[_CoPY

|HARD COPY

WICRCHCH

o~ L

~
¢ &
-




SOME RESULTS AND PROELEMS
IN STOCHASTIC LINEAR PROGRAMMING

Albert Madansky

P-1536

January 19, 1959

RN

“wall & A

Copyright 1959
The RAND Corporation



P—l 59\‘
1-19-59
o I 5

SUMMARY

Results and problems in the ordinary "here—and-now" and
"walt—-and—see" stochastic linear programming problems are
described. A general formulation of the "here—and-now"
problem is presented, and an approach for solving a special

kind of "here—and-nov" problem 1s suggested.
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SOME RESULTS AND PROELEMS
IN STOCHASTIC LINEAR PROGRAMMING

Albert Madansky

1. INTRODUCTION

As evidenced by the number of papers presented recently
(e.2., [3], [9), [11], [13], [16], and [20]) whose subjects
fall under the general rubric of "stochastic linear programming,"
there seems to be a current flourisning of interest in this
area. It appears to me that work is beinzs dcne on various sub-—
problems in tnis area, but that the area in 1ts entirety has
never been given suitable attention, or its problems even
formulated concisely. It is our hope to discuss the broad area
of stochastic linear programming, establish some consistent
terminolory, point out where current work fits into this broad
picture, and present some basic problems which need solution

and suggested avenues of solution.

2. STOCHASTIC LINEAR PROGRAMMING SITUATIONS

The usual linear programming problem i1s to find the
activity vector X which minimizes c*'x* subject to the
conditions A’x’ = b’ and x’ 2 0. Let us rewrite the problem
as: [find the decislion vector x and the slack vector y which
minimizes c'x + f'y subJect to the conditions Ax + By = b,

X 2 0, v 2 0. In stochastic linear prorrarming, some or all

of the matrices A and B and vectors b, ¢, and { are random.
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Let us distincuish two stochastic linear programming
situations, the "wait—and-see" and "here-and-now" situations.
In the "walt-and-see" situation, one first observes the random
elements and then solves the (nonstochastic) linear programming
problem of finding x ) 0 and y » O which minimizes c'x + f'y
subject to Ax + By = b.

In the "here—and-now" situation, one must (1) find the
slack vector y as a function of x and of the random elements
which optimizes some criterion and (2) determine a value of
the decision vector x which 1is independent of y and the
to—be—cbserved random elements and which optimizes some
criterion which 1s independent of the observed value of the
random elements, from among the vectors x and y such that
the probability of feasibility 1s at least some specified P,
0{ P{1l. After these vectors are determined, the random
elements are observed and the value of y 1s determined.
Following are some examples of "here—and-now" problems.

Example I: Among all x and y whose probability of

feasibility is at least P, find thne y which minimizes
¢c'x + 'y, and determine the value of x wnich minimizes

E min (c'x + I"y).l
y -

[
'Unless otherwise specified, the expectation or proba-
bility 1is with respect to all tne random elements.
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Example II: Among all x and y whose probability of

feaslibillity is at least P, find the y which minimizes
c'x + f'y, and determine the value of x which maximizes

Pr<{m1n (e'x + £ry) k} for some fixed preassigned Xx.
y

Exquie III: Among 2ll x and y whose probabllity of

feasibility 1s at least P, find the y which minimizes
c'x + f'y, and determine the value of x which maximizes

Pr'[min (c'x + f'y) ( kand x, y feasible} for some fixed
y

preassigned k.

In the following we shall refer as a practical example
to this simple case: A factory has 100 items on hand which
may be shipped to an outlet at the cost of $1 apiece to
meet an uncertain demand d. In the event that the demand
should exceed the supply, it is necessary to meet the
unsatisfied demand by purchases on the local market at $2

aplece. The equaticns that the system must satisfy are

100 = xll + x12
d = X117 + Xpq = Xop (xij 2 0)
C

x11 + 2x21

where
Xy = number shipped from the factory,

Xyp = number stored at factory;

Xpy = number purchased on open market,

X,p = excess of suppnly over demand;
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d = unknown demand uniformly distributed between
70 and 120;

C = total costs.

It 1s clear that whatever be the amount shipped and whatever be
the demand 4, it 1s possible to choose x21 and Xno consistent
‘with the second equation. The unused stocks Xyp + X5, are
assumed to have no value or are written off at some reduced
value (like last year's model autcmobiles when the new
production comes in). In this example, x' = (xll, x12)’

v' = (%pys xp0)s A = (7 g)s B= (3 1) ¢t = (1, 0,

£v = (2, 0), and b*' = (100, d).

3. THE HERE-AND-NOW PROELEM

3a. Example I
Work has been done on Example I by Beale [2], Dantzig [7],

and Madansky [13], in the case where P = 1 and only b is
random. The basic consideration of Beale was to consider how
one might utilize the solution of the nonstochastic problem
where b is replaced by Eb in order to iterate to a solution
of the stochastic problem. He sugrests that due to certain
convexities in the problem, this solution be utilized as a
first approximation in an application of the Newton-Raphson

method to minimizing E min (c¢'x + {'y) with respect to x.
y

Dantzig considered a multistage problem where a declision
x, has to be made at stage one, then the (random) right-hand

side of the first stage of the problem, bl’ 13 observed, after
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which a decislion X, has to be made at stage two, etc., form

stages. lle found that Eb p hin (c'x1 + f'y) is convex
g 00 0y

1 m y

in x, 1 (where y}includea Xps +ees X, @s well as slack), and

80 suggests using appropriate techniques ([5], [6]) to

determine Xy and hence Xq after b1 is observed, etc.2
Madansicy, in connection with work on inequalities for

min E min (c'x + f'y), the value of the objective function in

X y

the "here—and-now" problem of Example I, and E min min (c'x + 'y),
X J

the expected value of the objective function of the "wait-and-see"
problem, found the following sufficient (though not necessary)
condition for the solution of the stochastic problem to be the
solution of the nonstochastic problem where b is replaced by Eb.

Theorem. If min (c'x + f£'y) can be written as
y

cl(b, x) + Ce(b), where Cl(b, x) 4s linear in b, then the
X which solves the nonstochastic problem where b 1s replaced
by Eb also solves the "here-and-now" problem of Example I

where P = 1 and only b 1s random.

lcf. also Theorem 2 of [2].

2ct. also [4], where by imposing the condition that for
each 1 Xy be linear in the bJ, J=1, ..., 1-1, the quaatity

E min (c'xl + f'y), as interpreted in the context of
m Yy
(7], is found to be convex in Xy .

bl’...’b
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This thecrem generalizes work of Simon [13] and Theil [18]
on what is xnown in the literature as the use of "certainty
equivalents" in stochastic pr'oblems.l

The only other results on the version of Example I of the
"here—and-now" problem are the inequalities of Madansky [13]
on the value of the obJective function when only b 1s random.

Let C(b, x) = min (c'x + f£'y). Then in general
y

E, min C(b, x) { min E, c(b, x) E, C(b, x(Eb)),
X x

where X(Eb) is the vector which solves the nonstochastic linear
programuing problem where b = Eb. Also, in the special case

considered by Dantzig discussed above, there is the additional

inequality

r
min E, C(b, x) Das + 2 a,Xx, = G(X)
x D 2 % g1 Jd

where X is the r~dimensional vector which solves the "here—and-

now" problem,

lRetter [14] studies the general problem of finding

sufficlent conditions for the solution of a stochastic problem
to be that of a "surrogate" problem where the probability
distribution is replaced by something simpler. H1B condition,

n
in our case, 1s that C(b, x) = Z A,(x)B,(b), where A, (x) > 0,
i=1 n
Bi(b) > 0, in which case the x which minimizes 3 A, (x)EB,(b)
1=]

solves the stochastic problem. If we letn = 3, Bl(b) =1,
Be(b) = b, 83(b) = Ce(b), and A,(x) = 1, then C(b, x) =

Cl(b, x) + C2(b) = Al(x) + Ae(xib + B3(b), so that our theorem
is a special case of Reiter's where the "surrogate" is Eb.
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?E, c(b, x)
GJ" » J=’1' eeey N,
2 %y ]
xjch(Eb)
-——y r -—
ay = E, c(v, X(Eb)) - Jil aJxJ(Eb),

and the derivative of Eb C(b, x) exists in the neighborhood
of X(Eb). Hence, one can determine the coefficients
Ggs Qs ceey @ without solving Dantzlig's '"here—and-now"
problem and, if one has bounds on X, can utilize this informa-—
tion to get a lower bound on G(X). Thigs then yields a lower
bound on the value of the objective funct}on of Dan?zig's
"here—-and-now" problem which 1s independent of the solution
of the problen.
As shown in [13], a sufficient condition for min B, C(b, x) =

E, min C(b, x) is that C{b, x) be a linear function of b. A
x

b
sufficient condition for min E_ C(b, x) = E, C(b, X(Eb)) is that
X

2
J

then a, = O for § =1, ..., r, so that G(X) = Ey C(b, X(Eb))

and E. Cc(b, x(Eb)) { min E, Cc(v, x) ¢ Ey C(b, X(Eb)). Examples
b

E, C(b, x) be of the form xS — QEJ(Eb)xJ + k in each Xy for

can be constructed such that G(X) > E, min Cc(b, x) and
a(x) < Ey m;n C(b, x), so that one cannot compare these bounds
in general.

One can generalize the 1inequalities further, to the case

where all the coefficients in the problem {(i.e., the elements
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of A, B, b, ¢, and f) are random, for even then

E min min (c¢'x+f'y) { min E min (c'x+f'y) < E[ﬁin (c'x+f'y)'x==§(£)],
X ¥y X y y

where £ denotes (EA, EB, Eb, Ec, Ef). However, the conditions
for equality do not generalize.

The major problem area in Example I is that of finding a
technique which solves the general problem. The only techniques
known are those of Dantzig for the special problem he considered1
and the use of "certainty equivalents" in the case covered by
the above Theorem. It would be of interest to know for what
real situations C(b, x) is of the form required by the above
Theorem. Also, a possible area of research is on iterative
techniques such as that suggested by Beale. The inequalities
of Madansky may be used to provide benchmarks on the number of

iterations needed to arrive at a solution.

lcharnes and Cooper [3] suggest that one break the problem
into two parts, that of determining the distribution of the
optimizing xi'a (eince they are functions of the bJ's,
J=1, ..., 1=1) and that of approximating the xi's by linear
functions, say, of the bJ's, the coefficients being those for
which the distribution of this linear functlon best approximates
the distribution of the optimizing xi's. It 1s unclear from
[3], though, how the distribution of the optimizing x,'s can
be determined without actually solving the "here—and-now"
problem. Elmaghraby [9] studies the use of the zradient method
to solve the problem of [8].
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It would be of interest to !mow for what situations other
than that studied by Dantziz is E C(b, x) a convex function of
x, 80 that the techniques of [5] and [6] may be used. Also,
what 18 the probability that the "certainty equivalent"
solution is feasible in various slituations? The answer to
this question may be useful in helning someone decide whether
he will be willing to suboptimize and solve a solvable problem.

To i1llustrate the use of the known results for Example I,
let us study the simple case given in Section 2. (This case s
a single—stage problem of the multistage type which Dantzig
studied.) It is clear that if supply exceeds demand (x11 > d),
that X5y = 0 gives minimum costs and, if 3% { 4, that
Xny = d--x11 sives minimum costs. Hence

X171 1f %y, >d

C(b. X) =7 .

Since d 1s assumed to be uniformly distributed between 70 and
120,

—Xyy *+ 190 if X113 { 70
E, C(b, x) = | 107.5 + (95-—x11)2/50 1f 70 < %,y € 120 .
L *11 1f 120 ¢ X113

Note that E, C(b, x) is convex in x. This function attalns

its minimum, 107.5, when x,; = 95. lence, min E, C(b, x) = 107.5.
x a
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One also sees that min C(b, x) = d, so that Ey min C(b, x) =
X

X
Ed = 95. Also, since X(Eb) = 95,

c(b, X(Eb)) = {95 1f 95 > d
g ~95 + 2d if 95 < d

and E C(b, X(BEb)) = 107.5. Our inequalities yield

95 { min E, C(b, x)  107.5,
x

and we note that the upper bound is sharp.
Since this example is a degenerate multistage problem of
the type studied by Dantzig, let us determine G(X). Here

= {(xy, = 95)/25 if 70 < x4, £ 120
3 x
41 1 1f 120 < xp,

and X,,(Eb) = 95, so that @y = 0, a, = E, C(b, X(Eb)) = 107.5
and G(X) = 107.5. Hence this lower bound is sharp, as well,
in this case.

Note that the sufficlient condition for min E, c{b, x) =
Ey, C(b, X(Eb)) given above 1s satisfied in thfs cace, so that
we expect both G(X) and the upper bound to be sharp. DNote
also that both the optimum X1q and x(Eb) are 95. This is to
be expected, because C(b, x) is linear in b for each x, and
so satisfles the requirement of the Theorem stated above.
Pinally, note that C(b, x) is not linear in b for all x, so
the sufficient condition for min Ey, c(b, x) = Ey min c(b, x)

is not satisfied, and in fact in this example equality of these

values does not hold.
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3b. Other Examples

I have seen no work on either of the other examples given
in Section 2. A natural approacqa whilchi mignt be taken in
solving Example II where only b 1s random 1s to replace b by
a vector bY wnere Pr {b S by} = v, and solve the nonstochastic
linear programming problem for xy, say. One might then search
for the largest y and concomitant X, suchi that X, and y(xv)
are feasible with probability P or more and such that
C(bv, xv) = k. This decision solves the problem of Example II.

The problems involved in implementing this approacn, aside
from the "search" problem, are the followins. In multidimensions,
b_ 18 not unique, and so one must first study each bY' for a
given vy, such that Pr {b S by} = 9. Also, as y increases, at
least one component of by increases. However, though xy is a
continuous function of bY’ it may not be the case that by
increasing vy, Pr {C(by, XW) < k} will increase.

Let us illustrate how, in a one-dimensional uncertainty
problem, wnere these difficulties do not exist, use of the
v—th quantile of the distribution of b will yleld thé solution
of the problem of Example II wiiere only one component of b 1is
random and where P = 1. We consider the illustration studied
above.

Let us write dY =70 + 50y, 0 { ¥y 1. We note that, as

a function of 4,
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o d S o)
min C(b, x) = (d 0<d<100,
X
| 2d -~ 100 100 { 4
or rewriting in terms of v,
(0 y { -1.4
min C(b, x) = { 70 + 50y -1.4 (v .6.
X
_ 40 + 100y 6 { v

Note also that min C(b, x) = 70 + 50y when only Xy; and xq,
are the only (po:sible) non—zero components of the solution
vector, and min C(b, x) = 40 + 100y when only x,, and x,, are
the only (posgible) non-zero components of the solution vector.

Let us say we wish C(b, x) { k. Hence

X110 X9p LT ¥ { (k-70)/50 and 0¥y ¢ .6
Xyy0 Xpq 1Y { (k-%40)/100 and .6 (y 1

and finding x which maximizes Pr {C(b, x) { « I P-=1} is the
same as finding x which maximlzes y subject to the above

restraints on y. Por example, if k = 110,

X110 %o 1T 7 { .Band 0 (¥ ( :6
~xll’ X5 if vy .7Tand .6 (vl
i.e.,

. - {’xll’ Xyp it vy £ .6

Lxn, X5q it vy £ .7
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Hence y is maximized if x = (xll, x21)’ in which case ¥ = .7,
dy = 105, X, = 100, and X5 = 105 - 100 = 5. Por the decision
X1 = 100, X5 = 5, the probability of feasibllity 1s 1 and

the probability of the objective function being less than or

equal to 110 is maximized.

4, THE WAIT-AND-SEE PROBLEM

Tintner [19] has considered the problem where one wishes
to optimize, over a set of possible distributions of the
random elements of the problem, a "preference functional" of
the (random) value of the objective function of the "walt—and-sce"
problem. Examples of such a preference functional are

y
suggests an approximate procedure for obtaining the distribution

E(min min (c¢'x + f'y)) and Pr~{m1n min (c'x + f'y) < k}. He
X y x

of the value of the obJjective function in case the random
elements are normally distributed.
The only other work on the "wait—and—see'" linear programming
problem are the lnequalities of Madansky [13] when only b is
random, and unpublished work of Talacko and Rockafellar (cf. [17]).1

It has been shown in [13] that
min C(Eb, x) ¢ E, min C(b, x) { min E, c(b, x),
b X X

and also, that if b is an n-dimensional vector with finite

lSee [10] for a special type of "wait—and—see" problem
which reduces to a "wait—and-see" quadratic programming
problemn.
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range, [B,, B,o], then
g
. (<109 (8y —Eby)
E, min c(v, x) <= T » min C(B_. , ..., B~ )
X g J=1 (BQJ-BIJ) X dll ﬁnn

= H (Eb)

where dJ (3 =1, ..., n) takes on the values 1 and 2,
;J = 3 - dJ, g 1s the set of 2" n—vectors of 1's and 2's, and
Bﬁ K is the k-th element of the vector Bd . The inequality

J J

min Cc(Eb, x) ¢ E, min C(b, x) was first derived, in a different
manner from that of [13], by Vajda [20].

A necessary and sufficient condition is given in [13] for
H'(Eb) = E, min c(b, x) = min c(Eb, x), namely that min C(b, x)
be linear in b. Also, 1t is shown that a sufficient condition
for min E c(v, x) = Ey, min C(b, x) = min C(Eb, x) 1is that
C(b, x) be linear in b. Examples have also been constructed
where H’(Eb) is greater than min Eg C(b, x) and where it is
less than min E, C(b, x). i

Talacko and Rockafellar [17] have studied the problem of
obtaining coﬁ}idence 1imits on min C(b, x) by using quantiles
of the distribution of b. They leo have generalized these
confidence limits to the case where A, B, ¢, and f are also
random. As yet, this work 1s unpublished.

A variant of the use of "certainty equivalents" was
studied 1in Babbar in [1]. He considerec the modified ' walt—
and—see" problem (where the criteria are those of Example I)
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where the activity vector x but not its value must be
determined before the random elements are observed, and after
the random elements are observed the value of x must be
determined so as to "best" satisfy the resulting restraints
of the problem. More precisely, he studled the approximate
distribution of the value of x, where the vector x is that
vector which solves the nonstochastic problem where the
random elements are replaced by thelir expected values.
Unfortunately, as Wagner [21] noted, this vector may not be
feasible after the random elements are observed, and so the
distribution studied is not necessarily the distribution of
a vector which even satisfies the problem.

Also, we note from [13] that the expected value of the
objective function of the modified "wait—and-see" problem 1s
not only at least as great as the expected value of the
objective function of the "wailt—and—see" problem, which 1s to
be expected, but also 1s at least as great as the value of
the objective function of the "here—and-now" problem. Hence,
one is better off in the modified "wait—and—see" situation of
Babbar to recast the problem as a "here-—and-now" problem
(1f, of course, the "here—and-now" problem can be solved).
Other comments on Babbar's procedure are made in [21].

The outstanding problems in the "walt-and-see" area are
those of determining the distribution, or at least the mean
and variance, of the objective function and of the value of

the optimizing vector under various distributional assumptions
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about the random variables. It may also be fruitful to look
further at Tintner's approximations in the case he considered
and derive approximate means and variances of these quantities.

One should also note from Theorem 3 of [2] that if both
A and b are random, then min (c'x + f'y) 1s a convex function
of both A and b. Let C(A,yb, x) = min (¢'x + f'y), in this
case. Then, by the same argument asyin [12], one can sliow
that min C(EA, Eb, x) < EA,b min C(A, b, x) m%n EA,b C(A, b, x)
and, if the elements of both A and b are distributed over a
finite range, then one can determine an upper bound of the
form of H’(Eb), say H.(EA, Eb), by the method of [12].

To return once again to the simple casc studled earlier,
we record once again that E, min c(b, x) = 95, which was less

X112 1f x99 2 95

C(Eb, X) =
—Xqq + 190 if Xqq {9

and min C(Eb, x) = 95. Finally, in this case
X

2
1" (Eb) = %}%ﬁ;—l min C(120, x)+if}é-ui_17@$5-')§‘ll min €(70, x)
X X

= Ed = 95.

Hence 95 ¢ E, min C(b, x) { 95. But this was to be expected,
since min c(v, x) = d and hence satisfies the necessary and

sufficient condition for equality of these three quantities.
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