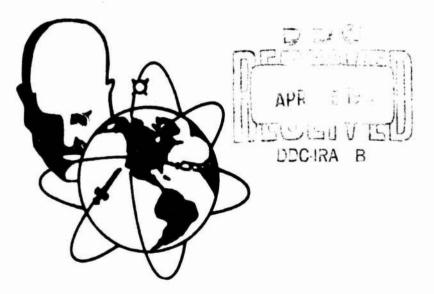
AD 613294

ESD-TDR-65-76

SPIRAL DECAY AND SENS CALIBRATION DIFFERENTIAL CORRECT. PROGRAMS

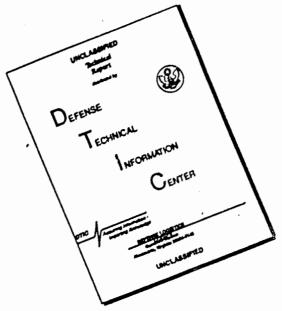

Volume III. Programmer's Manual

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-65-76

FEBRUARY 1965

COPY T. G. Gaa Q. C. G. Hilton HARD COPY \$. P. A. VanderStucken L. G. Walters MICROFICHE

496L SYSTEM PROGRAM OFFICE ELECTRONIC SYSTEMS DIVISION AIR FOPCE SYSTEMS COMMAND UNITED STATES AIR FORCE L. G. Hanscom Field, Bedford, Massachusetts



Prepared under Contract No. AF 19(628)-3377 by Aeronutronic, a Division of Philco Corporation, Newport Beach, California

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. When US Government drawings, specifications or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwide, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

1

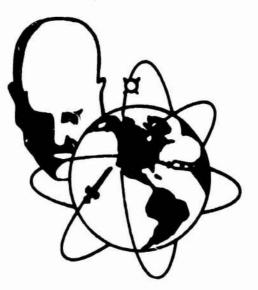
DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies from Defense Documentation Center (DDC). Orders will be expedited if placed through the librarian or other person designated to request documents from DDC.

Copies available at Office of Technical Services, Department of Commerce.

ESD-TDR-65-76

SPIRAL DECAY AND SENSOR CALIBRATION DIFFERENTIAL CORRECTION PROGRAMS


Volume III. Programmer's Manual

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-65-76

FEBRUARY 1965

T. G. Gaa C. G. Hilton P. A. VanderStucken L. G. Walters

496L SYSTEM PROGRAM OFFICE ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE L. G. Hanscom Field, Bedford, Massachusetts

Prepared under Contract No. AF 19(628)-3377 by Aeronutronic, a Division of Philco Corporation, Newport Beach, California

FOREWORD

This Technical Documentary Report has been prepared in four volumes, as follows:

Volume	Title	Contractor's Publication Number
I	Program Development	v-3005
īI	Operating Instructions	U-3006
III	Programmer's Manual	U-3007
IV	Operations Summary (U)	S-2990

Publication of this technical documentary report does not constitute Air Force approval of its findings or conclusions. It is published only for the exchange and stimulation of ideas.

CONTENTS

SECTION		PAGE
1	INTRODUCTION	1
2	PROGRAM DESCRIPTION	2
	2.1Functional Description2.2Flow Diagrams.	2 4
3	MEMORY ASSIGNMENTS	7
	 3.1 Symbolic Names and Definitions	7 24 64
4	SUBROUTINE DESCRIPTIONS	65
	4.1 Alphabetical Index to Subroutine Descriptions4.2 Subroutine Descriptions	65 69

APPENDIX

I

I

.

. ...

. .

- ---

- p.

. .

. .

]

1

F

ľ

ľ

ſ

•

ľ

Į

Ĩ

ADAMS	-BASHFORTH INTEGRATION	231
I-1	R-K Procedure for Starting	231
I-2	A-B Sixth Order Integration	233
I-3	A-B Interval Control and Modification	235
I-4	Special Consideration for Y	236
I-5	Flow Charts and Work Region Description	237
I-6	How to Use Adbash	246
I-7	Derivative Subroutine	246
I-8	Initialization	247
I-9	Sample Flow Chart	249
I-10	To Use Runge-Kutta Integration Only	250

ILLUSTRATIONS

FIGURE PAGE 1 Spiral Decay Basic Functional Diagram 5 2 Spiral Decay Main Flow Diagram 6 . . . 3 Sensor Weight and Bias Tape Format 62 4 Binary Ephemeris Tape Format 63 5 64 Memory Storage Diagram 6 CNTRL Flow Diagram 103 7 148 8 PCONTRL Flow Diagram 178

APPENDIX

I-1	Adams Bashforth Flow Diagram	237
I-2	ADBASH Application	249

iv

SECTION 1

INTRODUCTION

This document describes, from a programmer's view, the coding, function, and logic of the Spiral Decay computer program. The Spiral Decay program operates in the SPACETRACK B-3 Semi-Automatic Programming System; and will accept sensor observations, assign weights and biases to the data, perform a differential correction and predict past or future position and velocity.

Section 2 of this document contains a functional description and basic flow charts of the program. Section 3 defines symbolic names, data and tape formats, and memory assignments. A detailed description of each subroutine used by Spiral Decay is given in Section 4. The Appendix describes the Adams-Bashforth integration routine which is used by Spiral Decay for ephemeris integration.

SECTION 2

PROGRAM DESCRIPTION

2.1 FUNCTIONAL DESCRIPTION

The Spiral Decay Program contains three main functions. These are (1) OBSERVATION WEIGHTING, (2) DIFFERENTIAL CORRECTION, and (3) PREDICTION. This program is designed to operate in the Schedule Tape Mode under control of the B-3 Executive Program.

a. Observation Weighting

The Observation Weighting function of the program is to apply corrections (biases) to the observational data used for differential correction, and to apply statistical weights to the data used in the correction procedure.

The Spiral Decay Program must be supplied with weight and bias information for each observation. If none is available, that observation will be omitted from the differential correction.

Within Spiral Decay, there is room for weight and bias data for thirty sensors. There are approximately fifteen sets of sensor weighting data assembled within Spiral Decay. The weighting data contained in Spiral Decay may be changed and/or increased by introducing a "weight tape" on logical tape 7.

b. Differential Correction

The differential correction function accepts observational data for which weight and bias information is available, and performs a weighted differential correction on the crbit element set. Ephemeris computation is carried out in a special perturbations variation-of-parameters formulation. This formulation numerically integrates the perturbative accelerations influencing the parameters of an instantaneous two-body reference orbit.

The numerical integration is performed by a sixth-order Adams-Bashforth integration routine. This routine works strictly in a variable step size mode, based on error control parameters.

Perturbations handled in the program include: zonal,tesseral, and sectorial harmonics, atmospheric drag, and solar radiation pressure. These effects may be controlled to incorporate any combination in a particular case.

A correction can be obtained for any or all of the six orbital elements, and may also include the satellite mass. This latter parameter actually represents a correction to the ballistic parameter, C_A/m , where C_D is the drag coefficient, A is the satellite cross-sectional area, (m^2) and m is the satellite mass (kg.).

The correction process will repeat up to twice the maximum number of iterations, as specified by the user, or until the root-mean-square (RMS) of the accepted residuals has converged. Accepted residuals are those that are not rejected on the basis of an absolute maximum or a relative check based on a multiple of the residual RMS. When the correction process has converged, the epoch may be updated to any revolution number or time.

c. Prediction

The prediction function of the program is used to obtain future or past position and velocity data from an input element set or a corrected element from the differential correction section.


Ephemeris computation in the prediction function is carried out in the same manner as in the differential correction, with one addition: ephemeris integration, while a satellite is in the final decay stage, is performed using the Cowell equations. The Cowell integration uses a fourthorder Runge-Kutta integration scheme instead of Adams-Bashforth because of the need for frequent interval change.

In addition to a prediction ephemeris listed on hard copy, Spiral Decay can: (1) produce a binary ephemeris tape to be used with the XYZLA program; (2) leave in core five time points for use in a subsequent GIPAR run.

2.2 FLOW DIAGRAMS

The following two pages display the functional and subroutine level flow diagrams for Spiral Decay. Additional flow diagrams, written in further detail, are included in the individual subroutine descriptions in Section 4 and the Appendix of this manual.

The following symbol conventions have been adopted:

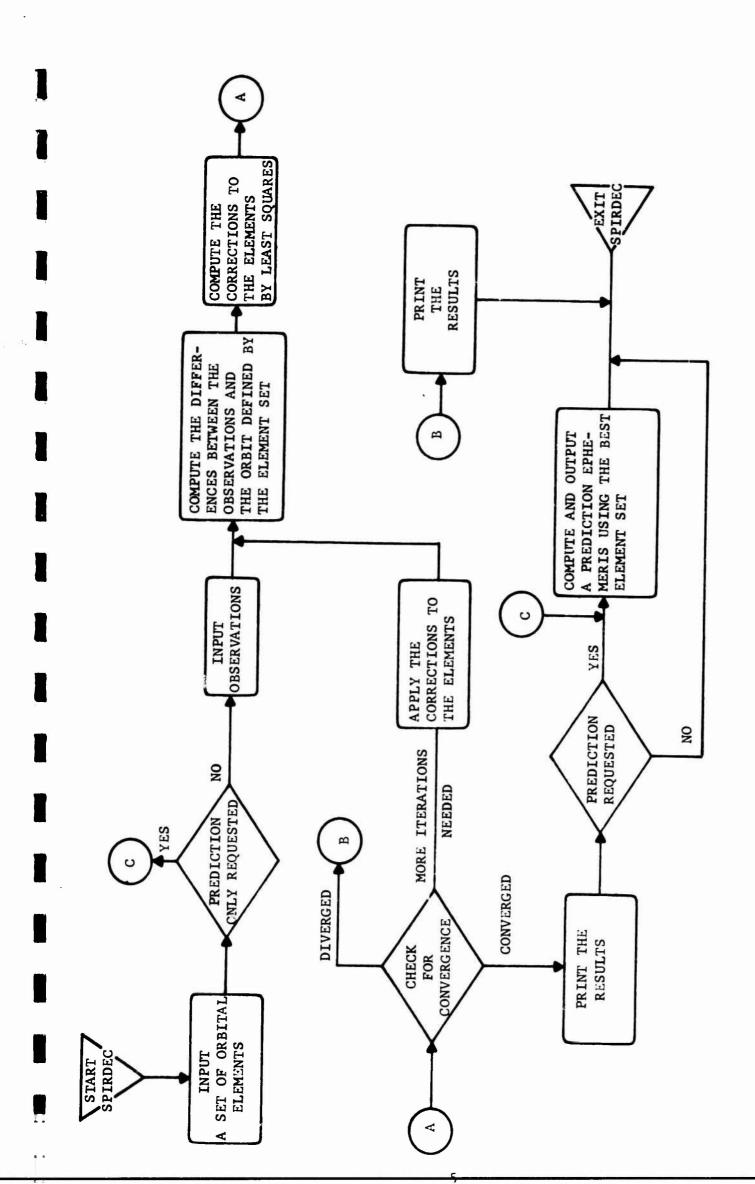
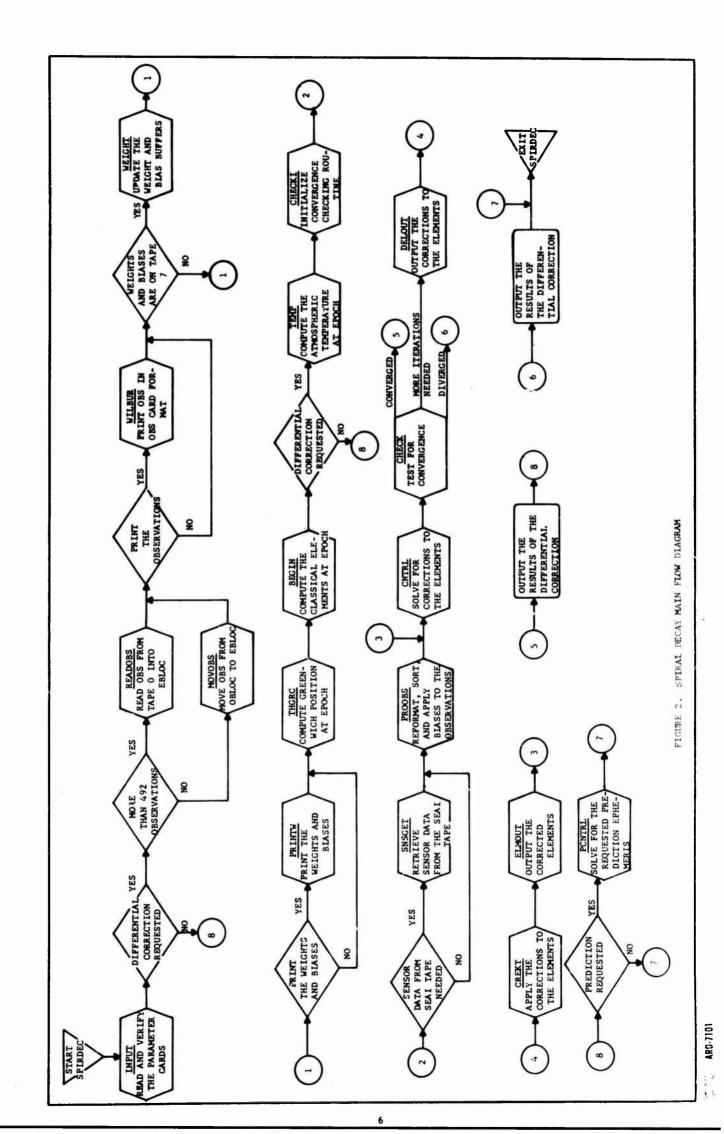



FIGURE 1. SPIRAL DECAY BASIC FUNCTIONAL DIAGRAM

SECTION 3

MEMORY ASSIGNMENTS

3.1 SYMBOLIC NAMES AND DEFINITIONS

This section provides a listing and definitions of the symbolic names which have been created for the Spiral Decay Program, and are relative only to the coding of the program. The symbolic names which refer to address constants, input/output parameters, command constants, and temporary storage will not be listed in this section, but may be located directly in the code edit of Spiral Decay.

Definitions of some of the symbolic names contain mathematical symbols which are relative to the formulation of Spiral Decay. Definitions of these mathematical symbols may be found in Appendix VII, Volume 1.

The symbolic names which appear in the SPS Master Assign Deck may be referenced in either Aeronutronic report U-1691, Section 5-69, or System Development Corporation report TM-LX-38/000/00, Appendix E.

NAME	CELLS	DEFINITIONS
A11	49	Least Squares Matrix (N x N)
ABRHO	1	$(\mathbf{a} \cdot \mathbf{B} \cdot \mathbf{\rho}_{\pi})/2$
ACCCNT	1	Accepted Residual Counter
ADDT02	1	$\frac{1}{2}$ Integration Step Size
ADDT03	1	$\frac{1}{3}$ Integration Step Size
ADLLEPS	1	Criteria for Increasing Integration Step Size
ADPERRK	1	Ratio of Runge Kutta to Adams Bashforth Integration Steps
ADP	1	Control Flag for Integration Routine
ADRK STP	1	Indicator for Runge Kutta Integration
ADTEST	1	Integration Error
ADXR1	1	
ADXR 3	1	Index Register Storage
ADXR 5	1	
AE	1	a_{e} , Earth Radius = 1
ALFBUF	7	Buffer of Powers of α , $\alpha = -\frac{f(\sin^2 i)\cos 2w}{2h}$
ALFLG	1	lpha Residual Rejection Indicator
ALSUN	1	α_{0} = Right Ascension of Sun
AOVH	1	a/H
AP	1	Planetary Magnetic Index

NAME	CELLS	DEFINITIONS
ASCON2	1	6378165 = meters/e.r.
ASTK	1	One Word of *******
AXGR	1	a`x
AXO	1	a x _o
AXPRINT	1	a in Output Format
AX	1	a x
AYGR	1	a`y
АЧО	1	a y _o
AYPRINT	1	a in Output Format
AY	1	a y
AZGR	1	a`z
A Z O	1	a z _o
AZ	1	a z
B11	7	Least Squares Matrix (1 x N)
BFLAG	1	Indicator for Inclusion of Bulge Perturbations
BIASAD	1	Address of Bias Buffer
BIBUF	181	Sensor Bias Buffer
BNADR	1	Address of BNBUF and BNNBUF
BNBUF	7	Buffer of $(2n - 3)$ B_n , $B_n = Bessel functions$ $n = 0, 1, \dots 6$
BNNBUF	7	Buffer of $(2n - 1)$ B, B = Bessel functions n = 0, 1,6

Ĩ

Ī

I

1

NAME	CELLS	DEFINITIONS
BOO	56	Buffer Saving New Epoch Elements and ICK Buffer
BPRINT	1	B in Output Format
В	1	Balîistic Parameter
BTFLAG	1	Indicator for Binary Tape Output
BT	1	Output Time for Binary Tape
BUF	7	Temporary Buffer for Computing Correlation Matrix
CAPD	1	D
CAPR	1	R = Magnitude of Vector to Sensor
CAPX	1	x
CAPY	1	Y Location of Sensor
CAPZ	1	3
CARDS	1	Indicator for "P Card" Input
CDLTAXN	1	C Da xn
CDLTAYN	1	C ∆a yn
CDLTN	1	$c\Delta_n/n$
CNFLAG	1	Indicator for n Only Correction on First Interation
COMPARE	1	Counter for Subroutine MARTINI
CON1	1	$-(\sin^2 i)f/2h$
CONBUF	128	Storage for "P Cards"
CONTEST	1	Criteria for D. C. Convergence

•

NAME	CELLS	DEFINITIONS
CORRDY	1]	Temporaries used by CORRD subr.
CORRDZ	1 🖌	temporaries used by conce subr.
COS20M	1	Cosine 2 W
COSEO	1	Cosine e + w
COSI	1	Cosine i
COSOM	1	Cosine w
COSO	1	Cosine Ω
Cosph	1	Cos Ø
COSPSI	1	Cos 🕴
Costh	1	Cosine 0
COSU	1	Cosine u
COUNTLR	1	Number of Elements to Correct - Left and Right Address
COUNTL	1	Number of Elements to Correct - Left Address
COUNTLX	1	Counter for MATRIX Subroutine
COUNTR	1	Number of Elements to Correct - Right Address
CRAIG	1	Indicator for Printed Observations
CSALS	1	Cos $\alpha_{_{\mathbf{G}}}$
CSNM	16	Tesseral Coefficient Buffer
DCFLAG	1	Indicator for a Differential Correction
DDGR	1	D
DELTAQ	1	\mathbf{p}^{Δ}
DENOM	1	$1 + \sqrt{1 - e^2}$

+.

DFLAG1Indicator for Inclusion of Drag PerturbationsDGR1 D^{\bullet} DLFLG1 δ_{\bullet} Residual Rejection IndicatorDLSUN1 δ_{\bullet} = Declination of SunDLTB1 $\Lambda_{B/B}$ DOTPRX1 $\Lambda_{B/B}$ DOTPRY1 $\Lambda_{B/B}$ DOTPRZ1Temporaries for DOTPR SubroutineDOTPRZ1Indicator for Delta Q CheckDQN1Maximum Delta QDRSDL1 Λ ResidualDUTMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2 v^{\bullet}$ ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE01 e_{o} EPS11 e_{o} EPS11 $e = 0.00001$ F10AV1Average Solar Radiation ConstantF101Solar Radiation Constant	NAME	CELLS	DEFINITIONS
DLFLG1 ξ Residual Rejection IndicatorDLSUN1 δ_{e} = Declination of SunDLTB1 $\Lambda_{B/B}$ DOTPRX1 $\Lambda_{B/B}$ DOTPR31 $\Lambda_{B/B}$ DOTPR31Temporaries for DOTPR SubroutineDOTPR31 $\Lambda_{B/B}$ DQFLAG1Indicator for Delta Q CheckDQN1Maximum Delta QDRSDL1 $\Lambda_{Residual}$ DUBMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2 v^{\Lambda}$ ECOSV1 $p/r - 1$ ENDT1 $Convergence Criteria for Iteration on Keplet'sEquationE01e_{o}EPS11Convergence Criteria for Iteration on Keplet'sEquationEPS11e = 0.00001F10AV1Average Solar Radiation Constant$	DFLAG	1	Indicator for Inclusion of Drag Perturbations
DLSUN1 δ_e = Declination of SunDLTB1 $\Lambda_{B/B}$ DOTFRX1 $\Lambda_{B/B}$ DOTFRX1Temporaries for DOTPR SubroutineDOTPR31Indicator for Delta Q CheckDQN1Indicator for Delta QDRSDL1 Λ ResidualDUBMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2 $ ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011 $U = Used in Keplers Equation$ E01 e_o EPS11Convergence Criteria for Iteration on Keplet's EquationEPS1LON1 $e = 0.00001$ F10AV1Average Solar Radiation Constant	DGR	1	D
DLTB1 $A B_{B}$ DOTFRX1Temporaries for DOTPR SubroutineDOTFR31Temporaries for DOTPR SubroutineDOTFR31Indicator for Delta Q CheckDQFLAC1Indicator for Delta Q CheckDQN1Maximum Delta QDRSDL1 A ResidualDUBMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2 v^2$ ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011U = Used in Keplers EquationE01 e_0 EPS11Convergence Criteria for Iteration on Keplet'S EquationEPS1LON1Average Solar Radiation Constant	DLFLG	1	Residual Rejection Indicator
DOTTPRX1DOTTPRY1DOTTPR31DOTTPR31DOTTR31Indicator for Delta Q CheckDQN1Indicator for Delta Q CheckDQN1Maximum Delta QDRSDL1Image: State Stat	DLSUN	1	δ_{Θ} = Declination of Sun
DOTPRY1Temporaries for DOTPR SubroutineDOTPR31Indicator for Delta Q CheckDQN1Indicator for Delta Q CheckDQN1Maximum Delta QDRSDL1 \land ResidualDUBMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2$ v ² ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011 $U = Used$ in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Keplet's EquationEPSILON1 $e = 0.00001$	DLTB	1	Δ B/B
DOTPR31DQFLAG1Indicator for Delta Q CheckDQN1Maximum Delta QDRSDL1 \wedge ResidualDUBMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2 v^{\chi}$ ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011 $U = Used$ in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1Average Solar Radiation Constant	DOTPRX	1	
DQFLAG1Indicator for Delta Q CheckDQN1Maximum Delta QDRSDL1 ℓ ResidualDUBMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2 $ ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011 $U = Used$ in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1 $e = 0.00001$ F10AV1Average Solar Radiation Constant	DOTPRY	1	Temporaries for DOTPR Subroutine
DQN1Maximum Delta QDRSDL1 k ResidualDUBMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2 v^k$ ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011 $U = Used$ in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1 $e = 0.00001$ F10AV1Average Solar Radiation Constant	DOTPRZ	1	
DRSDL1 \bigwedge ResidualDUBMAT36Matrix for Increasing Integration Step SizeE2VGR1 $-e^2 v^{v}$ ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011U = Used in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1 $e = 0.00001$ F10AV1Average Solar Radiation Constant	DQFLAG	1	Indicator for Delta Q Check
DUBMAT36Matrix for Increasing Integration Step Size $E2VGR$ 1 $-e^2 v^*$ $ECOSV$ 1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011U = Used in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1 $e = 0.00001$ F10AV1Average Solar Radiation Constant	DQN	1	Maximum Delta Q
E2VGR1 $-e^2 v^3$ ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011U = Used in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1 $e = 0.00001$ F10AV1Average Solar Radiation Constant	DRSDL	1	8 Residual
ECOSV1 $p/r - 1$ ENDT1End Time for Printed Prediction Interval OutputE011U = Used in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Keplet's EquationEPSILON1 $e = 0.00001$ F10AV1Average Solar Radiation Constant	DUBMAT	36	Matrix for Increasing Integration Step $Size$
ENDT1End Time for Printed Prediction Interval OutputE011U = Used in Keplers EquationE01eoEPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1e = 0.00001F10AV1Average Solar Radiation Constant	E2VGR	1	$-e^2$ v
OutputE011U = Used in Keplers EquationE01 e_o EPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1 $\epsilon = 0.00001$ F10AV1Average Solar Radiation Constant	ECOSV	1	p/r - 1
E01 e_o EPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1 $\epsilon = 0.00001$ F10AV1Average Solar Radiation Constant	ENDT	1	
oEPS11Convergence Criteria for Iteration on Kepler's EquationEPSILON1 $\epsilon = 0.00001$ F10AV1Average Solar Radiation Constant	E01	1	U = Used in Keplers Equation
EquationEPSILON1 $\epsilon = 0.00001$ F10AV1Average Solar Radiation Constant	EO	1	e o
F10AV 1 Average Solar Radiation Constant	EPS1	1	•
	EPSILON	1	$\epsilon = 0.00001$
F10 1 Solar Radiation Constant	F10AV	1	Average Solar Radiation Constant
	F10	1	Solar Radiation Constant

• •

NAME	CELLS	DEFINITIONS
FIRST	1	Forward or Reverse Integration Indicator
FOBHR	1)	and integration indicator
FOBMIN	1	Floating Point Hour, Min., Sec. in Output Format
FOBSEC	1)	
FTFLAG	1	Indicator for Prediction by Revolution or
FX	1	Time Temporary Used by DIVDIF Subroutine
GAMMA	1	Reflectivity Constant
GE	1	g - With Zonal and Tesseral Effects
GE Z	1	g _e - With Only Zonal Effects
GITADR	1	Address of GIT Buffer
GIT	25	GIPAR Output Time Buffer
GS	1	g _s - With Zonal and Tesseral Effects
GSZ	1	g _s - With Only Zonal Effects
GU	1	g _u - With Zonal and Tesseral Effects
GUZ	1	g _u - With Only Zonal Effects
H10VZ	1	250,000 Ft. in Earth Radii
H1	1	500,000 Ft. in Earth Radii
HAFMAT	36	Matrix for Decreasing Integration Step Size
HEAD5	6	Storage for BCD Page Heading
HEDLIN1	1]	
HEDLIN	1 🖌	Parameters for Prediction Output Control
HSU B QP	1	Perigee Altitude (km) for Output

NAME	CELLS	DEFINITIONS
HSUBS	1	1/H _p
HXPRINT	1	h in Output Format x
HYPRINT	1	h in Output Format y
HZPRINT	1	h in Output Format
ICK	47	Interpolation Buffer
INELT	9	Initial Element Buffer
JBSCHNO	1	Input Option - From SPSJOB Card
JMPMOD	1	Jump Table Modifier in CDLTB Subroutine
JNSAVE	1	Save Index Registers
КАРРВ	1	B Modifier (Altitude Dependent)
карра	1	Upper Bound for B Modifier
KEORTM	1	.07436662
KNTRL	1	Indicator for Elements Being Corrected
LCOUNT	1	Counter for MARTINI Subroutine
LFLAG	1	Output Indicator for East or West Longitude
LINECNT	1	Current Line Position on Page
LINECT	1	Line Counter for RESOUT Subroutine
LJBUF	7	Temporary Storage for JNDRAG Subroutine
LJDC	1	$(y/2) \cdot B \cdot \rho_{\pi} \cdot B \cdot 6378165$
LLO	1	l _o
LNIOBE	1	$\frac{1}{10}$ LOG _e 10
LOGRHOH	1	$Log \rho (h,T)$
LOLIMIT	1	Minimum Altitude Allowed for Drag Perturbation

ŧ

NAME	CELLS	DEFINITIONS
LOLMT	1	Flag for Decay Corridor
LPREV	1	Temporary in LPMCD Subroutine
LPRINT	1	L in Output Format (deg.)
LPSUB	1	+ OR - 2 ^{TT} Used in LPMOD Subroutine
LPTEMP	1	Temporary in LPMOD Subroutine
LSQBUF	14	Buffer for Matrix Inversion
lsqx	7	Buffer of Delta Elements
LTBUF	6	"P Card 4" Parameter Storage
MARTSAV	1	Index Register Storage
MATRIXB	28	Buffer for Correlation Matrix
MAX	1	Maximum Acceptable Residuai
MCOUNT	1	Counter for Matrix Subroutine
М	1	Counter in MARTINI Subroutine
MS2ERK	1	.00012649618 - Conversion from m/s to er/k
MU	1	$\mu = 1$
NEWPAGE	1	Line Counter for Page Control
NICOLET	200	Atmospheric Density Table
NPRFAC	12	Buffer of $1/(n + r)$; $0 \le (n + r) \le 10$
N	1	Counter in MARTINI Subroutine
NU	1	υ
NUX	1	v x
NUY	1	vy

O(1.5)

ŧ

1

NAME	CELLS	DEFINITIONS
NU Z	1	υ z
OANDE	1	Address of OBLOC and EBLOC
OBDAY	1	Day Number in BCD Output Format
OBFLG	1	Indicator of Observed Quantities
OBMO	1	Month Number in BCD Output Format
OBSLEFT	1	
OBSPROC	1	Counters for PROOBS Subroutine
OBSREJ	1	
OBYEAR	1	Year Number in BCD Output Format
OCOUNT	1	Temporary Counter
OLDRMS	1	RMS of Previous D.C.
OLDUZ	1	Previous Value of uz
OLINCNT	1	Line Count of Printed Observations
OPRTESQ	1	$1 + \sqrt{1 - e^2}$
ORGDAY	1	Days from Beginning of Year to Epoch
ORMS	1	RMS of 1st Pass for Output
OVALA	1	Output Control for WILBUR Subroutine
P10LADR	1	10 Scaled T15
P1LADR	1	1 Scaled T15
P2LADR	1	2 Scaled T15
P3LADR	1	3 Scaled T15
P4LADR	1	4 Scaled T15

NAME	CELLS	DEFINITIONS
P55LADR	1	55 Scaled T15
P5LADR	1	5 Scaled T15
P6LADR	1	6 Scaled T15
P8LADR	1	8 Scaled T15
PAGENO	1	Output Page Counter
PAPRINT	1	Period - for Output
PAP	1	Planetary Magnetic Index - for Prediction
PARTA2	1	
PARTA3	1	Temporaries for CDLTB Subroutine - Contain
PARTA	1	Segments of $\delta a / \delta t$ and $\delta e / \delta t$
PARTE2	1	
PARTE3	1	
PARTE	1 }	
PB	1	Ballistic Parameter - for Prediction
PBUF	6	Buffer of P_n , $n = 0, 1,, 5$
PDAY	1	BCD Day
PFIOAV	1	Average Solar Radiation Constant for Prediction
PF10	1	Solar Radiation Constant for Prediction
PFLAG	1	Indicator for Prediction Output
PGAMMA	1	Reflectivity Constant for Prediction
PHI	1	Ø
РКАРРА	1	Lower Bound for B Modifier - for Prediction

NAME	CELLS	DEFINITIONS
POBUF	27	Buffer for Output of Observations
POVH	1	p/h
PPBUF	6	Buffer of P_n' , $n = 1, \dots, 5$
PPPFLAG	1	Indicator for a Prediction
PRDSAV	1	Indicator for New Epoch Elements
PREDBF	11	Temporary Buffer
PREDFLG	1	Indicator for Prediction by Time or Revolution Number
PREV	1	Revolution Number for Prediction Output
PRTADR	1	Address of PRT Buffer
PRTIME	2	Revolution Number or BCD Date of New Epoch (D.C)
PRTIM	2	Revolution Number or BCD Time of Final Epoch (Prediction)
PRT	19	Buffer of Prediction Intervals for Output
PTCOUNT	1	Counter of Interpolation Points
PW	1	Indicator to Print Weights and Biases
PYEAR	1	BCD Year
QQ	8	Temporary Storage
RANGE	1	ρ
RBUF	9	Buffer of R n,m
RCNT	1	Accepted Residual Counter
RDOTOR	1	r/r
REJCNT	1	Rejected Residual Counter

I

1

1

i

NAME	CELLS	DEFINITIONS
REJFLG	1	Rejection Indicator for any Residual
RESCNTL	1	Control for Residual Output
RESOPT	1	Indicator for Type of Units of Printed Angle Residuals
REV	1	Revolution Number
RGFLG	1	Rejection Indicator for Range Residuals
RGSDL	1	Range Residual
RHO	1	Atmospheric Density = ρ
RKINDT	1	Initial Integration Step Size
RMS	1	Root Mean Square of Residuals
ROFLAG1	1	Residual Output Flags
ROFLAG	1]	Acolulat output l'lago
ROVA	1	r/a
RPBUF	8	Buffer of R, 'm
RPCON3	1	Radiation Pressure Constant
RPFLAG	1	Indicator for Inclusion of Radiation Pressure Perturbations
RPT	1	Maximum Number of Iterations for a Differential Correction
RRFLG	1	Rejection Indicator for Range Rate Residuals
RRSDL	1	Range Rate Residual
RSKNTRL	1	Indicator for Elements to be Corrected
RTIMUZ2	1	$\sqrt{1 - u_z^2}$ Used in MARTINI Subroutine

NAME	CELLS	DEFINITIONS
SATEL	1	-Satellite Number (Left Justified)
SAVEO	1	Cell O Storage
SAVE3	1	Cell 3 Storage
SAVELEM	1	Indicator for Integrating to New Epoch
SAVEM	1	Temporary
SAVOBS	1	Temporary
SAVT	1	Temporary
SBUF	180	Buffer of Sensor Information
SCONBUF	70	Storage for "P Card" Images
SCOUNTR	1	Counter for MATRIX Subroutine
SIGMA1	1	$1/\sigma_{\rho}$ (e.r.) ⁻¹
SIGMA2	1	$1/\sigma_{\rho}$ (e.r.) ⁻¹ $1/\sigma_{\rho}$ (e.r./ke) ⁻¹
SIGMA3	1	$1/\sigma_{A}$ (rad) ⁻¹
SIGMA4	1	$1/\sigma_h$ (rad) ⁻¹
SIGMAI	1	$1/\sigma_i$, σ_i = Weight for ρ , A, h, or $\dot{\rho}$
SIGN	7	Output Buffer for Standard Deviations
SIN2OM	1	Sine 2w
SINBOTH	1	$\sin (\Psi + \xi)$
SINCOS	9	Buffer of sin m λ and cos m λ ; m = 1,2,3,4
SKNTRL		Indicator for Elements to be Corrected
SMLGR	1	l'
SNALS	1	$\sin \alpha_{\mathbf{g}}$

NAME	CELLS	DEFINITIONS
SNDLS	1	Sin ⁸ 0
SOBFLG	1	OBLFG Storage
SOLDUZ	1	OLDUZ Storage
SREVF	1	Final Revolution Number to End Prediction
SREV	1	REV Storage
SUNLX	1	L x _o
SUNLY	1	L y _o
SUNLZ	1	L _z
TAPBUF	128	Buffer for Ephemeris Tape Output
TAPCNT	1	Current Address in TAPBUF
TEMPO	1	Atmospheric Temperature at Epoch
TEMP 1	1	Temporary
TEMP2	1	Temporary
TEMP3	1	Temporary
TEMPT	1	Atmospheric Temperature at Any Time
TERMS	8	Buffer of 7 Coefficients and 1 Residual
TESRAL	1	Indicator for Inclusion of Tesseral Harmonics
THETA	1	θ
VALLINI	1]	
VALLIN	1 🖌	Control for Prediction Output

MANT

OPT

NAME	CELLS	DEFINITIONS
WANDBI	1	Address of WBUF and BIBUF
WBUF	151	Buffer of Weights
WOBMARK	1	Temporary
XBDGR	1	× B
XDD	1	 x
XDGR	1	x
XDTGR	1	×D
XKE	1	$k_e = .07436662$
XLAMD	1	λ for Output (deg)
XLSUNT	1	L at Time t
XMPER	1	m/e. r. = 6378165
XRDGR	1	× _R
XRMODA	1	
XRMOD	1 🖌	Counters for MATRIX Subroutine
YBDGR	1	y _B
YDD	1	ÿ
YDGR	1	y`
YDTGR	1	ŷ _D
YRD GR	1	y _R
YY	2	BCD Epoch Date
Z2BUF	7	Buffer of Powers of $z/2$, where $z = \frac{ae}{H}$

ŧ

NAME	CELLS	DEFINITIONS
ZBDGR	1	2°B
ZDD	1	ž
ZDGR	1	ż`
ZDTGR	1	ż
ZRDGR	1	ż _R
ZZ	1	$z = ae/H_{\rho}$

£

3.2 DATA BLOCK AND TAPE FORMATS

This section contains a definition of each of the buffers and tapes used by the Spiral Decay Program which are not common to the B-3 operating system.

Mathematical symbols used in the buffer descriptions are defined in Appendix VII, Volume I.

Buffer Name	Related Subroutines	Page
A11	LSQ, LSQS, LSQR	26
ALFBUF	CDLTB	27
B11	LSQ, LSQS, LSQR	2 8
BIFUF	WEIGHT, BIAS	29
BNBUF	CDLTBIN, CDLTB	30
BNNBUF	CDLTBIN, CDLTB	31
BOO	SAVICK, CNTRL, PCONTRL	32
BUF	MATRIX	33
CSNM	MARTINI	34
DUBMAT	ADBASH	35
EBLOC	PROOBS, NXTOB	36
GIT	PCONTRL	37
HAFMAT	ADBASH	38
ICK	DIVDIF, CNTRL, PCONTRL	39
JBUF	MARTINI	40
LJBUF	JNDRAG	41
LOGRHO	JNDRAG	42
LSQBUF	LSQS	43
LTBUF	PC ONTR L	44
MATRIXB	MATRIX	45
NICOLET	JNDRAG	46
PBUF	MARTINI	47
POBUF	WILBUR	48
PPBUF	MARTINI	49
PREDBF	PCONTRL, CNTRL	50

Buffer Name	Related Subroutines	
RBUF	MARTINI	51
RPBUF	MARTINI	52
SBUF	SETSBUF, NXTOB	53
SIGN	MATRIX	54
SINCOS	MARTINI	55
TAPBUF	TAPEW	56
TBUF	DIVDIF	57
TERMS	CDLTB, LSQR, CMPCF	58
W	ADBASH	59
WBUF	WEIGHT, GETWGT	60
Z 2 BUF	CDLTBIN	61
Tape Number	Contents	Page
7	Sensor Weights and Biases	62
12	Binary Ephemeris for XYZLA	63

ŧ

.

A11 49 Cells

All contains the least squares matrix used to solve for the corrections to the elements. For each accepted observation, a set of scalar differential coefficients are computed (C_i , i = 1...n; where n = no. of elements being corrected). Products of these coefficients are summed for each observation, and the result is the All matrix.

All =
$$\sum c_1 c_1 \sum c_1 c_2 \cdots \sum c_1 c_n$$

 $\sum c_2 c_1 \sum c_2 c_2 \cdots \sum c_2 c_n$
 $\cdots \cdots \cdots \cdots$
 $\vdots \cdots \cdots \cdots \cdots$
 $\sum c_n c_1 \sum c_n c_2 \cdots \sum c_n c_n$

The size of the All matrix depends on the number of elements being corrected. The matrix is stored sequentially by rows, where the rows and columns represent corrections to n, $a_{xn}^{}$, $a_{yn}^{}$, $U_{o}^{}$, Ω , i, B, in that order. If only $U_{o}^{}$ and Ω were being corrected, All would be:

A11 + 0
$$\Sigma C_{U_0} C_{U_0}$$

+ 1 $\Sigma C_{U_0} C_{\Omega}$
+ 2 $\Sigma C_{\Omega} C_{U_0}$
+ 3 $\Sigma C_{\Omega} C_{\Omega}$

ALFBUF 7 Cells

ť

ł

ALFBUF is used in the CDLTB subroutine and contains powers of $(\alpha^n)/n!$ for n = 0, 1, 2, 3, 4, 5, 6.

ALFBUF	+	0	$\alpha 0/0! = 1$
	+	1	α ¹ /1!
	+	2	α ² /2!
	+	3	α ³ /3!
	+	4	α ⁴ /4!
	+	5	α ⁵ /5!
	+	6	a 6/6!

B11 7 Cells

Bll contains the least squares vector used to solve for the corrections to the elements. For each accepted observation, a set of scalar differential coefficients (C) and a residual (R) are computed. The products, C.R, are summed for each observation, and the result is the Bl. matrix.

1

1

B11 + 0 $\Sigma C\Delta n/n \cdot R$ + 1 $\Sigma Ca_{xn} \cdot R$ + 2 $\Sigma Ca_{yn} \cdot R$ + 3 $\Sigma CU_0 \cdot R$ + 4 $\Sigma C\Omega \cdot R$ + 5 $\Sigma C_i \cdot R$ + 6 $\Sigma C\Delta B/B \cdot R$

Bll would appear as above if all seven elements were being corrected. Bll is actually compacted to represent only those elements being corrected. If only U_0 and i were being corrected, Bll would be:

B11 + 0 $\Sigma CU_{o} \cdot R$ + 1 $\Sigma C_{i} \cdot R$

BIBUF 181 Cells

Í.

1

1

i

ŝ

1

BIBUF contains sensor bias information for range, azimuth, elevation, range rate and time. There are about 16 sets of sensor biases assembled in the program; these may be changed or extended by introducing weight and bias cards on logical tape 7.

BIBUF	+	0	00000SSS (BCD Sensor Number)
	+	1	-B _r (e.r.)
	+	2	-B _a (e.r.)
	+	3	$-B_n$ (e.r.)
	+	4	-B. (e.r./ke) r
	+	5	-B _T (min.)
		•	Up to 29 sets of sensor number,
		•	^B r, ^B a, ^B h, ^B r, ^B T, followed by
			1 BCD word of 00000ZZZ
	+	180	

* Bit position 0 of each word containing sensor number is set to 1 for each

BNBUF 7 Cells

÷

BNBUF contains factors of B (z) which are computed in subroutine CDLTBIN and used in subroutine CDLTB.

BNBUF	+	0	B ₀ (z)
	+	1	^B 1 (z)
	+	2	B ₂ (z)
	+	3	3 · B ₃ (z)
	+	4	$3 \cdot 5 \cdot B_4(z)$
	+	5	$3 \cdot 5 \cdot 7 \cdot B_{5}(z)$
	+	6	$3 \cdot 5 \cdot 7 \cdot 9 \cdot B_{6}(z)$

BNNBUF 7 Cells

. .

BNNBUF contains factors of B (z) which are computed in subroutine CDLTBIN and used in subroutine CDLTB.

.

BNNBUF	+	0	B ₀ (z)
	+	1	B ₁ (z)
	+	2	$3 \cdot B_2(z)$
	+	3	$3 \cdot 5 \cdot B_{3}(z)$
	+	4	$3 \cdot 5 \cdot 7 \cdot B_4(z)$
	+	5	$3 \cdot 5 \cdot 7 \cdot 9 \cdot B_5(z)$
	+	6	$3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot B_{6}$ (z)

B00 56 Cells

BOO is used to store the interpolation buffer (ICK) and new epoch elements as found during a D.C. This is done to save unnecessary integration when starting a prediction.

B00	+ (0	a xn		
	+	1	a yn		
	+ (2	В		
	+	3	a		
	+	4	e ²		
	+	5	sin i		
	+	6	р		
	+	7	n .		new epoch
	±	8	time (min)	(elements
	+	9	L		
	+ 1	.0	a x		
	+ 1	1	a _y		
	+ 1	L2	a z		
	+ 1	13	h x		
	+ 1	14	h y		
	+ 1	15	h _z	J	
+ 1	6 to	+ 55	5 5 set: direct	s of tly f	t, L, <u>a, h</u> , taken From ICK+0 to ICK+39

BUF 7 Cells

BUF contains the standard deviations of the delta elements for those elements being corrected.

If seven elements were being corrected:

BUF + 0 σ n + 1 σ a_{xn} + 2 σ a_{yn} + 3 σ U_o + 4 σ Ω + 5 σ i + 6 σ B

If only a_{xn} , Ω , B were being corrected:

 $BUF + 0 \qquad \sigma a_{xn} + 1 \qquad \sigma_{\Omega} + 2 \qquad \sigma_{B}$

CSNM 16 Cells

CSNM contains the tesseral coefficients as input from P cards 7 and 8.

CSNM	+	0	c ₂₂
	+	1	s ₂₂
	+	2	°31
	+	3	^S 31
	+	4	с ₃₂
	+	5	^S 32
	+	6	с ₃₃
	+	7	^S 33
	+	8	c ₄₁
	+	9	^s 41
	+	10	c ₄₂
	+	11	^S 42
	+	12	с ₄₃
	+	13	^S 43
	+	14	с ₄₄
	+	15	s ₄₄

DUBMAT 36 Cells

DUBMAT contains a 6 X 6 matrix used to change the difference table in subroutine ADBASH to represent a step size twice as large as the previous step size.

This matrix is stored by rows starting with the first element.

DUBMAT	=	2	-1	0	0	0	0	
		0	4	-4	1	0	0	
		0	0	8	-12	6	-1	
		0	0	0	16	-32	24	
		0	0	0	0	32	-80	
		0	0	0	0	0	64	

EBLOC 11834 Cells

EBLOC is used for observation storage. The original 10 words per observation is cut to 6 words per observation by subroutine PROOBS. Up to 984 observations are stored chronologically in EBLOC as follows:

> EBLOC + 0Station I.D. (BCD, right adjusted) + 1 time (minutes since epoch) p (range in e.r.) + 2 $\dot{\rho}$ (range rate in e.r./ke) 3 + azimuth or rt. ascen. (rad.) + 4 + 5 & elevation or declin. (rad.) Up to 983 sets of Sta. I.D., t, ρ , $\dot{\rho}$, α , δ followed by one word • of 00000ZZZ

GIT 11 Cells

ł

*

GIT contains the output times requested on "P card 10" to be left in core for a subsequent GIPAR run.

GIT	+	0	right a	for each GIPAR time requested, djusted to T47; i.e., TO 1111 for four output times.
GIT	+	1	t ₁	
	+	2	t ₂	Up to five points (minutes from prediction epoch); terminated by
	+	3	t ₃	a word of 0 0
	+	4	t ₄	
	+	5	ts	

During initialization, all 11 cells of GIT are used for input and conversion of time from date to minutes from epoch.

HAFMAT 36 Cells

HAFMAT contains a 6 X 6 matrix used to change the difference table in subroutine ADBASH to represent a step size half as large as the previous step size.

HAFMAT =	.5	.125	.0625	.0390625	.02734375	.0205078125
	0	.2 5	.125	.078125	.0546875	.041015625
	0	0	.125	.09375	.0703125	.0546875
	0	Ο	0	.0625	.0625	.0546875
	0	0	0	0	.03125	.0390625
	0	0	0	0	0	.015625

This matrix is stored by rows starting with the first element.

ICK 47 Cells

ICK is used as a buffer containing the last five sets of elements produced by the integration routine. When an output time falls within the time span covered by the five points in the ICK buffer, a set of elements for the output time are obtained by interpolation and stored in the last 7 cells of ICK.

ICK	+	0	Time)	
	+	1	L		
	+	2	a x		
	+	3	a y	\ \	most recent point obtained by the integration routine
	+	4	a z		
	+	5	h x	4	
	+	6	h y		
	+	7	h z)	
	+	8			
		•		ļ	4 more sets of T, L, a, h
		•		1	in the order they were obtained
	+	39)	
	+	40	L		
	+	41	a x		
	+	42	a _y		obtained by interpolation
	+	43	az	(for any output time T.
	+	44	h x		
	+	45	h y	Ĩ.	
	+	46	h z)	

JBUF 4 Cells

JBUF contains zonal coefficients either as assembled in the program or as input from P card 6.

.

ę. 4

. .

I

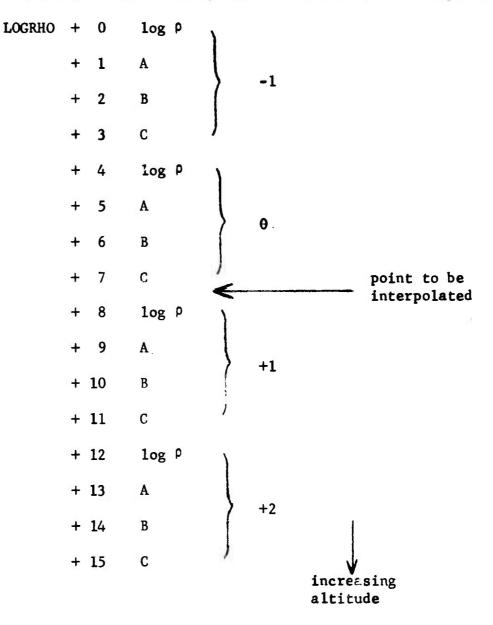
I

JBUF + 0 J_2 + 1 J_3 + 2 J_4 + 3 J_5 LJBUF 7 Cells

 $e \rightarrow$

. .

Ì


1

LJBUF is used in the JNDRAG subroutine as a set of temporaries.

LJBUF	+	0	sin 2.5	§/2	used for temperature
	+	1	cos 2.5	T/2	used for temperature computations
	+	2	cos 2.5	⊤/2)	
	÷	3)		
	+	4	l		s temporaries
	+	5			terpolation to ensity coefficients
	+	6)		

LOGRHO 16 Cells

LOGRHO contains four sets of atmospheric density coefficients extracted directly from the NICOLET table. The coefficients inserted in LOGRHO by subroutine JNDRAG are those which correspond to altitudes surrounding one point for which the density coefficients will be interpolated.

£. -

* ~

LSQBUF 14 Cells

£ 0.

a 14

12

.

-

LSQBUF is a buffer for temporary storage as required by Philco subroutine FMAIN. LSQBUF is used in subroutine LSQS.

43

LTBUF 6 Cells

LTBUF contains prediction controls as extracted from P card 4.

- LTBUF + 0 not used
 - + 1 prediction output interval (floating point)
 - + 2 bulge perturbation flag (T47)
 - + 3 drag perturbation flag (T47)
 - + 4 radiation pressure flag (T47)
 - + 5 prediction output interval for a binary ephemeris tape (floating point)

MATRIXB 28 Cells

MATRIXB contains the correlation matrix of the delta elements, for output purposes only. MATRIXB is computed by subroutine MATRIX and is a lower half matrix compacted to represent the number of elements being corrected. The correlation half matrix is stored in MATRIXB by rows for the elements being corrected in the following order n, a_{yn} , U_{o} , Ω , i, B.

If n, U_0 , Ω , and i were being corrected MATRIXB would be:

MATRIXB + 0
$$\Gamma_{n,n} = 1$$

+ 1 $\Gamma_{U_{0,n}}$
+ 2 $\Gamma_{U_{0}}, U_{0} = 1$
+ 3 $\Gamma_{\Omega, n}$
+ 4 $\Gamma_{\Omega, U_{0}}$
+ 5 $\Gamma_{\Omega, \Omega} = 1$
+ 6 $\Gamma_{i,n}$
+ 7 $\Gamma_{i, U_{0}}$
+ 8 $\Gamma_{i, \Omega}$
+ 9 $\Gamma_{i, i} = 1$

In printed form this would be:

$$\Gamma_{n,n}$$

$$\Gamma_{U_{0},n} \Gamma_{U_{0}, U_{0}}$$

$$\Gamma_{\Omega,n} \Gamma_{\Omega, U_{0}} \Gamma_{\Omega, \Omega}$$

$$\Gamma_{i,n} \Gamma_{i,U_{0}} \Gamma_{i,\Omega} \Gamma_{i,i}$$

NICOLET 202 Cells

NICOLET is a table of atmospheric density coefficients vs. altitude. The table contains a set of coefficients for each ten kilometers in altitude from 0 to 1000 kilometers. The equation using these coefficients is:

$$\log \rho$$
 (h) = $\log \rho$ (h)_{T=1100} + A ($\frac{T-1100}{400}$) +B ($\frac{T-1100}{400}$)² +C ($\frac{T-1100}{400}$)³

L

Ł

L

۲ ۲

where T = Temperature at h

h = altitude

Each entry in the table consists of two compacted octal words containing:

word 1	$(\log \rho(h)_{T=1100}+20)_{8}$ decimal point	A ₈ + 2 octal decimal point
word 2	B ₈ + 2 decimal point	C ₈ + 2 decimal point
NICOLET	+ 0 word 1 + 1 word 2 + 2 word 1 + 3 word 2	at $h = 0 \text{ km}$. at $h = 10 \text{ km}$.
	+ 200 word 1 + 201 word 2	at $h = 1000 \text{ km}$.

PBUF 6 Cells

1

PBUF is used in subroutine MARTINI for use in the computation of zonal harmonics. PBUF contains values of P for n = 0, 1, 2, 3, 4 and 5.

PBUF	+	0	P ₀	=	1
	+	1	P ₁	=	U z
	+	2	P2		
	+	3	P ₃		
	+	4	P ₄		
	+	5	P ₅		

POBUF 27 Cells

POBUF is used by subroutine WILBUR, and contains the data from each observation card (one at a time) so that a hard copy listing of the input observations may be obtained.

POBUF	+	0	Satellite No.	BCD
		1	Equipment type	BCD
		2	Station ID	BCD
		3	Accuracy	BCD
		4	YYMMDD (year,mo.,day)	BCD
		5	Hour	F1. Pt.
		6	Minutes	F1. Pt.
		7	Seconds	F1. Pt.
		8	Elevation or declination	F1. Pt.
		9	Range	F1. Pt.
		10	Range rate	F1. Pt.
		11	Max. frequency shift	BCD
		12	Brightness	BCD
		13	Maximum	BCD
		14	Minimum	BCD
		15	Time interval	BCD
		16	Not used	
		17	Message No.	BCD
		18	Equinox	BCD
		19	Not used	
		20	Observation number	BCD
		21	Not used	
		22	Right ascension indicator	BCD
		23	Azimuth or Rt.ascen.seconds	F1. Pt.
		24	Rt. Ascen. minutes	F1. Pt.
		25	Rt. Ascen. hours	F1. Pt.
		26	Observation type	

.

PPBUF 5 Cells

PPBUF is used in subroutine MARTINI for use in the computation of zonal harmonics. PPBUF contains values of P_n^{\dagger} for n = 1, 2, 3, 4, 5

PPBUF + 0 P' = 1+ 1 P'_2 + 2 P'_3 + 3 P'_4 + 4 P'_5

PREDBF 11 Cells

ġ.

1.48 .

PREDBF has two uses:

(1) When the weight and bias information is printed, PREDBF is used to hold information in output format.

PREDBF	+	0	σ range	(km.)
	+	1	σ azimuth	(deg.)
	+	2	σ elevation	(deg.)
	+	3	σ range rate	(km/sec)
	+	4	range bias	(km.)
	+	5	azimuth bias	(deg.)
	+	6	elevation bias	(deg.)
	+	7	range rate bias	(km/sec)
	+	8	time bias	(sec.)

. .

- -

.

- - +

(2) PREDBF is used to hold initial or final conditions as used in the integration buffer. This allows the integration scheme to be restarted with a minimum of computation.

PREDBF	•+	0	time	= W + 1
	+	1	Δ time	= W + 2
	+	2	last time	= W + 3
	+	3	direction	= W + 4
	+	4	· ^L \ -	= W + 5
	+	5	a x	= W + 6
	+	6	a _y y	= W + 7
	+	7	a_z or z	= W + 8
	+	8	h x	= W + 9
	÷	9	h _y ý	= W + 10
	+	10	h _z ż	= W + 11

50

RBUF 9 Cells

RBUF is used in subroutine MARTINI for the computation of tesseral harmonics. RBUF contains entries of R $\binom{U}{n,m}\binom{U}{z}$ for n and m up to 4.

$$R_{n,m}(U_z) = \frac{P_{n,m}(U_z)}{\sqrt{1 - U^2}}$$

RBUF + 0 $R_{1,1} = 1$ + 1 $R_{2,2}$ + 2 $R_{3,1}$ + 3 $R_{3,2}$ + 4 $R_{3,3}$ + 5 $R_{4,1}$ + 6 $R_{4,2}$ + 7 $R_{4,3}$

+ 8 R_{4,4}

RPBUF 8 Cells

RPBUF is used in subroutine MARTINI for the computation of tesseral harmonics. RPBUF contains entries of R' for n and m up to 4.

RPBUF	+	0	R'2,2	۰ ۱۰۰۰۰۰۰۰
	+	l	^R '3,1	
	+	2	R'3,2	
	+	3	^R '3,3	
	Ŧ	4	R'4,1	
	Ŧ	5	^R ⁴ ,2	
	+	6	^{R'} 4,3	
	+	7	^R '4,4	•

SBUF 151 Cells

SBUF contains sensor information which was originally stored in SBLOC. SBUF and BIBUF occupy the same locations in core; however, SBUF is not set until BIBUF is no longer needed. After SBUF is set up, the SBLOC area is used for temporaries to save space in core.

> SBUF + 000000SSS, BCD Sensor Number Ø 1 + λ 2 $X/\cos \theta$ 3 Z 4 Up to 29 more sets of sensor no., \emptyset , λ , $X/cos\theta$, Z, followed by one BCD word of 00000ZZZ 150 +

SIGN 7 Cells

SIGN contains the standard deviations of the corrections to the elements after each iteration. SIGN is used only for output purposes. If an element is not being corrected, the entry in the buffer is set to octal 0 to suppress printing.

> SIGN + 0 σ_n σ_a_{xn} + 1 σa_{yn} + 2 συ_o + 3 σΩ 4 + 5 $\sigma_{\mathbf{i}}$ + + 6 σв

SINCOS 8 Cells

SINCOS contains the sines and cosines of $\lambda_E^{}$, $2\lambda_E^{}$, $3\lambda_E^{}$, $4\lambda_E^{}$ which are necessary for the computation of tesseral harmonics in the MARTINI subroutine.

SINCOS	+	0	cos λ _E
	+	1	sin λ_E
	÷	2	cos 2 λ _E
	+	3	sin 2 λ_{E}
	+	4	cos 3λ _E
	+	5	sin 3 λ_{E}
	+	6	$\cos 4 \lambda_{\rm E}$
	+	7	sin 4 λ_{E}

TAPBUE 128 Cells

TAPBUF is used as an output buffer to accumulate one block of prediction points to be written on the binary ephemeris tape (logical 12).

TAPBUF + 0 t (min)
+ 1 x (e.r.)
+ 2 y (e.r.)
+ 3 z (e.r.)
+ 4
$$\dot{x}$$
 (e.r./ké.)
+ 5 \dot{y} (e.r./ké.)
+ 6 \dot{z} (e.r./ke.)
+ 6 \dot{z} (e.r./ke.)
+ 127 0 0 0

56

١

TBUF 15 Cells

I

1

I

5

TBUF is used in subroutine DIVDIF for temporary storage while interpolating with a fourth order divided difference method. The contents of TBUF are quite variable and cannot be described as single quantities.

TBUF + 0 thru TBUF + 14 Temporaries

TERMS 8 Cells

TERMS contains the coefficients to be included in the least squares solution matrix. These coefficients are computed by CMPCF or CORRD depending on the type of observations. Only the coefficients related to elements being corrected are computed; these are packed into the TERMS buffer in the following order: n, a_{xn} , a_{yn} , U_o , Ω , i, B.

TERMS + 0 $C_{\Delta n/n}$ + 1 $C_{\Delta a_{xn}}$ + 2 $C_{\Delta a_{yn}}$ + 3 $C_{\Delta U_o}$ + 4 $C_{\Delta \Omega}$ + 5 $C_{\Delta i}$ + 6 $C_{\Delta B/B}$ + 7 R (weighted residual)

TERMS is set up as above when all seven elements are being corrected. If a and i were not being corrected TERMS would be:

TERMS	+	0	^C ∆n/n
	+	1	C _{Aa} xn
	+	2	c _{AU}
	+	3	c _{ΔΩ}
	+	4	C _{∆B/B}
	+	5	R (weighted residual)
	+	6	0
	+	7	0

58

W 203 Cells

.

See Appendix for description.

WBUF 151 Cells

WBUF contains sensor weighting information for range, azimuth, elevation, and range rate. There are about 16 sets of sensor weights assembled in the program; these may be changed or extended by introducing weight and bias cards on logical tape 7.

Z2BUF 7 Cells

.

Z2BUF is used in the CDLTBIN subroutine for temporary storage while computing Bessel Functions for $\Delta B/B$ correction. Z2BUF is used for two different purposes, depending on the magnitude of Z/2.

			For Z/2 < 1	For $Z/2 \ge 1$
Z2BUF	+	0	1	1
	+	1	$(Z/2)^2/1!$	2/Z
	+	2	(Z/2) ⁴ /2!	$(2/Z)^{2}$
	+	3	(Z/2) ⁶ /3!	(2/Z) ³
	+	4	(Z/2) ⁸ /4!	(2/Z) ⁴
	+	5	$(Z/2)^{10}/5!$	(2/Z) ⁵
	+	6	blank	(2/Z) ⁶

Logical Tape 7

Position			
Block 1	Word 1	7 OWEIGHT	
Block 2		BCD	
to Block 4			
		BCD	
		BCD	

Contents

Identification

1 to 30 weight and bias cards followed by an ENDSIGMA card: stored in code mode, 12 cards per block.

9

FIGURE 3. SENSOR WEIGHT AND BIAS TAPE FORMAT

Logical Tape 12

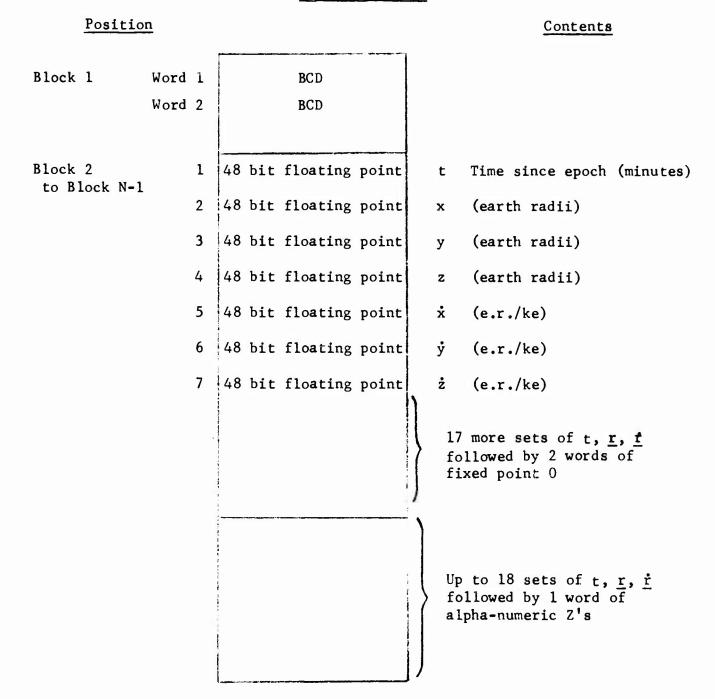
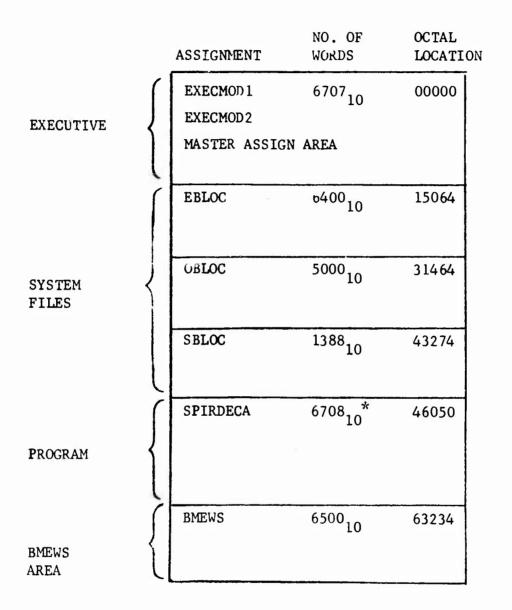



FIGURE 4. BINARY EPHEMERIS TAPE FORMAT

3.3 MEMORY STORAGE DIAGRAM

T

* 6708 does not include 785 locations assigned within SBLOC that are used by SPIRDECA after initialization.

FIGURE 5. 'EMONY STORAGE AGRAM

SECTION 4

SUBROUTINE DESCRIPTIONS

This section contains a description of each subroutine used by the Spiral Decay Program. Each subroutine description lists the purpose, usage, subroutines used, size, description; flow charts are included when necessary.

4.1 ALPHABETICAL INDEX TO SUBROUTINE DESCRIPTIONS

Name	Function	Page
ADBASH	Numerical Integration Routine	7 0
ALREC	Compute <u>A</u> , <u>D</u> , <u>L</u> from α , ⁸	71
ANGSUN	Compute $lpha$, ξ of the sun	72
AZREC	Compute <u>A</u> , <u>D</u> , <u>L</u> from a, h	74
BCDTIM	Convert Time to BCD Date	76
BEGIN	Compute classical elements at Epoch	77
BIAS	Apply Biases to the Observations	80
CALH	Compute Height	81
CALU	Compute U	82
CARDER	Output Card Error Comments	83
CDERIV	Derivative Routine for Cowell Integration	84
CDLTB	Compute $C\Delta B/B$	86
CDLTBIN	Initialize Subroutine CDLTB	89

Name	Function					
CHECK	Test for Convergence	91				
CHECKI	Initialize Subroutine CHECK	93				
CHGCWD	Modify Output Routine PRNTMAT	94				
CHGNXN	Setup Least Squares Matrix	95				
CMPCF	Compute Coefficients for ρ , A, h, $\dot{\rho}$	96				
CNTRL	Differential Correction Control	98				
COEFF2	Control Coefficient Computation	105				
COELTS	Convert Elements for Output	107				
COMDEL	Compute Δ <u>L</u>	108				
COMDQ	Compute ∆q	109				
COMRMS	Compute Root-mean-square	110				
COMXLX	Compute <u>L</u>	111				
CORRD	Compute Range Rate Coefficients	112				
CREKT	Apply Corrections to the Elements	114				
DELOUT1	Print Delta Elements	116				
DELOUT2	Print Final Results	117				
DELTAU	Compute ∆u	118				
DERIV	Compute Derivatives	119				
DIVDIF	Divided Difference Interpolation	120				
DOTPR	Compute Dot Products	122				
ELMOUT	Print Corrected Elements after Convergence	123				
ELMOUT 1	Print Corrected Element after Each Pass	124				
FTAPEW	Wrap-Up Ephemeris Tape	126				
GETSEN	Retrieve Sensor Information	127				
GETWGT	Retrieve Weighting Information	128				
GIPAR	Store Information for Program GIPAR	129				
HEAD	Output Page Headings	13 0				

Name	Function			
IHEAD1	Initialize for Page Headings	131		
INITIAL	Initialize for Integration	132		
INITL	Print and Process Cards	133		
INPUT	Unpack and Validate P Cards	134		
ITAPEW	Initialize Ephemeris Tape	144		
JNDRAG	Compute Drag Perturbations	145		
LPART	Compute L Modulo 27	149		
LSQ	Clear Least Sq ua res Matrix	150		
lsqr	Build Least Squares Matrix	151		
lsqs	Solve Least Squares Matrix	152		
MARTINI	Compute Bulge Perturbations	153		
MATRIX	Compute Correlation Matrix	158		
MOD2P1	Modulo 2 ^{TT} Subroutine	160		
MOVBUF	Move Observation Buffer	161		
MOVDAT	Retrieve Processed Observations	163		
NXTOB	Retrieve Observations in OBLOC Format	165		
OBVEC	Reformat Observations	167		
PAGECON	Page Control for Output	169		
PCONTRL	Prediction Control	170		
PHLAH	Compute Ø, λ, h	182		
PRERES	Compute New Epoch Elements	183		
PRINTW	Print Weights and Biases	186		
PROOBS	Reformat Observation Buffer	187		
PRNTMAT	Print Correlation Matrix	189		
RDPRES	Compute Radiation Pressure	190		
RDTSB	Compute Range Rate	191		
READOBS	Read Observations from Tape	192		

Name	Function				
REJECT1	First Pass Rejection	193			
REJECT2	Range Rate Rejection	194			
RESICK	Restore Integration Buffer	195			
RESOUT1	Output Residuals	196			
RESOUT2	Convert Time to BCD for Residuals	198			
RESOUT4	Print Page Headings for Residuals	198			
RESREJ1	Residual Rejection	199			
RESW	Restore Integration Buffer	200			
RESWBF	Restore Integration Buffer	201			
REVSUB	Update Revolution Number	202			
RHOSB	Compute P	203			
RINEL	Restore Initial Elements	204			
RR2AHL	Convert Elements	205			
SAVCON	Save Card Images	207			
SAVELM	Save Elements	208			
SAVICK	Save ICK Buffer	209			
SAVW	Save Integration Buffer	210			
SAVWBF	Save Integration Buffer	211			
SAV 5PTS	Save Elements for Interpolation	212			
SENLOC	Compute Sensor Location	213			
SETSBUF	Store Sensor Information	214			
SETW	Set Buffer for SUBXYZ	216			
SINEL	Save Initial Elements	217			
SORTOB	Sort Observations by Time	218			
SUBOUT	Output Prediction Ephemeris				
SUBOUTI	Initialize for Output				
SUBXYZ	Compute Position and Velocity	221			

Name	Function	Page
TAPEW	Write Ephemeris Tape	224
TEMP	Compute Epoch Temperature	225
THGRC	Compute θ_{GR}	226
WEIGHT	Read Weights	227
WILBUR	P.int Observations	229
WSETU P	Set Integration Buffer	230

11

)

)

PURPOSE:	To integrate a system of seven first order differential equations from $X = X$ to $X = X$ n +1:
	$Y'_{i} = f_{i} (X, Y_{1}, Y_{2},, Y_{7}); i = 1, 2,, 7$
CALL SEQUENCE:	After initialization (see "How to use ADBASH"), to start or continue integration simply,
	α JMP ADBASH
	α + 1H Error Return
	α + 2H Normal Return
INPUT:	$Y_1, Y_2, Y_3, \dots, Y_7$ and X, for X = X_n
OUTPUT:	$Y_1, Y_2, Y_3, \dots, Y_7$ and X, for X = X_{n+1}
SUBROUTINES:	Program: LPART, DERIV, CDERIV
STORAGE	520 decimal or 1010 octal locations.
METHOD:	The Adams-Bashforth (A-B) method, together with the Runge-Kutta (R-K) method of integration are employed in this subroutine. R-K is used as a starting proce- dure so that an adequate number of step-wise solutions may be obtained to build a difference table needed by the A-B method. The interval of integration is automatically varied to keep the discrepancy between the integrated values and an absolute error check within prescribed limits.

REFERENCE: A detailed description of this subroutine is included in the Appendix section of this manual.

ALREC SPIRDEC

PURPOSE:	To compute \underline{A} , \underline{D} , \underline{L} if α , δ are observed.				
CALL SEQUENCE:	JMP ALREC				
INPUT:	ALPHA = α (rad)				
	DELTA = \hbar (rad)				
OUTPUT:	ASUBX = -sin (ALPHA)				
	$ASUBY = \cos(ALPHA)$				
	ASUBZ = F/O				
	DSUBX = [-sin (DELTA)] × [ASUBY]				
	$DSUBY = [sin (DELTA)] \times [ASUBX]$				
	$DSUBZ = \cos(DELTA)$				
	XLSUBX = [cos (DELTA)] x [ASUBY]				
	$XLSUBY = [-\cos (DELTA)] \times [ASUBX]$				
	XLSUBZ = sin (DELTA)				
SUBROUTINES:	PHILCO - FSIN, FCOS				
STORAGE					
REQUIREMENTS:	15 Cells				
DESCRIPTION:	Computes the values listed under Output. Called by subroutine MOVDAT.				

PURPOSE:	To compute the sun's position at time t.			
CALL SEQUENCE:	JMP ANGSUN			
INPUT:	W + 1 = t (minutes since epoch) EPOCH = days and frac from 1950 to epoch XLSUNO = L_0 at beginning of year C1 = .985647346 deg/day C2 = 1.91633 deg C3 = C_3 - from TLC subroutine			
OUTPUT:	C4 = 2.578909 C5 = .4336428 XLSUNT = L_0 at time t SUNLX = L_x CSALS = $\cos \alpha \theta$ SUNLY = L_y SNALS = $\sin \alpha \theta$ SUNLZ = L_z CSDLS = $\cos \theta$ ALSUN = α_{θ} SNDLS = $\sin \theta \theta$ DLSUN = $\frac{\delta}{\theta}$			
SUBROUTINES:	PHILCO - FSIN, FCOS, FATAN			
STORAGE REQUIREMENTS:	23 Celis			
DESCRIPTION:	Computes the following:			
	$L_{\Theta_{t}} = C_{1}(t) + L_{\Theta_{0}} + C_{2} \sin \left(\frac{C_{1}t+C_{3}}{57.295}\right)$ where t = days since Jan 0.0			

ANGSUN SPIRDEC 2 of 2

DESCRIPTION: (continued)

$$\begin{aligned} &\alpha_{\theta_{t}} = -\frac{1}{57.295..} \left\{ C_{4} \sin\left(\frac{2L_{\theta_{t}}}{57.295}\right) - L_{\theta_{t}} \right\} \\ &\alpha_{\theta_{t}} = \tan^{-1} \left\{ C_{5} \sin \alpha_{\theta} \right\} \\ &\text{SUNLX} = \cos \alpha_{\theta} \cos \delta_{\theta} \\ &\text{SUNLY} = \cos \delta_{\theta} \sin \alpha_{\theta} \\ &\text{SUNLZ} = \sin \delta_{\theta} \end{aligned}$$

AZREC SPIRDEC 1 of 2

PUR POSE :	To compute A, D, L if azimuth and elevation are observed.			
CALL SEQUENCE:	JMP AZREC			
INPUT:	ALPHA = A (rad) DELIA = b (rad) FHIRD = \emptyset COSIH = cos θ SINIH = sin θ			
OUTPUT:	ASUBX ASUBX ASUBZ DSUBZ DSUBZ XLSUBX XLSUBX XLSUEZ			
SUBROUTINES:	PHILCO - FSIN, FCOS			
STORAGE REQUIREMENTS:	6 Cells			
DESCRIPTION:	Computes <u>A</u> , <u>D</u> , <u>L</u> from the following formulation. Used by subroutine MOVDAT.			
	$ \begin{array}{l} ASTAT = sin (ALPHA) \\ ASTAT = cos (ALPHA) \\ AS ZT = F/D \end{array} $			
	$\left.\begin{array}{l} \text{MSLSTAH} = \text{Hobs (DELTA) cos (ALPHA)} \\ \text{MLSTAH} = \text{Hobs (DELTA) sin (ALPHA)} \\ \text{MLSTAH} = \text{sin (DELTA)} \end{array}\right\} \begin{array}{l} L \\ h \end{array}$			
	DS[X] = sin (DEUTA) cos (ALPHA) DS[T] = -sin (DELTA) sin (ALPHA) DS[T] = cos (DELTA) TS[ZT] = cos (DELTA) Dt			
	STNPH = sin \emptyset COSPH = cos \emptyset			

AZREC SPIRDEC 2 of 2

ZSUBX = $\cos \phi \cos \theta$ DESCRIPTION: Ζ $ZSUBY = \cos \emptyset \sin \theta$ (continued) $ZSUBZ = sin \emptyset$ SSUEX = sin $\emptyset \cos \theta$ SSUBY = sin \emptyset sin θ S SSUBZ = $-\cos \emptyset$ ESUBX = $-\sin \theta$ ESUBY = $\cos \theta$ Ε ESUBZ = F/O $XLSUBX = L_{xh}S_{x} + L_{yh}E_{x} + L_{zh}Z_{x}$ $XLSUBY = L_{xh}S_{y} + L_{yh}E_{y} + L_{zh}Z_{y}$ $XLSUBZ = L_{xh}S_{z} + L_{yh}E_{z} + L_{zh}Z_{z}$ ASUBX = $A_{xt}S_{x} + A_{yt}E_{x} + A_{zt}Z_{x}$ ASUBY = $A_{xt}S_{y} + A_{yt}E_{y} + A_{zt}Z_{y}$ ASUBZ = $A_{xt}S_{z} + A_{yt}E_{z} + A_{zt}Z_{z}$ $PSUBX = D_{xt}S_{x} + D_{yt}E_{x} + D_{zt}Z_{x}$ $DSUBY = D_{xt}S_{y} + D_{yt}E_{y} + D_{zt}Z_{y}$ $PSUBZ = P_{xt}S_{z} + D_{yt}E_{z} + D_{zt}Z_{z}$

PURPOSE:	To convert time (min since epoch) to BCD date.				
CALL SEQUENCE:	TMA (Time in min.) JMP BCDTIM				
INPUT:	EPOCH = days and fractions since 1950				
OUTPUT:	OBYEAR=YYOBMO=MMOBDAY=DD-FOBHR=F/hoursFOBMIN=F/minFOBSEC=F/sec				
SUBROUTINES:	System - DKLOK, SEPSUB				
STORAGE REQUIREMENTS:	17 Cells				
DESCRIPTION:	Time is converted to days and added to EPOCH. This time is converted to BCD (YYMMDD), by PKLOK subroutine. The fraction of a day remaining is then converted to fleatingpt. hours, min., sec If the seconds ≥ 59.9 the time is rounded to the nearest minute.				

BEGIN SPIRDEC 1 of 3

PURPOSE:	To compute initial orbit conditions from the input elements.
CALL SEQUENCF:	JMP BEGIN
INPUT:	$HXO = h_{xO}$ $HYO = h_{yO}$ $HZO = h_{zO}$ $AXNO = a_{xnO}$ $AYNO = a_{ynO}$ $XLO = L_{O}$ $XKERTM = k_{e}$
OUTPUT:	$P = p \qquad U0 = U_{o}$ $RTP = \sqrt{p} \qquad XN0 = n_{o}$ $WX = W_{x} \qquad AX0 = a_{xo}$ $WY = W_{y} \qquad AY0 = a_{yo}$ $WZ = W_{z} \qquad AZ0 = a_{zo}$ $COSI = \cos i \qquad Q0 = q_{o}$ $SINI = \sin i$ $XINCL = i$ $SINO = \sin \Omega$ $XNODEO = \Omega$ $ESQ = e_{o}^{-2}$ $ED = e_{o}$ $AD = a_{o}$ $RTA = \sqrt{a_{o}}$
SUBROUTINES:	Program - ARCTAN Philco - FSQRT
STORAGE REQUIREMENTS:	43 Cells

I

BEGIN SPIRDEC 2 of 3

 $p = \sqrt{h_{xo}^2 + h_{yo}^2 + h_{zo}^2} \longrightarrow P$ **DESCRIPTION:** $\sqrt{p} \rightarrow RTP$ $W_{x} = \frac{h}{\sqrt{p}} \rightarrow WX, x \rightarrow y, z$ $\cos i = W_z \rightarrow COSI$ $\sin i = \sqrt{1 - \cos^2 i} \longrightarrow SINI$ $i = tan^{-1} \left[\frac{\sin i}{\cos i} \right] \rightarrow XINCL$ $\sin \Omega = W_x / \sin i \longrightarrow SINO$ $\cos \Omega = W_v / \sin i \longrightarrow COSO$ $\Omega = \tan^{-1} \left[\frac{\sin \Omega}{\cos \Omega} \right] \longrightarrow \text{XNODEO}$ $e_o^2 = a_{xno}^2 + a_{yno}^2 \longrightarrow ESQ$ $e_{a} = \sqrt{e^2} \longrightarrow EO$ $a_0 = p/(1-e^2 \rightarrow A0)$ $\sqrt{a_o} \longrightarrow RTA$ $U_{o} = L_{o} - \Omega \longrightarrow UO$ $n_o = k_e \sqrt{\frac{3}{2}} \rightarrow XNO$

BEGIN SPIRDEC 3 of 3

DESCRIPTION: (continued)	a xo	=	-sin Ω · cos i · a + yno +	$\cos \Omega a \longrightarrow AX0$
	a yo	=	+cos i · a y_{no} · cos Ω +	$\sin \Omega a \longrightarrow AY0$
	a zo	=	sin i ° a yno	> AZO
	q _o	=	a ₀ (1 -e ₀)	> Q0

.

PURPOSE: To subtract biases from the observations.

CALL SEQUENCE: JMP BIAS

(Return)

INPUT: BIASAD = C/HLT, EBLOC; C/HLT, BIBUF BIBUF = buffer of biases stored by sensor

Observations starting in location EBLOC

OUTPUT: See description

SUBROUTINES: None

STORAGE

REQUIREMENTS: 22 Cells

DESCRIPTION: The sensor number is extracted from an entry in the observation buffer and BIBUF is searched for a match.

If a match is found, the range, angle, and range-rate biases are subtracted from the observed quantities. Convert the time of the observation to minutes since epoch, subtract the time bias, and store in same cell (2,1). If bit 0 of the word containing the station number is 1, then the VERLORT/PRELORT corrections are applied. Keep a count of negative observation times in the right address of MCOUNT for the SORTOB subroutine. If no match is found, proceed to the next observation without any error indication.

This procedure is continued until the sentinel of Z's is found at the end of the observation buffer.

CALH SPIRDEC

PUR POSE:	To compute height above sea level.
CALL SEQUENCE:	JMP CALH
INPUT:	$UX = U_{z}$ R = r F = f = 1/298.3
OUTPUT:	H = h (e.r.)
SUBROUTINES:	(None)
STORAGE REQUIREMENTS:	δ Cells
DESCRIPTION:	$H = h = r-1 + U_{z}^{2} F + 3/2 F^{2} U_{z}^{2} (1-U_{z}^{2})$

CALU SPIRDEC

PURPOSE:	To compute <u>U</u> .
CALL SEQUENCE:	TMD C/HLF, W + 5; C/HLT, X JMP CALU
INPUT:	W + 5 = x + 6 = y + 7 = z + 8 = \dot{x} + 9 = \dot{y} + 10 = \dot{z}
OUTPUT:	R=rX=xXDOT= \dot{x} UX=U xY=yYDOT= \dot{y} UY=U yZ=zZDOT= \dot{z} UZ=U zUU zUUUUU
SUBROUTINES :	PHILCO = FSQRT
STORAGE REQUIREMENTS:	12 Cells
DESCRIPTION:	Moves values from W + 5 thru W + 10 to X, Y, Z, XDOT, YDOT, ZDOT. Computes the following: $r = \sqrt{x^{2} + y^{2} + z^{2}}$ $U_{x} = x/r$ $U_{y} = y/r$ $U_{z} = z/r$

CARDER SPIRDEC

PURPOSE:	To output card error comments.
CALL SEQUENCE:	(4 entrances)
	(1) TMA (Word) (3) JMP CARDERB JMP CARDER
	(2) TMA (Word) (4) TMA (Word) JMP CARDERA JMP CARDERC
INPUT:	Word = BCD at T47 XR3 = location of 1st word of the erroneous card
OUTPUT:	Comment on hard copy - (see description)
SUBROUTINES:	System - PANT Program - PAGECON
STORAGE REQUIREMENTS:	44 Cells
DESCRIPTION:	The subroutine will insert the given parameter into one of the following, corresponding to the entrance:
	(1) "Error in field ending in Col. XX"
	(2) "System expects card with X in Col. 80"
	(3) (No Comment)
	(4) "Card repeated, too many cards of type X."
	The program will then output the comment (or no comments) followed by:
	1 8 16 24 32 40 48 56 64 72 80
	(80 Column Card Image
	l Line Space
	Ce'l CARDSW is set \neq 0 to indicate this subroutine has been used.

CDERIV SPIRDEC 1 of 2

PURPOSE: To compute the derivatives of position and velocity elements with respect to time, using the effects of radiation pressure, drag and/or bulge perturbations as specified on P Cards. CALL SEQUENCE: JMP CDERIV INPUT: W + 1 = time since epoch (min.) 5 = F/06 = x7 = v 8 = z $9 = \dot{x}$ $10 = \dot{y}$ $11 = \dot{z}$ And input needed for subroutines listed. W = 187 = F/0OUTPUT: $X \cup D = \ddot{x}$ 188 = dx/dt $YDD = \ddot{y}$ 189 = dy/dt190 = dz/dt $ZDD = \mathbf{\ddot{z}}$ 191 = dx/dt $XDGR = \dot{x}$ $YDGR = \dot{y}$ 192 = dy/dt193 = dz/dt $ZDGR = \dot{z}$ Program - CALU, MARTINI, JNDRAG, RDPRES SUBROUTINES: STORAGE **REQUIREMENTS:** 25 Cells DESCRIPTION: This subroutine is called only when executing the Cowell integration. The perturbative effects are computed by the subroutines, MARTINI, JNDRAG, RDPRES. The derivatives of the elements are then computed and stored in the Adams-Bashforth buffer (W + 187 to W + 193).

CDERIV SPIRDEC 2 of 2

FORMULATION: XDD =
$$\ddot{x} = \mu x/r^3$$
 $x \longrightarrow y, z$
XDGR = $\dot{x} = \dot{x}_B + \dot{x}_D - \ddot{x}$ $x \longrightarrow y, z$
W + 187 = F/0
188 = $dx/dt = k_e \dot{x}$
189 = $dy/dt = k_e \dot{y}$
190 = $dz/dt = k_e \dot{z}$
191 = $dx/dt = k_e \dot{x}$
192 = $dy/dt = k_e \dot{y}$
193 = $dz/dt = k_e \dot{z}$

•

CDLIB SPIRDEC 1 of 3

PURPOSE:	То	compute	scalar	differential	expression	for
	B =	CA				

CALL SEQUENCE:For range and angles:For range rate:JMPCDLTBJMPCDLTBATAM $(C_{\Delta B/B})$ TAM $(C_{\Delta B/B})$

INPUT: Output of subroutines: COEFF2, CORRD, CDLTBIN

OUTPUT: (A) reg = $C_{\Delta B/B}$ and output listed under description.

SUBROUTINES: Program. - CORRD

Philco - FEX

STORAGE

REQUIREMENTS: 106 cells

DESCRIPTION: This subroutine must be initialized by CDLTBIN subroutine. There are two entrances to the program: (1) for range and angles - JMP CDLTB, (2) for range rate - JMP CDLTBA.

Formulation:

For range and angles, if any of n/n or a_{xn} or a_{yn} is not being corrected, its coefficient will be computed as follows:

$$CDLTN = C_{\Delta n/n} = \left[U_{N} (L_{i} \cdot V) + R_{N} (L_{i} \cdot U) \right] \frac{1}{\sigma}$$

$$CDLTAXN = C_{\Delta axn} = \left[U_{xn} (L_{i} \cdot V) + R_{xn} (L_{i} \cdot U) \right] \frac{1}{\sigma}$$

$$CDLTAYN = C_{\Delta ayn} = \left[U_{xn} (L_{i} \cdot V) + R_{yn} (L_{i} \cdot U) \right] \frac{1}{\sigma}$$

where i = -, A or h

and \underline{L}_i is \underline{L}_i , \underline{A} or \underline{D} corresponding to the observed quantity.

CDLIE SPIRDEC 2 of 3

DESCRIPTION: If the range rate entrance is taken and the 3 elements (continued) are not being corrected, the coefficients will be computed by using part of the CORRD subroutine. The values will be stored in CDLTN, CDLTAXN, CDLTAYN.

However, if the elements are being corrected for ρ , $\dot{\rho}$, A, or h, the values will be unpacked from TERMS, TERMS+1, and TERMS+2 respectively.

Then compute the following:

 $COS2CM = \cos 2\omega = 2\left(\frac{a_{xn,0}}{e_0}\right)^2 - 1 \quad \text{if } e_0 \neq 0$ $= 0 \qquad \text{if } e_0 = 0$ $SIN2CM = \sin 2 = -1 \cos^2 2\omega$

Set up buffer ALFBUF as powers of α with α defined as:

 $\infty = -(\sin^2 i) (f/2h) \cos 2\omega$ where f flattening = 1/298.3

h = perigee height

AUFBUP = $\alpha^{0}/0! = F/1$ AUFBUP = $\frac{\alpha}{n!}$ $1 \le n \le 6$

Compute the following, which will be used to solve for $\delta_{t} = \frac{1}{2\pi} \frac{\delta_{e}}{\delta_{t}}$

PARTA =
$$B_0 + (\gamma B_1 + \frac{2}{2!} - (3 \cdot B_2) + \frac{3}{3!} - (3 \cdot 5B_3) \dots + \frac{6}{6!} - (3 \cdot 5 \cdot 7 \cdot 9 \cdot 11B_6)$$

PARTA2 =
$$(B_1 - 1/2 \cdot 3 B_2) + 2(3B_2 - 1/2 \cdot 3 5B_3) \dots + \frac{4}{4!} (3 \cdot 5 \cdot 7 \cdot 9B_5 - 1/2 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11B_6)$$

3 · 5 · 7 · 9 · 11B₆)

CDLIB SPIRDEC 3 of 3

DESCRIPTION:
(continued)
PARTA3 =
$$(3B_2 - 3 \cdot 5B_3 - 1/4 \cdot 3 \cdot 5 \cdot 7B_4) + \dots + \frac{\alpha^2}{2!} (3 \cdot 5 \cdot 7B_4 - 3 \cdot 5 \cdot 7 \cdot 9B_5 + 1/4 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11B_6)$$

PARTE3 = B, $+ \gamma B_2 + \frac{\alpha^2}{2!} 3 \cdot B_3 + \dots + \frac{\alpha^5}{5!} 3 \cdot 5 \cdot 7 \cdot 9B_6$
PARTE2 = $(B_2 - 1/2 \cdot 3 \cdot B_3) + \alpha (3 \cdot B_3 - 1/2 \cdot 3 \cdot 5B_4) + \dots + \frac{\sqrt{3}}{3!} (3 \cdot 5 \cdot 7B_5 - 1/2 \cdot 3 \cdot 5 \cdot 7 \cdot 9B_6)$
PARTE = $(3B_3 - 3 \cdot 5B_4 - 1/4 \cdot 3 \cdot 5 \cdot 7B_5) + \alpha (3 \cdot 5B_4 - 3 \cdot 5 \cdot 7B_5 + 1/4 \cdot 3 \cdot 5 \cdot 7 \cdot 9B_6)$
where 1) powers of α are in ALFBUF
2) $1 \cdot 3 \dots (2N-1) B_n$ are in BNNBUF
3) $1 \cdot 3 \dots (2N-3) B_n$ are in BNBUF

Solve for $\delta a/\delta t$ and $\delta e/\delta t$:

$$\frac{\delta a}{\delta t} = \exp(-z) \left[(PARTA) + (c/tan2\omega)^2 (PARTA2) + (c/tan2\omega)^4 (PARTA3) \right]$$

$$\frac{\delta e}{\delta t} = \exp(-z) \left[(PARTE) + (c/tan2\omega)^2 (PARTE2) + (c/tan2\omega)^4 (PARTE3) \right]$$
Solve for $C_{\Delta B/B} = (M-M_0) (aB^{DT}) \left[3C_{\Delta n/n} (\delta^a/\delta t) - (C_{\Delta axn} a_{xn}) - \frac{2}{2} + C_{\Delta ayn} a_{yn} (\frac{p}{h}) (\frac{\delta e}{\delta t}) \right]$

LLAFEN SFERRE 1 r 2

P.RPOSE: " initialize for CDLTB subroltine.

CALL SEQ ENCE: JMP CDLIBIN

INPLT: SKNIRL = C OXXXXXXX ASCON2 = F/6378165 (m/er) Input carded for S.BAYZ subroutine

OulPub: See description

SUBRO MINES: Frogram - SUBXIZ, JNDRAG, MILISUB

STORAGE

REQUIREMENTS: 96 Cells

DESCRIPTIN: Rest if correcting B; if not exit. Use part of JNDRAG subrutine to compute S and log ρ (h₁, T), i = 1, 2, 3, 4 and perigee density (ρ_{π}).

Then compute density scale height:

HSUBS =
$$\frac{1}{h_{s}} = \frac{6378.165}{10} \frac{\log_{e} 10}{10} \left[\frac{(3S^{2} - 6S + 2)}{6} \log P (h_{1}, 1) - \frac{(3S^{2} - 4S - 1)}{2} \log P (h_{2}, 1) + \frac{(3S^{2} - 2S - 2)}{2} - \frac{\log P (h_{3}, 1)}{2} - \frac{(3S^{2} - 1)}{6} \log P (h_{4}, 1) \right]$$

is monthe is natarit values needed for CDLTB:

$$ABRHO = (a BP-) / 2$$

$$POVH = p/h_s$$

$$AOVH = a/h_s$$

$$ZZ = z = ae/h_s$$

DESCRIPTION: (continued)

If z/2 < 1, set Z2BUF as follows:

Z2BUF = F/1

Test z/2:

Z2BUF + r = $\frac{(z/2)^{2r}}{r!}$ r = 1, 2, ..., 5

Then solve for B_n,

$$B_{n} = \sum_{r=0}^{5} \frac{(z/2)^{2r}}{(r!) (n+r)!} \qquad n = 1, 2, ... 6$$

If z/2 > 1:

Z2BUF = 1
Z2BUF =
$$\left(\frac{2}{z}\right) \frac{1}{\sqrt{2\pi z}}$$
, x = 1, ..., 5

Set up BNBUF and BNNBUF:

$$e^{-\Sigma} B_n = \left(\frac{2}{z}\right)^n \frac{1}{\sqrt{2 \pi z}} \Sigma L_{n,m}$$
 where $n = 1, ..., 6$
where $L_{n,0} = 1$ and $L_{n,m} = L_{n,m-1} \left[\frac{(m^{-1}/2 - n m^{-1}/2 + n)}{2mz}\right]$

The series should be truncated when:

$$\frac{L_{n,m}}{L_{n,m-1}} > 1$$

Whatever the value of Z/2, set switch JMPTBL + 3 = C/JMP, PA1; C/JMP, SOLPRTA in CDLTB subroutine.

P.RFOSE: To check for correction cycle convergence. CALL SEQ.ENCE: JMP CHECK = 0 OX, X = No. of iterations INP! I: RFF RCNT = No. of residuals = Current root mean square of residuals RMS JDRMS = Previous RMS DOF AG = Flag for Δq check DON = $\Delta q \max$ CONTEST = e for allowable RMS change for convergence OUTPUT: See descriptior. S'BROUTINES: Program - CHECKI, COMDQ STORAGE REQUIREMENTS: 65 Cells DESCRIPTION: This is not a closed subroutine in all cases. If the differential correction should continue, the subroutine exit employs the Jump Register (closed). If the D.C. converges, the exit is to location CONCOM; if the D.C. diverges, to location DIVCOM. (1) At CHSW+1H, the second pass RMS must be saved for dutrut at the end of the D.C. if the first pass is an "n only" correction. Otherwise, the first pass RMS 1: saved. At CHQ. If a_{xn} and a_{yn} are not being corrected, there is no need for a $\Delta 9$ check. If they are being corrected

and a ΔP test is requested, the following procedure is followed

DESCRIPTION: (continued) (a) Δ^q is computed by COMDQ subroutine

- (b) a may increase by any amount but it may only decrease by Δq max (from P Card 3). If the decrease $\geq \Delta q$ max, Δa_{xn} and Δa_{yn} are modified by 1/2 and the test is repeated until $\Delta q < \Delta q$ max.
- (3) At CHRMS, test the RMS:
 - (a) Compute the change in the RMS. If it is less than CONTEST (usually .01), then convergence has occurred.
 - (b) If the change is greater, exit to CONCOM, test if the current RMS is greater than the previous one. If it is, the correction is diverging. If the RMS increases on 4 consecutive iterations, exit to DIVCOM.
 - (c) At CHSW2:

If the change is greater than CONTEST, but the RMS is smaller than the previous one, the number of iterations (location RPT) is decreased by 1 and tested for 0. If RPT \neq 0, the D.C. will continue.

(d) At CCC200:

If RPT = 0 for the first time, a comment will be printed stating that CONTEST will be multiplied by 5 and the D.C. will be repeated for the same number of iterations.

(e) At CCC190:

If RPT = 0 for the second time, the run will be terminated by a comment stating that convergence is not determined.

CHECK1 SPIRDEC

To initialize subroutine CHECK PURPOSE: CALL SEQUENCE: JMP CHECKI INP.T: SKNTRL = 0 OXXXXXXX the last 7 bits correspond respectively to B, i, Ω , U_0 , a_{xn} , a_{yn} , n If the bit is = 1, the element is to be corrected. CNFLAG = 1, then do n only correction first. OUTPET: See description. SUBROUTINES: Program - CHGNXN STORAGE REQUIREMENTS: 14 Cells DESCRIPTION: (1) Sets the following switches in the CHECK subroutine: CHSW2 = JMP CCC200CHSW1 = JMP CHQCHSW = JMP CHSW+1H (2) Moves SKNTRL to KNTRL. Tests if n only correction, if yes: Set KNTRL = 0 01 and CHSW = JMP CHN (3) Sets OLDRMS = F/1000000DIVFL = 0 0COUNTL = C/HLT, N, where N = number of bits = 1 in KNIRL (4) Uses subroutine CHGNXN to set up matrix size.

CH. CWD SPIRDEC

PURPOSE: To modify the output control words for subroutine PRNTMAT. CALL SEQUENCE: JMP CHGCWD INPUT: COUNTR = C/HLT, O; C/HLT, N N = matrix size $1 \le N \le 7$ OUTPUT: Modified control words for subroutine PRNTMAT. SUBROUTINES: None STORAGE 19 cells **REQUIREMENTS:** DESCRIPTION: If the matrix to be printed by subroutine PRNTMAT is a 1×1 or a 7×7 , no modification of the output control words is necessary. If the matrix is a 2×2 to a 6 x 6, the control words must be modified to pick up the correct locations in buffer MATRIXB. (See subroutine MATRIXB for definition of buffer.)

CHGNXN SDFDEC

PURPOSE	To set up parameters for least squares subroutines.
CALL SEQUENCE:	TMA C/HLT.N N = matrix size JMF CHGNXN
INPUT	(A) = C/HLI, N
OUIPUI:	COUNTL TOUNTR COUNTER USQF1 USQF2 USQF3 USQF4 USQF4 USQF5 USQF6 USQSF1 USQSF1 USQSF3 USQDN
SUBROUIIVES:	Program - CHGCWD
STORAGE REQUIREMENTS:	18 Cells
DESCRIPIION:	COUNTL = C/HLT,N; C/HLT,O COUNTR = C/HLT,O; C/HLT,N COUNTLR = C/HLT,N; C/HLT,N
	LSQP1 = C/HLT, TERMS + N; C/JMP, LSQMULT LSQP2 = C'HLT, A11 + N ² + 1; C/JMP, LSQLOD2 LSQF3 = C/HLT, B11 + N; C/JMP, LSQLOC LSQP5 = C/HLT, N-1 LSQP6 = C/HL1, N + 1; C/HLT, N + 1
	LSQSP1 = C/HLT, N LSQSP3 = C/HLT,N; C'HLT,N LSQDN = C/TDM, 0,2; C/AIXOL, N, 2

PURPOSE: If range or angles are observed, to compute the residuals and differential expressions which are entered in the least-squares matrix.

CALL SEQUENCE:	TJM CMPCFY • for range or	
	CM CMPCFY - for angles	
	JMP CMPCF	
	TAM (unweighted residual)	
	TQM (weighted residual)	
INPUT:	KNTRL = 0 - 0XXXXXXX,	
	The last 7 bits correspond to the 7 elements	
	B, i, Ω , U, a, a, n.	
	If = 1, then the element is being corrected.	
	LTERMS = C/HLTR, TERMS	
	and output of COEFF2 subroutine	
OUTPUT:	See description.	
SUBROUTINES:	Program - CDLTB	
STORAGE REQUIREMENTS:	41 Cells	
DESCRIPTION:	The following formulas ar solved for, as indicated by KNTRL, and packed into the TERMS buffer to be entered in the least squares matrix by subrouting	9
	If ρ is observed, the terms are:	
	$0,1 = \left[(U_{N}) (\underline{} \cdot \underline{}) + (R_{N}) (\underline{} \cdot \underline{\underline{U}}) \right] \frac{1}{\sigma_{\rho}}$ $1,1 = \left[(U_{XN}) (\underline{} \cdot \underline{\underline{V}}) + (R_{XN}) (\underline{\underline{L}} \cdot \underline{\underline{U}}) \right] \frac{1}{\sigma_{\rho}}$	for n
	1,1 = $\left[(U_{XN}) (\underline{L} \cdot \underline{V}) + (R_{XN}) (\underline{L} \cdot \underline{U}) \right] \frac{1}{\sigma_{\rho}}$	for a _{xn}
	$2,1 = \begin{bmatrix} (U_{YN}) & (\underline{L} \cdot \underline{V}) + (R_{YN}) & (\underline{L} \cdot \underline{U}) \end{bmatrix} \frac{1}{\sigma_{\rho}}$ $3,1 = \begin{bmatrix} (U_{U}) & (\underline{L} \cdot \underline{V}) + (R_{U}) & (\underline{L} \cdot \underline{U}) \end{bmatrix} \frac{1}{\sigma_{\rho}}$	for a _{yn}
	3,1 = $\begin{bmatrix} (U_u) & (\underline{L} \cdot \underline{V}) + (R_u) & (\underline{L} \cdot \underline{U}) \end{bmatrix} \frac{1}{\sigma_0}$	for U _o

DESCRIPTION:
(continued)
$$4,1 = \left[(\cos i) (\underline{L} \cdot \underline{V}) - '\sin i \right] (\cos i) (\underline{L} \cdot \underline{V}) \right] \frac{r}{\sigma_{\rho}} \quad \text{for } \hat{n}$$

$$5,1 = \left[(\sin i) (\underline{L} \cdot \underline{V}) \right] \frac{r}{\sigma_{\rho}} \quad \text{for } i$$

$$6,1 = (\text{See results of CDLTB subroutine;} \quad \text{for B} \\ \text{it is used to compute this term})$$

$$7,1 = (\hat{p} - \hat{p}_{c}) \frac{1}{\sigma_{\rho}} \qquad \text{weighted residual}$$
The unweighted residual is $(\hat{p} - \hat{p}_{c})$.
$$\frac{\text{If } A \text{ or } \alpha \text{ is observed}:}{\text{In the formulas for n through } i, \text{ substitute}}$$

$$\frac{A}{\rho} \text{ for } \underline{L}, \text{ and } \frac{1}{\rho_{c}\sigma_{A}} \quad \text{for } \frac{1}{\sigma_{\rho}}$$
The weighted residual is: $\hat{p}_{a} (A \cdot \Delta L) = \frac{1}{\rho_{c}\sigma_{A}};$
The unweighted residual is: $\hat{p}_{a} (A \cdot \Delta L)$

$$\frac{\text{If } h \text{ or } \alpha \text{ is observed}:}{\text{In the formula for n through } i, \text{ substitute}}$$

$$\frac{1}{\rho_{c}\sigma_{A}} = \frac{1}{\rho_{c}\sigma_{A}} \quad \text{for } \frac{1}{\sigma_{\rho}} = \frac{1}{\rho_{c}\sigma_{A}};$$

The weighted residual is: $\rho_c (\underline{D} \cdot \underline{\Delta L}) \frac{1}{\rho_c \sigma_h}$

and the unweighted residual is $\boldsymbol{\rho}_{c} = (\underline{D} \cdot \Delta L)$.

CNIRL SPIRDEC 1 of 5

PURPOSE:	To control the differential correction.
CALL SEQUENCE:	JMP CNTRL JMP (Error) (Normal Return)
INPUT:	Observations starting in EBLOC OANDE = C/HLT, OBLOC; C/HLT, EBLOC XLO AXO AYO AZO HXO HZO HZO
	Input required for all subroutines used. Input from P Card 3.
OUTPUT :	DLTNN = $\Delta n/n$ DLTAX = Δa_{xn} DLTAY = Δa_{y} DLTAY = Δu_{o} DLTUO = ΔU_{o} DLTND = $\Delta \Omega$ DLTIN = Δi DLTB = $\Delta B/B$ RMS = root mean square of weighted residuals
SUBROUTINES:	System - PANT Program - PAGECON, MOVDAT, INITIAL, CDLTBIN, SAV5PTS, ADBASH, REVSUB, SAVICK, SAVWBF, DIVDIF, SAVW, SETW, COEFF2, RESW, RESOUT1, SAVELM, COMRMS, LSQS
STORAGE REQUIREMENTS:	106 Cells

CNTRL SPIRDEC 2 of 5

DESCRIPTION: This subroutine is primarily a logic routine to control use of the subroutines which are necessary for a differential correction

> The observations are stored and retrieved in order starting at epoch. The closest observation before epoch is the first; then order the observations backward in time to the earliest one before epoch. The observations after epoch are stored next in chronological order. Epoch can be anywhere in relation to the observations, i.e. before, after, or in the middle. The integration control is set to handle each situation most efficiently. The integration starts at epoch and goes back in time to the earliest observation; then everything is reinitialized and integration begins at epoch and goes forward in time to the latest observation.

> If at any time during the integration the time or revolution number requested for the new epoch is found (P Card 3), the elements are saved to avoid repetition of integration. If the new epoch falls outside the span of the observations, subroutine PRERES will continue or initialize the integration to find the new epoch elements (See subroutine PRERES).

- A. The following are executed only once:
 - (1) Set these locations $\neq 0$.
 - PEJ SAV indicates new epoch elements have not been found
 - SAVELEM subroutine SAVELM has not been called
 - FIRST some observations may be before epoch
 - (2) Force a page for output
 - (3) Zero the least squares matrix buffers

CNTRL SPIRDEC 3 of 5

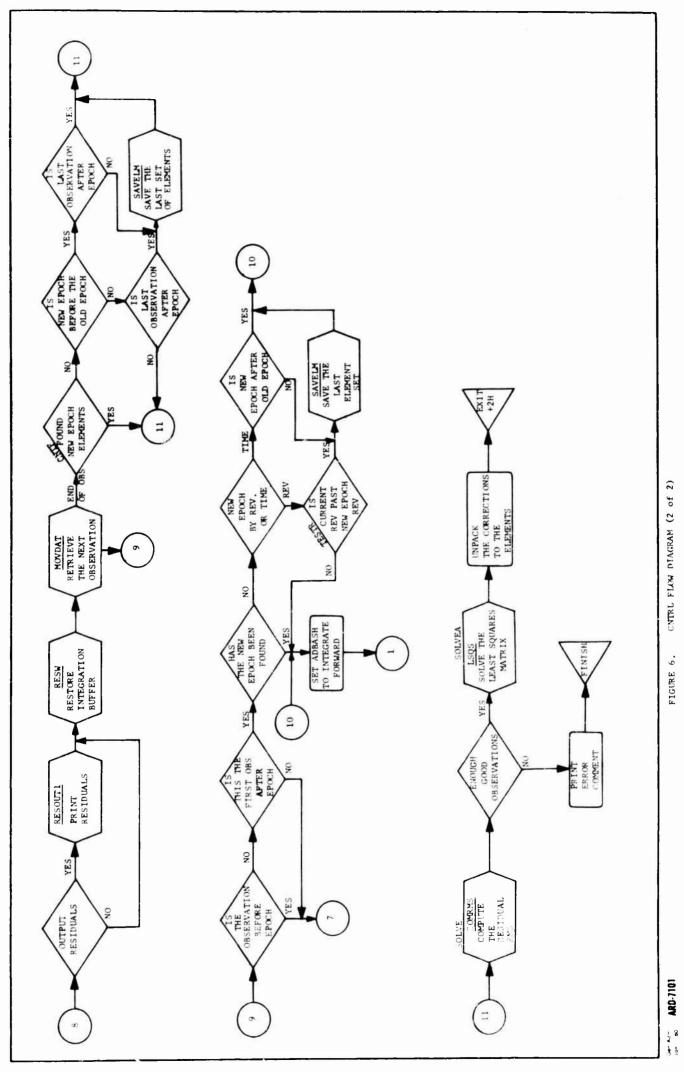
DESCRIPTION: (continued)

- (4) Set the following:
 - REJCNT = $\emptyset/0$ (REJCNT is number of rejected residuals)
 - RCNT = $\emptyset/0$ (RCNT is number of accepted residuals)
 - SUM = F/O (SUM is sum of squares of weighted residuals)
 - REV = EPREV (EPREV is epoch revolution)
 - (5) Retrieve the first observation. If no observations, take error exit.
 Otherwise, determine whether the first observation is before or after epoch, i.e. should the integration be backward or forward in time with epoch as a base? Set necessary switches accordingly.
- B. Initialize for the first integration:
 - (1) Call subroutine INITIAL to start with the epoch elements.
 - (2) Initialize the CDLTB subroutine with CDLTBIN.
 - (3) Use subroutine SAV5PTS to save the epoch elements as the first entry in the interpolation buffer (ICK).
- C. Begin the basic integration loop:
 - (1) Integrate for the next point using ADBASH subroutine.
 - Update the revolution number with REVSUB subroutine.
 - (3) Save the element set with subroutine SAV5PTS.
 - (4) If the buffer for interpolation does not contain 5 elements sets, go to step C(1).
 Otherwise go to D.

CNTRL SPIRDEC 4 of 5

DESCRIPTION: (continued)

- D. Look for new epoch elements:
 - If the new epoch elements have been found, go to step E. Otherwise determine if searching for a revolution number or a time.
 - (2) If by revolution, test if current revolution number is equal to the new epoch revolution number. If not, go to E. If it is, save the last element set in the ICK buffer as the element set corresponding to the revolution number. Save other values necessary for PRERES subroutine and set PRDSAV = 0 indicating elements have been found.
 - (3) If by time, test if new epoch time is within the time span of the interpolation buffer. If not, go to E. Otherwise, interpolate for the elements at the new epoch time. Save other necessary values for PRERES subroutine and set PRDSAV = 0.
- E. Search for elements corresponding to observation time:
 - If the observation time is not within the time span of the interpolation buffer, go to step C to omit the first time and add a new one.
 - (2) If it is within the time span, interpolate for the elements at the observation time. Pass these elements to the COEFF2 subroutine which will compute the residuals and the partial derivatives and enter them in the least squares matrix buffers.
 - (3) Output the residuals if requested.
 - (4) Retrieve the next observation:
 If on the same side of epoch as the previous observation, go to step E;
 if not, go to step F.
 If end of observations, go to step G.


CNTRL SPTRDEC 5 of 5

DESCRIPTION: (continued)

- F. Reinitialize to integrate forward from epoch:
 - If already initialized, go to step E. If not, test if new epoch elements are before epoch.
 - (a) If yes, and if elements have not been found, save the buffers necessary to restart integration by PRERES subroutine.
 - (t) If after epoch, reinitialize several switches and go to step B.
- G. Test for new epoch elements:
 - (1) If the new epoch elements have been found, go to step H. If not, determine where new epoch is in relation to epoch. Save buffers to restart under several conditions. At times it is more convenient to initialize for the integration to the new epoch elements, i.e. if all the observations are before epoch and the new epoch is after epoch.
- H. Solve for the delta elements:
 - (1) Compute the root mean square of the residuals.
 - (2) If there are enough observations accepted, solve the least squares matrix with subroutine LSQS. If not, take an error exit to location FINISH.
 - (3) The results of solving the least squares matrix (delta elements) are in a buffer. Unpack the buffer and exit.

FIGTRE -S. EXTRUCTION DIAGRAM (L of 2)

CJEFF2 SPIRDEC 1 of 2

PURPOSE: To compute the coefficients for the least squares matrix and residuals for each observed quantity. CALL SEQUENCE: JMP COEFF2 INPUT: OBFLC = observed quantities SIGMA1 = σ_0 $SIGMAL = \sigma_0$ SIGMA3 = σ_a SIGMA4 = ThRGSDL = $(\rho - \rho_c)$ (KM) OUTPUT: ARSDL = $P_{C} \underline{A}$. ($\underline{L} - \underline{L}_{C}$) (KM) DRSDL = $\rho_{c} \underline{D}$. ($\underline{L} - \underline{L}_{c}$) (KM) RRSDL = $(\dot{\rho} - \dot{\rho}_{c})$ (KM/SEC) Modified A and B matrices in All and Bll buffers. SUBROUTINES: Program - SUBXYZ, RHOSB, COMXLX, DOTPR, CMFLF, RESREJ1, LSQR, COMDEL, CORRD, REJECT1, REJECT2. STORAGE REQUIREMENT'S: 93 Sells DESCRIPTION: First computes R's and U's at time t, Then tests OBPLG for observed quantities and computes the specified residuals and coefficients using subroutines CMFCF and CORRD. Tests if the residuals are accepted or rejected. If accepted, the coefficients are added to the matrices A and B using subroutine LSQR. If rejected, a flag is set, corresponding to the residual to indicate

rejection.

COEFF2 SPIRDEC 2 of 2 1

F,

r i

DESCRIPTION (continued)	4 sw	itches must	be preset before calling this subroutine:
(continued)	(1)	for 1st pas	ss only
		COEFR JMP	REJECT1
		COEFA JMP	REJECT1
		COEFH JMP	REJECT1
		CCEFRR JMP	REJECT2
	(2)	for the 2nd	through n passes:
		COEFR JMP	RESREJ 1
		COEFA JMP	RESREJ1
		COEFH JMP	RESREJ 1
		COEFRR JMP	RESREJ1

COELTS SPIRSEC

PURPOSE :	To prepare values for output by ELMOUT.
CALL SEQUENCE	
INPUT:	XLO AXNO AYNO HXO HZO B REV QO SINI ESQ P P3 1AO2 XNO
OUTPUT:	LPRINT = L (deg) AXPRINT = a_{xn} AYPRINT = a_{yn} HXPRINT = h_{x} HYPRINT = h_{y} HZPRINT = h_{z} BPRINT = h_{z} BPRINT = B_{z} PREV = Kev No. HSUBQP = h_{q} (k ~
SUBROUTINES:	(None)
STORAGE REQUIREMENTS	19 Cells
DESCRI P TION:	Computes HSUBQP and PAPRINT - moves other values to output cells. Used to prepare initial, final, and prediction elements for output.

•

COMDEL SPIRDEC

PURPOSE:	To compute ΔL_x , ΔL_y , ΔL_z
CALL SEQUENCE:	JMF COMDEL
INPUT:	XLSUBY from AZREC or ALREC subroutines. XLSUBZ XLX = ρ_x / ρ_c XLY = ρ_y / ρ_c XLZ = ρ_z / ρ_c
OUTPUT:	DELTX DELTY DELTZ
SUBROUTINES:	(None)
STORAGE REQUIREMENTS:	6 Cells
DESCRIPTION:	DELTX = XLSOBX - XLX
	DELTY = XLSUBY - XLY
	DELTZ = XLSUBZ - XLZ

COMDQ SPIRDEC

PURPOSE:	To compute delta q.
CALL SEQUENCE:	JMP COMEQ
INPUT:	$DLTNN = \Delta_n/n$
	$XNO = n_{O}$
	$DL_{AX} = \Delta_{a_{X}}$
	$DLTAY = \Delta a_{y}$
	$AXNO = a_{xno}$
	$AYNO = a_{yro}$
	$QO = q_{O}$
	$EO = e_0$
	$AO = a_{O}$
OUTPUT:	DELTAQ = Δ_q
SUBROUTINES:	Philco - FSQRT
STORAGE REQUIREMENTS:	13 Cells
DESCRIPTION:	If $e_0 \neq 0$, then
	$q = -\frac{2}{3} \Delta_{n_{/n}} q_{o} - a_{o} \left(\frac{a_{xno} \Delta a_{xn} + a_{yno} \Delta a_{yn}}{e_{o}} \right)$
	If $e_0 = 0$, then
	$q = -\frac{2}{3} \Delta n_{/n} q_0 - a_0 \sqrt{\Delta a_{xn}^2 + \Delta a_{yn}^2}$

COMRMS SPIRDEC

PURPOSE:	To compute root mean square
CALL SEQUENCE:	JMP COMRMS
INPUT:	RCNT = C/HLT,N where N > number of accepted weighted residuals
	SUM = sum of squares of accepted weighted residuals
OUTPUT:	ACCONT = C/HLT, N
	RCNT = N (floating point)
	KMS = root mean square
SUBROUTINES:	(None)
STORAGE REQUIREMENTS:	16 Cells
DESCRIPTION:	ACCCNT = RCNT
	RCNT is converted to F.P.
	$RMS = \sqrt{SUM/RCNT}$

-

.

COMXLX SPIRIEC

PURPOSE:	To compute <u>L</u>
CALL SEQUENCE:	COMXLX
INPUT:	RHOX = $\rho_{\rm X}$ RHOY = ρ
	RHOY = 0 $RHOZ = \rho_{z}$ $RHOC = \rho_{c}$
OUTPUT:	XIX = L $XLY = L$ y $XLZ = L$ z
SUBROUTINES:	(None)
SIORACE REQUIREMENTS:	5 Cèlle
DESCRIPTION:	$XLX = \rho_{x} / \rho_{c}$ $XLY = \rho_{y} / \rho_{c}$ $XLZ = \rho_{z} / \rho_{c}$

.

CORRD SPIRDEC 1 of 2

PURPOSE:	To compute coefficients of range-rate correction equations and the range-rate residuals.
CALL SEQUENCE:	JMP CORRD
	TAM (unweighted residual)
	TQM (weighted residual)
INPUT:	$K_{M}TRL = 0$ OXXXXXXX
	LTEHIS = C/HLTR, TERMS
	and output of COEFF2 subroutine
	witch CORRDS4 must be preset to JMP CORRDC before
	ent/ring this routine.
OUTPUT:	See description.
SUBROUTINES:	Pr.gram - RDTSB, CDLTBA
STORAGE REQUIREMENTS:	15 Cells
DESCRIPTION:	First these formulas must be solved:
	$EXOM = a (e \cos E - e^2)$
	$EYOM = \sqrt{1 - e^2} (a \ e \ \cos \ E)$
	$VDOT = r\dot{v}/r$
	$RSQ = r^2$
	$RCUBE = r^3$
	RVDOT = rv
	$XMUA32 = \sqrt{\mu} a^{3/2}$
	RDOTU = $\frac{\sqrt{\mu} a^{3/2}}{r^3} \left[a (e \cos E - e^2) \right]$
	UDOTU = $\sqrt{\frac{\mu}{r^{3}}} \frac{a^{3/2}}{r^{3}} \sqrt{1-e^{2}}$ (a e cos E)

CORRE SFIRDEC 2 1 ± 2

DESCRIPTION:
REDEN =
$$f/3 + (2\pi \frac{1}{2})$$
 (REDEN)
UDOTN = $r\sqrt[3]{3} + (2\pi \frac{1}{2})$ (UDOTU)
RDTXN = $\begin{bmatrix} \sin (E + \omega) - a_{yn} - (a_{xn}) & (e \sin e) \end{bmatrix} \sqrt{\frac{\omega}{r}} \frac{a^{5/2}}{r^3}$
RETEN = $\begin{bmatrix} a_{xn} - c_{yn} & (E + \omega) - (a_{yn}) & (e \sin e) \end{bmatrix} \sqrt{\frac{\omega}{r}} \frac{a^{5/2}}{r^3}$
UPTXN = $\frac{\sqrt{1-r^2}\sqrt{\omega}a^{5/2}}{r^3}$ $\begin{bmatrix} \cos (E + \omega) - a_{xn} & (\frac{r^2}{pa} + 1) \end{bmatrix}$
UPTXN = $\frac{\sqrt{1-r^2}\sqrt{\omega}a^{5/2}}{r^3}$ $\begin{bmatrix} \sin (E + \omega) - a_{yn} & (\frac{r^2}{pa} + 1) \end{bmatrix}$
RDDEDR = f/r

TEMP: =
$$\dot{\rho}_{x} U_{x} + \dot{\rho}_{y} U_{y} + \dot{\rho}_{z} U_{z}$$

TEMP2 = $\dot{\rho}_{x} V_{x} + \dot{\rho}_{y} V_{y} + \dot{\rho}_{z} U_{z}$
TEMP3 = $\dot{\rho}_{x} W_{x} + \dot{\rho}_{y} W_{y} + \dot{\rho}_{z} W_{z}$

Having computed these formulas, the following quantities are shored in the TERMS buffer as described by the bits in KNRD:

^S Δc/n)	
$\Delta_{a,\lambda_{a}}$		
· 4=73		
[©] ∆⊎₀	}	Correction coefficients
്ഹറ		
$^{C}\Delta_{\mathbf{i}}$		
$C_{\Delta_{\rm S}/\rm B}$	J	
R		(weighted residual)

PURPOSE: To apply corrections to the elements. CALL SEQUENCE: JMP CREKT INPUT: DLTNN = $\Delta n/r_1$ $DLTAX = \Delta axn$ DLTAY = ∆ayn DLTND = Δ DLTIN = ∆i ۵Ü DLTUO = DLTB = $\Delta B/B$ OUTPUT: See description SUBROUTINES: Philco - FSIN, FCOS, FSQRT, FLOG2X, F2X STORAGE **REQUIREMENTS:** 46 Cells **DESCRIPTION:** The delta elements are applied and new elements are computed as follows: $= n_0 = n_0 (1 + \Delta n/n)$ XNO = $C_d A/m = B (1 + \Delta B/B) |\Delta B/B| \leq 0.25$ В = $U_{o} = U_{o} + \Delta U_{o}$ UO $= a_{xno} = a_{xno} + \Delta a_{xno}$ AXNO $= a_{yno} = a_{yno} + \Delta a_{yno}$ AYNO $= e_{0}^{2} = a_{xn0}^{2} + a_{yn0}^{2}$ ESQ $= e_0 = \sqrt{e_0^2}$ EO XNODEO = $\Omega_0 = \Omega_0 + \Delta \Omega_0$ $\sin \Omega_0$ SINO = COSO $\cos \Omega_0$ =

CREKT SPIRDEC 2 of 2

DESCRIPTION: (continued)	XINCL	=	$\mathbf{i} = \mathbf{i} + \Delta \mathbf{i}$
	COSI	=	cos i
	SINI	=	sin i
	WX	=	(sin i) (sin Ω)
	WI	=	-(sin i) (cos Ω)
	WZ	=	cos i
	CLIX	=	$L_{o} = U_{o} + \Omega$
	AO	=	$a_{o} = \left(\frac{k_{e}}{n_{o}}\right) 2/3$
	Р	=	$p = a_0 (1 - e_0^2)$
	RTP	=	√ ^p
	HX0	=	$h_{xo} = \sqrt{p} W_{x}$
	HZO	=	$h_{y \supset} = \sqrt{p} W_{y}$
	HZO	=	$h_{zo} = \sqrt{p} W_z$
	AXO	=	$a_{x0} = (\cos \Omega) (a_{xnc}) - (\cos i) (\sin \Omega) (a_{yno})$
	A70	:=	$a_{yo} = (\sin \Omega) (a_{xnc}) + (\cos i) (\cos \Omega) (a_{yno})$
	AZO	=	$a_{zo} = (sin i) (a_{yno})$
	QO	=	$q_{o} = a_{c} (1 - e_{o})$

DELOUT1 SP1RDEC

ľ

PURPOSE:	To print the delta elements after each D. C. pass.
CALL SEQUENCE:	JMP DELOUT1
INPUT:	DLTNN = $\Delta n/n$ DLTAX = $\Delta_{a_{XR}}$ DLTAY = $\Delta_{a_{YR}}$ DLTUO = ΔC_{o} DLTNO = ΔC DLTIN = Δi DLTB = $\Delta B/B$ RMS = weighted root mean square
OUTPUT:	DELTA N/N DELTA AXN DELTA AYN DELTA UO DELTA NODE DELTA I DELTA B RMS
SUBOUTINES:	System - GLOP, PANT Program - PAGECON
STORAGE REQUIREMENTS:	53 Cells
DESCRIPTION:	Forces a page, prints headings, values, 10 spaces, and updates PAGECON.

PURPOSE:	To print the last pass element corrections, old and new rms, and accepted and rejected count.
CALL SEQUENCE:	JMP DELOUT2
INPUT:	DLTNN DLTAX DLTAY DLTJO DLTND DLTIN DLTB RMS ORMS ACCONT REJONT
OUTPUT:	DELTA N/N DELTA NXN DELTA AYN DELTA UO DELTA NODE DELTA I DELTA B OLD RMS NEW RMS No. of residuals used and rejected
SUBROUTINE:	System - PANT, GLOP Program - PAGECON
STORAGE REQUIREMENIS:	56 Gells
DESCRIPTION:	Forces a page. Prints the comment "DC Converged " The next corrections would be" Then prints beadings, delta elements, old and new rms, accepted and rejected residual count, gives 8 spaces and updates PAGECON.

117

5

ŧ

DELTAU SPIRDEC

PURPOSE:	To compute Δ_{u}
CALL SEQUENCE:	JMP DELTAU
INPUT:	XOBS YOBS ZOBS UX UY UZ
OUTPUT:	DELU
SUBROUTINES:	Program - ARCTAN
STORAGE REQUIREMENTS:	19 Cells
DESCRIPTION:	$RU = XOBS \cdot UX + YOBS \cdot UX + ZOBS \cdot UZ = COSDU$
	SINDU = WX (UY ZOBS - UZ·YOBS) + WY (UZ·XOBS - UX·ZOBS) + WZ (UX·YOBS - UY·XOBS)
	DELU = \tan^{-1} (SINDU/RU) (mod 2π)

PURPOSE: To compute the derivatives of the N, M elements with respect to time, using the effects of radiation pressure, drag and/or bulge perturbation as specified on F Cards. CALL SEQUENCE: JMP DERIV **INPUT:** See input for MARTINI, JNDRAG, RDPRES and SUBXYZ subroutines. $XDGR = \dot{x}$ OUTPUT: W + 187 = d(L)/dt $YDGR = \dot{y}$ $188 = d(a_x)/dt$ $ZDGR = \dot{z}$ $189 = d(a_{y})/dt$ DGR = D $190 = d(a_z)/dt$ DDGR = D $191 = d(h_x)/dt$ D $192 = d(h_y)/dt$ = D AXGR = a' $193 = d(h_z)/dt$ a`^x AZGR = SMLGR = \tilde{l}^{z} SUBROUTINES: Program - SUBXYZ, MARTINI, JNDRAG, RDPRES STORAGE **REQUIREMENTS:** 97 Cells DESCRIPTION: Uses SUBXYZ to compute \underline{r} , $\underline{\dot{r}}$; computes specified perturbative effects to be used; and computes the derivatives, storing them in the ADBASH buffer (W + 187 to W + 193).

PURPOSE: To interpolate for elements using a fourth-order divided difference method.

CALL SEQUENCE: JMP DIVDIF

INPUT: ICK buffer (See description)

T = t (min. since epoch)

TBUF = temporary storage buffer

OUTPUT: ICK + 40 =L 41 = a x 42 = a y > at time t 43 = az 44 = h_x 45 = h y 46 = h_z

SUBROUTINE: None

STORAGE REQUIREMENTS: 34

DESCRIPTION:

QUIREMENTS: 38 Cells

Given the 5 sets of time and elements in buffer ICK, the subroutine will interpolate for the elements at time t, where $t_0 \le t \le t$ 4, using the following formula to interpolate for each element:

$$x = x_{o} + (t - t_{o}) \left[\frac{x_{1} - x_{o}}{t_{1} - t_{o}} \right] + (t - t_{o}) (t - t_{1}) \left[\frac{\left[\frac{x_{2} - x_{1}}{t_{2} - t_{1}} \right] - \left(\frac{x_{1} - x_{o}}{t_{1} - t_{o}} \right) \right] }{t_{2} - t_{o}} \right]$$

$$+ (t - t_{o}) (t - t_{1}) (t - t_{2}) \left[\frac{\left[\frac{x_{3} - x_{2}}{t_{3} - t_{2}} - \frac{x_{2} - x_{1}}{t_{2} - t_{1}} \right] - \left[\frac{x_{2} - x_{1}}{t_{2} - t_{1}} - \frac{x_{1} - x_{o}}{t_{1} - t_{o}} \right] }{t_{3} - t_{o}} \right]$$

DIVDIF SFIRDEC 2 of 2

DESCRIPTION:
(continued)
+
$$(t-t_{0})(t-t_{1})(t-t_{2})(t-t_{3})\left[\left(\frac{x_{4}-x_{3}}{t_{4}-t_{3}}-\frac{x_{3}-x_{2}}{t_{3}-t_{2}}\right)-\left(\frac{x_{3}-x_{2}}{t_{3}-t_{2}}-\frac{x_{2}-x_{1}}{t_{2}-t_{1}}\right)-\left(\frac{x_{3}-x_{2}}{t_{3}-t_{2}}-\frac{x_{2}-x_{1}}{t_{3}-t_{1}}\right)-\left(\frac{x_{2}-t_{1}}{t_{3}-t_{1}}\right)-\left(\frac{x_{2}-x_{1}}{t_{2}-t_{1}}-\frac{x_{1}-x_{0}}{t_{1}-t_{0}}\right)-\left(\frac{x_{2}-t_{1}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}\right)-\left(\frac{x_{2}-t_{1}}{t_{3}-t_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}\right)-\left(\frac{x_{2}-t_{0}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}\right)-\left(\frac{x_{1}-x_{0}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}\right)-\left(\frac{x_{1}-x_{0}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}\right)-\left(\frac{x_{1}-x_{0}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}\right)-\left(\frac{x_{1}-x_{0}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}\right)-\left(\frac{x_{1}-x_{0}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}\right)-\left(\frac{x_{1}-x_{0}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}-\frac{x_{1}-x_{0}}-\frac{x_{1}-x_{0}}{t_{2}-t_{0}}-\frac{x_{1}-x_{0}}-\frac{x_$$

ICK

5 sets of time and elements

ICK
 Buffer
 Format

 ICK
 +
 0
 +
 0

 +
 1

$$L_0$$
 +
 2
 a_x

 +
 2
 a_x
 +
 3
 a_y

 +
 2
 a_x
 +
 3
 a_y

 +
 3
 a_y
 +
 4
 a_z

 +
 5
 h_x
 +
 6
 h_y

 +
 7
 h_z
 .
 .

 +
 3
 L_0
 .
 .

 +
 32
 t_4
 .
 .

 +
 32
 t_4
 .
 .

 +
 33
 L_0
 .
 .

 +
 34
 a_x
 .
 .

 +
 35
 a_y
 .
 .

 +
 36
 a_z
 .
 .

 +
 38
 h_y
 .
 .

 +
 39
 h_z
 .
 .

PURPOSE:	To compute dot products of vector in the (A), (Q), (D) registers with \underline{U} , \underline{V} , \underline{W}
CALL SEQUENCE:	$\begin{array}{ll} TMA & (L_{x}) \\ TMQ & (L_{y}) \\ TMD & (L_{z}) \end{array}$
	JMP DOTPR
INPUT:	UX UY UZ VX VX VY VZ WX WY
OUTPUT:	ADOTU ADOTV ADOTW
SUBROUTINES:	(None)
DESCRIPTION:	ADOTU = L U + L U + L U Z ADOTV = L V + L V + L V Z ADOTV = L V + L V + L V Z ADOTW = L W + L W + L W Z

To output initial, final, and new epoch elements at the end of the differential correction.

CALL SEQUENCE:

JMP

INPUT:

- -

PURPOSE:

Initial elements in INELT buffer. New epoch elements in PREDBF buffer Final elements in: XLO AXNO AYNO HXO HYO HZO B REV

ELMOUT

OUTPUT: See description

SUBROUTINES: Program - RINEL, BCDTIM, COELTS, PRERES, PAGECON System - PANT, GLOP

STORAGE

157 Cells **REQUIREMENTS:**

DESCRIPTION:

Prints comment: "Initial, Final, and New Epoch Elements" Prints headings, then restorce initial elements to output cells and prints them. Prepares and prints final elements. Uses subroutine PRERES to obtain new epoch elements and prints them. Then prints comment: "End of DC" and updates PAGECON. Also prints card images of P Cards necessary to run CALIB.

Punches the following cards in P Card formats:

- (1) Corrected elements (P1 & P2)
- (2) New Epoch elements (P1 & P2)
- (3) Cards for calibration program (P1, P2, P3) and the cards P5-P8 which were used in the current SPIRDEC run.

PURPOSE:	To print the corrected elements after each differential correction.
CALL SEQUENCE:	JMP ELMOUT1
INPUT:	PREV=rev. no.LPRINT=L (deg)AXFRINT= a_{xno} AYPRINT= a_{yno} HXPRINT= h_x HYPRINT= h_y HZPRINT= h_z
	$BPRINT = C_{d} A/m$ $HSUBQP = Hq (km)$ $PAPRINT = Period (min)$
OUTPUT:	OBYEAR OSMO OBDAY FOBHR FOBHR FOBMIN FOBSEC
	REVTIMELAXNAYNHXOHXOHYOHZOBPER, ALT.PA

•

ELMOUT1 SPIRDEC 2 of 2

SUBROUTINES: Program - COELTS, PAGECON, BCDTIM, PRNTMAT System - PANT, GLOP

STORAGE

REQUIREMENTS: 53 Cells

DESCRIPTION:

ON: Uses BCDTIM to prepare time for output. Uses COELTS to compute values and correct elements to the output units. Prints "Corrected Elements". Then prints headings, values, and updates PAGECON. If the DC is converging, PRNTMAT will be called to print the standard deviations and correlation matrix of the delta elements. If divergent, the last corrected element set will be punched on P cards 1 and 2.

FTAFEW SPIRDEC 8

PURPOSE: To wrapup the binary ephemeris CALL SEQUENCE: JMP FTAPEW INPUT: TAPBUF = ephemeris buffer TAPCNT = C/HLT, TAPBUF + X OUTPUT: Sentinal of Z's SUBROUTINES: System - SYS, SYSNO, SYSIO STORAGE **REQUIREMENTS:** 9 Cells DESCRIPTION: Writes the final block on the binary ephemeris tape on logical 10 - the sentinel being Z's in the current block. Then the tape is rewound with lickout,

To retrieve sensor information. PURPOSE: JMP GETSEN CALL SEQUENCE: (No sensor data) (Normal return) BIASAD = C/HLT, EBLOC, C/HLT, BIBUF INPUT: SBUF = Modified buffer of sensor information BIBUF = STAID 00000555 = PHIRD OUTPUI: = φ XLAMBA = λ $= x / \cos \theta$ XOVCT CAPZ = Z SUBROUTINES: None STORAGE 10½ Cells **REQUIREMENTS:** Given a sensor number in STAID, the routine will DESCRIPTION: search through SBUF until a match or Z's are found. (1) If Z's are found, the error exit (+1H) is taken. If a match is found, the information will be (2) unpacked to the cells listed under output.

.

PURPOSE:	To retrieve weights.
CALL SEQUENCE	
INPUT:	Weights in WBUF WANDBI = C/HLT, WBUF; C/HLT, BIBUF STAID = 00000SSS where SSS is the station number.
OUTPUT:	SIGMA1 = σ_p
	$SIGMA_2 = \sigma_{p}$
	SIGMA3 = σ_A
	$SIGMA4 = \sigma_h$
SUBROUTINES:	None
STORAGE	
REQUIREMENTS:	11 Cells
DESCRIPTION:	Search WBUF for a match to STAID. If a match is found, unpack the 4 weights (noted under Output) and exit +2H. If no match is found, exit +1H.

GIPAR SPIRDEC

PURPOSE:	To prepare input for the GIPAR program.			
CALL SEQUENCE:	JMP GIFAR			
INPUT:	T = minutes since epoch			
	ORGDAY = days since beginning of year			
	ORGIN = fraction of epoch day			
	X = x (in km or e.r.)			
	Y = y (in km or e.r.)			
	Z = z (in km or e.r.)			
	FTFLAG			
	PFLAG			
	GIPADR = left address is the next location in the GIPAR buffer			
OUTPUT:	An entry in the GIPAR buffer:			
	Word 0 x			
	1 7			
- · ·	2 z			
	3 day number			
	4 fraction of day			
	5 ZZZZZZZZ			
SUBROUTINES:	Program - SEPSUB			
STORAGE REQUIREMENTS:	21 Cells			
MQUINTENIS.				
DESCRIPTION:	Before the first entry to this subroutine GIPADR must be set to C/HLT, EBLOC + 20 and EBLOC + 20 must be set = ZZZZZZZZZ. The subroutine will update GIPADR as it makes entries to the buffer.			
	 Convert time from minutes since epoch to days since the beginning of the year and fraction of day; then store. 			
	(2) Test PFLAG:			
	(a) If PFLAG = 0, store x, y, z			
	(b) If PFLAG ≠ 0, convert x, y, z from km. to e.r. and store. PFLAG ≠ 0 means subroutine SUBOUT has converted x, y, z to km.			
	(3) Store sentinel of Z's and update GIPADR.			
	129			

1

1

t

•

PURPOSE:	To output a new page with the page headings.
CALL SEQUENCE:	JMP HEAD
INPUT:	Parameters set by lHEAD1 subroutine.
OUTPUT:	New page with the described page headings.
SUBROUTINES:	System - PANT, GLOP
STORAGE REQUIREMENTS:	52 Cells
DESCRIPTION:	lst line - Spiral Decay SPDC Program Page X
	2nd line - Satellite No. = XXX Satellite name - x-x(10 charact
	2nd line (cont) - Element set no. = xxx Time of EPOCH = YY MM DD HH MM SS.SSS

```
PURPOSE:
                  To initialize the page heading routine (HEAD)
CALL SEQUENCE:
                  JMP IHEAD1
                  (Return)
                             0 - 0 NNN, Satellite number
INPUT:
                  SATN
                         =
                             days since 1950 ] Epoch
                  ORGDA =
                             fraction of day∫
                  ORGTM =
OUTPUT:
                  PAGENO = 0 - 0
                  PDAY
                          = MMO - 0
                          = , \Delta 19YY00
                  PYEAR
                  SATEL = NNNO -0, N = SATN
                  HEAD2 + 3 H = ADDR of BCD MONTH
                  HEAD5 to HEAD5 + 5 = (BCD EPOCH Time in cells for
                  output call sequence.)
                  System - AKLOK
SUBROUTINES:
                  Program - BCDTIM
STORAGE
REQUIREMENTS:
                  26 Cells
DESCRIPTION:
                  Uses AKLOK to get PDAY and PYEAR -
                  Uses BCDTIM to get Epoch in BCD ready for output
                  Sets up parameters necessary to output page heading
                  as done by HEAD.
```

racters)

PURPOSE:	To initialize for the ADBASH subroutine.
CALL SEQUENCE:	UMP INTIIAL
INPUT:	XLO AXO A⊻O AZO HXO HYO HZO
OUTPUT:	See description.
SUBROUTINES:	Program ·· WSETUP
STORAGE REQUIREMENTS:	9 Gells
DESCRIPTION:	Moves elements to W buffer by calling WSETPP Sets T (W + 3) = F/O Sets switch ADP to $1/1T15$ Sets switches ADDER1 to ADDER7 to a (JMP DERIV) in the ADBASH subroutine.

INITL SPIRDEC

PURPOSE: To print the cards images of the parameter cards (P cards 1 thru 10) and process them. CALL SEQUENCE: JMP INITL .TMP (ERROR) (NORMAL) INPUT: Parameter cards (P cards) in CONBUF OUTPUT: See description. SUBROUTINES: Program - PAGECON, INPUT System - PANT STORAGE **REQUIREMENTS:** 19 Cells DESCRIPTION: Prints card images of cards in CONBUF; then calls INPUT to process these cards.

INPUT SPIRDEC 1 of 10

PURPOSE: To unpack and validate the input parameter cards (1-10).

CALL SEQUENCE: JMP INPUT JMP (error) (Normal return)

INPUT: P Cards (1-10) in CONBUF PCOUNT = C/HLT, N where N = number of P cards

OUTPUT: See description.

SUBROUTINES: Program - XSRCH, RR2AHL, CARDER, SAVCON System - FSKLOK, FXFLT, INITEL, NXTELM, FYKLOK

STORAGE

REQUIREMENTS: 370 Cells

DESCRIPTION: The input parameter cards need not be in order; they are unpacked according to the number in Column 79, using subroutine XSRCH.

If no error is found on a card, a bit will be set in location CARDS:

1/1TO	-	P Card 1
1/1T1	-	P Card 2
1/1T2	•	P Card 3
1/1T3	•	P Card 4
1/1T4	•	P Card 5
1/1T6	•	P Card 6
1/1T7	••	P Card 7
1/178	-	P Card 8
1/1T9	-	P Card 9
1/1T10	-	P Card 10

INPJT SPIRDEC 2 of 10

DESCRIPTION: The remainder of any card in error is not validated (continued) The remainder of any card in error is not validated beyond the error; however, an attempt will be made to validate the remaining cards. Subroutine CARDER will be used to output the card image of the erroneous card with a comment indicating the first field in error; location CARDSW will be set \neq 1. If an error occurs during XSRCH conversion, a comment will be printed with the card image, but with no field indicated.

The subroutine XSRCH will unpack each of the cards into the locations:

	P Card 1		If C	If Col. $78 = A$		If Col. $78 = B$	
	(c	ol. 1 - 1	2 XLO	(rad)	х	(km)	
All floating point		13 - 2	4 AXNC)	Y	(km)	
		25 - 3	6 AYNC)	Z	(km)	
		37 - 4	9 нхо	(er/k@min)	XDOT	(m/sec)	
		50 - 6	2 НУО	(er/kemin)	YDOT	(m/sec)	
		63 - 7	5 HZO	(er/kemin)	ZDOT	(m/sec)	

If type B elements are input, subroutine RR2AHL will be used to convert them to type A elements with the results stored in the locations for type A elements. If no errors set bit 0 in CARDS = 1

P Card 2

ŝ,

Col. 1 - 5	SATN	(Binary)
6 - 15	SATNM, SATNM+1	(Binary)
17 - 32	YY, YY + 1	(Binary)
33 - 37	EPREV	(F.P.)
38 - 40	ELNO	(FX.P)

Having unpacked the card, the following will be done:

TOY = 0 O YY, YY = BCD year

Using subroutine FSKLOK;

ORDGA = days since 1950 to epoch (F.P.)

ORGTM = fraction of epoch day (F.P.)

Then the card image will be saved using subroutine SAVCON, for use by subroutine ELMOUT.

If no errors, set bit 1 in CARDS = 1

INPUT SPIRDEC 3 of 10

DESCRIPTION: P Card 3 (continued) Col. 1 CRAIG (FX.P.) 2 WGTFLG (FX.P.) 3 PW (FX.P.) 6 BFLAG (FX.P.) 7 DFLAG (FX.P.) 8 RPFLAG (FX.P.) 9 PREDFLG (FX.P.) 10-25 PRTIM, PRTIM+1 (BCD) 26-32 SKNTRL (BCD) 33 RPT (FX.P.) 34 CNFLAG (FX.P.) 35 DQFLAG (FX.P.) 36-39 DQN (F.P.) 40-42 ABSMX (F.P.) 43-45 ABMX2 (F.P.) 46-48 XISTSG (F.P.) 49-51 KAPPA (F.P.) 52-58 В (F.P.) 59 ROFLAG (FX.P.) 60 RESOPT (FX.P.) 62-64 CONTEST (F.P.) 66-68 F10 (F.P.) 69-71 F10AV (F.P.) 72-75 AP (F.P.) 76-78 GAMMA (F.P.)

INPUT SPIRDEC 4 of 10

DESCRIPTION: Having unpacked P Card 3, the following validations (continued) and conversions will be made: If ROFLAG \neq 0,1,2, set ROFLAG = 0 If RPT = 0, then ERROR (No. of iterations not specified) If SKNTRL = 0, then ERROR (Elements to correct not specified) If B is to be corrected: 1) If B = 0, then ERROR If B is not to be corrected: 2) If DFLAG $\neq 0$, then B, F10, F10AV, AP cannot = 0 3) If DFLAG = 0, then B, F10, F10AV, AP are not checked If DQFLAG $\neq 0$, then DQN cannot = 0 If ABSMX = 0 then ERROR (Rejection criteria cannot = 0) and/or ABMX2 = 0If XISTSG = 0, then set = F/1.5If KAPPA = 0, then set = F/1If RPFLAG $\neq 0$, then GAMMA $\neq 0$, and compute RPCON3 = GAMMA B/2.2 If DFLAG = ι , set RHO = F/O If PREDFLG: 1) = 0, use FSKLOK to convert PRTIM, PRTIM+1 to days since 1950 and fraction of day respectively. 2) = 1, use FXFLT to convert PRTIM, PRTIM+1 to revolution number and store in PRTIM 3) = 2, do not use PRTIM, PRTIM+1 If CONTEST = F/0, set = F/.01

INPUT SPIRDEC 5 of 10

DESCRIPTION: (continued) SKNTRL = OXXXXXXX (N, AXN, AYN, U, Ω , i, B) BCD to SKNTRL = OXXXXXXX (B, i, Ω , U, AYN, AXN, N) binary

> Convert: DQN from km to e.r. ABSMX from km to e.r. ABMX2 from km/sec to er/kemin

If no errors are found, set DCFLAG \neq 0 and bit 2 = 1 in CARDS. Use SAVGON to same card image for ELMOUT.

P Card 4

Col. 2-5	LTBUF+1	(F.P.)
ó	LTBUF+2	(FX.P.)
7	LTBUF+3	(FX.P.)
8	LTBUF+4	(FX.P.)
9	FTFLAG	(FX.P.)
1C=25	PRTIME, PRTIME+1	(BCD)
27	PFLAG	(FX.P.)
41	BIFLAG	(FX.P.)
4245	LIBUF+5	(F.P.)
49-51	РКАРРА	(F.P.)
52-58	РВ	(F.P.)
66-68	PF 10	(F.P.)
69-71	PF10AV	(F.P.)
2-75	PAP	(F.P.)
76-78	PGAMMA	(F.P.)

INFUT SPIRDEC 6 of 10

The following validations and conversions will be made: DESCRIPTION: (continued) If PKAPPA = F/0, set = F/1If DFLAG $\neq 0$, then PB, PF10, PF10AV, PAP cannot = 0 or ERROR If PFLAG = 0 and BTFLAG = 0, then ERROR (no output requested) If BTFLAG = 1, then LTBUF + 5 cannot \neq 0, or ERROR If FTFLAG: 1) = 0, use FSKLOK to convert (BCD) PRTIME, PRIIME+1 respectively to days since 1950 and fraction of day. 2) = 1, use FXFLT to convert PRTIME, PRTIME+1 to revolution number and store in SREVF. If LTBUF+4 \neq 0, then PGAMMA cannot = 0, or ERROR If no errors were found, set PPPFLAG \neq 0 and bit 3 in CARDS = 1P Card 5 W + 12 Col. 1-10 11-20+ 1321-30+ 14 A11 floating 31-40 + 15

	41-50	+	16
	51-60	+	17
	61-70	+	18

point

The buffer W is used by the ADBASH subroutine. The values input will override the assembled values in these locations as the absolute error criteria.

SAVCON will be used to save the card for ELMOUT. If no errors, bit 4 in CARDS will be set = 1.

INPLI SPIRDEC 7 of 10

DESCRIPTION: (continued)	P Card 6		
	Col. 1-9	JBUF	
	10-18	JBUF+1	A11
	19-27	JBUF+2	floating point
	28-36	JBUF+3	Porne

If this card is input, it will override the assembled values in JB.F. Subroutine SAVCON will be used to save the card image for ELMOUT and bit 6 in CARDS will be set = 1 if no errors.

P Card 9

Col. 1-5	PRT+0		
6-8	1		
9 - 13	2		
14-18	3		
19-21	4		
22-26	5		
27-31	6		
32-34	7		
35-39	8		A11
40-44	9	1	floating point
45-47	10		-
48-52	11		
53-57	12		
58 - 50	13		
61-65	14		
66-70	15	1	
71-73	16		
74-78	17		
)	

INPUT SPIRDEC 8 of 10

DESCRIPTION: This card contains the intervals desired to be printed (continued) or put on an empheris tape in a prediction.

One pass is made through the buffer to count the number of sets of intervals (3 fields = a set).

Then the buffer is checked to set that the times are in order. If not, an error exit is taken.

If the times are in order, PRT + 18 will contain the number of sets of intervals (T47) and bit 9 in CARDS will be set = 1.

P Card 10

Col.	1-15	GIT + 1,2	١	
	16-30	+ 3,4		
	31-45	5,6	>	A11 BCD
	46-60	7,8		
	61-75	9,10	,	

Each set of 2 words is checked for blanks. If not blanks, use FSKLOK to convert to floating point days and fraction. If all fields are blank, go to error exit.

Check to see that times are in order. If not, take error exit; otherwise, set bit 10 in CARDS = 1.

P Card 7

Col.	1-9	CSNM + 0	Y	
	10-18	+ 1		
	19-27	+ 2		
	28-36	+ 3		All floating
	37-45	+ 4	(poir
	46-54	+ 5		
	55 - 63	+ 6		
	64-72	+ 7		

DESCRIPTION:

(continued)

P Card 8

Col. 1-9 CSNM + 8+ 9 10-18 + 1019-27 + 11 28-36 A11 + 12 37-45 floating point + 13 46-54 55-63 + 14 + 15 64-72

These cards contain the tesseral coefficients for the MARTINI subroutine. SAVCON is used to save these card images for ELMOUT. If either or both cards are input, TESRAL is set = 1.

If no errors on P Card 7 & 8 bits 7 and 8 respectively will be set = 1 in CARDS.

Having unpacked and validated the input parameter cards, further checks are made:

If neither P3 nor P4 was input, ie, DCFLAG & PPPFLAG, = 0, the job cannot be run.

If neither or only one of P1 and P2 were input, then the elements will be retrieved from EBLOC and a comment printed. If EBLOC has no elements, the job will be terminated.

If PREDFLG = 0,

PRTIM will be made minutes since epoch by a double precision operation of:

PRTIM = (PRTIM-ORGDA) X 1440 + (PRTIM+1 - ORGTM)

If FTFLAG = 0,

PRTIME will be made minutes since epoch in the same manner as PRTIM.

INPUT SPIRDEC 10 of 10

DESCRIPTION: (continued) Using FYKLOK, ORGDAY will be computed as days from beginning of year to epoch. If EPREV $\geq 100,000$ it will be modulated 100,000 as a 5 digit revolution number is maximum.

If TESRAL $\neq 0$, ie, P7 and or P8 were input, location CARDS will be tested to see that both were input. If not, a comment will be printed and the job terminated, as both or neither are required for the MARTINI subroutine.

Having successfully passed all preceding checks, location CARDSW will be tested. If = 0, no errors were found on any card, and the job may be run. (EXIT + 2H). If CARDSW \neq 0, one or more cards were in error, and the job will be terminated (EXIT + 1H).

PURPOSE:	To initialize ephemeris tape for output.
CALL SEQUENCE:	JMP ITAPEW
INPUT:	$\left.\begin{array}{c} \text{SATNM} \\ \text{SATNM} + 1 \end{array}\right\} \text{Satellite Name BCD}$
OUTPUT:	<pre>1 block on tape 1(See description. TAPCNT = C/HLT, TAPBUF</pre>
SUBROUTINES:	Program - TAPEW System - SYS, SYSNO
STORAGE REQUIREMENTS:	8 Cells
DESCRIPTION:	Positions tape to 1st block writes 1 block on tape (1st 2 words are the satellite name - last 2 words are zero), which fulfills requirements of the XYZLA program.

.

PURPOSE:	To compute perturbative effects due to the atmosphere.
CALL SEQUENCE:	JMP JNDRAG JMP (Error), h < LOLIMIT (Normal Return)
INPUT:	DFLAG = $\begin{cases} 0 \text{ do not compute drag perturbations} \\ = \begin{cases} 1 \text{ compute drag perturbations} \end{cases}$
	LOLIMIT = $\begin{cases} 50 \text{ km for D.C. and Prediction} \\ = 10 \text{ km only for Cowell option} \end{cases}$
	TEMPO = Exospheric temperature at epoch from TEMP subroutine
	A - from P Card 3 or P Card 4
	$B = C_D A/m$
	KAPPA - from P Card 3 or P Card 4
	ASCON2 = F/6378.165
	THDOT = $\dot{\theta}$
	Output from SUBXYZ routine at time t.
OUTPUT:	$XD \square GR = \mathbf{x}_{D}$
	$YDIGR = y_D^{*}$
	$ZDTGR = \dot{z}_{D}$
SUBROLTINES:	Philip - FASIN, FSIN, FSUN, FSQRT, FTENX Program - GALH, ANGSUN
STORAGE REQUIREMENTS:	337 Cells

1

4

÷.

- -

.

.

DESCRIPTION:

This subroutine uses the Nicolet II (1964) dynamic atmosphere tables from 120 km. to 1000 km., and the Coesa (1962) tables from 0 km. to 120 km. The table at location NICOLET is comprised of packed octal words for 10 km. altitude increments.

This subroutine is called by DERIV and CDERIV subroutines, however, there is a special entrance (JNDRAGI) and exit (JNSW) for subroutine CDLTB, which uses JNDRAG to compute log ρ (h_i, T), where i = 1, 2, 3, 4 in order to compute density scale height.

The subroutine performs the following functions:

(1) Correct for latitude and longitude from sun. The ANGSUN subroutine computes the position of the sun, α and δ_{0} .

$$\emptyset = \sin^{-1} \frac{U_z}{U_z}$$
$$\theta = \tan^{-1} \left(\frac{U_y}{U_x} \right)$$

- (2) Compute log ρ (h_i, T) for four altitudes.
- (3) Interpolate for log P (h, T) from results of (2).
- (4) Compute P from log P (h,T)
- (5) Compute the velocity relative to the atmosphere:

$$v_{x} = \dot{x} + \dot{\theta}y$$

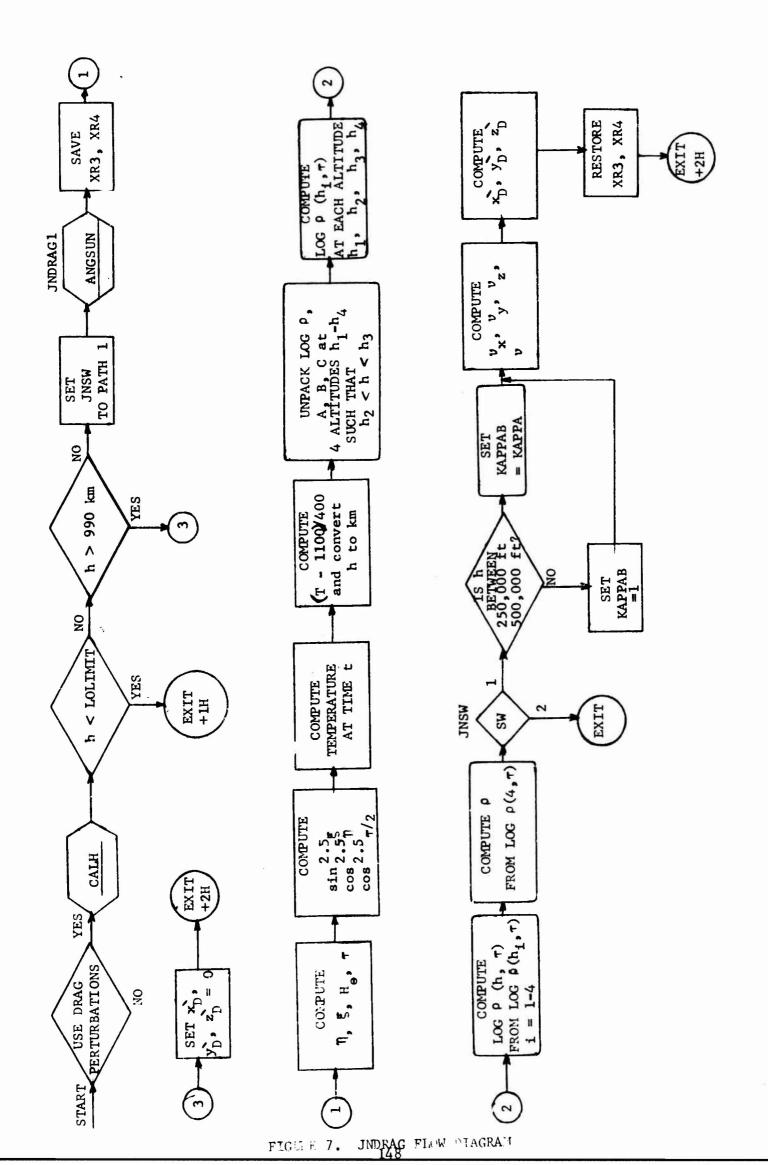
$$v_{y} = \dot{y} - \dot{\theta}x$$

$$v_{z} = \dot{z}$$

$$v = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}$$

JNDRAG SPIRDEC 3 of 3 .

DESCRIPTION: (continued)	(6)	Compute the perturbative accelerations due to drag.							
		XDTGR	=	x _D =	บ x	(врк _в	<u>ט</u> 2	6378.165)	
		YDTGR	=	y _D =	v y	(врк _в	$\frac{v}{2}$	6378.165)	
		ZDTGR	=	ž _D =	υz	(врк _в	<mark>ט</mark> 2	6378.165)	


1

: 1e

le

ļ

147

ł

LPARI SPIRDEC

PURPOSE: Given a quantity, X in radians, this subroutine will compute Y and Z such that: 1. Y and Z have the same sign as X2. Y is exactly divisible by 2π 3. $-2\pi \leq Z \leq 2\pi$ 4. Y + Z = XCALL SEQUENCE: TMA Х JMP LPART INPUT: The input consists only of the quantity X in the A register in floating point. Upon return from LPART, the A register contains ${\tt Y},$ and the **OUTPUT:** Q register contains Z. Both Y and Z are in floating point. SUBROUTINES: None STORAGE 14 Words **REQUIREMENTS:**

Parents of

ĺ

1

LSQ SPIRDEC

PURPOSE:	To zero matrix buffer All to All + 48 and Bll to Bll + 6
CALL SEQUENCE:	JMP LSQ
INPUT:	All and Bll buffers must be located sequentially in core.
OUTPUT:	F/O in buffer All to All + 48 and Bll to Bll + 6
SUBROUTINES:	(None)
STORAGE REQUIREMENTS:	4 Cells
DESCRIPTION:	See purpose.

LSQR SPIRDEC

PUR POSE:	To form a least squares matrix.	
CALL SEQUENCE:	JMP LSQ	
INPUT:	C ₁ thru C _{n+1} in	
	cells TERMS thru TERMS + n	
OUTPUT:	Modified matrix in All buffer and Bll buffer.	
SUBROUTINES:	None	
STORAGE REQUIREMENTS:	15 cells	
DESCRIPTION:	Add values in TERMS buffer to matrices A (All buffer and B (Bll buffer).	r)
A=	$\begin{bmatrix} c_{1} c_{1} & c_{1} c_{2} & \dots & c_{1} c_{n} \\ c_{2} c_{1} & c_{2} c_{2} & c_{2} c_{n} \\ \vdots & \vdots & \vdots & \vdots \\ c_{n} c_{1} & \Sigma c_{n} c_{2} & \dots & c_{n} c_{n} \end{bmatrix} = \begin{bmatrix} c_{1} c_{n} \\ c_{2} c_{n} \\ \vdots \\ c_{n} c_{n} \\ \vdots \\ c_{n} c_{n} \end{bmatrix}$	+1 +1

d,

PURPOSE:	To	solve	the	matrix	equation	AX	=	В	for X	

CALL SEQUENCE: JMP LSQS

INPUT: A matrix in All buffer

B matrix in Bll buffer

OUTPUT: Solution X in LSQX buffer

SUBROUTINES: Philco - FMAIN, FMAMU

Program - MATRIX

STORACE

REQUIREMENTS: 15 cells

DESCRIPTION: The top half of matrix A is accumulated at each entry to LSQR. When entry is made to LSQS, the terms of A are moved to the bottom half. Then the Philco matrix inversion subroutine (FMAIN) and matrix multiplication subroutine (FMAMU) are used to solve the equation for X. The solution is left in buffer LSQX through LSQX+(n-1). After the A matrix is inverted, subroutine MATRIX is called to solve for the standard deviations and correlation matrix of the delta elements. (See LSQR for matrix definition.)

MARTINI SPIRDEC 1 of 5

PURPOSE:	To compute the perturbative effects of the earth's bulge.
CALL SEQUENCE:	JMP MARTINI
INPUT:	$ BFLAG \begin{cases} = 0 \text{ do not compute perturbations} \\ = 1 \text{ use perturbations} \\ W + 1 = t(min) \end{cases} $
	$AE = a_e \qquad X = x$
	$UZ = U_z \qquad Y = y$
	$AE = a \qquad X = x$ $UZ = U \qquad Y = y$ $R = r \qquad THGR = \theta \qquad gr$ $TESRAL \begin{cases} = 0, use only zonals \\ = 1, use zonals & tesserals \end{cases}$
	Buffers: JBUF, CSNM
OUTPUT:	$XBDGR = \dot{\mathbf{x}}$
	$YBDGR = \dot{y}_{B}$ $ZBDGR = \dot{z}_{B}$
	and values listed under description
SUBROUTINES:	System - ARCTAN Philco - FSIN, FCOS, FSQRT
STORAGE REQUIDEMENTS	
REQUIREMENTS:	169 (ells
DESCRIPTION:	$RT MUZ2 = \gamma_{1-U_z}^2$
	RT MUZ2 = $\sqrt{1 - U_z^2}$ If $\sqrt{1 - U_z^2} \neq 0$ If $\sqrt{1 - U_z^2} \neq 0$ If $\sqrt{1 - U_z^2} = 0$
	SSUBX = $S_x = U_x U_z / \sqrt{1 - U_z^2}$ $S_x = F/0$
	SSUBY = $S_y = U_y U_z / \sqrt{1 - U_z^2}$ $S_y = -U_z$
	SSUBZ = $S_{Z} = -\sqrt{1-U_{Z}^{2}}$ $S_{z} = F/0$

MARTINI SPIRDEC 2 of 5

	If $\sqrt{1-U_z^2} \neq 0$	If $\sqrt{1-U_z^2} = 0$
PTION: nued)	$\overline{\text{ESUBX}} = \frac{E_x}{x} = -\frac{U_y}{\sqrt{1-U_z^2}}$	$E_x = F/1$
,	ESUBY = $E_y = U_x / \sqrt{1 - U_z^2}$	$E_y = F/0$
	$ESUBZ = E_{z} = F/O$	$E_z = F/0$
	$ZSUBX = Z_x = U_x$	$Z_{x} = U_{x}$
	$ZSUBY = Z_{y} = U_{y}$	$Z_{y} = U_{y}$
	$ZSUBZ = Z_z = U_z$	$Z_z = U_z$
	Compute P_n and P'_n for zonals for $n =$	2, 3, 4, 5
	1) $P_n = 1/n \left\{ (2n-1) U_z P_{n-1} - (n-1) \right\}$	$n-1) P_{n-2}$
	where $P_0 = F/1$, and $P_1 = U_z$	
	$P'_{n} = U_{z} P_{n-1} + n P_{n-1}$	
	where $P'_1 = F/1$	
	$QQ = a_e/r$	
	$QQ + 1 = \mu/r^2$	
	If TESRAL = 0, only compute zor	nal effects:
	2) $GE = g_{-+} = F/0$	
	$GS = g_{st} = F/0$ tesseral	effects are set = 0
	2) $GE = g_{et} = F/0$ $GS = g_{st} = F/0$ $GU = g_{ut} = F/0$ GU = F/0	

DESCRIPTION: (continued)

MARIINI SPIRDEC 3 of 5

DESCRIPTION: 3) GUZ = $g_{uz} = \frac{\mu}{r^2} - \frac{5}{\Sigma}$ (n+1) $J_n \left(\frac{a}{r}\right)^n P_n$ GEZ = $g_{ez} = F/O$ GSZ = $g_{ez} = F/O$ GSZ = $g_{sz} = \frac{u\sqrt{1-U_z}}{r^2} - \frac{5}{n=2} - J_n \left(\frac{a}{r}\right)^n P'_n$ where $U_2 - J_5$ are stored in JBUF + 0 -> JBUF + 3 consecutively 4) XBDGR = $\dot{x}_B = (g_{uz} + g_{ut}) - Z_x + (g_{ez} + g_{et}) - E_x + (g_{sz} + g_{st}) - S_x$ YBDGR = $\dot{y}_B = (g_{uz} + g_{ut}) - Z_y + (g_{ez} + g_{et}) - E_y + (g_{sz} + g_{st}) - S_y$ ZBDGR = $\dot{z}_B = (g_{uz} + g_{ut}) - Z_z + (g_{ez} + g_{et}) - E_z + (g_{sz} + g_{st}) - S_z$ (and exit)

If TESERAL \neq 0, use the tesseral harmonics. Substitute the following for step (2) and go to step (3).

Compute R_{nm} and R'_{nm} for all $2 \le n \le 4$ and $m \le n$, where

$$R_{nm} = \frac{P_{nm}}{\sqrt{1 - U_z^2}}$$

and $R'_{nm} = \sqrt{1 - U_z^2} P'_{nm}$

and are solved as follows:

DESCRIPTION:
(continued)
$$\frac{R_{22}, R_{33}, R_{44}}{R_{22}, R_{33}, R_{44}} : R_{mm} = (2m - 1)\sqrt{1 - U_{2}^{2}} R_{m-1, m-1}$$
where $R_{11} = F/1$

$$\frac{R_{21}, R_{31}, R_{41}}{R_{31}, R_{41}} : R_{n,1} = P_{n}^{1}$$

$$\frac{R_{32}, R_{43}}{R_{32}, R_{43}} : R_{n, n-1} = (2n - 1) U_{2} R_{n-1, n-1}$$

$$\frac{R_{42}}{R_{12}} : R_{nm} = \frac{1}{n-m} \left[-(n+m-1) R_{n-2,m} + (2n-1) U_{2} R_{n-1,m} \right]$$
This formula is the general expression for R_{nm} but is

This formula is the general expression for R but is only used for R_{42} to save program space and time.

$$\frac{\mathbf{R}'_{nm}}{\mathbf{n}m}: \mathbf{R}'_{nm} = \sqrt{1-U_z^2} \mathbf{R}_{n,m+1} - \mathbf{m}U_z \mathbf{R}_{nm}$$
where $\mathbf{R}_{n,n+1} = F/O$

The values of R are stored in buffer RBUF+0 - RBUF+8, and for R'_{nm} in buffer RPBUF+0 - RPBUF+7.

$$TEMP2 = \lambda E = tan^{-1} (y/x) - t (RPTIM) - \theta_{gr}$$

Then build buffer SINCOS containing $\cos \lambda$, $\sin \lambda$ $\cos 4\lambda$, $\sin 4\lambda$ consecutively in SINCOS+0 - SINCOS+7.

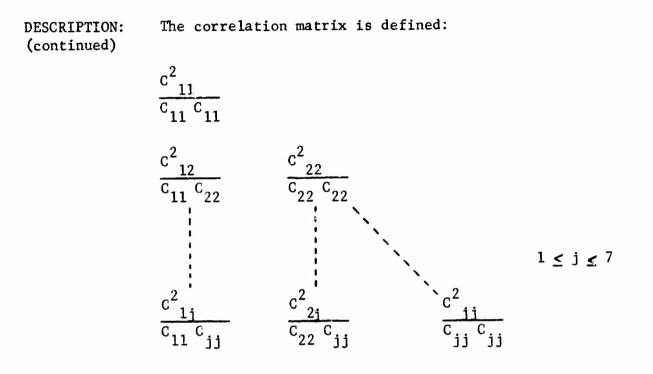
MARTINI SPIRDEC 5 of 5

DESCRIPTION: Solve the following for the tesseral harmonics: (continued) where $2 \le n \le 4$ and $m \le n$

$$GU = g_{ut} = -\frac{u}{r^2} \sqrt{1 - U_z^2} \frac{4}{\Sigma} \frac{n}{r^2} (n+1) \left(\frac{a}{e}\right)^n R_{nm}(C_{nm}\cos m\lambda + S_{nm}\sin m\lambda)$$

$$GE = g_{et} = -\frac{u}{r^2} \frac{4}{r^2} \sum_{n=2}^n \left(\frac{a}{r^2}\right)^n R_{nm}(C_{nm}\sin m\lambda - S_{nm}\cos m\lambda) (m)$$

$$GS = g_{st} = -\frac{u}{r^2} \sum_{n=2}^n \sum_{m=1}^n \left(\frac{a}{r}\right)^n R_{nm}(C_{nm}\cos m\lambda + S_{nm}\sin m\lambda)$$


Where $C_{22} S_{22} \cdots S_{44} S_{44}$ are stored consecutively in CSNM+0-CSNM+15. These values must be input on P cards 7 and 8 and will be a number or F/0.

Having solved these equations, go to step (3).

PURPOSE: To compute a correlation matrix and the standard deviations of the delta elements. CALL SEQUENCE: JMP MATRIX $A^{-\frac{1}{2}}$ matrix from LSQR subroutine in buffer All INPUT: COUNTR = C/HLT, 0; C/HLT, N N = Matrix Size $1 \le N \le 7$ OUTPUT: Standard deviations in buffer SIGN Correlation matrix in buffer MATRIXB (See description) SUBROUTINES: Philco - FSQRT STORAGE **REQUIREMENTS:** 55 Cells To avoid destroying the A⁻¹ matrix in All buffer, DESCRIPTION: the half matrix is moved to buffer MATRIXB. The variance-covariance matrix is defined by where C_{ij} are elements of A^{-1} . To compute this, each column is divided by the root of the diagonal term, and then each row is divided

of the diagonal term, and then each row is divided by the root of the diagonal. The roots of the diagonal terms (which are the standard deviations) are stored in buffer BUF and are then moved to the appropriate locations in buffer SIGN for output purposes. The position in the buffer is dependent on the elements being corrected. (See PRNTMAT subroutine for buffer positions). MATRIX is called by subroutine LSQS.

MATRIX SPIRDEC 2 of 2

The values are stored by column in MATRIXB.

1

PURPOSE:	To modulate a number between 0 and 2 π radians.
CALL SEQUENCE:	TMA (number) JMP MOD2PI TAM (number)
INPUT:	(A) reg = number to be modulated 2 ⊓ TWOPI = 2 ∏ radians
OUTPUT:	(A) = number (mod 2π)
SUBROUTINES:	(None)
STORAGE REQUIREMENTS:	3 Cells
DESCRIPTION:	Adds or subtracts 2 π radians from the number in the (A) reg until it is between 0 and 2 π radians.

MOVBUF SPIRDEC 1 of 2

PURPOSE:	To move the observation buffer,
CALL SEQUENCE:	TMA OCOUNT JMP MOVBUF
INPUT:	Observations in 10 word format and in 6 word format starting in location EBLOC.
	Left address of OBSREJ = number of observations rejected
	Left address of OBSLEFT = number of observations in 10 word format
	Left address of OBSPROC = total number of observations processed
	Left address of OCOUNT = number of observations processed to 6 word format in one group
	OANDE = C/HLT, OBLOC; C/HLT, EBLOC
OUTPUT:	See description
STORAGE REQUIREMENTS:	13 Cells
DESCRIPTION:	Because of core limitations, the observations in the 10 word format of OBLOC are converted to a 6 word format (see below). Initially up to 984 observations (10 words/observation) are in EBLOC. Subroutine PROOBS controls the formatting of the observations into 6 word entries. Subroutine MOVBUF is called by PROOBS and OBVEC (which is called by PROOBS).
	Procedure:
	(1) Add the number of observations that have been converted to a 6 word format (OCOUNT) to the number of observations rejected (OBSREJ). Multiply this number by 10 and set up the move instructions at location MOVSW, if the result is less than 4096; otherwise print"more than 77 observa- tions rejected" and exit.
	(2) Multiply the number of observations still in the 10 word format (OBSLEFT) by 10 and add it to the total number of observations in a 6 word format (OBSPROC) which is multiplied by 6. This number is stored in OCOUNT as the total number of cells to be moved up.

161

l

_

DESCRIPTION: (continued)

- (3) After moving the buffer up, set OCOUNT = 0 OBSREJ = 0 WOBMARK = C/HLT, OBLOC; C/HLT, EBLOC
- (4) Store Z's in the next available location at the end of the buffer and move this location to Index Register 0.

EBLOC

Up to 984 observations in OBLOC format (10 words/obs.)
Up to 332 observations in 6 word format

MOVDAI SFIRDEC 1 of 2 .

PURPOSE:	To retrieve next processed observation.
CALL SEQUENCE:	JMP MOVDAT JMP (End of observations) (Return)
INPUT:	Processed observations in EBLOC. Current address in EBLOC from location SAVOBS. Sensor data in SBUF. Weights in WBUF.
OUTPUT:	STAID OBFLG T CAPX CAPX CAPY CAPZ CXDOT CYDOT range observed ASUBX if range observed ASUBX if angles observed ASUBZ if angles observed SIGMA1 if angles observed XLSUBX if angles observed XLSUBX if angles observed XLSUBZ if angles observed SIGMA4 if range-rate observed
SUBROUTINES:	Program - GETSEN, SENLOC, AZREC, ALREC, GETWGT
STORAGE REQUIREMENTS:	27 Cells

DESCRIPTION:

1) Unpacts the following from processed observation:

STAID OBFLG T RANGE RODOT ALPHA DELTA

2) Use subroutine GETSEN to retrieve sensor data.

3) Use subroutine SENLOC to compute:

THTA = θ SINTH = sin θ COSTH = cos θ

- If azimuth and elevation were observed, call subroutine AZREC to compute <u>A</u>, <u>D</u>, <u>L</u>.
- 5) If right ascension and declination were observed, use subroutine ALREC to compute <u>A</u>, <u>D</u>, <u>L</u>.

6) Compute the following:

 $\begin{array}{rcl} CAPX &=& X = (\cos \theta) & (X/\cos \theta) \\ CAPY &=& Y = (\sin \theta) & (X/\cos \theta) \\ CXDOT &=& X = -Y, \theta \\ CYDOT &=& Y = X, \theta \end{array}$

7) Retrieve the weights for this observation using subroutine GETWGT.

8) Update SAVOBS to next observation and exit.

NXIOB SFIRDEC 1 cf 2

PURPOSE:	To retrieve observations and corresponding weights.
CALL SEQUENCE:	JMP NXTOB JMP (End of Obs) JMP (No Sensor Data) JMP (No Weights) JMP (Normal Return)
INPUT:	OSTROB - right address = number of obs + 1 Observations in EBLOG Weights in WBUF
OUTPUT:	STAID T DELTA ALPHA RANCE RODOT and output of subroutine GETSEN
SUBROUTINES:	Program - GETSEN
STORAGE REQUIREMENTS:	39 Cells
DESCRIPTION:	 Unpact the following from the current observation in EBLOC:
	57AID - 00000885
	2) E (3:15) A
	ALPHA floating point
	RANCE
	RODUL
	0000000 = 00000000
	(2) Search WBUF to find weights for the sensor number in STAID. If no match, exit +3H (No weights return).

Otherwise go to step (3).

NXTOB SPIRDEC 2 of 2

DESCRIPTION: (continued)

- (3) Check to see that a weight is in WBUF for each observed quantity of the observation. If not, exit +3H.
- (4) If all weights are entered, call subroutine
 GETSEN to retrieve the sensor data. If no sensor data, exit +2H. If sensor data, exit +4H (normal return).

Each call to NXTOB will retrieve the next observation, until an end of observation return is taken (+1H).

OBVEC SPIRDEC 1 cf 2

PURPOSE:	To compute and/or store values in FOBLOC for one observation at a time.
CALL SEQUENCE:	JMP OBVEC
INPUT:	OBFLC = 00 XXXX (See PROOBS for description)STAID = 00000 SSS Station number.T = time (minutes since epoch)RANGERODOTALPHADELTA
OUTPUT:	See POBLOC format in PROOBS T THIA = θ_0 SINTH = sin θ COSTH = cos θ CAPX = X CAPY = Y and output of OBVECP, OBVECQ, AZREC, ALREC, RRATE
SUBROUTINES:	Pr.gram - MOVELT
STORAGE REQUIREMENTS:	15 Cells

-

т 1

OBVEC SPIRDEC 2 of 2

DESCRIPTION: 1) An entry is stored in the new observation format in the address specified by index register 0:

- Word 0 TOOOOSSS
 - 1 time
 - 2 range
 - 3 range rate
 - 4 alpha
 - 5 delta
- 2) Add 1 to OBSPROC Subtract 1 from OBSLEFT Add 1 to MCOUNT
 - a) if MCOUNT < 332, then exit
 - b) if MCOUNT = 332, call subroutine MOVBUF to move the buffer up. (See MOVBUF for description.) Then exit.

.

PAGECON SPIRDEC

PURPOSE: To keep a count (T15) of the lines output/page and force a new page with headings when count \geq 55. CALL SEQUENCE: TMA C/HLT,N JMP PAGECON JAZ () N = No. of lines of output, set N = 55 to force page (.) = 0 means new page was output INPUT: See Call Sequence OUTPUT: (1) Updated line count and/or (2) New page with headings when line count \geq 55. SUBROUTINES: Program-HEAD STORAGE **REQUIREMENTS:** 7 Cells DESCRIPTION: Updates line count (LINECNT) and jumps to subroutine HEAD (to output headings) when LINECNT \geq 55. If the previous JMP to PAGECON put out a new page a second one cannot be forced.

PURPOSE:	To control the prediction option.
CALL SEQUENCE:	JMP PCONTRL JMP (Error) (Normal)
INPUT:	P Card 4 An element set from P Cards 1 and 2 or 6 Card element set or from the differential correction.
OUTPUT:	Prediction ephemeris as requested - printed and/or written on a binary tape. (See description)
SUBROUTINES:	System - FYKLOK Program - ITAPEW, SUBOUT1, SEPSUB, INITIAL, SAV5PTS, TEMP, SAVW, SETW, SUBXYZ, RESW, TAPEW, FTAPEW, SUBOUT, ADBASH, REVSOB, DIVDIF, CALU, GIPAR
STORAGE REQUIREMENTS:	298 Cells
DESCRIPTION:	This subroutine contains the logic necessary to control a prediction. There are several options; some can be combined but not all:
	(1) Predict by revolution number or time.
	(2) Output hard copy and/or binary tape.
	(3) Prediction within one or more time intervals at specified time increments.
	(4) Predict backward or forward in time from epoch.

(5) Request points (maximum of 5) to be left in core for a GIPAR run.

FCONIRL SPIRDEC 2 of 8

DESCRIPTION: Because several of these options can be combined, the (continued) logic is rather complicated.

- A. The subroutine is initialized as follows:
 - (1) Set several switches.
 - (2) Initialize the buffer to be used by GIPAR (starts in EBLOC + 20).
 - (3) Set switches controlling a prediction by time or revolution number.
 - (4) Initialize the binary tape if requested.
 - (5) Initialize the printed output if requested.
 - (6) Move some values from P Card 4 to locations used. If the prediction follows a D.C., same results, such as B, override the input on P Card 4.
 - (7) Test mode:

1

- (a) If prediction only:
 - (1) Move more values from P Card 4
 - (2) Compute vB/2.2
 - (3) Set REV = epoch revolution number
- (b) If D.C. and prediction:
 - Move new epoch elements from buffer to locations used.
 - (2) If time prediction, change final time from minutes since epoch to minutes since new epoch.
 - (3) Convert new epoch time from minutes since epoch to a base epoch.

DESCRIPTION: (continued)

- (4) Initialize page heading routine (IHEAD1) to print new epoch in page headings.
- (5) Call subroutines THGRC, BEGIN.
- (6) Set REV = new epoch revolution number.
- (8) Initialize interpolation buffer:
 - (a) Call subroutine INITIAL to initialize ADBASH.
 - (b) Save initial elements as first set in the interpolation buffer.
 - (c) Set T = 0 (printed output time) BT = 0 (binary tape output time)
 - (d) Call subroutine TEMP to compute temperature at epoch.
- (9) Test if GIPAR points requested:
 - (a) If requested, prediction interval points will be ignored - if not, go to step A(10).
 - (b) Convert GIPAR time from days and fractions to minutes since epoch.
 - (c) Delete GIPAR points not between epoch (or new epoch) and the final time.
- (10) Test if predicting forward or backward in time and set switches and locations accordingly.
 - (a) If predicting backward and if requesting prediction intervals, changes signs of interval buffer to negative.

PCONTRL SPIRDEC 4 of 8

DESCRIPTION (continued)

(11) Test if printed output requested:

- (a) If not, go to step B.
- (b) If yes, test if GIPAR points requested
 - (1) If not, go to A(11)(c).
 - (2) If requested, set a switch for GIPAR logic and move the first time requested to T.
- (c) Test if prediction intervals requested
 - (1) If not, go to step B.
 - (2) Otherwise, move start time, end time, and time increment to T, LTBUF+1 and ENDT respectively; also move start time to BT.
- B. Basic integration loop:
 - (1) Call ADBASH to integrate to next point.
 - (2) Test if drag perturbations are greater than an epsilon; if so, switch to Cowell option for decay.
 - (3) Update revolution number if necessary.
 - (4) Save the new point in the interpolation buffer.
 - (5) If 5 points are in the buffer for interpolation, go to step B(6); if not, go to step B(1).
 - (6) Test if current revolution number equals final revolution number if a revolution prediction was requested:
 - (a) if not equal, go to step C
 - (b) if equal, go to step D(5).

PCONTRL SPJRDEC 5 of 8

DESCRIPTION (continued)

С

- Binary tape loop:
 - (1) If no tape output was requested go to step D.
 - (2) Test if binary tape time is within the time span of the interpolation buffer.
 - (a) If not, test if printed output was requested:
 - (1) Go to step B(1), if not requested.
 - (2) Go to step D, if requested.
 - (b) If in the range of the interpolation buffer
 - (1) Interpolate for elements at the time
 - (2) Use SUBXYZ subroutine to convert to <u>r</u>, r
 - (3) Call subroutine TAPEW to output the point
 - (4) Update the time
 - (5) Test if time or revolution prediction

 - (b) For revolution or time, test for prediction intervals; if not, go to step C(2); if yes, test if time > end time; if <, go to step C(2); if >, lot time = end time and go to step C(2).

PCONIRL SPIRDEC 6 of 8

DESCRIPTION: (continued) D. Printed output loop:

- (1) If time prediction, test if time \geq final time:
 - (a) If \geq , go to D(5).
 - (b) If $\langle g \rangle$ to step D(2).
- (2) Test if time is in span of interpolation buffer
 - (a) If not, go to step B.
 - (b) If yes, interpolate for elements at the time; convert to r_s , \dot{r} , and output the point.
- (3) If GIPAR points were requested, call subroutine GIPAR to convert and store the values
 - (a) If revolution prediction, go to D(3)(b)(2)(a).
 - (b) If time prediction test if more times
 - If not, turn off prediction interval option and go to D(5)(b)(for revolution prediction) or to D(5)(a) (for time prediction).
 - (2) If yes, compare next time to final time:
 - (a) if \leq put next time in I and go to D(1)
 - (b) if > go to D(3)(b)(1).
- (4) If GIPAR points not requested, update time, and test for prediction intervals:
 - (a) If no intervals, go to D(2).
 - (b) If intervals:
 - (1) If time \leq end time, go to D(2)

PCONTRL SPIRDEC 7 of **8**

DESCRIPTION: (continued)

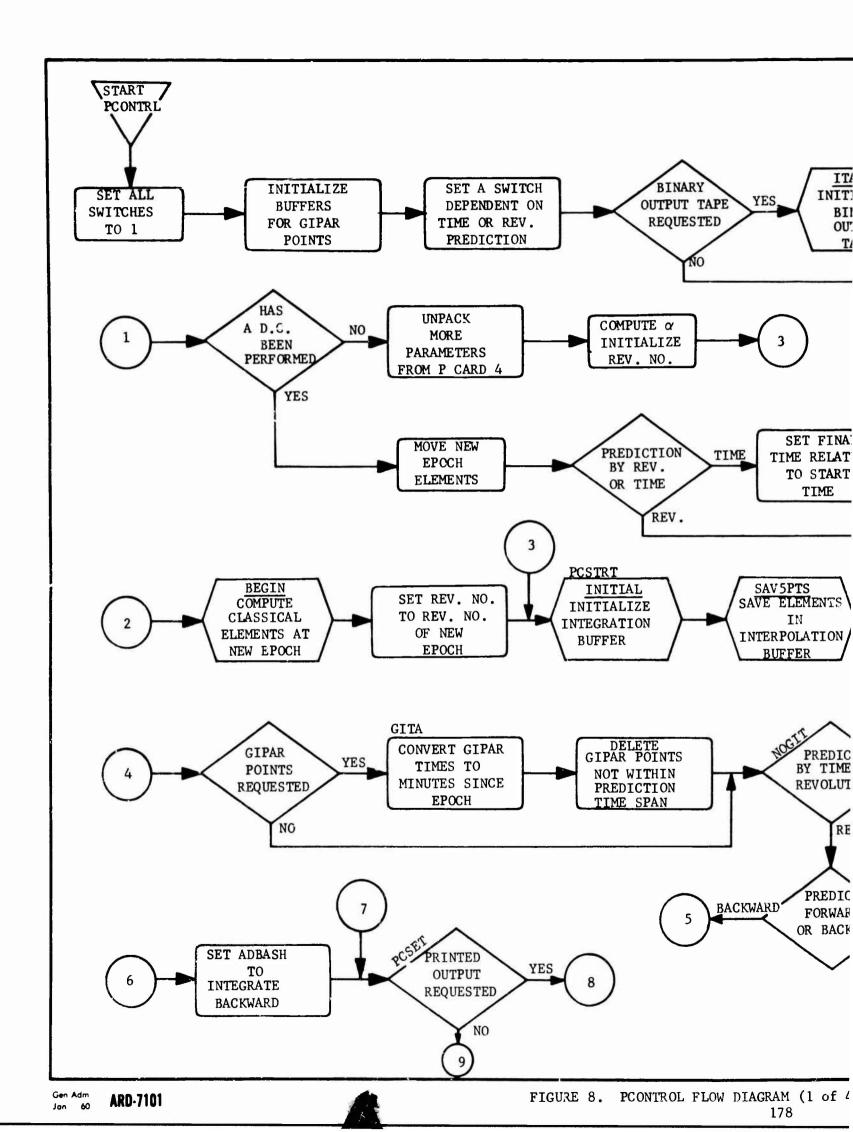
- (2) If time > end time, set time = end time and go to D(2) the first time; second time, check for end of intervals; if end, go to D(5)(b) (for revolution prediction), to D(5)(a) (for time prediction), if not end, move next interval times from buffer, reset switch and go to D(2).
- (5) Switch at D(1)(a)
 - (a) First time, set time to final time, set switch to second time, go to step C.
 - (b) Second time, test if tape output:

wrap up tape, if yes then exit +2H (normal exit)

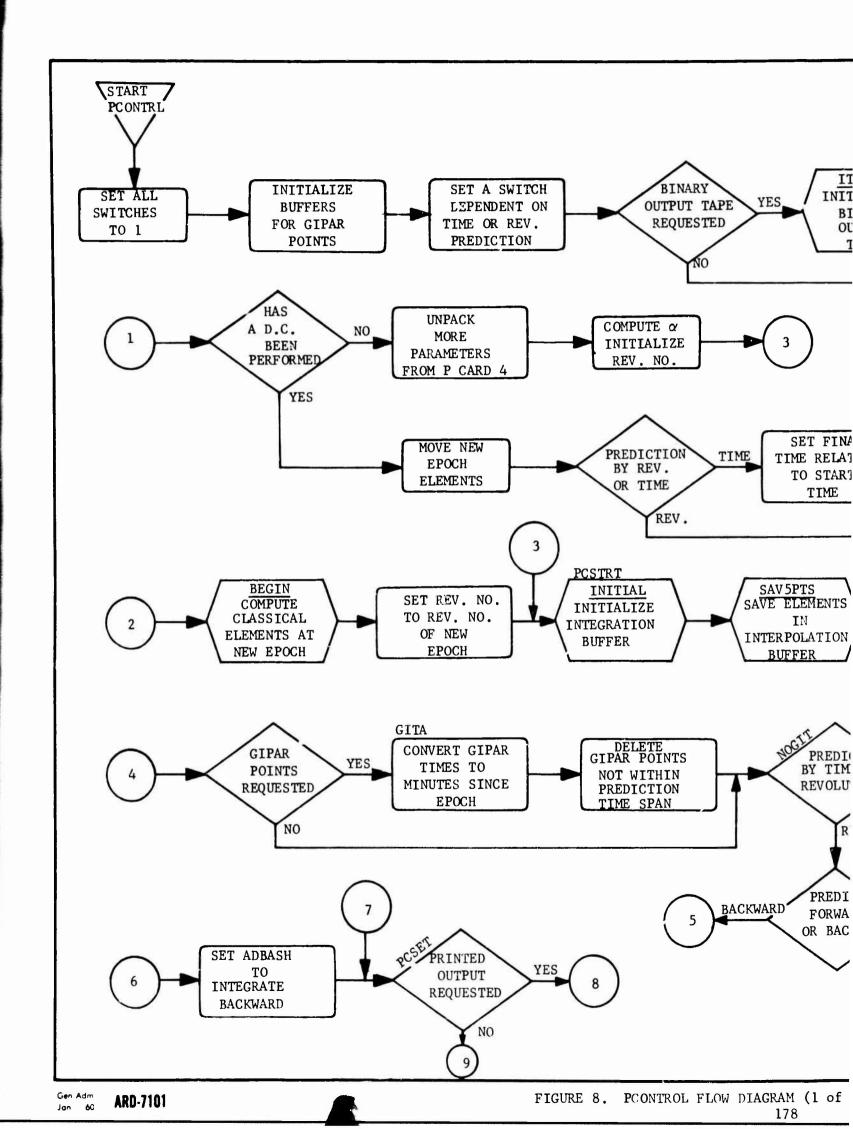
E. Cowell option.

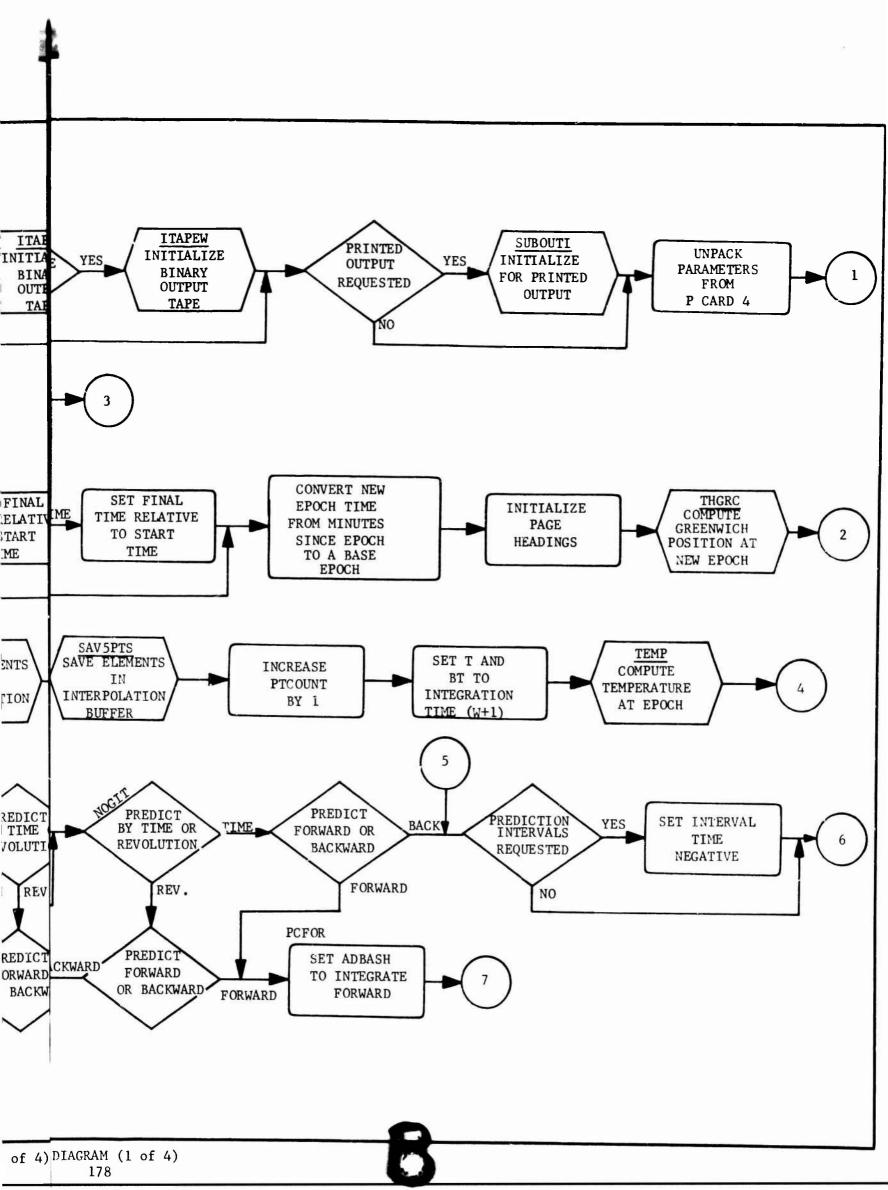
When a satellite decays to about 90 km. altitude, the drag coefficient is such that integration should continue in the Cowell mode.

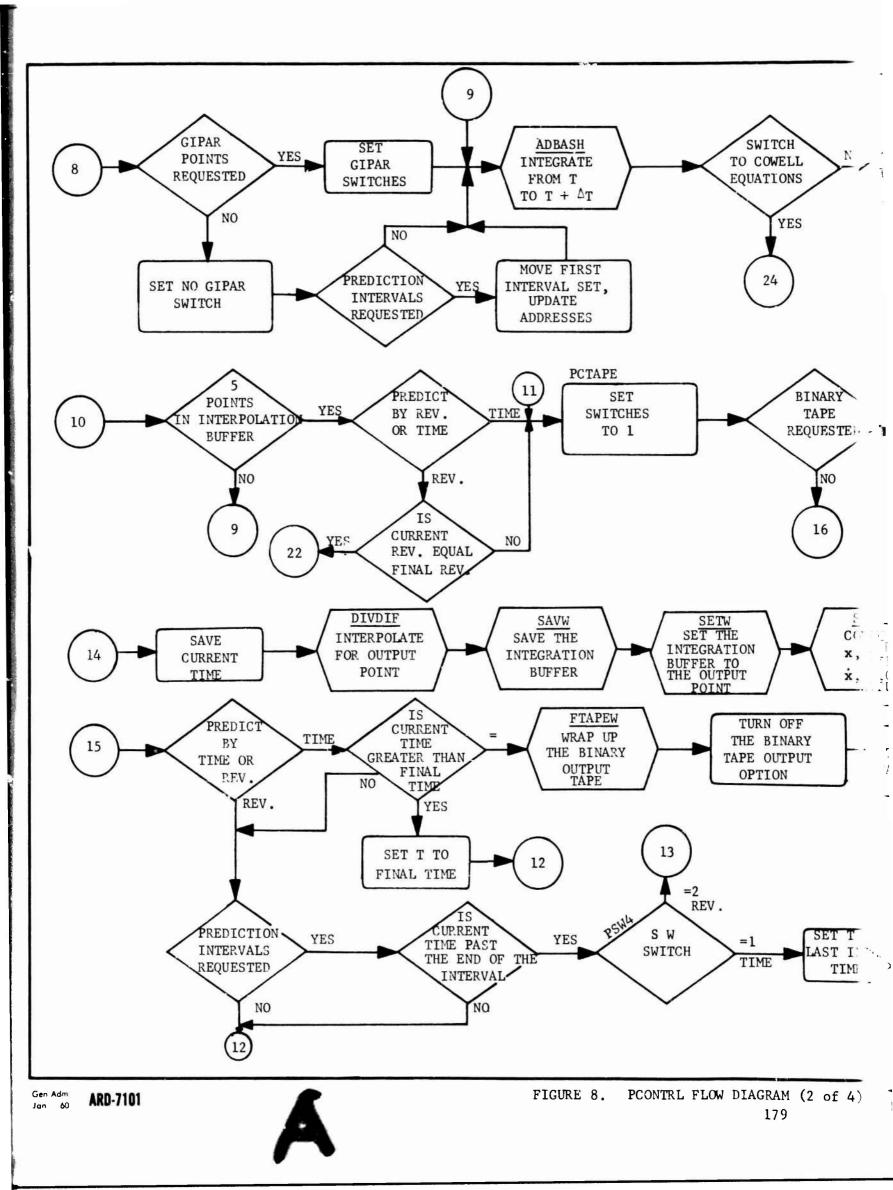
- (1) A test is made for backward integration, which is not allowed for decay.
- (2) Since the interpolation buffer now contains $N_{,M}$ elements, it is necessary to integrate backwards for sufficients points to replace the $N_{,M}$ elements with \underline{r} , $\underline{\dot{r}}$, for the same time range.
- (3) Set the integration to go forward integrating for $\frac{r}{5}$ elements until the interpolation buffer contains 5 points.
- (4) The first time the buffer is full, save the interpolation buffer, time for restart in the decay corridor.
- (5) Test for tape output. If requested, test if the output time is in the range of the interpolation buffer. If so, interpolate for the elements, output the point, update the time. Continue looping until the time range is excluded, then go to E(6).

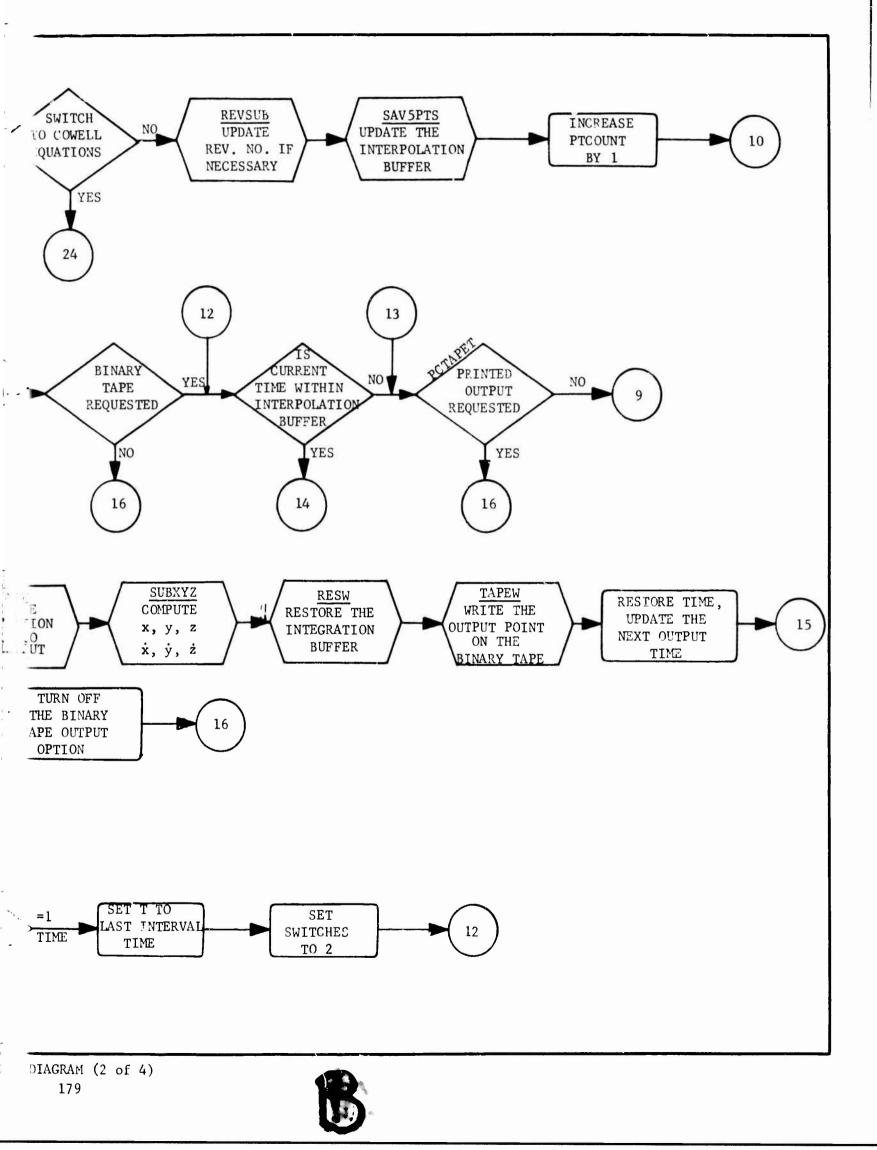

PCONIKL SITRLEC 8 of 8

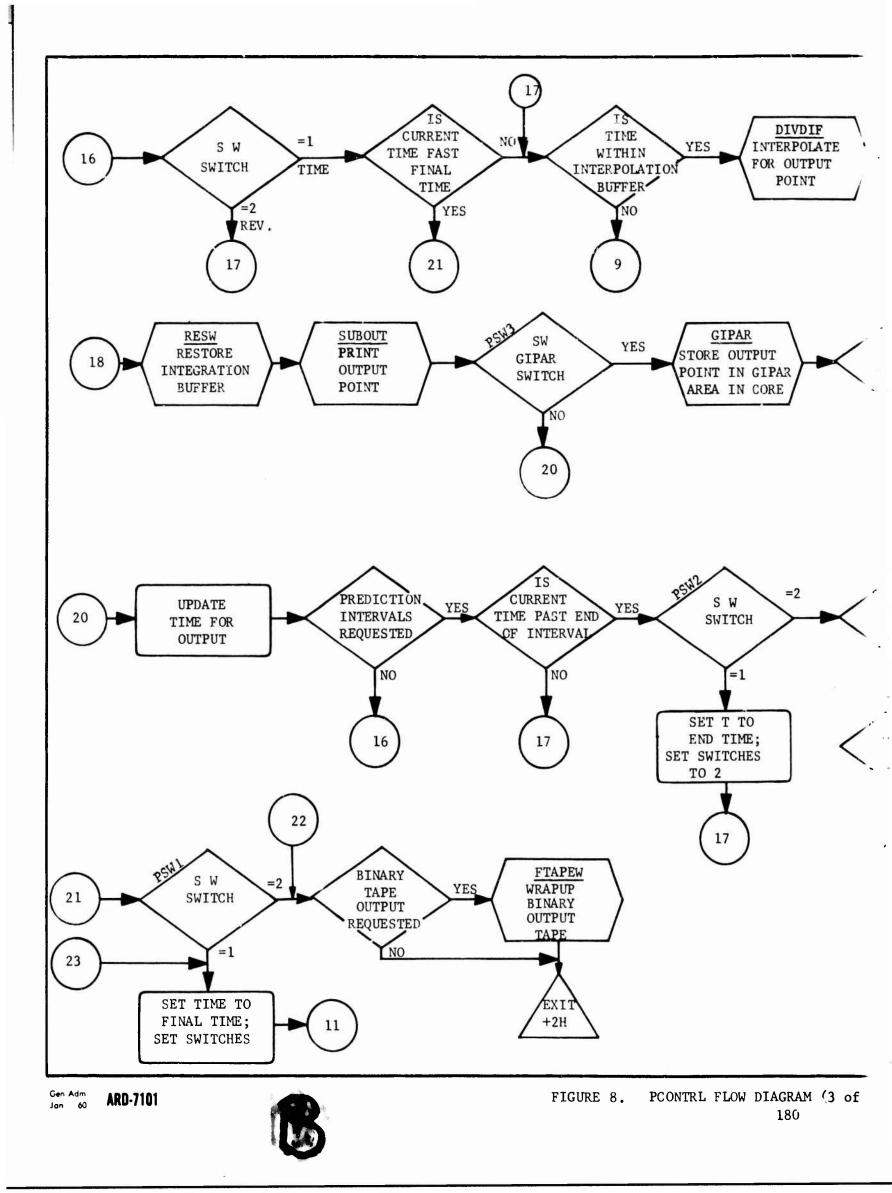
DESCRIPTION: (continued)

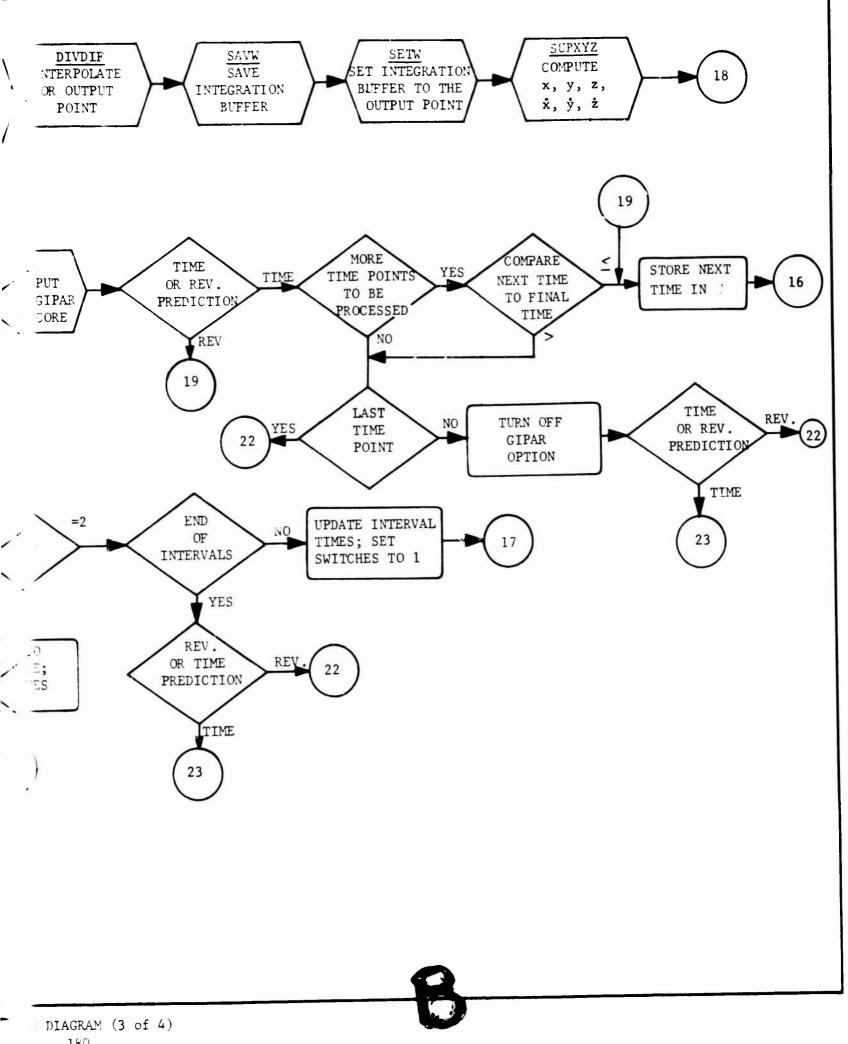

(6) Test for printed output. Follow the same procedure as step E(5). Go to step E(3) when the time range is excluded.

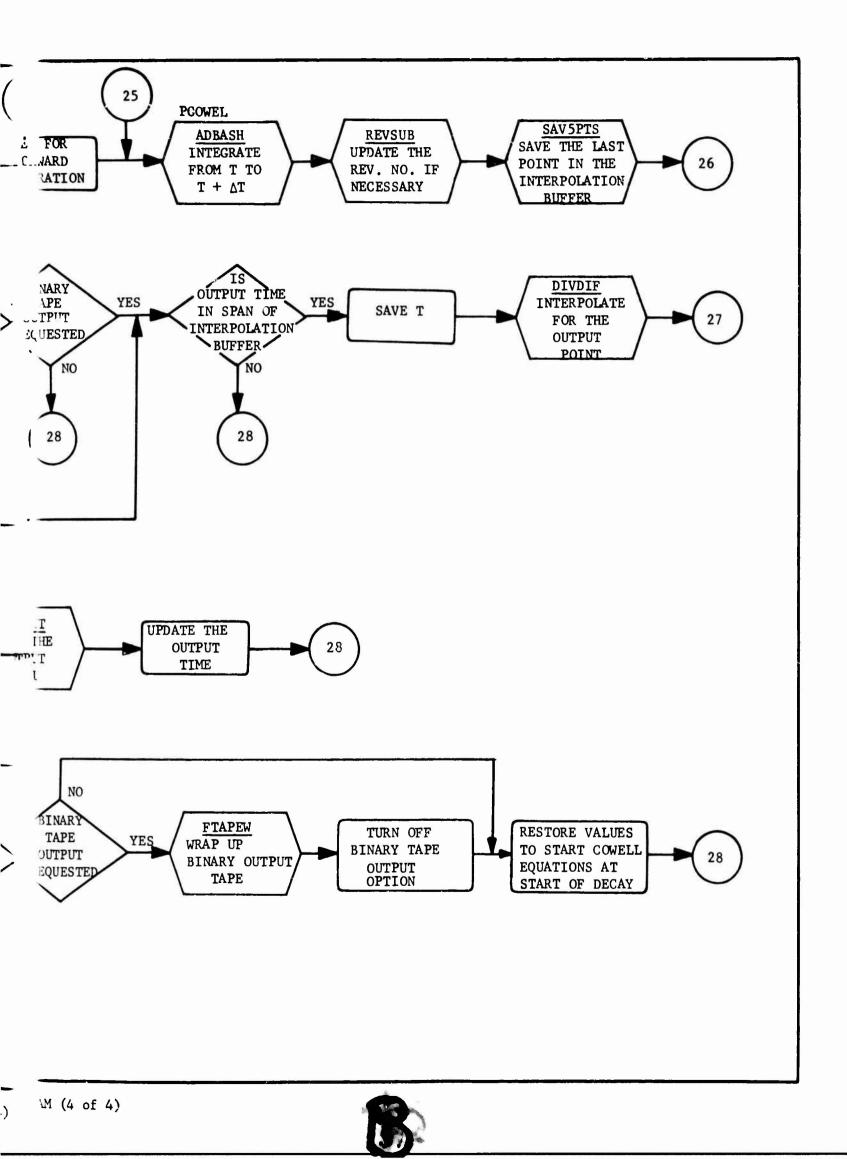

The loop of steps(3)through(6)will continue until the CDERIV subroutine (called by ADBASH) exits to step E(7). This is done when the vehicle drops below 10 km. At this point, the decay corridor is produced.


- (7) Print comment that vehicle decayed.
 - (a) If first entrance, double the value of B and print a comment to this effect. If tape output was requested, wrap up the ephemeris tape and turn off the tape output option. Restore the values saved at step E(4) and go to step E(5) to produce an empheris for a drag coefficient of twice the original value.
 - (b) If second entrance, multiply the original B by 1/2, print a comment and follow the same procedure as E(7)(a) only with a different value of B.
 - (c) If third entrance, exit (+2H) the decay corridor and prediction are completed.









PURPOSE:

To compute φ , λ , h

CALL SEQUENCE: JMP PHLAH

INPUT:

UX U_z = PI = **π** radians $(1-f)^2$ XIMFSQ = 2π radians TWOPI = X = x Y = у rad/solar min. RPTIM = W + 1 = t (min. since epoch) THGR θ_{gr} = OUTPUT: PHI Φ (deg) = XLAMD -180° (W) < λ < + 180° (E) = λ (deg) Η = h (km) E or W for λ (BCD) LFLAG = SUBROUTINE: Program - MOD 2PI, CALH System - ARCTAN Philco - FSQRT

STORAGE

REQUIREMENTS: 18 Cells
DESCRIPTION: PHI =
$$\varphi = \tan^{-1} \left[U_z / \sqrt{1 - U_z^2} (1 - f)^2 \right]$$

THETA = $\tan^{-1}(y/x)$

XLAMB = -t (.0043752691) - THGR + THETA

Uses CALH subroutine to compute h.

PRERES SPIRDEC 1 of 3

PURPOSE: To retrieve or compute the new epoch elements. CALL SEQUENCE: JMP FRERES $SOLDUZ = last U_z from DC$ INPUT: SREV = last rev. no. from DC PRDSAV = 0 means new epoch elements found in DC = 1 continue integration until new epoch time EPREV = epoch rev. no. SAVELEM = 0; continue DC integration to compute elements = 1; initialize integration to compute elements and input required for subroutines. LPRINT = L (deg)OUTPUT: $AXPRINT = a_{xn}$ AYPRINT = avn $HXPRINT = h_x$ $HYPRINT = h_{y}$ $HZPRINT = h_{2}$ BPRINT = B $HSUBQP = h_{q}$ (km) PAPRINT = p_a (min) and time in BCD format. SUBROUTINES: Program - INITIAL, RESWBF, RESICK, ADBASH, REVSUB, SAV5PTS, DIVDIF, SAVICK, SAVWBF, BCDTIM STORAGE 51 Cells **REQUIREMENTS:** DESCRIPTION: There are 2 main paths to take in this subroutine: (1) to retrieve the new epoch elements which were computed in the DC, i.e., the new epoch elements were in the span of the observations, (2) to continue the integration started by the DC until the new epoch time is reached.

PRERES SPIRDEC 2 of 3

DESCRIPTION: (continued)

I. If the new epoch elements were found in the D.C. (PRDSAV = 0), the values that were saved at the time are restored and the rest of the values computed:

Restore: $B00 + 0 = a_{xno} \longrightarrow AXPRINT$ + 1 = $a_{yno} \longrightarrow AYPRINT$ + 2 = B $\longrightarrow BPRINT$ + 9 = L (rad) $\longrightarrow LPRINT$ (deg) \therefore + 13 = $h_x \longrightarrow HXPRINT$ + 14 = $h_y \longrightarrow HYPRINT$ + 15 = $h_z \longrightarrow HZPRINT$

Compute:

HSUBQP = h_q (km) = $\left\{ a (1-e) - 1 \right\} = \frac{6378.165}{e.r.}$ km

where B00 + 3 = a B00 + 4 = e² PAPRINT = P_a (min) = $2\pi \left\{ \frac{(1 - .5e^2)}{p^2} \frac{(3 - .5e^2)}{2} \frac{(3 - .5e^2)}{2$

> B00 + 6 = p $B00 + 7 = n_0$

Use subroutine BCDTIM to get time in BCD format, where BOO + 8 = t (min since epoch).

PRERES SPIRDEC 3 of 3

DESCRIPTION: (continued)

1

J

II. If the new epoch elements have not been found, then test to see if the D.C. integration must be initialized (SAVELEM ≠ 0). If so, the Adams-Bashforth subroutine must be initialized, then integration will begin at epoch. If not, the Adams-Bashforth buffer will be restored to the time of the last observation, then integration will continue until the elements are found for the new epoch time.

Having found the new epoch elements, the procedure will be the same as that listed under I.

This routine is called only by the ELMOUT subroutine when the elements are to be printed.

PRINTW SPIRDEC

(1).

PURPOSE:	To print the weights and biases being used in the differential correction.
CALL SEQUENCE:	JMP PRINTW
INPUT:	Weights in WBUF Biases in BIBUF WANDBI = C/HLT, WBUF; C/HLT, BIBUF
OUTPUT:	Weights and biases printed on hard copy. (See description)
SUBROUTINES:	Program - PAGECON System - PANT, GLOP
STORAGE	00 0 11
REQUIREMENTS:	92 Cells
DESCRIPTION:	This subroutine is called by option, if Column 3 on P Card 3 = 1. The weights and biases are printed as follows:
	(1) Print heading
	(2) Retrieve an entry from WBUF and BIBUF. Convert to output format.
	(3) Output the Sensor Number and the weights and biases.
	(4) When a new page is necessary, go to step (1) Otherwise, go to step (2).

The subroutine will exit when a word (00000ZZZ) is found in WBUF.

PROOBS SPIRDEC 1 of 2

PURPOSE: To set up the processed observation. CALL SEQUENCE: JMP PROOBS INPUT: Observation biases in BIBUF buffer, stored by station number. Observations - start location is EBLOC:terminated by Z's. Sensor file in SBLOC. OSTROB = C/HLI, 0; C/HLT, N+1, N = nimber of observations. SAVOBS = C/HLT, (Address), Address = 1st location to be used for a processed observation PREDFLG = new epoch option OUTPUT: Processed observation buffer, modified sensor buffer. (See description) SUBROUTINES: Program - BIAS, SORTOB, SETSBUF, NXTOB, OBVEC, PAGECON, MOVBUF System - GLOP STORAGE **REQUIREMENTS:** 55 Cells (1) Use BIAS subroutine to make a pass through the DESCRIPTION: observations and apply biases. (2) Call subroutine SORTOB to sort the observations in the order to be processed. (3) Use subroutine SETSBUF to make a pass through the observations and move sensor information required to SBUF. (4) Set OCOUNI, MCOUNT, OBSPROC, OBSREJ = 0/0 Set OBSLEFT = C/HLT, N; N = number of observations (5) Retrieve an observation using NXTOB: if 'no sigmas' return, skip observation, (a)print comment, subtract 1 from OBSLEFT and add 1 to OBSREJ. (b) if "no sensor" return, follow same procedure as (a).

PROOBS SPIRDEC 2 of 2

DESCRIPTION: (6) Set the bits in OBFLG corresponding to the (continued) observed quantities: 1/1T47 - P1/1T46 - A & h1/1T45 - α & δ $1/1T44 - \dot{\rho}$ (7) Use subroutine OBVEC to compute values and store them. Continue steps (5)(7) until an "end of observations return" from NXTOB; then (8) If OCOUNT \neq 0, use subroutine MOVBUF to move remaining observation buffer up. (9) If PREDFLG = 2, set PRTIM = time of the last observation.

See the listed subroutines for output format and block formats.

To print the standard deviations and the PURPOSE: correlation matrix of the delta elements. CALL SEQUENCE: JMP PRNTMAT SCOUNTR = C/HLT, 0, C/HLT, N INPUT: Where N = matrix size $SIGN + 0 = \sigma n$ $1 = \sigma a_{\mathbf{x}\mathbf{n}}$ $2 = \sigma a_{yn}$ $3 = \sigma U_{o}$ $4 = \sigma \Omega$ $5 = \sigma_i$ $6 = \sigma_B$ MATRIXB - MATRIXB + 27 Contains the correlation matrix. It is of variable size depending on the elements being corrected. OUTPUT: See description. SUBROUTINES: System - PANT, GLOP STORAGE **REQUIREMENTS:** 74 Cells DESCRIPTION: Prints headings and values for the standard deviations. Then print the headings for the matrix and N lines of the matrix as specified by location SCOUNTR.

1

-9 ---

RDPRES SPIRDEC

1

1

.

.

I

l

PURPOSE:	To compute the perturbative acceleration due to direct solar radiation pressure, $\frac{\dot{r}}{r}$.
CALL SEQUENCE:	JMP RDPRES
INPUT:	$RPFLAG = \begin{cases} 0 & no perturbations \\ 1 & compute perturbations \end{cases}$
	$RPCON3 = - \sqrt{B/2.2}$
OUTPUT:	$\begin{array}{rcl} XRDGR & = & \dot{x} \\ YRDGR & = & \dot{y} \\ ZRDGR & = & \dot{z} \\ r \end{array}$
SUBROUTINES:	Philco - FSIN, FCOS Program - ANGSUN
STORAGE REQUIREMENTS:	34 Cells
DESCRIPTION:	If RPFLAG = 0, the subroutine sets XRDGR, YRDGR, and $ZRDGR = F/O$ and exits. Otherwise it computes the following:
	Call subroutine ANGSUN to compute \underline{L}_0 , then:
	$\cos \psi = \frac{\underline{L}_0 \cdot \underline{r}}{r}$
	If $\cos \psi > 0$, then satellite is in sunlight
	$\dot{\mathbf{x}}_{\mathbf{r}} = (\mathbf{v} \cdot \mathbf{B}/2.2) \mathbf{L}_{\mathbf{x}\mathbf{\Theta}}$
	$\dot{y}_r = (\gamma \cdot B/2.2) L_{y0}$
	$\dot{z}_r = (\gamma \cdot B/2.2) L_{z\Theta}$
	If $\cos \psi < 0$, then compute:
	sin (ψ + Π) = sin ψ cos Π + sin Π cos ψ
	= $(\cos^2 \psi -1) (1/r^2 -1) + \cos \psi/r$
	If sin ($\psi + \pi$) > 0, the satellite is illuminated so compute \dot{r}_r . Otherwise \dot{r}_r is set = 0.

RDISB SPIRDEC

PURPOSE: To compute range rate.

CALL SEQUENCE:	JMP RDTSB
INPUT:	$XDOT = \dot{x}$
	$YDOT = \dot{y}$
	$ZDOT = \dot{z}$
	$CXDOT = \Lambda$
	$CYDOT = \dot{Y}$
	$CZDO_{-}^{T} = \dot{Z}$
	$XLX = L_X$
	XLY = L
	$XLZ = L_z$
OUTPUT:	RHODT = β_c
	RODIX = $\dot{\rho}_{x}$
	$RODTY = \dot{\rho}_{y}$
	$RODTZ = \rho_z^{y}$
SUBROUTINES:	(None)
STORAGE	
REQUIREMENTS:	8 Cells
DESCRIPTION:	RODTX = XDOT + CXDOT = $\dot{\rho}_{x} = \dot{x} + \dot{x}$
	RODIN = YDOT + CYDOI = $\dot{\rho}_{y} = \dot{y} + \dot{y}$
	RODIZ = ZEOT = $\dot{\rho}_{z}^{y} = \dot{z}$
	RHOD: = $\dot{\rho}_{x}L_{x} + \dot{\rho}_{y}L_{y} + \dot{\rho}_{z}L_{z} = \dot{\rho}_{c}$

READOBS SPIRDEC

.

PURPOSE: To read observations from logical tape 0. CALL SEQUENCE: JMP READOBS INPUT: OANDE = C/HLT, OBLOC; C/HLT, EBLOCand observations on logical 0. **OUTPUT:** Observations in EBLOC SAVOBS - left address is the location of the Z's terminating the observations SUBROUTINE: System - SYS, SYSNO, SYSIO STORAGE **REQUIREMENTS:** 13 Cells DESCRIPTION: This subroutine is called only when OUTOPT = 1. OUTOPT is the output option from the SPSJOB Card. The option should be set to 1 with more than 492 but not more than 984 observations in the input. In this case, the Executive routine will write all the observations on logical 0. SPIRDEC will read them in only once. Subroutine READOBS does the following: (1) Rewind logical 0 EBLOC -> Index Register 3 (2) Set MCOUNT = 0Read 1 block into the address at location T100; it is EBLOC initially. (3) Test every 10th word for Z's in the block just read: if no Z's are found, add 10 to the address (a) at TI00, add 10 to Index Register 3, add 1 to MCOUNT: if MCOUNT = 12, go to step (2) if MCOUNT < 12, continue searching for Z's. (b) if Z's are found, save the location of Z's in the left address of SAVOBS and exit.

REJECI1 SPIRDEC

PURPOSE	To accept or reject a residual for range or angles for lst pass.
CALL SEQUENCE:	TMA (residual) JMP REJECT1 JAZ (rejected)
INPUT:	ABSMX = rejection criteria (e.r.) for range and angles SIGMAI = weight corresponding to the observed quantity
OUTPUT:	RCNT = C/HLT, N; C/HLT, O SUM = F.P. REJCNT = C/HLT, N; C/HLT, O
SUBROUTINES:	Program: RESREJ1
STORAGE REQUIREMENTS:	6 Cells
DESCRIPTION:	If the absolute value of the unweighted residual \leq ABSMX, then RCNT is increased by 1, and the weighted residual squared is added to SUM.
	If greater than ABSMX, then RCNT and SUM are not affected. But the REJCNT (rejected count) is increased by 1, the REJFLG is set to asterisks, and the (A) register is cleared to indicate rejection.

.....

-0

REJECT2 SPIRDEC

;

-

PURPOSE:	To accept or reject a range rate residual for 1st pass.
CALL SEQUENCE:	TMA (residual) JMP REJECT2 JAZ (rejected)
INPUT:	ABMX2 = rejection criteria (e.r./kemin) SIGMAI = σ_0
OUTPUT:	RCNT = C/HLT, N; C/HLT, O SUM = Floating point REJCNT = C/HLT, N; C/HLT, O
SUBROUTINES:	Program: RESREJ1
STORAGE REQUIREMENTS:	6 Cells
DESCRIPTION:	If $ unweighted residual \leq ABMX2$, then RCNT is increased by 1 and the weighted residual (squared) is added to SUM.
	If unweighted residual > ABMX2, then RCNT and SUM are not affected, but the REJCNT (rejection count) is increased by 1, the REJFLG is set to astericks, and the (A) register is cleared to indicate rejection.

RESICK SPIRDEC

PURPOSE:	To restore elements to continue integration.
CALL SEQUENCE:	JMP RESICK
INPUT:	BOO + 16 - BOO + 55 Contains the last 5 sets of elements
OUTPUT:	ICK + 0 - ICK + 39 Contains the same element sets
SUBROUTINES:	None
STORAGE REQUIREMENTS:	4 cells
DESCRIPTION:	To continue integration for a prediction or the new epoch elements, the ICK buffer must be restored for the DIVDIF subroutine.

1

.....

 $\sim 10^{-1}$

RESOUT1 SPIRDEC 1 of 2

.

.

PUR POSE:	To output observation residuaîs.
CALL SEQUENCE:	JMP RESOUT1
INPUT:	OBFLG=flag for observed quantitiesRHOC= ρ_c RGSDL= $\Delta \rho$ ARSDL= ΔA DRSDL= Δh RRSDL= $\Delta \dot{\rho}$
OUTPUT:	ρ , $\alpha \& \delta$ or $A \& h$, $\dot{\rho}$ residuals These residuals flagged with asterisk if rejected Also, VMAG, DELU, U, BETA, Time, Station Number
SUBROUTINES:	Program - DELTAU, RESOUT2 System - GLOP, PAGECON
STORAGE REQUIREMENTS:	80 Cells
DESCRIPTION:	If only range rate was observed, VMAG is not computed otherwise
	$VMAG = \sqrt{(RGSDL)^2 + (ARSDL)^2 + (DRSDL)^2}$
	If angles were not observed, U, Δt , and BETA are not computed, otherwise:
	$XCCS = \rho_c L_x - X = x_o$
	$YOBS = \rho_c L_y - Y = y_o$
	$ZOBS = \rho_{C} L_{Z} - Z = Z_{O}$
	OBSR = $\sqrt{x_0^2 + y_0^2 + z_0^2}$

.

RESOUT1 SPIRDEC 2 of 2

DESCRIPTION: RESOUT1 uses subroutine DELTAU to compute Δu . (continued) Then computes U:

$$U = \tan^{-1} \left[\frac{SINU}{COSU} + DELU \right]$$

Computes Δt (DELU)

$$\Delta t = (-\Delta u / \sqrt{\rho}) (r^2 / k_e)$$

BETA = sin⁻¹ $\left[(x_o W_x + y_o W_y + z_o W_z) / \sqrt{x_o^2 + y_o^2 + z_o^2} \right]$
where $-90^\circ \le BETA \le 90^\circ$

Tests RESOPT:

if RESOPT = 0, then print angles in deg.

if RESOPT = 1, then print angles in km.

RESOUT2 & RESOUT4 SPIRDEC

v

PUR P OSE:	To convert time to BCD and output page heading if necessary.
CALL SEQUENCE:	JMP RESOUT2
INPUT:	T = t (Min.) STAID = 0 0XXX, X = Sta. No.
OUTPUT:	OBYEAR OBMO OBDAY BCD time FOBHR FOBMIN FOBSEC STAID - Left Justified
SUBROUTINES:	Program - BCDTIM, PAGECON System - PANT
STORAGE REQUIREMENTS:	43 Cells
DESCRIPTION:	RESOUT2 converts time to BCD, tests if new page headings are needed. If so, it calls RESOUT4 to print page headings.

RESREJ1 SPIRDEC

PURPOSE:	To accept or reject a residual on all D. C. passes except the first.
CALL SEQUENCE:	TMQ (weighted residual) TMA (residual) JMP RESREJ1 JAZ (residual rejected)
INPUT:	MAX = weighted rejection criteria ASTK = W/*****
OUTPUT:	RCNT = C/HLT, N SUM = Floating point REJCNT = C/HLT, N REJFLG = * or blank
SUBROUTINES:	(None)
STORAGE REQUIREMENTS:	7 Cells
DESCRIPTION:	If weighted residual \geq MAX, then REJCNT is increased by 1, REJFLG = *, and (A) reg. = 0 If weighted residual < MAX, then RCNT is increased by 1, (weighted residual) ² is added to SUM, and REJFLG = blank.

ŝ

RESW SPIRDEC

PURPOSE:	To restore values to the Adams-Bashforth buffer.
CALL SEQUENCE:	JMP RESW
INPUT:	$QQ + 1 = L$ $2 = a_x$ $3 = a_y$ $4 = a_z$ $5 = h_x$ $6 = h_y$ $7 = h_z$
OUTPUT:	W + 5 = L $6 = a_x$ $7 = a_y$ $8 = a_z$ $9 = h_x$ $10 = h_y$ $11 = h_z$
SUBROUTINES:	Program - SETW
STORAGE REQUIREMENTS:	2 Cells
DESCRIPTION:	Restores values saved in $QQ + 1$ to $QQ + i$ to $W + 5$ to $W + to$ continue the Adams-Bashforth integration.

RESWBF SPIRDEC

CALL SEQUENCE: JMP RESWBF
INPUT: PREDBF buffer (11 cells)
OUTPUT: W + 1 to W + 11 restored from PREDBF buffer (11 cel
SUBROUTINES: Program - SAVWBF
STORAGE REQUIREMENTS: 3 Cells
DESCRIPTION: Restores W buffer to last point in ADBASH subroutin in order to restart integration.

.

REVSUB SPIR**D**EC

PURPOSE:	To update the revolution number.
CALL SEQUENCE:	JMP REVSUB
INPUT:	$UZ = U_z at t$ $OLDUZ = U_z at t - \Delta t$
OUTPUT:	OLDUZ = U _z att REV = Rev No att
SUBROUTINES:	None
STORAGE REQUIREMENTS:	5 Cells
DESCRIPTION:	A switch CNTSW must be preset before calling the subroutine:
	If integrating forward from epoch:
	CNTSW = C/JAN, CNTB; C/TMA, F/1
	If integrating backward:
	CNTSW = C/JAP, CNTB; C/TMA, $F/-1$
	If the signs of UZ and OLDUZ are the same, the rev. no. is not modified.
	If the signs are different, then a node has been crossed. If it is the ascending node, the rev. no. modified by 1.

RHOSB SPIRDEC

PURPOSE:	To compute range
CALL SEQUENCE:	JMP RHOSB
INPUT:	X = x $Y = y$ $Z = z$ $CAPX = X$ $CAPY = Y$ $CAPZ = Z$
OUTPUT:	$RHOC = \rho_{c}$ $RHOX = \rho_{x}$ $RHOY = \rho_{y}$ $RHOZ = \rho_{z}$
SUBROUTINES:	Philco - FSQRT
STORAGE REQUIREMENTS:	ll Cells
DESCRIPTION:	RHOX = X+CAPX (ie. $\rho_x = x + X$)
	$\begin{array}{rcl} RHOY &=& Y+CAPY \\ RHOZ &=& Z+CAPZ \end{array}$
	RHOC = $\rho_{c} = \sqrt{(RHOX)^2 + (RHOY)^2 + (RHOZ)^2}$

I

1

.

PURPOSE:	To restore initial elements to output cells.
CALL SEQUENCE:	JMP RINEL
INPUT:	INELT buffer
OUTPUT:	LPRINT = L (deg)
	$AXPRINT = a_{XNO}$
	$AYPRINT = a_{yno}$
	$HXPRINT = h_{X}$
	$HYPRINT = h_{y}$
	$HZPRINT = h_z$
	$BPRINT = C_{D}A/m$
	$HSUBQP = H_{q}$ (km)
	PAPRINT = period (min.)
SUBROUTINES:	Program - SINEL
STORAGE REQUIREMENTS :	2 Cells
DESCRIPTION:	Moves value from INELT buffer to output cells.

RR2AHL SPIRDEC 1 of 2

PURPOSE:	To convert <u>r</u> , <u>r</u> elements to <u>a</u> , <u>h</u> , L
CALL SEQUENCE:	JMP RR2AHL (return)
INPUT:	$X = x (km)$ $Y = y (km)$ $Z = z (km)$ $XDOT = \dot{x} (km/sec)$ $YDOT = \dot{y} (km/sec)$ $ZDOT = \dot{z} (km/sec)$
OUTPUT:	$HXO = h_{xO}$ $HYO = h_{yO}$ $HZO = h_{zO}$ $AXNO = a_{xNO}$ $AYNO = a_{yNO}$ $XLO = L_{O}$ + cells on next page
SUBROUTINES:	Philco - FSQRT System - ARCTAN
STORAGE REQUIREMENTS:	94 Cells
DESCRIPTION:	Converts from <u>r</u> , <u>r</u> to <u>a</u> , <u>h</u> , L using the following formulation. Called by subroutine INPUT only.

1

1

.

1

1

RR2AHL SPTRIEC 2 of 2

RR2AHL Formulation $HXO = h_{XO} = y \dot{z} - z \dot{y}$ $HYO = h_{VO} = z \dot{x} - x \dot{z}$ $HZO = h_{zo} = x \dot{y} - y \dot{x}$ $P = h_{xo}^2 + h_{yo}^2 + h_{zo}^2 = p$ $RTP = \sqrt{p}$ $WX = W_{x} = HXO / \sqrt{p}$ $R = \sqrt{x^{2} + y^{2} + z^{2}} = r$ x -->y,z $UX = U_{x} - x/r,$ x ---- y , z $RDOT = \dot{r} = (x\dot{x} + y\dot{y} + z\dot{z})/r$ $ESINEV = \dot{r} \gamma p = e \sin v$ $ECOSV = p/r - 1 = e \cos v$ $ESQ = (e \sin v)^{2} + (e \cos v)^{2} = e_{0}^{2}$ $EO = e_0 = \frac{1}{2} e_0^2$ $VX = v_{\mathbf{x}} = (\mathbf{r}\mathbf{x} - \mathbf{x}\mathbf{\dot{r}}) \in \mathbf{x}$ x —∍y,z $A = a = p/1 \cdot e^2$ $LLO = l_o = tan^{-1} \frac{|y - V_x|}{|x + V_v|}$ $0 \leq 1_{o} \leq 360$

$$XNO = N = K_{e} / a^{3/2}$$

$$AX = a_{x} = U_{x} e \cos v + V_{x} e \sin v ,$$

$$AXNO = a_{xno} = (a_{y} + W_{x} - a_{x} + W_{y}) / 1 + W_{z}^{2}$$

$$AYNO = a_{z} \sqrt{1 + W_{z}^{2}} + W_{z} + a_{x} + W_{y} + W_{y} / 1 + W_{z}^{2}$$

$$v - E = tan^{-1} \left[\frac{e \sin v \cdot (1 + 1 - e^{2} + e \cos v)}{(e \sin v)^{2} + (e \cos v + 1) + (1 + 1 - e^{2})} \right]$$

$$QQ + 2 = v - M = v - E + r \epsilon \sin v / (1 - e^{2} / p)$$

$$XLO = L_{o} = 1_{o} - (v - M)$$

SAVCON SPIRDEC

PURPOSE:	To save card images of the parameter cards.
CALL SEQUENCE:	TMD C/HLT, SCONBUF+X JMP SAVCON
INPUT:	Index register 3 = 1st location of a parameter card image in CONBUF
OUTPUT:	See description.
SUBROUTINES:	None
STORAGE REQUIREMENTS:	4 Cells
DESCRIPTION:	The parameter card image is moved to the buffer, SCONBUF, to be used by subroutine ELMOUT for output purposes.
	SCONBUF +0to +9PCard 2+10to +19PCard 3+20to +29PCard 5+30to +39PCard 6+40to +49PCard 7+50to +59PCard 8

1

SAVELM SPIKDEC

PURPOSE: I surface the new epoch elements

CALL SEQUENCE JME SALEN

INPUT: 5 sets of elements in the ICK biffer REV = tevolition number OLDUZ = _____at the previous time point W = ADBASE biller

OUTPUT: See description

SUBROUTINES. Program - SAVWBF, SAVICK

STOFAGE

REQUIREMENTS: 5 Cells

DESCRIPTION. This subroutine is only called by the D.C. control subroutine (GNTRL) if the new epoch time requested is outside the span of the observations and on the opposite side of the old epoch from the last observation. A third requirement for using this routine is that the old epoch must be within the span of the observations.

The subroucine wi ...

- (1) "se SAVWEP to save $W + 1 \rightarrow W + 11$
- ... se SAVICK to save JCK -> ICK + 39
- (% Fave RFV in SREV W/ 7 .: SOLDUZ
- Sit SAVELEY A CHINALCHINE HIS SHIT AIRS Was used

These values are such a to a control chiking

SAVICK SPIRDEC

.

PURPOSE:	To save values to compute the new epoch elements.
CALL SEQUENCE:	TMD C/HLT, ICK+X; C/HLT, BOO+8 JMP SAVICK
INPUT:	$AXN = a_{xn}$
	$AYN = a_{yn}$
	$B = C_D^{JA}/m$
	A = a
	$ESQ = e^2$
	SINI = sin i
	$\mathbf{P} = \mathbf{p}$
	XN = n
	ICK buffer from DIVDIF subroutine
OUTPUT:	$BOO + 0 = a_{xn}$
	$+ 1 = a_{yn}$
	+ 2 = B
	+ 3 = a
	$+ 4 = e^2$
	$+ 5 = \sin i$
	+ 6 = p
	+ 7 = n
	+ 8 thru +15 = new epoch elements
	+ 16 thru +55 = last 5 sets of integrated elements
SUBROUTINES:	Program: SAVW, SETW, SUBXYZ, RESW
STORAGE REQUIREMENTS:	14 Cells
DESCRIPTION:	Saves the new epoch elements in $BOO + 8$ thru $BOO + 15$. Values saved in $BOO + 0$ thru $BOO + 7$ are necessary to prepare the new epoch elements for output. In $BOO + 16$ thru $BOO + 55$ the last 5 sets of elements are saved to continue integration if a prediction is desired.

Ĩ

ļ

1

-

PURPOSE:	To save the elements in the Adams-Bashforth buffer.
CALL SEQUENCE:	JMP SAVW
INPUT:	W + 5 = L $6 = a_x$ $7 = a_y$ $8 = a_z$ $9 = h_x$ $10 = h_y$ $11 = h_z$
OUTPUT:	$QQ + 1 = L$ $2 = a_x$ $3 = a_y$ $4 = a_z$ $5 = h_x$ $6 = h_y$ $7 = h_z$
SUBROUTINES:	Program - SETW
STORAGE REQUIREMENTS:	2 Cells
DESCRIPTION:	Moves values from $W + 5$ thru $W + 11$ to $QQ + 1$ thru $QQ + 7$ so that other values may be placed in $W + 5$ thru $W + 11$ to be able to use the SUBXYZ subroutine.

SAVWBF SFIRDEC

PUR POSE:	To save W buffer
CALL SEQUENCE:	JMP SAVWBF
INPUT:	W buffer
OUTPUT:	$W + 1$ to $W + 11 \longrightarrow PREDBF + 0$ to $PREDBF + 10$
SUBROUTINES:	(None)
STORAGE REQUIREMENTS:	5 Cells
DESCRIPTION:	Saves ll cells of the W buffer in order to restart ADBASH subroutine.

I

R.

p 1

SAV5PTS SPIRDEC

PURPOSE :	To save elements for interpolation.
CALL SEQUENCE:	JMP SAV 5PTS
INPUT:	$W + 1 = t (min)$ $5 = L$ $6 = a_x$ $7 = a_y$ $8 = a_z$ $9 = h_x$ $10 = h_y$ $11 = h_z$
OUTPUT:	See description. ICK + 0 = t + 1 = L + 2 = a _x + 3 = a _y + 4 = a _z + 5 = h _x + 6 = h _y + 7 = h _z + 39
SUBROUTINES:	None
STORAGE REQUIREMENTS:	8 Cells
DESCRIPTION:	Buffer ICK contains 5 sets of elements at $t_1 - t_5$. When t_1 is no longer needed, elements at $t_2 - t_5$ are moved to replaced $t_1 - t_4$. And the elements at t_6 in the W buffer are moved to replace the elements at t_5 .

SENLOC SPIRDEC

PURPOSE: To compute θ , sin θ , cos θ CALL SEQUENCE: TMA T JMP SENLOC INPUT: Т = t = minutes since epoch $\lambda_{\rm E}$ XLAMBA = THGR θ_{gr} = RPTIM .0043752691 = OUTPUT: = θ at time t THTA SINTH sin θ = COSTH = cos θ SUBROUTINES: Philco - FCOS, FSIN STORAGE **REQUIREMENTS:** 6 Cells THTA = θ = t (.0043752691) + $\lambda_{\rm E}$ + $\theta_{\rm gr}$ DESCRIPTION:

SETSBUF SPIRDEC 1 of 2

PURPOSE:	To s	et up a modified SBLOC in SBUF.
CALL SEQUENCE:	JMP	SETSBUF
INPUT:	Obse	AD = C/HLT, EBLOC; C/HLT, BIBUF rvations starting in EBLOC ors in SBLOC
OUTPUT:		fied SBLOC in buffer SBUF buffer layout under description.
SUBROUTINE:	Syst	em - SGET
STORAGE REQUIREMENTS:	19 C	ells
DESCRIPTION:	Starting with the first observation, extract the sensor number:	
	(1)	if the sensor information is in SBUF, go to the next observation
	(2)	if the sensor is not in SBUF, call subroutine SGET to unpack the entry in SBLOC, and store only 5 quantities for the sensor in SBUF, then go to the next observation
	(3)	if SBUF is full (30 sensors), exit without error indication. The retrieval routine GETSEN has an error exit.
	used SBUF	sensor information must be moved, since SBLOC is for a working buffer and for temporary storage. is the same buffer as BIBUF; BIBUF (bias buffer) o longer needed at this point.

SETSBUF SPIRDEC 2 of 2

DESCRIPTION: (continued)	SBUF Format		
(00112211404)	SBUF + 0	00000SSS	Sensor Number
	1	^O (radians)	PHIRD
	2	λ (radians)	XLAMBA
	3	x / cos θ	XOVCT
	4	Z	CAPZ
	1		
	i i		
	145	00000 s ss	
	146	ω	
	147	λ	
	148	x / cos θ	
	149	Z	
	150	00000 ZZ Z	

5 words / entry - to a maximum of 30 sensors - terminated by 00000222 after the last entry.

SETW SPIRDEC

PURPOSE:	To move interpolated elements at time t to the Adams-Bashforth buffer.
CALL SEQUENCE:	JMP SETW
INPUT:	$ICK + 40 = L$ $41 = a_{x}$ $42 = a_{y}$ $43 = a_{z}$ $44 = h_{x}$ $45 = h_{y}$ $45 = h_{z}$
OUTPUT:	W + 5 = L $6 = a_x$ $7 = a_y$ $8 = a_z$ $9 = h_x$ $10 = h_y$ $11 = h_z$
SUBROUTINES:	None.
STORAGE REQUIREMENTS:	4 Cells
DESCRIPTION:	ICK + 40 thru ICK + 47 contains elements at time t computed by the DIVDIF subroutine. To compute the x, y, z position at this time, these values must be in W + 5 thru W + 11 to use the SUBXYZ subroutine.

SINEL SPIRDEC

PUR POSE:	To save initial elements for output.
CALL SEQUENCE:	JMP SINEL
INPUT:	LPRINT = L_{o} (deg) AXPRINT = a_{xno} AYPRINT = a_{yno} HXPRINT = h_{xo} HYPRINT = h_{yo} HZPRINT = h_{zo} BPRINT = $C_{D}A/m$ HSUBQP = perigee altitude (km) PAPRINT = period (minutes)
OUTPUT:	Input values in buffer INELT - INELT+8
SUBROUTINES:	None
STORAGE REQUIREMENTS:	4 Cells
DESCRIPTION:	Moves input values to the INELT buffer in the order indicated.

.

SORTOB SPIRDEC

PURPOSE: To sort the observations by time. CALL SEQUENCE: JMP SORTOB INPUT: MCOUNT = C/HLT, O; C/HLT, N N = number of negacive observation times OANDE = C/HLT, OBLOC; C/HLT, EBLOC OUTPUT: See description SUBROUTINES: None STORAGE **REQUIREMENTS:** 33 Cells DESCRIPTION: (1) Set the right address of TEMP' and TEMP2 to the number of observations minus one. Set switch SORTOB3 to sort the observations in true time order. (2) EBLOC \rightarrow Index Register 4 EBLOC + 10 ->Index Register 5 C/HLT, OBLOC; C/HLT, EBLOC \rightarrow QQ (3) PREDBF \rightarrow Index Register 6 (4) Sort observations in time order - make as many passes through the observations as the number in TEMP1, using TEMP2 to tell when one pass is complete. TEMP2 will match TEMP1 at the start of each pass. (5) Test MCOUNT: (a) if = 0, exit (b) if $\neq 0$, then there are some observations before epoch, (i.e. some negative times). These must be resorted in reverse order. Example: buffer order would be -2, -100, 2 100 since observations will be retrieved in this order.

SUBOUT SPIRDEC

PURPOSE:	To output the prediction ephemeris.
CALL SEQUENCE:	JMP SUBOUT
INPUT:	NEWPAGE = page indicator
	PFLAG = print option
	X = x
	Y = y
	Z = z
	$XDOT = \dot{\mathbf{x}}$
	$YDOT = \dot{y}$
	$ZDOT = \dot{z}$
	= t (min)
	HEDLIN
	HEDLINI
	VALLIN
	VALLINI
OUTPUT:	According to value of PFLAG. (See description.)
SUBROUTINES:	System - GLOP, PANT
	Program - PAGECON, PHLAH, BCDTIM
STORAGE REQUIREMENTS:	65 cells
DESCRIPTION:	If NEWPAGE = 0, then outputs headings at the top of a new page, using locations HEDLIN and HEDLINI.
	If PFLAG = 2 , 3 , subroutine PHLAH is called to compute Ø, λ , h.
	If PFLAG = 1 or 3, then x, y, z, \dot{x} , \dot{y} , \dot{z} , are converted to output units of km and km/sec.
	The values requested by PFLAG are then printed and PAGECON is called to update the line count.

SUBOUTI SPIRDEC

PURPOSE: To initialize subroutine SUBOUT. CALL SEQUENCE: JMP SUBOUTI PFLAG = 0, 1, 2, or 3 T47 (print option From P card 4) INPUT: OUTPUT: See description. Program - PAGECON SUBROUTINES: STORAGE REQUIREMENTS: 14 cells Sets up parameters for SUBOUT (HEDLIN, HEDLINI, DESCRIPTION: VALLIN, VALLINI) according to PT LAG. Then use PAGECON to force a page and sets NEWPAGE = 0. If PFLAG = 0 or 2: HEDLIN = C/TMA, LINE4; C/TIJ, L NE4B HEDLINI = 0 - 0VALLIN = C/TMA, POC7D; C/TIJ, HEDL23 VALLINI : 0 ---- 0 If LAG = 1HEDLIN = C/TMA, LINE4; C/TIJ, LINE4A HLDLINI = 0 - 0VALLIN = C/TMA, POC7D; C/TIJ, HEDL21 VALLINI = 0 - 0And sets switch SUBOUT2 to jump to SUBOUT7. If PFLAG = 3HEDLIN = C/TMA, LINE4; [^]/TIJ, LINE4B HEDLINI = C/HLT, O; C/TIJ, LINE4A VALLIN = C/TMA, POC7D; C/TIJ, HEDL23 VALLINI = C/HLT, O; C/TIJ, HEDL21 And sets switch SUBOUT2 to jump to SUBOUT8.

SUBXYZ SPIRDEC 1 of 3

To compute \underline{r} , $\underline{\dot{r}}$ from \underline{A} , \underline{h} , L **PURPOSE**: CALL SEQUENCE: JMP SUBXYZ (ERROR) JMP NORMAL JMP W + 5 = LINPUT: $W + 6 = a_x$ $W + 7 = a_y$ $W + 8 = a_z$ $W + 9 = h_x$ $W + 10 = h_y$ $W + 11 = h_z$ OUTPUT: Х = x Y = у Z = z XDOT = x YDOT = y ZDOT = zplus necessary intermediate quantities listed on following pages. SUBROUTINES: Program - ARCTAN STORAGE REQUIREMENTS: 100 cells

SUBXYZ SPIRDEC 2 of 3]

Kepler's Equation:	
(1)	$COSEO = \cos (E + \omega)$
	SINEO = sin (E + ω)
	$ECOSE = SINEO (a_{yn}) + COSEO (a_{xn})$
	QQ = 1 - ECOSE
	$ESINE = SINEO (a_{xn}) - COSEO (a_{yn})$
Test:	$EPSI = \frac{ESINE + U - EOI}{1 - ECOSE}$
	if $< \epsilon$, iterate again to Eq. (1) after replacing to a maximum of 50 times, then take error exit from sub- routine
	if $\geq \epsilon$, continue
	R = A (1 - ECOSE) = r
	RDOT = (\sqrt{a} $\sqrt{\mu}$ / r) ESINE = r
	RVDOT = $(\langle a \rangle \mu / r)$ $1-e^2 = rv$
	$COSU = ESINE \left[(1 - 1 - e^2) + a_{yn} - a_{xn} + COSE0 \right] a/r$
	SINU = SINEO - $a_{yn} - a_{xn}$ ESINE (1- $(1-e^{2-1})$ a/r
	AR = a/r
	$UX = COSU' N_{x} + SINU' M_{x}$
	$UY = COSU \cdot N_{y} + SINU \cdot M_{y}$
	$UZ = COSU \cdot N_z + SINU \cdot M_z$
	$VX = COSU \cdot M_x - SINU \cdot N_x$
	$VY = COSU \cdot M_y - SINU \cdot N_y$
	$VZ = COSU M_z - SINU N_z$

SUBXYZ SPIRDEC 3 of 3

.

$$X = r (U_{x}) = x$$

$$Y = r (U_{y}) = y$$

$$Z = r (U_{z}) = z$$

$$XDOT = \dot{r} U_{x} + r \dot{v} V_{x} = \dot{x}$$

$$YDOT = \dot{r} U_{y} + r \dot{v} V_{y} = \dot{y}$$

$$ZDOT = \dot{r} U_{z} + r \dot{v} V_{z} = \dot{z}$$

1

1

TAPEW SPIRDEC

T

PURPOSE:	To write a binary ephemeris tape on logical ?
CALL SEQUENCE:	JMF TAPEW
INPUT :	<pre>W+l = t (min) X (e.r.) Y (e.r.) Z (e.r.) XDOT (e.r./kemin) YDOT (e.r./kemin) ZDOT (e.r./kemin) TAPCNT = C/HLT, TAPBUF + X</pre>
OUT PUT:	One block on the binary ephemeris tape for XYZLA subroutine when buffer is full.
SUBROUTINES:	System - SYS, SYSNO, SYSIO
STORAGE REQUIREMENTS:	16 Cells
DESCRIPTION:	Adds t, x, y, z, \dot{x} , \dot{y} , \dot{z} to tape output buffer (TAPBUF). When the buffer is full, one block (128 words) is written on tape. TAPCNT is updated.

TEMP SPIRDEC

PURPOSE: To compute temperature at epoch. CALL SEQUENCE: JMP TEMP $F10AV = \overline{F}_{10}$ INPUT: F10 $= F_{10}$ AP $= A_p$ ORGDAY = days from beginning of year to epoch = D TEMPO = T_0 (^OK) OUTPUT: SUBROUTINES: None STORAGE 19 cells REQUIREMENTS: $\overline{T}_{0} = 974^{\circ} + 4.2^{\circ} (\overline{F}_{10} - 150) + 0.004^{\circ} (\overline{F}_{10} - 150)^{2}$ DESCRIPTION: $T'_{o} = \overline{T}_{o} + 1.9^{o} (F_{10} - \overline{F}_{10})$ $T_{o} = T'_{o} + \left[\overline{F}_{10} \sin\left(4\pi \left(\frac{D-60}{365}\right)\right)\right] \left[0.39^{o}+0.15^{o} \sin\left(2\pi \left(\frac{D-150}{365}\right)\right)\right]$

4 24

PURPOSE:	To compute θ at epoch
CALL SEQUENCE:	JMP THGRC
INPUT:	TOY = 0 0 0 Y , Y = BCD year
	ORGTM = fraction of epoch day
	THGRO = θ_{gr} from TLC subroutine
	ORGDAY = days since beginning of year
OUTPUT:	TO = days and fraction since beginning of year
	$THGR = \theta_{t_0}$
	ORGTM = minutes in epoch day
SUBROUTINES:	Program - TLC, MOD2PI
STORAGE REQUIREMENTS:	13 Cells
DESCRIPTION:	THGR = θ_{gr} + (Days since beginning of year) (0.9856473354) +
	(fraction of day) (360.9856473)
	Converts ORGTM from fraction of day to minutes

WETGHT SPIRDEC 1 of 2

PURPOSE: To read the weight tape and set up the weight and bias buffers.

CALL SEQUENCE: JMP WEIGHT

INPUT: Weights and biases on logical tape 7 WANDBI = C/HLT, WBUF; C/HLT, BIBUF NXTWGTA = C/HLT, ABUF + 120; C/HLT, 0

OUTPUT: See description

SUBROUTINES: System - PANT, SYS, SYSNO, SYSIO Program - XSRCH

STORAGE

REQUIREMENTS: 82 Cells

DESCRIPTION: This subroutine is called if WGTFLG = 1 (Column 2 on P Card 3), which indicates that a weight tape is mounted and should be read.

The following procedure is executed:

- (1) Read a block from logical tape 7 initially, then only read a new block when all cards in the block have been processed:
 - (a) if the first word of a card is ENDSIGMA, the tape is complete, rewind logical 7 and exit.
 - (b) if not ENDSIGMA, unpack one card using XSRCH
 - (1) Set WGTBUF = 00000SSS
 where SSS = Sensor Number
 - (1) Save the address of the next card in NXTWGTA.

WEIGHT SPIRDEC 2 of 2

DESCRIPTION: (continued) (2) Search WBUF to find a word of 60000222 or the same Sensor Number.

(a) if the Sensor Number is found, replace the assembled values with the new values after conversion as follows:

WBUF	(Weight Buffer)	BIBJF	(Bias Buffer)
Word O	00000SSS	Word O	00000555
1	1/0 _p (e.r.)	1	-Bp (e.r.)
2	$1/\sigma_{A}$ (rad)	n	$-B_A$ (rad)
3	$1/\sigma_{h}$ (rad)	3	-B _h (rad)
4	$1/\sigma_{o}$ (e.r/K)	4	$-B_{0}$ (e.r/K)
		5	-B_ (min)

Go to Step (1).

- (b) if the sensor number is not found, but 00000ZZZ is found check to see if there is room for another entry
 - if there is no room (i.e. 30 sensors have been entered), print a comment and go to step (1), skipping the entry
 - (1) if there is room, follow same procedure of storing and computing values at (2)(a), also add a word of 00000ZZZ at the end of each buffer.

WILLER SFIRDEC

PURPOSE: To print the input observations.

CALL SEQUENCE: JMP WILBUR

INPUT: Observations starting in location EBLOC, terminated by a word of Z[†]s.

OUTPUT: Observations printed in card format on hard copy.

SUBROUTINES: Program - PAGECON, SEPSUB System - PANT, GLOP, DKLOK

STORAGE

REQUIREMENTS: 164 Cells

DESCRIPTION: This subroutine is called by option, if Column 1 on P Card 3 = 1. The observations are in OBLOC format and must be converted to card format for output. The observations will be printed in the same order as they are in the input deck, as they have not yet been sorted. In addition, the column numbers will be printed at the top of each page. A space will appear between each field of the observation card for clarity.

WSETTP SPIRLEC

I

ł

۹.,

PURPOSE:	To set up W buffer for Adams-Bashforth integration.
CALL SEQUENCE:	JMP WSETUP
INPUT: OUIPUT:	$XLO = L_{O}$ $AXO = a_{XO}$ $AYO = a_{YO}$ $AZO = a_{ZO}$ $HXO = h_{XO}$ $HYO = h_{YO}$ $HZO = h_{ZO}$ $W + 1 = F/O$ $W + 5 = XLO$ $W + 6 = AXO$ $W + 7 = AYO$ $W + 8 = AZO$ $W + 9 = HXO$ $W + 10 = HYO$
	W + 11 = HZO
SUBROUTINES:	(None)
SIORAGE REQUIREMENTS:	10 Cells
DESCRIPTION:	Moves lement set at epoch, i.e. (W + l = T) to W buffer for subroutine ADBASH.

APPENDIX

ADAMS-BASHFORTH INIEGRATION

The Adams-Bashforth (A-B) method together with the Runge-Kutta (R-K) method of integration are employed in this subroutine. R-K is used as a starting procedure so that an adequate number of step-wise solutions may be obtained to build a difference table needed by the A-B method. The interval of integration is automatically varied to keep the discrepancy between the integrated values and an absolute error check within prescribed limits.

I-1. R-K PROCEDURE FOR STARTING

To start the Adams-Bashforth procedure, a series of R-K integration steps (at equal intervals of X) are generated until enough points are available to set up the difference table needed by A-B.

The system of equations to be solved is given by.

 $Y'_{i} = f_{i} (X, Y_{1}, Y_{2}, \dots, Y_{7})$ $Y_{i} (X_{c}) = Y_{i0}$ $i = 1, 2, \dots, 7$

Let Y be the value of Y at X=X, and f, the derivative of Y at X=X, and let h be the step size of the independent variable X (note that the subscript "i" has been omitted for simplicity). The R-K method uses the classical fourth-order formulas:

$$K_1 = hf(x_n, Y_n)$$

 $K_2 = hf(x_n + \frac{1}{2}h, Y_n + \frac{1}{2}K_1)$

$$K_{3} = hf (X_{n} + \frac{1}{2}h, Y_{n} + \frac{1}{2}K_{2})$$

$$K_{4} = hf (X_{n} + h, Y_{n} + K_{3})$$

$$Y_{n+1} = Y_{n} + \frac{1}{6} (K_{1} + 2K_{2} + 2K_{3} + K_{4})$$

a. Interval Control and Modifications

The method of interval control, while in the R-K section, concists of generating, from the point X, Y and its derivative f, two R-K points Y, Y and their derivatives f_{n+1}^{n} , f_{n+2} . With this information, a Simpson's Rule integration is performed on the integral:

$$\Delta Y = \int_{j=n}^{n+2} f_j dx$$

By Simpson's Rule:

$$\Delta y = \frac{h}{3} (f_n + 4 f_{n+1} + f_{n+2})$$

The following evaluation is made for each of the seven equations:

 $\delta = \left| \Delta \mathbf{Y} - (\mathbf{Y}_{n+2} - \mathbf{Y}_n) \right| - \epsilon$

 ϵ_i = absolute error control supplied by the user for each equation.

If, for any of the seven equations, the value δ equals or exceeds 0, then h is reduced by 10^{-0.2}, and the integration is restarted from X, Y. This procedure is repeated until all δ are less than 0; then the values of X_{n+2} , Y_{n+2} , are returned to the user as valid points.

b. Difference Table Construction

After the appropriate number* of R-K integration points have been generates, and seven values of f_{n+j} (j = 0, 1, ..., 6) at equal steps are available, then the difference table required by A-B is constructed.

^{*}The program generates 4 R-K points per 1 A-B point, therefore, 25 R-K points must be available to start A-B.

The difference table is formed as follows:

where:

$$\nabla_{k}^{r} = \nabla_{k}^{r} - \nabla_{k-1}^{r}$$

$$\nabla_{k}^{0} = f_{k}; k = n, n+1, \dots n+6$$

After this difference table has been formed, only the ∇_{n+6}^r differences are saved for A-B computations.

T-2. A-B SIXTH ORDER INTEGRATION

The A-B integration method consists of:

- 1. Computing a predictor
- 2. Computing new differences, ∇^r , based on the results of the predictor.
- 3. Computing the corrector (the final result).

The predictor is of the form $Y_{n+1} = Y_n + h$ $\sum_{r=0}^{6} B_r \nabla_n^r$ $B_0 = 1$ $B_1 = 1/2$ $B_2 = 5/12$ $B_3 = 3/8$ $B_4 = 251/720$ $B_5 = 95/288$ $B_6 = 19087/60480$ The corrector is of the form $\mathbf{y}_{n+1} = \mathbf{y}_n + \mathbf{h} \sum_{r=0}^{6} \mathbf{B}'_r \nabla_{n+1}^r$ $B_0' = 1$ $B_1' = -1/2$ $B_2' = -1/12$ $B_3' = -1/24$ $B_4' = -19/720$ $B_5' = -3/160$ $B_6' = -863/60480$

The differences ∇_{n+1}^{r} sed in the corrector are computed by evaluating the derivative of the predictor f_{n+1}^{0} (∇_{n+1}^{0}); then

$$\nabla_{n+1}^{r} = \nabla_{n+1}^{r-1} - \nabla_{n}^{r-1}$$
; r=1, 2, ..., 6

I-3. A-B INTERVAL CONTROL AND MODIFICATION

After the corrector has been computed, the quantity δ is evaluated.

 $\delta = |\text{predictor} - \text{corrector}| - \epsilon$

 e_{j} = absolute error control

If, for any equation, $\delta>0$; then the interval, h, will be decreased by 1/2. New differences, \bigvee^r (r=1, 2, ...6), based on half the old interval are then computed by:

$\left[\overline{\nabla_{n}}^{1}\right]$.5	.125	.0625	.0390625	.02734375	.0205078125	∇_{n}^{1}
∇_n^2		0	.25	.125	.078125	.0546875	.041015625	∇_n^2
∀ ³	_	0	0	.125	.09375	.0703125	.0546875	$\nabla_n^{\mathbf{i}}$
∇_n^4		0	0	0	.0625	.0625	.0546875	∇_n^4
∇_n^5		0	0	0	0	.03125	.0390625	∇_n^{5}
∇_n^6		0	0	0	0	0	.01562.5	∇_n^6

$$\nabla_n^0 = \nabla_n^0$$

With the new h and \bigvee_{n}^{r} , repeated attempts are made to integrate from x to x+h until, for all equations, $\delta \leq 0$.

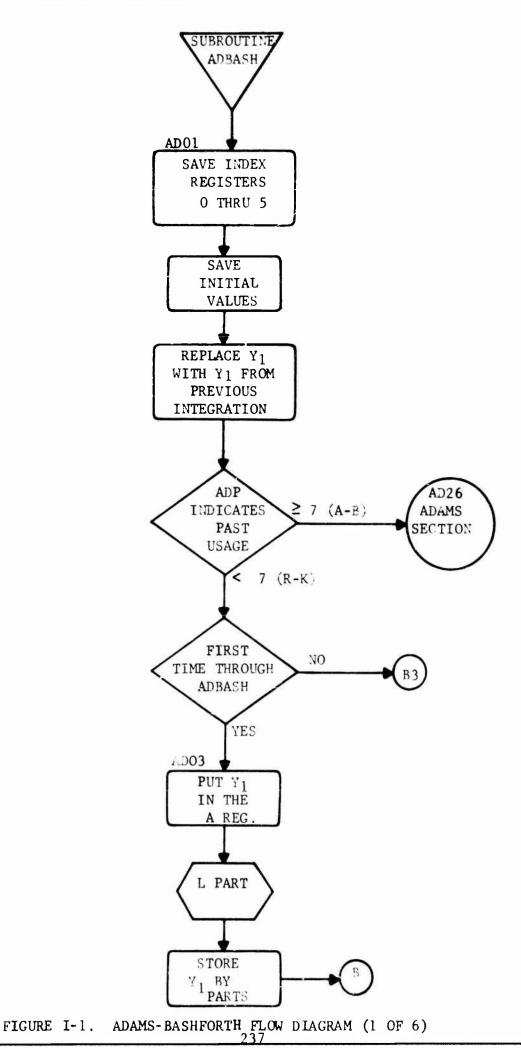
When all $\delta \leq 0$, a new set of differences (∇_{n+1}^r) will be computed by evaluating the derivative of the corrector (∇_{n+1}^0) , then evaluating:

$$\nabla_{n+1}^{\mathbf{r}} = \nabla_{n+1}^{\mathbf{r} \cdot \mathbf{1}} \cdot \nabla_{n}^{\mathbf{r} \cdot \mathbf{1}}; \quad \mathbf{r}=1, 2, \ldots, 6$$

The A-B routine will check if a larger interval h may be ised and still keep the error within prescribed limits. The doubling criteria are.

- There must have previously been seven integrations by AB without a change in h.
- 2. All $\delta < -.9556$

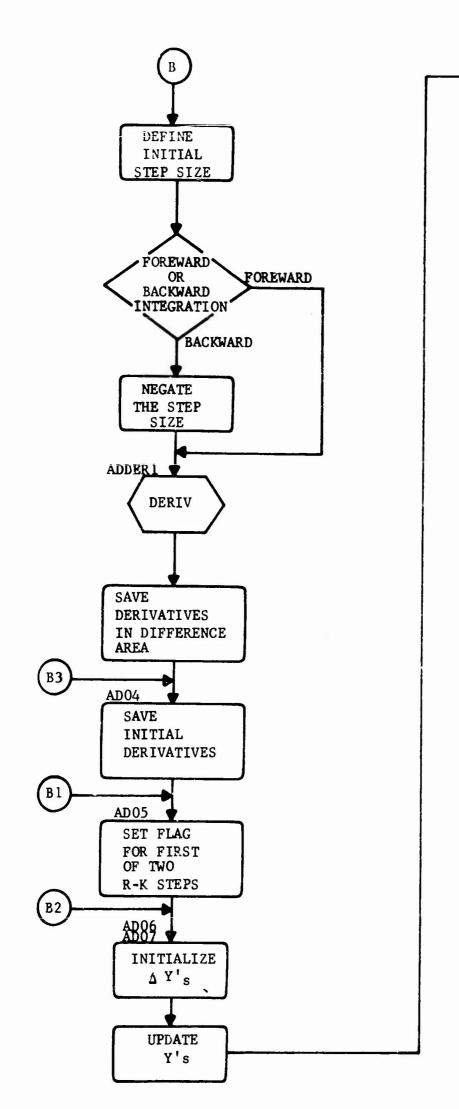
If these criteria are satisfied, then h is doubled and a new set of differences ∇_{r+1}^{r} based on twice the old interval are computed by:

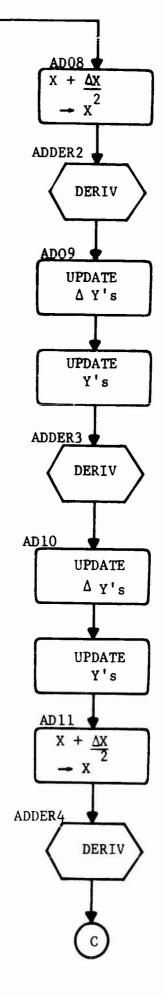

∇_{n+1}^{1}	-	-1	0	0	0	0	∇_{n+1}^{1}
$\overline{\nabla}_{n+1}^{2}$	0	4	-4	1	0	0	∇^2_{n+1}
3 n+1	е	0	8	-12	6	-1	→ 3 √n+1
= ∇,4 ∇n+1	o	0	0	16	-32	24	∇_{n+1}^4
$\overline{\nabla_{n+1}^{5}}$	0	0	0	0	32	-80	∇_{n+1}^{5}
∇_{n+1}^{6}	C	ل	0	0	0	64	$\begin{vmatrix} \nabla_{n+1}^{5} \\ \nabla_{n+1}^{6} \end{vmatrix}$
	∇_{n+1}^{G}	$= \nabla_{n+1}^{0}$	1				-

The Y_{n+1} are returned to the user at this point. The new \bigvee_{n+1}^{r} and h (if any) will be tried on the next step.

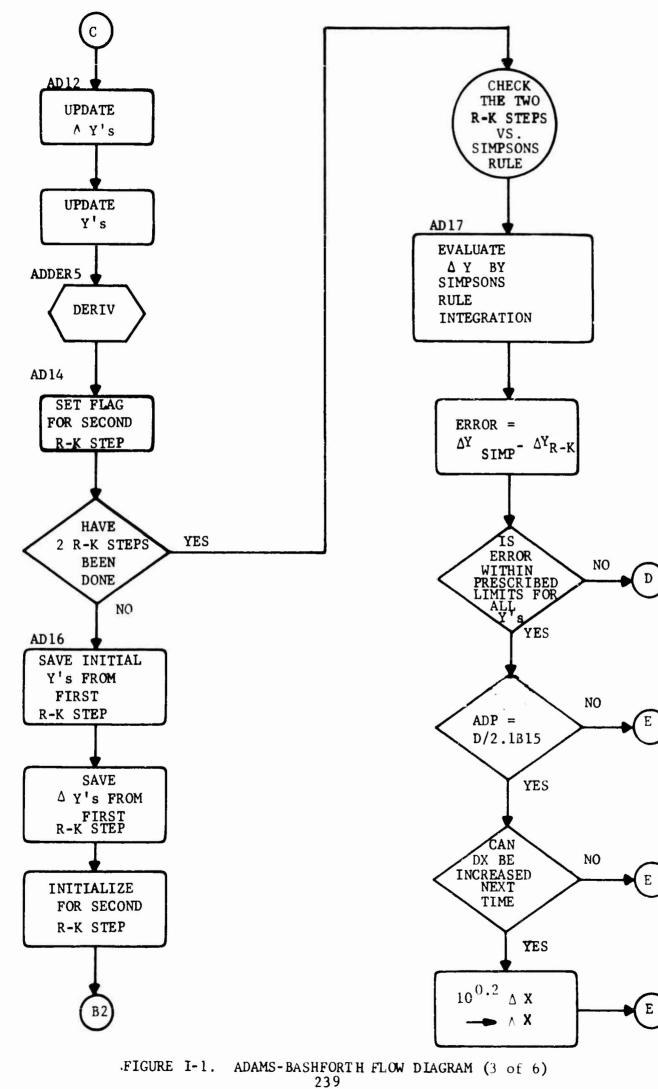
- 4 SPECIAL CONSIDERATION FOR Y

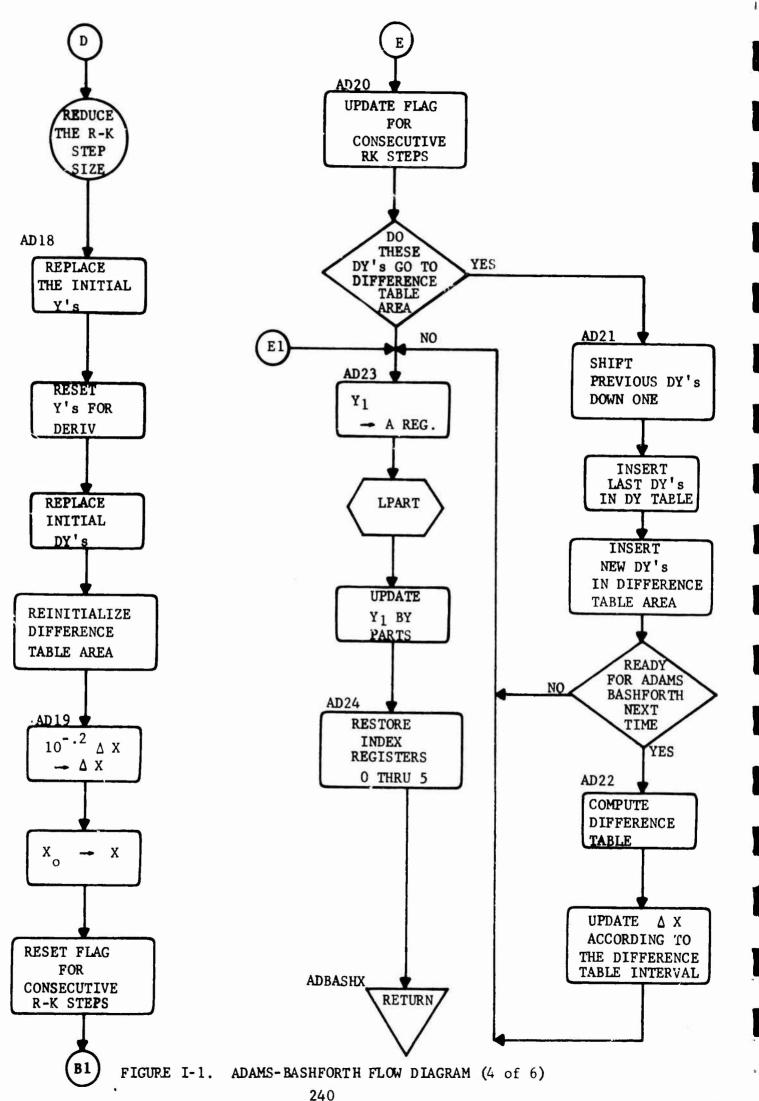
The first equation, Y. (located at W+5), is carried modulo 2^{m} for all computations within ADBASH. This relative allows absolute (only) error control to be used for this variable. The value $Y_{1,n+1}$, however, will not be modulo 2^{m} ; but will be $Y_{1,n}$ (as entered by the user) plus $\Delta Y_{1,n}$ by integration.

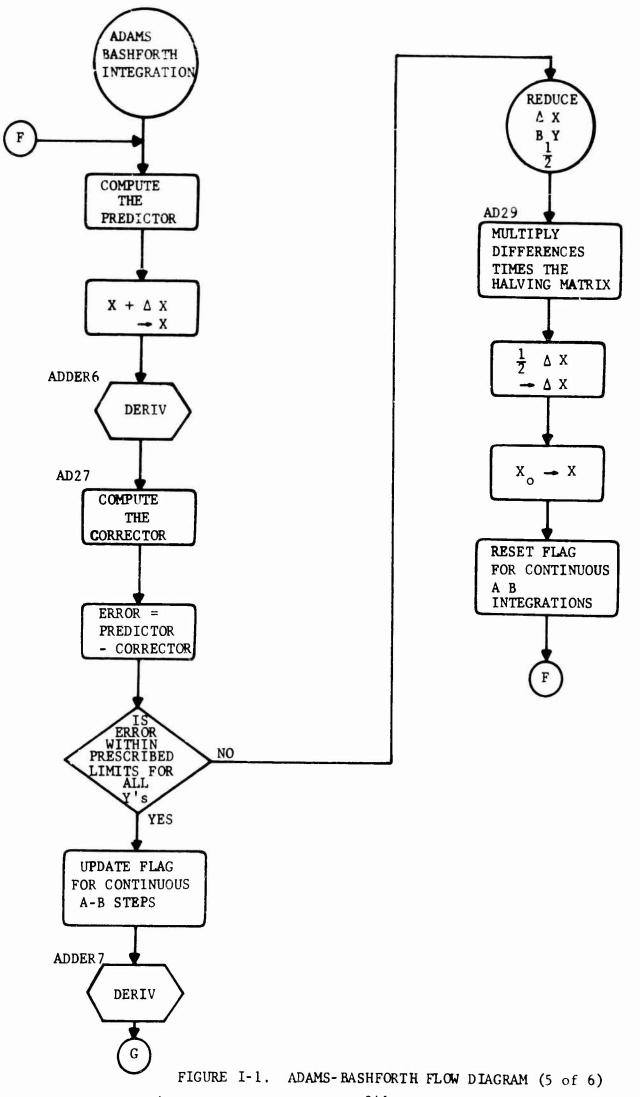

The "modulo 2π " feature restricts the user to input Y in radians; and also restricts the derivative routine to accept Y in radians (mod 2π).

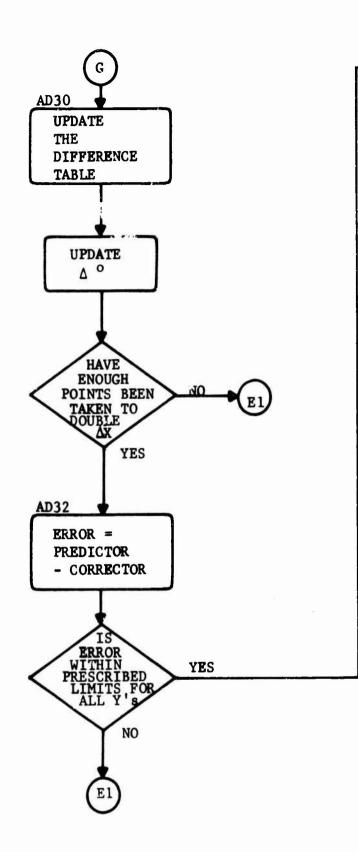


n-


e i


.




FIGURE I-1. ADAMS-BASHFORTH FLOW DIAGRAM (2 of 6) 238

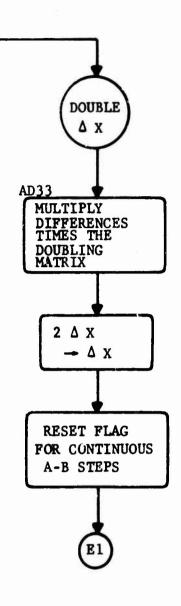
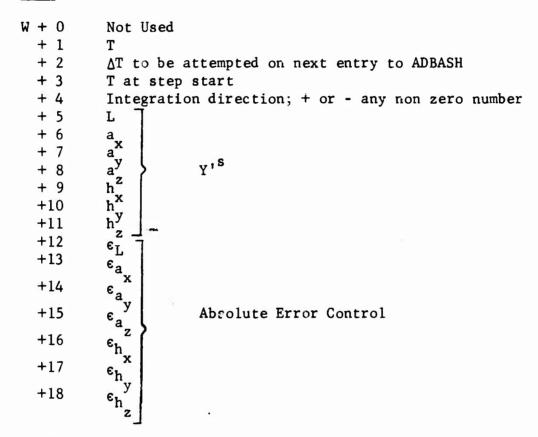



FIGURE I-1. ADAMS-BASHFORTH FLOW DIAGRAM (6 of 6)

Description of W Buffer (Work Region)

Word

For the variables listed above each column, the following locations contain:

ſ	$\frac{L}{W+36}$	$\frac{a_{x}}{W + 60}$	$\frac{a_y}{W + 84}$	$\frac{a_z}{W + 108}$	$\frac{\overset{h}{\mathbf{x}}}{\overset{W}{\mathbf{w}} + 132}$	$\frac{h_y}{W + 156}$	$\frac{h_z}{W + 180}$	∇°i
	+ 37	+ 61	+ 85	+ 103	+ 133	+ 157	+ 181	∇^{1}_{i}
	+ 38	+ 62	+ 86	+ 110	+ 134	+ 158	+ 182	∇_{i}^{2}
ł	+ 39	+ 63	+ 87	+ 111	+ 135	+ 159	+ 183	∇_{i}^{3}
ĺ	+ 40	+ 64	+ 88	+ 112	+ 136	+ 160	+ 184	∇^4_i
	+ 41	+ 65	+ 89	+ 113	+ 137	+ 161	+ 185	∇_{i}^{5}
l	+ 42	+ 66	+ 90	+ 114	+ 138	+ 162	+ 186	∇_{i}^{6}

	• •
W + 187	1. ¹⁰
+ 188	a l
+ 189	a a
+ 190	by Domination
+ 191	Б* (
+ 192	n x
+ 193	б ^у
+ 194	L ^z total revolutions (radians)
+ 195	L partial revolution (radians)
+ 196	L]
+ 197	a
+ 198	a ^X
+ 199	$\begin{bmatrix} a \\ x \\ a^{y} \\ a^{y} \end{bmatrix}$ Y's at step start
+ 200	h ^z
+ 201	h ^z h ^x h ^y
+ 202	h ^y
	z

For the variables listed above each column, the following sets of 5 locations contain:

٩	$\frac{L}{W + 31}$	$\frac{a}{x}$ W + 55	$\frac{a_y}{W+79}$	$\frac{a_z}{W + 103}$	$\frac{h_{x}}{W + 127}$	$\frac{h}{W + 151}$	$\frac{h_z}{W + 175}$
2	+ 32	+ 56	+ 80	+ 104	+ 128	+ 152	+ 176
3	+ 33	+ 57	+ 81·	+ 105	+ 129	+ 153	+ 177
4	+ 34	+ 58	+ 82	+ 106	+ 130	+ 154	+ 178
(5)	+ 35	+ 59	+ 83	+ 107	+ 131	+ 155	+ 179

1. After a Runge Kutta step:

- 1 Y at the half step
- (2) Y at the step start
- (3) \wedge Y of the second half step
- ④ Δ Y of the first half step
- (5) Y at the step start

e l		
• •		
ę		
	2. Afte	er an Adams Bashforth step:
•	(1)	Predictor
•	-	
	2	
	3	
	4	
*:	5	Predictor - Corrector
	The pred	lictor and corrector constants, B' ^S , are stored as follows:
	W + 26	Bo
	+ 27	B'o
		^B 1
	+ 51	B ₁ '
	+ 74	^B 2
	+ 75	B ₂ '
	+ 98	^B .3
	+ 99	B' ₃
	+122	^B ₄
	+123	B ₄ '
	+146	^B 5
	+147	^B ₅ '
	+170	^B 6
	+171	B ₆ '

-

-1

* *

.

*

 ~ 1

.

 \mathbf{z}

4

1

Į

All locations not mentioned are used for temporary working storage.

I-6. HOW TO USE ADBASH

The remainder of this Appendix gives specific instructions in the use of the program.

ADBASH has been designed to integrate a system of first order differential equations over some range of X from X_0 to X final. Given a set of initial conditions, ADBASH will, on each successive jump to the subroutine, give a step by step solution to the system of equations. The subroutine will automatically control the step size so as to keep the error within the limits specified by the user.

To obtain values of Y_1 , Y_2 , ..., Y_7 , at discrete values of X, the user should code his program to perform some type of interpolation, using points computed by ADBASH that surround the point of interest. This type of coding will allow ADBASH to work efficiently and use an optimum step size.

Any error exits from ADBASH must be coded into ADBASH by the user. An error exit is provided at α + 1H.

J 7. DERIVATIVE SUBROUTINE (SUPPLIED BY USER)

At each entry, the derivative subroutine must compute the derivatives of the system, using the current values of X and the Y_i , and store the results in the W buffer.

The first instruction of the derivative subroutine must be: TJM exit.

The return instruction of t'e derivative subroutine must be: exit JMP 0.

Input

Output

		1	v
W	+	T	Х

+ 5	$Y_1 \pmod{2\pi}$	W + 187	¥ '1
+ 6	ч ₂	+ 188	Y ₂ '
+ 7	¥ ₃	+ 189	Υ ₃ ΄
+ 8	Y ₄ .	+ 190	¥4
+ 9	^Ү 5	+ 191	Υ ₅ ΄
+10	^Ү 6	+ 192	Υ ₆ ΄
+11	Y ₇	+ 193	¥ ′7

To minimize time, the derivative subroutine should perform only the function stated above.

1 IS, m . 8. INITIALIZATION e Before the first of any series of calls to ADBASH, the following must be defined: e i d W (work) Region SH . W + 1 xo = direction of integration, any + or - any non zero number + 4 = + 5 = ¥₁ -+ 6 ¥2 = + 7 Y₃ . . = ¥4 + 8 = + 9 = ¥5 +10 ^Y6 = +11 ¥7 = ε_Υ1 +12 . . = +13 ε_{Y2} = ^еүз +14 = €_¥4 +15 = Absolute error ε_{Υ5} +16 = control ^єч_б +17 = ε_{Υ7} +18 = on Control Word ADP - set this to 1/1T15 247

á

-

Derivative Subroutine Calling Setup

The name of the user supplied derivative subroutine must be inserted into the address portion of seven locations within ADBASH. These locations are:

Ţ

ADDER1, ADDER2, ADDER3, ADDER4, ADDER5, ADDER6, ADDER7

This may be accomplished as follows:

LIT	NAME
TJM	ADDER1
TJM	ADDER 2
•	•
TJM	ADDER 7

Optional Initialization

RKINDI (initial step size in flt. pt.) This is defined as 0.35 within ADBASH but may be changed by the user.

ADPERRK (number of R-K steps taken to generate one A-B point) This is defined as 4RK/1AB within ADBASH but may be changed to any value below:

> 1/1 T15 = 2RK/1AB 1/1 T17 = 8RK/1AB 1/1 T18 = 16RK/1AB 1/1 T19 = 32RK/1AB

I-9. SAMPLE FLOW CHART

+

The following diagram illustrates a typical application using ADBASH:

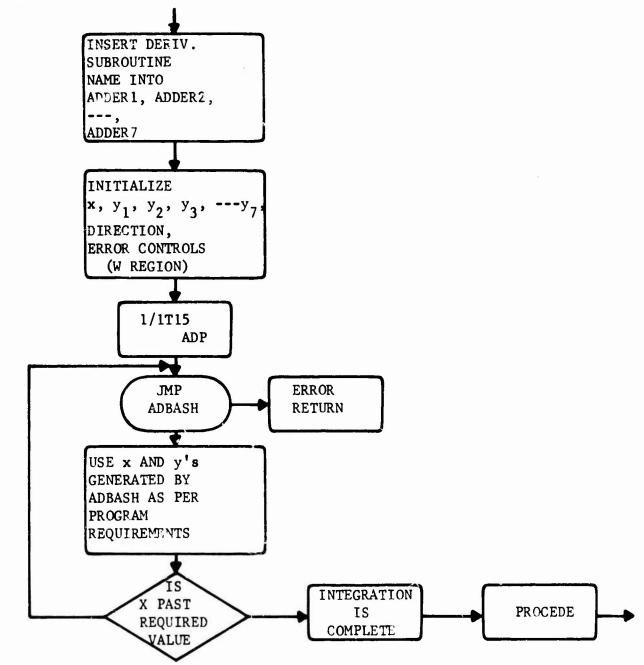


FIGURE I-2. ADBASH APPLICATION

I 10. TO USE RUNGE-KUTTA INTEGRATION ONLY

During a series of jumps to ADBASH, the user may restrict the procedure to use Runge-Kutta integration only.

To use R-K only:

- Set ADP = 1/1T15 before the first of a series of jumps to ADBASH.
- 2. Before the second and each successive call to ADBASH, set ADP as follows:
 - Option I: ADP = D/2.1B15; This will permit ADBASH to decrease or increase the step size as prescribed by the error controls.
 - Option II: ADP = D/2.2B15; This will permit ADBASH only to decrease the step size as prescribed by the error controls.