
-ES04Wft64-601

(FINAL REPORT)

HUMAN PROCESSING C EQUIVOCAL INFORMATION

I.b

Q'3

TECHNICAL DOCUMENTAqY REPORT NO. ESD-TDR.44-601

April 1965

Ward Edwards

DECISION SCIENCES LABORATORY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Harumom Field, Bedford, M mhutts

rDC

APR 16 1965

Pmjftt 4690, Task 469W0

(Prepared under Contract No. AF 19(604)-7393 by the Erqrmering Psychology
Laboratory, Instituto of Science wW Technology, The Uatversity of michiganr
Ann Arbor, Michigan.)



Nhen US CGoernment drawings, specificatiomn cw oher diot ore used for any purpose
other than a definitely related government procuirewient operation, the goverrenent
thereby incur no responsibilitf nor any obligotion whatsoever; and the fact that the
government may hove formulated, furnished, or in any way stpplied the said drmw-
ings, specifications, or other data is not to be regarded by implication or otierwist
as 'r, any marner tlicensing the holder or any other pinon or convvying any rij!s
or perm;ssion to manufactur, use, or sell any patentad invention that may in any
way be reiated thereto.

DX r,? Return thts Copy. Retair of Destroy.

DDC AVAILABILITY NOTICES

Q .. ,ea -eques-ers ma obtain copies from Defense Documentation Center (DDQ). Or' ,n
L . i expedited if ,laced through the librar;ar, or oth perion designated to quez! e- c,-

e s trM DDC.

Copies available ot Office of Techni:al Services, Deportmont of Cxommerc.



3780-23-F

HUMAN PROCESSING OF
EQUIVOCAL INFORMATION

Final Report

Ward Edwards

April 1965

Engineering Psychology Laboratory

INSTITUTE OF SCIENCE AND TECHNOLOGY
The University of Michigan

Ann Arbor, Michigan



7

FOREWORD

This final report covers three years of work in the Enpreering ltay-

chology Laboratory at the Institute of Science and Technology of The Una -

versity of Michigan. The wark was performed for the Operational Apphicatlnz

Laboratory of the Electronics Systems Division of the Air Force Syst-.w Cor-

mand, and was conducted in accord with the terms of United States Air Force

Contract AF 19(604)-7393. Contracts and Grants to The University of Michlgan

for the support of spot-sor'cd research by the Institute of Science and Tecin ulogy

are administered through the Otfice r.#f the Vice-President for Research.

The author wishes to acknowledge the contributory work of M. Guyer,

W. L. Hays, R. Norman, L. D. Phillips, S. M. Rubin, M. A. Swain, and

M. T. Zivian; and to indicate his gratitude to J. T. begey, Col. A. Debons,

G. P. Mandanis, W. E. Organist, L. J. Savage, E. H. Shuford, Jr., A. W. Story,

and D. H. Wilson for information, advice, and criticism.

This is Institute of Science and Technology Report Number 3780-23-F.

REVIEW AND APPROVAL

This Technical Documentar) Report has been reviewed and is approved

DONALD CONNOLLY Col,Chief, Dismiay vsnrco
Decision SrIences Lalatory i.too Sciences Laboratory

it



CONTENTS

Foreword .... #4...... .............. ii

List of Figures ...... ....... ........ ........ . vi 

List of Tables .... ... . . . . .... vii-

Abstract . .. 4 . . . ..

1. A Scentific Overview .......... ............. ... .1
2. Conservatism in Complex Probability Inference ................. 7

3. The Fffect of a Flattened Conditional Probability Distribution on
Probability Estimation ............................ 35

4. The Estimation of Credible Intervals. ............. ........ 42

5. Conservatism in a Very Simple Probability Estmation Task . ...... 50

6. Response Modes and Probability Estimation ... ............... 5

Appendix A: Instructions to Subjects ...............

Appendix P: Publications ............. .... . .......... 69

References ...... ..................................... 74

Distribution List ...... .................................. 75

I

i iml • m m smmu sm m m m m m mm m I



1, A Sample Display off Six Impact Pot-s . ... 1... ...... 1

2. Prior Probability Stements, Condif(tcnrl Probaoiliy Displays, and
Response Levers .-........ . ......... 12

3 Plots of Bayesian Postei Nar Probabilities .................. 14

i. Average Sum of Posterior Probability Settings as a Function of
Number of Stimulus Dots. .-.-..... .-- .--------- 15

5. Representative Plots of Subjects' Normalized Estimates-------.....17

6. Scauterplots of Bayes's Posterior Probability as a Function of
Posterior Estimates by Subject One .................... 19

7, Performance index as a Function of Number of Stimulus Dots ....... 21

8. Bayesian Posterior Probabilities as a P.nction of Number of
Stimulus Dots for Sequence 41 ..-................... 22

9. Dieitribution of Stimulus Dots for Old and New Sequences .......... 27

10, Bayesian Posterior Probabilities for Old and New Sequences ........ 27

11. Averaged Subjective Eilimates of the Probability of the Hypothesis
Confirmed by Data, Using the Basic Matrix: Sequence I. .. . ...... 39

12. Averaged Subjective Estimates of the Probability of the Hypothesis
Confirmed by Data, Using the Basic Matrix: Sequence 2 ........ 39

13, Averaged Subjective Estimates of the Probability of the Hypothesis
Confirmed by Data, Using the Degraded Matrix: Sequence I ....... 39

14. Averaged Subjective Estimates of the Probability of the Hypothesis
Confirmed by Data, Using the Degraded Matrix: Sequence 2 ........ 39

15. Objective Posterior Probability Estimates, Using the Basic Matrix ..... 39

16. Objective Posterior Probability Estimates, Using the Degraded Matrix. . . 39

I f. Width of Credible Irtervals Averaged Over Sequences .......... .45-47

18. Sum of Absolute Deviations of Subjects' Means from Bayesian Means ... 48

19. Theoretical Likelihood Ratios, for 70-30 and 60-40 Bookbags, as a
Function off the Difference Between the Number of Successes and the
Number of Failures ....... ............................. 54

20. &zbject Or+e's Estlmate , for 70-30 Bookbags, Expressed i Log

Likelihood Ratios as a Function of the Difference Between the
Number of Successes and the Number of Failures ......... .

21. Logarithmic Scale for Subjects' Registering of Probability Estimates . . . 59

22- Inferred Likelihood Ratios for VO Subject Five ............... 51

23. Inferred Likelihood Ratios for ODL Subject Five ..-.......... . 61

24. Inferred Likelihood Ratios for PR Subject Two ... ............... 6

25. Inferred Likelihood Ratios for PR SubJp-ct Three ........ . 61

26. Percent of Impr.ovement Shown by VO and ODL Groups Over PR
Group in Accuracy of Estimation ....---------- . 62

'Ti



TABLES

1. Analysis of Variance of Subjects' Deviations From Bayes's
Theorem . . . ........ . ...................... 26

U. Deviations From Bayes's Theorem of Subjects' Estimates on tte
Correct Hypothesis ........................... 28

III. Analysis of Variance of Posterior Probabilities for Old and New
Sequences, Calculated From Bayes's Theorem .................. 28

IV. Summary of Analysis of Variance . . ................. 31

V. Summary of Analysis of Variance of Final Estimates c-f Probability
Using Basic Matrix ............................... . . .38

VI. Summary of Analysis of Variance of Final Esttmw-_a of Probability
Using Degraded Matrix .......................... 38

VII. Results of t-Tests for the Significance of the Difference Betwen
Mean Subject Estimates and Objective Estimates ............... 40

VIII. Scales and Sequences ...................... 44

IX. Experimental Design ............................. 52

X. Range of p Values That Will Yield Bayesian Performance Identical
to Subjects' Estimates ........................... 55

XI. Slope Constants, Correlation Coefficients, and k Value- for Each
Subject and Group ............................ 60

vii



HUMAN PRO0CES&NG OF EQUIVOCAL INFORMATION

ABSTRACT

This report contains a series of studies investigating the abilities
of subjects to revise probability estimat~s on the basis of new information.
These studies show that subjects' probability estimates are reliable but
deviate considerably from posterior probabilities calculated from Bayes's
theorem. The deviations are almast always in the conservative direction,
i.e., low Bayesian probabilities are overestimated, asd high ones are
underestimated. Only when each datum is very amigaus do subjects'
estimates become more extreme 0=a Dayesian probabilities. Further,
when subjects are asked to give 90 or 50% credible intervals of a pog-
terior probablity distribution, their estimates are wider than Dayesia
credibit intervals T 1his finding of conservatism has led to the design, of

f ~a man-computer system that should minimize the effects of human abort-
comings in making diagnoses-

INTRODUCTIONI: A SCIENTIFIC OVERVIEW

This is the final report of a three-year program of research into buman informatioa-prat-

easing arnd decision maklrg, applying techniques based on Bayests probabilty theorem t* the

design of man-machine systems for tlotration processing (Dayes's theorem is explined in

detail in Section 2). Appendix 8 briefly summarlses the publications already in print or i

press that have developed !rom the contract. In order to keep this tina repart to reasonable

length, no attempt will be made to duplicate information contained In pMblcttions. swiumaanled

in Appendix B; the primary purpose here is to report research completed under Contract

AF 19(604)-7393 but not yet published.

Certain act ivities conducted wnder Wis contract canniot be properly reflected In a final

report. One of them is the developent of research plans for seunlsimulattoa experiments

concerned with probabilistic informationi-processing system. These research plai. occupie

a great deal of time and attention during the Vist IS amths of Owe contract, but have by no mxs

reached fruition as yet. This work is being coinued under Contract AT 19(x)-X2, OWd Will

appear in publications sponsored by that contract.r

A second class of activity that cannot be Adequately reflected in thi final report is ther

proceedings of a conference on Bayesian Information Processing Systems held at 71e Unversity

of Michigan in May, 1963. Participants in this conference exchianged information about research j
on men as Bayesian information processors and about the desig and evaluation of Bayesiax

'This Section was prepared by Ward Edwards.
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information-processing systems. No formal publications were intended to result from this

conference; its purpose was to facilitate informal interchange of information and to bring dif-

ferent researchers concerned with related problems into interaction with one another so that

their research would coordinate and make a more cohesive whole than might otherwise be

possibie.

Research conducted under Contract AF 19(604)-7393 was of three major kinds- One con-

sisted of primarily theoretical investigations into the formal characteristics of Bayes's theorem

as a mathematical model for the revision of opinion in the light of information. This work cul-

minated in a long article about the relevance of Bayesixan, ideas to statistics, another concerning

the optional stopping problem, and several minor efforts. A second kind of research consisted

of laboratory studies comparing man and Bayes's theorem as information processors, and

finding that man is the more conservative; a number of studies elaborated this ,inding and

examined some of the parameters that affected it. The third kind of endeavor under the program

was the development, elaboration, and thinking-through of an idea for a Bayesiar. information-

processing system, or PIP, followed by the development of semisimulation reseai ch techniques

for the exploratio-' and validation of that idea. Of the three clasues or research, this one had the

least visible product, since it consisted primarily of intellectual effort, mostly of a nonpublishable

nature. Nevertheless, this class of endeavor seems likely to have the greatest impact in the long

run on military technology and Air Force system design.

Tis scientific overview, which is really nothing more than a brief introduction both to the

publications that have already emerged from this contract and to the chapters that follow, Mill

ignore the first kind of effort completely. The formal work on Bayesian statistics and optional

stopping has been fully reported in publications, stands on its own feet, and needs neither amp-

lification nor rtview. The summaries of publications in Appendix B briefly report what was done.

The main research endeavor of the contract was concerned with the comparison of men with

Bayes's theorem as probabilistic information processors. When the contract beg-an, essentially

no information about the quality of human information processing in unspeeded tasks was avail-

able. It was widely supposed that men were good information processors, but little was known

about how good, mostly because there was no formal model for proper information-processing

methods. The research started from the premise that Bayes's theorem was an optimal model

for information processing, and consequently that straightforward experiments comparing human

performance with the output of Bayes's theorem might lead to insights regarding the quality of

human information processing. Thus the experiment described in Section 2 was designed as a

frontal attack on the problem. It used a very complicated task involving 4 mutually exclusive

hypotheses and 12 difh rent possible observations, displayed to the subjects a set of 48 proba-

bilities oaf the data given the hypotheses, and then required the subjects to generatt posterior

probability estimates. Not too surprisingly, it turned out that their estimates differed from

2
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Bayesian probabilities. What was more interesting, however, was that these differences were

consistently in the direction that we have come to call conservative; that is, subjects consistently

overestimated low Bayesian posterior probabilities and underestimated high posterior probabil-

ities. No subject extracted from the data anything approaching the certainty it would justify.

It seemed entirely possible to us that these deviations from Bayesian probabilities, over- I
whelming in size and consistency though they were, might have been attributable to artifacts of-_

one kind or another. Consequently, we designed two experiments intended to examine two

artifacts that we thought might be relevant - and happily found that neither artifact need be E

considered too seriously. In one of these exper ,ents (Section 31 we asked whether subjects

might have been confused by the fact that in the o -,ginal experiment the data did not resemble

any of the distributions of data to be expected with the given hypotheses: it turned out that this

made no difference whatever. In the other experiment we examined the effects of sequentialand

nonsequential presentation of data and found much the same amount of conservaitm, whether the

subject in effect started from scratch each time or was allowed to retain his previous posterior

probability estimates for use as prior probabilities, with only an incremental datum added.

In another study, (H. C. A. Dale, unpublished), subjects were allowed to specify their own

values of the probability of the datum, given the hypothesis [P(DiH)J; still they were conserv-

ative. It seems that whether or not the value of P(DIH) conforms to the subject's intuitive

appraisal of what it ought to be makes very little difference to his information-processing

performance.

Still another study (Section 3) raised the question of whether it is ever possible to get sub-

jects to overestimate a posterior probability. It turns out that the answer is yes, if the Infor-

mation given to the subject is sufficiently worthless fo: -tiagnostic purposes. That is, when

Bayesian posterior probabilities are very little different from Bayesian prior probabilities,

a subject's estimates of posterior probabilities usually are more vttreme.

Next we turned our attention to the question of whether this conser 4s iwm culud be fon

also in much simpler, more straightforward kinds of experiments. In one saud-i experL,. vit

(Section 4), we presented subjects with observations drawn from a normal distribution ai r-•

quired them to estimate a posterior credible interval for the mean. Findings from this stady

were entirely consistent with the findings from the previous, more complicated study- subjecis

were consistently conservative. The task of estimating a credible interval, however, i3 unfamiliar

to subjects and their estimates were rather variable.

Finally, we sought the simplest possible task in which subjects couk perform this kind of

information processing (Section 5). We ended by using a simple binomlai task in which subjects

must decide which of two hypotieses about the percentage of red poker chips In a booktag full

of red and blue poker chips is correct. Here, too, we obtained conservatism, though not quite

so much of it as In the experiment reported in Section 2- The data indicated very clearly that

3



even in this simplest of all possible Bayesian tasks, subpcts are unable to extract from infor-

mation all the certainty that is latent in it. This situation seemed appropriate for further study,

so we designed a number of experiments, many of them still incomplete, examining various of

its parameters. One, sufficiently complete for inclusion in this report (Section 6), compared

three different modes: estimating probabilities on a device displaying a linear scale of proba-

3 bilities, estimating odds verbally, and estimating odds on a device displaying a logarithmic

scale of odds. It bad seemed possible that one reason for conservative performance was that

the probability scale is bounded at zero and one, and subjects are consequently reluctant to

come too close to the boundaries at which they have no more freedom to move. However, !he

experiment on response modes indicates clearly that this factor, while relevant, is not the

primary cause of conservatism. The two odds groups show less conservatism than. the prC'b-

ability group but still plenty of it; the logarithmic scale seems to produce -ery sl6gldt.y less

conservatism than the direct verbal reporting of odds. Research oi tbts h contiaues.

The fundamental finding of the first study has required no qualiti.cation or mdification a-' a

result of its amplification by these further experiments. The basic biz seems to Le strong arnd

very nearly universal (at least among college students), althugh of -.nrse the nkagn td ;f t e

e"fect is influenced by a variety of such peripheral factors as respone modes. prCence or

absence of payoffs, complexity of the task, amount of training received, presew or absence

of feedback concerning the correct hypothesis, etc. And A is appropriate to asc whaUt efects

this consistent bias in human behavior might have on such practical problems az tLhe design ox

information processing systems.

Existing systems Intended for processing information in decisio making, s-n h ts romand

and control systems, may be extremely sophisticated in their information gathering, dlbplay, and

communications. But their technique for processing the information obtained is id ieal with

that used by Alexander the Great: display it to the commander zrd let htm decide. Ciearly, any

bias that the commander may bring to his process of decidftg ll be a bf__ in the oration of

the system. It seems very 14kely, in view of the research find'nge and also on intuitive grourds,

that commanders have a conservative bias in such systems; tha is, that they are unable to ex-

tract all the certainty from the data that the data would justify. Therefei-e one problem in the

design of information-processing and decision-making systems may be defined as the problem

of how to prevent the natural conservatism of human informatitm pr ,'estng from aking %uch

systems less responsive than they should be.

One step toward the solution of that problem copsists amm:alyznK Information-processing

into subtasks. It seems clear that at least two such subtasks cau b l r imnated. One consist

of assessing the impact of a single Item of inform ion on Some hvpothesis, or set of hypotheses,

of interest to the system. The other consists of aggregatp g these ? ?acts over lata aP4 over

hypotheses into a picture of the current status of the hypoth-ofts IT e first of these task-, for

the kinds of qualitative information that are characteristically amailable to infoi mation processing

4



systems, must inevitably be pt s - 1xpert itman bein-. a$M me kt COi t:'ii.e s1C 1

naturally perforowed by aycs's )A-.zcezr c0 c.:seqce tJ IS egy to 1 e echanAve

The eR.seace ci the proposal Lis ,he detign of a po.ai.lsflc inforinaxcmpro:esirg #v.cen?

that has %,'xocrjge4 frnn the resegRreb Of VIN1A Project it that hulan heim,rk Ehoid ebina' Rte the

probability a! evitc dzt ;n giv n each by p iests IW ) I- -- or e c los d avntityteo

such as a set of iktchno' ?atx., o-vi Iht. -: machtne csboid bo used fc, Laxwnrcgate [ts c,-

rze into a psterior distribNimon er zr hy' ithlaese d er to the Rstle-

1rheuman est atorti ire raz41rallv ig cnservative i ea trn i.eood r y hj5

estx Iter trior pr-bat ites, ir can . ta4e t epD.-oe

Wit: the yubirna ot c-anervaive taazst. In iny cas, I .Ase ras itzraciive on orter rura tm

perwnit i ragentatiofi e ao task Af i at proessi nto mau-y subtask* t.-at can be

lnrceled out among maen and Amachines In a, na nner respecting the capabulites cit earn, More'

wer, It tormits fullt thtza of what is, trom the human. point Af view, ba ly a book-

cesping task, the agr egatior of dta into posteriothr distRutio sinonra

The res 'rt-tb pobems of specifving and evatpaiing this idea are numerogs and very r-

ficult. One problem aks how men An be selected. tfn and proided eitiet suitacrl display s

and controls so tkv-i they can work effectiv nw as esttim at P(oIl or a related quartity.

Another, which ac - mes thA traied men tan provide suitabe es aty asks b 4ea oystem can

be designed to eLoset that tac-t Only tim first of these two questios has been of primiary in-

terest in the research program of this contract; the other is the Utwsines of Contract

AF' 19(628)-2823.

Simple. ctort-termn. ihexpensive laboratry experiments are incapable of studying pra-

ability estiaton in really cmplex situations under full experimental control. Either the

experti;. of the subjects and the context in which they estimate probabilities must be artifcially

ctated In the laboratory, in which case the exprse cannot be very deep nor the context

complicated, or else content and abilities pre-existing in the real world must be studied, The

former procedure obviously falls short of examiaing performance under realistically complex

cit cu tances -he latter procedure sounds more attractive. Undhrwitely, it is almost

impossible to deter ne the "correct" probabilities in real-world context. It is also nearty

itypost e to tosure that differetr subjects have comparable amounts of information abrAt the

real-world contexts chosen for study. So the resIdts obtained from the use of real-world con-

texts and abilitieu would be hard to iterpret, especially if the question asked is how "correct"

these estimates are.

One product of the research program of the corz4-act is t proposed solution to these dif -

ficulties. The proposed solution is expensive, time-consuming, and difficult, but It may work.

It is to synthesize a partially artificial world, of the greatest complexity consistent with tracta-

bilityl that has well-specified probabilities built into It.. Once this complex artificia world has
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been invented, It is necessary to tait sbjects to ie expert about it-a long process. Atr that
has been done, they car be ex-posed to idormaton-provessing tasks apprortaz. t irmt artificial

world, and asked to satmate FWS) or *lmilar quat itis for w-aable data ana ltypcthe~ s, tLh

their estimates and tht performaance of the p. ad-azi-Drocessing system Ut-at

uses theta can be evaluated by COn %e- with tiie "'tr'" p.-bA blitles built Into the worl to

trt with, aod porhaim also by ar'parin Ztth rl.Wh -ormace If rnprobabIstic systems

9" ,nsil lto-t. rIsearch planned under thiz cotract wil do just that.
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2
CONSERVATISM IN COMPLEX PROBA-IUTY INFERENCE'

This experiment examines the relationship between estimated probabilities and probabilities

calculated ,by, means of Bayes's theorem: it compares human performance with optimal pxer-

formance in the task of revisin r.pi nion in the light of new intormaion.

To provide setting arid vocabulary, a number of conte-,pfrrary ideas concerning probability

must be briefly summarized. The numbers called probabilities are formally well-defined by

the assertions :hat they are numbers between zero and one, and that over a mutually exclusive

and exhaustive set f hypotheses (hereafter called a partition) they must add to one. But thre

f-ndamentally different operations have been pi oposed to relate those numbers to observable

events in the real world. The currently dominant frequentistic view defines a probability as

the !imit of the relative frequency with which a p.ticular phenomenon occurs; probabilities

can be estimated, for example, by operattions like tossing a coin many times under "substantially

equivalent" conditions, and then using the ratio of heads to total tosses as an estimate of the

probability of heads. The symmetristic view appeals to observable symmetries to make

plausible the notion of a collection of equally likely elementary events; the faces of a die are

considered equally likely to come up because the die is symmetrical. The personalistic view

defines a probability as an orderly and coherent judgment made by a rational person who brings

to bear upon the immediate question his relevant past experience, of whatever kind. Prob-

abilities so defined are called personal probabilities, and describe the person judging the

event as well as the event itself.

Corresponding to these three philosophical positions about the foun ions of probability

are three quite different ways of displaying probabilities. Symmetry displays are common and

effective; examples are cards, dice, roulette wheels, and the like. Frequency displays are

very rare, mostly because frequencies are usually based on counts of random samples, and the

naotion of randomness is usually defined by an appeal to symmetry. But what might be c'iied

plausibility displays are most common of all. We make intuitive nonnumerical judgments of

probability at every moment of our lives, and any information display that influences such

judgments without necessarily appealirig ta symmetry or relative frequency (or mathematical

necessity) may be called a plausibility display.

Philip [fl Stevens and Galanter [2), and Shuford (3j have found that simultanetusly displayed *

relative frequencies can be quite accurately estimated on the b!Is of e3xo-sres too short to

permit counting, and Robinson [4) found the same thing for sequentially displayed relative

frequencies. Teichner [5 1. in a more complex task using a frequency display, obtained some-

what less accurate performance.

'This section was prepared by Lawrence D. Phillips, William L. Hays, and Ward Edwards.
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A large number of experiments have attempted to infer judged probabilities from observed

acceptances and rejections of bets, assuming that subjects based their decisions on some ver-

sion of the well-known Subjective Expected Utility (SEU) model. (For reviews of this literature

j and of the model, see Edwards [6, 7J) Such studies typically use symmetry displays of prob-

ability such as are provided by dice, spinners, and the like. In effect, then, probabilities

inferred from decisions via the SEU model are compared with probabilities displayed directly

by means of symmetry displays. The large systematic differences thA are almost always

found in such studies imply either that symmetry displays produce severe distortions of judged

probabilities (compared with the generally accurate judgments of relative frequencies, for

example) or else, more plausibly, that the SEU model is descriptively inadequate Wd so is an

inappropriate -sis for inference of judged probabilities. But methodological and formal

difficulties dominate this literature and few firm conclusions are possible.

Some of the descriptive inadequacies of the SEU model can be alleviated by using a con-

_Z ception of probability that dors not require the sum of the probabilities of a mutually exclusive

and exhaustive set of events to be one, or any other constant. Whether such numbers deserve

to be called probabilities could te argued, but they can be so considered, and a nonadditive

SEU model Is not internally contradictory (Edwards [8]), although in such a mowel, utilities

must be measured on a ratio, rat."er than an interval, scale. Such possibly nonadditive prob-

abilities inferred from the choices of real people might well be called subjective probabilities,

to distinguish them from the peronal probabilities that might be inferred from the choices of

ideally consistent people.

The clouds on V2rus either contain a lot of water vapor or they do not. For a frequentist,

the probabli'y of that proposition is therefore either one or zero, if it is defined at all. A per-

sonalist, however, prefers to express his uncertainty about the clouds on Venus (and indeed

about any topic) as explicitly as possible, and uses probabilities to do so. He consequently

considers the probability that the hypothesis is true-a notion meaningless to freqentists.

Bayes's theorem, an elementary and noncontroversial consequence of the definition of

conditional probability and of the requirement that probabilities must add up to one over a

mutually exclusive and exhaustive set of events, has some usefulness for frequentists. For

personalists, however. it plays a crucial role: it is the formally appropriate rule specifying

how the probability that a hypothesis is true should be revised in accord with new data. It is
th erefore an ojf'n-1-ai model for revision of opinion in the light of informaton-that is, for

information procoazi-Lg.

Bayes's theorem can be expressed as follows:

P(H!D) kP(DIH)P(H) (1)

8



P(H 1D) is the probability assigned to hypothesis H, given knowledge of the datum D; P(H) is

the probability assigned to H before D was known; and P(DIH) is the probability of getting data

if H is true. The normalizing constant, k, ensures that

P(H I1D I over the m elements of the partition

It is easy to show that

1/k P(D)--=T DIH )P(HI 9

P(H ID) is called the posterior probability of H, and p(H) is the prior probability: P(DI H) is

called the likelihood (of datum D on hypothesis H). Under circumstances such as those pre-

vailing in our experiment, the likelihood of several data is simply the product of the Individua

likelihoods. Formally, this simple rule is appropriate only if the data are conditionally in-

dependent of one another given each of the hypotheses; for a discussion of the diffinult topic of

conditional independence, see Edwards, Lindman, and Savage [9J,

Thus, Bayes's theorem says that the probability assigned to a hypothesis after observing

the datum (or data) D is directly proportional to the probability assigned to the hypothesis be-

fore observing the datum multiplied by the likelihood of the datum,

These experiments compared the posterior probability estimates of several subjects with

the probabilities calculated by means of Bayes's theorem and investigated several variables

that affect posterior estimates. Subjects were told that the artificial environment for this

experimeni could be in exactly one of four states, referred to as hypotheses, and that they would

observe data generated by only one of these hypotheses. Subjects were shown the values of the

individual likelihoods, that is, P(D IH) for each possible datum, and were given the prior prob-

abilities assigned to the hypotheses before observing any data. Then, subjects were asked to

revise their opinions aboti which hypothesis was true after each new datum. However, subjects

were not allowed to make any computations. They were required simply to make Intuitive

estimates of the posterior probabilities. Since the only contraint placed on subjects was that

their estimates be between zero and one, the posterior estimates can be considered subjective

probabilities. Personal probabilities were calculated from Bayes's theorem using the given

prior probabilities and likelihoods.

2.1, E AERIMENT ONE

2.1.1. METHOD

2.1,1.1. Procedure. Each subject was seated at a console and asked to Imagine himself

at the output of a large, computerized radar system. Subjects were told that the environment I

9

R&



in which this system operated was in one of four states. eneany attack, friendly activity,

meteor shower, or enemy attempt to spoof the surveillance system. The system detected

aerial activity and computed the predicted points of impact of the objects detected. These

points, the data of the experiment, were displayed to the subject on a repi-esentation of a circu-

lar land mass that had been divided into twelve sectors. (A sample display iP sh,-wn in Fig. 1.)

Impact points always appeared within the sectors, never on the sector tborders. These displays

- were projected from a 35-mm slide projector onto the rear of a rectang-War viewing screen,

12 by 8 inches, located on the console slightly above eye level when the subject was seated.

After each display the subject estimated the posterior probabilities that the system was

d*,-ecting each of the four kinds of activity. Their estimates were made by ettirg four levers

mounted at five-inch intervals on the sloping front panel. Each lever had a 12-inch travel with

the 0 setting nearest the subject, the 1.0 setting furthest from the subject, and calibration

marks every 0.05.

To help him make these estimates, the subject was given the prior probability for the

Enemy hypothesis and all possible values of P(D H). The prior probability was displayed above

the unused response levers. The displays of P(D IH) for each of the four hypotheses were located

above the middle four response levers. This row of displays and the response levers are

shown in Fig. 2 (the two outside levers were unused). The probabilities shown are the ones used

in this experiment.

The subject was told that the display of P(D i H) for a particular hypothesis represented

the probabilities that the Impact points would fall in the corresponding sectors if in fact that

kind of activity was o:curring. He received no instructions about how to use these numbers,

except the obvious qualitative statements, and he was rot told that the likelihood of several dots

is equal to the product of tWe likelihoods for the individual dots.

After making his estimates for a display, the subject pressed a button that instructed the

machine to record them; ,tter that, he reset his levers to zero before seeing the next display.

No constraint was placed on the sum of the posterior probability settings: subj,'cts who asked

were told the sum was up to them. Subjects gained familiarity with the apparatus during the

instruction session and during the subsequent trial run. Subjects were never told anything

about the quality of their estimates. (Complete ing-ructions are in Appendix A.)

2.1.1.2. Stimuli. Each subject was prasented with 32 ordered sequences of 15 stimulus

slides each, and with 32 scrambled sequences constructed from the ordered sequences. The

first slide in an ordered sequence conuat=ned only one dot (impact point), the second showed the

10



\/ /

FIU-I APEDSLYO / I IMAC PONT

I /

III



Intllienc .reni Meo Intllienc

Esimte 1.0''i 7 1.0 , 1--. 1.0 1.0imts h
I9 \.4 .9 .9 . y Pr ba

Probability8 .

.7 .7 .7 -. 7 .7- .7-

.6-. .6.6 .6-

-5.5 .5 .5.5- .

. -. 4-. .4- .4- .4-

.3 .3 .3-. .3- .3-

-. 2.2- .2- .2-

0 0 0 0

FIGURE 2. PRIOR PROBABILITY STATEMENTrS, CONDITONAL PROBABILIT DISPLAYS. AND
RESPONSE LEVERS

12



first dot plus a new one, the third slide contained the first two dots plus a new one, and so forth

for the remaining slides. E~tch ordered sequence was designated with a two-digit number.

The scrambled sequences were constructed by mixing two ordered sequences together and

drawing at random without replacement two new sequences of fifteen slidei from the total set

of thirty slides, The scrambled sequences, then, showed no orderly accumulation or progres-

sion of dots- Each sequence, ordered or scrambled, had one of three Enemy prior probabilities

associated with it -IO, 25%, or 67%. Plots of the theoretical (Bayesian) posterior probabilities

for three representative sequences are show'n in Fig. 3. Bayesian probabilities were computed

using the Enemy prior probability, which was given, and assuming that the remaining prior

probability was distributed equally over the other three hypotheses.

For any given ordered sequence, the dots fell into exactly three -4 the 12 sectors, but the

three sectors used were not necessarily the same from sequence to seequence.

To summarize, three variables were investigated: amount of information (number of dots)

prior probabilities and order of presentation of Information (ordered vs. scrambled).

Subjects participated in two-hour sessions, during which six to eight sequences were usually

completed, u ,il all 64 sequences had been shown. The total time a subject needed to complete

all sequences varied from 14 to 25 hours. The order of presentation of the stimulus &sque=-es

was partially counterbalanced over the five subjects by use of a lAttice design (Cochran and Cox

f I/.

2.1.1.3. Subjects. Five volunteers, male University of Michigan freshman engineering

students, were paid at the rate of $1.25 per hour. This population was chosen !o insure familiar-

ity with quantitative reasoning and ignorance of Bayes's theorem,

2.1.2. RESULTS. It is convenient to discuss several minor findings first, since they per-

mit great simplification of analyses of the major finding.

2.1.2. 1. Sum of Posterior Settings. One subject sportaneously attempted to constrain the

sum of his posterior settings. Another asked if his settings should sumt to one, but when told

that he could do as he liked, did not normalize his settings. The remairting three subjects did

not normalize their settings. For these latter four subjects, thte sums of their posterior prob-

ability settings increased with the number of stimulus dots. None of the other variables had

any consistent influence on this sum. lintrospection and linulry suggest that the main reason

or this is that subjects are much more willing to increase an estimate for a diagnosis favored

by a new Item of evidence tha., to decrease estimates for the diagnoses not favored by that Item.

Plots of the sums for each subject are shown in Fig. 4. These sums are averages over atl 64

stinmulus sequences.
13
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2.1.2.2. Analysis of Variance of Deviations. Squared deviations of subjects' posterior

estimates of enemy attack from the theoretical Bavesian values were computed. The mean

over the number of dots of the squared deviations was defined as a measure of the amount of

deviation from optimal performance. Analysis of variance of this measure showed that the

main effect of prior probabilities was significant beyond the 0.01 level. The order of presen-

tation of information showed absolutely no effect; the interactions of order with prior prob-

ability and with individual sequences were insignificant. For that reason, subsequent data

analyses combine data obtained from both ordered and scrambled conditions, or else con-

sider only the ordered condition-

Lack of significance of the order variable is surprising. Apparently, subjects' deviations

from optimality are unaffected by the order in which they receive information. In this respect,

subjects' behavior is like that of Bayes's theorem. In order to rompute posterior probabilities

for any given slide, the theorem needs to know only the conditional probabilities of observing

all the data displayed, and the prior probability that obtained before the data were observed-

These probabilities can be obtained without knowledge of any other slides. We conclude, then,

that for this task, subjects are little affected by the sequential nature of the information in the

ordered sequences; each slide is treated as a separate problem-

To farilitate more meaningful analyses of the data. subjects' posterior estimates were

adjusted proportionately so that the sum over the four hypotheses was one. Analyses in the

remainder of this report use only the normalized data.

2.1.2.3. Deviations from Bayes's Theorem. Figure 5 shows representative plots of sub-

jects' estimates (after normalization) as a function of the number of stimulus dots. These

estimates should be compared with the Bayesian probabilities shown in Fig. 4. The lack of any

systematic difference between ordered and scrambled presentation is evident. But the most

striking finding is- the very small amount that subjects changed their probability estimates

from one stmi-aius to the next, even when Bayesian probabilities showed considerable change.

In nearly every sequence, subjects exhibited this conservatism. Subject Three is the only

exceptlon: he sometimes moved more trnan Bayes's theorem. Ln some cases, notably for

Subject Four, the posterior estimates moved "-%vard one another instead of toward zero or one

as the number of dots increased. This subject apparently became less sure as the evidence

mounted up. Even on problems as easy as the top one in Fig. 4 and 5, four of the five subjects

failed to reach anything like the extreme posterior probabilities that would be appropriate.

Subject Three, the most nearly Bayesian subject throughout the experiment, did better than any

of the others, but still not well. Though the details var, from sequence to sequence and from

subject to subject, the finding is the same for nearly all: subjects failed to be as sure as Bayes's

16
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theorem would permit them to be, and stopped modifying their opinions in the light of ad-ition

information while they were still very far from posterior probabilities of one and zero.

2.1.2.4. Scatterplots. To determine whether this conservatism was consistent, scatter-

plots were constructed of the normalized posterior probabilities estimated by each subject as

a function of Bayesian posterior probabilities for the ordered presentations. In Fig. 6 onp set

of scatterplots is shown for Sobject One, who was neither the most Bayesian nor least Bayesidn

subject. Two variables have been retained. One is the :umber of stimulus dots. This variable

is represented at a different value in each row. The first row is for one dot, the second for

three, the third for six, and the fourth for nine. Because Bayesian probabilities (though no..

subjects' estimates) generally go to zero or one for more than nine dots, no further plots were

made. The other variable is prior probability of the Enemy hypothesis. The first column is

for all sequences with a prior probability of 0.10, the second for 0.25, and the third for 0.67.

Estimates for the individual hypotheses have not been distinguished on these plots because

more detailed analysis showed nothing systematicallv meaningful, except for tle occasional

underestimation of the Enemy hypothesis.

Subject One showed remarkably Bayesian performance for one dot. He seems to have used

the prior probabilities effectively and to have been able to modify them properly on the basis of

the first dot. But he became progressively less Bayesian as he obtained more information.

His deviations from Bayes's theorem, however, were relatively consistent. He appears increas-

ingly to have underestimated high posterior probabilities and overestimated low ones, until by

the ninth slide the best fitting lines through his scatterplots would be almost horizontal.

Subject Three does not show such consistency. He initIaly underestimated the low posterior

probabilities and overestimated the high probabilities. However, in general, the best fitting

lines through his scatter plots would be nearly 450 lines. The other subjects showed varying

degrees of consistency. The underestimation-overestimation tendencies of these subjects

varied with the number of dots and were often confounded with prior probability.

These pi )ts clearly show no singie function relating their posterior estimates to 9ayesian

posterior probabilities for all subjects. Some subjects are more Bayesian near the beglrning

of the sequence, others nearer the end, this depends, in part, on the prior probabi.y of the

sequence. The variable that has 'he most pronc-unced effect on the relationship between posterior

estimates and Bayes's probalbili.ies is the number of stimulus dots.

2.1.2.5. A Performance index. in order to show, on oniy one plot, the to'tal performance

of an individual subject, we devised a Performance index (P). Squared aeviations from Bayes's

theorem are misleading indices of performance. If a very conservative subiect simply set the

18
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posterior estimation levers at 0.25 regardless of the stir. lus, his squared deviations would

be lower for the more ambiguous, and thus presumably more difficult, sequences Such as 38.

And his squared deviations would be higher for the less ambtguous, easier, sequences such as

28. While it is obvious that this subject's performance is more like Bayes's theorem for the

more ambiguous sequences than for the less ambaguous ones, it would be misleading to c-nciude

that the quality of the subject's performance is different when he deals with the ambiguous ones

than when te deals with the unambiguous.

Thus, a good Performance Index should have the properties of indicatir very non-Bavesian

performance and remaining constant with varying number of dots whenever subjects leave

their levers at 0.25. It should also indicate perfect Bayesian performance and remain constant

whenever subjects make estimates identical to numbers calculated according to Bayes's

theorem. A zatio of squared deviation scores wll exhibit these properties:

r-.(H D-Pi(H-D19
-~n1 n

i

PI x 1l00-

1 - 0.25 P iH. D

where w (H. ID is the normalized posterior probability of hypothesis H. estimated by a givenwr n iD

subject for a given number of dots, and P (H.i D) is the posterior probability of hypothesis Hi
n

from Bayes's theorem for a given number of dots. In words, this measure is defined as the

ratio of the sum over the four hypotheses of the squared deviations of an individual subject's

posterior estimates from Bayes's theorem to the sum over the four hypotheses of the squared

deviations of 0.25 from Bayes's theorem,

If a subject is perfectly Bayesian, his PI will be zero. If he leave3 his levers at 0.25, his

PI will be 100. 100 is therefore a kind of baseline or definition of absurdly poor performance,

But if a subject gets a s-ore of 100, he did not necessarily have -al his levers at 0. 25 he only

indicated settings that gave summed deviations precisely the same as those set at 0 4J One

difficulty with this measure is that only the values 0 and 100 are easily iterpretabIe. Figre 7

shows PI as a function -of the number of dots averaged over all sequences (ordered and scrambiedt

with the same prior probability. I; interpreting these plots it is necessary to keep in mind one

particular property of Bayes's theorem as more and more data are collected. the prior prob-

ability becomes more and more irrelevant to the value of the posterior probability. This is

illustrated in Fig. 8. for Sequence 41. Enemy and Spoof probabilities are psotted (._Friendly and

Meteor probabilities are very low) for Enemy and Spoof prior probabilities of .-67 and 0.ll,

respectively, aid for 0.25 and 0.25. For more than five dots, the curves are reasonaby close

to one another. This i5 even more marked in sequences where the probabilities do not cross And
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where they quickly converge on 0 or 100. Thus, for a subject to be perfectly Bayesian, he

would have to give less weight to the prior probability the more dots he sees. Failure to

correctly weight the prior information relative to the observed data will cause the PI to be

greater than zero.

The Performance Index can give only a rough indication of why subjects deviate from

Bayesian performance. Some subjects show PI scores that are initially very low (close to

Bayes's theorem) and then increase to a constant value. Others start very high, sometimes

above 100, but then decrease to a constant value. Notice that the constant value attained by

these latter subjects is usually lower than that of the subjects who start low.

A PI curve that starts low and then increases can br explained as characteristic of per-

formance which tends to weight the prior information too heavily, at least for n greater than

one. As more and more dots appear, giving too much weight to the prior probability will re-

sult in a gradually increasing PL A curve that starts high and then decreases would result

from performance that tends to weight the prior uaformation insufficiently; as the data accumu-

late, ignoring the prior probability becomes less and less serious, And the PI decreases. In

both cases, a constant vAlue is reached because, on the average, the performance of neither the

subject nor Bayes's theorem changes very much after about seven dots. The constant value

shoud be lower (better) for those subjects who weight prior information less heavily than those

who do the opposite, since the prior information becomes increasingly irrelevant as data in-

creases in amount. This relative difference in the constant values will only be true, of course,

if the differences in estimating the conditional probabilities are not too great.

Thus, Subjects One and Four, and to a lesser extent, Two, appear to weight prior information

too heavily. No!e that the shape and smoothness of the curves tor Subject One. agree very well

with what an be predicted from his scatterplots. Subjects Three and Five appear to under-

weighta prior informati,, at least for sequences with prior probabilities of 0.10 and 0.25. And

their constant vaues are less thax- those for Subjects One, Two, and Four. The data of Subjects

One and Four suggest that high prior probabilities may partially correct the terdency to under-

weiget prior i.f-ormation, for the shapes of their curves for sequences whose prior probability

is 3.67 are quite different ffrom changes produced by the other prior probabilities.

The terminal value of the performance index for Subject Three-a little less then 40- is

smaller t-han that for any other subject- ou not mr-oh. The central tendency of his performance

is closer to hives's theorem than that Af :my -W er subject, bt his estimates scater more

widely around the certral tendency than do those of any other subject. This observation highlights

a deficiency Mf the Perferatance Inodex tand of any other error-measure based on mean

squared err-or); it cannot discriminate between random and constant error. The errors found

n thins experiment are mostly constant rather than random errors-as is e' the case when

perinrmance is being compared with some standard of perfection.
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Thus, the PI plots show that subjects' deviations from Hayes's theorem can be partly ex-

plained by failure to weight the prior information properly. And they confirm t-at actual level

of performance is dependent on subjects, prior probabilities, and the number of dots. No

further information was gained by plotting PI as a function of the number of dots for all sequences

in the same set. PI plots averaged over subjects for the interaction between prior probability

and sets showed nothing of interest.

2.1.3. DISCUSSION. The primary conclusion indicated by this experiment should surprise

no one: men are suboptimal processors of probabilistic information. Several thirgs about the

finding are a little surprising. For one thing, the size of the discrepancy is large- surprisingly

large compared with our expectation. For another thing, we have failed to find any subjects

who consistently leaped to a conclusion more quickly than is justified by the evidence. In fact,

most subjects simply refused to estimate an extremely large posterior probability at all, in

spite of the fact that they seemed to find it easier to judge what diagnosis was favored by a new

item of information than to juge what diagnosis was made less probable by that item. Even in

college populations, some men must have a tendency tojump to conclusions; yet this experiment

has failed to exhibit any such tendency in any subject. Perhaps such men do not find service as

paid subjects in psychological experiments sufficiently attractive to volunteer for it.

Underestimation of high probabilities and overestimation of low ones, often reported in

decision-theory experiments (e.g., Mosteller and Nogee [11], Prestot and Baratta (121), are not

invariably found mi this experiment. They are largely absent in one subject, dependent on amount

of information for others and confounded with prior probability for all. Still, the congruence

between the findings of this experiment and those of experiments concerned with estimation of

relative frequencies (Philip [I], Stevens and Galanter [21 or with probabilities inferred from

choices among bets (Griffith [13j, Mosteller and Nogee [I ]) suggests an underlying tendency

toward conservatism in estimation and use of probabilities over a wide class of tasks-at

least among college students. (But for conflicting evidence see Dale (14] and for an argumert

that things are more complicated than this, see Edwards [8i.)

Other factors that may have influenced performance are display parameters. A pretest

of severa different methods of displaying PID:i HI resulted in the displays shown in Fig. 1.

Although no subJect complained about these displays, the question lingers whether they may have

accounted, in part, for the conservative behavior. Noneofthe displays shows a sector probability

greater than 0.25. Perhaps the (necessarily) low numbers on the P(D IH) displays suggested to

the subjects that there should not 4e too much difference between their estimates, whatever the

data.

Further, we assumed that It was necessary idisplay only Enemy prior probaility be

ca"se subjects would distribute tme remaining probability equally among the other three

24



hYpotheses. In -':iew of the finding that subjects' estimates do not always sum to one, It is

questionable wvhether they knew how much pcobability was left to be distributed among th* re-

maining alternatives. The consistency shown by some subjects on the scatterplots indicates

that this is probably not a serious problem, but prior probabilities will be dibsplayed for each

hypothesis in future experiments.

Another methodological issue concerns the utilities that some subjects may have attached

to the particular hypotheses. One subject showed occasional underestimation of Enemy prob-

abilittes, suggesting that hie was especially conservative in making tais diagnosis, However,

the snatterplots were originally; drawn so ihat estimatee for each hypothesis could be examined

separately, and the estimiates, made !or one hypothesis very rarely showed any consistent

deviation from the other estimates. So this issue is probably not very lraportant eifher.

The remaining experiments reported in this section examine two factors that could have

contributed to the conservatism of the subjects. One is the artificiality oa the stimulus display,

and the other concerns the method Of responding.

2.2. EXPERIMENT TWO E

in Experiment One the stimulus dots were constrained to appear in only three of the twelve

sectors of the display. If each sequence of 15 dots had been randomly generated under the truth

of exactly one of the hypotheses, then the dots %wld have been distritbuted over more than three

sectors. The artificial coi,-r-ont on tue distribution of dots produced sequences that looked

unlike any of the hypotheses; that might be why subjects estimated consc-rvtivelly.

This experiment tests the hypothesis that consereative posterior probability estinmation in

the original experiment wart due, at least in part, to the artificial constraint on. the dots variable.

For the experiment, new sequences were generated, each having posteric-r probabilities approx-

imately equal to the posterior probabilities of a sequence in :tht original study; however, the

dots were distributed over several sectors, to look like a more represetative sample than did

Ith, original sequences.

2.2.1. MIETHOD

2.2.1 1. Apparatus. Conditional probability displays and apparatus were the same as those

used in E~xperimenst One.

2.2A1.2. Stimuli. Subjects were shown eight sequences of fifteen dots each. For al! se-

quences, prior probabilitem were given as 0.25. Four of iliem were sequences 35, 44, 24, Und

This ex'perimnent was run bv Richard Nerman.
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41 of Experltnent One, with the dots appearing in only three of the twelve sectors. Four new

sequences were constructed in which the dots were distributed over more than three sectors.

However, the new zequences had posterior probabilities ver nearly identical to the posterior prob-

abilities for the old sequences when the posterior probabilities for all sequences were calculated

irom Bayes's 0Ieorem using orior probabilities of 25%. By the fifteenth dot, the posterior

probabihtie_ )f e';ery sequence are near one or zero. Figure 9 shows the distributions of dots

for the original sequence 44, and for its equivalent new seqLence, Fig. 10 shows the Bayesian

posterior probabilities for these sequences.

2.2.1.3. Procedure. Each subject mas shown all eight sequences in random order, in two

sessions lasting a total of about three hours. Conditions were comparable to the ordered se-

quence presentation of the Phillips, Hays, and Edwards experiment.

2.2.1.4. Subjects. Four men, University of Michigan undergraduates, served as subjects.

They were paid $I 5 per hou-.

2.2.2. RESULTS. The amount that subjects revied their estimaies from one dot to the

next was generally t,,ore conservative then the revision of probability calculated from Bayes's

theorer...

An analysis of variance was computed usin as the dependent variable the absolute devia-

tions of subjects' estimates from Bayes's theorem for the correct hypothesis. The fifteen

deviations generated from a single sequence by one subject were treated as independent nieas-

ures, an assumptio:' justified bv the insignificance of the order-of-presentation variable in

Experiment One.

Three ind.,pendent variables were examined: (1) Distribution of dots, representative or

unrepresentative; (2) Sequences; and (3) Subjects. The sequences variable is, of course, nested

within tha dots variable. Table I shows th, variance due to subjects is highly significant.

Variane due to dots is mildlysignificant, while the dots-by-subjects interactions is not sigr.ficarit.

TABLE I. ANALYSIS OF VARIANCE OF SUBJF* TS'
DEVIATIONS FROM BAYES'S THEOREM

Source df MS F

Dots (D) 1 1,491.08 4.87"
Sequences (Se) nested in L 6 532.61
Subjects (Ss) 3 10,654.42 34.81 *
D ) Ss 3 395,56 1.29
Se (D) x Ss 18 1,194.38
Within cell 480 269.96
Pooled error 504 '06.1

* P < .05

zP < .01
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2.2.3. DISCUSSION. Once again, the primary finding is conservatism. Every subject in

this experiment extracted less certainty from the data than is ;ustified by the Bayesian calcu-

lations.

The analysis of variance indicates that the distribution of dots does make some difference,

though a glance at the mean square of the dots variable shows that this variable is not a large

source of variation. The magnitude of the devtation scores is shown in Table !L The total

deviation score for the old sequences indicates that performance was more Bayesian for the

old sequences. Thus, the distribution of dots certaindy does not explain the conservatism at

all; what effect the dots variable does have seems to operate in a direction opposite to that

hypothesized.

TABLE II. DEVIATIONS FROM BAYES'S
THEOREM OF SUBJECTS' ESTIMATES

ON THE CORRECT HYPOTHESIS

Sequences

Subject New Old

1 2,287 1,995

2 2,428 2,324
3 2,086 2.110
4 _I 864

TotW1 1,9 7,293

Deviations are sumnnied over the fifteen
estimates per sequence and over four se-
quences of each class.

To satisfy ourselves that the new sequences had posterior probabilities nearly equal to

the corresponding old sequences, we computed an analysis of the variance of the Bayesian

posterior probabilities. The results, shown in Table II, do indeed confirm that the differences

between old ind new sequences are very small. Thus, interpretation of the first analysis of

variance is not contaminated by differences in old and new sequences.

TABLE HI. ANALYSIS OF VARIANCE OF

r OSTERIOR PROBABILITIES FOR OLD
AND NEW SEQUENCES, CALCULATED

FROM BAYES'S THEOREM

Sou rce di MS F

Dots (D) i 21 0 .
Sequences nested m D 6 1,694 26 41321*
Within cell 112 18 12

*P .01°O
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We conclude, then, that conservatism in this task Is unaffected by the representative

character of the stimulus display.

4

2.3. EXPERNENT THREE

Experiment One suggested that there is a correlation between task difficulty and the degree

to which subjects approach Bayesian performance in processing probabilistic Information.

Many subjects appeared to be more Bvesian when the sequences were simple, that is, when the

data clearly pointed to only one hypothesis as the most likely one. Sequences appeared to be-

come more difficult as the information became more ambiguous and contradictory. The experi-

ment we are now reporting studies this variable, using three sequences representing three

levels of difficulty, and one other variable.

The other variable studied concerns the difference between the two possible interpretations

of Bayes's theorem. The input to the theorem can be correctly expressed in two ways. One

way is to use the conditional probability of n dots for each hypothesis with the prior probability

for n = 1. This we till call the nonsequential version of Bayes's theorem. The other way is

to use the conditional probabilities of only the new dot at slide n with prior probabilities that

are the posterior probabilities from slide n - 1. This we will call the sequential model. Both

methods of calculation lead to the same posterior probabilities.

Sire subjects in the original experiment were presented with dots that accumulated, and

were required to reset their levers after each set of estimates, the cards were stacked in favor

of their adopting a nonsequential mode of behavior, though not necessarily Bayesian. The

present experiment examines the eflects of presenting only one dot on the viewing screen for

any value of n, where n is the total number of dots shown. Subjects were not required to reset

their levers, In fact, they were told to revise on trial n + I the settings they left at trial n. In

other words, they were encouraged to use their posterior settings at trial n - I as the prior

probabilities for trial n.

Thus, the question of interest is whether subjects are more or less Bayesian for the se-

quential mode than for the nonsequent.Wa mode.

2.3.2. METHOD

2-3.2.1. Subjects. Six summer students were subjects. All were volunteers hired throug

the Sudent Employment Offlce, and each was paid $1.25 per hour. All subjects completed the

experiment in less than two hours.

This material was prepared by Lawrence D. Phillips and Ward Edwards.

29



_A_-

2.3.2.2. Apparatus and Method. Apparatus and conditional probability displays were the

same as used in Experiment One- Each subject was presented first wi-h three sequences from

the original study, numbers 12, 28, and 38 (see Fig. 3). Sequence 28 is relatively easy (the

data clearly indicate only one hypothesis as the -correct" one); 12 is moderately difficult (the

data point ambiguously to two hypotheses), and 38 is difficult (the data are ambiguous about

all four hypotheses-- The order in which these sequences were presented was completely

counterbalanced for the six subjects. The prior probabilities were displayed above each of the

conditional probability displays and remained in view throughout the entire sequence of fifteen

dots. Response levers had to be reset after each slide,

Following these sequences. the subjects were presented with the first three sequences, the

only differences being that the data and the conditional probabiity displays were inverted and

reversed and dots did not accumulate. These sequences were designated 62, 78, and 88 (add

50 to the original sequence number) and were presented to each subject in the same order in

which the first three were given. The prior probabilities were displayed on a slide just prior

to the first dot. The subjects were required to set their levers according to the prior prob-

abilities displayed on the first slide, and were told to revise that estimate when shown the first

dot. They were not allowed to reset their levers to zero, and were instructed to revise their

lever settings as they received new information.

Normalization of posterior estimates was required under both presentation conditions.

The cover story attempted to attach equal utilities to the four hypotheses.

Subjects were asked at the completion of all sequences if they noticed any similarities be-

tween the first three sequences and the latter three. No subject reported that he dida

2,3.3. RESULTS- On Sequences 28 and 78 all subtects tended to underestimate the high

probabilities and overestimate the probabilities for the other three hypotheses. This tendency

is evident to a lesser degree in Sequences 12 and 62, btut not very apparent in Sequences 38 and

88; this is probably because the Bayesian posterior probabilities are not as extreme for these

sequences.

Performance Indices were computed for each subject on each sequence for each value of

n- An analysis of variance on these PI's gave the resilts shown in Table I-". Because only one

observation appeared it: each cell, the error term used in the analysis was the ftigure representing

the mean squares of the sequences times presentation times dots times subjects variable.

In interpreting this analysis of variance, it is important to keep in mind that PI is being

ex..ntned, so the experimental variables must be understood to affect the degree to which sub--

jects were successful in approaching Bayesian performance. Three of the main effects are

sagnifhcant. Sequences for one: subjects are less Bayesian for ihe more difficult sequences.
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The number of dots is mildly significant, the trend being towards the less Bayesian performance

as the number increases, though there are some exceptions for some subjects at some sequences.

For Sequences 28 and 78 all subjects became less Bayesian with more dots: for the other two

sequences the PI peaks sharply and rather irregularly, but there is enough consistency among

subjects to give a sequences x dots interaction.

TABLE TV SUMMARY OF ANALYSIS OF VARIANCE

Source df MS F

Sequences 2 104,525.5 43-79''

Presentation 1 5,314.V 2.23.
(sequential or
nonsequential)

Number -if dots 14 5,111.1 2.14*

Subjects 5 17,870.4 7.49*

Sequences
x presentation 2 2,554.0 1.07T

Sequences
x dots 28 9,729- 1 4.*

Sequences
x subjects 10 13,835.1 5.80* *

Presentation

x dots 14 1,457.3 -t

Presentation
x subjects 5 8,913.2 3.73* s

Dots x subjects 70 4,167.5 1.75' *

Sequences x pre-
sentation x dots 28 2,017.3 - t

Sequences x presen-
tation x subjects 10 9,048.8 3.79' *

Sequences x dots
x subjects 140 3,334 3 1.40'

Presentation x dots
x subjects 70 2,107.1 -I

Sequences x presenta-
tion x dots x Ss 140 2,386 8 -

*P < .01
*P - .05
t n.e.

Indi idual differences among subects are high: thus, the subjects main effect Is significant.

For some subjects the method of presentation makes a difference. This is not true for all

subj ts. however, so there is a presentation x subjects interaction, but rnt a main effect due

to oresertion. Further, for those to whom presentation condition does make a difference,
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2.3.2.2. Apparatus and Method. Apparatus and conditional probability displays were the

same as used in Experiment One. Each subject was presented first with three sequences from

the original study, numbers 12, 28, and 38 (see Fig. 3). Sequence 28 is relatively easy (the

data clearly indicate only one hypothesis as the "correct" onel, 12 is moderately difficult (the

data point ambiguously to two hypotheses), and 38 is difficult (the data are ambiguous about

all four hypotheses). The order in which these sequences were presented was compietex

counterbalanced for the six subjects. The prior probabilities were displayed above each of the

conditional probability displays and remained in view throughout the entire seokence of fifteen

dots. Response levers had to be reset after each slide,

Following these sequences, the subjects were presented with the f':.t t ,.ree sequences, the

only differences being that the data and the conditional probability displays were inverted and

reversed and dots did not accumulate. These sequences were designated 62, 798, and 88 (add

50 to the original sequence numberI and were presented to each subject in the same order in

which the first three were given. The prior probabilities were displayed on a slide just prior

to the first dot. The subjects were required to set their levers according to the prior prob-

abilities displayed on the first slide, and were rid to revise that estimate when shown the first

dot. They were not allowed to reset their levers to zero, and were instructed to revise their

lever settings as they received new information.

Normalization of posterior estimates was required under both presentation conditions.

The cover story attempted to attach equal utilities to the four hypotheses.

Subjects were iiked at the completion of all sequences if they noticed any similarities be-

tween the first three sequences and the latter three. No subject reported that he did,

2.3-3. RESULTS. On Sequences 28 and 78 all subjects tenaed to underestimate the high

probabilities and overestimate the probabilities for the other three hypotheses- This tendency

is evident to a lesser degree in Sequences 12 and "2, but not very apparent in Sequences 38 and

88; this is probably because the Bayesian posterior probabilities are not as extreme for these

sequences.

Performance Indices were computed for each subject on each sequence for each value of
n. An analysis of variance on these PI's gave the reits shown in Table 1V. Because only one

oservatiOn appeared in e4chuel, the error term used in the araltsis was the f-x.ure representing

the mean squares of the sequences times presentation times dots times subjects variable.

In interpietlng this analysis of variance, It is important to keep in mind that PI is bein

examined- so the experimental variables must be understood to affect the degree to whlch sub-

jects were successful in approaching Bayesia. performance Three of the ma-- effects are

siginficantSequen.ces, for one, subjects are lesms Bayesian for the more diffic-ult sequences.
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The number of dots is mildly significant, the trend being towards the less Bayesian performance

as the number increases, though there are some exceptions for some subjects at some sequences.

For Sequences 28 and 78 all subjects became less Bayesian with more dots; for the other two

sequences the Pi peaks sharply and rather irregularly, bt t+here is enough consisteyr among

subjects to give a sequences x dots interaction.

TABLE IV. SUMMARY OF ANALYSIS OF VARIANCE

Source df MS F

Sequences 2 104,525.5 4 3 .79 44

Presentation 1 5,314.0 2.23t
(sequential or
nonsequent.al)

Nurber of dots 14 5,111.1 2.14'

Subjects 5 17,870.4 7.49*'

Sequences
x presentation 2 2,554.0 1.07t

Sequences
x dots 28 9,729.1 4.08*'

Sequences
x subjects 10 13,83D.1 5.80'*

Presentation

x dots 14 1,457.3 -t

Presentation
x subjects 5 8,913.2 3.73* *

Dots x subjects 70 4,167.5 1.75" *

Sequences x pre-
sentation x dots 28 2,017.3 - t

Sequences x presen-
tation x subjects 10 9,048,8 3.79*V

Sequences x dots
x subjects 140 3,334.3 1.40*

Presentation x dots
x subjects 70 2,107.1 -t

Sequences x presenta-
tion x dots x Ss 140 2,386 8

* P " .01
SP < .05

tn.s.
Individual differences among vubJects are high: thus, the subjects main effect is significant.

For some subjects the method of presentation makes a difference. This is not true for all

subje-cts, iowever, so there is a presentation x subjects interaction, but not a main effect due

to presentation. Further, for those to whom presentation condition does make a difference,
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the direction of this difference varies according to sequence. The effect of subjects is apparent-

l strong, for there is no significant sequences x presentation interaction (although lack of this

,rteraction may be due to the low number of degrees of freedom.

Stquences x subjects is significant; while some subjects are most nearly Bayesian on the

easies: sequence and least hayesian on the hardest, some are not. The significance -of the triple

interaction, sequences x subjects x dots, undoubtedly results only from the great number of

degrees of freedom.

Some subjects tend to be less Bayesian at the start of a sequence and more Bayesian near
the end, while others reverse this trend. This 'Leas to the dots x subjects interaction.

To summarize, the only highly signdi ant mai..- e- is that of s iquences. This means

that highly conflicting, ambiguous irdformation leads to performance which is less Bayesian

than that produced by unambiguous information. Other factors also influence performance, but

are less Important.

2.3.4. DISCUSSION. This experiment shows that more ambiguous information produces
less Bayesian performance. It seems likely that ambiguity interacts with the number of hy-

potheses considered by the subject. Of course the subject, being conservative, may be con-

sidering as plausible hypotheses that have negligible Bayesian posterior probability; it may be

possible to improve performance in multihyoothesis situations by- reducing the number of hy-

potheses under active consideration as rapidly as the data permit.

The other major finding of the experiment is that sequential vs. nonsequental presenta-

tion of data makes very little difference. This finding is not too surprising. Experiment One

showed that subjects were treating each slide as a separate problem, whether or rot it appeared

in ordered sequence. in this experiment, no subject performed better under sequential than

under nonsequertial conditions of presentation: some performed worse. Apparently the differ-

ence in the kind of information processing required makes little difference to performance. Of

course all information necessary to calculate valtd posterior protbabilities is present under

both conditions. If, In the sequential (only one dot on the screen at a time' mode of presentation

the subject nad been -equired to reset his estimation levers to zero, thus putting a load on h-s

memory, presumably performance would have deteriorated.

Methodological issues cloud the picture. All subjects were first presented with the three

sequences in which displayed dots accumulate, and then with those wherein the dots appear
sequentially. This order may have caused subjects to try to perform the sequential task In

the same manner as the nonsequetial even though their iretructions for the former were to

revisP their last lever setting as they gained new information. Since subjects, were not told
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tha: the revision was to be based only on the new dot, they couid have based their revision on

the n-e dot and on what they remembered of the previous dots- Tis suggests the possibility

that memory factors are affecting performance of the sequential task, and that t is for this

reason that performance there doesn't consistently differ from performa ce on rnnsequential

problemt.

2.4- OVERALL DISCUSSION

Experiments Two and Three suggest that conservatism la a very pervasive phenomenon,

little affected by dffierent sti mulus displays or different response modes. This conservatism in

processing information conforms to our intuition and to our observations. We believe that men

typically want to be more certain than they should want to be, and seek too much information.

that generalization combined with the rules of the game is often enough to play winning poker.

Furthermore, intuition suggests an interaction with payoff: the larger the payoff, the larger

the excess of information that a decision- maker seeks over what he should seek. Anecdotal

observations that people seek too much information have often been attributed to a 'desire for

certainuy, ur to a 'disilike of intermediate probabilitiesj or to a "'fear of failure in1 excess

of desire for success," or to some similar motivational construct. These findings suggest a

different interpretaiion- people seek too much information not because they want too much

certainty, but rather because they canno extract from the information they have as much

certainty as a in principle justifies. In other words, the suboptimal behavior may be the re-

suit of intellectual, nor motivational, deficiencies.

Two speculations about the reason for the intellectual deficiencies that lead to conserva-

tism in information processing occur to us- First, the real world Is always chang-ng; certain

kinds of hypotheses that seem true today may 6ot be true tommorrow. Thus, evidence about the

truth of one hypothesis in the real world may be misleading, not because the hypothesis was

not true at the time the evidence was collected, but raher because the world Va changed since

then,. One possible defense agains being misled is to resist persuasion, to require large

amounts of evidenc-e before acting-. R is not difficult to imaghle a learning process for acquiring

that defense: experiences should not be hard to come by in which acting in accord with the weight

of the evidence and being wrong leads to ptnishmerd.

A second similarly speculative explanation of the conservatism concerns the dependence

of data. If two data are independen! given a nypoutesis, then

PD .H PU) H, D. and PHD i H) P() k'. D.)
jkk k,

for that hypothesis un-der consideration. (Nate that the relation o independence is a relationship

among a teast two data anda hypothesis, sotha data may be indepencet given one hypothesis and
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dependent given another.) In the real world, data are often not independent of one another. More-

T over, one kind of dependence is far more frequent than any other: repeated observations of the

same datum. Thus when you look around your office and see John there, and a moment later look

again and again see John there, you do not conclude that there are two people in your office; in-

stead you conclude that John has remained there. Men may be accustomed to discount the signif-

icance of items of evi&-'ice that resemble one another. If so, one might expect that qualitatively

different items of evidence would have more impact on opinion than qualitatively stmilar items,

In any case, our findings strongly suggest that men should not be required to estimate

posterior probabilities in information-processing systems. If the conservatism in information

processing suggested by this experiment is also reflected in decision- making, questions are

raised about the quality of men's decisions in such cases.
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3
THE EFFECT OF A FLATTENED CONDITIONAL PROBABILITY DISTRIBUTION

ON PROBABILITY ESTIMATION'

In experimental situations where subjects are given a set of hypotheses, prior probabilities

for the hypotheses, and conditional probability distributions for information or data given the

respective hypotheses, the usual finding has been conservatism; subjects change their probabit-

itv estimates less than the amount prescribed by Bayes's theorem.

A series of studies conducted by Harold C. A. Dale (1962, unpublished) approached the ques-

tion of probability estimation as a training problem 'in probabilistic diagnosis. In the Dale ittd-

ies, the subject is placed in a simulated war game. He is told that enemy forces may launch any

one of four types of attack and his task is to estimate the probability of each as he is presented

with a sequence of information corcerning enemy activity. For each datum, four different values

of P(D i H) are possible, one for each hypothesis; these values are displayed to the subjwct. Thus,

this task is very similar to the one reported in Section 2. Here, too, the normative solution is

given by Baves's theorem.

Again, subjects were found to estimate conservatively. Several possible explanations for

their conservatism were considered and examined by Dale. If subjects, rather tha- accep"ng

the displayed conditio.al probability, operated with a coritioral probability matrix that was

flatter (havirg less variance than the objective display) then the outcome would be the otlerved

conservatism. 1, on the other hand, subjects did not employ the Bayesian multiplication rule

[ut rather used some sort of addition of probabilities, ,onservatism would still prevail A third

posaxhiity -s that subjects, while accepting the multiplication rule, make consistent computational

errors.

Studies cf ;nese possibilities indicate that subjects persist in conservatism even when allowed

to set their own conditional probability distributions and prior probabilities. R also seems that

to prov1.4-e subjects with a demonstration of the multiplica +on rule and training in its use does

not improve the accuracy of estimation unless subjects are allowed to actually carry out paper

and pencil computation.

The persistence of conservatism Led to conjecture as to whether there could be constructed

a Condittonal probability matrix that would not result in conservatism; this question gve rile to

the experiment reported here.

Thias section was prepared by Melvin Guyer and Ward Edwards.
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2.1 INTROflUCfloN.

In a simulated war game, subjects were instructed to estmate the probhailities of each

of xour inu:ually exclusive hypotheses when provided with data and conditional probability

displays for the data given tue hypotheses, and an attempt was m: le to construct a set of

conditional probability distributione ..-at would lead subjects to revise their probability

esitmates more tI'an the .±mount prescriaed by Bayes's theorem. Achieving these results

woul4 suggest certain explnations of the conservatism found fairly Zor.ttemlv in imilr'.

situations reported in the literature.

3.2. M THOD

Each r4 20 University of MichiZ4 male undergraduate students was randomly assigned to

one of four experimental groups in a 2 x 2-de trxperiment. 'wo sets of conditional probabil-

fly mat:icen were devisad. One. tereafter referred to as the "basic" matrix, had the form

eI  e2  e3  e 4  e5

H1 0.40 0.10 0.20 0.20 0.10

H2  0.10 0.40 0.10 0.10 0.30

H3  0.20 0.10 0.10 0,40 0.20

H. 0.30 0.30 0.10 0410 0.20

where H,. through H4 were a set of mutualiv exclusive hypotneses concerning the form of a pos-

sib,- enemy attack, and e I through e5 were a set of possible messages that the Fbject might

receive and whose impact on the probebilities of the hvpotheses he would h-ve to estimate. A

seco,, matrix, called the "degraded" : atrix, was constructed by adL; a constant of 2.00 to

each value in the bash2_ matrix and ther normalizing. The degraded mat-ix iad the foilowing form.

eI  e2  e3  e 4  e.5

H1  0.22 0.19 0.20 0-20 0,19

H2  0.19 0.22 0.19 0.14 0.21

H. 0.20 0.19 0a9 0. 2 0.20

H4  0.21 0.21 0.19 0.19 0.2G

The iabeiirfg for tfr' hypothese- d nd the mss4a-es was of course the same for both basic and

degi .ded matrices.

-!.- r trlce-s were display 1. to the subjects as sets of bar grapos, one for each hypothesis.

l c iark. sheets of white (ardtnaird. Each graph was labiled ts. that tr. probanility values

could oe read -masiiv.

Ada-navvai a-;naratus nci uled a 'map' of a supposed enemy terrain with various srate-

i azea mdn--aici -, and shows.g the locaton of an agent who would be the source " aiessaes
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concerning enemy activity. The subject was also given a chip board and 100 metal chips The

chip board was made up of four columns#, each with ten troughs capable of holding ten chips

Each column of the board was labeled for one of the hypotheses and the number of chire placed

in the columns by the subject indicated the subject's estimate of the probabilities.

Each of the suta- vas run on both matrices, the assignment to order of matrices being

randon, and matrix order being an experimental treatment. Since each subject was to be run

on both, it was necessary to construct two different sequences of ten mesees each. The se-

quences not only had different orders of messages but also provided evidence for different by-

potheses. The probability values of the respective hypotheses for each sequence were quite simi-

lar and the values at the end points of the sequences were almost identical. The assignment to

sequence order was random, and was also an experimental treatment.

Each subject was seated before the map of enemy terrain with the conditional probability

matrix displayed and the chip board dlose at hand. Initially the chips were distributed equally

among the four columns and the subject was told that the present rtate of our knowledge concern-

ing enemy activity justified this distribution of chips. rhe subject was instructed in the use of

the chip board and was told the nature of the task. He was requested to make estimates of the

probability of each hypothesis as messages from the agent came in (the messages were presented

to the subject by the experimenter). The subject made his estimates and then redistributed the

chips among the columns. The experimenter recorded the distribution of probabilities for the

hypotheses afwt'- each message. After a subject h. d been run on the first sequence of messages

he was riven aoditiona instructions to explain. the introduction of the second matrix and was then

run on the remaining sequence of messages.

3.3. RESULTS

Figure 11 shows the averaged subjective estimates, using the basic matrix, of the prot-

ability of the hypothesis confirmed by the data. The upper cur:e represents the Bayesian

values of the poatex ior probabilities alter each message is received. The middle curve repre-

sents the averaged scores for the group first run on the basic matrix; and the lower curve, the

averaged scores for subjects run first on the degraded matrix and then on the basic Of course

the sequence is the same for alt curves in Fig, IL

Figure 12 gives the same information as Fig. 1lexcept that Sequence 2 was used rather than

Sequence 1.

Figure 13 shows 'he averaged subjective estimates, based on the degraded matrix, of the

probabilty of the hypothesis confirmed by the data The solid curve is the objective estimate,
the upper curve is for estimates made when the basic matrix preceded the degraded, and the

dotted curve is for est.mates made when the -degraded matrix came first. Ail curves in Fig. 13

are "- ed on the same sequence of messages to tW subject
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Figure 14 provides the same information as Fig. 13 except that it is based on Sequence 2

rather than Sequence 1.

Figure 15 compares the objective probability estimates using the basic matrix for Sequences

I and 2.

Figure 16 compares the objective probability estimates using the degraded matrix for Se-

quences I and 2. These last two figures make it possible to directly compare the rate of change

of probabilities for the two sequenrces. It should be remembered that the sequezices increase

the probabilities for different hypotheses and are drawn with respect to the probable validity of

the hypotheses which they respectively confirm.

An analysis of variance was done on the subjects' final estimates of the probability of the

hypothesis that tended to be confirmed by the particular data sequence used. A separate analy-

Sis was done for scores on the basic matrix and for scores on the degraded matrix; that is, they

were treated as separate scores and the order of matrix presentatio i was taken as an experi-

mental treatment. The results of the analyses of variance are summed up in Tables V and VL

TABLE V- SUMMARY OF ANALYSIS OF VARIANCE
OF FINAL ESTIMATES OF PROBABILITY

USING BASIC MATRIX

Source of Variation df MS F P

Columns c-data sequence) 1 520.2 213
Rows (matrix order) 1 1,065.8 4.37 P < .10

(cells) 3 836.9
Rows x columns 1 924.8 3.79 P < .10
Within cells 16 243.65

Total I

TABLE VI. SUMMARY OF ANALYSIS CF VARIANCE
OF FINAL ESTIMATES OF PROBABIIrrV

USING DEGRADED MATRIX

Source of Variation di MS F P

Columns 'data ne-quence) 1 68.45 L09
Rows (matrix order) 1 85805 13.67 P < *005

(celis., 3 4403.85

Rows x columns 1 414.05
Whn Cells 16 62 ThPj02n 75 6.59 P 025
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Separate analyses of variance on scores obtained from the basic matrix and scores obtained

from the degraded matrix were dn The separate analyses preserve the effect of matrix-

presentation order as an experimental treatment, and thus do not ignore an impcrtant indeperd-

ent variable.

As the primary question raised in the experiment was the possibility of devising a condl-

tional probability matrix that would result in subjects' changing their probability estimates too

much, the final estimation scores for the sequences run on the degraded matrix were examined

by way of a t-test. Here the hypothesis tested was that the difference between the means of the

final estimates and the objective value at that point differed significantly from zero; since the

alternative hypothesis was that of overestimation, a o-tailed test was appropriate. The results

of the t-tests are summarized in Table ViI.

TABLE VMI. RFSVLTS OF t-TESTS FOR THE SIGNIFICANCE
OF THE DIFFEF UNCE BETWEEN IMAN SUBJECT ESTIMATES

AND OBJECTIVE ESTIMATES

t Value P

Sequence B-D 3,51 P c .005
D-B A0 P .25

The table clearly indtcates that when the degraded matrix is used, scores show a significant

overestimate for the relevant hypothesis (where overestimation is taken to be an estimate greater

than the normative Bayesian probability), when ie degraded matrix is presented after the basic

matrix.

3.4. DISCUSSION

Figures 11 and 12 provide more evidence of underestimation of objective probabilities

-u& to subjects' estimates changun 1085 than is called for by Bayes's theorem. The

amount of underestimation seems to be directly related to the order of matrix presentation,

Both Figs. 11 and 12 show that the degree of underestimation ottained on the basic matrix when

it was preceded by the degraded matrix its of a greater magnitude thain that produced by the

opposite presentation order. The effect of matrix order on the level of estimation is more

dramatically displayed ty Figs. 13 and 14, which present the scores for tne degraded matrix co-

dition- When the degraded matrix was followed by the basi, the subjects overestimated the

probabilities, when the degraded matrix was presented first, subjects again tended to udr--

estimate the probabilities. The underestimate obtained in this Condition attests to the persistence
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of the phenomenon; the objective probability was 0.32, but subjects managed to under-stimate

the relevant hypothesis and yet favor it over the others. The estimates were between 0.25 and

0.32 for seven out of the ten subjects run on this condition.

Since overesimation or the degraded matrix was only obtained when the degraded matrix

was preceded by the basic it seems that the larger magnitude of estimations on the basic matrix

introduces a response set that carries over irto the degraded condition_ This respnse set also

seems to carry over from the degraded to the basic condition, as is indicated by the greater

degree of underestimation on the basic matrix when it is preceded by the degraded.

The results of this study suggest that conservatism is fun-d oray when high-variance condi-

tional probability displays are used. Data that has relatively low diagnostic value eads subjects

to make probability estimates that are very nearly Bayesian. Under th se conditions, subjects!

faculties for estimating probabilities are not as bad as they woud at first seem, It may well

be that even for high-variance conditional probabilities subjects estimate p tais much

better than their responses indicate. This possibility gains weight irom the difficulty one has

conceiving a situation in which a person behaves as a pue estimator of probabihty, witint

taking other decision-making parameters into account. Conservatism may be acavnted for in

terms of the utilities introduced into the task of estimating probability; while the situation in this

study was only a simulated war game, subjects did tend to become enps in the task. Their

concern with the consequences of their probability estimates could, and wilnbtediy did, influence

those estimates to a degree. In further pursuing this line of thglt. it would seem that experi-

mental manipulation of the utilities inherent in an estimation task would answer some of the

questions concerning the ability of humans to behave as ' t-pre-t probability estimators.
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4
THE ESTIMATION Cf CREDIBLE INTERVALS

A criticism that may be leveled at many of the probabilistic irdormarion-pr-cessi.-ig ex-

periments is that they deal with discrete hyotheses rather than continuous parameters. For

example, in the expe, -.- s already descrbed, subjects were asked to give the posterior prob-

abilit fdiscrete -. thees; t were asked to make point estimates. In the present ex-

periment subjects werf- sked to estimate a continuous parameter, to give the 90% or 5% credi-

ble interval of a pc *u, ,r distribution. Subjects were presented with a sequence of numbers drawn

from a normal distr. .t on with known varance but unknown means, -and after each presentation

of a number were revf red to estimate either a 90% or 50% credible interval for that mean.

It seemed that thc , _Joservatism found for discrete h gotheses might reasonably be expected

in the estimation of c.: 'inuous parameters also. Therefore, it was anticipated that the credible

intervals given by sul .,.s would not decrease in size with the square root of the number of

observ;ations, as they v -al, but would decrease more slowly.

4.1. METHOD

4.1.1. SUBJECTS- P1-ic male summer school students at The University of Michigan

volunteered to participate in the experiment. They were paid $1.25 per hour,

4.1.2. INSTRUCTIONS TO SUBJECTS. Subjects were asked to make guessres about the

average or mea- of a set of normally distributed numbers. They were told tat they would see

a sequence of numbers randomly chuten from that get and that the experim-er-ter was Interested

in the degree of certainty each new number gave them about the average or men ---f the set from

whien tne sequence of numnbe -  ;s- drawn.

The subjects were asked L -s_. their certaintv by giving ciedibie wtervals within which they

were either 50I or 9a! sure that the mean should fail- They were told that as they saw more

and more numbers they should become increas'ragly certain about the mean, and thu_ shou-d

be able to make their credible intervals 3malier and smaller.

The subjects received instracion about die parnmeters of a normal distribution and its

symmetry. Betore seeing anvy numbes they were tod "e standard deviation of Lhe population fromp

which the numbers were drawn arA the experinenter set an a priori credilie interval withn which.

w~itt seeing n-y numbers, they could be 50 or 3'1 certain the plopulation mean would fail.

'This section was prepared .y Marilyn r Zvian and Ward Edwrards. or the i-s-s- of data

collected by Samuel M. Rutbn.
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They were informed that there was a perfect performance to which their performance would be

compared and that he who performed best would receive an extra payment for participating in

the experiment-

4o1o3. SEQUENCES- Three sequences of 64 numbers each which we will call 'original

sequences, were generated by selecting numbers at random from a table of random numbers.

The numbers came from a n-ormally distributed population with mean zero ant standard devi-

ation one. From the original sequences nineteen secondary sequences were generated by multi-

plying each number in a sequence by one of two standard deviations (5 or 10) and adding to each

number one of four mean values (0. 4, 51b or 54. The nineteen secondary sequences were

labeled with letters of the alphabet from A to S and were shown in a different randoum order to

each subject. For sequences A to P, subjects were asked to estimate 90%. credible intervals,

for Q to S, 50% credible intervals.

4-1.4. DISPLAY OF SEQUENCES. The sequences were displayed to the subjects on long

rolls of adding machine tape which passed a window in a screen about three feet in front Of the

subject. A subject was shown a number, he made his estimate, and then the next number was

roiled into view- Once he saw a number, it staved in view until all 64 numbers were visible in

the window.

4-1 5. PRIOR SETTINGS. When subjects were asked to give 90% credible intervals, the

a priori interval set by the experimenter was that interval about the mean equal to M -i (1 645)

(s.d. for the 50% credible interval estmation, the a priori interval seting was at M t (Ma641

4ti1-6_ RESPONSE APPARATUS. The re-ponse apparatus consisted of a womden stand upon-

which were two pointers that could be moved along a calibrated scale. Different scales could

be mounrtei on the apparatus, Each subject was asked to place the two pointers along a scale

to indicate his certainty (50% or W-1) that the population mean Lay within the interval he set.

4.1.7o SCALES. For each sequence subjects indicated their credible intervals oat one of

four sales. Eacn scale was calibrated on unit intervals.

tScal I ranged from -30 to 3 . Was use conjurtion with sequencesof standard de-

Viatio.-n 10 and population mean 0 or 4. 'Subjects estimated 90. credible intervals on this scale.

'ca'e £ ranged from 2- 80. It was used for sequences of which the population mean was

ether 50 -r 54 and standard dei-ation was I0 Subjects estimated both 90 K 0 q rredibie
tntervai .sing t-ins sca .

Sc ! 3 rrnged from -A5 l i5-. it was used for sequences of which the true mean was
- ar 4 and tte s-a d r-d deviAtion -was 5. sb~ert estimated 9 credible i-tervais o r"ts scale

a e 4 raned fr- , 3 5 to -*6. It was used n co-n-cti.on wakt sequences of stan4ard de-
. .. 5- --.- 50 or 54. &:b-ect estmadted 9% -r-eible Intervals u.ing rts se a-e.
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Table Vm summarizes the information about the sequences and scales used in the experi-

mental design.

TABLE VIII. SCALES AND SEQUENCES

Secondary Original Standard Credible Prior

Sequence Sequence Deviation Mean Interval Setting Scale

A 1 5 0 90% M 8 3
B 1 5 4 90% M 8 3
o 1 5 50 90% Mt8 4

_< D 1 5 54 90% M*8 4-E 1 10 0 90% M16 1

F 1 10 4 90% M 16 I
o 1 10 50 90% M ±16 2

H 1 10 54 90% Mx 16 2
I 2 5 0 90% M 8 3
J 2 5 4 90% MoB 3

K 2 5 50 90% M+ 4
L 2 5 54 90. M 8 4
M 2 10 0 90% Mo1 1

O 2 10 50 90% Mt 16 2

P 2 10 54 9. M • 16 2
Q 1 10 50 W0 MZ± 7 2
R 2 10 5o 50% M ? 2
S 3 10 50 50% M? 2

6.1.8- PROCEDURE, Subjects were run one at a time for five experimental sessions of one

hour each- They -saw sequences A to P and completed their 90% credible interval estimations

before seeing sequences Q, R. and S and m-aking 50% credible interval estimations. Subjects

saw the sequences in the random orders given in Table VIII.

4.2. RESULTS

The widths of subjects' estimated credible tntervs were analyzed by comparing them to

the Bayesian intervai widh. Bayesian intervals were found by calculating (3.2n) (s.d.)/ N for

the 90. credible intervals and 111.348) (s.d.)/'. N for the 50% credible intervals, where N = the

nurbe We sample or trial numbers in the sequence. Plots of the compartsons showed no

.earmn ; subjects were no more Byestan on late sequences than on early sequences. Therefore,

t.he resu-ir were ro.-bined over al sixteen sequences 'or which subjects gave 90% credible

ntervais ;.nd over the three sequences for which subjects gave 50% credible intervais Since

,, i showed large and consistent "ndivdual d.fferences, results were not combire over sub-

te¢cU Ftg.re i? shows the results of this analysis. O0fly Subject Four et intervals eqtual tio or
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smaller than Bayesian interval widths when giving 90K credible intervals, and only Subjects Three

and Four gave intervals equal to Bayesian intervals whien setting 5(P credible interval widths.

The midpoints of the intervals set by subjects were used as estimates of what the subjects

thought the mean of the population to) be at every trial. Bayesian means were found b calculating

0h* xHh 0  :), where tn0 = ,.e prior mean, h0 = the prior precision, x -- the value of the sam-

ple, and ti - the precision of the sampling process. Precisions were defined as the reciprocal of

the prior-distribution variance in one case and of the sampling-process variance in the other

case. The absolute deviations of a subject's means from thC Bayesian means were found and

summed at every trial over all 19 sequences. Figure 18 displays the summed deviations from

Bayesian means at every eighth trial. A comparison of Fig. 18 with We widths of subjects'

estimated credible intervals hws that there is a correlation between the subjects' ability to

track the Bayesian mean and tht size of the credit~e intervals they set.

4.3. DISCUSSION

As was expected, the subjects displayed conservatism; in seven of the ten instances ex-

aminee they did net reduce their interval widths by an amount inversely proportional to the

square root of N, the number of samples, but more slowly.

Howvver, analyzing the data of the experiment pointed to problems: (1) the subjects might

not have distinguished between the concepts _A' population mean and sample mean; (2) there is no

reason why they should have believed that the numbers .isplayed came from a stationary proc-

ess; (3) only four population means were used, t%,o of which (0 and 50) were in the center of the

scales on which subjects moved their pointers; and (4) at the beginning of _ach sequence, the

pointers were preset by the experimenter to the theoretical size within which, without sampling,

one could be 90% or 50% confident that the population mean fell, and the population mean was

always at the center of this preset interval.
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CONSERVATISM VV A VERY SIMPLE PROBABILITY-ESTIN-1ATION TASK

In the first experiment Ay' have reported, subjects were told that the envlt rne( coulon br-

in exactly one of four possible btates. refer., -_1 to as hypotheses. A vseq~sese WZ 1^; dvSa, ge1'r-

ated under the truth of one hypothesis, was shown to the subjects. After aeeln, each datum t

the sequence, the subjects estimated how probable they thought it was th.-t ?%ch 'A the four hy-

potheses was the true one. Their estimates were compared with probabilittes computed from

Bayes's theorem.

The general finding of this study was that the subjects' probab~ility esdamates, while highly

reliable, were considerably more conservative than those calcuAted from gayes's theoremn; this

led to the postulation that this conservatism resulted fromn the intellectua'l difficulty of ccombiniag

the diagnostic value of each individual datum in order to arrive at a diagjnosis of the environimept

based on all the available data.

In the present study, we hypothesized that the conw'rvaisim -rouid be reduced or even elimi-

nated by decreasing the difficulty of the original task. In, the new task, only one o' two hypotheses

could be true, and only two Kinds of data were possible. Thus, subjects were presented with

sequences of data allowing only two different observations, and only two probability estimates-

one for each hypothesis -urere required after subjects fsaw eact datum. This is the simplest

possible task requiring revision of opinion as new infornmtor is presented.

5. 1. METHOD

5.1.!. PROCEDURE. Subjects were shown one bookbag chaser. from amrng terkbags of which

all were equally likely to be chosen. Each of the ten bags contained 100 poker chips, some red

and somne blue. Every bag was either a Type R bag, in which red chips predominated, or a Type

H bag, it. which blue chips predominated. For each type, the preponderant chips were in propor-

tion p while the nonpreponderant chips were in proportion q. Of the ten bags, r were of Type* R

and b were of Type B. Subjects were told how mn.nv of the ten bags were of Type R and how

matny were of Type B, and they were told the exact proportions p and q.

This section prepared by Lawrence D). Phillips and Ward Edwards on the basis of data
collected by Richard Norman.
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subjects were told that two hypotheses about the contents of the choser bag were possible

for this experiment:

Hypothesis R: The chosen bag was Type R.

Hypothesis B: The chosen bag was Type B.

Next, subjects were asked to make intuitive estimates of the probabilities of the two hypotheses.

The proportion r/10 will be called the theoretical prior probability of Hypothesis R. P(HR), and

b/I0 wiIl be called the theoretical prior probability of Hypothesis B, P(HB). If the subjects'

estimates differed from the theoreticai prior probabilities, the experimenter explained that lack

of other information made 'he proportions ri10 and b/10 the best estimates of the prior proba-

bilities. This procedure ensured that all subjects started with the same prior probabilities.

Twenty chips were drawn, one at a time and with replacement, from the chosen bag. After

each draw, subjects revised their previous intuitive estimates of the probability that Bag Type R

had been chosen and of the probability that Bag Type B had been chosen. This process of select-

ing one bag at random from ten and then drawing 20 chips from the bag was repeated 24 times;

thus, every subject made 20 pairs cf estimates zor each of 24 sequences. The correct hypothesis,

the prior probabilities, and the proportion of predominant chips differed for each sequence, as

shown in Table IX.

Only eight different basic sequences of red and blue chips were actually shown to subjects,

as can be seen in Table IX. Sequences are apparently difficult to remember; no subject reported

noticing the repetition of sequences. These sequences -were

1. FSSSS SSSFS FSSSS FWSSF

2. FSFSF SSSSS SSFSS FSSSF

3. FFSSF FSFSS SSSSF SSSSS

4. SSFSF SSSSS SFSSF FFFSF

5. SSFFF SSSSS 58588 SSSFS

6. SFSSS FSFSS SSSSS FS5

7. SSFSS SSF5 SS.SFF FSFFS

8. FSSSF FS FS FSSSS FSSFS

The letters S and F denote "success" and 'failure", where a success is defined as tho. drawing

of a chip with the same color as the predominant chips in the chosen bag, and a fai'are is the

drawing of a chip of the other color. The symbol for probability of success ts p, and that for

probability of failure is q, and p - q = I.

Sequences were presented to subjects in random order, six sequences per session. Each

session lasted for about an hour. Subjects were run individually and were self-paced. Subjects

were never told anything about the quality of their estnta:es nor were they told which hypothesis

was correct for a given sequence.
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TABLE EK. EXPERIMENTAL DESIGN

Sequence CorrecL Basic
No. Hyothests P(HR. p Sequence No.

I HR  30 .6 1

2 HB  30 .6 3

3 HR 43 .6 2

4 k 0 .8 4

5 HR 50 6 3

6 H B  50 .6 1

7 H R  50 .6 4

8 H B  50 .6 2

9 HR 60 .6 2

10 HB  60 .6 4

11 HR  70 6 1

12 H B 70 .6 3

13 Ht 30 .1 6

14 HB  30 .7 8

15 H R 40 .7 5

16 H B 40 .7 7

17 HR 50 .7 8

18 HB  50 .7 6

19 H 50 .7 5
R

20 HB  50 .7 7

21 HR 60 .7 7

22 H8  60 .7 5

23 H 70 .7 6

24 H 70 .7 8
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5.1.2. SUBJECTS. Five males. undergraduatesof The Uoiverstv of Michw-.r. scrved as
subjects They were paid $25 per hour

5z2. RESULTS

Theoretical probabilities for each sequence can be calculated from Bayes's theorem:

P(H D) =kP H) P(H -1)

(H D)= k P(D. HB) P(HB)

P(H a;d P(HB) represEnt the prior probabilities of the correct hipothesis; P(H :D) and

P(HB D14 the posterior probabi ities, or the proi abilities of the hypotheses after observing the

datum D; and P(D: HR) and P(D. HB). the jilceihoods of the datum or the condinion2l probabilities

of the datum given the truth of the particular hypothesis. A nor'malizing coMstant k ensures that

P(HRz D) Pa' D) = I

A form of Bayes's theorem more convenient for ;inalyz.ng the data can be tained by di-

viding Eq. I :y Eq. 2 whenever HR is the correct hypothesis, and Eq. 2 toy Eq. 1 whenever HB

is the correct hypothesis. This gives,
0 = LPt (3)

where P1 represents the postericr odds in fav-r of the correct hypothesis; R4, the prior -odds

in favor of the correct hypothesis; and L, the likelihood ratio of the data.

Since each draw of a chip is generated by a binomial process, with probability of success
S n-S

equal to p. the probability of getting s successes in n drawLis proportional to p q Thus,

the likelihood ratio of the datum is

a ,-s 0 2-n ,2s-n
-

q  -t P 4

qp q

Of course, 2s - n = s - (n - a) = s -f ts the difference between the number of successes .id

failures, so Eq. 4 car. be written

L_ 5

Rewritsng Eq. 5 in log form gi es

log L m (s -f log (6)

This form is convenient because, for given val1ues of p and q, log L varies linearly with s f.

Flg re 19 shows a plot of iog1 0 L as a function of s - . Two plots are shown, oane for each value

of p used an this experiment.
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FIGURE 19. THEORETICAL LIKELIHOOD RATIOS, FOR 70-30 AND 60-40 BOOKBAGS, AS A FUNCTION

OF THE DIFFERENCE BETWEEN THE NUMBER OF SUCCESSES AND THE NUMBER OF FAILURES
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The log likelihood ratios computed from Eq. 6 and shown in Fig. 19 are theoretical values.

Log likelihood ratios inferred from subjects' estimates can also be computed and compared to

the theoretical values. First, subjects' estimates were converted to posterior odds. Then,

since the prior probabilities were given, inferred likelihood ratios can be. calculated f,.om this

logarithmic form of Eq. 3:

log L = log 2 -log 11 (7) 01

Plotting subjects' likelihood ratios as a function of Bayesian likelihood ratios allows actual per-

formance to be compared with theoretical performance. This has been done in Fig. 20 for Sub-

ject One, for the data obtained in sequences with p = .7. Plots for data obtained when p - .6

gave nearly identical results, so are not shown here. The scatterplots of all subjects except

Subject Four were similar to those of Subject One; Subject Four's show greater scatter.

Another way to summarize these data is to determine what bookbag compositions would be

necessary for Bayes's theorem to give probabilities identical to those estimated by the subjects.

This has been done graphically, and the results are given in Table X.

TABLE X. RANGE OF p VALUES THAT WILL YIELD
BAYESIAN PERFORMANCE IDENTrCAL

TO SUBJECTS' ESTMATES

True Value of p

Subject .7 .6

1 .51-.55 .50-.55
2 .50-.54 .50-.56
3 .52-.56 .51-.59
4 .50-460 .50-.69
5 .50-.53 .50-.54

For example, the data generated by Subject One when he saw a 70-30 bokbag could have been

generated by Bayes's theorem osing values of p which ranged from .51 to .. 5.

5.3. DISCUSSION

Despite the s.mpllcity of this task, 7ui)jects' estimates were still conservative, compared

to probabilities computed from Bayes's theorem. Apparently, the conservatism found in Experi-

ment One is not entirely caused by the complexity of that task.

Table IX indicates that the amount of conservatism is very little affected by the two values

of p in this experiment. Possibly this is caused by preventing sequences in random order. If

all the .6 sequences had been presented together, and all the .7 sequences together, perhaps the

Inferred likelihood ratios would have differed more.
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FIGURE 20. SUBJECT ONE'S ESTIMATES, FOR 70 30 BOOKBAGS, EXPRESSED IN LOG LIKELIHOOD
RATIOS AS A FUNCTION OF THE DIFFERENCE BETWEEN THE NUMBEROF SUCCESSES AND THE

NUMBER OF FAILLRES
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Finally, four of the five subjects show considerable consistency, as i indicated by the low

degree of scatter in their scatterplots. Behavior in this simple task can best be described as

reliable and consistent, but very conservative when compared to Bayes's theorem.

A very simple model gives a good fit to these data. It supposes that the subject raises the

likelihood ratio to a power less than one before performing the arithmetic of Eq. 3; it is equivq -

lent to saying that he behaves as though the bookbags are nearer 50-50 than they are. While

this model is far too crude to be plausible, it fits these data as well .-s their scatter permits.
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6

RESPONSE MODES AM," PROBABIUTY ESTIMATION

Previous research (see preceding sections) has repeatedly demonstrated that subjects

exhibit suboptimal behavijr when processing probabilistic information, with Bayes's theorem

providing the etandard.

For the first experiment (Section 2) a pseudomilitary game was presented to subjects who

viewed the progressive accumulation of impact points on a display that resembled a radar dis-

play (PPI). and, on the basis of these data, made posterior probability estimates about the truth

of four hypotheses. The subjects consistently underestimated high probabilities and overestimated

low probabilities; they were unable to extract from the information all the certainty about the

truth of the hypotheses 1hat was justifiable by Bayes's theorem.

Section 5 reports a much silmpler task involving Bayesian inference. Despite the simplicity

of the task, subjects were also unwilling to commit themselves to extreme probability estimates.

Tasks for which posterior Bayesian probabilities were greater than 0.999 elicited from subjects

estimates between 0.80 and 0.90.

This conservatism seems sufficiently certain to permit investigation into the effects on it of

other variables. L. D. Phillips (unpublished) employed the same bookba and poker chip problem

but explored the effect of making payoffs to the subjects contingent upon the accuracy of their

posterior probability estimates. Four groups were run, a control with no payoff, and three

payoff groups in which the payoffs had either a logarithmic, quadratic, or linear relationship '-o

the probability estimates. All subjects were more conservative than Bayes's theorem; low

probabilities were overestimated and high ones were underest.mated. The logarithmic and

linear payoff groups were more accurate in their estimates than the control group. For some

reason, however, the performance of the quadratic p ,yoff group fell below that of the control group.

The major purpose of the present study is to investigate the relative effects on performance

of various probability-estimation response modes.

6.1. METHOD

6.1.1. SUBJECTS. The subjects were 15 male students of The University of Michigan

randomly assigned to one of the three experimental groups; PR, VO, and ODL. Those in Group

PR made their estimates by distributing 100 washers over two pegs, which forced them to nor-

malize their probability estimates. Subjects in Group VO reported their estimates in verbai odds

*This section was prepared by Mary Ann Price Swain and Ward Edwards.
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in favoi of the mosit likely )ag. And subjects in Group ODL ma~de their estirnatol- by s ttiIjg a

pointer alung a scale on wh~ch od:1% were displayed in logarithnmic iwterv.4s;

V~ E) W t- co~ M. C

FIGURE 21. LOGARITHMIC SCALE FOR SUBJECTS' REGISTERING OF PROBABILITY E5TIMAITS

6.1.2. PROCEDURE, This experiment used ihe bookbag and poker chip par~cdignw

explained above. Subjects were run one at a time, and each was run In two different experim ,ntal

sessions. The first session utilized 7 0-30 bookhags and the second session 60-40 bookbagr_ All

bags had a prior probability of 0.5. At each session the subject was shown six different 4^3-chip

sequences. Sequences were generated randomly and checked by the experimenter for thcir

"representativeness. " Retained sequences always favured the correct point hypothesis over the

uniform hypothesis (i~e,, that all compositions are e4-.ially likely); this requirement is satisfied

if (n + 1) (n)psti - pIn- 1, where p represents &.e probability of obtaining a chip of the pre-

ponderant color frore the chosen bookbag; n, the total number of chips drawn; and s the number of

those chips drawn that art~ of the color predominant in the bag. Retained sequences also satisfied

the Wald-Wolfowitz test for the expected number of runp- (alternation of colors) in a given se-

quence of s preponderant elements and n-s nonprepondlerant elements.

Sequences were drawn and recorded ahead of time. During the experimental session, the

experimenter presented the subject with the chips as If he we-e actually drawing them from a

bookb. Each s'ibject dsaw the same sequences, although not in the same order. They were

renuLired to make an estimate after each draw of the sample; they were never told which was

the correct hypothesis, nor were they given any feedback about the accuracy of their estimates.

6.2. RESULTS

(For reasons that will be given later, the 60-40 data failed to yield any consistent resuts.

Therefore, the analyses to be presented here pertair only to estimates made in the 70-30 problem.)

The logarithmic odds-likelihood ratio form of Bayes's theorem is convcrzrint for data anal-

ysis since it makes optimal performance appear Linear. (This statement is fully explained under

Itesults" in Section 5.) Remnember that this form is-

log L =log P.- log Q
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where L represents the likelihood of the datum; R., the odds before observing ii' at datum; and

ni1. the odds after observing the datum. If we assume that the subjects have based their esti-
a

mates on the values of the variable s - f, then we can compute an inferred liklihood ratio foe

each subject by translating each posterior estimate into its logarithm and subtracting the log oi

the prior odds. Figures 22-25 are typical scatterplots of subjects' Inferred log-likelihood ratio.

The broken line is the beot-fitting regression line that passes through the origin. For all sub-

jects, the regression lines deviate markedly from the line representing perfectly Bayesian per-

formance. ra le XI summarizes both group and individual performances. In the table, in is the

TABLF - i. SLOPE CONSTANTS, CORRELATION COE FFICIENTS,
AND k VALUES FOR EACH SUBJECT AND GROUP

Group rn r k
PR MT i

1 .062 .829 .169
2 .094 .417 .254

Subject 3 .116 .92' .314
4 053 .836 .145
5 .084 .799 .228

VO .114 .665 .310

1 .083 _23 .225

2 .076 .8Z? .207
Subject 3 .222 .573 .603

4 .216 .847 .587
5 .117 .945 .318

ODI .127 .599 .345

1 .099 .796 .268
2 .113 .958 -307

Subje t 3 .064 .677 .173
4 .218 .842 1756
5 .281 .976 .764

slope -,f the regression line, r is t° measure of correlation between the s - f value and the

inferred log-likelihood ratio, and k ,s the constant by which one multiplies the slope of the

Bayes's theoretical line (log p/q) to obtain the subject's slope (m).

Table XI shows that response modes do affect performance. The odds groups are i..th

superior to the probability estimation group. Furthermore, the ODL group is slightly superior

to the VO group,

Another way to analyze these data ii to calculate the percentage of improvement in per-

formance shown by the two odds groups over the probability estimation group. Figure 26 tli;-

trates that by the third draw the VO subjects were 43 percewi more accurate than the PR subjects

and the ODL subjects were 60 percent more accurate As evidence accumuiates all subjects
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should increase their certainty about the trutt of a hypothesis; consequently, by the 20th draw the

differential performance of the groups was reduced. At this point, the VO and ODL groups were

only 22 and 24 percent more accurate in their estimates.

6.3. DISCUSSION

This study reconfirms the finding that subjects are conservative in situations involving

inference from fallible information, and are unable to extract from information all the justifia' .-e

certainty about the truth of a hypothesis. The roughly linear scatterplots in Figs. 22-24 are

characteristic of the majority of the subjects. Occasionally (Fig. 25) a subject will extib- great

variability in his estimates. In this case, the subject told the experimenter that he hd chainged

his strategy in the middle of the session. A simple model to describe such a subject's be -

havior log L' =klogL

where L* represents the subject's inferred likelihood ratio; the values of k are swn in Table X.

Subjects are Bayesian information processors, but they raise every tikebhx.d ratio to a

power less than one. Another way of describing this model is that subjects behave as totugh they

do not believe the experimenter's statement about the composition of the bookbags. PR subjects

behaved as if they thought the bags were of a 55-45 composition; VO, 56-44; and ODL, 57-43.

In short, subjects degrade the environment in a consistent way.

If subjects are hesitant to commit themselves to extreme estimates, then one would expect

the performance of those who estimate odds to be superior to that of those who estimate prob-

abilities, because probabilities have an upper limit of 1.00. Thus, as PR subjects inc-oease their

estimates they also reduce the upper range of responses remaining to them. Odds do nt have

this upper limit. Therefore, it is easier for the VO and ODL groups to make larger estimates

since they always have an unlimited range of estimates still available. Moreover, the visual

logarithmic display of odds further facilitates making large estimates.

Phillips found that paying subjects for accuracy tended to enhance their performance. The

res Ilts of this experiment suggest that subjects should estimate posterior odds rather than pos-

terior probabilities in an information-processing task. It would be convenient if the positive

effects of payoffs and -odds combined additively to influence total performance. That, however,

is an experimental question to be explored.

The data from the 60-40 sequences were not aralyzed for the following reasons: three out
ofe subjects in the VO group and four out of five in the ODL group gave as their odds estimates

the ratio between the nuriber of red chips and the number of blue chips presented to them.

Secondly, one subject in PR, two subjects in VO, and one subject in ODL. told the experimenter

that they felt corfused in the 60=40 case since they were still thinking of 70-30 bookbags, The

data, consequentiy, are ambiguous and difficult to int-pret.
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This study should be repeated, employing more than one Bernouilli probabitty fir the

bookbagso Since subjects behave as if the composition of the 70-30 bookbags were in the vicin-

ity of 55-45, it would be of interest to see if they are more nearly Bayesian information pro-

cessors when the actual bookbag composition is 55-45. A more extreme p value should be chosen

(0.85 or 0-9j in order to see if the differential performance of Lhe two 'Ads groups as maintained.

Asymmetric bookbags would further test various response modes- In any case, careful controis

should be exercised to insure that subjectE do not confuse an odds estimate with the sample

ratio of red chips to blue chips.
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Appendix A
INSTRUCTIONS TO SUBJECTS

Supp se ;ou are jr, the Air Force and stationed at one of th.eir radar detectioin stat iO -

Greenland These stations have large. nowerful radars that detect ma.% types of aerial

activity-- ICBM's, rockets, planes, clouds -- sometimes even birds. Al of these thigs may

show up an the display - the radar scope. Unfortunately by the time they are displayed they

may look alike - little spots of light on a dark background. Obviously, you have a problem if

you happen to have the job of sitting at one of these scopes and trying to figure out what are

enemy ICBM's and what are birds. Fortunately, the nroble.-r isn't hopeless. For instance,

in the example just given, the ICBM's versus the birds, ICBM spots would onviously move

faster than birds.

You're not here so we can train you to be a good radar operator in case you should ever

find yourself in Greenland: however, the series of experiments in which you are about to par-

ticipate does concern the problem of evaluation.

Although the information presented to you will be in simplified form, the basic elemerns

of the problem will be very similar to an actual situation. You will play the part of an evalua-

tor: it will be your job to decide imong four possible types of airborne activity f POINT TO

CONSOLE): enemy, friendly, meteor, or spoo.. Enemy activity may be of any sort, an ICBM

or rocket, for example. For the purpose of this experiment the specific typ of enemy threat

is nit imp-ortant. Friendly activity may also be of any sort. Meteors are self-explanatory.

A spoof is a diversionary or probing activity by the enemy, like tme cowboy hero who throws

his hat in the air to see what the bad gays will do about it.

You are sexed at the output display of a cor-nlex detection system. This detection sysem

covers a large, circular area that will e subdivided, for this problem, into sectors. This

area wUl be displayed here. (TURIN ON SECTOR DISPLAY-A SLIDE WITH NO IMPACT

POINTS.

Aerial activity is detec.ed by means of a powerfbl radar system. radar information on

detected targets is fed to a computer that determines the courses anid speeds of the targets

and the paths they are following. For this experimer, it will be assumed that the courses 4nd

speeds of the targets do not change once detection is made. Once the course-s and speeds and

the paths of the targete are determined. the computer determines where the targets will iar.-

These points of impact will be displayed on the consoLe withi a one of the sectors of this land
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area. Since we obviously don't really have a radar here, a 35-mm slide projector projects

this display from the back of the console. (DISPLAY SLIDE WITH SEVERAL IMPACT POINTS).

To simplify this experiment, we have not put any dimensions on this circle of land area; just

consider i, as a land mass on which points of imract are displayed. Remember, computed

impact points are being displayed here, not the radar targets themselves.

For each experiment you will be shown fifteen slides. In some experiments the number of

impact points will increase wi.h each successive slide. In others, the number of impact points

will change erratically with each successive presentation. For both of these types of experi-

ments, the impact points on one slide are all of the same type of activity. Thus, regardless of

whether there are three or thirteen impact points displayed here by one slide, they all repre-

sent the same type of activity, that Is, they are all enemy, or all friendly, or all meteors, or

all spoof, not a combination. However, the two types of experiments differ in this respect: in

the series where the number of impact points successively increases, the activity represented

on one slide is the same as for the previous slide. For the erratic series, each slide of the

fifteen may represent activity different from that on the previous slide.

To summarize then, there are two types of experiments in which you will be involved. In

one type you will first be shown one computed impact point (SHOW), then one more (SHOW), then

another (SHOW), and another (SHOW), and so on until fifteen presentations (SHOW) have been

made. The impact points on any one of these slides represent all the same activity and the

activit represented by each slide is the same as that on the previous slide. Thus each and

all of these slides just shown may have represented friendly activity. In the other type of

et.periment, first you may be shown, for example, three impact points (SHOW) representing a

single kind of activity. The next slide may have eleven impact points (SHOW), again all of the

same activity. However, the activity represented by this slide may be different from that of

the previous slide. Thus, the previous slide of three impact points may have represented enemy

activity, while this one represents meteors. Fifteen presentations will be made for this type

of experiment, also,

Before you begin each experiment, you will be told whether the displayed impact points

r6)resent changing activity or the same activity. Incidentally, slides in both experiments will

be of the type you see here, that is, white impact points on a black background. Are there any

questions on what is to be displayed?

It will be your problem to decide which of the four types of activity is bei,:g displayed by

the computed impact points. To help you in this evaluation, five pieces of information will be

given to you.

First, we will assume that through advance intelligence you have some estimation of how

likely an enemy attack may be. We will limit the experiment to three possible estimations:

66



l-in-10 chance of enemy attack, l-in-4 chance, or 2-in-3 chance. That is, you will be told that

there is either a l0' likelihood of enemy attack, or a 25q likelihood, or a 67q likelihood.

(SHOW BASE RATES, INSERT 25%). The second piece of information will give you an idea of

where an enemy impact point is likely to be. (INSERT ENEMY DISPLAY). This display shows,

in percentages and in pie diagrams, what probability there is that an enemy missile will land

in any one of the sectors. Here, the probability is highest in this 25% sector and lowest in *,his

2c sector. In other words, if the impact points are those of an enemy, they are more likely to

show up in the sectors with the higher numbers, or with the bigger pie slices. The third, fourth,

and fifth pieces of information are similar displays foi .iendly, meteor and spoof activity.

(INSERT THEM WHILE EXPLAINLiG). You will notice that there is a rough pattern to each

of these possible types of activity. (POINT TO PATTERNS). Enemy attack generally would

come from this direction; friendly activity would more likely be concentrated in this area;

meteors would probably be found here: spoof activity would tend to be in this area.

One important point should be mentioned now. Although the pie diagrams are shown near

the center of each sector, the percentage each represents applies evenly to the whole sector.

(POINT TO 5(7 SECTOR). In other words, this 5% value applies evenly to this whole sector.

Thus the dividing line between sectors represents a sharp change in likelihood; there is no

gradual shading from one likelihood to another. Remember, then, each sector is of constant

likelihood.

In summary, you will evaluate the type of activity represented by a set of impact points.

Five pieces of information will be available to use as you desire: the likelihood of enemy attack.

the likelihood that, if friendly activity is being observed, the zrnputed impact points would

appear in certain sectors; and similarly for meteors and spoofs. You will make an evaluation

after the display of each slide. Thus, for one experiment, you will mak. i.fteen evaluations.

(CHANGE TO BLANK SLIDE).

Your decisions will be made with the levers on the console, The numbers to the left of

each lever indicate your estimates of ihe likelihood that the impact points represent the cor-

responding type of activity. The lower end, near zero, represents very low likelihood, the

upper end, near one, represents very high likelihood. If you set the ENEMY lever to .6 (SET

LEVER' this means you estimate that there is a 60% probability, or likelihood, that the impact

points shown here represent enemy activity. (RETURN LEVER TO ZERO). After the first

slide has been displayed, make your evaluation of the type of target represented by the impact

point, or points. Indicate your probahility estimates by moving the levers to the appropriate

levels.

For instance, if you moved the levers to .6, .1, .25, and .05 (MOVE LEVERS ACCORDINGLY),

this would indicate that you believe that there is a 60%r probability that the impact points
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represent enemy activity, 10% probability they are friendly, 25% pr oability they are meteor,

and 5% probability they are spoof.

Let's look at what I've just said from a little different point of view. Before you start an

experiment, the best estimate we have of the probability of enemy attack is this advance intel-

ligence statement. All we know is that there Is a 25% probability that enemy missiles will

appear. Additionally, this display (POINT TO ENEMY DISPLAY) tells us that if the enemy

-tacks, his missiles are likely to fall in this way, and similarly for the other three types of

activity.

So you see, we're dealing with three types of probability estimates. One is given before

the experiment starts: it is a statement of what to expect. Another, shown on these cards,

(POINT TO P(DIH) DISPLAYS), says 'if it happens, the impact points are likely to &.tl like

this, (POINT TO ENEMY DISPLAY), and if it doesn't happen, the impact points a4ft-ely to fdl

like this (POINT TO ANY OTHER DISPLAY).- And the third is your estnadte of wh:, i a

actually happening.

Now, are there any questions so far?

The console is operated by this white button. When the green light is lighted, pushing the

button will cause the display here to be revealed. I have already done this. Then, you make

your evaluation and set the levers. When you are finished push the button- go ahead, try it.

The red light comes on, indicating that the lever settings are being recorded or. a s1perial re-

corder behind the console. You mustn't move the levers while the red light is an. Whein the

lever settings have been recorded, the yellow light comes on. This is a signal tt you to reset

the levers to zero. Try it. When they are all reset, the green light c'es an, If the yellow

light stays on, check the position of all four of these levers again, as well as these craa two.

The zero point P- quite sensitive, and sometimes the levers are jarred of, this position.

As soon as the green light comes on, you can push the button again lo reveal the r ,ew i- -

pact-point display. Now try the sequence for yourself. Make a mieaningless evaluation- (WHEN

GREEN LIGHT COMES ON, STOP SUBJECT). Notice that if you accidentally mov- ne of the

levers off the zero position before a new slide comes on, the green light wIll blink. Resetting

the offending lever will cure the situation.

Finally, you don't have to count the number of slides in the experibner*. The screen will

show all black when you are finished. (TURN ON BLANK SLI[, EX. Whe. this happenas let me

know. I'll be in the next room. There is no time limit on any of these eVermments, but you

should, after running through a few sets, complete a set of flfteer slides in l.ess than fiteen

minutes.

Now, are there any questions on any aspect of the experiment? For this fVrst set, PI1 stay

here with you to answer any other questions which may come up as you wci k the console.
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Appendix .4Z~

TiIs ap9endV eut, narize.6 pailicatOn3 arad 1; ~ %,e ~~ ~nrc AF~ l9(bC4~.~

it onfne~i~~1~ ton'aliatims ~thd-,e 4,ppared in o'rnals or as tettuzic-. ' eIa' ~

ports, or that t r --. ccpted and aii n scheduled to appilar ti. soliu stich form, plus nPh.

tfesis. In the ~or ~C.ntract AF !W-M-41-Z aproxiinwey 25Sene repojrting L'Qfcact

reseer&. were given at Yariuxia fct-mai and i.riformra% weetingn. Altbougb the more formal

slpectbs quz.ikil ac. publicatints also, no attempx its mzAd In this report to list t4-m. 71w tech -

nicat cen'v, t of every speech narallels &cone written. technical documentary roport.

Th-is Limt Of publications is an importarat eomplement of O3c Presetit report. vince zno ;.t: _pt t

has beer.n made in, the fiiL I report itself ta repeat aiready-pulis,'ed Wdao. The body f _,,he filai

report is devoted only to the presentation of minaerials not yet publIM~id.

1. Fdwards, W., "Dfnanic lwciion Theory and Probabilistic Inforinatlon PrtOcessing,'
Suman Factors. 19f' , 4, %i--73-

This paper is essentily a program review as of 1961. T1he devejopwent of a dynamic

decinion theory will be central to the imnpending rapid expansion of research on hujman

decision processes, fr. a taxonoir, of six kinds of decision problems, five require a

dynamic theory in whici) the decision maker is assumed to make a sequence of decisions,

bas.h-g decision n -i- on. what he learned from decision n and its curnsequences. -Re-

seartih in, progress on information seeking, intuitive statistics, sequential prediction,.

and Bayesian information processing is reviewed to illustrate the -kind of work needed.

The releiance of mathematical developments in dynamic programming and Bayesian

statistics to dynamic decision theory is examined. A man-computer system for proba-

bilistic , macessing of fallible military information is discu. sed in some detail as an

application of these ideas and as a setting and motivator for future research on human

mnformatinn processing and decision making.

2.Edwards, W., "Men and Computers," in R. M. CGagne (Ed.), Psychological Principles in
Systemns Dve L,-pment, Holt, Rinehart and Winston, 1962, 75-113.

This expository chapter explains what a computer is Pnzi how L. works, discusses pro-

gramming and programming languages, reviews the technology of the man-computer

interface, and illustrates real-time, on-line use of computers in a hypothetical informa-

tin-processing system,
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3- Hays, W. L. -0n Laitice Mcodels for Psychologictal Sealing," Paychometrika, jr. pret,s.

4. Edwards, W.. Probabilistic Tnformation Ptocessr1t n C .-ruand jcd Cetirol Fysims, ESK.
TDR-.62-.A5. 11T Report No7 37B012 Uni'rsity i liiuefcec
and Technology, Ann Arbor, 1963, 34 pp.

This is the basic cicumei-t about Pip. 11t djscujses the diagnastic P, tion in command

,ni! 7otrd Vtenis. afid presents Olayes's theorem, texanives Its roie In the desigi
Of C, ri~~';tcr1ssestn t bilstkcally process fallible Information.

After summ arLi%.ig exsting relavant experimentation, the rzoport pounts out amajor un-

soecweIal problerne anid ouftnes% a program ol i'esearch for s:-'Ving somne of

1;Eawardz, AX, Lindmnan, H., and Sgvage, L. J., '"Bayesian Siatistical Inference for Psvchu-
iogical lfea~arO,- Pavehoi. 1e. 963, 70, 193-242.

D. veqtai imtifitics. i currently controver ,iai viewpoitit concerning statistica.1 Infer-

g s iased or, 4 deNiU,-.rt c,. proNiiit) particular w-4asure If the opinions ')f

id~i~y st~iz noj~~~ i: tcil~~~in~is moaffication (f theso o-tnilor' n the

Iii~ o e~inc.awi Sayeie'-.- K-1 hw ?n.ch mo bai.t.7hu 0 Lw

in~de- The tools of Bayesian statistxC ctd i' thi!;ry u; q.,-e11!c distriznitone anid

teprinciple of stable estimation, which specitkes ww act'aid prior z intions -ay be

2atisfactorily approximated by uniform distributic,,. A common featurce ;of tny

.kasslral significance tests is that a sharp null hypothernz -0; coipa~ed with a eltf S

alternati-v* hypothesi.s. Often evidence that, for a Bayesian s'ta tici-an, strikingly

supports the null hypothesis leads to rejection of that hypottiesis by sfad:rd c'.'agscai

procedures- The likelihood pnincipit emphasized in Bayesian statistics implies, among

other things, that the rules governing termination of data collection are irreltvant to

dat*a interpretaticon. It is entirely appropriate to collect data until a point has bee-n

prover. or disp'roven, or until the data collector runs cut of time, money. or patienc',.

6., Edwards, W., "Pro-bab'Itic Information Procesaing by Men, Machines and Man-Machine
Systeins," in Proceesof the XV11th Internationalq Congress of Psychology (washing-
ton, August 23. 1963), North Holland Pub. Co., Amsterdam, 19U34.

This is a speech c-overing much the same materials as the immediately folJowittg refer-

ence; a three-page abstract of the speech will be published in the proceedings of the

Congress.

7e Edwards, W., Phillips; L. D-, "Man as Transducer for Probabilities in Dayesian Command
and Control Systems," in G. L. Bryan and M. W. Shelly (Eda)., Hun'. m an -n-eni.5 and
Optimality, Wiley &i Sons, New York, 1904.

This chapter, a wore recent discussion of PIP, presents a fairly speciffwl pcopsal for

the design of a class of systems which, by using human judgment in a rathe r tgiconveo -

tioniti way, should be able to make more nearly optimal ciecisions than do present
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systens ink ,dezd foa the same purpose. It supports the prpal by reporting at. experi-

ment whien shows 'tat men required t-W draw conclusion: from f4_bie data do it prorly

enough t- leave room for vast improvement.

. £dwards, W., -The Denign and Evaiuat.n of Probabzistic Information Pvrocesnig System-s,
Proceedings of the Ftfth Nationai Symposium on Human Facors in Electronics. May 5-6,
1Gd4, San Diego, California. Professional Technical Group on Mun racors in Elec-
trofics, vistitute of Electrical :ind Electronics Engineers, 1964, pp. 169-181. 1

A major task o a command and control system often is to determine what is happening

in its environment. Conclusive information is usually lacking, so such systems n.'zst

attempt to synthesize thousands of items of info., mation, each individually worth little.

into an accurate picture or diagnosis of the relevant environment. Current systems

(e.g., the NORAD Combat Operations Center) use sophisticated display and information

retrieval devices, but leave to unaided human judgment the task of synthesis followed

by decision.
The ideas of Bayesian statistics offer the basis for a new technology of diagnostic iror-

mation processing. In the Bayesian view, probabilities are orderly or consistent opin-

ions, and Bayes's theorem of probability theory is the optimal rule for revising opinion

on the basis of information. The crucial input to Bayes's theorem is the probability,

for each datum to be processed and for each hypothesis of interest, that the datum

would occur if the hypothesis were true Research suggests that experts can es._nate

such probabilities, or numbers that can be translated into them, with fair accuracy.

Once such probabilities art: available, a desk calculator or computer can easily synthe-

size them into a posterior distribution that gives the current probability of each hypoth-

esis of interest on the basis of all the available data.

Details of the design of such a probabilistic information processing system (PIP) are

presented. Laboratory research completed and in progress is reviewed, along with

simulation studies intended to compare PIPS with traditional information processing

systems in complex and realistic environments.

9. Edwards, W., " Optimal Strategies for Seeking Information: Mce-al- fvr Stats-tics. Choice
Reaction Times and Human Information Processing." J. Math. Psych., 1965,
in press.

Models for optional stopping in statistics are also normative models :qr a variety of

tasks in which aubjects may purchase risk-reducing information before making a de-

cision. This paper develops a Bayesian model for optional stoping in the continuous

case with two hypotheses; it takes exphcit account of cost of information, values of the

possible outcomes of the final decision, and prior probabilities of the hypotheses. Ex-

tensi--e tables of rm4zerical solutions to the mtodel's transcendental equations are pro-

vided.
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Two models for choice reaction time are derived. One is based on the normality

assumptions of signal detectability theory; the other is nonparametric. They are for-

mally identical; in this case the normality assumptions are superfluous. The non-

parametric model makes atrong predictions about times and errors; it has only one

quantity not directly obeer- able.

A second example uses the aonparametric model to design and predict results of a

binomial information-purchase experiment.

10. Slovic, S. P., Value as a Determiner of Subjective Probability . Unpublished doctoral dis-

sertation. University of Michigan, Ann Arbor, 1964.

The purpose of this study was to explore the manner in which judged probabilities of

events are influenced by the desirablity of these events.

Subjects were shown five bags, each containing 100 poker chips They were *olJ that

one bag contained 30 red ctps, one contained 40, one 50, one 60, and one 70; the re-

maining chips in each bag were biue. Subjects could not tell which bag was which. One

of the bags was selected by the subjects and the experimenter proceeded to draw a

sample of 50 chips from it, one at a time, with replacement. Subjects obeerved the

sample and, at various times, m'ade direct probability estimates for each of the five

possible compositions of the bag. They were told that a monetary payoff would be given

to them, regardless of their probability estimates, depending on what the. true contents

happened to be. IThe table below shows the assignment of payoffs to bags.

True Composition of Bag

30 Red 40 Red 50 Red 60 Red 70 Red

Group ! and Group lR $ 0 $ 0 $ 0 $ 0 S 0
Group I and Group !lR lose $1 lose $5 $ 0 win $5 win $1
Group 11 and Group M1 R lose $5 lose $1 $ 0 win $1 win $5
Group f1, lose $1 lose $5 $ 0 win $5 win $1

Groups !, Is, Il, and w constituted Experiment L Group IL. differed from Group 11

by ha-,ing received i brief warning not to allow the values to bias their estimates. None

of these groups were rewarded for the accuracy of their probability estimates. Groups

i'Ri R1 and M R constituted Experiment U. These groups were rewarded for accurate

estimation. Groups I and IR were control groups for whom all hypotheses had neutral

desirabiiiiv. A ,_rtri device enabled the experimenter to draw the same sample of chips

for every gr-up.

The results indicated that the value of an event does affect judgments about its proba-

biiitv However, the nature of value biases is rather complicated. It varies systematic-

ally among subjects and among trials. Some subjects in the payoff groups were optimis-

tic. They consistently gave higher probabilities to the desired everIts and lower
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probabilitlea to the undesired events than did subjects in the cortrol groups. Others

were generally pessimistic. Despite the consistency of individual differences, value

groups showed more optlimlsm (or pessimism) at some times during the sampling than

at others. These d:fferences among trials were similar in both experiments.

The reward for accuracy did not reduce value biases. Some subjects in Groups

and 11 overestimated the probability of the most undesired event so that, if it did

occur, the larger reward for accuracy would reduce their loss.

Bayes's theorem provides a normative model for probability estimation in this task.

Probabilities given by subjects in the control groups were closer to Ba~esian. proba-

bilities than were those given by subjects for whvo)m payoffs were associated with the

events. The inferiority shown by members of v-alue groups did not diminish as they

accumulated more information about the bag, and was not reduced by rewards for

accuracy,

The brief warning given to Group H w effectively reduced value biases. These subjects

behaved more like those in Group I than like those in Groups U and Ill.
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