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ABSTRACT

An analysis of solid rocket motors was made in order to find the
chamber pressure and thrust during the transient periods of buildup and

decay. The results are differential equations and solutions of closed form.
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1LIST OF SYMBOLS

Cross.sectional area, surface area

Coefficient

Constant

Specific heat at constant pressure

Constant

Thrust

Mass of propellant
Combustion index
Pressure

Ignition pressure
Gas constant
Burning rate
Temperature
Time

Volume

Velocity

Nozzle angle in divergent part
Ratio of specific heats
Correction factor

Density

Independent variable
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LIST OF SYMBCLS {Continued)

Discharge function

Mass flow rate

Refers to ambient condition
Location at chamber

Location at exit or separation
Refers to propellant

Location at throat

Initial condition




INTRODUCTION

In determining the total impulse and performance values of solid
propellant rocket motors usually the thrust buildup period, which is the
time from ignition up t¢ a certain rated thrust, and the ..rust decay psriod,
which is the time from an average effective thrust down to zero, are not
included. The total impulse can be accurately calculated by integration of
the thrust over the total operating time. For calculating the thrust during
these transient phases of buildup and decay, the chamler pressure as a
function of time has to be evaluated first. During thease periods quasi-
steady flow through the nozzle is assumed. General equations will be
derived which are differential equations applicable for cases when several
parameters are variables, as area of flame front changing with time, com-
nustion index changing over certain pressure ranges, average ratic of
specific heats changing with expansion ratio, etc. Then, assumptions are
made where those parameters are constant and solutions of closed form

are derived.
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CHAMBER PRESSURE BUILDUP

General Derivations

Consider a general case of burning fuel in a solid propellant rocket

motor where the combustion gases escape through the nozzle.

e Ve

By applying the law of conservation of mass in the chamber the following

equation can be used

dp V
dt

:(;Jf-(.d) (l)

where @ is the rate of fuel consumption and @ is the discharge rate through

the nozzle.

The burning rate of a solid propellant increases strongly with an
increase in pressure under which the propellant burns. The burning rate

can be expressed as

n
r =apg (2)

where a and n are coefficients which depend on the propellant composition,

on temperature and on operating pressure. Introducing the surface area




of the flame front As and the density of the propellant pg the rate of fuel

consumption can be written

. n
wr = AgpgaPpc . (3)

The discharge rate through the nozzle, in this case through the

throat region, can be expressed by the continuity equation
W= povi Ay 4)
where

p - density of the gas,

A - cross-sectional area, and

v - velocity at the throat.

The energy equation is

vt T
t t
7 = CplTe - To) = ¢p Tc(' B Tc) )

where the velocity in the chamber is assumed to be negligible.

Substituting the specific heat at constant pressure

c =——R (6)

and introducing the isentropic expansion

y-1
E.E. = (f_t_ Y (7)
Tc PC

the velocity at the throat becomes
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y-1 _%
_ 24 Pty\ Y
ve = {Y R - (B ]} . ®)

The mass flow rate in Equation 4 can be changed with

1
Pt Pt\Y
== (= 9
Pe pc
to

] Y-l _,
. L rpt\Y Pty Y 2
w:pcAt(ZRlc)z(;)-) {Yi’l{l- —)

o [ o4

Pc (10)
Substitution of the density of the gas in the chamber with the aid of
the perfect gas law
Pe = g T (11)
results in
S ¥=r o,
G E @ T e

For convenience the right hand term in Equation 12 will be called a function

v,

L YL
(VY ey T
v Pc) {Y“ILI (Pc ]} 43

which is really the discharge function, depending only on the ratio of

specific heats and the pressure ratio between chamber and throat. This
discharge function has a maximum value at the critical pressure ratio when




sonic velocity exists in the throat. In order to obtain the maximu:n of the
discharge function, i.e., finding the critical pressure ratio, the derivative

of ¥ with respect to the pressure ratio has to be taken and set equal to

zerg.
1 2 o,
2 Y )
a[(ﬁ% -(EJPC_ Y J
1 -Z- .&L L
2 I +1
d(P/Pc) (v-l %[('Eg Y‘(ﬁ: Y _| [ ( Y Y ] (14)

Setting d¥/d(p/p.) = O yields the critical pressure ratio

2-y <
1
(=) @/Wlpd) © -Lv+ DIYTR/RY _ (15)

% y+1 ;
2[(p/pc) - (p/pcfv"}

Equation 15 will be zero, if

- 1
_Z_L-Y—_Y+l va 16
( . (pc 0 (16)
or
_
- -1 . (17
Pc Y+l

This is the critical pressure ratio at which sonic velocity just exists in the

throat and the discharge function has reached a maximum at

1

. o - -7 14
bmar = (79) |5 - (D)) s

(9]

w—



or

1
1 —
Ymax = (y+ 1) (\wzr I)Y-l : (19

The result shows that the discharge function depends only on the ratio ot

the specific heats in the case of critical conditions

For the subcritical case, the discharge function remain

L Y-l
P p Fl
2yt [1 (32 ] : : (20)
Pc vy -1 Pc

12, and 13, Equation 1 can be written

With Equations 3,

1

RTC) ) (21)

-

—-E——- Afpfapc - Pc \P(

The derivative of the gas mass in the free volume of the chamber
can be expressed as

dp V dp dVv
— — —
dt at - Pa (22)

where V is the instantaneous volume in the combustion chamber and p is

tne instantaneous density of the gas. The free volume is a function of

time due to combustion and consumption of the fuel

t

V:V - =2 +S‘Afapt, dt

0

(23)

where

ora o LUV

PN

Ay i
nevst
o
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v - the volume in the chambhsar

- ) th am at burnout,
N

my - the initial mass of the propellant, and
t

( Afapcn dt the volume of the consumed propellant or the
L

0 created volume by combustion of propellant
during the time after ignition.

Since the chamber volume and the initial mass of the propellant

are constant, the derivative of the instantaneous volume with respect to

time will be

av 1
& = Arare : @9

Substituting into Equation 22 yields

|

dp V m
(ve -

t
n d n
pf" +S Afap. dt Ts% * poAgap, . (25)
0

The experiment shows that the isobaric combustion temperature changes
only slightly with combustion pressure, i.e., the temperature change is

negligible.

Applying the equation of state and taking the derivative of the density

with respect to time gives

dp dp
o 1 c . 26)
dt RT_. dt

C

With the above relation the expression in Equation 25 becomes

t
dp V ( mg n 1 dpe n
= i< R 'Y —< 4 )
0




k)

]

The law of conservation of mass described in Equation 21 can be

written with the derived expressions as

t

1 dpc n n 2 Y
(v --—-+SAfapc dt RT okl PcAgap. = Agprap, 'PcAtq’(RTC)

(28)
or
mg 1
0
In this relation the density in the chamber p. is less than one or two per-
cent of the propellant density ps, thus it can be neglected.
' d
(VC - B_fg+ S AfaPc dt el RT . Agpfape - PcAY (QRT.)? . (30)

0

The above differential equation describes the development of the chamber

pressure as a function of time. The variables are

Pc - chamber pressure,
Af - surface area of the flame front, and
a, n - coefficients vary with operating pressure and pro-

pellant temperature.

As mentioned previously the chamber temperature can be set approximately

constant as can the gas constant or molecular weight of the gas and the ratio

of the specific heats.

Equation 30 must be solved numerically on a digital computer. De-
pending on the design condition of a solid propellant rocket motor, different

cases have to be distinguished for determining the chamber pressure buildup.




If the nozzle is closed for a moment during ignition by a membrane
or diaphragm and no efflux through the nozzle takes place, the following

relation has to be applied

0 G dpc
— + fapc dt I = RT Afpfapc . (31)
0

This equation can be used both for the igniter propellant and for the main
propellant; only the parameters for the propellant and the boundary con-

ditions have to be changed.

At a certain pressure the membrane bursts and the efflux begins.
Quasisteady flow will be assumed, i.e., the discharge rate is determined

at any given moment by the equations for steady flow. Here, this equation

is valid
t2
1
0

Usually, when the diaphragms burst, the chamber pressure greatly exceeds

the critical pressure, i.e.,

Y

Pa ( 2 Y-1
=< 33
Pco~ \Y T 1) (33)

so the discharge function, which is constant, can be introduced.

Equations 32 and 19 yield

\'
VYmax = Y+ l) (y-!- 1




t; y+1i
dpc Z{y-1) i
(v - = + S‘ Afapc dt) “g““ = RT .Afpfapc (Y)z Y + 1) pCAt(R'rC)z .

Open End Nozzle

The nozzle is open and efflux through the nozzle takes place from
beginning of ignition. Equation 20 gives the discharge function until the

critical pressure ratio is reached

(){Y-l[l-u ]} Y

Then the differential equation will be for p,/pc 2 [2/(Y+ l)]Y“l

ty

dpc
(V SAfapc dt T = RT Afpfapc
0
{35)

Y-1 .
. Pa) Y 2
c At { Pc
and for the supercritical phase

Y
Za 2 (2 )v_-f

t . Y+ 1
Pc 17 2 \2(¥-1 3
m 1
(vc -—-9+§ Agapc dt — = RTcAfprape - (W° (Y—g) (r-1) PcAt(RT¢)®

(36)

10
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The time required to build up the chamber pressure is the sum of time t,

Y

B

e Jv-1
during which the pressure increases from p, to pa/l 2/(Y + 1)] and the

Y

time t, during which the chamber pressure varies from p,/[ 2/(Y + 1)]\{’l
to pe. The effiux during the first interval of time is subcritical and Y depends

cn p,/p; the efflux during the second interval is supercritical and ¢ is in-

dependent of p,/p.

Approximate Solution of the Differential Equations

An integration of Equation 30 can be accomplished on the basis of
assumptions which will follow later
t

dpc n
(Vc - % + S‘ Afapcn dt) = = RTcAgprapc - Pc A (2RT)
0

L
2

A new independent variable will be introduced for the relative consumed

propellant mass

t

P{ n
E= e . 37
¢ = 0§Afapc dt (37)
0

Equation 30 becomes with the above
14 1
m pc n
[Vc - ;?" (- ¢)J =5 =RT Agpgapc - PoAgd RRT)? ) (38)

The derivative of the chamber pressure can be changed to

d
e _dPc do (--pc)(iii) (39)
dt dt d¢ d¢ dt
and with Equation 37
de _2f n 40
&t - mo Agapc (40)

11
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to

dpc _ Pi n dp¢ (41)

d& " AP dé

Substitution into Equation 38 yields

g 7 pf n 9Pc _ n - 1 ;
[VC - -5}- {1 - ¢)J ;n-;AfapC wrale RT.Afpsapc - PeAb {ZRT) {42}
or sirnplified
Ve Pt dpc Atd  1on %
- + ——— - eem—— é
(S50 -1+ 4) B < mrep - B pd "
Separation of the variable leads to
dp
- l-n 1 = 20 d 43)
RT_ps - (Ae¥/Agalpe  (RRTL)2  [(Veps/mg) - 1 + 4
The boundary conditions are
att =0, ¢ =
Pc = Po
where p, is the igniticn pressure, and
att =¢, $=¢
Pc = pc
The integration can be carried out
Pc g ¢
S = l-n i :S = - 44
S RT.pg- (A¥/Aca)pe — RRT? § [(Vepg/mo) = 1 + ¢]
o

12




The right hand side integral can be solved very easily

$
Vet

de =In(
0 [(Vopg/mo) - 1 + ¢] my

L9
-1+¢’)é

(chf/mo) -1+ ¢-l
L z‘“[ Vo pg/mo) - 1

= 4
I, = ln[l + V. Pf/mo) - 1] . {45)

The expression for the independent variable can be introduced again

t
(Pf/me)j‘ Afapcn dt

_ 0
11 = ln[l + (Vc Pf/mo) ) } (46)

or simplified

t
S Af a pcn dt
0
VC

Il =£n[l + ~ (mo /pf) ] N

(47)
If it is as3umed that the area of the flame front is constant, which
is used in many motors, and an average burning rate is defined between

the ignition pressure p, and the steady state pressure p,

po + PC n
I = a(—5—) (48)
the integral becomes
Agal(py + pc)/2]" ¢
I, =1In{l ¢+ , 4
: V_ - (mo /pp) } (49)

13
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For the solution of the left hand side integral in Equation 44 some
aszumpiions have to be made such as constant area of flame front and
constant discharge function in the case of supercritical condition, which
is true when the ignition pressure p, is above the critical pressure. The
combustion index of many propellant types are in the neighborhood of

n = 2/3, so it will be used for the integration.

Pc dp, Pe dp,
S =S <1, (50)
) l1-n i, i3
p, RTcps- (Ag¥/Asa) pe (RRT) Po ©-dpc
where
C = RTC Pi
and
At4’ L
d = -A—f-;' (2RT.)
which, by dividing out the integral, becomes
Pc 2542, =43
1 Ly, G - (C/dp ]
I = =4 Pc - 5Pt Y dPc ) (1)
d C-dp.”
Po
Integration of the terms results in
Pc
3 3C 15 3C? s, |
s |- et - 25 pc - 3 tnic - ap )] e
Po

and setting the limits yields

14




3C Ys Y, 3c? c
L =33 -Pc )+t ¥ o -Pc ) -3 In

or

s
3CET 1 s v, d 4 ] C"‘Pc]

IZ =-——z.- —-(po = pc ) + _(P - P ) -=1in —————p (53)
2CzZ \wo C 1
at | C C 477 ¢ Jap, /3
The whole expression of the solved integral I, is given with replacement
of the constants
2.2 52 Y2
3p; a® Ay RT, 1 s Yy At‘ll(ZRTC) o, 2,
L = 2 52 (PfR—T o™ -Pc ™)+ 22 z(Po “Pc)
24 A, c 2Asapf"R° T,
(54)
. i 1
Aga p¢RT_ - AW (2RT,) Z/Afa] Pc /s )
- 7 in (A V0 i/ A
Attll(ZR.Tc) pfRT. - +Y(2RT) fAsalp,
The solution of Equation 44 permits the determination of the
chamber pressure as a function of time which is
3p2a? A RT A WERT)
Pt £ Trc 1 7A A t tc . 2 A
( (Po -pc )t \Pgo - Pe )
L2 A 2 pfRT, 22 2
29° A, 2Afaps® R® T
A [ 2 l/Z /A 1]3
fa pfRT. - [A{¥(2RT,) r2] pc
- 7, e 7 T ) (55)
A ¥@RTc) " pfRTc - [AtW(RT) P /Afa)l po !

Agal(pg + pci/2)” ¢

Ve - (mo/pg) ] .

= ln[l +

15
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If the area of the flame front is a variable, i.e., a function of time

and the combustion index different from n

2/3 especially in certain pres-

sure ranges, Equation 30 has to be integrated numerically for obtaining

an accurate chamber pressure curve.

16




CHAMBER PRESSURF DECAY

Decay During Supercritical FPhase

After burnout the combustion chamber can be considered as a gas-
filled vessel, in which p, pc and T exist as initial conditions. It is as-
swuined that the discharge of the gas through the nozzle is approximately
quasistationary, i.e., the discharge rate is determined at any given

moment by the equations for steady flow.

The law of conservation of mass applied to the gasecus mass

contained in the combustion chamber c¢an b introduced as

dp V

Tt w (56)

where & is the discharge flow rate out of the chamber.

Since the volume of the chamber does not vary with time, Equation

56 becomes
do _ .
Vege =- 6 . (57)

Using the derived relation for the dischare= rate in Equation 10

the expression will be

| y-1

——— - 1
dp _ T (Pt\Y,_Y | (Pt‘ z -
Ve = - pALRRT) (p) - () j (58)

where the dis~harge function ¥ is introduced again by

1 y-1

EESL-GT

)=

17
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Dividing by the initial chamber condition v

[ b
[}
|-
(2

1
d p 1/ T\z
V, = & = £ A 2rT (._..)
¢ po > ¢ c) To $
Following the adiabatic relation and arranging gives

Y+ 1
( ot (-};9:) T yerTo)?

The derivative can be written as

.?.(.P_ v (l?..“‘ _9_(2_
dt \p¢ dt \pe
1-y
=o(2) Y .9_(.2_)
Y\Pc, dt Pe
Substituting into Equation 61 yields

3Y-1
d (‘p ) At p ) 2Y 3
— ) =L —y Y(2RT
dt \pc Ve (pc ( cl

This first order differential equation can be solved by separation

of the variables as follows

dlp/pc) Ay
= -« —Y(2RT z dt
o Vo (2RT.)

$(p/pe) 2Y

The boundary conditions are

t=0 - $-=1
Pc

P _P
pC pc

18

(60)

(61)

(62)

(63)

(64)




p/pc Io0) A )
dip/pg) 2
T V. Y2RT, )% ¢, . (65)
l q‘(P/Pc) ZyY

Since the discharge function ¥ depends on the pressure ratio, two
cases have to be distinguished, the supercritical and the subcritical con-

ditions. For the supercritical condition the pressure ratio is as developed

previously
_
_i_’_a_t_s( 2 )Y-l
P - \Y+ 1

and the discharge function has reached a maximum with sonic velocity in

the throat

() G

Equation 65 becomes

3Y-1
/ 2Y
A L P'Pc (P/PC) af 2
— YQRRT_ )*t; = « . 66]
Vc Y( c) 1 S‘ 1 Pe ( )
1 1 7T
[v/¢v+ D}2[2/(v + 1)
The integral will be calculated separately
()
p/pe l (“. ( -3Y1+1 Pc
S ( pc) - (3Y -1)/2Y + 1
1




[

st

Y

(67)

With this result Equation 66 becomes

y-1
2V

A -
Ve Y(ZRTC) = 1 Y - 1[ )

1] . (68)
1 -
Ay + D127+ Yt

Rearranging the above equation and expressing the chamber pres-

sure explicitly as a function of time gives

1 12y

A N R
P t ( 2 \v-1 | v-1
Pe [HVCY(ZRT) b Sy (v+1) T5T) ]

or simplified

At Y+1 2Y
- ct e 1m-

P . Y-1l¢ 2 (Y-1) 51 Y-1

> _l-l + v =771 (YRTC)J . (69)

Equation 69 shows that the efflux at supercritical condition is independent

of py/pe-

Decay During Subcritical Phase

For this phase, Equation 65 is also valid which is

3Y-1

p/pc 2Y

A, 3 (p/pc) b
T YRRT)Te s - S . d(?»'c') : (70)
1

20




With the subcritical discharge function

1 y-1 |
Y ( Y |2
- . 71
V= (Y - 1) ( ) ‘. p Jl (i
Taking into account the initial condition
_
Pa ( 2 vy-1 Pa Pc
t=0 =+ ~— = ) = — —
P Y+ 1 P Pc
or
. Pa
Pc Y
-1
pcl2/(v+ 1Y
and
t = tz - —E‘ = L
Pc Pc
the relation becomes
P/pc
3y-1
To2Y
A 1 {p/pc) d(p/pc)
V:Y(ZRTC) t, = - 1 Y-1
1 - - 1
_ Y =
X B -0 F palp) [ - /e T )7
pal pcl2/(¥+1)]
(72)

For better integrability some minor changes must be performed

21




3y-1

. 2y
(p/pc) d{p/p.}
S 1 Y-1

[p./P) Bc/P)]’ {1 - [(pal/P) c/Pa)] * )

1
2

(73)
3(Y-1)
1 T2y
pax- v P/PC) d{p/p.)
-GG 7 I ¥yl
[l - (pa/pe) ¥ (p/pc) 2
Finally the equation is
1
YA, t2{[2Y/(Y - 1)]RT_}?
V. )
p/Pc
_3(v-1)
1 2
Par" ¥ (p/pC) Y d(p/pc)
- (p_c) -1 Y-1

(M

o [-Galeo ¥ Bl ]
pa/ pc[Z/(Y+1)]

(14)

The above integral can be calculated only by the numerical method.

22




Thrust Buildup and Decay During Supercritical Phase

With the aid of the previously determined derivations the chamber
pressure as a function of time can be calculated for the buildup and the
decay, respectively. Applying the law of momentum on a rocket nozzle,

the thrust is given by

|
Pe |
!
‘ .
Pc —{ Ve F=wve + Ag(pe - Pa)
|
|
i (75)
IAe
I P,
where @ is the mass flow rate, v, is the exit velocity or the end velocity
where separation of the gas from the wall occurs, A, is the area in the
nozzle at separation and pe is the static pressure at this point.
In the above equation for the thrust the correction factor N will be
assumed to be unity.
1 + coseay
A z——————— = ] {76)

2

where ag is the half nozzle angle for the divergent part of a conical nozzle.

The mass flow rate through the nozzle is given by Equation 12

which is

23




e

. 2 \+ /Pt
w=p.A ( )z (-——)
c't RTC Pc

or

o =p, At(-ﬁ%:)% y (77)

where Y is the discharge function.

For the critical phase where

(Yi I)y 1

the discharge function reaches a maximum and is a constant

Y

'U"U
O (@
A

1
Ymax = (Y : 1)% (Y i I )Y-l . (78)

in this case the mass flow becomes

1
. 2 %( Y s/ 2 \Y-1
“’“PcAt(RTC) V¥ 1) (y+1

or
, L
‘."=PCAt(R;C)E <Y-?; 1)2(Y-1) ' (o
From the energy equation
Ve Te
——=cy(Te - Te) = cp Tc(1 - T (80)

and the equation for isentropic expansion

oo

24




<
<'l 1
[eeey

T. PR N
7. () ' oy

the end velocity v, follows

o)

vg {Yzf I RT, [1 - (pe) b . (82)

For obtaining the area ratio where the separation occurs the con-

tinuity equation must be applied.
PeVede = ptVvy Ay . (83)

With the end velocity found in Equation 82 and the velocity of sound in the

throat, the expression becomes

y-1
2y l_ Pey Y ]3 Pt 1
Ag{——-RT_|1 -——) =X (YRTH)? A
e{Y & c Pe( o7 A
Pt Pc 1/ TNz
=-L ZS (YRT -—-) A
c Pe ( c) Te t
(84)
1 1
_( 2 T-T(g_g?(YRT )é( 2 )-;;A
IASE: 1) pe) ¢ \y+¥1) 7t
1 Y+ 1
3 L/Peyw /s 2 \2(V-T)
- P 2 [ F¢c
= (Y)° (RT) (pe) (Y+ I t
Finally, the area ratio is found by
Y+1
A : Y-1)
e W2 [2/(v + 1] (85)
Ay T 1 y-1

1
(e/pd)’ {2Y/(Y - DIIL - elpe) * 12

25
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The thrust is found by substituting into Equation 75:

Y+ 1 Y-l
L 2 \2(¥-1 2y Pey Y |z
F =pcAg(V)® (m) (v-1) {m[l - ;—E) ]}?‘
v+1 (86)
L -
a3 [2/(v + 12D
+ 1 Y'l (Pe = pa)

(pe/Pc)Y {ley/tv-1)}01 - (pe/Pc) Y 1}

[

This equation is valid for

Y
_1?_?._<( 2 )Y-l
P - \Y+ 1

At the design point of the nozzle the gas is expanded down tc; the nozzle end
where the exit pressure is equal to the ambient pressure p,. If the chan:ber
pressure is lowered, the gas is overexpanded and the exit pressure can be
much lower than p,; even separation from the wall occurs and the separa-
tion point travels upstream with decreasing chamber pressure. During

overexpansion oblique shock waves exist in the nozzle.

From the standpoint of thrust, the nozzle may well be cut off at
the separation station, since the internal and external pressures are nearly
in balance beyond this point. The thrust of a rocket motor with separation
in the nozzle is calculated on the assumption that the nozzle area ratio is
not that corresponding to the actual exit but rather that of the separation
station. Therefore, it is necessary to be able to predict the location

of separation.

Experimental results on rocket motors which vary considerably
from author to author will be used for finding the exit pressure where
separation of the gas from the nozzle wall occurs. Summerfield recom-

mends an average exit pressure ratio of pe/pa = 0.4 throughout all the
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i the throat or when only sonic
velccity is the maximum velocity due to the available pressure

ratio. In Figure l the exit pressure can be found as a function of the
chamber pressure ratio. With this exit pressure p, the thrust in Equation

86 is easily calculated.

Thrust Buildup and Decay During Subcritical Phase

In the case of subcritical pressure ratio

s
B_a_x_ > ( 2 )‘Y-l
Pe _ \Y+ 1
the pressure at the throat is equal to the ambient pressure

Pe = Pa

Using Equation 77 the mass flow rate becomes

AL
N K A
and with Equation 82 the end velocity is
Y-1

2y Pay Y E
Ve {”\7’37 RT [1 . (-p—;— J} . (88)

Finally. the thrust can be expressed as follows for the subcritical phase

)

i

1 y-1
2y Pa\Y Pay Y ]
F = Ve IPcAt(pc) [1 - (Pc) | . {89)
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RESULTS

Expressions for the chamber pressure and thrust have been derived
as a function of time for the supercritical and subcritical conditions during
buildup and decay. Special attention was given tc certain rocket motor
design conditions, such as ocpen end nozzles and closed nozzles by diaphragms
during ignition. The results are differential equations which must be solved
numerically for accurate purposes and in the case of variable parameters
in the equations. In addition closed form solutions have been found based on
assumptions such as constant propellant burning area and average burning

rate.
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CONCIL.USIONS

In mzany cases the total impulse during the thrust buildup and
decay period is neglected by caiculating average performance vaiues.
In order to evaluate the exact total impulse the transient conditions have
to be taken into account. The instantaneous chamber pressure and thrust
which are affected by the characteristics of the propellant and the design
of the motor must be determined throughout the operating time of the rocket

motor.
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