examining the nature of

the definition of phase (Robinson and Treitel, 1964).

Figure 3.2-1 illustrates the behavior of the
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phase-lag curve for a 3-term wavelet for various positions
of the zeros near the unit circle. 1In this case the zeros
were placed on the imaginary axis so that the discontinuity
for the middle curve lies at w = m/2 ., Because of this
discontinuity we may interpret the wavelet either as mini-

mum phase or maximum phase.

3.3 One-Dimensional Matrix-Valued Wavelets

Various aspects of matrix-valued wavelets, or
polynomial matrices, have been treated by a number of
authors. This section will review in some detail many of
their important results as well as extend the theory in

certaln areas.

3.31 Polynomial Matrix Notation

Let us begin by reviewing thLe basic notation and

terminology used in describing polynomial matrices.

Let A be an arblitrary matrix. Then:

A! denotes transpose

A denotes complex conjugate

A* denotes complex conjugate transpose

a~t denotes inverse

Det A

or 'AI denotes determinant of A

1dj A denotes adJugate of A, (The adjugate of A

is the transposed matrix of cofactors of A.
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Note that AdJ A/Det A = a~d

Let A £ 0 L)

if

A diagonal matrix A with diagonal terms a1, 855 eeey @,
Is written as A = diag [él’ 85y eees an]. Column vectors
are represented by x, y, etc., or in the alternatlve
fashion x = (X, X5, <.., X )' whenever it is desirable

to iIndicate the components explicitly. The symbols ln or I,
n’ and On,m represent the n x n 1ldentity matrix, the
n-component zero vector and the =n x m 2zero matrix.

A matrix A(z) 1is polynomial or quasipolynomial

if each of 1its elements is a polynomial oi» quasipolynomial
in z . A(z) 1s rational if each of 1t3 elements 1s the

ratio of two polynomials or quasipolynomlals in z

A(z) 1is said to be real if B&(z) = A(z) .
Unless stated otherwise, all matrices considered here will

be real.

The non-negative integer r(A) 1s the rank of
the rational matrix A(z) for a given value of 2z If
(1) there exists at least one subminor of order
r which does not vanish identically, and
(2) all minors of order > r vanish identi-
cally.
The rank of an n x n matrix A(z) 1s the same for all
z except for a finite set of points 245 1 =1, ..e, P
in the 2z plane at which the rank may decrease. These

points are known as the latent zeros of the matrix A(z)
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(see section 3.32). The maximum number of latent zeros for
an n xn matrix A(z) 1s p=nm where m is the maxi-
mum number of zeros 1in any quasipolynomial element of

A{(zy . If p<nm the matrix A(z) 1is callcd degenerate.

A nonsquare matrix does not possess an inverse in
the ordinary sense. However, 1t may have elther a right
or left inverse. Thus, If A 1s m X n, A possesses a

right inverse A™Y, su b that A A”Y = 1~ if and only if

m<n and r(f) =m.

An elementary polynomial matrix is a polynomial

matrix possessing either a right or left polynomial inverse.
A square matrix A(z) 1is elementary if and only if its

determinant 1s independent of 2z and non-zero,

A(z) 1is analytic in a region of the =z plane

1f all of 1ts elements are analytic in this reglon.

The point 2z, is a pole of A(z) if som ~le-

ment of A(z) has a pole at z = Zq

If 2, 1s a pole of the rational matrix A(z),

each element of A may be expanded in partial fractlons

and after collecting all those terms having poies at 2z

O
there is obtalned for =z, # o
- - - -k o -k+1
A(z) = (2 zo) A, + (z zo) Apoq + eee
-1 .
+ (z - 25) 7 Ay + Ay(2) (3.3-1)
32
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where Ao(z is finite, A # 0, and A,, 1 <1<k

o)
are constant matrices., If Zg =
placed by z', 1< 1< k. ALl of Ay(z), Ay, «ouy by

i!
o, (z - zo)-i is re-

are uniquely defined by their construction from A(z) .

Definition 3.3-1. If A(z) 1is given by equation 3.3-1,

then k 1s the order of the pole of A(z) at =z = Zy

Definition 3.3-2. A complex rational matrix is said to L=

reverse-hermitian if A (z) = A{1/ Z) (the function A is

symmetric with respect to the unit circle). Hence, on the
unit circle, z = eiw, A*(eiw) = A(eiw) and A(eim) is
hermitian in the ordinary sense. For real A(z) , this
condition simplifies to A'(1/z) = A(z) and will be called

reverse-symmetrical. A real scalar function f(z) satis-

fying £{1/z) = f(z) 1is also called reverse-symmetrical.

It 1is most convenient for typographical reascns

Lo let
A (z) = A¥(1/ 2).

This notation is used throughout the remainder of this

paper. Notice that A,,(z) = A(z), (A B), = B, A, .

Definition 3.3-3. A rational m x n matrix A(z) 1is said

to be reverse-unitary if

A(z) Ay(z) = 1_ .

A reverse-unitary matrix is also called all-pass.
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Definition 3.3-4. A matrix A(z) 1s saild to be regular

if it is analytic inside the unit circle 'z' <1. A

matrix A(z) 1s said to be Hurwitzian if it is analytic

inside and on the unit circle 'zl <1.

3.32 Spectral Decomposition

The decomposition of polynomial matrices that is
discussed in this section 1s very closely related to that

of the Spectral Theorem of Linear Algebra (Hoffma: and

Kunze, 1961, pp. 275-6) which 1s stated for normal opera-
tors. Thus we will call the decomposition theorem the

Spectral Theorem,

Before stating this theorem we shall investigate
the properties of the latent zeros and vectors of a poly-
nomial matrix. These properties will account for the

principle restrictions placed upon the theorem.

3.321 Latent zeros and vectors

Let us consider the n x n square polynomial

matrix
A(z) = A + Az + + A_Z"
O 1 LN Y ] m
The latent zeros z, of A(z) are those values of
z =2, 1=1, ..., p (p=nm if A(z) 1is non-degenerate)

for which Det A(z) = O . Since the determinant has real

coefficients, complex roots may only occur in conjugate

34
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pairs.

Frazer, ct al., (pp. 61-65, 1947) prove the
following properties concerning polynomial matrices at the

zero positions z,

(a) The matrix A(z&) 1s necessarlly singular.

When z, *s an unrerz2ated root, A(z has rank

L)

I‘(A(Z )=l’l-1.

L)

(b) When A(z&) has rank r( A(z£) ) =n -gq,
at least q of the roots 215 205 eees zp are equal to

ZL [ ]

(¢) The matrix A(z&) does not necessarlily have

rank n - q when z, 1s a root of multiplicity q .

(d) when A(ZL) has rank r( A(ZL) ) =n-1

the adjrzate AdJ A(ZL) has unit rank, r(AdJ A(ZL) ) =

|
[
[ ]

Hence 1t 1s expressible as a product of the form

— 1
AdJ A(zy) = u, v}
where u, and v, are column vectors (called latent

vectors) of length n and are constants appropriate to the
selected zero Zy o At least one element of each vector

is non-zero.
finally, if we let

dm
dz"

A(z)

‘\1

I

£
o
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we have

(e) When A(z,) has rank r( A(ZL) ) =n-q,
where q > 1, the adjugate matrix AdJ A(z) and its

derivatives up to and including Dq-2 AdJ A(z are all

L)
null, However, the matrix Dq-1 Adj A(zL) has rank gq

and 1is expressible as a product of the form

D31 adj A(z,) = m, 3,

where u, and B, are n x q mtrices, The columns of
these matrices can then be used to form q pairs of latent

vectors u; eand v, .

3.322 Spectral Theorem

It is frequently convenient to introduce the
concept of 2-term operators which correspond to polynomial
matrices of degree 1. If we examine one of these 2-term

operators
I e UZ ()

we see that it 1s closely related to the characteristic

value problem that is usually formulated in terms of X:
U = Ilo

Thus we may apply our existing knowledge of the character-
istic zeros and vectors of constant matrices to the more
general case of polynomlal matrices. This approach is used

in the spectral theorem,




H

Theorem 3.3-1 (Spectral). Let A(z) be an n x n real

polynomial matrix of rank n and degree m
_ m
A(z) = Ag + Az + oo + A2 .

Then A(z) may be represented as

A(z) = Go(z) (1 - Ui2z) ... (1 - u,z)
= G(2z) G (z) ... G, (2) (2.3-2)
or as
A(z) = (I -2,2) ... (I - 3,2) Eo(z)

ﬁi(z) coo al(g) ao(z) (3.3-3)

where Gy(z) and 30(2) are elementary, if, for every

zero z, of multiplieity gq, r( A(zi) ) = n - q, Wwhere

a/ay £t .

Proof. (Claerbout (personal communication) has developed

a similar factorization.)

First, consider equation 3.3-2. Since
iA Bl = IAI |B| , the latent roots zy 1i=1, «¢ce, P
of A(z) must be the union of the latent roots of
Gl, 02, ooy GL . The n 1latent vectors of A(z) and

GL(Z) are given by

AdJ A(z

AdJ (Gy Gy ... G,)

j)

Adj G, (z4) AdJ (Gy Gy «v €, y)

= 'EJ -?_3 AdJ ((70 G-l LX) Gt-l) J = l, eeey NN o

(3.3-4)
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Thus the n latent vectors 4y are the same for A(zJ)
and ;L(aJ) . 'Therefore, if we determine a set of n

zeros of A(z) that have n 1independent latent vectors,
we may recombine them by the well-known formula (Frazer, et

al., pp. 66-68)

-1 -1
rzl 0
u, = (47) 00 (u) o ..'z (4;).0(8)
n -
-1 ,-1
= l
= ‘L 7_L uL

(303-5)

and

GL = I - ULZ .

The 2-term polynomial GL(Z) is a factor of A(z). For,

if we substitute the matrix U, into the polynomial A(z)

L
m -f
A(U,) = Ag+ Ap U, + oou + AUy (3.3-6)
-1 ,-1 -1yim y-1
= u u u u
= Ay + A U 7,7 U L+ AL L(ZL) '

we see that A(!l,) = O identically. Thus G, (z) = 1- u,z
will right-divide A(z) with a remainder of zero (Frazer,
al., 1947, p. 60) and therefore is a factor of A(z).

gt as
(Q.E.D.)

The factorization is continued then by removing
G,(z) by right division, determining n more independent

latent vectors and constructing a second 2-term wavelet

38
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G,.; - This process is repeated until uo(z), an elemerr

tary matrix, remains.

Alternately, we may factor on the basis of the

LR

Here again the latent zeros of A(z) and the factors

latent vectors, Thus, let us consider equation 3.3-3,

ﬁi(z) are the same. The latent vectors of A'(z) are

given by
Adj A'(zJ) = AdJ (EL ?Il ?fo)'

= AdJ ?f)b(zj) Adg (G, _y ... G @)

=) 'EJ H:j Adj (?"L_l o0 ?"‘l ?;'O)' (303-7)
Thus t'.. « latait voetors of A'(=) cooracpo-din: to

Z, i=1,2, ..., n are the same as the n latent
vectors of ﬁl(z) . As before, if we choose n zeros
such that the assoclated latent vectors are independent

then they may be recombined as

- 2, O 1 -1
B} = (2,)eee () . (31)...(gn)

.3-8)
and used to remove G,(2) from A(z) by laft division.

If the zerns and vectors are indz2pendent then

the choice of which n zeros to assocliate with each 2-term
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factor is arbltrary. Altogether, there may be (nm)l/(nt)m
different factorizations. Once the choice 1s made, of
course, the order of factorization must be preserved slnce
multiplication is not commutative, in general. In some
instances the cholice of zeros must be made under certain
restrictions so that the full factorization may be realized.
As Indicated above, this restriction consists of choosing

the zeros so that the latent vectors or b, are lnde-

Ay L
pendent for each set of n vectors. Such a cholce may

always be made if for every zero =z of multiplicity

i
dq, r( A(Zi) ) = n - q; where q/ql <1, Q.E.D.

The detalls of this factorization are illustrated
in Figure 3.3-1. The right half shows the decomposition
in terms of ﬂi and the left half shows the decomposition
in terms of ul .
In general it is not necessary to go through the
intermediate steps of forming 2-term factors to construct
a polynomial matrix from its latent roots and vectors.

This more direct approach is the subjJect of the Spectral

Corollary.

Corollary 3.3-1 (Spectral). Let A(z) be an n x n real

polynomial matrix of rank n and degree m
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Then A(z) 1is completely described by

a) the elementary matrix Go(z)

b) the latent zeros zy 1=1,2, ..., p, and

c) the p (p <mn) corresponding latent
vectors u, or Vv if for every root 2y
of multiplicity gq, r{ A(ZL) ) = n-gq.

Notice that this corollary is not so general as
the spectral theorem in 1ts treatment of multiple zeros

with ldentical latent vectors.

Proof (Suggested by Quenouille, 1957, pp. 5-25) Let us

firce consider the case for which A(z) 1s non-degenerate,
l.e. that Go(z) is a constant non-singular matrix and the

degree of the determinant, Det A(z), 1is p=mn .

Consider the factored form of A(z)

m
A(z) = A (1 - Uyz-...-U 2 )
= Ay G(z) (3.3-9)
where Ui = = Aal Ai . Then, if we inquire about the solu-

tions T2 the equation

u-U,uz-.,...-U uz = 0, (3.3-10)

1

we see that solutions are possible only if the determinant

I-U,2=...-U 2" = 0 (3.3-11)

1 m

is zero. It is zero at the p 1locations =z i=1, ..o,

i
which are the latent zeros of G(z) and consequently of

be



A(z) . Therefore the solution vectors of 2quation 3.3-10

are the latent vectors of €(z). Since
Adj A(sL) = AdJ (AO G(zL))
= AdJ C(z,) AdJ A,

v! AdJ A

= 4y

0’ (3-3'12)

the solution vectors are also latent vectors of A(z) .
Now joln the latent vectors and latent zeros into the

modal matrix

- D = I ——3

T [(ul) (u,) ... (up>]

and the zero matrix

diag [zl, 22, oo zg]

and substitute these matrices 1lnto equation 3.3-10 for u

(3.3-13)

— T

Z

and z:

W7+ o+ U uZT = (3.3-14)

Clearly we can solve this set of simultaneous equatlons for
Ul’ U2, coe Um if the columns of u 7 are independent.
Thls does not occur when a zero of multiplicity gq has
fewer than q I1ndependent latent vectors, that is, if a

multiple root has ldentlical latent vectors.

~Alternately, we may choose to use the vectors
vy for the reconstructior. For thls case we would factor

A(z) as
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A(z) = (1 - Viz = «en =V 2 A,
= T (z) Ag (3.3-15)
Where V, = - A, A81 . Sirce the latent zeros of 0U(z)
are the same as for A(z), and since the latent vectors

of A' are

Adj A'{z

AdjJ (t(zL) A

L) O)'

= AdjJ ﬁ'(za) Adj A
= v u' Adj A} (3.3-16)

we may reconstruct the matrix C(z) by the simultaneous

equations

VIV 74 e VLU 7m -y (3.3-17)

where
v o= [(vl) (v2) ces (vp) . (3.3-18)
The samc restraints hol: here as held for the u vectors.

If Go(z), the e2lementary matrix multiplier, is
not constant, then the number of zeros 1s p < mn . Ve can,
however, proceed as above to find G(z) and then deter-

mine Go(z) by the formula
G (z) = A(z) ¢7?
o(2) = A(z) ¢l (z)

for the factorizatlion ir. terms of the u vectors, or by

the fornu.a

Eo(z) - () a(z)

4y
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for the factorization in terms of the v vectors.

Q.E.D.

These factorizations are illustrated in Figure
3.3-2. The boxes enclosed in dottec« iines represent com-

pletely equivalent representations of the matrix.

Example 3.3-1. (after Claerbout, personal communication)

Consider the polynomial matrix
2 2
A(zC) = 2 - 20z + 50z° -1+ 9z - 20z

bz - 58z° 1 - 11z + 282°| .

The determinant is

A(z) = 2 - 28z + 14222 - 30823 + 2402”
= 2 (1 -22z) (L -32) (1 - Lz) (1 - 52)
(3.3-19)
The adjugate matrix 1is
. A 2 2
Adj a(:) = 1 - 11z + 282z 1l - 9z + 20z
- 14z + 5822 2 - 20z + 5022
(3.3-20)
Substitutiag 2z, = 0.5 into AdJ A(z) gives the latent

1
vectors u, and v

[5 2]

il

o
1
[

Adj A(0.5) = [2.5 1.5 >
7.5 4.5 3

Likewise, if we substitute for the other roots we will find

4
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all the latent vectors:

Zero Latent vector u Latent vector v
1/2 (1, 3)! (5, 3)
1/3 (1. 4) (2, 1)
1/4 (0, 1)° (1, 1)
1/5 (1, 6)° (1, o)

Now let us follow the reconstruc 'ons conslidered in the

Spectral Corollary.

First, we may pre-divide by AO to find

I - z - z
o 1 -1 11 58 -28
Ag <1 - Uz - U222> (3.3-21)

Set up the matrices W and Z7Z and substitute into the

the transpose of equation 3.3-14

_ -~ - - _ -
12 3/2 1/4 3/4 ' 1 3
13 43 1/9 4/9 1 I B
0 1/ 0 1/16 0 1
!
1/5 6/5 1/25 6/25] L Us 1 6]
(3.3-22)

and obtaln the values of U1 and 02 glven above in

equation 3.3-21.

Similarly, we may post-divide A(z) by Ay to find
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A(z) = (1 - [10 1] - - [—25 -5] 2° > > -1]
\ -7 4 29 1 o 1
I -V,z - V,2° A
1 2 0 (3.3-23)

We set up the matrices U and 7 and substitute into

equation 3.3-17

(52 3/ 54 34 [ | (5 3]
2/3 1/3 2/9 1/9 Vi 2 1
1/9 1M 146 1/i6 B
v
: 2
15 0 1/ o | | | 1 0
(3.3-24)

to obtaln the values of Vl and V2 given above 1n

equation 3 3-23.

Equations 3.3-21 or 3.3-23 may also be
reconstructed using the algorithm of the Spectral Theorem.
We will illustrate the process for only the u latent

vectors. Recall that this factorization is in the form

A(z) = As (1 - u, z) (1 - i, z)

We arbitrarily choose the zerouv z = 1/4, 1/5 to obtain

u, = [o 1] [u o] T-6 1]
1 6] o s L 1 0
- [5 o]

6 4

2 gormnT e e m———— o —— R o . T B e e
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If we now post divide G(z) (from equation 3.3-21) we find

(e )

which has latent vectcrs

zero latent vector u
1/2 (1, -4)
1/3 (1: '5)'

Of course, this 1s not the only possible factori-

zation. Altogether, there are

()t  _ 24 _ ¢
(nt)™ Yy

different representations. Using the method illustrated
above we find that




1 0 3 1 4 -4] 2
= A Z =
0 1 -14 11 53 =28

[ -2 1] < [ 5 0]

= (I - 2 M1 - z
-20 7. L 6 4]

< "4 Q) > (-1 1] \

= I - @) I = 2
| 10 2] _-21& ]
[ 0 1] 3 Q]

= I - 2 I -~ Z
b—lo 7J —-4 ‘IJ
" 4 Q] [ -1 1]

= I = &2 I = VA
_ 4 3_J _-18 (.’-J
[ 1 1] 2 O]

= I - yA I - yA
i -8 7] | -6 l&_
C 4 Q] [ -1 1]

= I - yA I - VA
|2 5 -12 6 .

Example 3.3-2, (Multiple roots)

Consider the polynomial matrix

A(z) = [3 -6z + 3 z° 1 -4 z4 2° ]
2

1 -2z + 22 2 ~-8z+ 7z

Using the standard factorization techniques we find that

this has latent zeros and vectors
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If we set up the reconstruction equation 3,3-14

(12 12 s s [ oy (1 1]
1/2 1/2 14 1/ ___1_ _ 1 1
1 0 1 0 uy 1 O
|1 0 1 o] L 1 |1 0]
we find that the left hand side is slingular. However,

zero latent vector u
1/2 (1, 1)
1/2 (1, 1)
1 (1, 0)
1 (1, 0)

we use the algorithm outlined for the Spectral Theorem and

use the zeros 1/2 and 1 for each of the 2-term factors,

we fird
Az) = - [-1 -] 2\ /1- [-1 -1] =z

0 -2 0 =2 .
Thus, this approach is slightly more general.

3.33 Invertibility

Definition 3.3-5. A one-sided matrix-valued wavelet A(z)

1s said to be invertible if there exists a one-sided left-
ol

or right-inverse wavelet A ~(z) .

Let us consider only square matrix-valued wavelets.

The inverse of such a wavelet i1s gliven by

A—l(z) = AdJ A(z
Det A(z .




The condition for invertibility is that the determinant

of A(z) has a stable inverse. This condition when applied
to the determinant of a finite wavelet 18 exactly the same
as that applied to the scalar wavelet. That is, the zeros
of the determinant of A(z) must be outside the unit

circle in the 2z plane (see section 3.22),

3.34 Sminith-McMillan Canonical Form

This canonical form for rational matrices in-
volves the terms contained in the determinant and the rank
of the matrix. It is the subject of the classical Smith-
McMillan Theorem (Gantmacher, p. 134, 1959 and McMillan,
p. 581, 1952).

Theorem 3.3-2 (Smith-McMillan). Let A(z) be an mx n

complex rational matrix of normal rank r . Then there
exist two elementary polynomial matrices C(z) and F(z)

of orders mxr and r x n, respectively, such that

ml(z) , mg(z) s eee s mr(z)
b(z)  #yla) v (2)

A(z) = c(z) diag[

= CDF (3.3-25)
where

a) Mk(z) and mk(z) are relatively prime

polynomials with unit leadirng coefficients, 1 < k < r;

Y B aeey ey - v T ;. mg*ﬁ;_ R ‘-—‘EQ‘-[—.'—?;‘ZT?’ -




b) Each mk(z) divides mk+l(z),

()
IA

N
1A

r - 1, and each &L(z) divides ﬁt_l(z),

2<41<r
c) The diagonal matrix D(z) appearing in
equation 3.3-25 is, subject to a) and D), uniquely

determined by A(z) . It is, in fact canonic;

d) If A(z) 1is real, the w's, #%'s, C(z),

and F(z) may also be chosen real;

e) The finite point z = z, 1s a pole of A(z)
of order k 1if and only if it is a zero of ml(z) of

order k .

f) The order of z = c« as a pole of A(z) 1s

the same as the order of 1/z = O as a pole of A(l/z) .

A rational matrix is said to be Smith-McMillan

canonic if it 1s square, non-singulzr and diagcnal with

properties a) and b) 1listed above. The rational
functions ml/%l, me/%a, s mr/ﬂrr are generalizad

invariant factors of A(z) . Clearly, since C and D

are elementary, Det A(z) = Det D(z) . A set of polynomials
are said to be relatively prime if their largest common

denominator is 1.

Frazer, et al., (pp. 87-92, 1947) or Gantmacher

(pp. 134-139, 1959) show in detail the technique for the
reduction of a matrix to canonical form. The method em-

ployed is reminiscent of the elimination methods for in-




vertinr a matrix. We will :Illustrate it with a polynomial

matrix example.

Example 3.3-3. Reduction of a polynomial matrix to can-

onical form.

Let us consider the matrix

A(z) = 2+ 2z z ]
1l

6 + ZJ

a) Put a one in the first diagonal position. This is
accomplished by multiplying A on the left by

S1 = 0 1
1 ¢

Ala 1 6+ 2
2+ z A .

b) Reduce the other terms in the first row and column to

to obtain

zero, This accomplished by multiplying Al on the left by

82 = 1 O
-{2 + 2z) 1
[1 6+ 2
0 -2 - 7z - 12]

and multiplying A2 on the right by

to obtain

n
it
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0, = 1 -(6 + 2)
0 -1

to obtain

>
(W8]

(]
r_—-1
@) -
N

n
+ o
-3
N
+-
X
—

c) Now, if we let

c (z)

"
-
(2]
N
(77]
[
N
J
[
q
ﬁ
N
+
N
(-
h—-——J

F (z)
-1

(]
o
=
=
]
—
o m
]
(@)
]
N
L_J

we obtain the Smith-McMillan canonical form

A(z) = CDF

D = A3 = 1l o)
) (z + 3)(z + 4)

Clearly C and F are elementary matrices and

where

D 1s canonic. That is, 1 divides (z + 3)(z + 4) and
Det D(z) = Det A(z) .
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3.35 Robinson Canonical Form and All-Pass Systems

Theorem 3.3-3 (Robirzon Canonical Jform). Any full-rank

wavelet A(z) can always be uniguely represented by the

Robinson canonical form

A(z) = Ao(z) P(z)

where Ao(z) is invertible and P(z) 1s regular reverse-
unitary (i.e. all-pass). More generally, if A(z) 1is an

nx m matrix and has rank r < n, m, then its canonical

form becomes

A(z)

Ao(z) [1r Or,m-r] P(z)

where P(z) 1s a regular reverse-unitary m x m matrix.

)

Matrix reverse-unitary (all-pass) systems have
similar properties to scalar all pass systems. W2 shall
state several theorems concerning them now (Robinson,

1962, and Youla, 1962).

Theorem 3.3=4., An n xm matrix P(z) of rank r is
analytic in the entire =z plane together with its inverse
(either left, right, or both) 1if and only if it 1s an

elementary polynomial matrix,

Proof: The "if" part is obvious. According to the
Smith-McMillan Theorem (3.3-2), the analyticity of P(z)
for all 2z 1implies that all of the denominator terms,

¢ of the canonical form be constant. Now the existence

i’
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of a left or right inverse .implies that either n=r or

m=r, respectively. The canonic form for P"I(z) is

diag [ir(z)’ tr(z), L tl(z)]

on(z) @, (2) o (2)

The analyticity of P >(z) in the entire plane implies
that o,, 1 =1, ..., r 1s constant. Therefore P(z)

1s the product of three elementary polynomiaul matrices,
of rank r . Q.E.D,

Theorem 3.3-5. A reverse-unitary rational matrix is

bounded on the unit circle.

Proof: Suppose P(z) 1s mxn and P(z) P,(z) = 1, -
Thus P(eiw) P'(eiw) = 1., and, writing out the diagonal

elements in expanded form,

m
E '(?)rk(eiw) 2 = 1 (k = 1‘ 2’ ooy n) .
=]

1A
-

o‘o'(P)rk(eiw) (P = 1, 2’ ee oy m;
k. .1’ 2’ o0y n),

for all w , Q.E.D,

Theorem 3.3-6. The only regular reverse-unitary matrices
P(z) with regular inverses are constant v .%ary matrices

(trivial all-pass systems), If P(z) 1is real it is real-

orthogonal.

Proof: Suppose P(z) P,(z) = 1., say, where P(z) 1is a
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reguiar n x m reverse-unitary matrix. The analyticity
of its right inverse inside the unit circle implies that
of P(1/2) in the same region and therefore that of

P(z) outside the unit circle including infinity. Now the
poles of ?(5) are the complex conjugates of those of
P(z) . Hence P(z) 4s analytic in the entire z plane
and bounded at infinity. By Liouville's Theorem it must
be a constant unitary matrix. If P(z) 1is real it must

be real orthogonal by definition. Q.E.D,

3.36 Delay

The delay of a one-sided matrix-valued wavelet
A1 is a measure of how the operator radistributes the
energy of an input process. It is defined in terms of

the partial energy

i
£ = L
3=0

tr(A1 Ay) .

The following theorem is a discrete analog of a
theorem given by Robinson (pp.83-88, 1962). Since his
proof 1is rather long and involved, it will not be repeated

here.,

Theorem 3.3-7 (Minimum Delay). The delays of the set of

wavelets Ai(z) which have the same ‘nvertible Robinson
canonical foria Ao(z) are greater than or equal to the

delay of Ao(z). Equality holds if and only if the all-
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pass system P(z) 1s trivial. That is, the partial ener-

gles obey the relation

k
I tr (A
J=0

(A

. g »
1)3 i)J < tr (AO)J(AO)J for all k

where J 1is the time index.

3.37 Phase

As in the scalar case, the Fourier transform of
the operator A(z) 1s determined by restricting our atten-

tion to z = e-iw

. We may proceed to express each poly-
nomial element of the matrix in terms of an amplitude
characteristic and a phase characteristic. The questior
then arises whether there are any simple measures of this
phase matrix, other than the determinant of the pelyromial
matrix, which would correspond to invertibility. That is,
can we formulate a minimum phase theorem for matrix-valued

wavelets?

An empirical investigation was made of this ques-
tion which gave negative answers for all measures tried.
These measures included 1) the trace of the phase-lag
matrix, 2) the phase-lag of the trace of the polynomial
matrix, and 3) the norm of the phase-lag matrix as a
function of ®w . 1In every case counter-examples could be
found for which the wavelet was invertible but the measure

tried did not give a minimum,
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Another approach which might prove more succesg-
ful would be to define a matrix amplitude characteristic

@(w) and a matrix phase characteristic ¢ {w) such that
A(e"im) - G(uw) e-i;@(w)

This has not beer lnvestigated. However, should it prove
to have a minimum phase property associated with inverti-
bility, this measure would have limited application because
of the difficulty of computation and cognition of such

characteristics.

3.4 Multi-Dimensiocnal Wavelets

Our treatment of multi-dimensional wavelets will
te brief on two accounts. First, there i1s no general
factorization avallable for multi-dimensional polynomials;
and second, in almost all problems with which we are con-
cerned the multi-dimensional process can be mapped into an
equivalent higher ordered one-dinmensional matrix-valued

process.

The absence of any factorization can be 1illus-

trated by attempting to factor the polynomial

2
le +302X

2
+t 815y + 85, Xy + a5, Xy

2 2 22
t 8y ¥ t+ a5 Xy + a5, Xy .

+ a

a(x,y) 800
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If this were factorable, we should be able to find two

polynomials,
b{x,y) = bog + Py X and n(x,y) = Coo * Co1X
Byo¥ + byy¥ C1o¥ + ¢33W

such that b ¢

a . But a has Q degrees of freedom and

b and c¢ combined have only 8. Thus, unless there are

special relaticnships between the elements aiJ’ a(x,y)

is unlfactorable.

3.41 Invertibility

Definition 3.4-1. A scalar multi-dimensional wavelet

a(z) 1s said to be invertible about its origin z = 0
1f there exists a wavelet a 1(z) such that

a(z) a%(z) = 1.

The condition for making an expansion about

z2=0 of a-lgg) is that a(z) do=s not go to zero
inside the unit hypercircle

'z Zy eev Z = 1,

|
nj
3.42 Phase

Perhaps the simplest measure of invertibility
involves the phase-lag of the wavelet. The multi-

dimensional Fourier transform is found by restricting 2z

to the unii hypercircle. Thus
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-iw “iml b {9
a(z,zl, coos zn)-qh-a(e , e s ssey @ )

and by finding the polar representation of this we can find
a multi-dimensiocnal phase-lag characteristic,

-m(w, wi, LK 2N I wn) »

Theorem 3.4-. (Mininum Phase). If the phase-lag character

istic -o(w) ror the wavelet a(.) 1s the same for all
w, =7 or 0 1=1, ..., n, then the wavelet a(z) 1s

PY

invertible,

Figare 3.'.-1 illustrates two phase-lag plots for
two-dimensional wavelets. The variable zy corresponds
to the phase-variable w; . Notice that when a hyper-
surface a{z) = 0 cuts across the unit hypercircle, the
phase 1s discontinuous along the intersection. This is
anaicgous vo the casc of a zero on the unit circle for

one-dimensional scalar wavelets.
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3.42

Invertible wavelet: 1,0+ 0,3 z + 0,5 z1

"i \/ /—\

Non-invertible wavelet: 1,0 + 0.5 z + 0.7 zy

€ v Giscontinuit

o

Figure 3.4 = 1: Two dimensional phase-lag characteristics
for two wavelets, The phase-lag is discontinuous
across the zero hyper-surface in the secund case,
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3.43

3.43 Mapping into one-dimensional representation

Much of the algebra of multi-dimens.onal operators
and autocorrelations represents a special case of the gen-
eral matrix-valued, one-dimensicnal algebra. For this
reason, we seek to map multi-dimensional convolution into
a matrix-valued notation rather than to develop the algebra
in multi-dimensional notation. Thus, this section will
give an extensive account of a mapping from multi-dimensional

notations to one-dimensional notation.

As pointed out in Chapter 2, this mapping
necessarily assumes a preferred, or time-like, direction.
It is this dimension that remains undisturbed after the
mapping. Thus, rather than thinking of a multi-
dimensional wavelet as a lump in multi-dimensional space,
we may visualize it as a set of time-wavelets associated
with various spatial positions. Then we take the logical
step of placing these time-wavelefs into a vector repre-
gentation. This process is illustrated for a three-
dimensional wavelet in Figure 3.4-2, Notice that before
the vector representation can be accomplished, we must

make some arbitrary orcédering of the spatial points.

Now let us consider convolution. If the opera-
tor wavelet, a, 1s mapped into a vector of time wavelets,
a, and the output, y, 1is mapped into a similar vector,

Y: then the input, Xx, must be mapped into a matrix, X .

ob
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3.43

Preferred Dirsction

t
a .
t, 11’12
i2
iy
z-transform in
Preferred - Directlion

311’12(2) : ao’o(z) al’o(z)

ao’o(z) ’l,l(z) 51,2(3)

{

Put the indices of a (z)
411

in some arbitrary monotonic order

Y

aJ(z) : a(z) a3(z)

12(2) au(Z) as(z)

Spread these time-wavelets into a
vector representation

Y

2(2) - [31(2): 32(2)9 33(2)a a“(z),u5(z)]

purseter s s

Firure 3,4 - 2: Mapping of a multi-dimenslional wavelet
into vector notatlion,
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3.43

This preccess is illustrated in Figure 3.4-3. Each column
of X represents the configuration for the dot product
for one spatial lag of the convolution. We car think of
this mapping for each column as the superposition of the
spatially reversed a grid onto the x grid at some lag.
The lag for a particular column corresponds to the order-

ing of the output grid.

Let us now put the methods discussed above on
a formal basis. Since there are no well-defined operators
for this mapping, we will use short mnemonic words to
represent each operator. These operators will be used

only to define such mappings as described above.

In nearly all of these discussions the scalar
elements may be replaced by matrices, however, to avoid

undue confusion we will make the definitions in terms »f

scalar quantitiles.
REV - Reversing operator

REV reverses the positive sense of all dimensions

of a process:

-1

REV(XI) = X

REV(X(z)) = X(1/z)
Where we define 71 = (-1’ -11, ee ey -iN)

1/2 = (1/2, 1/’211 200y l/ZN) .
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3.43

* =
at,ll,la xt,11,12 yt,ll,iz

@ -

* = convolution JL

zQTranstorn in Preferred Direction
arnd order the indices.

v
al(z) a3(2) . 31(3) x3(z) yl(z) Y}‘;(z) Y7(z)
ay(z) ay(z) ag(z) x,(2) = ¥a(2) y5(2) yg(z) yy9(2)
¥3(2) yg(2) yol2)

1

Map wavelets into matrix notation
(a, represents al(z), etc.)

e

1» 2o a3, 8y a% Xy X, ¢ x3 O 0 0 0 0 O
o Xy X5 0 x3 0O 0 0 0 O

O 0 O

Cc

a 0O 0 0 0 0 O X X5 x3
=

= Y1 ! y3 ¥y ys /3 y7 ys Yg ylo

- -

Figure 3,4 = 3+ Moppins of multi-dimensional convolution
into matrix representation,
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ShIFT = Origin shifting operator

SHIFT alters the origin of a process by adding

a value to each index of the process:

SHIFT (J, X;) = Xy 4 P

Jy In

SHIFT (1, X(z)) = x(z) 2J 2; ... 2

WINDOW - Windnw operator

WINDOW 1isolates a portion of a procesrs, Y,
by superimposing the grid of a process X onto the grid
of Y . The indexing of the new process is that of the

window grid X . We assume that Y has zeros wherever X

extends beyond the defined limits cf Y .
WINDOW (X, Y) = 2
For example consider the 2-dimensional process
X; = %X,-1 %0,0 %o,1

*1,-1 *1,0 *1,1

¥y = Ya,0 Y,
Yo,0 Yo,1
Yi,0 Y1,

Then the WINDOW operator behaves as

68
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3.43

= WINDOW (X, Y)

| e

= zo,-l z0,0 zo,l

1,-1 %1,0 %A,
ORDER - Ordering operator

ORDER converts a vector of 1 = (t, 13, ..., 1)
into another vector (t,J) such that J takes on a
unique value for each of the grid positions (11, 1007 1N)

of a finite process:

ORDER (X, ) = X 4

il"" 1"

The actual process used to select the order of
enumeration is entirely arbitrary and need not be speci-

fied until a specific application is made.
MAP1 - Mapoing operator

MAPl] maps a multi-dimensional process into a
vector-valued process, Consider a multi-dimensional

process A, 5= ORDER (A l< J<N then
F ]

t,1)
MAPL (Ay ) = Ay

= [At’l’ At’a’ [ NN ] At," ] L

MAP2 - Mapping operator
MAP2 corresponds to the matrix mapping of ¥X(z)
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that was made 1n Figure 3,4-3, It is defined in terms of

the operators above,
X = MAP2 (a,x)

- MAP1 (onnan (xt»E))

-~

]
where Xt Kk = MAP1 <ORDER [WINDOW (SHIFT(K, a), REV(x)]>
’—

-

That 1s, xt Kk represents the columns of trhe matrix X
’—

located iIn an array like that of the convolution of a
and x . The individual columns of Xt g are formed by
’—

shifting the grid of a by an amount k, superimposing it

on the spatial reverse of x, and then ordering and map-

ping this intersection according to the indices of a .

Now, in terms of the z-transforms
a(z) x(z) = y(2)
corresponds exactly to
MAPY (a(z)) MAP2 (a, x(z)) = MAP1 (y(z))

where a(z) represents the z-transform of a 1in the

preferred direction only.
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4, PACTORIZATION OF AUTCCORRELATIONS

The operation of autocorrelation is generally
defined as the expected value of the cross-product of a
process with itself as a function of time and spatial lags.
It has the very useful property of removing all phase in-
formation from a stochastic process. If a time-series may
be characterized as the convolution of a white light process
with a wavelet, then the autocorrelation of the process
isolates the amplitude properties of the wavelet. This 1is
because the autccorrelation of white light is zero except
for a pulse at lag zero, These properties of stochastic
processes have been treated by many authors and from many
different viewpoints, Some of the salient works include
Riesz (1907 and 1952), Fejer (1916), Kolmogorov (194la and
b), Karhuenen (1947 and 1949), and Szego (1959). Wold
(1938) stated the decompositional properties in terms of

stochastic time series as follows:

Theorem 4.1-1 (Wold Decomposition). Any stationary process

xt can be uniquely represented as the sum of two mutually
uncorrelated process xt = Ut + Vt’ where Ut is deter-
ministic, and vt is the convolution of a one-sided wave-

let with a stationary white-light process.

Robinson (1962) and Wiener and Masani (1957) have
extended this theorem to specify a particular deéomposition

in terms of an invertible wavelet.
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With this brief discussion of the motivation
of autocorrelations (for more detalled discussions see

Wiener, 1949; Whittle, 1954; Wiener and Masani, 1957 and

1953; and Aastey, 1964) we will go directly to a discussion
of thelr properties and factorizatiors, In general, most
of the factorizations are made in terms of correlations

of finite ienzth; however, some of the cases are easily

extendible (o infinite 1l=2ngths.

4,1 One-Dimensional Scalar Autocorrelations

The theory o one-dimensiocnal scalar autocorrela-
tions 1ls well known., Thus we need only state results in
this section for the purpose of giving an intultive intro-

duction to the follewing sections.

Let r(z) represent a real autocorrclation of
length m+ m+ 1

-1 m

-m
- P 2 o s e
r(z) = r__ 2" + ... + r,z +rg+r o+ tr 2

m
then

a) r(z) 1is reverse-symmetric, that is

r(z) = r.(z)
- r(1/z2) .
b) r(e”!") 1is non-negative, that is, the

cosine transform of the autocorrelation is

non-negative,




4.1

c) ro > r, with equality holding only if the

input process 1s perlodic, i.e. deterministic.

d) The real frecuency zeros, that is, the zeros
on the unit circle, , z ' = 1, are of even

multiplicity,

e) For every zero z, of r(z) inside the unit
circle, there 1s a corresponding zeroc 1/'z1

outside the unit circle.

It is interesting to note that since the cosine
transforms of autocorrelation functions and of minimum de-
lay wavelets are both non-negative (see Section 3.25), the
center point and right half of a scalar autocorrelation

forms a minimum-delay wavelet.

(Kunetz (1964) has proven that a synthetic
selsmogram which includes all multiple reflections forms
one slde of an autocorrelation function. In view of the
results obtained above, we can sharpen his result to say
that a synthetic seismogram which includes all multiples
and the initiating pulse is minimum delay, if, and only
if, the initiating pulse is minimum delay (Kunetz took this
pulse to be a unit spike, which is certalinly minimum
delay).)

73




4.11

4,11 Pactorization Theorem

An autocorrelation function may always be factored
to give a wavelet a(z) such that its auvtocorrelation,
a(z) a,(z), equals *r2 original autocorrelation. 1In
gereral the factorization is not unique but it may be made
unique by requiring that a(z) be a one-sided invertible
wavelet, i.e. minimum delay. Then this wavelet 1is the
Robinson canonical minimum-delay form of all other factori-
zations. These properties are stated more rigorously in

the factorization theorem.

Theorem 4,1-1 (Autocorrelation Factorization). Let r(z)

be a real scalar autocorrelation cof degree + m . Then

there exists a —eal polynomial (wavelet) a(z) of degree
m such that
a) »(z) = a(z) a,(z) .
b) a(z) and a'l(z) ar«: both analytic inside
the unit circle 'zl <1, i.e. a(z) is
one~sided invertible, minimum delay, or mini-

mum phase.

¢) a(z) 1is unigue up to withii & trivial all-
pass system multiplier, i.e., if b(z) also
satisfies a) and b), then b(z) = p a(z)
where p 1s a constant such that pp =1 .
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d) Any factorization of the form r(z) = c(z2)c,(2)
in which ¢(z) 1is not invertible is given by

c(z) = a(z) p(z)

p(z) being an arbitrary regular all-pass

systenm,

Since the proofs of parts c¢) and d) a&are very similar to
that for matrix-valued autocorrelations we will defer the
proof of those parts until the next section (also see
Robinson, 1963, 9. 179). The proofs of ' “rts a) and b)
consist of showing that a factorization with the necded
properties exist. We will state three factorizations here
but will defer again until the next chapter for the dis-
cussion of approxiamte factorizations since tane scalar
methods are just special cases of the matrix-valued tech-

niques.

4,12 Methods of Pactorization

4,121 woldian or syectral analysis

As pointed out at the beginning of section #4.1,
every zero, a,; of the polynomial r(z) is associated
wi.i a zero 1/ 4 + Thus if we choose the m zeros

g, 1i=1. ..., m which fall outside the unit cirecle to

i
form the polynomial, a(z), then this polynomial will
certainly concur with parts a) and b) of the factori-

zation theorem,
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h,122 , 4.123

4,122 Kolmogorov

=

If we have the square-gain (that is, the :zosine

-1w)

transform), r(e . of the system, then the waveiet,

a(z), 18 given by

a(z) = T aiz1
1=0
n
iw 9
1 i
= exp[w-j:ﬂ —i—i-uf-‘z—log r'(em) dWJ,|Z|<1

(Robinson, 1963b or Karhunen, 1G49).
4,123 Zero-phase

Th> zero-phase factorization 1s also based upon
the cosine spectrum, however, it does not produce a wave-
let that satisfies part b) of Theorem 4.1-i. If we
desire the wavelet to be two-sided and symmetrical then

we need only take the square root of the spectrum

a(e'iw) = ,/r(e-Iw) . This wavelet has zero phase.

The spectral and Kolmorgorcv factorizaticns are
equivalent (Robinson, 1954). The spectral technique 1is not
a good computational method because of the well known
Gifficulties in finding the zeros of a polynomial, The
Kolmorgorov technlique becomes approximate 1n computer
applications since we must compute some continuous func-

tions digitally. It has, however, been successfully

sttty s BRI

applied to factorization problems (Galbraith, 1963).
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4,2

4,2 One-Dimensional Matrix Autocorrelations

The matrix-valued autocorrelation function is
very similar to the scalar function.

Let R(z) be an n x n quasipolynomial auto-
correlation matrix of rank r, then

a) R(z)

is reverse-symmetric, i.e. R(z) = R, (z).

b) R(eiw) is non-negative definite, 1i.e.
g' R(z) b > 0 for every n vector b and
every vailue of 2z on the unit circle.

c) The determinant of R(z), d(z) = Jet R(2)

is reversc-symmetrical d(z) = d,(z) .
d) The Smith-McMillan canonical form satisfies
D(z) = D,(z) .

e) The real frequency zeros, i.e. the zeros on

the unit circle, of the diagonal elements

of D(z) (and of d(z)) are of even multi-
plicity.

Proul, Statement a) 1s obvious. If we let X(z) re-

present an arbitrary finite process, then
Re(z) = (X(2) X,(2)),
= Xeu(z) Xo(2)
= X(2z) X,(z)

= R(z)
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|

Statement b) follows if we note that on the unit circle
the determinate of R(z) 1is

=
=

-
=

‘x(eiw) x’(eiw)' - ’X(eiw)l 'X (e-iw)'
!X(eiw) ' 'X (eiw)‘

> 0

IR Af R R

unless R(z) 1is null.

Statement c¢) follows directly from a). For statements
d) and e) we let R(z) = C(z) D(z) F(z) be the Smith-
McMillan canonical form of R(z) . Now, since R(z) =
Re(2), C(z) D(z) F(z) = F,(z) D,(z) Cuz) . But D(z)

and D,(z) are both canonical to the same matrix R(z)

i

I

and therefore by the Smith-McMillan Theorem must be the
same. Thus every diagonal element of D(z) is reverse-
symmetric, and consequently any zero z, is accompanied
by a zero 1/%L . However, if z, 18 a zero of R(z)
then it must also have been a zero of X(z) . Since X(z)

is real, it has a real canonic form Dl(z) and
D(z) = Dl(z) (Dl)* (z)

But since D1 is real, every root z, must be accompanied
by its complex conjugate EL . Therefore for every root
|2L| = 1 on the unit circle we must have four roots z,,
1/zy, 2z,, and 1/z, . But z, =2/2,, 2, =1/z, 1if
|2L| = 1 . Thus all roots on the unit circle must occur

= in pairs. Q.E.D.
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4.21 Factorization Theorem

A matrix-valued autocorrelation may always be
factored into the product of a wavelet with its reverse-
transpose. This factorization is made unique if we re-
quire that the wavelet be one-sided and invertible, 1i.e.
minimum delay. This review is stated more concisely in

the Matrix-valued FPactorization Theoren.

Theorem 4,2-1 (Matrix-Valued Autocorrelation Pactorization).

Llet R(z) be a real n x n quasipolynomial autocorrela-
tion matrix of rank r ., Then there exists a real nx r

polynomial matrix A(z) such that
a) R(z) = A(z) A, (z)

b) A(z) and A'l(z), its left inverse, are
both analytic inside the unit cirele. If

R(z) 4s full rank and non-degenerate, A(z)
is minimum delay.

¢) A(z) 41s unique up to within a real-orthogonal
matrix multiplier on the right (a trivial all-
pass system), i.e., if Al(z) also satisfies
a) and b), then Al(h) = A(Z) T where T
is r xr, constant and unitary, T T’ - 1r .

d) Any non-minimum delay factorization of the
form R(z) = C(z) C,(2) 1in which cC(z) 1is
nx®w m>r, and polynomial, is given by
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the Robinson canonical form

c(z) = A(z) { 1, Cr,m—r] P(z) .

-

P(z) being an arbitrary rational regular
m x m reverse-unitary matrix (that is, P(z)

is an mx m all-pass system),

The proof to this important theorem 18 divided
into two parts. First we prove parts c¢) and d). Then
parts a) and b) are proven in the next section by
demonstrating factorization algorithms which produce wave-
lets having the given properties, Four such algorithms are
krewn., Two produce A(z) by analytical manipulations and
two give A 1(z) by approximate techniques.

Proof, Consider statement d) first. Let C(z)=A(z)Q(z)
where A(z) satisfies a) and b). Then

C(z) Cu(z) = A(z) Q(z) Q,(2z) A (z)
= A(z) A,(2)
Q(z) Qu(z) = 1,
where Q(z) = A'l(z) c(z) 1is obviously analytic inside the
unit circle, i.e. P(z) 1is an arbitrary mx m reverse-

unitary matrix that incorporates Q(z) in its first r

rows; 1i.e.,

Q(z) = [lr

or,m-r] P(z) .

30
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Now let us consider statement c), Let A(z)
and Al(z) be two matrices satisfying a) and b), and
let A(z) = Al(z) Q(z) . Then

Az) Ay(2) = A (2) (A)), (2)
= A(2) Q(z) Qu(z) (A)), (2)

Qz) Qu(z) = 1,

where Q(z) = Ail(z) A(z) 1is analytic inside the unit
circle. But we also have Q(z) = (A)), (z) A7Y(z) and 1t
is therefore analytic outside the unit circle. By Theorem
3.3-6, Q(z) 41is a constant real orthogonal matrix.

4,22 Analytic Pactorization Methods

Both of the analytic factorizations depend upon
the factorization of an elementary autocorrelation matrix.
We will discuss this technique first. The algorithm was
first presented by Oona and Yasuura (1954, pp. 125-177)
and later expanded up-~n by Youla (1961, pp. 176-178) for
paraconjugate-hermitian matrices. The following statement
has been altered to account for the properties of reverse-

symmetric matrices.

4,221 Elementary autocorrelation matrix

Consider an r x r positive elementary quasi-
polynomial reverse-symmetri matrix, i.e., an elementary

autocorrelation matrix, R(z) . Because of t.. sositive
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4,221

im), all its diagonal elements are reverse-

nature of R(e
symmetric and positive on the unit circle. Let

q, SQQ S5 e 24, be the maximum degrees of the diag-
onal entries arranged in non-decreasing order. Since

R(z) 1is reverse-symmetric, the q's arz non-negative
integers. Agaln invoking the positive character of

R(eiw), it follows that no element in R(z) has degree
exceeding q, . Thus q, =0 if and oniy if R(z) 1is a
constant symmetric positive-definite r x r matrix, in
which case it can be written as AA* by a number of stand-

ard techniques. Excluding this relatively trivial situa-

tion, we will assume q, >0,

We begin by interchanging the rows and columns
of R(z) 80 as to make its diagonal elements
(R)ll’ (R)22, coes (R)rr possess the degrees q;, Qg «.e»
q,, Trespectively. Call the rearranged matrix Rl(z) .

Then there exists a permutation matrix K such that

R, (z) = KR(z) K (4.2-1)

R is also elementary, reverse-symmetric and positive.

1

Next we force each dlagonal term to have degree
q, - Let us begin by defining a non-increasing sequence

of non-negative integers 01, dé, coey a; by

0'1 - qr-qi 1i=1, 2y, seep I
(h.?'?)
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4,221

and the r x r diagonal matrix H(z) by

; o
H(z) = diag [(l - le) a-l, (i - zkz) 2, cees (1 - zkr) 0;‘]

(4.2-3)
where k, =+ 1 chosen so that the degree of the non-
diagonal terms do not exceed Qn - Note that 0';, =0 ,
The r xr matrix

Ry(z) = H(z) Rl(z) H,(s) (4.2-4)

is quasipolynomial, reverse-symmetric and positive.
Moreover all of its diagonal elements have the same degree

qQp - Since Rl is elementary, it is clear that
Det Ry(z) = 0(z7) (4.2-5)
where

o= 0+ T+ 0+ O (4.2-6)

But from equation 4,2-2
o< (r-1)q,. (4.2-7)
Ra(z) may be written in expanded form as

- '] b of 1 -1 ;o
Ra(z) 'rqr z + coo + T& z "+ Tg+ T& Z 4+ eee + T&rz

(’-l» .2-8)
where the T's are constant r x r matrices. The impor-
tant observation is that T is singuler, i.e, Det T =

p 9
0 for otherwise equation & .2-8 would yield
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rq,

Det Re(z) = 0z ) (4.2-9)

which contradicts equations 4,0-5 and 4.,2-7. This deduc-
tion implies that Tq contains a principal minor G of

r
order 8 x 8 which is non-singular and such that the minor

T created by adding the (s + 1)th row and column to G
is singular. Thus we may add a linear combination of the
first 8 rows of Tqr to the (s + 1)th row and the
same linear comblnation of the first s coluuns to the
(s + 1jth column such that (Tqr)s+l, c4] 1S reduced to
zero and no other diagonal term is affected. Hence for

the correct choice of a constant r x r non-singular

matrix Kl’

¥ = KT, K (4.2-10)

has a zero element in the (s+1, s+l) place. From 4,2-8
' Ar 1
=9y (4.2-11)

has a diagonal element in the (s+1, s+l) position cf

degree < Q, -
The matrix
_1 ’ _1
Ry(z) = H " (2) Ry(z) H,"(2) (4.2-12)

is reverse-symmetric, positive and elementary. According

to the definition of R, (see equation 4,2-4) (R2)L m 18
ke, “Km, T ’
divisible by (1 - 2z L) (1-z ™ ™ and according
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4,221

to the definition of R3(z) (see equation 4,2-11) and the
definition of K> R3(z) differs from Re(z) only in 1its

(s + 1)th row and column. More specifically,

8
(R3)y,ee1 " Bady,g41 ¥ 4 (Ra)y,y (=1, 2, ..., r),
(4,2-13)

the c's being scalars. By construction 01‘3 952 v 2
07.,, thus every term on the right-hand side of equation

r
k... o -k o
4.2-13 is divisable by (1 -z 1) 1 (., m'm

]
(k =1, 2, ..., r) . The same considerations apply to the
(s + 1)th row, whence, for all ¢ and m, (R,) is
4,m
TN “Kn, T
divisible by (1 - z ¥) (R -z 7)) 7, and Ry(z) 1s

a quasipolynomial matrix. Since
D 2 ¥ ( '
et R,(z) = Det(K1 ) Det(R(z)) = constant,
R“(z) is elementary.

But Ru(z) is simpler than Rl(z) because the
degree of 1ts (&+1, 8+1) entry 1s at least 1 1less than
the same entry in the latter matrix, while all other corres-
ponding diagonal elements have the same degree as before.

Ccnsequently, after one cycle of the algorithm,

I O T

where

6,(z) = K1 H(z) K71 H(x)
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is an elercntary polynomial matrix ard R, (z) 1is at
least 1 deg: less than R(z) .

We now replace R(z) by Ra(z) and repcat the
algorithm. After a maximum of rq, cycles R(z) 1s re-
duced to a constant symmetric positive-definite matrix

RQ = CC' , so that finally

R(z) = A(z) A,(2)

where

A(z) Gy(z) Gy(z) **° G, (z) C .

r

This factorization does not guarantee that A(z)

1s one-sided. This is because of the ambiguity in the defi-

nition of H(z) . Tc the author's knowledge .ic one-sided
factorizatinng exist for cases in which this algorithm
does not give 2 right-sided factorization. For example,

the =lementary autocorrelation

R{z) = [-z-l +3-2 -zl 4
l -2 1

may be factored either as

R(z)

1]
1
N
]
-
+
—
(W
Fﬁ
-t
]
N
[
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but n¢ right-sided form has been found.

The important steps in this reduction are shown

in Figure 4.,2-1,

Example 4,2-1. Let us consider the elementary autocorrela

tion matrix

R(z) = [-ez‘1+ 6- 2z 4z 2418770 Uz ]
bz~lo1b44142-42° 82-2-32z-l+50-32z+822

Ve will follow the steps of this factorization in detail.
Recursion 1.

Since the degrees of the diagonal terms of R(z)
are already in ascending order we may skip the first step.

Thus

RV (z) = R(z)

Next we make all of the terms have the same degree by form-

ing the product

Rél)(z) - 1) n{l’ Hsl)’ a(1) _ diag[l_z, 1]

=5 22'2-102'1+16-102 +2z° 42724182 1-28+182z-42°
~4z2 41827 1-28+182"1-42° 82°2-322"1450-322+82°

The matrix for the z2 terms 1is

.
Té ).l 2 -4
48
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Thus the diagonal term ('1‘2)2 o can be reduced to zero
14

by the product

Rgl)(z) = K{l) Rél) (K{l))' where K, = [1 d]
2 1l

1 2

= |-227! - 10271 + 16 - 10z + 2z -2z 4 4 - 22

Mwwmwmmmmmmmmmwm"“”WWWMW1

- 227 4 4 - 22 2

Finally we remove the H maltipliers to obtain:

R{M(z) - a7~ R{1) )™

- |-2271 + 6 - 22 2271 4 2
2 - 2z 2

A

These steps can now be combined so that
1l
R(z) = 6 R{Y) (),
where

6, =y K{n'l y(1)

an 1 0
2422 1l
Recursion 2,

Our beginning point is the matrix R&l) from the

last recursion. This time we must exchange the positions
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uf the diagonal terms so that they will have ascending

degrees:

R§2) - k(1) Rél) k(1)'  where K = [o 1]

1 0]
= 2 2 - 22
2271 4+ 2 w2z 4+ 6 - 22

Here we must now multiply by H(‘?) = diag [(l-z'l),l] in
order for the off diagonal terms to be the same degree as

the dlagonal terms.

RZ)(z) = (3) R{2) y(?)

- -22-1 + 4 - 22 -22'1 + 4 - 22
2z 4 4 - 22 2273 4+ 6 - 22

From the coefficients of 2z we may select Kie) such that
the degree of (1&2(2))2,2 1s reduced,

R§2) = Kéz) Rée) K{z)l where Kiz) = [ 1 0]

1l 1l
= {-22-1 + U4 =221 0
0 2

and, proceeding as before, we have

Rée) - (H(Z))-l Rgz) (Hie))'l
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This set of operations may aiso be grouped
-1 -1 -
6, = k(3 "y~ k) ta@

Now we see that the factorization of R(z) 1is given by

R(z) = A(z) A, (2)
where A(z) = 6, fis \/glsa)
-2 -z7l4 1

1

2z " - 3 + 22 2+2z | .

4,222 Spectral analysis

We will begin by illustrating the decomposition
for an nnxn full rank (r = n), non-dezenerate (p=2mn
zeros in the determinant, where m 1is the greatest number
of zeros in any of the quasipolynomial elements) auto-

correlation.

Let us assume that statement a) 1is true. We
begin then by examining the latent zeros and vectors or
R(z) 1in terms of those of A(z) . The latent roots as
specified by the determinat

|R(z)] = |A(2) A.(2)]
- a2y ] |az™h] . (4.2-15)

1

are i% 1i=1,2, ..., p Where the z1 are roots of
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4,222
A(z) . The latent vectors are elither
AdJ R(zy) = AdJ (A(zy) Au(zy))
= AdJ A,(zi) AdJ A(zi)
= AdJ A,(zy) y, v} (4.2-16)
=%y

or

If we choose the p =zeros outside the unit circle we will

satisfy condition b). These zeros and their associated

vectors v, may be used to construct A(z) according to
elther of the two methods illustrated in the proofs to

Spectral Theorem or the Spectral Corollary (Section 3.32).

We must now determine the constant multiplier AO from
the autocorrelation

R(z) = U(z) Ao(Ao)!-t*(z)
(4.2-17)
Agho, = " 1(z) R(z) W2 (2) .

Thus we can only determine Ao to within a real orthogonal
multiplier.,

The factorization used above is similar in intent

to the Woldian factorization for scalar autocorrelations.

Thce -~quence of operations is illustrated in Figures 4,2-2
or 4 02-3 .
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ADJUGATE s SET OF LATENT
. , VECTORS
“‘R.”'..sl .i..i ". o

T

.’o.o-l... , A N ——_..\\ . MATRIX Fﬂl-JCT '
A U e

cnoose Al sET

OF » ZEROS
1 L
&.(l’ e 1 - & 4
ny
1 )
MATRIX DIVIOZ |
with initiel vele ﬂ._{ﬂ-({;h)ﬁ.aﬂin :
CLATENT ZEROS ) gmm.nm g l :
F TR PR | n
cuoosc}. ZEROS / ELEMENTARY . |
OUTSIDE UN!T w’mﬁnm '
/
CIRCLE , Ruta) |
o:tt:urnwn ' lmutmnt MATRI X |
/ FACTORIZAT 0N = |
IRt2)e0 y BEE loiie s )
—F A

MATRIX PRODUCT

" an MATRIX AUTOCORRELATION
R(2) s R Q2™ s R RS-+ Rt an G, 0 GuGw

ve see Figure 4 2.1

Pigure 4.2 - 2: Spectral factorization of a matrix auto-
correlation according tc Theorea 3,3-1.
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tt see Figure 4.2..1

Spectral factorization of a matrix auto-

correlation according to Corallary 3.3-1,
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If R(z) 1is full-rank but degenerate, p < nm,
then the factorization is not complete when we reach

equation 4,2-17. In this case we will have

R(z) = Tl2) R(z) Bl(2)

where H(z) 18 an elementary autocorrelation matrix which
must be factored according to the method of Section 4,221
to glve

A(z) = Uylz)(@).(2)

The complete factorization is

Az) = U(2) Gyl2) .

If R(z) 1is not full rank, then the factorization must be
done in terms of full rank submatrices of R(z) . Thus,
we partition R{z) symmetrically about the main diagonal
such that each r, x r, submatrix nii(z) is full rank.

For example

ke r ——>te— 1 ote— r

8» |
8”1
-]

R(z) = (4.2-18)

10 11 12

20 22

}t“'141.—hp
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Each of the diagonal submatrice (R)ii’ is then factored
according to the spectral theorem technique (given earlier
in thic section) to obtain the r, x r, matrices Gii(z) .

Now form the matrices

[~ "
Goo
G(z) = & 0 (4,2-19)
11 Pl’ r-rl
e -
and the left inverse
r - .Y =
-1 -1
Gy3 Gao
¢lz) = ¢ Gaé
or-rl, ry Or-r2, r,
- x -
(u .2"‘20)

where C 18 a constant diagonal r x r matrix.

Now, the matrix
R(z) = G Y(z) R(z) 633 (z)

is an r x r elementary quesipolynomial matrix (this will
not be proven here) which may be factored according to
Section 4,221,
Thus

R(z,
and A(z)

Co(z) (Gg)a(2)
G(z) 33(2) Q.E.D,

"

%
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Example 4,2-2, (Full rar’-, non-degenerate case)
Consider the autocorrelation matrix
R(z) = 227l 4+ 6 - 22 -z71 4+ 1
l- 2 -z-l + 2 -2 .

We begin by finding the latent roots zy and latent
vectors vy and !1 by the technique outlined in the
section 3,32.

R(z) = 2272 - 9z2"1 4+ 14 - 9z + 22°

= (1-22)2 -2)Q -zY)a - 2271

Substituting these roots into AdJ R(z) we find

zero vector Ww vector v
1/2 (1, 1) (-1, 2)
1 (0, 1) (0, 1)
1 (0, 1) (0, 1)
2 (-1, 2) (1, 1)

We choose one of the roots on the unit circle and the
root outside the unit circle to find A.. Using the no-
tation of section 3,32, we have

S N L A B e
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Thus @(z) =1 -V z

= [1 -1/ z 1/2 z]

0 l1-2)
and
Aghy = Tl(z) R(z) Tl(2)
1 1-z  1/2z r-22-1+6-22 -z 11
T (1-3/22+41/22°)° | _
0 1-1/22 L 1- 2 -z “42-2
-z" 141 0
1/2271 -1/22 141
= [5 1]

Consequent .y we find the desired minimum delay wavelet.

A(z) = T(z:

Aq

2-z 1l
O l-Z .
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4,223 Smith-McMillan

This factorization 1s based upon the Smith-

McMillan canonical form., The algorithm is very simil-v to

i

a factorizaticn technique for paraconjugate-hermitian ma-
trices given by Youla (1961). The system is quite elegant
in its conception since the algorithm is independent of
the rank and degeneracy of the autocorrelation; however, a
flaw remal ' so that fcr some cases a one-sided factoriza-
tion cannot be guaranteed even for the full-rank non-

degenerate matrix autocorrelation.

Before doing the factorization we must investi-

gate several mor~ properties oi quasipolynomial matrices.

Definition 4.2-1. Let G(z) be an n x m rational matrix

of normal rank r . A decomposition of the form

G(z) = P(z) a(z) Q(z)

is said to be an inner-standard factorization if

a) aA(z) 1s r x r, canonic and analytic to-
gether with its inverse in the entire 2z
plane with the possible exc2ption of a finite

number of points on the unit circle.

b) P(z) 1is n x r and analytic together with
its left inverse ireide and on the unit circle.

c) Q(z) 1s 2 xm and analytic together with its

right inverse outside and on the unit circle.
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Interchanging the roles of P and Q gives rise to an

outer-standard factorization. Obviously any inner-standard

factorization of G(z) generatcs an outer-standard factori-
zation of G'(z), G'l(z) and G(1/z) . For example G'(z) =
Q' (z) A(z) P'(2), etec.

It follows from the Smith-McMillan Theorem that
any rational matrix ((z) possesses an inner- and outer-
standard factorization. For, let G(z) = C(z) D(z) F(z)
where C and F are elementary and D 18 canonic. By
factoring the ®'s and +'s (see Smith-McMillan Theoren,
section 3.34) appearing in the dlagonal elements of D(z)
into the product of three quasipolynomials, the first
without zeros |z| <1, the second without zeros
|z| # 1, and the third without zeros in |z| > 1, 1t is
possible then to write D(z) = pt(z) A(z) D™ (z): D+(z)
and 1ts inverse are analytic in |zi <1, A(z) and Al(z)
in |z| # 1, and D (z) and its inverse in |z| >1 .,
Now, choosing P{z) = C(z) D+(z) and Q(z) = D (z) F(z)

we have the desired hreakdown.,

Lemma 4,2-1, Let G(z) possess two right-stanuard factori-

zations G = Py Al Q, . Then,
a) Alz) = Al(z)

b) Pl(z) = P(z) M-l(z) and Ql(z) = N(z)q(z),
where M(z) and N'l(z) are any two rxr

elementary quasipolynomial matrices which
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transform A(z) into itself, vis,

M(z) A(z) N"1(z) = Az) .
Proof. We have
G = PAQ = P A Q (4.2-21)

Then
-1 -1 -1
Al P PA = Q Q (4,2-22)

By definition the right hand side of equation 4.2-22 1is
analytic in |z| >1 ., Thus qu'l is analytic in the
entire 2z plane. According to equation 4.,2-21 the inverse
of QIQ']' 1s Alp? P, 48, = QQil and is therefore
also analytic in the entire z plane. By Theorem 3.3-4
Q™
matrix N(z) . Similarly Pi'lP is an r x r elementary

is therefcore an elementary r x r quasipolynomial

quasipolynomial matrix M(z) . From equation 4.2-21
M(z) Alz) N H{(z) = A (2) .

Since A(z) and Al(z) are both canonic, A(g) = Al(;)
by the Smith-McMillan Theorem, Thus

M(z) = 4)(z) N(z) &(z)
Ql(z) = N(z) Q(z)
P,(2) = #(z) A(z) N"1(z) 41(p)

= P(z) M 1(z) Q.E.D.
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Corollary 4.2-1. The canonic matrix A(z) appearing in

either an inner-standard or outer-standard factorization of
an nxm matrix G(z) of rank r(G) is equal to the

r x r identity matrix 1, 1if and only if G(z) 1is
analytic and r(G) 1s constant on the unit circle. In

this case, if P Q and P1 Ql are any two standard

factorizations of G, Pl(a) = P(z) N_l(z) and Ql(z)
N(z) Q(z), N(z) being an arbitrary r x r elementary

quasipolynomial matrix.

Proof. The if part is immediate. The analyticity of G(z)
on the unit circle implies that all of the denominator terms
of A(z) are unity. This in turn leads to the conclusion
that r(G) 1is constant on the unit circle only if the
numerator quasipolynomials in A (z) are unity. Thus

Alz) = 1, . The remaining statements are consequences of

Lem uoe-lo QoEoDo

Corollary 4.2-la. If G(z) 1is reverse-symmetric then

N(z) = M,(2)

where M(z) 1is any r x r elementary quasipolynomial

matrir =atisfying A(z) M,(z) = M(z) A,(z) .

Proof. Since G(z) = G,(z), Q.(z) A(z) P,(z) 1is also a
right standard factorization of G(z) by arguments similar
to those used for theorem 3.3-4. Thus, according to

Lemma 4.,2-1

N
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P,(2) N(z) Q(z)

Qe(z) = P(z) M1(2)

Po(z) = N(z) M;1(z) P,(2)

Since P,(z) has a right inverse,

N(z) = M,(2)

and according to Lemma 4,2-1

a(z) Me(z) = M(z) 8,(2) . Q.E.D.

The factorization algorithm discussed here 1is
based upon the Smith-McMillan canonical form for the auto-
correlation matrix, Unfortunately, because of the arbi-
trariness of the sequence of steps involved in finding a
particular realization of the Smith-McMillan canonicai
form, the solution is not unique, The solution matrix
A(z) 1s not one-sided (and therefore not analytic inside
the unit circle). This matrix X(z) will differ from the

proper answer by a unitary matrix,

Step 1. Reduce the matrix R(z) to its Smith-McMillan
canonic form. Since R(z) 18 a quasipolynomial matrix,
this procedure is a standard but arbitrary one as illus-
trated in section 3.34. Thus +e will have

R(z) = cC(z) D(z) FP(z) .

Step 2. According to Theorem 4,2-1, D(z) 1s of the form
that 1t may be factored as
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D(z) = D'(z) A(z) D (z)

= D'(z) A(z) DL(z)

where

(1) D+(z) is r x r, diagonal and analytic,
together with its inverse (D+)-1(z) for
|z| < 1.

(2) A'(Z) = A(Z) = 9(2) Q*(Z) in which all
diagonal elements of 6(z) are reverse=-
symmetric. Furthermore, A(z) 1s canonic
and non-zero for |z| #1 .

Let
+
P(z) = ¢C(z) D (z)
-+
Q(z) = D.(z) F(z)

Then we have an inner-standard factorization

R(z) = P(z) A(z) Q(z)

Step 3. Now we wish to factor A(z) . Since R(z) 1is

reverse-symmetric, a second left standard factorization is
R(z) = Qu(z) A,(z) P,(2)

and according to Lemma 4,2-1 and its Corollaries
Q. (z) = P(z) M-l(z) (4.2-23)

where M'l(z) is an r x r elementary quasipolynomial
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matrix such that

Az)"! M(z) A(z) = N(z2) (4.2-24)
is also quasipolynomial.
Thus we may write

-1
R(z) = P(z) M ~(z) A(z) P (z)
* (4.2-26)
= pootuloon,p,

or

e"lplrp;le;l - einly (4.2-26]
Hence

Mz) = 871(2) M1(z) 8,(2)

is r xr, reverse-symmetric and non-negative on the unit
circle (by the properties of equation 4.2-26). Actually
we can say a good deal more. Let us write equation 4.2-24

in terms of its elements:

4),. (z) (8)2, (2)
(M), (2) Oigelz) (M) 1 (2) o 2

() ..(2) (8)2,.(z)

Since each element must be quasipolynomial
(e)kk(z)

(8) . (2)

(M), (2)

must also be quasipolynomial. Thus M(z) 1is a quasi-
polynomial matrix. But M(z) = M-l(z) = constant, l.e.,
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M(z) 1is a positive reverse-symmetric r x r elementary
quasipolynomial matrix. In Section 4.221 we demonstrated

that such a matrix is factorable as
M(z) = s(z) S,(z),
S(z) being an r x r elementary quasipolynomial matrix,

After this is achieved, a factorization for R(z) 1is

obtained as R(z) = X(z) A,.(z) with

K(z) P(z) e(z) s(z)

c(z) pt(z) f(z} s(z) .

where A(z) differs from the desired factorization A(z)

by a8 unitary matrix, By straight forward algebra

4

X(z) X,.(z) cp ess, 9, Dtc,

c o Mte2ptoc,

pular,

= Q. AP,

= R

The pertinent computational steps involved in

this algorithm are illustrated in Figure 4.,2-4,

The advantage of this factorization is that the
degenerate and singular autocorrelation matrices need not

be treated as special cases (as contrasted to the spectral

106




MATRIX AUTOCORRELATION \

Riz) » R (2)

Reduce %o Smuin -

J/

T

Alz) Aglz)

AUTOCORRELATION
FACTORIZATION
Alz) = P(2) 8(2) N2}

— McMilien canomicol
form

K 2

‘ Clz)O{a)Flz) «Aiz: ’

_4

Obtan nner-stonderd
fectorization.

[ 1

—
Qzumo.mnu ) 'R(D
-

[ Compute the shmeniory

I motwm
[ ¥ plg,

=
@r‘m«ngt 7)P, '+ RB
+

Compute e eiemeniary
autocorrelation metsix.

Miz)e0'm'e

2

6)0(1)5(:)0.(1"!”!9
t

Fecter ™he ¢lomentery
uiocorrelation metix *0

S8, M
: m
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e# See Fig., 4,2~1,

Fisure 4,2 - 4: Smith-McMillan factorization of a
matrix autocorrelation.
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If an algorithmcan be found for forming the

approach).
Smith-McMillan canonical form so that the factorizations

must be one-sided then this formulatiorn would become more
important than the spectral approach,

Example 4.2-3. As in Example 4.,2-2 we will consider the

autocorrelation matrix

-22-1 + 6 - 22 -z T+ 1
R(z) =

l] - 2z -z + 2 - ¢

Step 1 of the factorization consists of reducing R(z) to

the Smith-McMillan canonical form. Since this process

was illustrated in Example 3.3-3 we will merely give a

partizular result:

R(z) = C{z) D(z) F(z)

1 0
where c(z) = > 3
2 - 9/Rz + T/22° - z 1

D(z) = diag [1, 272 -9zt 4 7 - 9/2z + 22]

2271 4+ 6 - 2z =zl 417
.

2

and P(z) =
4z - 2z

Notice that the factorization has been made in such a way

that C(z) 1s one-sided.

Step 2 consists of forming the left-standard factorization

from the Smith-McMillan canonical form., We write
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D(z)

"

where

4.223

diag [1, 1-1kz)(1-2)2 (1 -2 - 1/‘22'1)]

D' o e, DY

p* - atag [1, (1 - 1/22)]
8 = v2 diag [1, (1 - z)].

Now, the left standard factorization R = P A Q 18 given

by sett

and

Step 3

ing
P = CcD
1l 0
= 2 3
2 - 92z + T/22° - z 1-1/Rz) ,
Q = D F
2zl 46 - 22 -zl 41
-2 + 5z - 22° -1/2 + 2
A = 8 0,
involves extructing the elementary reverse-symmetric

polynomial WM{(z) from the left-standard factorization.

We have

where

Thus we

Ml o=

Now, we

R = P4AO
- pMlap,

Ml . plq, (see equations 4.2-23 and 4.2-25).

compute M1

[;2z'l+ 6- 2z —227% 5273 2 ]
L 2z71- 9i14z- 92°42,3 uz-2-16z-1+25-16z+422J

aleo had
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1 -1

R = P66 "M~ 686, P,
= P6 Mo, P,
where o= el Mg
f;22-1+ 6- 2z -22"%% 72-1- T+ 2z
) L~22-1- T+ 72-222 Nz“2-16z-1+25-16z+hz%]

This is indeed an elementary reverse-symmetric polynomial
matrix. The next step 1s the factorization of this matrix
into the form M =S S, . A very similar elementary auto-
correlation matrix was factored in the IZxample 4.2-12. The
result is

S(z) =

2z -3z -0s2z

| 1)
[ 3}

The factorization of R(z) 1is given by

R(z)

A(z) A,(z)

vhers A(z) P(z) e(z) 8(z)

S [fz'l + 1 1 ]

12 - 122 172z - 1/22%1.

This 1s not a one-sided factorization as we had
obtained In the spectral decomposition example; however,
this solution can be forced to be one-sided by post-

multiplying it be the proper unitary matrix.
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4.23

4,23 Approximate Pactorization Methods

The factorization methods outlined in the last
two sectiorsare exact, but are difficult computationally.
The spectral apprcach suffers from the well-known
difficulties of determining the zeros of polynomials.

The Umith-McMillan canonical form approach is complicated

and has not yet been refined to give one-sided factorizations.

In this section we will discuss two approximate
schemes fordetermining the Taylor expans‘on of the inverse

operator E'l(z) from the autocorrelation R(z). Both of
these techniques depend upon the fact that

U(z) R(z) = Ay Age Gulz)

is one-sided (specifically, right-sided). Thus if we have

an approximation
A (z) ~ T

ther we can improve the approximation be examining the

non-zero right side of

Ai(z) Riz) = ¢&(z) .

The first technique 18 2 rec:rsiw method that
may be associated with least-squares, It was advanced
independently by Robinson (1963a) and J. P, Burg (personal

communication) based o: the work of Levinsor. (1947).
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4,231

The second technique 1s an iterative mechod based
on the vector projections of linear algebra. It was

developed by Wiener and Masani (1957 and 1¢' } and bty

Masani (1950). Wunsch (1965) has also published a
heuristic interpretation of the projection technique.

Both computational schemes have been programmed and tested
for computational efficiency. For all cases tested, the
projection technique was an order of magnitude slower than

the least-squares recursive merthod.

4,231 Least-squares

The approxinate least-squares wavelet, A4

M 3
of degree M
A, = A, o+ A, 2z + L
M o,M i,M *e M,M
has the properties that
b) &, = 0 1=1, ..., M where
-2
eM(z) = AM(z) R(z) . (4.2-27)
If we write out the equations for 81 M 1i=1, ..., M
3
A m Bonr * oo * 43, m Ry = “Aom By
Ao Bo ¥ oeee + 4y y By = Ao,m R (4 .2-27a)
"M,M Rg ¥ eeetAp y Ry = Ay y By

we uce that this defines a set of nM 3imultaneous
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equations which can always be solved for AM(Z) . We will
provide a recursive technique for extending the length
(degree) of AM(z) without directly resolving the set of

simultaneous equations given abcve,

For the recursion we sill need a second wavelet

M
BM(Z) = BO,M + Bl,M Z + se0 e + BH,H Z
that has the properties
a) By w=1, , and
 J
b) Zi My=0 1=-1, ..., -M where
»
By(1/z) R(z) = !M(z) (4.2-28)
and where zi gy 1=-1, ..., -M 18 given by
 J
Bl,M R-ml + eee + BM’M RO = -BO’M R"M
Bl,M R_ma + e t+ BM’M Rl = "BO’M R-ml (u 2-28a)
BymBo * oot By yByy = BymBay

In the spectral factorization of the autocorrelation
(see section 4.222) we cbtained the minimum delay wavelet
G(z) by choosing all of the roots outside the unit circle.
We could also have formed a maximum delay wavelet B(z)
by choosing all of the roots inside the unit circle such
that R(z) = B(z) By By B,(z) . Thus B,(z) 1is minimum
delay. The wavelets AM(z) and ABM(z) are the least-

squares approximations to the wavelets ﬁ’l(z) and 3;1(2).
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It can be shown (Robinson, 1963b) that AM(z) and BM(z)

are also minimum delay.

Notice that if weight and add AM(z) and BM(z),

we find
K Ay(z) + 2" X B,(1/2) R(z) = K &y(z) + MR (2) .
Thus, if we choose K and K so that

a) K= ln ’ cM‘l’l,M+ REO,M = 0

.. define Ka,M = -8M+1,M ZO,M R

or b) ¥ = 1,,» K&y y+ z-M—l,M= 0

5 - o -1
.. derltine Kb,M_ z-—M-l,M CO,M s

we find a recurrence relationship

v L M1
Aml(z, = AM(z) + 2 Ka,M BM(l/z)

By(2) + 21 Kk 4,(1/2) .

By (2)

These polynomials are multivalued counterparts
of the polynomials orthogonal of the unit circle treated

by Geronimus (1960) and Szego (1959).

Likewise note that

€y 1(2) = &y(z) + M1 Ky E2)

Zm+1(z) = ZM(Z) + z M1 Kb,M CM(Z) .

There are two other relationships that are

important computationally. First, if R(z) is symmetric
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(see Sectlon 4,31) then AM(z) = BM(z) for obvlious reasons.

3econd, for all cases

e =¥

'
m’l,M -M-I,M *

Proof. (Accordingz to J. P. Burg, personal communication,)

We filrst map equations 4,2-27a and 4.2-282 into matrix

notation:
[‘o,w ees Ay w 0] i1 = [co,M’ 0, «ees O, cml,u]

[0 By ++s Bo,u) Pwe1 = [Ty, wp O +ves O %,

(4.2-29)
where
r -
aml = RO Rl e o o le
R-l RO o o o RM
LR-M-l R-M [ ) * [ ) RO J L 3

i

The solution to the next recursion will then give =

Ao, m1s ==+ Au,me1 A1, md ®me1 = [o,meas O +o5 O]

[Baer, i1 Fwymere oo Bo,my ®ma = [0 +oor 0 &g ma]
(4.2-30)
Equatlions 4.2-30 show that the first and last rows
of R;il are
eafm [40,m1° = Ame1,m1)
and [/ 1

o,m1 [Pw1,m1s o> Bo,ma] -
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Since R 1is symmetrical, R T is also symmetrical, and

therefore
—1 ] _1
(co,ml "M+1,M+1) = € w1 Bwer,m (4.2-31)
(note that &, , and ZO y Must be non-singular for
3 3

all M since R 1is non-singular.)

There exists an n x n matrix Q such that

if RM+1 =Q , then ¢ =0, If R

M:1,M
AM+1 =AM . However, since

C-l

B =t A1, m1 %0, w1

M‘f‘l,ml O,M‘f‘l

(from equation 4.2-31) if A4 = 0, then 8 =0

M+1,M+1 M+l, M+l
and BM+1(z) = BM(Z) . For an arbitrary Ry, , we can

write
RM‘"l = (RM’l'l - Q) +Q .

If we substitute this into equations 4.2-29 we find

Cwi,m = Ry ~ Q

i - [ ] —
Z-M-I,M = (Ry; - @) since R_, = R},

= Cywa,m . Q.E.D.

The left part of the flow diagram in Figure 5.1-6

shows the steps involved in the recursive computations.
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4,232 Wiener-Masani ProJjections

The proJjection technique for factoring a matrix
valued autocorrelation involves the theory of linear
algebra. It will be convenient for our development to
conslder vectors of matrices rather than polynomials with
matrix coefficients, i.e., we will work in the time domain
rather than in the z-transform domain.

Let us begin by defining the elements At of

a complete subset M of the linear space of vectors of

matrices §

A = A

-'t t’ At+1’ s 00y At+rl’ [ 3 I ]

That is, each element At of 3 1s a time shifted
reproduction of the minimum delay operator A

20
(Robinson, p. 75, 1962).

We shall also define an inner product

ag
(A, Ay} = I Berg-1 ds (4.2-32)

Ri-J
This definitior conforms to all the requirements for a

linear product:
a) (Ai.' _A_J)' = (’A‘J’ -A‘i) »
b) (A, A)) > 0 if A, #0O,
c) (a Ay AJ) = a(A,, ﬂg) where a 1s a scalar,

d) (Ai + .‘.\.J’ Ak)' = (Ai’ -A‘k) + (AJ + Ak)
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i

Spaces which are linear, complete, and contain an inner
Neumann (p. 51,

product are called closed linear manifolds.
1950) states the following definition and theorem

concerning projectionss
M 135 a closed linear manifold

Definition 4,2-2, 1If
B,, where gl € M

in S, if B € S, and if B=B, +B,
1s called the projection of

and _@2 € -M . Then 21
M and the operation of projecting B on M is

B on

A necessary and sufficfent condition <hat

Theorem 4 .,2-2,
an operator E be a projection P 1s that

E 1s single valued, linear with domain

a)
in S,
b) (E Ay, AJ) = (A, E AJ) for every A,
and AJ in S,
c) EE = E.

M 1is uniquely defined by E .

Finally Neumann (1950) states the crucial

projecticn theorem,

If E, = P

1= Py
Eys» EpEys EjESEy, E;EEjE
E B,

Theorem 4.2-3., (Projection).

then the sequence of operators
the sequence E2, E1E2’ E2E1E2, E182

has a limit E ;
E; and E = P 5
’ MMy

has the same limmit

118

T —r




40232

Wiener and Masani (p. 106, 1958) state the

following corollary.

Corollary 4.,2-3. If F 1is the projection on M L MILIME,

then
F:I-EI-E2+E1E‘:2+EQE1-QOO

The convergence belng in the strong sense.

Wiener and Masani (1958) then give a lengthy

development to generalize this equation to include an

infinite number of projections. They find

0o - -
F=I"£E+ z EE" z EEE + s
1=1 1 4,321 1 4,4 key 1K

(4.2-33)
where the projection operator is defined by the inner

product

By, = (L ADA

The normalization that they use to insure
convergence 18 the requirement that (R, ), , = Sk .
} ]
To make this normalization, we factor each of the diagonal

terms such that

(R(z) )y,y = a;(2) rya,,(2) 1=1,..,n

where ai(z) is normalized so that its constant term is

equal to one. Now let
a(z) = diag [hl(z), ag(z), 5000 an(z)]
/I-: = diag PI‘ » V?z) ecsepV I‘n ] I ]
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then the normalized autocorrelation is

that is orthogonal to each of the A

R(z) = V/F'la—l(z) R(z) a:l(z)»/?'-%

Our problem then, is to find the vector, 4 ,

t=1, o!.,”.

t

Thus we substitute A 1into the projection sequence 4.2-33:

FA

[- <} o0 o
- IA- L EA+ £ EEMA- T EEFAG“+ ...
T qel 1,3, 1F 1,J,k=liJLA

-

IA-Z (A:Ai)ﬂi + I (f‘_sﬁj)(ﬂjﬁ.&i)ﬁi

]

- (A )ALA)(ALA A + ...

o o0 o
= IA+ L|-R,+ER R - ¢ R, R, R .+ ] A
- 1=l[ -1 J=1 "J J-l J’lcgl -k J-k 1"J _1

Therefore the crthogonal operator

7 TR TR I

O *

is given in terms of the autocorrelation only:

A
A

oL %

4

i,J
term

1
n

t

= -R_i +

it

oo
J A R‘J RJ"i = k,§=l E«k RJ"k Ri"J + e

For computatlional purposes we deflne a vector

which represents the JEQ projection of the 1-Eﬁ

of 4 { - Clearly then, the first projection is

Ai,0 = §

el,l = -ﬁ-i 1 = 1, 2, ceoe
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4,232
and the {J + 1) projection is
€i,av1 = “E1, g Ry v &y g Ry e 28y Rpm e,
A g = A g+ 4 t=1,2 ...

The iteration is continued until ei j becomes smaller

than some given value,

The only problem that remains is that of scallng
31¢, S0 that 1s represents the inverse & % (see equation
4,2-31). We have

a _1 " - -1

R(z) = 4,7(z) Ay A} A, (z)
and R(z) = t(z) Ag A G, (2)

from the spectral facterization of a nc..~degenerate

autocorrelation. But we had

R(z) = vFla™l(z) R(z) ajl(z) /F!
o B2) AL Talz) = aaVe  AZ(AAPAZ (VA a(z)
and ¥lz) = A du(z)vitali) .

This development is intended to be a quick
summary of the projection technique. It ls by no means
rigorous. The step from the Neumann theorem to the actual
projection definitions that converge 18 certainly not
immediate. One must either follow the path that Wlener

and Masani (1958) did, or cgeneralize Neumann's scalar

theorems to matrix spacu,
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4.3 Multi-Dimensional Autocorrelation

Since the propert.es of matrix-valued multi-
dimensional autocorrelations follow directly from those
of scalar autocorrelations we will limitthe discussion

here to scalar values.

The properties of multi-dimensional auto-
correlations have the same featureg that we observed

for one-dimensional correlations.

Let R(z) = R(z, Zys sees zk) be a
(k+1)-dimensional scalar autocorrelation function, then
a) R(z) 1is centro-symmetric; that is,
R(z,zl,;..,zk) = R(1/z, l/zl,..., l/zk) .
b) R(z) 18 non-negative definite on the

unit hyper-circle |z Zy e zkl =1,

4,31 Mapping into One-Dimensional Representation

Perhaps the most important thing that we will
establish here is the mapping of multi-dimensional
autocorrelations into a matrix representation. We will
begin by making the transformation in terms of the
mapping operators cefined in Section 3.43 and then
proceed to direct transformation from multi-dimensional

to matrix valued awutocorrelations.
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The mapping is illustrated in Figure 4,3-1., The
' configuration of the autocorrelation matrix is the same
that we would obtain if we had treated the process, x(z),
as three separate wavelets, xl(z), xa(z), and x3(z)

and defined the autocorrelations as

x, () [xl.(z), x,,(2), x3.(z>] = [ rolz) r(2) r,(2)]
x2<2) r_l(z) I‘O(Z) r3(z)
‘xB(Z)J _r“?(z) r_,(z) lr'o(z)_l

Howaver, for each spatial lag we must take the sum of the
correlatlions of all the wavelets that overlap at that lag.
The matrices shown in PFigure 4.3-1 fulfill this require-
ment. They are defined formally by

MAP2 (x, x(z)) * MAP2(x, x(z))' = R(z) .

Prequently, in practical applications we are
presented with the multi-dimensional autocorrelation r(z)
and we wlsh to map it directly into the matrix represen-
tation K(z) . The procedure here is very similar to that
taken above. We map the spatial positions of the process

into a vector and form the symbolic product

xl-l [Xl X2 e o e xN] = !‘1" r1’2 s s e l‘l,N
X2 T‘-’l I‘2’2 L) I‘2’N
[ Xy *N,1 TN,z ** TN,N.
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1 i

i

X,

(®) = autocorrelation

z-Transiorm in preferred direction
and order the indices.

xl(z) x3(z)

xz(z) x2*(z

)

!

Y

xl{(z) x3§(z)

r_z(z) ro(z) r2(z)

r—

rl(z; r3(z)

3(2) P_l(Z)

Map wavelets into matrix notation,

_
X) X3 0 X530 o]

0 Xq X5 0 x3 o :

U ——

0O 0 O x1 x2 x3.J

xl'

Xouw X3 0

'

0

o |

e
r_, T3 Tg

Figure 4.3 - 1: Mapping of a multi-dimensional
autocorrelation into a matrix representation.




Then the subscripts of each element ry j define the
?
spatial separation for that term. If the spatial process

is stationary, that i3, if ry 3 depends only upon the
2

gpatial separaticn between position 1 and position J,

then R(z) 18 symmetric. This leads to a number of
simplifications.

4,32 Methods of Pactorization

Except for one method of factorization, all of
the techniques that are used are made in terms of the
matrix mapping of the autocorrelation. The fact that the
autoccrrelation matrix is symmetrical may lead to some
important simplificat ' ons in some cases. Por example, in
the elementary autocorrelation matrix factorization,
symmetricallity forces the algorithm to give a one-sided

\
wavelet. Also, in the least-aquares approximate technique

the operator An(z) = Bn(z).

It is instructive to consider the meaning of
the minimum delay wavelets that one obtaina from the
matrix factorization. Each row of the matrix A(z) will
be a vector representation of a spatial minimum phase
wavelet. This vector representation is the same as that
used for mapping the original process, The origin of
the wavelet 18 located at the spatial position corresponding
to the diagonal term in the matrix. Thus the autocorrelation

of a spatial process having n 1lattice points will
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produce n minimum phase wavelets; and eacn wavelet well

have its origlin at a dirferent lattlice point.

Occasionally in physical problems we know that
the factorization should have zero-phase, i,e,, should be
symmetrical in all directicns. For this case we may proceed
as in the one~dimensional scalar case. Thus we need only

evaluate the expression

a(e ¥) - r{e %)

That is, we find the cosine-transform of ry o take its

square root, and retransform back to space-time.
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5. LEAST-SQUARE FILTERING IN THE PRESENCE OF NOISE

In Chapter 4, a number of techniques were
discussed for finding a minimum delay wavelet from a given
autocorrelation., Of the techniques discussed, the least-
squares approximation was found to e the best method in
the sense of computational efficieacy. In this chapter,
the least-squares decompositional method will be extended
to include signal shaping (in addition to straight predic-
tion) in the presence of random noise with a given
coherency. This approach will give an optimum linear

operator for a given length and output lag.

The normal equations for the one-dimensional
matrix-valued process only will be developed here. As was
11lustrated in the last two chapters, all other dimension-

alities are but a special case for this representation,

5.1 Derivation and Recursive Solution of the Normal
Equations

The solution of the problem of determining the

optimum least-squares linear operator is based upon the

following assumptions:

a) The known n x m matrix-valued signal S
is the additive comblination of K uncorrelated stationary

random processes 31 £

»
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b) The n x m matrix-valued noise N, 1is a
random process with zerc mean, E <Nt> = On m ’ and known
\ v ’

~ N / L
covariance, L \Ni Nj 5

c¢) The observed rundom process, Xt s 1s the

additive combination of the signal and the noise

Xg = Sg+ Ny

d) The observed random process is convolved

with an undetermined ¢ x n matrix-valued wavelet F1

i1=1, ..., M to cobtain ¢the ¢ x m matrix-valued
actual output Yt .
e) The & x m matrix-valued desired output,

Dt » 18 the additive combination of K 1independent desired

out:puts 31,t where ﬁi

1 ,{J ’ 1.3.

E <‘f51’t+75td’0> = 0 144,

t is unccrrelated with XJ,t s

5.1 Normal Equations

The linear ieast-squares operator wavelet is
d:termined by reguiring that the norm of the difference
hetween the actual oucrput and the desired output is
minimum for all time. That 1s, we require that £ be

0
miniaized, where

es = E((e,))

=E<tret2£>)
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5.11

and E stands for expected value,

To find the minimum, we take the derivative of
eo with respect to the coe: 'ficients of the wavelet FJ

J=1, .¢e, M and set it egqual to zero. Thus

e,

= 0 Jﬂlp se e M
oF,

implies that the error e is normal to the input xi-J+l:

i
E<ei xi-J+l> = o) J = l’ ee ey M .

This orthogonalicy was the basis for the development of the
Wiener-Masani projections (see Section 4.232). This is also

the origin of the name "normal equations."”

Now, let us expand the normal equations:

E <ei Xi_'}'_l) = 0 J = 1, 200y M
M

-E<(D-2FX_ )X! >
e e S L TR 751

Also, we have xi = S1 + Ni and E <Ni> = 0, Thus the

normal equations have the form
S <D1 (84341 * Ny_g4)

M
" Zy Fie Groeer * M) Bhgg + "i-.1+1)>‘ 0

M
E<k£1 Fie (8541 Si-gp1 * Miojen "i-3+1)>’ S <D1 3i-.1+1>
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M
kfl F,, E <sJ_k s(')>¢ E <NJ_k N5> = E <DJ_1 s(')>

for §=1, ..., M. From the assuptions we see that

K
E<S"'ksé>= 1 E<1Jk i°>

E <DJ_k s(')> SN E <ﬁ1,5_k S'i,o> .

Therefore the autocorrelation of St is the sum of the

I

[ e -

autocorrelations of ¥ If we define an auto-

1,3

\
\ -
E <Si S(')/ + E <N1 NO>

and a cross-correlation

G, = <Di Sb>

then the normal equations may be written in the simple

correlation

form

M
T F
k=1

1 Ry = J=1, coe, M. (5.1-1)

We may also obtain a simple form for the

expected error eo :

80 = ¢tr <e e'>
M [}
E <ei (D - o Tk Xioke1) >

tr E/i i> since e

]
ct
e |

1 is normal to

xi‘k+l fOI’ k= l,coo, M
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