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ABSTRACT

An analysis of solid rocket motors was made in order to find the
chamber pressure and thrust during the transient periods of buildup and
decay. The results are differential equations and solutions of closed form.
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LIST OF SYMBOLS

A Cross-,sectiona3 area, surface area

a Coefficient

C Constant

c P Specific heat at constant preosure.

d Constant

F Thrust

nm Mass of propellant

n Combustion index

p Pressure

"Po Ignition pressure

R Gas constant

r Burning rate

T Temperature

t Time

V Volu-nme

v Velocity

ad Nozzle angle in divergent part

y Ratio of specific heats

X Correction factor

P Density

Independent variable
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LIST OF SYMBOLS (Continued)

Discharge function

Mass flow rate

Subscripts

a Refers to ambient condition

c Location at chamber

e Location at exit or separation

f Refers to propellant

t Location at throat

0 Initial condition

V



INTRODUCTION

In determining the total impulse and performance values of solid

propellant rocket motors usually the thrust buildup period, which is the

time from ignition up to a certain rated thrust, and the ..rust decay period,

which is the time from an average effective thrust down to zero, are not

included. The total impulse can be accurately calculated by integration of

the thrust over the total operating time. For calculating the thrust during

these transient phases of buildup and decay, the chamrer pressure as a

function of time has to be evaluated first. During these periods quasi-

steady flow through the nozzle is assumed. General equations will be

derived which are differential equations applicable for cases when several

parameters are variables, as area of flame front changing with time, com-

bustion index changing over certain pressure ranges, average ratio of

specific heats changing with expansion ratio, etc. Then, assumptions are

made where those parameters are constant and solutions of closed form

are derived.



CHAMBER PRESSURE BUILDUP

General Derivations

Consider a general case of burning fuel in a solid propellant rocket

motor where the combustion gases escape through the nozzle.

_, _ VV

By applying the law of conservation of mass in the chamber the following

equation can be used

dpV V fI)
dt

where Zif is the rate of fuel consumption and Zj is the discharge rate through

the nozzle.

The burning rate of a solid propellant increases strongly with an

increase in pressure under which the propellant burns. The burning rate

can be expressed as

n
r =apc (2)

where a and n are coefficients which depend on the propellant composition,

on temperature and on operating pressure. Introducing the surface area



of the flame front Af and the density of the propellant pf the rate of fuel

consumption can be written

n
fAf pf apC (3)

The discharge rate through the nozzle, in this case through the

throat region, can be expressed by the continuity equation

-ptvt At (4)

where

p - density of the gas,

A - cross-sectional area, and

v - velocity at the throat.

The energy equation is

vt / Tt
.t2 _:cp(Tc - Tt) = cp Tc - ) (5)

where the velocity in the chamber is assumed to be negligible.

Substituting the specific heat at constant pressure

Y

CP = - R (6)

and introducing the isentropic expansion

'Y-I

the velocity at the throat becomes

3



Vt RT[ (8)
PC J

The mass flow rate in Equation 4 can be changed with

I
Pt (Pt)(9)

to

1 p-

~~CL'C'\pt Y- L PtI i} .(0

C = At (ZRTc)' I--- 1 - (10

Substitution of the density of the gas in the chamber with the aid of

the perfect gas law

Pc

cR T

results in

4()1pcAt( 2)z(Et )Y{ ( yL-)Y(

For convenience the right hand term in Equation 12 will be called a function

I ' -

~(Pt )F{Yt L-P (13)

which is really the discharge function, depending only on the ratio of

specific heats and the pressure ratio between chamber and throat. This

Sdischarge function has a maximum value at the critical pressure ratio when
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sonic velocity exists in the throat. In order to obtain the maximum of the

discharge function, i. e. . finding the critical pressure ratio, the derivative

of 40 with respect to the pressure ratio has to be taken and set equal to

zero.

Y+

2 y+1 Z-y 1d@l P )" (pTY (4

d(p/pc) 1  2 L'PC/ PC Y LVPC Y "PCi

Setting d4P/d(p/pc) = 0 yields the critical pressure ratio

((2/Y)(PP) - ['Y + 1)/Y](P/Pc - (15)
Y y yY(/c 0(5

Y -+1 -hl
2.[(p/pc)• (p / pC)•

Equation 15 will be zero, if

2-y C

or

Y

-p-)y - (17)

This is the critical pressure ratio at which sonic velocity just exists in the

throat and the discharge function has reached a maximum at

2 y+I() ( -) ' (

M d X +



or

_2 4 Y-l
+max + 1) (19)

The result shows that the discharge function depends only on the ratio of

the specific heats in the case of critical conditions.

For the subcritical case, the discharge function remains

P (Y{7~ (La) Y ffz

With Equations 3, 12, and 13, Equation 1 can be written

-nI
dn At nP (2 (21)dt AfpfaPc a p cAt* 

(1

The derivative of the gas mass in the free volume of the chamber

can be expressed as

dp V dp dV
it - dt + 22

where V is the instantaneous volume in the combustion chamber and p is

the instantaneous density of the gas. The free volume is a function of

time due to combustion and consumption of the fuel

t

V=Vc mO- + Afapn dt (23)

0

vhere

I
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I

V- - the volume in the cha.mer a•t •... .,.

r m 0  - the initial mass of the propellant, and
t

Af a PC dt - the volume of the consumed propellant or theI 0created volume by combustion of propellant
during the time after ignition.

Since the chamber volume and the initial mass of the propellantr are constant, the derivative of the instantaneous volume with respect to
time will be

r dV nd = Afa Pc (2-4)

F Substituting into Equation 22 yields

Is

t
dp V = (Vc -Pf + f dt) d p + cA a n (25)t mPdt = .W+ Afapcndtd) n

0

The experiment shows that the isobaric combustion temperature changes
only slightly with combustion pressure, i. e. , the temperature change is

negligible.

=. Applying the equation of state and taking the derivative of the density

with respect to time gives

dpc I dpc
dt RTc dt (26)

With the above relation the expression in Equation Z5 becomes

t
dp V CO A 1 t~L dpc n.=V-T fap Tcd~ + pc Afapc (27)"dt Vc Y PfCdt a c7

0

7



The law of conservation of mass described in Equation 21 can be

written with the derived expressions as

t
n\ 1 dpc n n A4(\Af n + dp a+ PcAfapc =Afpfapc P cAtd4

( - Pf Y c at RTC dttRTC
0

(28)

or

tS n ntC
M-f + Afapc = RTcAfpfa I -L((v Y cdt) n PC)f PC At4 2 c)2(9

0

In this relation the density in the chamber Pc is less than one or two per-

cent of the propellant density pf, thus it can be neglected.

t
Pr2~ CA nd\ dpc cn (30)

_f MEo+ AfaPcn dt=RTCAfpfapc PcAt d(2RTc)(

0

The above differential equation describes the development of the chamber

pressure as a function of time. The variables are

Pc - chamber pressure,

Af - surface area of the flame front, and

a, n - coefficients vary with operating pressure and pro-
pellant temperature.

As mentioned previously the chamber temperature can be set approximately

constant as can the gas constant or molecular weight of the gas and the ratio

of the specific heats.

Equation 30 must be solved numerically on a digital computer. De-

pending on the design condition of a solid propellant rocket motor, different

cases have to be distinguished for determining the chamber pressure buildup.

8



If the nozzle is closed for a moment during ignition by a membrane

or diaphragm and no efflux through the nozzle takes place, the following

relation has to be applied

(VC - t +SAf apcdt) dpt = RTc Af pf a Pc (31)

0

This equation can be used both for the igniter propellant and for the main

propellant; only the parameters for the propellant and the boundary con-

ditions have to be changed.

At a certain pressure the membrane bursts and the efflux begins.

Quasisteady flow will be assumed, i. e., the discharge rate is determined

at any given moment by the equations for steady flow. Here, this equation

is valid

tZ
I C n\t dPc n _

m__co + Afapc dt) _ = RTcAfpfapc - PcAt 4' (ZRTc) (32)(VC PfY tC P

0

Usually, when the diaphragms burst, the chamber pressure greatly exceeds

the critical pressure, i. e.,

Y

Pa < 2 1 (33)

so the discharge function, which is constant, can be introduced.

Equations 32 and 19 yield

1

4'max +(T"-I' (y

9



tz y+ I

(VC- + Afapc d d-)c = RTCAfpfaPcC - (Y)Z (y) 1) pcAt(RTc)z

0

(34)

Open End Nozzle

The nozzle is open and efflux through the nozzle takes place from

beginning of ignition. Equation 20 gives the discharge function until the

critical pressure ratio is reached

1 y-I

(PayT Y [(Pa\ Y f
Y

Then the differential equation will be for Pa/Pc • [2/(y+ I)]Y-I

ti

(VC mo + Afapc a dt = RTcAfpfaPcc

0

(35)
I -

c Pa Zy RTC' - Pa

and for the supercritical phase

y
Pa 2 \Y-1

Pc Y+ I

tZ Y+ 1
m nt dpc P C 2Z(y1)Sm._o a d --I = R T(Yfpf" -

($i~c y A pdt )- Rcff~ (Y)2 (i +cAt(RTc) 2

0

(36)
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The time required to build up the chamber pressure is the sum of time tj

y
_V-1

j during which the pre-cure inci-easeB from Pa to Pa/l Z/(Y + I) and the

time t2 during which the chamber pressure varies from pa/[ 2/(Y + 1)]Y-I

to Pc. The effiux during the first interval of time is subcritical and dl depends

So'n Pa/p; the efflux during the second interval is supercritical and ' is in-

dependent of Pa/P.

Approximate Solution of the Differential Equations

An integration of Equation 30 can be accomplished on the basis of

assumptions which will follow later

mo + Afapc dt) -- = RTcAfpfapc - PcAt ý (2RTc) 2

P f
0

A new independent variable will be introduced for the relative consumed

r propellant mass

t

rf S Af aPc dt (37)

0

V Equation 30 becomes with the above

mo~ dp cnr f - - dt TCAfpfapc PcAt tP (ZRTc)2  (38)

V The derivative of the chamber pressure can be changed to

dpc =dp c d# (cd'pc dý (39)
77 t dt d ý \ ]dt

and with Equation 37

=f n
P_ Af a Pc (40)

dt m0

• ll



to

-'VC Ft n dpc
= -AAf l -a (41)

Substitution into Equation 38 yields

Vc F m 0  - Pf Afapc RTCAf PcAtkP (2RTc)a (42)

L Pf MO~ -AaC- d+P p~tP~

or simplified

0)At* lP-n
MVcf d = Rdcf a4 PC (2RTc)-

Separation of the variable leads to

dc d) 14 3)d-n_ = - . . .. - -

RTcpf- (At 4J/Af a)pc (2RTc)z [(VCPf/mo) - I + •j

The boundary conditions are

37) att =0, =0

Pc Po

where po is the ignition pressure, and

attt,

Pc =Pc

The integration can be carried out

9)

1- dpc - d (44)

RT Pf- (At 4/Af a) Pc (2RTc)z ( (VcPf/mO) - 1 + 0]Po 0

.0)

i1



The right hand side integral can be solved very easily

S d, n(Vcfl( +,•

0 [(Vopf/mo) n + - 1 +

l(Vc pf /Mo) - I +
11pf/nO) 

-(1

I=In + (Vpf/m)- 1(45)

The expression for the independent variable can be introduced again

t

(pf/mo) Afapcn dt

I, =In I + (VcPf/m0 )- (46)

or simplified
t

AfapcC dt

i1 =InI1+0 (47)1 VC - (too/pf) (7

If it is asaumed that the area of the flame front is constant, which

is used in many motors, and an average burning rate is defined between

the ignition pressure po and the steady state pressure Pc,

rm =a(P° + PC)n (48)

the integral becomes

i Afa[(Po+ PC)/Z]nty

11 = In I + Vc - (mo/pf) (49)

13



-or the solution of the left hand side integral in Equation 44 some

an.5umptions have to be made such as constant area of flame front and

constant discharge function in the case of supercritical condition, which

is true when the ignition pressure po is above the critical pressure. The

combustion index of many propellant types are in the neighborhood of

n = 2/3, so it will be used for the integration.

dPc 
PC dpc J2 (50)

1-n 1/2 S 1/3
p RTC Pf- (At•P/Afa) pc (ZRTc) Po C-dpc

where

C = RTcPi

and

At
d =a- (ZRTc) 

2

which, by dividing out the integral, becomes

PC[ 1 •3 z (C2 /~~°/

12 = [ PC c 1 pc + C -d /j IdPc (51)Y Id C dz PC C - dpc 1/ -

Po

Integration of the terms results in

PC

2d 7- pP - 7- ln(C -dp ( 52)

Po

and setting the limits yields

• 14



2/3 3C 1/3 1/3)- 3G C -dp pcl/312 (=.2/ _ PC•3 + d-F (Pov (o/3 -PCI3 - In -
2p =d )C - dpo( -Ph

or

3CF r/ 1/W 3 dW 3 43 ?/ C dc/12 d (Po1/ PC + ? -L(POz/ PC/) I•n - / (53)
? LT C2C n dpo 1/3

The whole expression of the solved integral 12 is given with replacement

of the constants

= a Af2 RTc ___ o 1/ /3 2/3 _ PC 2 /312 = 242A 2  ( P (Po -P ~0 /) + Z(a 2 R2 T o 2/)
24Zz pf RTC 2Af a pfý'RZ T

(54)

Af a pfRTc - (A T) 1/2 '/3

At D(ZRTc) n f pfRTc -[ At 1(ZRTC) Iz/Afa] po 1

The solution of Equation 44 permits the determination of the

chamber pressure as a function of time which is

3pf 2 a Af 2 RTC 1 (PoA/3 _ PcT) + t - P2/3

2'z Atz pfRTc 2Afa pf 2 R2 TC'

Afa pfRTc - [At45(ZRTc) /2/Af a] Pc 1/3

1/2 In f /t, 1/3~ (55)
At tI (ZRTc) pfRTc - [At •(2RTc) //Af a] po )

Af a[ (Po + PC)/?.]?/3 t

In[, + Vc - (mO/Pf) ]

15



If the area of the flame front is a variable, i. e., a function of time

and the combustion index different from n = 2/3 especially in certain pres-

sure ranges, Equation 30 has to be integrated numerically for obtaining

an accurate chamber pressure curve.

3)

5)

16



CHAMBER PRESSURF DECAY

Decay Durinjý Supercritical Phase

After burnout the combustion chamber can be considered as a gas-

filled vessel, in which Pc, Pc and Tc exist as initial conditions. It is as-

sumned that the discharge of the gas through the nozzle is approximately

quasistationaryv, i. e., the discharge rate is determined at any given

moment by the equations for steady flow.

The law of conservation of mass applied to the gaseous mass

contained in the combustion chamber can b," introduced as

dp V(56)
dt

where !a is the discharge flow rate out of the chamber.

Since the volume of the chamber does not vary with time, Equation

56 becomes

V do= (57)
C dt

Using the derived relation for the discharge rate in Equation 10

the expression will be

cd - pAt (ZRT)a I - -- ) 1 (58)

where the dis -ýharge function 4j is introduced again by

I 'y - 1

+= )pYfL-_ P) (59)

17



Dividing by the initial chamber condition yields

VC P -At(ZRTc)' ý (60)

dtPc PC Tel

Following the adiabatic relation and arranging gives

I+

d (-) - (c) tP(ZRTC)2  (61)
dt \P C V P

The derivative can be written as

d1

(62)
1-y

Substituting into Equation 61 yields

3Y- I
d- I Q (ZRTc)az (63)V Pc'

This first order differential equation can be solved by separation

of the variables as follows

d(p/pc) At 1
3y-l - Y(ZRTc)2 dt (64)

4F(P/pc) 2y

The boundary conditions are

t=0 -= 0
Pc

t =ti-P P

Pc Pc

18



P/Pc At
3Y-1 =-- Y(ZRTc)Z tj (65)

' 4(P/PC 77

Since the discharge function 4 depends on the pressure ratio, two

cases have to be distinguished, the eupercritical and the subcritical con-

ditions. For the supercritical condition the pressure ratio is as developed

previously

Y
Pa (Z)Y-

and the discharge function has reached a maximum with sonic velocity in

the throat

Y +

Equation 65 becomes
3'Y-l

At 1 P/Pc (P/Pc) ___Y d'( 6
- Y(ZRTc) 2 ti = -- 1(66: PC

S[Y/I(y + 1)]½[Z/(y + 1)]

The integral will be calculated separately

P/Pc 3Y-1 3-1+ P

PC/ (PC( ) - (3Y - 1)/ZY + 1:(C)

1 1

19



P/Pc 3Y-• j-• (-L)

" (..&\" 2..y fp'- 7 Y
J \Pc/ \Pc/- yl\PCJ

(67)

Y-1

With this result Equation 66 becomes

y-1
At 2Y /\~1 (8
V-• Y(ZRTc)Ztl =1 •Y-1 - 1 (68)

[f/(Y + 1)] [Z/(y + 1)]

Rearranging the above equation and expressing the chamber pres-

sure explicitly as a function of time gives

1 2y

'~ [ 1 + L c (2RTc) t1  (y2 1t (Y+ '

PCI '+ y+

or simplified

'Y+ 1 2Y
r Att y - 112ZYY-1

P [II c 2k + )(.1) (Y RTC) 2jY (69)

Equation 69 shows that the efflux at supercritical condition is independent
of Pa/Pc.

Decay During Subcritical Phase

For this phase, Equation 65 is also valid which is

3Y-1
At , •Pc/P c ) 2y

Vc Y(ZRTc)zt d(_9 (70)
C P

21
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With the subcritical discharge function

1 Y-1

(Y i(La)y I(Pa) Y ji (71)
J

Taking into account the initial condition

Yt__0 La 2, ),., =a PC
P Y+ 1 P Pc

or

Pa

pc[ /(Y + 1)] Y-1PCL

ai idri ala..

t = tz - P-- =P-
Pc Pc

the relation becomes
P/Pc

S_ ~3Y-1_

At 1 (P/Pc) d(p/pc)
Y (ZRTc)ztz y

f -Y [ 
-Y

c J[Y/(Y- 1)] Aya/p) [1 - (Pa/P) I

pa' Pc[Z/(Y+ 1)]Y-I

(72)

For better integrability some minor changes must be performed

21



3y-1
2-'

(P/Pc) 
d(p/pc)S 1 "Y-1

[(Pa/P)(Pc/Pc)]Y {1 - [(Pa/P)(Pc/Pc)] 12

(73)

3(Y-l)

a-{ (P/P 2 d(p/pc)

(Pa)Y>PC Y-1.. Y-1

[1 - (Pa/Pc) (P/Pc) ] 2

Finally the equation is

1

YAttz{[ZY/(Y - 1)]RTc}z

V-

P/Pc
1 3 (Y- 1)

1 1Y
(Pa\ -~ Y,,(P/Pc) d(p/pc)

YP/ -I Y-I

4--- [ - (Pa/Pc)T (P/Pc- T]

Pa/ pc[Z/(Y+l)]

(74)

The above integral can be calculated only by the numerical method.

22



T HURUST BUILDUP AND DECAY

Thrust Buildup and Decay During Supercritical Phase

With the aid of the previously determined derivations the chamber

pressure as a function of time can be calculated for the buildup and the

decay, respectively. Applying the law of momentum on a rocket nozzle,

the thrust is given by

PC -1 ve F ve + Ae(pe- Pa)

(75)

Pa

where Zo is the mass flow rate, ve is the exit velocity or the end velocity

where separation of the gas from the wall occurs, Ae is the area in the

nozzle at separation and Pe is the static pressure at this point.

In the above equation for the thrust the correction factor X will be

assumed to be unity.

1 + Cosad

2 
(76)

where ad is the half nozzle angle for the divergent part of a conical nozzle.

The mass flow rate through the nozzle is given by Equation 12

which is

Z3



1 v-I
i~~p 1t 2 A'Pt-y f

CLRTC "PC "Pt/ J

or

PC At (77)

where 4 is the discharge function.

For the critical phase where

the discharge function reaches a maximum and is a constant

'max-(y+ 1~(y+ -)Y (78)

In this case the mass flow becomes

1Z ,I

PC A _y) ( Y )y ( 2)Y-1

or

Y+ 1

pcAt ( Y y1)2(y-1) (79)

From the energy equation

2

Ve i Tee
2 C(T- cTe) c p Tc I T (80)

and the equation for isentropic expansion

24



Y(-1

T_

the end velocity ve follows

e-[

For obtaining the area ratio where the separation occurs the con-

tinuity equation must be applied.

PeveAe = PtvtAt (83)

With the end velocity found in Equation 8Z and the velocity of sound in the

throat, the expression becomes

Ae Y-1

Ae{yRTc~L - (Pc) Pe=' RTt At

Pt Pc (Y RTC) (z t t
Pc Pe \'c

(84)
1 1 I

(X+-) e/(c) (YRT)2ak ( l] At

1 Y+YP c-y ( 2 '~c y- At

(Y)? (RTc)½'pe VY + 1At

Finally, the area ratio is found by

Y+ I

Ae 1 lii (Y- 1)Ae [2/(Y + e)] (85)A-"t I Y-1I(85

(Pe/Pc)d' {[zy/(Y - I[fli - (Pe/P) Y B

25



The thrust is found by substituting into Equation 75:

Y+ I Y-1

F=pcAt(Y)2(¥+ 1)(Y-1) ( [ I ( (Pe)

Y+ 1 (86)

At(Y)a [2/(Y + 1)]
+ 1 Y-1 (Pe Pa)

(pe/Pc) {2/€-)[ - (pe/Pc) ]}

This equation is valid for

S~Y

Pa 2 \Y-1

P P Y + 11

At the design point of the nozzle the gas is expanded down to the nozzle end

where the exit pressure is equal to the ambient pressure Pa- If the chanmber

pressure is lowered, the gas is overexpanded and the exit pressure can be

much lower than Pa; even separation from the wall occurs and the separa-

tion point travels upstream with decreasing chamber pressure. During

overexpansion oblique shock waves exist in the nozzle.

From the standpoint of thrust, the nozzle may well be cut off at

the separation station, since the internal and external pressures are nearly

in balance beyond this point. The thrust of a rocket motor with separation

in the nozzle is calculated on the assumption that the nozzle area ratio is

not that corresponding to the actual exit but rather that of the separation

station. Therefore, it is necessary to be able to predict the location

of separation.

Experimental results on rocket motors which vary considerably

from author to author will be used for finding the exit pressure where

separation of the gas from the nozzle wall occurs. Summerfield recom-

mends an average exit pressure ratio of Pe/Pa O. 4 throughout all the

26



expan•ion ratoBs, but ths value i6 not realistic, especially when the

-R ............ Of ,ththe u I Lnroat or when only sonic

velocity is the maximum velocity due to the available pressure

ratio. In Figure 1 the exit pressure can be found as a iunction of the

chamber pressure ratio. With this exit pressure Pe the thrust in Equation

86 is easily calculated.

Thrust Buildup and Decay During Subcritical Phase

In the case of subcritical pressure ratio

Y
Pa 2 Y-

Pc \Y+ I

the pressure at the throat is equal to the ambient pressure

Pe = Pa

Using Equation 77 the mass flow rate becomes

1Y-1

PAt(2 (Payr ( Pa Y (87)
~~ct\RTC PC) 'cIL' (87

and with Equation 82 the end velocity is

y-1
Ve _ (88)

Finally, the thrust, can be expressed as follows for the subcritical phase

F • -L'PC(At (La" [ Pa) Y (89)

27
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RESULTS

Expressions for the chamber pressure and thrust have been derived

as a function of time for the supercritical and subcritical conditions during

buildup and decay. Special attention was given to certain rocket motor

design conditions, such as open end nozzles and closed nozzles by diaphragms

during ignition. The results are differential equations which must be solved

numerically for accurate pur~poses and in the case of variable parameters

in the equations. In addition closed form solutions have been found based on

assumptions such as constant propellant burning area and average burning

rate.
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CONCLUSIONS

In many cases the total impulse during the thrust buildup and

decay period is neglected by calculating average performance values.

In order to evaluate the exact total impulse the transient conditions have

to be taken into account. The instantaneous chamber pressure and thrust

which are affected by the characteristics of the propellant and the design

of the motor must be determined throughout the operating time of the rocket

motor.
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