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3UMMARY 

Result3 and problems In the ordinary "here—and-now" and 

"wait—and—see" stochastic linear programning problems are 

described.  A c<?neral formulation of the "here—and-now" 

problem Is presented, and an approach for solving a special 

,'.lnd of "here—and-now" problem Is suggested. 
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SOME  RESULTS AND  PRODLEMS 

IN STOCI^STIC LINEAR PROGRAMMINQ 

Albert Madansky 

1. INTRODUCTION 

AG evidenced by the number of papers presented recently 

(e.^., [3], [9]» [ll]j [13], [lb], and [20]) wiiose subjects 

fall under the  general rubric of "stochastic linear pro?ramminr;, 

there seems to be a current flourlsninp of interest in this 

area.  It appears to me that work is beln.7, done on various sub- 

problems in tnis area, but that t.ie area In Its entirety has 

never been ^iven suitable attention, or its problems even 

formulated concisely.  It is our hope to discuss the broad area 

of stochastic linear pro^rammlnr;, establish some consistent 

termlnolo'y, point out where current work fits into this broad 

picture, and present some basic problems which need solution 

and su^p;ested avenues of solution. 

2. STOCKASTIC LINEAR PROGRAMMINQ SITUATIONS 

The usual linear pro^ramminG; problem is to find the 

activity vector x which minlmizee c x subject to the 

conditions Ax ^ b and x 2 ^*  ^et VQ  rewrite the problem 

as:  find the decision vector x and the slack vector y whid 

minimizes c'x ^- f'y subject to the conditions Ax -♦- By = b, 
x ^ 0* y 2 ^*  ^n stochastic linear pro^runmlng, some or all 

of the matrices A and D and vectors b, c, and f are random. 

■ i< 
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Let us dlstlnr^ilsh cwo stochastic linear prognuaning 

situations, the "walt-and-jec" and "here-and-nowM sltudtlons. 

In the "wait-and-see" situation, one first observes the random 

elements and then solves the (nonstochactlc) linear programming 

problem of flndlnr x 2 0 znd  y ^ 0 which minimizes c'x + f'y 

subject to Ax + By = b. 

In the "herc-and—now" situation, one must (l) find the 

slack vector y as a function of x and of the random elements 

which optimizes some criterion and (2) determine a value of 

the decision vector x which Is Independent of y and the 

to—be—observed random elements and which optimizes some 

criterion which Is Independent of the observed value of the 

random elements, from amon^ the vectors x and y such that 

the probability of feasibility Is at least some specified P, 

0 ^ P <[ 1. After these vectors are determined, the random 

elements are observed and the value of y is determined. 

Pollowinp; are some examples of "here-and—now" problems. 

Example I;  Amon^ all x and y whose probability of 

feasibility is at least P, find tue y which minimizes 

^x + f'y, and determine the value of x which minimizes 

E min (c»x + f»y).1 

y • 

Unless otherwise specified, the expectation or proba- 
bility is with respect to all tne random elements. 



100 » x,, + x12 

d = x11     + x21 - X22 

C - XJJ      ♦ 2x21 
(xij 2 o) 

where 

x,, o number shipped from the factory, 

x-jp ■ number stored at factory; 

x«, =» number purchased ^n open market, 

Xp2 ■ excess of supply over demand; 

P-.139<3 
1-19-59 

-3- 

Example II;    Among all x and y whose probability of 

feasibility is at  least P,  find the y which minimizes 

^x f f'y,  and determine the value of x which maximizes 

Pr j min (c'x + f^) ^ k| for some fixed preasslfyied x. 

Example III;    Amon", all x and y whose probability of 

feasibility is at  least P,  find the y which minimizes 

c'x ■♦- f'y,  and determine the value of x which maximizes 

Prjmln (c'x + f'y) ^ k and x,  y feaslblel  for some fixed 

preassipined k« 

In the followlaT we shall refer as a practical example 

to this simple case:    A factory has 100 items on hand which 

may be shipped to an outlet at the cost of $1 apiece  to 

meet an uncertain demand d.    In the event that the demand 

should exceed the supply,   it  is necessary to meet  the 

unsatisfied demand by purchases on the local market at $2 

apiece.    The equations  that the system must satisfy are 
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d =» unknown demand uniformly distributed between 

70 and 120; 

C = total costs. 

It is clear that whatever be the amount shipped and whatever be 

the demand d, it is possible to choose x01 and x22 consistent 

*wlth the second equation. The unused stocks x,^ + x22 are 

assumed to have no value or are written off at oome reduced 

value (like last yea^s model automobiles when the new 

production comes in).  In this example, x1 = (xiv xi?^' 

y' -  (x^, x22), A ^ (J J)# B - (} J), c» - (1, 0), 

f» ■ (2, 0), and b» = (100, d). 

3»  THE HERE-ANIMJOW PROBLEM 

3a.  Example I 

Work has been done on Example I by Beale   [2], Dantzltr   [7], 

and Madansky  [13],   in the case where P  - 1 and only b Is 

random.    The basic  consideration of Beale was to consider how 

one might utilize the  solution of the nonstochastlc problem 

where b is replaced by Eb in order to iterate to a solution 

of the stochastic problem.    He su^rests that due to certain 

convexities in the problem,  this solution be utilized as a 

first approximation  in an application of the Newton-Raphson 

method to minimizing E min (c'x + f'y)  with respect to x. 
y 

Dantzig considered a multistage problem where a decision 

x, has to be made at stage one, then the (random) right—hand 

side of the first stage of the problem, b,, in observed, after 
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which a decision Xp has to be made at stage two, etc., for m 

stages. He found that E.     b nin (cU, + f'y) Is convex 

In x^  (where y Includes x^, .... x , as v/ell as slack), and 

so sugeests using appropriate techniques ([5]* [6]) to 
p 

determine x,, and hence Xp after b. Is observed, etc. 

Madans'.cy, In connection with work on Inequalities for 

min E mln (c'x ■♦• f^), the value of the objective function In 
x   y 

the "here-and—now" problem of Example I, and E mln mln (c'x + f'y), 
x  y 

the expected value of the objective function of the "wait-and-see" 

problem, found the following sufficient (though not necessary) 

condition for the solution of the stochastic problem to be the 

solution of the nonstochastlc problem where b Is replaced by Eb. 

Theorem.  If mln (c'x + Hy) can be written as 
y 

C1(b, x) f C2(b), where C1(b, x) Is linear In b, then the 

x which solves the nonstochastlc problem where b Is replaced 

by Eb also solves the "here-and-now" problem of Example I 

where P « 1 and only b Is random. 

^f. also Theorem 2  of [2]. 

o 
Cf. also [^J, where by Imposing the condition that for 

each 1 x, be linear In the b., J = 1, ..., 1-1, the quantity 

E.     K mln (^x, + f'y), as interpreted In the context of 
Dl',,"Dn y     * 

[7], is found to be convex In x^. 
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Thla theorem generalizes work of Simon [13] and Thell [l8] 

on what Is known In the literature as the use of "certainty 

equivalents" In stochastic problems. 

The only other results on the version of Example I of the 

"here-and-now" problem are the Inequalities of Madansky [13] 

on the value of the objective function when only b is random. 

Let C(b, x) - mln (^x + f'y). Then in general 
y 

E. mln C(b, x) ^ mln E. C(b, x) ^ Eb C(b, x(Eb)), 
x x 

where x(Eb) is the vector which solves the nonstochastic linear 

programming problem where b =» Eb. Also, in the special case 

considered by Dantzig discussed above, there is the additional 

inequality 

■ 

mln E, C(b, x) > aft + 2 a.x. = G(x) 
x  D u  J«l J J 

where x is the r-dimensional vector which solves the "here-and- 

now" problem. 

Reiter [14] studies the general problem of finding 

sufficient conditions for the solution of a stochastic problem 

to be that of a "surrogate" problem where the probability 

distribution is replaced by something simpler. His condition, 
n 

in our case, is that C(b, x) =» Z A^xJB.Cb), where A1(x) > 0, 
i«=l n 

B.(b) > 0, in which case the x which minimizes 2 A,(x)ED,(b) 
1 1-1 1    1 

solves the stochastic problem.  If we let n « 3# B^b) » 1, 

B2(b) - b, B^Cb) » C2(b), and A^(x) - 1, then C(b, x) » 

CA\>,  x) + CpCb) = A1(x) > A2(x)b + B-,(b), so that our theorem 

is a special case of Belter's where the "surrogate" is Eb. 
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3 E. C(b, x) 
lJ a x J x.^x^Eb) 

J = 1, ..., n. 

a0 " Eb C'b' x(Eb" " S ajxj (Eb), 

and  the derivative of E^ C(b, x) exists In the nelsnborhood 

of x(Eb). Hence, one can detcmlne the coefficients 

au, a,, ..., a without solving Dantzig's "here-And-now" 

problem and, if one has bounds on x, can utilize this informa- 

tion to get a lower bound on 0{x). This then yields a lower 

bound on the value of the objective function of Dantzi^'s 

"here-and—now" problem which is Independent of the solution 

of the problem. 

As shown in [131# a sufficient condition for min E. C(b, x) 
x  D 

E. min C(b, x) is that C(b, x) be a linear function of b. A 
D x 

sufficient condition for mln Eb C(b, x) => K, C(b, x(Eb)) is that 

B. C(b, x) be of the form x.2.  - 2x1(Eb)x1 + ic in each x., for 

then a, « 0 for J =» 1, ..., r, so that G(x) « E^ C(b, x(Eb)) 

and Eb C(b, x(Eb)) / min Eb C(b, x) £ Z^  C(b, x(Eb)). Examples 

can be constructed such that 0(x) > E. min C(b, x) and 
ü    x 

0(x) < E. mln C(b, x), so that one cannot compare these bounds 
D x 

In general. 

One can generalize the inequalities further, to the case 

where all the coefficients In the problem (i.e., the elements 
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of A, B, b, c, and f) are random, for even then 

B mln mln (c'x+f'y)  mln E nun (c»x+f»y) < E mln (c'x+f'y) |x « x(E) L 
x  y x    y Ly '      J 

where I   denotes (EA, EB, Eb, Ec, Ef).  However, the conditions 

for equality do not generalize. 

The major problem area In Example I is that of finding a 

technique which solves the general problem. The only techniques 

known are those of Dantzlg for the special problem he considered 

and the use of "certainty equivalents" In the case covered by 

the above Theorem.  It would be of interest to rcnow for what 

real situations C(b, x) is of the form required by the above 

Theorem. Also, a possible area of research is on iterative 

techniques such as that suggested by Beale. The inequalities 

of Madanslcy may be used to provide benchmarks on the number of 

iterations needed to arrive at a solution. 

Chames and Cooper [3] surfest that one break the problem 

into two parts, that of detemlning the distribution of the 

optlmlzlnr, x^s (since they are functions of the b.'s, 

J - 1, ..., 1-1) and that of approximatinr, the x.'s by linear 

functions, say, of the b.'s, the coefficients being those for 

which the distribution of this linear function best approximates 

the distribution of the optlmlzlnr; x.'s.  It is unclear from 

[3]> though, how the distribution of the optimizing x^'s can 

be determined without actually solving the "here—and-now1' 

problem. Blmaghraby [9] studies the use of the gradient method 

to solve the problem of [8]. 
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It would be of Interest to knON for wliat situations otner 

than that studied by Dantzl^; is K C(b, x) a convex function of 

x, so that the techniques of ['j]  and [6] may be used. Also, 

what is the probability that the "certainty equivalent" 

solution is feasible In various situations? The answer to 

this question may be useful in helping someone decide whether 

he will be willing to suboptimize and solve a solvable problem. 

To Illustrate the use of the known results for Example I, 

let us study the simple case clven in Section 2.  (This case is 

a single-stage problem of the multistage type which Dantzlg 

studied.)  It is clear that if supply exceeds demand (x,, > d), 

that x«, = 0 jives minimum costs and, if x,, ^ d, thiat 

x21 * d~xll ~ives ttl^inN-w costs. Hence 

x. 

C(b, x) ■" 
'11 if xn > d 

:11 + 2(d-x11)  if x11 £ d 

Since d is assumed to be uniformly distributed between 70 and 

120, 

Eb C(b, x) 

-xn + 190 

107.3 v (95-x11)
2/50 

'11 

if x11 ^ 70 

if 70 < x11 ^ 120 

If 120 < x11 

Note that E^ C(b, x) is convex in x. This function attains 

its minimum, 107.5» when x,, » 93. Hence, min Eb C(b, x) ■ 107.3. 
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One also tsoes ttiat mln C(b, x) ■ dt so that E. mln C(b, x) 
x x 

Ed - 93. Also, since x(Eb) ■ 93, 

r 

C(b, x(Eb)) 95        if 93 > d 

-93 + 2d   if 93 1 d 

and E C(b, x(Eb)) =» 107.5. Our inequalities yield 

93 i min E, C(b, x) ^ 107-3, 
x 

and we note that the upper bound is sharp. 

Since this example Is a degenerate multistage problem of 

the type studied by Dantzi^, let us determine a(x).  Here 

-1 if x1]L ^ 70 
'<, ^ C(b, x) 

axu 
(^H - 93)/23 if 70 < x11 / 120 r-; if 120 < x11 

and x^^j^CEb) = 93, so that a1 = 0, a0 = Eb C(b, x(Eb)) * 107.3 

and Q(x) « 107.5. Hence this lower bound is sharp, as well, 

in this case. 

Note that the sufficient condition for min E, C(b, x) =- 
x 

E^ C(b, x(Eb)) r,iven above is satisfied in this care, so that 

we expect both G(x) and the upper bound to be sharp.  Mote 

also that both the optimum x., and x(Eb) are 93. This is to 

be expected, because C(b, x) is linear in b for each x, and 

so satisfies the requirement of the Theoren stated above. 

Finally, note that C(b, x) is not linear in b for all x, so 

the sufficient condition for mln E, C(b, x) •= E. mln C(b, x) 
x x 

is not satisfied, and in fact in this example equality of these 

values does not hold. 
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3b.  Other Examples 

I have seen no work on eitr.er of t;ie other examples r;iven 

In Section 2. A natural approac.i wlilc. Might be taken In 

solving Example II where only b Is random Is to replace b by 

■ y,  and solve the nonstocnastlc a vector b wiiere Pr < b < b 

linear programming problem for x , say.  One might then search 

for the largest y  and concomitant x sue;, that x and y(x ) 

are feasible with probability P or more and such that 

C(b # x ) = k. This decision solves the problem of Example II. y        y 

The problems involved in implementing; this approacn, aside 

from the "searcn" problem, are tne following.  In multidimensions, 

b is not unique, and so one must first study each b , for a 

given Y, such that Pr | b <^ b [ = 7. Also, as y  increases, at 

least one component of b  Increases.  However, though x is a 

continuous function of b , it may not be the case that by 

increasing y,  Pr |c(b , x ) ^ k [ will increase. 

Let us illustrate how, in a one-dimensional uncertainty 

problem, wnere these difficulties do not exist, use of the 

7—th quantile of the distribution of b will yield thö solution 

of the problem of Example II w^ere only one component of b la 

random and where P = 1.  We consider the illustration studied 

above. 

Let us write d = 70 + bOry,  0  7 < 1.  We note that, as 
Y 

a function of d. 
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0 d £ 0 

min 0(b,  x)  ■   - 
x 

d 

2d - 100 

0 < d 

100 < 

i 
d 

100  , 

or rewriting In terms of y$ 

min C(bl x) 
x 

70 + 50Y 

40 - IOOY 

-1.4 < 7 ^ .6 

.6 < Y 

Note also that min C(b, x) » 70 + 50Y when only x,^ and x12 

are the only (possible) non—zero components of the solution 

vector, and min C(b, x) = 40 + IOO7 when only x^ and x21 are 

the only (possible) non—zero components of the solution vector. 

Let us say wc wish C(b, x) ^ k. Hence 

xll' x12 ir y i  (lC-70)/S0  and 0 i y ^ .6 

x11, x21 if Y ^ (k-40)/100 and  .6 < Y i 1 

P = 1 is the and finding x wtiicn maximizes Pr <C(b, x) t  k 
L 

same as finding x wtiich maximizes Y subject to the above 

restraints on y.    For  example, if * =« 110, 

x ■ 
:11' x}2 lf ^ ^ »^ ^d 0 ^ Y S ,b 

11' x2i lf "v 1 «^anci '^ i y s 1 

i.e., 

11' 12 lf Y i .6 

[Xll' X21 If Y x .7 
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Hence 7 is maximized If x = (xii» x2l^'   ln whlch case 7 » .7» 

^•y ■ 103* x11 - 100, and Xp, ■ 105 - 100 = 5. For the declalon 

xil ■ ^^' x2l " ->' ^* probability of feasibility Is 1 and 

the probability of the objective function bein^ less than or 

equal to 110 is maximized. 

».  THE WAIT-AHD-SEE PROBLEM 

Tintner [19J has considered tne problem where one wishes 

to optimize, over a set of possible distributions of the 

random elements of the problem, a "preference functional" of 

the (random) value of the objective function of the "wait—and-eee" 

problem. Examples of such a preference functional are 

E(mln min (c'x + ffy)) and Pr | min min (c'x + f'y) < kl. He 
x  y L x  y J 

su^ests an approximate procedure for obtaining the distribution 

of the value of the objective function In case the random 

elements are normally distributed. 

The only other work on tiie "wait—and—see" linear procramminK 

problem are the inequalities of Madansky [13] when only b is 

random, and unpublished work of Talacko and Rockafellar (cf. [17])• 

It has been shown in [13] that 

mln C(Eb, x) <^ E. mln C(b, x) ^ min E. C(b, x), 
X XX 

and also, that if b is an n-dimenslonal vector with finite 

Sec [10] for a special type of "wait-and-see" problem 
which reduces to a "wait-and-see" quadratic prof.ramming 
problem. 
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range,   [&y  32J,  then 

r.    <-1)^  ^-»j' 
E.  mln C(b,  x) < Z   "JT   ■  rain C(&.    ,   ...,  ß_    ) 

» H*(Eb) 

where j^. (j =» i, ,.., n) takes on the values 1 and 2, 

^4 ■ 3 — ^4# ^ is the set of 2*1 n-vectors of I's and a's, and 

ß y . is the k-th element of the vector ßy . The Inequality 

min C(Eb, x) < EK min C(b, x) was first derived, in a different 
x D x 

manner from that of [13],  by Vajda [20]. 

A necessary and sufficient condition is given in [13] for 

H (Eb) = EK min C(b, x) = min C(Eb, x), namely that mln C(b, x) 
0  X X X 

be linear in b. Also, it is shown that a sufficient condition 

for min E. C(b, x) » E. min C(b, x) » min C(Eb, x) is that 

C(b, x) be linear in b. Examples have also been constructed 

where H (Eb) is Greater than min E. CCb, x) and where it is 
x  D 

less than min E. C(b, x). 
x  D 

Talacko and Rockafellar [17] have studied the problem of 

obtaining confidence limits on mln C(b, x) by uslnr quantiles 
x 

of the distribution of b. They also have generalized these 

confidence limits to tne case where A, B, c, and f are also 

random.  As yet, this work is unpublished. 

A variant of the use of "certainty equivalents" was 

studied in Babbar in [l]. He considered the modified  vait- 

and—see" problem (where the criteria are those of Example I) 
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where the activity vector x but not Its value must be 

determined before the random elements are observed, and after 

the random elements are observed the value of x must be 

determined so as to "best" satisfy the resulting restraints 

of the problem. More precisely, he studied the approximate 

distribution of the value of x, where the vector x Is that 

vector which solves the nonstochastic problem where the 

random elements are replaced by their expected values. 

Unfortunately, as Warner [21] noted, this vector may not be 

feasible after the random elements are observed, and so the 

distribution studied is not necessarily the distribution of 

a vector which even satisfies the problem. 

Also, we note from [13] that the expected value of the 

objective function of the modified "wait-and-see" problem is 

not only at least as sreat as the expected value of the 

objective function of the "wait—and—see" problem, which is to 

be expected, but also is at least as great as the value of 

the objective function of the "here-and-now" problem. Hence, 

one Is better off in the modified "wait-and-eee" situation of 

Babbar to recast the problem as a "here-and-now" problem 

(if, of course, the "here-and-now" problem can be solved). 

Other comments on Babbar's procedure are made in [21]. 

The outstanding problems in the "wait-and—see" area are 

those of determining^ the distribution, or at least the mean 

and variance, of the objective function and of the value of 

the optimizing vector under various distributional assumptions 
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about the random variableJ. It may also be fruitful to look 

further at Tintnerf3 approximations In the case he considered 

and derive approximate means and variances of these quantities. 

One should also note from Theorem 3 of [2] that If both 

A and b are random, then nln (c'x + f'y) Is a convex function 
y 

of both A and b. Let C(A, b, x) =*  min (c'x + ^y), in this 
y 

case. Then, by the same argument as in [12J, one can show 

that mln C(EA# Eb, x) < B* w min C(A, b, x) < min E. . C(A, b, x) 
x A*D x x  A'D 

and, if the elements of both A and b are distributed over a 

finite rancc, then one can determine an upper bound of the 

form of l!*(Eb), say H*(EA, Eb), by the method of [12]. 

To return once again to the simple case studied earlier, 

we record once again that E. mln C(b, x) = 9'3i whicn was less D x 
than min Eb C(b„ x) = 107*3« When d = Ed = 95, 

C(Eb, x) = i 
*!! If x11 > 95 

~xn *  190   if x11 i 95 

x 
and mln C(Eb, x) = 95. Finally, in this case 

H'CEb) . t^ffi^l ,nln C(120( x) ♦ t^ig^lgj mln 0(70, x) 

= Ed =i 95. 

Hence 95 ^ E. min C(b, x) ^95. But this v/as to be expected, 

since mln C(b, x) = d and hence satisfies the necessary and 
x 

sufficient condition for equality of these three quantities. 
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