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ABSTRACT 

The problem of estimating the angular frequency in a single trigonometric re- 

gression function, observed in the presence of correlated noise, can be approached 

by the method of Least Squares or procedures based on the theory of empirical 

spectral analysis.   For real time applications,  such methods generally are prohibi- 

tively time consuming. 

We introduce two very simple and consistent frequency estimates which use at 

most the first three sample covariances, and derive and compare their large sample 

distributions.   One interesting by-product of our calculations is a precise analysis of 

the asymptotic behavior of the (inconsistent) technique known in numerical analysis 

as Prony's method. 
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1.     INTRODUCTION AND SUMMARY 

Many statistical problems connected with re-entry physics require that we 

estimate the angular frequency in a single trigonometric regression function when the 

phase and amplitude are unknown.   When confronted with the task of designing estima- 

tion procedures which must keep up with data arriving in real time, the computational 

aspect obviously becomes all important.   In many problems of current physical 

interest, an optimum method from the point of view of statistical efficiency (a classical 

goal of theoretical statistics) leads to calculations which are prohibitively time 

consuming. 

Let us suppose we have observations 

zt = pcos(0t- <p) +vt (t=l,2, ...,n), (1.1) 

where  {v } is some zero mean stationary noise process and 0 < 9 < ir  is to be 

estimated.   Consider the simplest (unrealistic) situation in which <p = 0 and  p f 0 is 
2 

known.   When the errors are independent normal variates with variance a , the 

Maximum Likelihood estimate of the parameter value £ =cos 9  is a solution of the 

equation 

82ATt'({)==pU2n«> (1'2) 

t=l 

where prime denotes differentiation with respect to |, and T (4) = cos no and 

U    .(£) = sin nö/sin 6 are the first and second kind Tchebichev polynomials in £  of 

degree n and n-1 respectively.   If there is a solution £=|(z ,...,z ) of Eq.(1.2) 
*> -1 ~ n / 

which consistently estimates |  asn-», then  0 = cos     £   will attain the Cramer-Rao 

lower bound: 

£(eV*   *L-L. (1.3) 
2      3 

P      n 



The price paid for this rate of convergence would be a difficult and lengthy 

computational job.   Indeed, £  is a solution of a polynomial of degree 2n-l with the 

first n coefficients depending on the data.   In many applications it is sheer folly to 

consider solving such a numerical problem in real time.   The difficulty is of course 

compounded when <p and p are unknown, since then we would have to locate the 

maximum   of a highly nonlinear function of three variables.   (The right side of 

Eq. (1.3) would be increased by a factor of 4, independent of whether or not p is 

known.) 

A computationally more feasible method for estimating 0 can be based on the 

theory of empirical spectral analysis (see Parzen, Ref. [ 9]).. Let the noise inEq.(l.l) now be a 

weakly stationary process with summable covariances  a(k) = £ v v    .   . .   For 

indices  k = 0,±1,±2,... ,±(n-l), define sample covariances 

n-|k| 

t=l 

The time series {z }  is called asymptotically stationary because 

r 12 
lim£C (k) =   2 P coskfl + o-(k) (1.5) 

for each fixed k.   The right side is the Stieltjes cosine transform of a bounded 
2 

nondecreasing function having a discontinuity of magnitude  \p    at the frequency   0. 

By transforming m=o(^) of the covariances in Eq. (1. 4) with suitable weights \, 

which depend on the truncation point m, one obtains a sample function of frequency 

S*(w).   In large samples this will have a mean value approximately equal to  f(co) if 
2 2 2 

cü f 0, but at  0 equal to  A p m + f(0) where A    is a known constant.   One expects, 

therefore, the graph of S*( •) to have a dominant peak at w = 0 for large truncation 

points.   The frequency, say 0*, at which S*( •) achieves its largest value is a 

consistent estimate of the unknown 0. 

One can approximate  0* without going through the time consuming operations 



involved in calculating S*(&) over a grid of CJ values.    (One would want to do so, of 

course, when there is interest in the overall shape of the spectrum.)   This is 

accomplished by self-convolving the even sequence AC (k) = ^n(k) over |k| ^    m 
K  n u 

to obtain a new sequence ^.(k), normalized so that ^.(0) = 1, which is nonzero for 

|k| ^ 2m.   Replacing ^n(*) by #.(•)> we generate a sequence ^„(k) for |k| ^ 4m.   In 

a recursive fashion, therefore, we arrive at ip (0) = 1, ip (1), ip (2),..., ip (K) after J 

iterations.   By a proper choice of K = o(2J) , the number of axis crossings of these 

K+l numbers (excluding a certain small band around the zero value of the ordinate) , 

after division by K, yields a ratio which converges to 0*/TT as J — °°.(Cf. Gardner, Ref. [4] .) 

Although this method is considerably faster than Least Squares, and correspondingly 

statistically less accurate, it is still in essence a (large) fixed sample size procedure. 

Such methods are generally not appropriate for real time estimation.    What is needed 

are techniques which are recursive in the sample size n,   so that the estimate can 

be rapidly updated as each new observation arrives using only small finite-memory 

computations.   Albert and   Gardner Ref. [ 1]      introduce and analyze a class of 

estimates of a parameter in certain nonlinear regression problems with this point of 

view in mind.   It is appropriate that we briefly discuss these procedures here. Suppose 

at time t wc observe 

zt = Ft(0) + vt (t=l,2,...) 

where the sequence F.( •),FJ .),...   is prescribed.   A recursively computed 

^-estimate (suggested by the recursive formula for the Least Squares estimate in the 

linear case) is 

n       n-1     n    n     n   n-l ..   ,v (1.6) 

(n=l, 2,...   ;   6   arbitrary). 

The procedure (called "successive relinear ization") is specified by a choice of the 

so-called gain sequence   a , a ,...,  where a    may or may not depend on the available 
J.        £* II 



iterates 0 , 9 ,..., 9    ..   Under certain restrictions on the sequence of regression 

function derivatives, and the assumption that {v } has uniformly bounded second 

moments,  9    is a strongly consistent estimate of 9  as n -— °° for a wide variety of 

recursively computable gains.   For the case of independent errors with common variance, 

a transformed version of Eq. (1. 6) with particular iterate-dependent gains is asymptotically 

efficient when (and only when) these errors are Gaussian. However, the mean square 

error of the estimate has the proper n dependence in all cases, i.e. it goes to 0 like 
n      9 

(an assumption) 1/ 2 F'*(9) asn-*°°.   Those familiar with the behavior of stochastic 

approximation schemes (to which the above bears a very close formal similarity) will 

not be surprised that F (•) is required to be monotone over the parameter space   6 

for all sufficiently large time indices: 

sgn Ft'(x) = st = ±1 

independent of the argument xe9.    Such obviously fails to hold for the regression 

function in Eq. (1.1), because as time progresses it has an increasing number of 

zeroes with respect to   9.   Even if the nuisance parameters   cp and p were known, 

then, we could not directly apply this existing technique for nonlinear regression 

problems.   (Can a scheme of the form of Eq. (1.6) be exhibited which consistently 

estimates 6 for F (0) = cos 0t?) 

We are going to treat the frequency estimation problem in its own right, and 

introduce two  9 -estimates which are simple functions of at most the first three 

sample covariances in Eq. (1.4).   Since the lags are fixed and do not increase with 

sample size, these estimates are easily generated in a recursive fashion.   They are, 

of course, highly inefficient relative to estimates requiring an unlimited number of 

covariances, but this is the price paid for computational simplicity.   Actually, we 

will deal with a model which is more general than Eq. (1.1); viz., 

zt =   £[pcos(0t-<p)] + u (1.7) 



where £[ .] is a realizable linear operator with summable impulse response 

coefficients.   We will assume {u } is a one-sided zero mean linear process (and 

ultimately Gaussian for simplicity) with a summable fourth order moment sequence. 

In the special case 

ut = £vt, (1.8) 

we obtain Eq. (1.1) passed through a linear filter.   Although Eq. (1. 8) is the case in 

most applications, there is no reason to so specialize Eq. (1. 7) because the mathe- 

matics is essentially the same. 

In Sec. 2 we derive the limiting statistical behavior of the sample covariances in 

Eq. (1. 4) when {z }  is given by Eq. (1. 7).   In generalization of Eq. (1. 5) we have, as 

a limit as n -* °° both with probability one and in mean square, 

C (k) — C(k)=^p2|A(0)|2cosk0 + (7(k) 
n 2. 

for every fixed k, where    A(.) is the complex-valued transfer function of the 

operator £ and a(.) now denotes the covariance sequence of {u }.   Any finite 

collection of random variables 

Dn(k) = N/n"(Cn(k) - C(k)), 

corresponding to distinct choices of the lag variable k, tend to joint normality.   When 

{u }  is Gaussian, the covariance between D (k ) and D (k ) of the limiting distribu- 
t n    i n    z 

tion, written in terms of frequency, is 

22 cn 2 
ip =4irp  |A(0)|   f(0)cosk 0 cosk 0 + 4ir \   cosk wcosk wf (w)dw 

12 -7T 

where f(.) is the spectral density function of {u }. 

Using these results we introduce in Sees. 3 and 4 two different methods for 

estimating  £=COS0(-1<|<1).   We present them here only for the special case 



r     i 2 when {u } is a white Gaussian process with variance <r .   The respective estimates 

are then 

I Cn(1) 

C (0)-a2 

n 

-i 

JC2(2) + 8C2(1) 
II ii V    n n 
n 4C (1) 

n 

We estimate 0 by cos    ij   .   In each case,  N/II(£   -£) tends to be normally distributed 
n 2 

n 

about 0 as  n — °° with a variance V (£)•   These functions are respectively given by 

2   2 1 2 
R Vi^)= r<2* +1> 

|A(Ö)|4 

Al^,    '     4    *\*2V 
|A(0)| (2|   +1) 

2    2 2 2 
where R = Jp /a   is the "signal to noise" ratio.   We have V (|)/V (|) ^ 1 with 

equality only at  0= ir/2,  so that the additional computation in Method II offsets the 
2 I 

knowledge of a   presumed in Method I.   In the general nonwhite case, £    assumes 
n n 

knowledge of a(0) and a(l) and |     of a(l)/(j(0) and (r(2)/(j(0).   In addition, the latter 

involves the sample variance C (0). 

Figure 1 is a computational flow chart (without initialization) for Method II in the 

white noise case.   The input to a "box" is to be multiplied by the value of the enclosed 

symbol, while "circled" symbols indicate operations to be performed on the input (I). 

The top segment of the diagram is the recursive covariance calculation for lags 1 and 

2.   This portion is run continuously, i.e. the time index n is stepped by unity.   When 

an estimate of 6 is desired it is only necessary to connect the bottom segment to the 

top via the indicated terminals 1 and 2. 
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Fig.  1.    Method II in the white noise case. 



The methods are applied to two illustrative situations: 

1. £ = A   and u  = £w   with {w } white, which results from removing a 

polynomial trend by differencing. 

2. £ = {l, -a , ..., -a } and u  = w  versus £ = {l}  and 

u=a,u    , + ••• + a  u      + w , i. e. a comparison of prewhitening 
t       1 t-1 p  t-p       t r r b 

and no prewhitening when a regression pcos(0t - qj) is disturbed by 

an autogressive scheme. 

Numerical results are presented for these applications. 



2.     SOME LIMIT THEOREMS 

In this section we consider time series of the form 

z   = £[pcos(0t-<p)] +u 

where £[ •] denotes any realizable linear operator with summable impulse response 

coefficients, and {u } is a centered stationary process whose moments up through order 4 

obey certain restrictions.   The parameters defining the regression sequence are 

arbitrary, with the exception that 6 is presumed to be an interior point of (0,7r). 

Specifically, we are interested in the joint asymptotic statistical properties of sample 

covariances 
n 

—   /  z    z 
n LJ   ct  ct+h ' 

t=l 

corresponding to distinct choices of the lag variable h, when c is an arbitrarily fixed 

integer.   We first deal with the deterministic components. 

Theorem 1.   Let £ = {«  ,a  ,a  ,., } bea linear operator defined by 

*yt-<Vt + aiyt-i + a2yt-2+"- • 

for which |a   | + \a   |+ \a   \ + ... < °° .   Let 

g (t) =£pcos(0t-cp) (t = 0,±l,±2,...) 
9 

where p is an arbitrary constant.   Choose integers a,b and c (positive or negative). 

Then, for any 0 < d < ir and <pt and some K which does not depend on a or b, 

n 
^  K 

nZ VCt + a)g0(Ct+b) " 2P2|A(Ö>I 2 cos^-a)0 

t=l 
n 



wherein 
or 

A(0) = \ a.e1*6   . 

j=0 

Proof.   It is notationally convenient to work with the Tchebichev polynomials of 

the first and second kind 

Tt(l,.c— Uta)-ÄgÄ (2.1) 

which are of degree t ^ 0 in 

| = cos0 (-1<{ < 1). (2.2) 

Then 

g0 (t) = p cos <p£T(0 + P sine? </l-«2£Ut-1«) (2.3) 

where T    = T  and U       = -U     .   Without loss of generality we can obviously assume 

p = 1.   Deleting the fixed arguments 6 and £, we then have 

g(t+a)g(t+b) =      cos <p£Tt+a£T^ 

+  ^VsVu^^U^ (2.4) 

^2 + cos cpsiiKp Vl-I    (£T ,   £U ^    + £T it£U        , ) v     t+a      t+b-1 t+b      t+a-1 

for all negative and positive integers a,b and t.   (It should be clear that by £T , JIT. 
t+a     t+b 

we mean £[T,  ] times£[T ,J andnot£[T ,   £[T]].)    In terms of the 1   t+a t+b t+a       t+b 
polynomials, standard trigonometric addition formulae become 

2TtUs   =Tt+s + Tt-s 

2<1-*2>Ut.lUs.l    =Tt-s"Tt+s <2'5> 

TU    . +T U       = n       . t   s-1       s   t-1        t+s-1 

10 



Using the first (resp. second) line of Eq. (2. 5) in the first (resp. second) line of 

Eq. (2. 4) we find, with the abbreviations 

h = b-a £ = b+a, 

that 

£Tt+a£Tt+b  - L   VjVa-iWj 
i,j^0 

1 
2 2^       i  jl   2tM,-i-j       h+i-j ' 

and 

i,j^0 

Similarly, in the third term of Eq. (2. 4) we use the third line of Eq. (2. 5) and get 

t+a      t-tf>-l t+b      t+a-1 

=   )    a.a.(T        .U   ,       , + T   ,     U ,) 
L,     i  j    t+a-i  t-HD-j-1       t-to-i   t+a-j-1 

i,j^0 

i  j    2t+<l-i-j-l 
i,j*0 

because the interchange of i and j in the second product does not alter the value of 

* the double sum.   We substitute these last three equations into Eq. (2.4), replace the 

• 

dummy t by ct, and then sum over t = 1, 2,... ,n.   There results 

11 



n 

i^g(ct+a)g(ct^)=   l£  "iVlHJ-i 
i.j^O t=l 

"2C0S2^  Z   °U 
i.j^O 

+ - sin2<p    >   ».a. 
2 r   Zi    l] 

i,j^0 

n 

n  Z    2ct+t-i-j 
t=l 

vl-i 
a     n 

Ur U    2ct+t-i-j-l 
t=l 

(2.6) 

Now from the summation formulae (Knopp, p. 480, Ref. [ 6] ) 

n 
V        o sin(2n+l)w      1     sinncocos(n+l)co 

> cos 2tw   =    —^-—c  = a 1- 
/^ 2 sinco 2 sin w 
t=l 

n 

I» 
t=l 

(2.7) 

cosw - cos(2n+l)cu      sin no> sin(n+l)o; 
sin 2to)   =     — * i— _J i- 

2smco sinco 

which hold for all real numbers w, we see that 

n 

l>,T2cMr«>l 
t=l 

n 

n n 

I <   | \ cos2ct0 |+ |  /  sin2ct0 

t=l t=l 

F1"«"IZÜ1CM«-Itt>l 

t=l 

^2/ | since | 

= 0(1)      provided 0 ? 0, TT 

(2.8) 

asn-*°° independently ofr = 0,±l Since {a,}  is square summable we can take 

limits inside the double summations.   Hence, both the second and third terms in 

12 



Eq. (2. 6) go to 0 as 1/n, and do so uniformly in  I (but not in 0).   The remaining term 

is 

- y      y a a. cos(h+j-i)0 = -coshö   >     y a.a. cos(i-j)0 

i^O j^O i>0 j^O 

= -coshö     f   y a.cos}6j    + (  /  a.sinj0 J 

2 

which, since h = b-a, is the asserted result with p set to 1. Q.E.D. 

Remark.    Although we will have no need for the result, we note in passing what 

happens at the endpoints.   From Eq. (2. 6) we find the formula, after returning the 

multiplier p, 

n 
j   V" 2      2 2 
-   ) g (ct+a)gfl(ct-H3) = cos <p p  |A(0)|   cos(b-a)0 (0 = 0 or IT) 
n  /_j   o o 

t=l 

which is valid for every n. 

Remark.   The conclusion of Theorem 1 is invariant under translations of the time 

index on which £ operates.   Thus, we could just as well have started with £y    written 

forward   in time, or even as a two-sided operator, 

00 

^t=Zvt-r 
j = -oo 

We have taken £ to be realizable since we will be interested only in statistical 

applications.   An important special case is 

£ = AP 

where A is the first backward difference operator.   We have 

13 



a.   = 
j 

(-DJ 

0 

UP for j =0,1,...,p 

for j ^ p+1 

The spectrum of this operator at 6 is 

P 

|AW|2-[)/(-l),(J
P)e«,'][)|(-l)'(P)e-«e] 

j=0 j=0 

= (l-eie)P (l-e-V 

. e      .e e        e 

■[(•,-I)(-,-^)T 

(2.9) 

(2.10) 

4 sin2 | j     =  (2-2cosÖ)P . 

This particular filter removes from a series {y } any polynomial trend of degree 

not exceeding p-1. 

Theorem 2.   Let {u } be a stationary time series with 

<fv°      £utut+ikr
ff(k) 

and cx(') summable.   Assume also that {u } has a summable fourth order moment 

sequence.   Let 

z  = g„(t) + u 
t     60w      t 

(t = 0,±l,±2,...) 

where g (t) is defined in Theorem 1.   Then, for any fixed integers h and c, 
6 

14 



n 

i),ZctZct+h    ~    IP2\MO)\2COSM+Cr(h) 

(2.11) 

t=l 

in mean square and with probability one as n — °°. 

Proof.   We introduce abbreviations 

n 

C (h) = -  > z    z     . 
nv '      n Li   ct  ct+h 

t=l 

y0(h)= ^p2|A(0)|2coshö , 

which will be used throughout.   We further let 

n 

X (h)= iYg (ct+h)u 
n n /_j   6 ct 

t=l 

n 

Yn«-ilM*>,\*H, (2-12) 

t=l 

n 

Z (h) = - Y u    U - (T(h). 
n n Z^   ct  ct+h 

t=l 

By hypothesis these latter random variables are centered at expectations. It follows 

from the definitions and Theorem 1 that 

C (h) - yfl(h) - (7(h) = X (h) + Yn(h) + Z (h) + 0(l/n) (2.13) 
nö n n n 

where the order term is a sure one as n — *>. The conclusion will be at hand if we 

can show that each of the averages in Eq. (2.12) tends to 0 both in mean square and 

with probability one.   Such is easily accomplished with the help of the following 

15 



Law of Large Numbers for dependent random variables (see Parzen,p. 419, Ref. [ 7]); 
n 

Let x   = 2 x /n where x^x.,...   is a sequence of centered random variables with 
n    £=i t 1    z 

uniformly bounded variances.   Then a sufficient(and also necessary) condition that 
--2 

fx   -^Oasn-*00 isfx x   — 0.   Furthermore, if fx x   =  0(l/n ) for some  e > 0, 
^   n ^   n  n ^  n n 
then x   -* 0 with probability one. 

The first two averages in Eq. (2.12) are trivial to handle.   For the first we have 

n 

|(fXn(h)gö(cn+h)ucn| = ^   | ^ g0(ct+h)gö(cn+h)cr(c(n-t))| 

t=l 
n-1 

*^£|a<ct)| = 0<l/n) 
t=0 

because   2 |cr(ct)| < °° obviously follows from 2 |cr(t) | < <*>.   The same kind of bound 
t t 

obviously  holds for Y (h).   For the remaining sequence we find 

\fz (h)[u    u        -a(h)]   |   <  -Y \£u    u _u    u - (72(h)| • (2.14) 1 ^   n en cn+h ' n /^ ' ^   ct   ct-Hi   en   cn+h v    ' v 

t=l 

The fourth order moment sequence 

K(k1,k2,k3) = (futut44c_ut+4c u 

can be written in the form 

t+lr 
1  fc,~2  t+lc3 

MO^k^) = ^(k^a^-^) + a(k2)a(kx-k3) + a(k3)a(kx-k2)+ MNG(krk2,k3) 

(2.15) 

where JJL      is the fourth cumulant sequence.   It is called the non-Gaussian contribution 
NG 

to fx because it vanishes identically when {ul  is a Gaussian process.   If in Eq. (2.15) 
2 

we set k   = h, k = c(n-t) and k   = c(n-t) + h, then the a (h) term in Eq. (2.14) is 
I z o 

16 



cancelled by the leading term in the Gaussian contribution to \i.   After reversing the 

direction of summation, we therefore have 

(fz WluUu-oMl n en cn+h 

n-1 

< -   )   I a (ct) + cr(ct+h) a(ct-h) + MxT^(h> ct> ct+ h) I 
n   ^j NO 

t=0 

which by the summability assumption is 0(l/n). Q.E.D. 

Theorem 3.   In the notation of Theorem 2, introduce the deviations 

r-     n 

D (h) = 's/n 
n ÜZctZct^-^2|A(0)|2cOSh0^(h) 

L   t=l 

where h is an arbitrary fixed integer.   In addition to the restrictions of Theorem 2, 

suppose that 

^tUt+k>2
=° (t,kl(k2 = 0,±l(±2(...). 

Then, for all integers a,b and c, 
OO 

9 9 \~^ 
lim £D (a)D (b) =     2p   |A(0)|" )   cr(ck)cosck0 ! cosa0 cosb0 

n n        n L LJ J 
k=-°° 

OO 

+   >    [ a(ck) a(ck+b-a) + a(ck-rt>) a(ck-a) ] 

k=-°° 

+   >    MNG(a,ck,ck-H)) 

k=-°° 

where u is the fourth order cumulant sequence of {u }. 
NG L tJ 

Proof.   From Eq. (2.12), whether a is equal or unequal to b, 

17 



n    n 

^X„<a)Z„(b)= 4^  ), V^^Vcs^^V^1 (2-16> 
n 

t=l s=l 

= 0 

for every n by our simplifying assumption concerning third moments.   From Eq. (2.13) 

we therefore have the formula 

(f D(a)Dn(b) =  n £[X (a)Xfo) + Y(a) Yn(b) 
n        n n        n n        n 

+ X (a)Y (b)+X  (b)Y(a) n        n n        n 
(2.17) 

+ Z(a)Z(b)]   . 
n        n 

We handle all the terms, except the last, in the following fashion.   Let m = m(n) tend 

to infinity over positive integers with n in such a way that 

2, m /n -— 0, 

and define 

Put 

a (ck) = 
n 

n     n 

o-(ck) for | k | ^ m 

0 for |k| >m+l 

(2.18) 

S   =-   )     ) g(ct+a)g(cs+b)cr (c(s- 
n    n  LJ   LJ n 0) (2. 19) 

t=l s=l 

where 9 is fixed and for the moment now shown.   If we write a( •) in place of a (•) , 

this becomes the first quantity of interest, n£X(a)X (b).   When we make the index 
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change from s to k=s-t, we obtain 

with 

Sn=7   7 ^»IW n    n  LJ n 
t=l 

n-t 

f(t)=)    g(c(t+k)-H3)(i (ck). 
n i_j n 

k=-t+l 

There are three ranges of t to be considered in accordance with Eq. (2.18).   Since 

n-2m — °°, we have for all large enough n 

m 

1 <t ^m 

k=-t+l 

m 

yt) = \ g(c(t-Hc)+b)(j(ck) for< 

k=-m 

n-t 

k=-m / 

m+1 ^ t ^ n-m (2.20) 

n-m+1 < t < n . 

Therefore, 
n-m m 

S   = -)    g(ct+a) Y g(c(t+k)+b)a(ck) 
n    n Lu L~I 

t=m+l k=-m 

1 
+ - 

n 

m      n 

+ J g(ct+a)fn(t) 

t=l t=n-m-fl 

Now in both the first and third sums in Eq. (2. 20) there are at most 2m summands 

possessing a uniform bound.   Hence 

m 

g(ct+a)g(c(tt*)+b) \=l Hi 1 (7(ck) 

k=-m 

r     n-m 
1 
n 

L  t=m+l 

+ 0(m /n)    . 
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We write the sum in square brackets as 

n        m n 

f ^  -  2J    " ) g(ct+a)g(ct+ck-tf>) . 

t=l     t=l      t=n-m+l 

Herein the second and third sums are bounded in absolute value by m times a constant 

independent of k.   We therefore have 

m 

k=-m 

n 

-   > g(ct+a)g(ct+ck-H)) 

t=l 
m 

'n)£   a( + 0(m/n)   >    a(ck) + 0(m /n). 

k=-m 

But according to Theorem 1 the average within square brackets, using the notation in 

Eq. (2.11), differs in absolute value from y (ck+b-a) by no more than  K/n where the 
u 

constant can be taken independent of k.   From the summability of c( •) and the choice 

of m, there follows 

imS   =  )   cr(ck) y (ck+b-a) < » . 
n     n     l_j 9 

lim (2.21) 

k=-°° 

Finally, since there are n-|k| indices t, s = 1, 2,... ,n for which the difference s-t 

equals k, we have from Eq. (2.12), Eq. (2. 18) and Eq. (2.19) 

n     n 

|n£x(a)Xn(b) - Si *  4" ")   ")   N0*8"*» ' ^„(c(s-t))| ,v-"nn n n   /_j  l_i n 
t=l s=l 

= K'   Y      ( 1- -1|L J | or(ck) - an(ck) | 

k <n-l 

= w = K I   0-^) r(ck)| . 

m+1^ k h^n-1 
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This goes to 0 as n> m-*°° because the infinite summation is finite. 

Precisely the same limit in Eq. (2.21) is found to hold for the second term in 

Eq. (2.17).   Therefore, for any a and b 

lim n fx (a)X (b) = lim n fx (a) Y (b) 
n       ^   n        n n      ^   n        n 

= ^  <T(ck)rö(ck+b-a) 

k=-°° 

2 2V 
\p   A(0)|     )   (r(ck)cosckö; cos(b-a)ö 

^ J 

where the last equality is a consequence of the definition in Eq. (2.11) of yA •) and the 
o 

fact that (j(ck) sinckö  is an odd function of integers k.   In a similar fashion, we 

obtain 

lim n fx (a) Y (b) = lim nfx (b) Y (a) 
nCnn nUnn 

oc 

a(ck)yfl(ck+b+a)    . 
6 

k=-°° 

Therefore, taking limits in Eq. (2.17), 

[oo 

2p   I A(0) I     y    cr(ck) cos ck0 cos ad cos bö 

k=-°° 

+ lim nfz (a)Z (b) . 
n      U   n        n 

With regard to the remaining limit we have from Eqs. (2. 12) and (2.15) 
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n     n 

n£z (a)Z (b) = - Y   V (flu    u ^ - a(a)] [u    u _. - a(b)] 
^   n       n n Z-/   Z-/ ct  ct+a cs  cs+b 

t=l s=l 
n    n 

= —   7     /    [fn    u        u    u -o-(a)cr(b)] 
n Li  L     c   ct  ct+a  cs  cs+b       v '   v ' 

t=l s=l 

n     n 

= - /    /   [c7(c(s-t))a(c(s-t)+b-a) + (7(c(s-t)+b)<j(c(s-t)-a) 

+ MNG(a, c(s-t), c(s-t)+b)] 

= 2 ( * ) I °"(ck) o-(ck-tf)-a) + or(ck-rt)) o-(ck-a) + R,r(a, ck, ck-tf>)] 
k 

Ikl <n-l 

Using the summability assumptions, and letting n go to infinity, the resulting limit 

combines with Eq. (2. 22) to give the asserted formula. Q. E.D. 

Remark. The restriction to processes{u } with vanishing third order moment 

sequences was made solely for the purpose of simplifying the final formula.   When 

the assumption fails, the result will have two additional terms (cf. Eq. (2.16)) 

involving the third order moment sequence of two indices. 

Remark. The non-Gaussian contribution to the limiting value of £D (a)D (b) takes 

on a particularly simple form when {u }  is a one-sided (for physical realizability) 

linear process in independent random variables {w } , i.e. 

Ut = ^0Wt+Vt-l+^2Wt-2+--- <£l*jl<->-        <2'23> 

If we express the input process moments in terms of cumulants 
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then we have 

<fwt    =0 

r   2 2 

C   3 

r   4 4 
Cw

t    = 
K4+ 3a   > 

j 

<SUt+klVk2  
SK3lVi^V2 (2.24) 

i 

where ß. = 0 for all j < 0.   From these we find the representation 

oo 

MNG(a, ck, ck+b) = -|- cr(a) <j(b) (2. 25) 

k=-°° 

4 2 
independent of c.   K JCJ   is the familiar "coefficient of excess" over a N(0,a ) 

distribution of {w }, and it vanishes for such a distribution. 

In summary, we specialize our preceding results to linear Gaussian process,  since 

in such cases it follows almost immediately that the random variables D (h), corres- 

ponding to distinct choices of the lag variable, tend to normality. 

Theorem 4.    Let {u } be a one-sided linear process in independently identically 

distributed 0 mean normal random variables, and suppose its covariance sequence 

d(k)=  £utu 
t+k 
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is absolutely summable.   Let £ = {oi , a , a ,...} be any linear operator with 
\3        JL        JU 

absolutely summable impulse response coefficients, and let 

oc 

A(w) =  > o?.e1J 

j=0 

be its complex valued transfer function.   Introduce the time series 

z  =£[pcos(0t-(?)] + u (t = 0,±l,±2,... ) 
L L 

where 0 < 0 < TT and p, ^ are arbitrary.   Fix an integer c, and define the random 

variables 
n 

V« ■ i I Z      Z        .    , 
ct  ct+h 

t=l 

and sure quantities 

Tö(h)=  ip~\A(B)\~co8 „2u/0„2_he 

2 2 V # (a,b)=[2p   |A(0)|      >    o-(ck)cosckö]cosaÖ cosbö 

k=-°° 
OO 

+ \   [ o{ck) a(ck-rt)-a) + a(ck-tf>) cr(ck-a) ] 

k=-oo 

where h, a and b are integers.   Finally, put 

Then 

Dn(h) = ^[Cn(h)-r0(h)-(7(h)]  . 

(i)    C (h) -* y^ (h) + cr(h) asn-» both in mean square and with probability 
n 6 

one. 

(ii)    If h = (h , h9,..., h ) is any finite collection of distinct integers, 
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then the distribution of the vector of random variables 

D (h ),D (h ,),....D (hJ 
n   1       n   I n   r 

tends to that of a centered r-variate normal distribution as n — °°.   The 

entry of the covariance matrix of the limiting distribution corresponding 

to h.,h. eh is equal to the limiting value of the corresponding covariance, 

and their common value is  ^(h.,h.).   (i, j = 1, 2, ... ,r). 
0   1   ] 

Proof.    From Eq. (2. 12),  's/n X  (h) and  's/n Y (h) are normal for every n.   It is 
n n 

a known result in time series analysis (Parzen, Ref. [ 8]) that 

\/n Z (h), «sG Z (h ),..., NS Z (h ) 
n   1 n   z n   r 

tend to joint normality as n —- °° (for linear processes {u } but not necessarily normal). 

Moreover, the covariances of the limiting distribution are given by the limiting values 

of n^Z (h.) Z (h.).   It remains, therefore, to multiply Eq. (2.13) through by "Jri and 

evaluate second order moments.   (The bias is   0(1/ N/TI ) so mean square and variance 

are asymptotically the same.)  Theorem 3 gives the result of these calculations, 

where  u      is 0 by hypothesis. Q.E.D. 

Remark.   The function 

f 0^)=-^-   /    <r(ck) cos ckw , (2.26) 
C Z7T    LJ 

k=-oo 

whose value at u;=0 appears in the limiting covariance   ^ (a,b), becomes the spectral 
9 

density function of {u } for c=l.   (It is an interesting problem to try to express f (•) 

in terms of c and f (•) .) From Eq. (2. 23) it follows that 

f(W) = f1(W)= | 2/jelja;|   3T • (2-27) 
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Thus, incase u  = £w , i.e. 0. = a., we will have 

2 
m= *irlA(a;)i (2-28) 

for ail a?.   The second summation in  ip (a, b), for c=l, can be written in terms of the 
9 

spectral density (see (4.32) below). 
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3.     METHOD I 

We are now going to apply the results of the previous section to the following 

statistical problem: given observations 

zt= Z[pcos(0t-<p)] +u. (t=t0,tQ+l,...) (3.1) 

estimate  6 e(0, ir) without knowledge of <p or p f 0.   In accordance with our basic 

ground rule, we want to consider methods involving finite-memory computations 

which can be performed rapidly (the latter, of course, being a relative requirement). 

The model in Eq. (3.1) can arise in different ways, but more often than not it is the 

output of a linear filter whose input is disturbed by additive noise.   That is, u  = £v 

for some process {v }.   To be concrete, we introduce two such situations which 

subsequently are used to illustrate our results. 

Problem 1.   Estimate   9 from data 

y  = (polynomial in t of degree at most p-1) 
1 (3.2) 

+ pcos(<9t-<p) + w (t = l,2,...) 

r     i 2 where {w } is a white zero mean process with variance a , and the unknown polynomial 

trend is not of interest.   The latter can be removed, as already remarked after the 

proof 

Thus, 

proof of Theorem 1, by applying the p    order difference operator  £ = AP to Eq. (3. 2). 

z
t = APyt ut = APwt 

with t   = p+1 when we take A to be the first backward difference.   The covariance 

between u   and u      for a general £ with memory of order p applied to white noise is , 

for k > 0, 
P    P p-k 

a(k) = 11 aiai £wt-iwt+k-j= Q1
 \ Vj+* • 

i=0 j=0 j=0 
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Upon substituting Eq. (2. 9), this reduces to 

'•2^a 
o-(k) = i 

o 

k = 0,±l,...,±p 

|k| >p 

(3.3) 

(see Feller, p. 62, Ref. [3]). 

Problem 2.   Estimate 0 from data 

yt = p cos(0t - cp) + v. (t = 1, 2,...) (3.4) 

where {v } is an autogressive scheme of order p driven by white noise with variance 
2 * 

<J , i.e. 

v  =a,v   , + -»« + a v      +w   . 
t       1  t-1 p t-p       t 

If the coefficients are known, we can apply the operator £ defined by 

a   = 1    a. = -a. 
0 J        J 

(j = l,2,...,p). 

We then have Eq. (3.1) with 

2 
a k = 0 

(3.5) 

0 k^O 

because u  = £v  = w .   On the other hand, if the coefficients are not known we perform 

no filtering, and impose conditions on the  a's   so that u  = v   obeys the moment 

restrictions imposed by the theorems of Sec. 2.   In this case, we would have 

a(k)/a(0) =b1X^+.-.+b   Ak 

11 p  p 
(3.6) 
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with A ,..., A   (the roots of the characteristic equation) assumed less than 1 in 

modulus.   From the point of view of estimating 6, it is not clear whether Eq. (3.4) 

should in every case be "prewhitened, " even when the a.'s  are known.   As a by-product 

of our calculations we will be able to investigate this question. 

Both in this section and the next we consider estimator sequences {£ }, where 

n will always be linearly related to the number of observations in Eq. (3.1), of the 

transformed parameter value 

I = cosö (-1 <| <1). 

In practice, one takes the arccosine of these because it is the angular frequency 6 

which is of interest.   This operation entails no difficulty from the standpoint of large 

sample distributions.   Indeed, suppose the distribution of the random variable Nm (|   -£) 

is known to converge as  n -* °° to that of a normal random variable with mean 0 and 
2 

variance V (£).   We express this property in symbols by 

■vn(ln-«)   - N(0,V2(|)). (3.7) 

Let g(-) be a given function  whose derivative g'(-)   is continuous and nonzero at 

the true parameter point |.   Then (the "delta" method) 

^(g(S  ) -g(0) ~ N(0,g'   (£)V g)). n 

Suppose, furthermore, that £   —' £ with probability one.    Since the true parameter 

point by hypothesis is an interior point of (-1,1) it follows, with probability arbitrarily 

close to 1, that 

9   =cos"  £    , (3.8) 
n n 

becomes and remains defined beyond some index n (which by Egorov's Theorem is 

inde 

get 

independent of the points in the underlying sample space).   Taking g(x) = cos    x, we 
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2 
*&(8   -9)   ~N(O,Q2(0)) Q2(9) = V (C°S e)   . (3.9) 

sin 6 

This function, for the estimates we will be considering, blows up as 6 approaches the 

endpoints.   This is not a desirable feature, nor is it an unexpected one.   It is difficult 

to see how one can avoid the situation without resorting to more computationally 

expensive schemes, such as those based on the Fourier transform of the appropriately 

weighted covariance sequence.   Section 5 contains a brief discussion of one of these 

other approaches to the problem. 

Our first method assumes that the lag 0 and 1 covariances of {u }  are known. 

Under the assumptions, and in the notation, of Theorem 4 the ratio 

C   (1)  - (7(1) 
$      =   —  5n       C (0) - o-(O) 

n 
(3.10) 

is a (strongly) consistent estimate of £ =  y .(l)/y_(0) no matter what value we fix for 

the integer c when computing C (0) and C (1).   (Nothing is changed asymptotically 

of course, when we start the summations at t = tn rather than t= 1.   Furthermore, we 

need only consider  c > 1.)  According to Theorem 2, consistency holds under weaker 

noise conditions.   However, we will assume the restrictions imposed on {u } by 

Theorem 4 are satisfied, in the interest of uniformity.   After we derive the variance 
2 

function V   for Eq. (3.10), we will consider the problem of choosing c when the z's 

are generated as in the illustrative problems. 

Let us discard some excess notational baggage, and for the purposes of algebraic 

manipulation write 
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C,   in place of C (h) 
h n 

D. 

V. 

"ab 

Dn(h) 

Y„(h> 

ya,b) 

►    defined in Theorem 4. (3.11) 

The first two are random variables depending on the sample size or, what is the 

essential thing, the highest data index , 

N = en + h , (3.12) 

on the z's.   The second pair in Eq. (3.11) depends on the parameter  0 under estimation. 

Keeping this in mind, Eq. (3.10) is seen to be equivalent to 

TQI^Q-cr(ü)J 

Dr^Do 
C0-o<0) 

because  y  is £ y  .   The numerator tends to normality and the denominator converges 

in probability to yn.   By a well-known theorem in large sample distribution theory 

(Cramer,  Sec. 20.6, Ref. [2])Eq. (3. 7) follows with 

V2«)=-^[^r2^01-H\0] (3. 13) 

V, 0 

under the assumption that y   is strictly positive.   Now we can write,  introducing the 

spectral notation in Eq. (2. 26) and indication of the dependence on our selection of c, 
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0 0 /   \ 
</>     =   [47rp   |A(0)|   f (0)i cosa0cosh>0+ qrY 
ao '     c     J Tab 

<p*£ = y    I or(ck) cr(ck+b-a) + ar(ck+b) cr(ck-a)] 

k=-oo 

(3.14) 

Upon substituting into Eq. (3.13) we find the first terms in ip     depend on |  in such a 

way that they do not contribute.   Therefore 

v2(0 -i-r„(c>*2 

r 
9    (C>* +   „<C> 1 

0 

y^ - iP
2|A(ö)|2>o. 

(3.15) 

(c) 
We note that cp       must always be positive, because it is the limiting value of 

ry aa 

n£z (a),   y> 0 places restriction on the filter coefficients   a,a. .., a   or 0. 

By Eq. (3. 9), now,  *Jri(d   -0) has a large sample normal distribution with mean 0 

and variance 

Q2(9) mJLiSL 
2 

(3.16) 

when we set 
(c)t2 (c),  ,    (c) 

2   x      %) *    -2^01I+<P11 
( I £ I < 1) . (3.17) 

If the entire covariance sequence cr( •) of {u }  is given, we can set up large sample 

confidence intervals on 0, which are free of unknowns, by consistently estimating the 

parameter values  yn and A.   (Weak consistency suffices, although our estimates are 

strong.)    C - cr(O) is just such an estimate of the former.   The numerator in Eq. (3.17) 

is positive (for, as a matter of fact, all real numbers £).   When   |£   | <1, therefore, 
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we can certainly compute the real positive square root A(£ ).   Since A( •) is a continuous 
n 

function at every interior point of (-1, 1), it follows from   £ — | that A.(£  ) —   A(£) with 
n n 

probability one.    Therefore, if we take k   such that 

k 
e  _i   2 
e 2     dx = l-€ 

Jo m 
the interval 

k X(| ) 

N/n      n 

will have confidence coefficient l-€. 

****** 

The computations involved in Method I, i.e.,  Eq. (3.10), are relatively trivial. 

Indeed, the basic statistics are C (0) and C (1) which, being averages, can be 

generated recursively.   Only the previous z(obtained c time units ago) need be re- 

tained.   The inversion of the cosine at each step to get the estimate of frequency is 

an inherent part of our approach, and presents no real computational difficulty.   The 

price we pay for computational rapidity is reflected in the variance of the limiting 

distribution.   A quantitative examination of this function is made below for the 

illustrative problems. 

With regard to determining a choice for c, the expression to be investigated in 
2 

any given situation is not V    alone, but rather the large sample variance of £ 

written in terms of the total number of z-observations used to achieve it.   By Eq. (3. 12), 

this is 

V2/n a cV2/N 

in large samples.   It is c times the quadratic in Eq. (3.15), therefore, i.e. 
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yo-d,g«2-2,$ + ,{i>] (3.19) 

which we would like to minimize in some sense with respect to c > 1.   Up to the 
2 

multiplier 1/y   , this is the loss incurred when we use  c   and |  is the true state of 

nature.   The coefficients are given in Eq. (3.14) as a function of c corresponding 

to the particular covariances  CT( •) of {u } .   We now consider this aspect, among 

others, for the two illustrative problems. 

Application to Problem 1.   The coefficients of interest are 

*00 
(J2(ck) 

k=-°° 

*01 = 2   zL ^dO«***1) 
k=-°° 

(3.20) 

(P (c) = 

11 
S l (J2(ck) + (T(ck+1) (7(ck- 1) ] 

k=-°° 

with a( •) given by Eq. (3.3).   From the same combinatorial summation formula used 

to obtain Eq. (3.3), we find the general expression 
4P     v /      4p 

2p-b+a )  + (  2p-b-a 
(1)        4, ixb-a 

^ab 
(3.21) 

n 
This is valid for all integers b ^ a ^ 0, with the usual convention that f J = 0 for 

r < 0 or r > n. Let us consider Eq. (3.20) with c=p+2. Since cr( •) vanishes for all 

arguments exceeding p in absolute value, only the k=0 terms remain and 

34 



9 
(p+2)    _      4 /2p\2 

00 
=   2a 

<P <p+2> =-2(TV
2pV2p 

01 p-1 

(p+2) 4 

*11        =   a 

2p 

P 
+ 

2p 

P-1 

The same expressions obviously hold for any larger setting of c. The calculation of 

closed expressions for the three sums in Eq. (3. 20) over 2 < c ^ p+1 we leave to the 

reader, and content ourselves with a comparison of Eq. (3.19) at the extreme values. 

We find 

1^(1) <   L^p+2) 

for every |/j | < 1 and p ^ 1.   In fact, as p —• °°, 

L (pf2) 

L6(l) 

P ' 
2p 

P 

4p 

2p 

N/D 

(see Feller, p. 63, Ref. [3]).   We will consider this sufficient reason for setting  c=l. 

The variance of the limiting normal distribution of N/n^-ö) for Problem 1 using 

Method I with c=l is 
n 

Q> 
4a 1    /4p 

^pUp 

2 cos 0 + _8£_ cose +4p_jt2p±L 
2P + 1 2p2 + 3pH-l 

4p 2 
sin F(i0)sin 6 

(3.22) 
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where we have added indication of the dependence on the differencing order.   This is 

obtained by using Eqs. (2.10) and (3. 21) in the general formula of Eq. (3.15), factoring, 
2 

and dividing by sin 9 .   The constant multiplier in Eq. (3. 22) is the inverse of the 
2    2 2 

square of the " signal to noise" ratio \p /a .   The value of Q   becomes extremely 

large with increasing differencing order over the lower end of the parameter range, 

as is clear from Table 1.   For p=0, which means there is no polynomial trend in 

Eq. (3. 2), the variance function is proportional to 

2 2 
2ctn 6 + esc 0 . 

This is symmetric about 7r/2, and takes on its minimum value of 1 there (and this was 

our reason for the placement of the numerical constant).   As 0 — 0 the function increases 
2 

to infinity like I/o  .   In space applications, for example, the trend is usually taken to 

be parabolic, i.e. p=3,  so the curves corresponding to large p are mainly of academic 

interest.   On the other hand, at the upper end of the range the variance initially de- 

creases with increasing p, and then, of course, increases.   Thus, if certain prior 

knowledge exists concerning 0, it may pay to difference the data considerably more 

times than the degree of the unwanted polynomial.     For example, if it is known that 

9 > • Sir we should difference the data 5 times no matter what the trend, of degree 

less than 4.     Figure 2 shows this behavior over the upper half of the interval.   The 

reason for this is that differencing tends to pull large frequencies towards the center 

of the interval, where estimation is easier. 
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P 
Ö/\      0123 45 678 9 

.1 2.942(1) 3.614(4) 4.992(7) 7.265(10) 1.089(14) 1.665(17) 2.578(20) 4.032(23) 6.355(26) 1.008(30) 

.2 6.683 5.515(2) 5.043(4) 4.838(6) 4.775(8)4.799(10) 4.886(12) 5.023(14) 5.202(16) 5.420(18) 

.3 2.584 4.620(1) 9.915(2) 1.907(4) 4.057(5)8.777(6) 1.922(8) 4.247(9) 9.453(10) 2.116(12) 

.4 1.317 7.578 5.474(1) 4.086(2) 3.114(3)2.409(4) 1.884(5) 1.485(6) 1.178(7) 9.401(7) 

.5 1.000 1.750 6.125 2.217(1) 8.155(1)3.034(2) 1.139(3) 4.305(3) 1.637(4) 6.250(4) 

.6 1.317 5.164(-1)|| 9.919(-1) 2.117 4.606 1.012(1) 2.235(1) 4.966(1) 1.108(2) 2.480(2) 

.7 2.584 2.683(-l) 2.209(-l)ll 2.911(-1) 4.246(-l) 6.372(-l) 9.664(-l) 1.473 2.254 3.457 

.8 6.683 4.223(-l) 1.421(-1) 8.461(-2) 6.944(-2) 6.818(-2)|| 7.335(-2) 8.290(-2) 9.610(-2) 1.130(-1) 

.9 2.942(1) 1.814 5.237(-l) 2.302(-l) 1.246(-1) 7.670(-2) 5.158(-2) 3.706(-2) 2.807(-2) 2.220(-2)| 

Table 1.   —£7- Q2(0) given by Eq. (3.22). 
4cr P 

The number within parentheses is the exponent of 
the power of 10 by which the entry is to be 
multiplied. 



Fig.  2.   -£j- Q2(6) given by Eq. (3.22). 
4a 
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Application to Problem 2.   Let us consider the simplest nontrivial situation in 

which the driving sequence in Eq. (3. 4) obeys 

v  = av    , + w 
t t-1       t 

(|a|<l). 

If a is known, we can take  £ = {l, -a}.    Substituting Eq. (3. 5) into Eq. (3. 20) we get 

•e ■ *4 4?- (c)      4 

independent of c.    Since we want to keep the loss in Eq. (3. 19) small, we should 

therefore take c=l when computing the estimate in Eq. (3.10).   The squared modulus 

of the transfer function of £   is 

r P 

|A(0)f = a.cosiö 
J 

j=0 

^  P 

+ a. sin jo 
J       J 

Lj=o 

2 2      2 
= (1-acosö)    + a sin 6 

= l-2£a + a 

in terms of £ =cos0.   The function in Eq. (3.15) is therefore 

v2= 4° 2£2 + l 
4 2 2 

p (l-2|a + a) 
(3.23) 

Now suppose we perform no filtering (as, for example, when a is not known). 

The process u = v (assumed to have been arbitrarily initialized at t = -°°) has the 

covariance sequence 

cr(k) = (T(0)al 

The sums in Eq. (3.20) are found to be 

o<0)=- 
1-a 

(k = 0,±l,±2,...). 
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(c)     „ 2...    V    2c|k| 
4>o = 2<7(0) Za 

k=-°° 
■ *>«■>-& 

(c>       o  2,m    V     clkl     lck+1l     i   2/»x   a "**> ^ = 2,(0)   ^ a       'a' '= 2a W^j^ 

k=-°° 

wherein 

(°)       2/nx   V  I" 2clkL   lck+1l    |ck-l ll <Pn = cr (0)   ^ |_a    r, + a" 'a1 

k=-°° 

= C72(0) »-a—'-« 
b = a 

2c 

belongs to (0, 1) no matter what our choice of c ^ 1.   These combine to give for 

Eq.(3.15),  since |A(0)|= 1, 

v2 = 4cr 
4 2 2 

P (l-a )   (1-b) 

r 2 -i 
i     2(Hfc)£2 - 4-^-Ü-| + l + 3b+a2(l-b)        (3.24) 

where the bar indicates no prewhitening.   The loss in using c, when £  and a are 

the true parameter values, is 

L?a(c) = cV2. 

We can adopt as a criterion for choosing  c minimizing the worst that can happen to 

us.   The result of maximizing over  |£ | ^ 1 is proportional to 

3+4|aka2
+4|a|2c-1

+5a2c-a2(c+1) 

l-a 
2c 
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If a is known, we then choose the integer c=c(a) for which this ratio is smallest. 

One might believe that 

B. .Co-1'72 

*>a cV2 

would not exceed 1 no matter what value we fix for c, because the numerator is the 

variance of the estimate which makes use of the assumed knowledge of the value of the 

nuisance parameter a.   This is erroneous, since for any fixed integer  c ^ 1 there 

exists a £  and a (in fact, a continuum of values) for which E > 1.   Indeed, one need 

Dnlytake £=a. Then the square brackete 

This combines with Eq. (3. 23) to yield 

onlytake £=a. Then the square bracketed quantity in Eq. (3.24) is just (1-a ) (1-b). 

T,      / x      2a2 + 1 
a,av 71    2. 

c(l-a ) 

2 
Given the value of c, it remains to choose a    sufficiently close to 1 so that E > 1. 

The continuum of values is obtained by letting £  range through a sufficiently small 

neighborhood of a, and appealing to continuity.   It is important to remember that 

this comparison is based solely on the particular estimate in Eq. (3.10). 
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4.     METHOD II 

Our second procedure for estimating the parameter value 6 in Eq. (3.1) requires 

a bit more computation than does the estimate based on Eq. (3.10).   The new £ -estimate 

is an unambiguous solution of a certain quadratic equation whose coefficients involve 

C (2) as well as C (0) and C (1).   The dependence on population quantities is via the 
n n n 

correlations  a(l)/(r(0) and a(2)/a(0).   Thus, when {u }  is a prescribed linear opera- 

tion on white noise (as e.g. in Problem 1), there is no need to know the common 

variance.   Furthermore, the coefficients have the property of being invariant under 

the replacement of C (h) by C (h) - cr(h).   This feature greatly facilitates calculation 

of the limiting distribution of the solution. 

The observation which suggests the procedure is that the Tchebichev polynomials 

in Eq. (2.1) both satisfy, for the appropriate pair of initial conditions,the same second 

order difference equation; viz., 

ft+l-
2«ft + ft-l = ° (t=1.2,...). 

Since £   is a linear operator, the sequence of regression functions in Eq. (2. 3) also 

obeys this recursion: 

gö(t+2) - 2Sg0(tfl) + g0(t) = 0 . (4.1) 

It thus follows for Eq. (3.1), no matter what our choice of the integer c ^ 1, that 

z    l0 -   2£z    ,, +z    =u* (4.2) 
ct+2      ^  ctfl       ct      t v      ' 

wherein 

ut  =Uct+2-2*Uct+l + Ucf (4-3) 

The former is an identity in £ = cos0 relating three successive observables to 

hypothetical random variables.   The covariances of {u*} in terms of those of {u } are 
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a (k) = 4a(ck)|2 - 4[ a(ck+l) + a(ck-l)] £ 
* (4.4) 

+ 2a(ck) + a(ck+2) + a(ck-2) (k = 0,±l,±2, .. •). 

Let  2, now, denote the  n><n  matrix with entry a (t-s) in row s and column t, and 

let    a     be the st    entry of 2    , which we presume exists for all  \£ \ < 1.   If u* is 

the column vector with components uf, u*, ..., u*, then the components of u** = 2 ^u* l    z n — —   — 
are uncorrelated.   If we apply the principle of Least Squares to the linear combinations 

2 2 
of Eq. (4. 2), an estimate of | is obtained by minimizing u** + • • • + u**   , i. e. 

finding a root of the equation 

n     n 

0=-4r   )     >crf(z      0-2£z +z    )(z      0-2^z       + z   ), (4.5) 
9£    Li   L   V cs+2     s   cs+1      cs/v ct+2     s  ct+1      er v 

s=l s=l 

where for notational convenience we are assuming t= 1 in Eq. (3. 1). Generally, this 

is highly nonlinear and, in addition, the inverse matrix changes in a nontrivial fashion 

with sample size. 

Nonetheless, the above considerations together with our freedom to choose c as 

we please,  suggest a computationally simple method for estimating 4-   First of all, 

the variance of {u*}, which does not depend on  c, is 

a (0) = 2a(0)P2(0 P2(0 = 2£2-4p^+ l+p2 (4.6) 

where 

Pl = (7(l)/cr(0) p2 = CT(2)/(T(0) 

are the first two correlations of {u }.   We will assume 

h* Pl±   Jp2l~*{li'p2) (4*7) 
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2 
so that P (|) > 0.   This may or may not place restriction on the unknown parameter in 

(-1, 1).   For example, if {u }  is any stable autogressive scheme the discriminant is 

always negative, and Eq. (4.7) amounts to no restriction at all.    Equivalently, we 

n * 
could assume that  p   ±   Jp   -2(1~P9) does not belong to (-1, 1).   (Note that if  £ 

coincides with one of these points, then u* = 0 with probability one and Eq. (4. 2) can 

be solved exactly.) In any event, let us imagine, for the moment, that {u }  is a moving 

average of some given order 0 ^ q < <*>, i.e. all coefficients in Eq. (2. 23) are 0 

except ß ,ß , ... ,j3 .   Then o(k) = 0 for all |k| > q+1.   For the selection 

c = q+3 

we see that a (k) in Eq. (4. 4) is 0 for all k ± 0 and all |.   The "errors" in Eq. (4. 2) 
st 

are thereby made white.    Since <j   is 0 unless s=t,  Eq. (4. 5) reduces to 

n 

° = ^7^£(Zct+2-2^ct+l + Zct)2 • <4-8> 
^'       t=l 

We are going to use a solution of Eq.  (4. 8) to estimate ij   in any case,  i. e. even when 

cx( •) does not vanish above some index.   Furthermore, we can and will leave free the 
2 

choice of c until we have calculated the variance function V  . 

Before proceeding, it should be pointed out that the technique known in numerical 

analysis as Prony's method (Hildebrand, p. 382, Ref. [ 5]), for approximating the 

angular frequency 6 from data 

z  = pcos(et-(p) + u (t= 1, 2, .. . ,n) 

2 
when   the errors are independent and a    is "small", is equivalent to solving Eq. (4. 8) 

2 
with c=l and the factor  1/P (£) deleted (and then taking the arccosine).   This "least 

squares" estimate (cf. Eq. (4.2) with c=l) is 
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/  z    nz    . +    /  z      z 
L,   t+2  t+1       /I   t+1   t 
t=l t=l 

n 
2 2Zzm 

t=l 

and when n is large it   will statistically behave like the ratio 2C /2C  .    Thus, with 

probability one (see Eq. (4.11) below) 

so that £* always underestimates £.    For large values of the signal to noise ratio 
2    2 

R = 2P /°" » tne right side will be 

[-i-(^ 2 

On the other hand, the relative bias error can be quite large when R is small. 

Prony's method, of course, presumes the contrary.   Nonetheless, if the error variance 

is known (as is usually the case in numerical approximations) the estimate £*,  simply 
2 

modified by subtracting <j   out of the denominator, converges to the correct value 

(i.e. Method I).   As we will see below in Eq. (4. 25), we get a consistent £ -estimate 
2 

without knowing <j , or making any assumption on R, by using C    and C    rather than 

C    and C  . 

Let us return to Eq. (4. 8), and simplify the notation by writing 

a=z„ b=z,1 c=z. 
t      ct+2 t      ct+1 t       ct 

After performing the differentiation, using Eq. (4. 6) and multiplying through by 
4 

-P (0/4 f- 0, we find that Eq. (4. 8) is equivalent to 
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0 = -2(2b2HP2(£) + (2(a-k:)b)P2(£) 

+ tt-Pj) [4<SbV - 4(S(a-fc)b){ + 2(a-k:)2] 

2 n    2 2 2 
wherein 2b    is    2b, etc.   The leading term in P (|) is 2|  , so happily the cubic 

t=l * 

term cancels.   If we collect the coefficients and multiply through by -l/2n, then 

1 2P1       2     2 
0 = [ - 2(a+c)b 2b   ]x 

n n 

1 2      1+P2        2 
-[4- 2(a+c)    - —— 2b  ]x (4.9) 

zn n 

Pl 2      1+P2 
+ [ — 2(a+c)    - -^- 2(a^)b ] 

where we have written x in place of £ (the true parameter value).   Now we have, 

using the abbreviations in Eq. (3.11) , 

12        12        12 
- 2a    ,    - 2b    ,    -2c    = Cn n n n 0 

^2ab ,     -2bc = C 
n n 1 

^2ac = C_   . 
n 2 

These are not algebraic equalities, but rather probabilistic ones valid in large samples 

(which suffices).   If we substitute in Eq. (4. 9), there results 

0 = 2[C1-p1C0]x2-[C2-p2C0]x + [p1(C0+C2)-(l+p2)C1]. (4.10) 
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The solution of this equation corresponding to the positive square root is a (strongly) 

consistent estimate of £, as we now proceed to show. 

Continuing to use the abbreviations in Eq. (3.11), we have from Theorem 4 

C*=C0-<x(0)-y0 

C* =C1-o{l)-~y1= yQi (4.11) 

C*=C2-a(2)-Y2=yo(2|
2-l) 

with probability one as n — °°.   Upon replacing C    by a(h) in Eq. (4.10) we see that 

all coefficients vanish by the definition of p. and p .   Therefore the solutions of 

Eq. (4.10) must also be the solutions of 

0 = 2[C* - P]C*] x2 - [C* -p2C*] x + [Pl(C* + C*) - <Ht>2)CJ] . (4. 12) 

Let |    (resp. £    ) denote the root of this equation corresponding to the positive 

(resp. negative) square root.    Since the probability one limit of a solution as n — °° 

is the corresponding solution of the limiting equation, it follows from Eq. (4.11) and 

Eq. (4.12) that 

where the numbers £    and £    solve 

0 = 2(£-Pl)x2 -(2|2-l-p2)x + [2|2Pl-(l-^2)|]   . (4.13) 

The product of the roots is given by 

+   - 2|Pl-(l+p2) 

ae-Pj) 

47 



Direct substitution shows the indicated factorization is the correct one,  so either £ 

or |    is |.   Since this solution does not depend on p   or p , we can set them both to 

0 and solve Eq. (4.13) to resolve the sign question.   We get 

2 /      2       2 2 
+       (2^   -1)+   V(2g   - 1)    + 8£       .. 

* 4^ * ' 

Returning to the original notation, our estimate of 4  is thus 

£    = positive square root solution of 
n 

2[C (l)-p.C (0)]x   ~[C (2)-p C (0)]x +[p.(C <0»+C (2)-<HpJC (1)] =0 
nin nzn in n ^    n 

(4. 14) 

The equation can, of course, be divided through by C (0) >0.   The coefficients are 
n 

then simpler expressions involving C (h)/C (0) = R (h)   (h=l,2). 
n n n 

We next establish Eq. (3. 7) for the estimate in Eq. (4.14), and evaluate the 

variance function.   Let us now use the abbreviations 

bo = ci-"ico 

bl = C2^2C0 

b2 = "l<C0 + C2>-(l4p2)Cl 

"l = Y2 ■ P2Y0 

H = pl% + 72) " (1+P2)Y1 

which, of course, have nothing to do with the ß.'s in Eq. (2. 23).   In the notation of 

Theorem 4 and Eq. (3.11),    N/Ü(C?; -V ) is D. .   Thus 
n    n n 

Bo " ^(bo " V = Di - piDo 

Bl = ^<bl - V = °2 " p2D0 

B2 = -7n(b2 - ß2) = Pl(D0 +D2) - (1+P2)D1 

(4.15) 
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The statements that the estimate £    and parameter £  respectively satisfy Eqs.(4.12) 

and (4.13) are 

2hJ2-2b|    +b   =0 
On In      2 

%t    -2ß^  + ß2 = 0 

after multiplying the latter by y' .   If we subtract these two equations and multiply 

through by   Nm   we find the equality 

[2b0en+o -bx] «Äen-«) = -2B0^
2
 + B^-B2 . (4. 16) 

According to Eq. (4.15) and Theorem 4, the right side tends to normality as n -* °° 

with a variance 

2   _ ..     „ v2     „4 

n 
lim^(2B^2 -Bx« + B2)2 = F4({). (4.17) 

As shown in the next paragraph, this is a polynomial of degree 4 in the unknown 

parameter (hence the notation), even though the limiting second moments of the D 's 

involve powers of 4 as high as 4.   We have already shown that |   —* £ with probability 

one.   This, together with Eqs. (4.11) and (4.6), proves that the random variable in 

Eq. (4. 16) multiplying the scaled deviation of interest converges to 

%^'ßi = V e>*°- 

It follows that Eq. (3. 7) is true, and the variance function 

(4.18) 

is finite provided Eq. (4. 7) holds.   (The correlations p   and p2 are not to be confused 
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2, ,2 
with the amplitude p in y' = \p   |A(0)|   .)   It remains to evaluate the numerator by 

substituting Eq. (4.15) into Eq. (4.17), and using the formula 

lim A) D   =</> , (a, b = 0,1,2) 
n   ^   a  b      ab 

given in Eq. (3.14).   The reduction entails several pages of rather frustrating algebraic 

manipulations, and we present only the highlights. 

We first express Eq.  (4. 17) as a sum of quartics in £  weighted by the 6 different 

fs.   We find 

F4(?) = ^00l^4 - • • ■ +P\\ +' •' + *22 U
2 - 2Pl« + p\]  . (4.19) 

The manner in which this is to be completed is clear from Table 2, reading ip's in 

place of (p's.   Now the first terms in ^QQ, ^Q1» ...yip      are proportional to 

1, £,...» (2£   -1) .   If we multiply the corresponding rows of the table by these poly- 

nomials and collect the coefficients of |  ,£,..., |   we find that they 

I4 I3 
*2 i1 i° 

^00 4p? -4PlP2 
i  2       2 

-4p1+p2 2P1P2 
2 

*01 -8Pl 4P2 4p1(2-f1o2) -2p2(l-tp2) -2Pl(l+p2) 

^02 
0 4>1 

-2(2p2+p2) 2Pl(P2-D *i 
<Pn 4 0 -4(l-ho2) 0 (*>/ 

*n 0 -4 4PX 2(l-^2) -2Pl(l+p2) 

^22 
0 0 

Table 2. 

1 

Coefficients of t 

-2Pj 

he quartic num 

2 

erator,Eq.(4.2C 
of the variance function. 
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all vanish. Thus, as was previously the case for Eq. (3.15), there is no contribution 

from f (0) ,   and the formula is indeed given by Eq. (4.19) with ip's replaced by   cp's 

(which we anticipated in forming the table).   These latter are independent of the 

parameter,  so working with the columns we obtain 

(4.20) 

(c) 
where in Table 2   y     = <p .is computed from Eq. (3.14). 

ao       ao Q 
One may obtain a neater expression by dividing through by a (0).   The coefficients 

in Eq. (4. 20) then become dimensionless functions of the correlations 

pk = cKk)/a(0) k = 0,±1,±2,... 

of {u }.   When this entire sequence is known, we can set up large sample confidence 

intervals on 6  in the same way as we did with Method I in Eq. (3.18).   Indeed, it 

suffices to replace Eq. (3.17) by 

x2(0 = 
4 

F ft) 

[2£2-4Pl!+l+p2]2(l-|2) 

It is not too difficult to compute Eq. (4. 20) when {u \  is a moving average of known 

order q if (as was suggested initially for motivational reasons) we take c=q+3.   Then 

the only contribution in Eq. (3.14) is from the k=0 term,  so that 

51 



^ib"3)= Cj2(0)(pb-a + PaPb) a,b = 0,l,2   . (4.21) 

We get the coefficients in Eq. (4. 20) by taking the "inner product" between the 

6-vector created with this formula and the respective colums of Table 2.   These 

turn out to be relatively simple functions of p   and p2: 

F4(«)/cr2(0) = 4(l-p^K4 - 4Pl(l-p2)£3 

-(3+4p2+p^-8p^2 

+ (Hp2)(l+p2-2p2). 

We note that there is no linear term. 

Comparison with Method I in the white noise case.     When {u }  in Eq. (3.1) is 
4 Z 

white the formula for F   becomes particularly simple.   It is worthwhile comparing 

our two methods in this special case.   We see that 

(c) 4 (c)        4 (c)        4 
%)=2cr *11 = a <?22   =(T    ' 

and that the other three <p%s with different subscripts are 0.   This is true independent 

of c,  so we want to use c=l (and not q+-3 = 3).    Setting p   = p   = 0 in Table 2, we ob- 

tain from Eq. (4.18) and Eq. (4. 20) 

4 4 2 
2        _a_    4^-3^+1 

v 2 2        2' {q'ZZ) 

T0 (24    +1) 

For Method I with c=l we have from Eq. (3.15) 
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2 4 2 
Vj   =   -y- <2|   + 1) (4.23) 

2 2 
where y  = \p  | A(0)|    is the same in both equations and varies with the operator £ . 

(We have given this before in Eq. (3. 23) for a particular £.)  The relative efficiency 

of Method I to Method II is the ratio 

V2 4 2 

•«■-+-    "    ~2
31   V * ' •     ' (4.24) 1        Vj <2£2+l)3 

2 
which we have plotted in Fig.  3.   This depends only on £  ,  so as a function of 6 it is 

symmetric about the midpoint ir/2.   The estimates in Eqs. (4.14) and (3.10) with 

these variance functions are 

II       C2+7CF^ r = n 4C1 

i      ci 

/<  

1 
(4. 25) 

where C,  again abbreviates C (h).   The additional amount of computation required by 
2 

Method II is evidently sufficient to overcome the knowledge of cr   utilized in Method I. 
2 

In case there is no filtering, i.e. z   is pcos(0t-<p) plus white noise with variance a , 

numerical values of the variance function for 0    can be obtained from Eq. (4.14) and 
n 

Table 1. Indeed, we have 
V?T(cos0)       A 4 4       . 

sm 9 p        Cüb    ö 4a 

in the notation of Sec. 3. 
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1 1 1 5 3 7 
4 8 2 8 4 8 

Fig. 3.   Efficiency of Method I relative to Method II, in the 
white noise case, given by Eq. (4.24). 
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The problem of how to pick c for Method II in the illustrative problems is an 

order of magnitude more difficult than it is for Method I.   We leave this question 

aside, since it can be resolved in any specific situation (in Problem 1 by using Eq. (3. 21)). 

When the noise is a moving average of order q, we can write down a simple 

estimate of £ which does not require knowledge of p   and p .   The price paid is that 

the variance function has q+2 infinites at the roots of T    Q(£) = 0.   The restriction 
q~rZ 

that £ does not fall in the neighborhood of one of these points is of a different nature 

and obviously      more severe than Eq. (4. 7).   Such an estimate is a limiting case of 

the one presented below, which illustrates the trade-off between knowledge of noise 

statistics and statistical accuracy.   It is included mainly for academic reasons. 

In generalization of Eq. (4.11) we have, as a limit with probability one as n —• «>, 

C*(h) = C (h) - o(h) - y (b) = J(0)T (!) 
n n u h 

where we now denote yAO) by 
6 

J(8) = |p    A(9)     >0. 

(4.26) 

(4.27) 

Using the abbreviations in Eq. (3.11), the limit sequence obeys the recursion 

^r2^h + Vr ° (4.28) 

which defines the Tchebichev polynomials, and upon which we based Method II.   Thus, 

for any fixed integer r s 1, 

*n = 

c!Li +c* i r+l       r-1 
2C* 

r 
(4.29) 

is a strongly consistent estimate of £, and it can be computed once we know the values 
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of (J(r-l),  (j(r) and cr(r-fl).    (For r=0,  Eq. (4.29) can be interpreted as Eq. (3. 10), 

and in this sense generalizes Method I.)   Let us assume that y   ? 0,  i.e. that  6 

does not coincide with one of the r roots of cosrö = 0: 

* ~5T * (i = 0, 1, ...,r-l). (4.30) 

Then 

Vn(|   -£) = 
'n  b/ 2C* 2y 

r r 

~-^<Pr«+Dr-l> r 

in the sense of equality of asymptotic probability distributions.   According to 

Theorem 4, the variance of the limiting normal distribution is 

v2(l)=-V(Wr+1 + 2Wr.1 + V     ^K 
4y 

r 

From Eqs. (3. 14),  (4. 27) and cos hö = T,(£) = yJUO) we have 
n n 

fc(e) (c) 
^ab = 8* W Vb +  *ab      • 

But according to Eq. (4. 28) 

1      . 2      . m 2    x       / 
7r+l+rr-l \2       2 

(r^_i+2Y^1V. ,+y    ,) =       57      =£    • 

Therefore 

„  2   vrr+l        rr+l r-1 'r-l'       V 2T 
4y x r 

r 

v2,»    8    fc<e),2
+      * &r+l + 2&r-l + v'l,r-l 

v(?) = 8 "TTflT1      1      2 • Jl ' J (Ö) 4T({) (4.31) 
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Unlike the situation in Methods I and II, the leading term in ip     contributes to the 
at) 

variance function of the estimate. 

For the choice c=l, we can write ^      in terms of the spectral density  f(o>) = f (co) 

given in Eq. (2. 26).   Using the inversion formula , 

a(k) = 2 I     cosko; f(w)dcj, 
J0 

we obtain for Eq. (3.14), after translating the index in the second sum by b, 

or 

(p^ =   >    a(k)[ a(k+b-a) + cj(k-to+a) ] 

(4.32) 
C* 2 = STT \    cosacücosbojf (w)dco . 
J0 

For the numerator of the second term in Eq. (4. 31) we therefore have, using once 

again the basic recursion, 

(1) ,9   (1) ,    (1) 
^r+l,r+l + 2^r+l,r-l + <Vl,r-l 

r77 2 2 = 87T \    [T      (cosw) + T    Jcosw)]   f (w)du> 

C* 2 2 
= 87T \    [2cosw T (cosu)]   f (w)dcü. 

J0 r 

Consequently, in terms of cosines, 

C11    2 2   2 
2 \   cos rwcos wf (co)dcj 

v2
(l) = 8, m^JL + .*_ is  

J(6) J2(0) cos rfl 

The special case in which u  = £w   is of interest.   Letting 
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R = 
2(7 

denote the signal to noise ratio, we have from Eq. (2.28) 

J(0) = 27rRf(0). 

Thus 

v2(i) = 1^2. 1 + 
f 1 J( 

2 2     2 
cos TOO cos w f (w)dc<; 

2?rR cos2rOcos20f2(0) 
(4.34) 

The ratio involving the integral will become smaller as the spectrum of the operator 

£   becomes more peaked at w=0, as one would expect. 
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5.     A DIFFERENT APPROACH 

At present there is considerable interest in the subject of statistical spectral 

analysis.   In particular, there is the problem of choosing and interpreting sample 

spectra which are computed from data modeled as a superposition of trigonometric 

terms additively disturbed by a 0 mean stationary noise process.   Such processes 

are asymptotically stationary (cf. (5. 2) below), and are said to possess a mixed 

spectrum.   The time series with which we have been dealing, 

z  = £[pcos(0t-<p)] +u   , 

is essentially a case in point.   Using existing spectral estimation theory, we will 

present in this section another method for estimating the unknown parameter  0 < 9 < 7r. 

Although the technique is computationally expensive, and not designed for real time 

usage, we include it for comparative reasons. 

Let us redefine our sample covariances by 

n-|k| 

n 
t=l 

t t+|k| 
k = 0,±l, . ..,±(n-l) 

cn(k) = s (5.1) 

0 k   s= n . 

We have without loss of generality assumed t =1, and we could (if desired) retain the 

integer c ^ 1.   According to Theorem 2 we have, in the notation of Eq. (4. 27), 

lim £c (k) = J(0)cosk0 + a(k) 

= C(k) 
(5.2) 

for every fixed k.   A(0) is the value of the transfer function of the linear operator £, 

and cr( •) is the (summable) covariance sequence of {u } with spectral density function 
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f(cü) = f (o>) given in Eq. (2. 26).   Thus, 

C(k) =J(0)cosk0 +  \     cosko;f(w)da; 
J-7T 

=   \     coskcddF(cj) 
J-7T 

where F( •) is the nondecreasing spectral distribution function of {z }  consisting of 

a jump at co=0. of magnitude J(0), plus the absolutely continuous spectral distribution 

function of {u } . 

Following  Parzen  (Ref. [ 9]), we consider the following function of the first n 

observations z_, z_,...   z : 
12 n 

S       (")= -±-     )     w(k/m)C (k)cosko; . (5.3) 
n, m l-K      L-i n 

|k|<m 

This is periodic in co with period 27r, and even about w=0 (as will be all functions of 

angular frequency, both random and nonrandom).   The integer m=m(n), called the 

truncation point,  is to be chosen (for reasons which will become clear) so that 

2 
m — °° m /n —• 0 

as n -* °°.   The function w(.) is called a  covariance  weight generator, and it is assumed 

to have the properties 

w(0) = 1        w(-x) = w(x) 

w(x) = 0       for all   |x| 2> 1 . 

Further conditions will be imposed on w(.) as we proceed.   The Fourier transform 

W   (w) = —i-    )     w(k/m) coskco, (5.4) 
m Z7T      // 

|k|<m 

60 



is called the spectral window.   It is said to be generated by the (aperiodic) function 

W(z)=-^-  \   w(x)coszxdx (-<*> < z < o°), (5.5) "sr I; 
because 

W   (w) = mW(mw) (5.6) 
m 

holds in the limit of large m. 

We first investigate the expectation of Eq. (5.3) for large sample sizes n.   From 

Theorem 1 it follows that 
n-|k| 

£C
n(k) =i   ),  [g0(t)g0(t+|k|)+ cr(k)] 

t=l 

=J (0)cosk0 + ( 1- -LL J cr(k) + 0(l/n), 

where the order term is independent of the lag k.   Thus, for fixed OJ, we have 

f S       (oo) = 4r^   )        w(k/m)cos k0 cos kw + —i-   )      w(k/m) ( 1 - — )cr(k)cos kw 
^   n, m 2ir    i_j ZTT   /_j \       n / 

|k| < m |k|<m 

+ 0(m/n) 

because w( •) is bounded.   Using Eqs. (2. 5) and (5. 4) in the first term we get 

<fS« ™<w> = J<0>i IW   (w-e) + W   (w-W)] + s (u) + 0(m/n) (5. 7) ^  n, m m m n 

where s (OJ) stands for the second sum.   We have 
n 
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f(w) - s (w) = -T-    >    [ l-w(k/m)]cr(k)coskcj 
n 27T 

|k| <m 

+     >      |k|a(k)cosku;+-—   >       a(k)coskcj (5.8) 

|k|<m |k| ^m 

= 1° + 2° +3° . 

Suppose now that 2 k  \v(k) \ < °° , so that 

1     V    2 
f"(<*>) = -"T"   /   k  °"(k)coskw 

k=-°° 

exists for all w.   Then ka(k) is certainly summable, and 

| 2° | =0(l/n) 

|3°|   * —^    ")     k2|o-(k)| =  o(l/m2)    . (5.9) 

|k|^ m 

Suppose, farther, that the weight generator is such that 

1 - w(x) |   | 
lim     zr-t- =a      (0< |a|<°°). 
x-0      x 

Most w's will have at least a local maximum at 0,  so we might as well consider  a > 0 

(although this is not necessary). In any case, there exists an integer m' which depends 

on m in such a way that m' —- », m'/m -* 0, and 

I 1- w(x) - ax    I < —-  for all   |x| < —   . 1 '2, •   '      m 
m  logm 
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We rewrite the leading term in Eq. (5. 8)  as 

a        V       2 
1° =  —    >      k  <7(k)coskw 

2*m    if/     , k <m' 

+ -y- y       [l-w(k/m)-a(k2/m2)] (j(k)cosko; 

|k|<m' 

1         V          l-w(k/m)   . 2   _. 
+■ 2     /  2     2        o-(k)coskw 

27rm      .^LK        k /m 
m':£|k|<m 

=  4° + 5° + 6° . 

i i     2 Since   | l-w(x)|/x    is bounded for all x by(say) B, 

5°|<   - k(k)|    =  o(l/m2) 

Finally, with regard to 4°, we have 

a    V        2 
lim   -T—    >       k  (j(k)coskw = -af'(cü) . 

m' -^ °°       i. |       . 
|k|<m' 

2 
Multiplying Eqs. (5. 8) - (5.11) through by m , there results 

2 
lim m   [ s (co) -f(co)] = af"(a>) 
n n 

2 
from our supposition that m /n —* 0.   We therefore have for Eq. (5. 7) 

(5.10) 

2,m2logm      |ky<m, (5n) 

|6°| < —\-   £ k2|cr(k)| =  o(l/m2)   . 
27rm       /^i, \^ m' ^ k < m 
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fs       (w)=J(0)i[W   (w-0) + W   (w-W)] ^   n, nv        JX     2     m m 

af"(oo) 
+ f(w) + 2     + 0(m/n) 

m 

(5. 12) 

2 
plus terms of smaller order than 1/m . 

Let us now restrict attention to weight generators w( •)  which are twice 

differentiate throughout some neighborhood of the origin.   Then, after inverting 

Eq. (5. 5) and doing the differentiations, we obtain 

oo 

= -iw"(0) = J f   z2W(z)dz   . 

3 
We must have z W(z) = 0(1) as   |z| — °°, for otherwise  the integral would not be 

finite.   There results from Eqs.  (5.6) and (5. 12) 

(f S       (co) = | W(0) J(w)m + f(w) + o(l), 
^   n, m 

J(w)    = 

ip2\A(e)\2        ifco=e 

(5. 13) 

otherwise 

2 
The order term gives to 0 as the slower of 1/m    and m/n (usually the former). 

Consider next sequences m    and m9 going to infinity with n in such a way that 

each is O(N/II).   Then it can be shown by working in the frequency domain (Eq. (5. 10) in 

Ref. [9]) that 

nCov{S (co), S ((a)} = 2TTW
2
(0)J(CJ) f(w)m1m0 n,m. n,m„ l   i 

1 l (5.14) 
OO 

+ 27rf2(cü)m1m2   \    W(m z) W(m2z)dz + o(l). 
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In particular, for the variance at 0 < w <?r, we have 

2 1 
VarS       (w)  m 27rW2(0)J(o;)f(a>) — + f2(w) f w2(x)dx — (5.15) 

n,m n J , n 

which goes to 0 as n — °°. 

The method suggested in Ref. [9] for estimating, at a prescribed w, the value of 

the (possibly zero) jump as well as the value of the spectral density function is based 

on choosing a small number of truncation points m   < m   < m   < m   (say).    Writing 

y. for S        (o>), a for |W(0)](o>) and ß for f(o>), Eq. (5. 13) gives in large samples 
l n, m. 

l 

a "regression model" 

y. = arm. + ß + e. 

with correlated "errors".   One can thus consider the computation of the Least Squares 

estimate of OL and ß\ that is to say, locating the minimum of 

4     4 

1 %*a.ßbimamimMramrß) (5-16) 

i=i j=i 

with respect to the unknown parameter pair.   Here   a denotes the ij     element of 

the inverse of the matrix of quantities   (fe.e. derivable from Eq. (5.14). 

But in the problem as originally posed, we assume there exists a line at some 

unknown   6 .   We wish to estimate this angular frequency; there is no interest in the 

continuous spectrum of the disturbing process  {u }.   For such situations, the following 

procedure was introduced as a method for estimating the absolute maximum of a 

spectral density function (Gardner, Ref. [4]).   However, it can be applied to the 

present situation, and, in fact, to mixed spectra in general where there are a finite 

number of lines interior to (0, it). 

Let us replace m by m+1 in Eq. (5.3), and denote the coefficients by 
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yk)H 

w( ) C(k) m+1       n 

0 

for    k   ^ m 

for    k I > m . 

The weight generator w( •), in addition to the properties previously cited, is to have 

a transform in Eq. (5. 5) which is positive at every point of the real line.   Then 

S       (o)) is nonnegative on (0,7r), because it can be written as a (scaled) convolution 
n, m 

of W( •) with the positive-valued periodogram of the data z , z , ... , z  .    Fix (large) 
j-    ** n 

values of n and m.   Then 

U n, m Z7T 

has an absolute maximum at some point  0*: 

^n(k) cos ko; (5.17) 

k ^m 

^(w) < *o(0*) 

for all cü ^ 0* (the probability being 0 that there will be two or more such points).   We 

now iteratively generate Fourier coefficients ij).(') for j = l,2,...,J by means of 

J,    Vi(h)Vi(hfk) 

ih|£2J-: m 
#j(k) = 

I *U(h) 
(|k|<2jm).    (5.18) 

|h|^2j"1m 

For each j, this is even in k and vanishes for all integer lags  |k| > 2 m.    Further- 

more, the ip.( •) are the Fourier coefficients of a nonnegative function 
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¥j(w) =  2^ 2,      ^.(k) coskw  . 

|k|^2jm 

Using the convolution formula, it is not difficult to see that 

2J 
*0(w) 

* (co) =      , (5-19) 
.*  J 

*0(A)dA r 
-7T 

which is valid for any w.   Dividing both sides by ^ (Ö*), we see that the ratio tends 

to 0 as J —• °°, unless w=0*, in which case the limit is 1.   Therefore 

lim ip (k) = coskö*        . (5.20) 
J —- °° 

The iteration in Eq. (5.18) can provide an arithmetic scheme for approximating 

the mode of the estimate in Eq. (5.3), which does not entail its calculation over 

a grid of frequencies.   One way to devise a method for "extracting" an approximation 

to  9* from the ^ 's, when J is finite, is to consider the expression 
J 

$ (k) = a (k)cosk0*+b (k) 

for k = 0, 1,..., K.   In view of Eq. (5. 20), coefficient sequences (which of course 

depend on Eq. (5.17)) can be found such that 

lim im b (k) = 1 - lim a (k) = 0     . 
J J 

For a proper choice of K = o(2 ) the approach can be made uniform in the lag variable 

k.   Suppose, further, that we are given a real number le(0, 1), which also depends on 

67 



^ (•) and J but not on 0*.   Now let v be the number of "£-threshold axis crossings" 

in the series 

^(0) = 1,    yi),    *(2),...,0(K) . 

That is to say, v is the number of times the series goes from a value > I(resp. < I) 

to a value <t(resp. > I).   The ratio 

?-f (5.21) 

in [ 0,7T]   then converges to 0* as J — « , for an appropriate definition of £ . 

We can estimate 0 with Eq. (5.21) because the random variable 0* = 0*       is a 
n, m 

consistent estimate of 0 as n -* °°.   In view of 

|0*-0| < 10*-0* | + |e* - 0 |   , 

the problem centers around properly relating the number of iterations J and the sample 

size n in order to (statistically) balance the rates at which the bounds go to 0.   The 

design formulae given in Ref. [ 4]  are not applicable because they are derived under 

the assumption that lim £s       (w) is sufficiently differentiable.   If computation time 

is not a serious consideration,  it appears worthwhile investigating the above method 

for the line case in Eq. (5.13). 
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