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SUMMARY

An infinte Markov process with a finite number of states
1s studied in which the transition probabllities for each state
range independently over sets which are either finite or are
convex polyhedra. A flnite computational procedure is ziven
for choosinc those transition probabilities which minimize ap-

propriate functions of the resulting equilibrium probabllities.
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1. INTRODUCTION

Recent studies, cited below, have indicated considerable
interest in optimization problems formulable as problems of
choosing a set of distributions, constituting the transition
probabilities of a finite Markov process, in such a way as to
minimize certain "costs" associated with the process.

The following inventory problem is a typical example of
this class: Let the n attainable levels c¢f the inventory of
an item constitute the n states of a Markov process. Transi-
tion from one state to another will occur at the end of each
of an infinite sequence of time periods. Owing to the uncertain
nature of supply and demand for the item, whose distributions
only are assumed known, the effect of a given inventory policy
must be described as a distribution. For any inventory policy
the probability p1J of transition from state 1 ¢to state J
in one time period is known, as well as the cost c1J , depen-
dent on the policy, which will be incurred if that transition
is made. ''nder any policy the time-series of inventory levels
constitutes a Markov process described by jhe given probabili-
ties. When an initial state for the first period has been
given, the long-run probabilities Eij are then determined.

Intuitively, is the probability that, at a typical time

51.1
period in the indefinite future, the transition from state 1
to state J will take place. The "long-rsnge expected cost"

of using the particular policy is then defined as zi.J Sy i“ "
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The computational problem is thei. that of minimizing this ex-
pected cost over all availlable inventory policies.

The formulation of such a problem as a linear programming
problem has been done by Manne [5], d'Epenoux (3], and Oliver
[6] for problems in which it i1s possible to choose the transi-
tion probabilities pj_.1 , for each 1 separately, as one of
a given finite set of distributions. The same assumption on
the available distributions is made by Howard [4] in his
"dynamic programming" treatment of this class of problem. The
observation, however, that the problem formulated as a linear
progran can be efficiently attacked by means of a speclalization
of the decomposition algorithm for linear programming [2], makes
it possible to broaden considerably the class of problems that
can be handled, by permitting other descriptions of the sets
of avallable alternatives. In the sequel, two extreme cases
are considered: *he case described above, on the one hand; and,
on the other, the case in which the distributions which may be
used are restricted only by being required to satisfy certain
linear inequalities. 3ince these two extreme cases are handled
by essentially the same method, intermediate cases, which are
of practical interest, can readily be treated by the same tech-

nique,.
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2. THE PROBLEM

Throughout this paper n 1is a fixed integer. By distri-
bution is meant an n-vector x = (x,..,x,) such that x, 50
(all 1) and z:xi « 1 .* A Markov process is defined by n
distridbutions P, = (pil""pin) for 1 =«1,..,n , wnere Py
is the probability of transition from state 1 of the process
to state J .

In the problem studied here, a particular Markov process
is defined by a choice of distributions from certain sets. In
this section and the next, these sets will be assumed finite:

For each 1 =1,..,n , let 31 be a finite set of distri-
butions.

In addition, a "cost" ci(P) i1s associated with each distribu=-
tion P in S1 :

For each 1 =1,..,n , let cy bea real-valued function
on 8, .
b §

Por P in 3, , CI(P) 1s thought of as a fee to be paid for
the use of the distribution P when passing through state 1 .
The particular manner in which S, and c¢, are described
is not of great importance in the discussion which follows, but
it does play an important role in the computational algorithm
of Sections 4 and 5. The more extensive discussion of Section
5 can be anticipated by the observation that the algorithm is
aimed at handling either of the following two extremes: (a)

R J
_“The symbol ") " 1s used throughout as an abbreviation of
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Sy is given as an arbitrary finite set, and cy, as an arbi-
trary function on Sy % (b) A finite set of linear inequali-
ties in n+l variables is given, defining an n+l-dimensional
polyhedron in such a way that the first n coordinates of any
point of this polyhedron form a distribution. The first n
coordinates of any extreme point of this polyhedron constitute
a member P of S, , with ci(P) defined as the minimal

n+1St

coordinate of all extreme points whose first n coor-
dinates constitute P .*

If now particular P1 in S, are chosen for each 1 ,
ther: a Markov process is defined. Let x be an equilibrium
distribution for this process -- that is, a distribution satis-
fying relestion (2.2) below. The "expected cost" of the process

per stage, when the equilibrium x obtains, is then
-

The Markov programming problem is that of choosing the P1 in
such a way that this expected cost 1s minimized.

Formally, the problem 1is:

Determine P, in 3, (1 =1,..,n) such that (2.1) 1s

minimized for all x such that

It will be seen from the discussion of case (b) in Sec-
tion 5 that the restriction of S to extreme points of the
polyhedron 1s unnecessary, since &ven if all points were ad-
mitted, only extreme points would appear in the solution of
the problem. This restriction 1s made because of the conven-
ience of assuming S1 to be finite.
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It will be convenient for the sequel to restate this prob-
lem in such a way that the equations (2.2) have constaat right-

hand sides.

Por each 1 , let '1‘1 be the set of all n-vectors

(2.3) Q1 - (p113'°3911'1:'-991n)

for which (pil""”pin) =P, 1sin S, , and define Ek on
T, by Ei (Qi) -cy (Pi) , using the correspondence given. The

problem may then be stated:
Determine Q, 1in T, (1«1,..,n) such that
(2.4) L3, (Q) x
is minimized for all x such that
(2.5) X, >0, insl, and inQi-O.

It i1s clear that any solution x;Pi...,Pn of the problem stated

by (2.1) and (2.2) gives a solution X;Qqs++,Q, of the problem

(2.4, 2.5), and vice versa. /



pP-1842

3. FORMULATION AS A LINEAR PROGRAMMING PROBLEM

The problem (2.4, 2.5) will be solved with the devices
developed for the "decomposition" of linear programming prob-
lems of special structure [2], speclalized to the case at hand.
The central idea of this approach 1is the formulation of the
problem to be solved as a linear programming problem who:se data
consist primarily of the coordinates of points of the set T, .
This will be done in this section. For each 1 , let the K,
points of '1‘1 be Qg for k-l,..,l(i . fs an abbreviation,
let Sy = 61 (Q:) for all 1,k . Consider the linear program-
ming problem g

Minimize

X
(3.1) Ezkil Cap Vig

under the constraints

K K "

Theorem 1 below will show that this problem 1s equivalent
to the problem of the previous section. In general, replacinr
a discrete problem by a continuous problem in this manner can
lead to a solution that is not discrete, Lut the Lemma below
shows that for the problem studied here the solution of the
continuous problem 1is itself sufficlently "discrete”" to ensure
equivalence: PFor each 1 , only a single Qi is actually in-
velved in the solution of the problem (3.1, 3.2).
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LEMMA: There is a solution of the problem (3.1, 3.2) with
the property that for each 1 there is at most one k for
which Ve 2> 0.

Proof: The coefficients and right-hand side of the linear
programming problem (3.1, 3.2) are displayed in the table below,
headed by their variables Yep » where pfj denotes the appro-

priate component of the distribution P corresponding to Qg .

Table 1
yll yle ¥21 ¥22 LN NS eeoe oee
1 1 1 1 eee sese ese 1
1 2 1 2
911-1 p11'1 P21 921 see eoe seoe 0
1l 2 ;4 2
(3'3) 912 912 L) 922'1 922-1 eee es e see O
2 1 2
p1n p12 pen pen oo e eee eee 0

It 1s a basic property of linear programming problems [1]
that, when a solution exists, there is a solution having exactly
-- 3ay r -- positive components for which the suLmatrix con-
sisting of those columns of the coefficient matrix associated
with the positive components has rank r . Por this problem,
denote by B the (n + 1) by r submatrix of (3.3) given by
that property; the associated solution will be the one whose

existence the lemma asserts. (As a matter of fact, the simplex
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method solution of this linear programming problem will yield
a solution of Just this type.)

Let s Dbe the number of rows of B 4in which may pe found
an entry of the form pfj-l « Excluding the first row, the
other n - 8 rows have only non-negative entries; since their
right-hand sides are zero, and their variables Yik positive,
these rows must in fact vanish, and B has just s + 1 non-
vanishing rows. The non-vanishing rows are, however, linearly
dependent (the sum of all rows but the first is zero), whence
the rank of B 1s at most s , that is, 8 > r . Since B
has Just r columns, it follows that at most one entry of the
form pfd-l can be found on any row of B , s0 that at most
one column of (3.3) can be found in B for J given, which
proves the lemma.

Theorem: The programming problems (2.4, 2.5) and (3.1,
3.2) are equivalent, their solutions being relatec in this way:

Given y,, solving (3.1, 3.2) and satisfying the conclu-

sion of the lemma, let for each 1

Xy = Vi

o oK where Yy, > 0 for some k ,
1 i §
xi = 0
if Yip = O for all k.
Q1 arbitrary in 31

On the other hand, given x, , Q solving (2.4, 2.5), let

k
fxi for k such that Q; =Q, ,

y =
o 0 otherwise ,

Proof: Obvious.



P-18%2

4. COMPUTATIONAL ALGORITHM -- THE MASTER PROBLEM

The linear programming problem formulated in the last sec-
tion has only n+l equations, but 4t has i:xi variables, a
number which may be very large, and not even known for problems
whose data are given implicitly. The revised simplex method
[1] 1s particularly advantageous for problems having many more
variables than constraints. The decomposition algorithm uses
this efficlency of the revised simplex method by clearly sepa-
rating the considerations involving the constraints alone from
those connected with the handling of the variables. That part
of the problem involving the constraints is called the "master
problem," and its handling is set forth in this section. That
part of the problem involving the variables, called the "sub-
problem," 1s dealt with in the next section. It will be seen
that the work of treating the master problem consists of little
more than the application of the revised simplex method to the
Markov programming problem as formulated in Section 3. The
géneral iterative step is given below, fgllowed by the proce-
dures for initiating the iterative process and for passing from
the determination of an initial feasible point (Phase One) to
the determination of the solution of the problem (Phase Two).
(The phenomenon of degeneracy plays the same role in this algo-
rithm as in any linear programming problem, and it will be
supposed that standard metheds [1] may be relied upon when

necessary.)
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THE ITERATIVE STEP

At any step in the course of the solution of the problen
(3.1, 3.2) by the revised simplex method, there will be at hand
some n+l column vectors Gl,..,ﬁn+1 (of length n+l) con-
stituting a "feasible basis"; that is, they are linearly inde-
pendent, and the right-hand side of the equations (3.3) may be
expressed as a non-negative linear combination of them., (The
weights in this linear combination, which of course constitute
a solution of equations similar to (3.3) deriving their coef-
ficients from the Q , are called collectively a "basic feasi-
ble point.")

Let the "cost” GT! be associated with the column 61 "

"

for 1=1,..,n+l . The "prices," assumed known, associated with
this basis are defined to be the components of the n+l-vector
T = (71""Tn+1) satisfying the relationships e
(1=1,..,n+1) .

One iteration of the simplex method consists of the fol-
lowing steps:

(1) Pind a colunmn Q of the matrix (3.3) which, with its

assoclated cost c¢ , satisfies the relation
(4.1) C'wQ<0

(commonly the column for which ¢ - 7@ 1is miniral 1is chosen),
This is the only point in the revised simplex method at which
all the columns -- or, what is the same thing, all the varia-

bles == in the problem come into play. This step forms the

"subproblem," whose study 1s deferred to Section 5.
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(11) If no column satisfying (4.1) can be found, then the
current basis is "optimal," and the solutions of the equations
(3.3) solve the linear programming problem.

(111) Otherwise, add the column found to the current
basis, and remove one column in such a way (given by the rules
of the simplex method) that the remainder still forms a feasible

basis; calculate the new prices, and begin again.

PHASE ONE

The algorithm can be started with precisely the same de-
vice, called Phase One, used for the general linear programming
problem. This device consists in augmenting the problem with
m+l "artificial" variables in terms of which an initial feasible
basis, and the prices assoclated with the corresponding initial
feasible basis, are readily given. The algorithm can then be
applied to the problem of removing the artificial variables.
After this has been done, the required starting conditions for
the ordinary application of the algorithm are automatically met.

For 1i=1,..,n+4l : 1let yqg bve a non-negative variable;

th

let I1 be the 1 column of the n+l-order identity matrix;

and let Cy = 1 be the cost assoclated with the variable Yy

For this phase, replace all the costs Cyx of the original
problem with zeroes.

nel 2% the initial feasible basis,
n+l
employ the iterative step above until the linear form 2: ¥y
i=l
has been minimized. (Note that the initial feasible point is

Designating 11,..,1
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(yl,...yn+1) = (1,0,..,0) and that the initial prices are
r=(1,1,..,1) .)

The above process will reduce the form E:n Yy o and
hence each ¥y separately, to zero. (If it didsnot, then the
equations (3.2) would have no solution, which is impossible.)
Owing to the linear dependence of the equations (3.2), some of
the starting colurmns I1 will remain in the feasible basis at
the end of Phase One; this can be shown to cause no difficulty

in the ensuing process [1].

PHASE TWO

When Phase One 1s finished, restore the deleted costs
Sk to the columns Q? , using these costs from now on in the
determination of the prices w . Repeat the itera“ive step
until 1t terminates in its part (1i).

At termination, assoclated with each Q? in the {inal
feasible basis 1is a component of the "feasible point," the
weight given Q? in exprecssing the rignt-hard side of the
equations as a linear combinatlion of the colums of the basis.
For 4 =1,..,n , according to the Theorem of 3Section 3, there

K

can be no more than one Qi in T1 in the basis having posi-

tive welght; thus let

“weight for Q? , 1f positive,

Xy =
LO , otherwlse,

The resulting (xl,..,xn) is the solution of the problem (2.2).
/
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5. THE SUBPROBLEM AND PROOF OF TERMINATION

The detailed discussion of part (1) of the iterative step
of Section 4, the "pricing out" operation in the ordinary re-
vised simplex method, was deferred to this section. Given the
quantities w , it constitutes the problem of determining some

column Q and its associated cost c¢ for which
(5.1) c -m<O0,

where Q may come from any of the sets Ti « How this 1is done
depends on the nature of the description of, the original sets
S1 from which the '1‘1 were obtained. Evidently the problem
of satisfying (5.1) from among the union of all the T, may

th

be "decomposed" into n problems, the 1 one of which, for

i=1,..,n , 1s that of satisfying (5.1) for Q 4in T If

g
any of these "subproblems" can be solved, then the stated prob-
lem has been solved.

For each 1 = 1,..,n , one of the two "extreme" cases
mentioned in Section 2 may obtain. (Some "intermediate" case
might also be considered, but this will not be done here.)

(a) S, 1s glven directly as a finite set of distribu-
tions, a cost ci(P) being associated with each member P of
S1 .

(b) There 15 given a finite set of linear relations

(5.2) gJ(z) 50 5 3= Lysash ,
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in the n+4l variables (21,..,zn+1) = z , such that i z
satisfies (5.2), then (zl...,zn) 1s a distribution; S, 1s
defined to be the set of all P = (zl...,zn) such that for
some Zz ., , Z= (P;zn+1) is an extreme point of the set of
all 2z satisfying (5.2); and for P 1n Sy ci(P) is de=

fined to be the smallest value of 2z for which (P;Zn+l)

n+l
is such an extreme point. (The index 1 has been omitted above;
of course, the relations (5.2) may be diflerent for each 1 , or
even absent.)

In the case (a), there is not much to be said. Phrased,
via the definition (2.3), in terms of S, , relation (5.1) urges

the selection of P 1in S1 for which

(5.3) cy(P) - 7P + Ty < s I

Such a P will yield through (2.3) a column Q satisfying
(5.1).

Case (b) is more interesting, in view of the fact that the
extreme points of the polyhedron defined by (5.2) have not been
assumed to be avallable in advance. Replacing P and ci(P)

in (5.3) by their definitions in this case, it 1s desired to

choose z = (2y,..,Z,,4) under the constraints (5.2) in such
a way that

n
(5.4) Zoal " E:J-I Tz 4y <0 .

This 1s nearly a linear programming problem; if the customary
procedure for the simplex method, that of making the left-hand
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side of (5.3) as small as possible, 1s followed, then the task

1s precisely a linear programnming problem: under the constralnts
(5.2), minimize the left-hard side of (5.4). Having performed
this minimization, if the result is not negative, it 1s of no
interest; but if it is negative, then the column Q = (zl,..,
zi-l...,zn) and its cost ¢Cc = Z41 constructed from the solu-
tion of the problem satisfy equation (5.1). Furthermore, Q

will be an extreme point of the polyhedron.

The complete solution of the subproblem then goes as fol-
lows: PFor each 1el,..,n , attempt to satisfy (5.1) from Ty =-
or, equivalently, attempt to satisfy (5.3), or (5.4), from Sy -
If this can be done for any 1 , part (1) of the iterative step
of Section 4 can be accomplished. (It is indifferent to the
fact of the convergence of procedure, although probably not to
its rate, whether or not the 1 for which (5.1) is minimized
is chosen.) 1If, on the other hand, (5.1) cannot be accomplished
for any 1 , then part (ii) of the iterative step obtains, and
the procedure has terminated.

It remains only to show that the algorithm is finite. This
follows immediately, however, from the finiteness of the simplex
algorithm for linear programming [1]; because, as described in
Section 4, this algorithm is precisely the simplex method ap-
plied to the linear programming problem (3.1, 3.2). Whether
the sets T, of columns are described in the manner (a) or (b)

above, they are finite in number, and the proof is complete.
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