
I

CM
00

Q

ESD-TDR-65-76

SPIRAL DECAY ANT» SENS CALIBRATION
DIFFERENTIAL CORRECT, ' PROGRAMS

Volume ITI. Programmer's Manual

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-65-76

4Ü *

FEBRUARY 1965

T. G. Gaa
C. G. Hilton

P. A. VanderStucken
L. G. Walters

WT TL Of _JS

I
HARD by.

KICROffCHE

COPY $.
6>. &J

■ L£L I
496L SYSTEM PROGRAM OFFICE
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

L. G. Kanscom Field, Bedford, Massachusetts

Prepared under Contract No. AF 19(628)-3377 by Aeronutronic,
a Division of Philco Corporation, Newport Beach, California

RKCT® ©OT 8WE mn

·•·

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLYo

When US Government drawings, specifications or other data are
used for any purpose other than a definitely related government
procurement operation, the government thereby incurs no responsi-
bility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data is not to be
regarded by implication or otherwide, as in any manner licensing
the holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies from Defense Documentation
Center (DDC). Orders will be expedited if placed through the
librarian or other person designated to request documents from DDC

Copies available at Office of Technical Services, Department of Commerce. f

ESD-TPR-65-76

SPIRAL DECAY AND SENSOR CALIBRATION
DIFFERENTIAL CORRECTION PROGRAMS

Volume III. Programmer's Manual

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-65-76

FEBRUARY 1965

T. G. Gaa
C. G. Hilton

P. A. VanderStucken
L. G. Walters

496L SYSTEM PROGRAM OFFICE
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

Prepared under Contract No. AF 19(628)-3377 by Aeronutronic,
a Division of Philco Corporation, Newport Beach, California

F<REWORD

This Technical Documentary Report has been prepared in
four volumes, as foll~s:

Volume

I

:;:r

::rr

IV

Title

Program Development

Operating Instructions

Programmer's Manual

Operations Summary(U)

Contractor's
Publication Number

U-3005

U-3006

U-3007

S-2990

Publication of this technical documentary report does
not constitute Air Force approval of its findings or
conclusions. It is published only for the exchange
and stimulation of ideas.

l

l

I
... I

I

I

I

I

I

I

I

I

'

!

CONTENTS

SECTION

1

2

INTRODUCTION ,

PROGRAM DESCRIPTION

2.1 Functional Description
2.2 Flow Diagrams

MEMORY ASSIGNMENTS

3.1 Symbolic Names and Definitions
3.2 Data Block and Tape Formats
3.3 Memory Storage Diagram

SUBROUTINE DESCRIPTIONS

4.1 Alphabetical Index to Subroutine Descriptions
4.2 Subroutine Descriptions

PAGE

1

2

2
4

7
24
64

65

65
69

APPENDIX

I ADAMS-BASHFORTH INTEGRATION 231

1-1 R-K Procedure for Starting 231
1-2 A-B Sixth Order Integration 233
1-3 A-B Interval Control and Modification. . . . 235
1-4 Special Consideration for Y. 236

1-5 Flow Charts and Work Region description . . 237
1-6 How to Use Adbash 246
1-7 Derivative Subroutine 246
1-8 Initialization 247
1-9 Sample Flow Chart 249
1-10 To Use Runge-Kutta Integration Only 250

I
I
I
I

iii

ILLUSTRATIONS

FIGURE PAGE

1 Spiral Decay Basic Functional Diagram 5

2 Spiral Decay Main Flow Tiagram 6

3 Sensor Weight and Bias Tape Format 62

4 Binary Ephemeris Tape Format 63

5 Memory Storage Diagram . . . 64

6 CNTRL Flow Diagram 103

7 JNDRAG Flow Diagram 148

8 PCONTRL Flow Diagram 178

APPENDIX

1-1 Adams Bashforth Flow Diagram 237

1-2 ADBASH Application 249

IV

SECTION 1

INTRODUCTION

This document describes, from a programmer's view, the coding,
function, and logic of the Spiral Decay computer program. The Spiral Decay
program operates in the SPACETRACK B-3 Semi »Automatic Programming System; and
will accept sensor observations, assign weights and biases to the data, perform
a differential correction and predict past or future position and velocity.

Section 2 of this document contains a functional description and
basic flow charts of the program. Section 3 defines symbolic names, data and
tape formats, and memory assignments. A detailed description of each sub-
routine used by Spiral Decay is given in Section 4. The Appendix describes
the Adams-Bashforth integration routine which is used by Spiral Iecay for
ephemeris integration.

SECTION 2

PROGRAM DESCRIPTION

2.1 FUNCTIONAL DESCRIPTION

The Spiral Decay Program contains three main functions. These are
(1) OBSERVATION WEIGHTING, (2) DIFFERENTIAL CORRECTION, and (3) PREDICTION.
This program is designed to operate in the Schedule Tape Mode under control
of the B-3 Executive Program.

a. Observation Weighting

The Observation Weighting function of the program is to apply
corrections (biases) to the observational data used for differential correction,
and to apply statistical weights to the data used in the correction procedure.

The Spiral Decay Program must be supplied with weight and bias
information for each observation. If none is available, that observation Kill
be omitted from the differential correction.

Within Spiral Decay, there is room for weight and bias data for
thirty sensors. There are approximately fifteen sets of sensor weighting data
assembled within Spiral Decay. The weighting data contained in Spiral Decay
may be changed and/or increased by introducing a "weight tape" on logical
tape 7.

b. Differential Correction

The differential correction function accepts observational data for
which weight and bias information is available, and performs a weighted
differential correction on the crbit element set. Ephemeris computation is
carried out in a special perturbations variation-of-parameters formulation.
This formulation numerically integrates the perturbative accelerations
influencing the parameters of an instantaneous two-body reference orbit.

The numerical integration is performed by a sixth-order Adams-
Bashforth integration routine. This routine works strictly in a variable
step size mode, based on error control parameters.

Perturbations handled in the program include: zonal,tesserai, and
sectorial harmonics, atmospheric drag, and solar radiation pressure. These
effects may be controlled to incorporate any combination in a particular case.

A correction can be obtained for any or all of the six orbital
elements, and may also include the satellite mass. This latter parameter
actually represents a correction to the ballistic parameter, C A/m, where
C_ is the drag coefficient, A is the satellite cross-sectional area, (m)
and m is the satellite mass (kg.).

The correction process will repeat up to twice the maximum number of
iterations, as specified by the user, or until the root-mean-square (RMS) of the
accepted residuals has converged. Accepted residuals are those that are not
rejected on the basis of an absolute maximum or a relative check based on a
multiple of the residual RMS. When the correction process has converged, the
epoch may be updated to any revolution number or time.

c. Prediction

The prediction function of the program is used to obtain future or
past position and velocity data from an input element set or a corrected
element from the differential correction section.

Ephemeris computation in the prediction function is carried out in
the same manner as in the differential correction, with one addition:
ephemeris integration, while a satellite is in the final decay stage, is
performed using the Cowell equations. The Cowell integration uses a fourth-
order Runge-Kutta integration scheme instead of Adams-Bashforth because of the
need for frequent interval change.

In addition to a prediction ephemeris listed on hard copy, Spiral
Decay can: (1) produce a binary ephemeris tape to be used with the XYZLA
program; (2) leave in core five time points for use in a subsequent GIPAR run.

2.2 FLOW DIAGRAMS

The following two pages display the functional and subroutine level
flew diagrams for Spiral Decay. Additional flow diagrams, written in further
detail, are included in the individual subroutine descriptions in Section 4
and the Appendix of this manual.

The following symbol conventions have been adopted:

NAME

- contains processing function

indicates a subroutine which is
documented within the section or
in a referenced system or publi-
cation

indicates a decision or switch,
including title on the appropriate
path (may be more than two exits
if a multiple switch)

- program or flow-diagram connector

- program terminal (start or exit:

55" u
o OS
H

CO i
g CO 25 g co
H O
M 2 H

W H w to
H J u S$

1 O g o CJ H «

H W
00 Q
< «
H M
CO Oi
^CO

p "—'
<
H
M
PQ
ai co

S°g
Pu ft. :o
55 o S
M W
H .J w u
CO

> <

o
M
H
CJ

o
f-l
CO

3

w
Q

ä
M
a,
CO

W

O
M
ft,

0

SECTION 3

MEMORY ASSIGNMENTS

3.1 SYMBOLIC NAMES AND DEFINITIONS

This section provides a listing and definitions of the symbolic
names which have been created for the Spiral Decay Program, and are relative
only to the coding of the program. The symbolic names which refer to address
constants, input/output parameters, command constants, and temporary storage
will not be listed in this section, but may be located directly in the code
edit of Spiral Decay.

Definitions of some of the symbolic names contain mathematical
symbols which are relative to the formulation of Spiral Decay. Definitions
of these mathematical symbols may be found in Appendix VII, Volume 1.

The symbolic names which appear in the SPS Master Assign Deck may
be referenced in either Aeronutronic report U-1691, Section 5-69, or System
Development Corporation report TM-LX-38/000/00. Appendix E.

NAME CELLS DEFINITIONS

All

ABRHO

ACCCNT

ADDT02

ADDT03

ADLLEPS

ADPERRK

ADP

ADRKSTP

ADTEST

ADXR1

ADXR3

ADXR5

AE

ALFBUF

ALFLG

ALSUN

AOVH

AP

49 Least Squares Matrix (N x N)

(a • B • pw)/2

Accepted Residual Counter

— Integration Step Size

■r Integration Step Size

Criteria for Increasing Integration Step
Size

Ratio of Runge Kutta to Adams Bashforth
Integration Steps

Control Flag for Integration Routine

Indicator for Runge Kutta Integration

Integration Error

Index Register Storage

a , Earth Radius = 1
e

2
Buffer of Powers of a , a = -f(sin i)cos2x

2h

a Residual Rejection Indicator

a = Right Ascension of Sun

a/H

Planetary Magnetic Index

1
I
I NAME

1 ASC0N2
1

ASTK

T
*

AXGR

*- AXO

»
AXPRINT

AX

AYGR

AYO

AYPRINT

AY

AZGR

AZO

;

i

AZ

Bll

BFLAG

BIASAD

BIBUF

BNADR

BNBUF

BNNBUF

CE

18

LS DEFINITIONS

6378165 = meters/e.r,

One Word of ********

x

a in Output Format
x

x

a in Output Format
y

Least Squares Matrix (1 x N)

Indicator for Inclusion of Bulge Perturbations

Address of Bias Buffer

Sensor Bias Buffer

Address of BNBUF and BNNBUF

Buffer of (2n - 3) B , B = Bessel functions
n n

n = 0j 1,.,.6

Buffer of (2n - 1) B , B = Bessel functions
n n

n = 0, 1,.. .6

NAME CELLS DEFINITIONS

BOO

BPRINT

B

BTFLAG

BT

BUF

56 Buffer Saving New Epoch Elements and ICK
Buffer

B in Output Format

Ballistic Parameter

Indicator for Binary Tape Output

Output Time for Binary Tape

Temporary Buffer for Computing Correlation
Matrix

CAPD

CAPR

CAPX

CAPY

CAPZ

CARDS

CDLTAXN

CDLTAYN

CDLTN

CNFLAG

COMPARE

C0N1

CONBUF

CONTEST

128

1

D

R = Magnitude of Vector to Sensor

X

Y ^ Location of Sensor

Z

Indicator for "P Card" Input

CAa
xn

CAa
yn

CAn/n

Indicator for n Only Correction on First
Interation

Counter for Subroutine MARTINI

-(sin" i)f/2h

Storage for "P Cards"

Criteria for D. C. Convergence

10

NAME

CORRDY

CORRDZ

COS20M

COSEO

COSI

COSOM

COSO

COSPH

COSPSI

COSTH

COSU

COUNTLR

COUNTL

COUNTLX

COUNTR

CRAIG

CSALS

CSNM

DCFLAG

DDGR

DELTAQ

DENOM

CELLS

}

16

DEFINITIONS

Temporaries used by CORRD subr.

Cosine 2 »

Cosine e + ID

Cosine i

Cosine uu

Cosine Q

Cos 0

Cos i

Cosine 9

Cosine u

Number of Elements to Correct - Left and

Right Address

Number of Elements to Correct - Left Address

Counter for MATRIX Subroutine

Number of Elements to Correct - Right Address

Indicator for Printed Observations

Cos aQ

Tesseral Coefficient Buffer

Indicator for a Differential Correction

i+ vr~7

ii

NAME CEI ,LS DEFINITIONS

DFLAG

DGR

DLFLG

DLSUN

DLTB

DOTPRX

DOTPRY

DOTPR3

DQFLAG

DQN

DRSDL

DUBMAT

E2VGR

ECOSV

ENDT

E01

EO

EPS1

EPSILON

36

Indicator for Inclusion of Drag Perturbation:

D^

£ Residual Rejection Indicator

SQ = Declination of Sun

A B /B

Temporaries for DOTPR Subroutine

Indicator for Delta Q Check

Maximum Delta Q

Ä Residual

Matrix for Increasing Integration Step Size

2 N
-e v

p/r - 1

End Time for Printed Prediction Interval
Output

U = Used in Keplers Equation

Convergence Criteria for Iteration on Kepler
Equation

e = 0.00001

F10AV

F10

Average Solar Radiation Constant

Solar Radiation Constant

12

NAME

FIRST

FOBHR

FOBMIN

FOBSEC

FTFLAG

FX

GAMMA

GE

GEZ

GITADR

GIT

GS

GS2

GU

GUZ

H10VZ

HI

HAFMAT

HEAD5

HEDLIN1

HEDLIN

HSUBQP

LS

36

DEFINITIONS

Forward or Reverse Integration Indicator

Floating Point Hour, Min., Sec. in Output
Format

Indicator for Prediction by Revolution or
Time

Temporary Used by DIVTIF Subroutine

Reflectivity Constant

g - With Zonal and Tesseral Effects e

g - With Only Zonal Effects

Address of GIT Buffer

GIPAR Output Time Buffer

g - With Zonal and Tesseral Effects s

g - With Only Z nal Effects

g - With Zonal and Tesseral Effects u

g - With Only Zonal Effects

250,000 Ft. in Earth Radii

500,000 Ft. in Earth Radii

Matrix for Decreasing Integration Step Si

Storage for BCD Page Heading

Parameters for Prediction Output Control

Perigee Altitude (km) for Output

ze

13

NAME CEI .LS DEFINITIONS

HSUBS

HXPRINT

HYPRINT

HZPRINT

ICK

INELT

JBSCHNO

JMPMOD

JNSAVE

KAPPB

KAPPA

KEORTM

KNTRL

LCOUNT

LF1AG

LINECNT

LINECT

LJBUF

LJDC

LLO

LNIOBE

LOGRHOH

LOLIMIT

1/Hp

h in Output Format

h in Output Format
y

h in Output Format

Interpolation Buffer

Initial Element Buffer

Input Option - From SPSJOB Card

Jump Table Modifier in CDLTB Subroutine

Save Index Registers

B Modifier (Altitude Dependent)

Upper Bound for B Modifier

.07436662

Indicator for Elements Being Corrected

Counter for MARTINI Subroutine

Output Indicator for East or West Longitude

Current Line Position on Page

Line Counter for RESOUT Subroutine

Temporary Storage for JNDRAG Subroutine

(v/2) • B • P,

T7T LOG 10
10 e

• 6378165

Log P (h,T)

Minimum Altitude Allowed for Drag Perturb?ci.01

14

I

NAME CELLS

LOLMT

LPREV

LPRINT

LPSUB

LPTEMP

LSQBUF 14

LSQX

LTBUF

MARTSAV

MATRIXB 28

MAX

MCOUNT

M

MS2ERK

MU

NEWPAGE

NICOLET 200

NPRFAC 12

N 1

NU 1

NUX 1

NUY 1

DEFINITIONS

Flag for Decay Corridor

Temporary in LPMCD Subroutine

L in Output Format (deg.)

+ OR - 2" Used in LPMOD Subroutine

Temporary in LPMOD Subroutine

Buffer for Matrix Inversion

Buffer of Delta Elements

"P Card 4" Parameter Storage

Index Register Storage

Buffer for Correlation Matrix

Maximum Acceptable Residual

Counter for Matrix Subroutine

Counter in MARTINI Subroutine

.00012649618 - Conversion from m/s to er/k

M. = 1

Line Counter for Page Control

Atmospheric Density Table

Buffer of l/(n + r)!; 0 < (n + r) £ 10

Counter in MARTINI Subroutine

v

V

15

NAME CELI DEFINITIONS

NUZ

OANDE

OBDAY

OBFLG

OBMO

OBSLEFT

OBSPROC

OBSREJ

OBYEAR

OCOUNT

OLDRMS

OLDUZ

OLINCNT

OPRTESQ

ORGDAY

ORMS

OVALA

P10LADR

P1LADR

P2LADR

P3LADR

P4LADR

Address of OBLOC and EBLOC

Day Number in BCD Output Format

Indicator of Observed Quantities

Month Number in BCD Output Format

Counters for PROOBS Subroutine

Year Number in BCD Output Format

Temporary Counter

RMS of Previous D.C.

Previous Value of u
z

Line Count of Printed Observations

Days from Beginning of Year to Epoch

RMS of 1st Pass for Output

Output Control for WILBUR Subroutine

10 Scaled T15

1 Scaled T15

2 Scaled T15

3 Scaled T15

4 Scaled T15

16

NAME CEI ,LS DEFINITIONS

P55LADR

P5LADR

P6LADR

P8LADR

PAGENO

PAPRINT

PAP

PARTA2

PARTA3

PARTA

PARTE2

PARTE3

PARTE

PB

PBUF

PDAY

PFIOAV

PF10

PFLAG

PGAMMA

PHI

PKAPPA

55 Scaled T15

5 Scaled T15

6 Scaled T15

8 Scaled T15

Output Page Counter

Period - for Outp'it

Planetary Magnetic Index - for Prediction

Temporaries for CDLTB Subroutine - Contain
Segments of fa/ 6t and 6e/ 6t

Ballistic Parameter - for Prediction

Buffer ofP, n = 0, 1,..., 5

BCD Day

Average Solar Radiation Constant for
Prediction

Solar Radiation Constant for Prediction

Indicator for Prediction Output

Reflectivity Constant for Prediction

0

Lower Bound for B Modifier - for Prediction

17

NAME CELLS

POBUF 27

POVH 1

PPBUF 6

PPPFLAG 1

PRDSAV 1

PREDBF 11

PREDFLG 1

PREV 1

PRTADR 1

PRTIME 2

PRTDt

PRT 19

PTCOUNT 1

PW 1

PYEAR 1

QQ

DEFINITIONS

Buffer for Output of Observations

p/h

Buffer of P ', n = 1,..., 5
n

Indicator for a Prediction

Indicator for New Epoch Elements

Temporary Buffer

Indicator for Prediction by Time or
Revolution Number

Revolution Number for Prediction Output

Address of PRT Buffer

Revolution Number or BCD Date of New Epoch
(D.C)

Revolution Number or BCD Time of Final Epoch
(Prediction)

Buffer of Prediction Intervals for Output

Counter of Interpolation Points

Indicator to Print Weights and Biases

BCD Year

Temporary Storage

RANGE 1

RBUF 9

RCNT 1

RDOTOR 1

REJCNT 1

Buffer of R
n,m

Accepted Residual Counter

r/r

Rejected Residual Counter

18

NAME CELLS DEFINITIONS

REJFLG

RESCNTL

RESOPT

REV

RGFLG

RGSDL

RHO

RKINDT

RMS

ROFLAG1

ROFLAG

ROVA

RPBUF

RPCON3

RPFLAG

RPT

RRFLG

RRSDL

RSKNTRL

RTIMUZ2

}

Rejection Indicator for any Residual

Control for Residual Output

Indicator for Type of Units of Printed Angle
Residuals

Revolution Number

Rejection Indicator for Range Residuals

Range Residual

Atmospheric Density = p

Initial Integration Step Size

Root Mean Square of Residuals

Residual Output Flags

r/a

Buffer of R ,'
n m

Radiation Pressure Constant

Indicator for Inclusion of Radiation
Pressure Perturbations

Maximum Number of Iterations for a
Differential Correction

Rejection Indicator for Range Rate Residuals

Range Rate Residual

Indicator for Elements to be Corrected

Vi . u Used in MARTINI Subroutine

19

NAME

SATEL

SAVEO

SAVE3

SAVELEM

SAVEM

SAVOBS

SAVT

SBUF

SCONBUF

SCOUNTR

SIGMA1

SIGMA2

SIGMA3

SIGMA4

SIGMAI

SIGN

SIN20M

SINBOTH

SINCOS

SKNTRL

SMLGR

SNALS

CELLS

180

70

DEFINITIONS

-Satellite Number (Left Justified)

Cell 0 Storage

Cell 3 Storage

Indicator for Integrating to New Epoch

Temporary

Temporary

Temporary

Buffer of Sensor Information

Storage for "P Card" Images

Counter for MATRIX Subroutine

.-1
1/a

I/o,

1/*

I/o,

(e.v.)

(e.r./ke)

(rad)"1

(rad)

-1

-1

O = Weight for p, A, h, or p

Output Buffer for Standard Deviat^ns

Sine 2w

Sin (9 + ?)

Buffer of sin m > and cos m A; m = 1,2,3,4

Indicator for Elements to be Corrected

;v

Sin a
9

20

NAME CEl ,LS DEFINITIONS

SNDLS

SOBFLG

SOLDUZ

SREVF

SREV

SUNIÄ

SUNLY

SUNLZ

TAPBUF

TAPCNT

TEMPO

TEMPI

TEMP2

TEMP3

TEMPT

TERMS

TESRAL

THETA

VALLINI

VALLIN

128

Sin ^e

OBLFG Storage

OLDUZ Storage

Final Revolution Number to End Prediction

REV Storage

L
x
o

L

L
2e

Buffer for Ephemeris Tape Output

Current Address in TAPBUF

Atmospheric Temperature at Epoch

Temporary

Temporary

Temporary

Atmospheric Temperature at Any Time

Buffer of 7 Coefficients and 1 Residual

Indicator for Inclusion of Tesseral Harmonics

0

Control for Prediction Output

21

NAME CELLS DEFINITIONS

WANDBI Address of WBUF and BIBUF

WBUF 151 Buffer of Weights

WOBMARK Temporary

XBDGR K
XDD • •

X

XDGR i»
XDTGR

$

XKE k - .07436662
e

XLAMD X for Output (deg)

XLSUNT L at Time t
o

XMPER m/e. r. = 6378165

XRDGR S.
XRMODA ■ i
XRMOD

.)

Counters for MATRIX Subroi

YBDGR
^

YDD y

YDGR y

YDTGR yD

YRDGR yR

YY 2 BCD Epoch Date

Z2BUF 7 Buffer of Powers of z/2, u ae
H

22

NAME CE1 ,LS DEFINITIONS

ZBDGR

ZDD

ZDGR

ZDTGR

ZRDGR

ZZ

zN

zs

ZS
ZR

z = ae/H,

23

3.2 DATA BLOCK AND TAPE FORMATS

This section contains a definition of each of the buffers and
tapes used by the Spiral Decay Program which are not common to the B-3
operating system.

Mathematical symbols used in the buffer descriptions are defined
in Appendix VII, Volume I.

Buffer Name Related Subroutines Pagj

All LSQ, LSQS, LSQR 26

ALFBUF CDLTB 27

Bll LSQ, LSQS, LSQR 28

BIFUF WEIGHT, BIAS 29

BNBUF CDLTBIN, CDLTB 30

BNNBUF CDLTBIN, CDLTB 31

BOO SAVICK, CNTRL, PCONTRL 32

BUF MATRIX 33

CSNM MARTINI 34

DUBMAT ADBASH 35

EBLOC PROOBS, NXTOB 36

GIT PCONTRL 37

HAFMAT ADBASH 38

ICK DIVDIF, CNTRL, PCONTRL 39

JBUF MARTINI 40

LJBUF JNDRAG 41

LOGRHO JNDRAG 42

LSQBUF LSQS 43

LTSUF PCONTRL 44

MATRIXB MATRIX 45

NICOLET JNDRAG 46

PBUF MARTINI 47

POBUF WILBUR 48

PPBUF MARTINI 49

PREDBF PCONTRL, CNTRL 50

24

Buffer Name Related Subroutines Page

RBUF MARTINI 51

RPBUF MARTINI 52

SBUF SETSBUF, NXTOB 53

SIGN MATRIX 54

SINCOS MARTINI 55

TAPBUF TAPEW 56

TBUF DIVDIF 57

TERMS CDLTB, LSQR, CMPCF 58

W ADBASH 59

WBUF WEIGHT, GETWGT 60

Z2BUF CDLTBIN 61

Tape Number Contents Pas

7

12

Sensor Weights and Biases 62

Binary Ephemeris for XYZLA 63

25

All 49 Cells

All contains the least squares matrix used to solve for the
corrections to the elements. For each accepted observation, a set of
scalar differential coefficients are computed (C^, i = l...n; where
n = no. of elements being corrected). Products of these coefficients
are summed for each observation, and the result is the All matrix.

All = See
1 1

EC2C1

EC1C2

rc2c2

IC, C
1 n

EC2Cn

sec. r c c0 n 1 n 2
ZCC

n n

The size of the All matrix depends on the number of elements
being corrected. The matrix is stored sequentially by rows, where the
rows and columns represent corrections to n, a , a , U , Q, i, B, in r xn' yn o
that order. If only U and f) were being corrected, All would be:

AH + 0 I Cu C}]

o o

+ 1 ECuCfi

+ 2 E Cn Cu

+ 3 S CQ CQ

26

I

I ALFBUF 7 Cells

I ALFBUF is used in the CDLTB subroutine and contains powers of
| (aVn! for n = 0, 1, 2, 3, 4, 5, 6.

ALFBUF + 0 a °/0! = 1

+ 1 a l/l!

+ 2 a 2/2!

I + 3 or 3/3!

' + A <*4/4!

+ 5 a 5/5!
t

+ 6 a 6/b'.

27

Bll 7 Cells

Bll contains th^ least squares vector used to solve for the
corrections to the elements. For each accepted observation, a set of
scalar differential coefficients (C) and a residual (R) are computed.
The products, CR, are summed for each observation, and the result is
the Bl*. oatrix.

Bll + 0 E CAn/n * R

+ 1 E Ca • R
xn

f 2 E Ca • R
yn

+ 3 E CU • R
o

+ 4 E en • R

+ 5 E Ci • R

+ 6 E CAB/B • R

Bll would appear as above if all seven elements were being J
corrected. Bll is actually compacted to represent only those elements
being corrected. If only U0 and i were being corrected, Bll would be:

Bll + 0 E CU • R '
o

+ 1 E q • R (
I

28

BIBUF 181 Cells

BTBUP contains sensor bias information for range, azimuth,
elevation, range rate and time. There are about 16 sets of sensor
biases assembled in the program; these may be changed or extended by
introducing weight and bias cards on logical tape 7.

BIBUF + 0 00000SSS (BCD Sensor Number)

+1 -B (e.r.)

+2 -B (e.r.)
a

+3 -B (e.r.)
n

+ 4 -B. (e.r./ke)

+ 5 -BT (min.)

Up to 29 sets of sensor number,

B , B , B. , B., B„, followed by ra*h* rT*
1 BCD word of 00000ZZZ

+ 180

*

Mt position 0 of each word containing sensor numbei is set to 1 for each
VEPLORT/PRELORT sensor.

29

BNBiT 7 Cells

BNBUF contains factors of B (z) which are computed in subroutine
CDLTBIN and used in subroutine CDLTB.

BNBUF + 0 B0 (z)

+ 1 Bj_ (z)

+ 2 B2 (z)

+ 3 3 ' B3 (z)

+ 4 3 • 5 • B4 (z)

+ 5 3 • 5 • 7 • B (z)

+ 6 3 • 5 . 7 . 9 . B.

30

BNNBUF 7 Cells

BNNBUF contains factors of B (z) which are computed in subroutine
CDLTBIN and used in subroutine CDLTB. n

BNNBUF + 0 B0 (z)

+ 1 \ (z)

+ 2 3 • B2 (z)

+ 3 3 • 5 • B3 (z)

+ 4 3 • 5 • 7 • B, (z)
4

+ 5 3 • 5 • 7 • 9 • B (z)

+ 6 3 • 5 • 7 • 9 • 11 • B

31

BOO 56 Cells

BOO is used to store the interpolation buffer (ICK) and new epoch
elements as found during a D.C. This is done to save unnecessary integration
when starting a prediction.

BOO + 0 a
xn

+ 1 a
yn

+ 2 B

+ 3 a

+ 4
2

e

+ 5 s*n i

+ 6 P

+ 7 n new epoch
f elements

+ 8 time (min) 1

+ 9 L

+ 10 a
X

+ 11 a
y

+ 12 a
z

+ 13 h
X

+ 14 h
y

+ 15 h
z

+ 16 to + 55 5 sets of t, L, a, h, taken
directly from ICK+0 to ICK+39

32

BUF 7 Cells

BUF contains the standard deviations of the delta elements for
those elements being corrected.

If seven elements were being corrected:

BUF + 0 G n

+ 1 ° a xn

+ 2 ° a yn

+ 3 ° U o

+ 4 "(I

+ 5 ai

+ 6 aB

If only a , 0. B were being corrected: J xn'

+ 0 a a xn

+ 1 an
+ 2 a B

33

CSNM 16 Cells

CSNM contains the tesseral coefficients as input from P cards

7 and 8.

CSNM + 0 C22

+ 1 S22

+ 2 C31

+ 3 S31

+ 4 C32

+ 5 S32

+ 6 C33

+ 7 S33

+ 8 C41

+ 9 S41

+ 10
C«

+ 11 S42

+ 12 C43

+ 13 S43

+ 14 C44

+ 15 S44

34

I
I
I DUBMAT 36 Cells

DUBMAT contains a 6 X 6 matrix used to change the difference table
in subroutine ADBASH to represent a step size twice as large as the previous
step size.

This matrix is stored by rows starting with the first element.

DUBMAT 2

0

0

0

\ 0
j

L°

•i

4

0

0

0

0

0

-4

8

0

0

0

0 0 0

1 0 0

12 6 -1

16 -32 24

0 32 -80

0 0 64

35

EBLOC 11834 Cells

EBLOC is used for observation storage. The original 10 words
per observation is cut to 6 words per observation by subroutine PROOBS.
Up to 984 observations are stored chronologically in EBLOC as follows:

EBLOC + 0

+ 1

+ 2

+ 3

+ 4

+ 5

Station I.D. (BCD, right adjusted)

time (minutes since epoch)

p (range in e.r.)

P (range rate in e.r./ke)

Of azimuth or rt. ascen. (rad.)

^ elevation or declin. (rad.)

\ Up to 983 sets of Sta. I.D., t,
t

P, P, or, 6 followed by one word

< of 00000ZZZ

36

♦

GIT 11 Cells

GIT contains the output times requested on "P card 10" to be
left in core for a subsequent GIPAR run.

GIT + 0 One bit for each GIPAR time requested,
right adjusted to T47; i.e.,
0 "™~0 1111 for four output times.

GIT +1 t.

+ 2 t_ Up to five points (minutes from
f' prediction epoch); terminated by

+ 3 t_ a word of 0 0

+ * \
+ 5 tj

During initialization, all 11 cells of GIT are used for input and
conversion of time from date to minutes from epoch.

37

HAFMAT 36 Cells

HAFMAT contains a 6 X 6 matrix used to change the difference table
in subroutine ADBASH to represent a step size half as large as the previous
step size.

This matrix is stored by rows starting with the first element.

HAFMAT = .5 .125 .0625 .0390625 .02734375 .0205078125

0 .25 .125 .078125 .0546875 .041015625

.125 .09375

.0625

,0703125 .0546875

.0625

.03125

.0546875

.0390625

.015625

38

!

ICK 47 Cells

ICK Is used as a buffer containing the last five sets of elements
produced by the integration routine. When an output time falls within the
time span covered by the five points in the ICK buffer, a set of elements
for the output time are obtained by interpolation and stored in the last 7
cells of ICK.

ICK + 0 Time \

+ 1 L

+ 2 a

+ 3 a
}

+ 4 a
2

+ 5 h

+ 6 h

+ 7 h
2

+ 8

most recent point obtained
by the integration routine

4 more sets of T, L, a, h
in the order they were
obtained

+ 39

+ 40

+ 41

+ 42

+ 43

+ 44

+ 45

+ 4b

v obtained by interpolation
' for any output time T.

39

JBUF 4 Cells

JBUF +0 J2

+ 1 J3

+ 2 J4

+ 3 Jc

I
JBUF contains zonal coefficients either as assembled in the I

program or as input from P card 6.

I

I

I

I

I

I

I

40

LJBUF 7 Cells

LJBUF is used in the JNDRAG subroutine as a set of temporaries,

2.5
LJBUF + 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

used for temperature
computations

used as temporaries
for interpolation to
find density coefficients

41

LOGRHO 16 Cells

LOGRHO contains four sets of atmospheric density coefficients
extracted directly from the NICOLET table. The coefficients Inserted In
LOGRHO by subroutine JNDRAG are those which correspond to altitudes
surrounding one point for which the density coefficients will be interpolated

LOGRHO + 0 log P .

+ 1 A 1

+ 2 B [

+ 3 C '

+ 4 log P \

+ 5 * I
+ 6 B

+ 7 C '
4

+ 8 log P

+ 9 A

+ 10 B

+ 11 C

+ 12 log P

+ 13 A

+ 14 B

+ 15 C

-1

e

+i

+2

point to be
interpolated

increasing
altitude

-M-

I
I
I
J-

LSQBUF 14 Cells

LSQBUF is a buffer for temporary storage as required by Philco
subroutine FMAIN. LSQBUF is used in subroutine LSQS.

I
I
I
1.

43

LTBUF 6 Cells

LTBUF contains prediction controls as extracted from P card 4.

LTBUF +0 not used

+ 1 prediction output Interval (floating point)

+ 2 bulge perturbation flag (T47)

+ 3 drag perturbation flag (T47)

+ 4 radiation pressure flag (T47)

+ 5 prediction output interval for a
binary ephemeris tape (floating point)

44

I
I
I MATRIXB 28 Cells

MATRIXB contains the correlation matrix of the delta elements,
I for output purposes only. MATRIXB is computed by subroutine MATRIX and

is a lower half matrix compacted to represent the number of elements
being corrected. The correlation half matrix is stored in MATRIXB by

I rows for the elements being corrected in the following order n, a ,
a , U , 0, i, B. xn

yn o ' '

f If n, U , 0, and i were being corrected MATRIXB would be:

I
MATRIXB + 0 r =i n,n

+ 1 ru o,n
+ 2 ru„, u - 1
+ 3 rfi, n

+ 4
Fn>Uo

+ 5 rn, o - l

+ 6 r.
i,n

+ 7 r

+ 8 Fi, Q

+ 9

In printed form this would be:

U0>n I u U
o' o

T* T"1

n,n rQ, uQ r0i Q

?i>n ri>uo
ri,n ri}i

45

NICOLET 202 Cells

NICOLET is a table of atmospheric density coefficients vs.
altitude. The table contains a set of coefficients for each ten kilometers
in altitude from 0 to 1000 kilometers. The equation using these coefficients
is:

T-1100, /T-1100, ,T-1100,
log P (h) - log P (h)T,uoo + A (^) +B <^*> * (™)

where T = Temperature at h

h = altitude

Each entry in the table consists of two compacted octal words
containing:

word 1
(log P(h)T=U00+20)8

1 i •
A8+Z

i i i i i

decimal
point

A
decimal
point

word 2
B8+2

■ lit ■•■ 1 , , C8+ 2 |
A ..!_.. 1 » .1 |

A
decimal
point

decimal
point

NICOLET + 0 word 1 1

+ 1 word 2 j
at h = 0 km.

+ 2 word 1 1

4- 3 word 2 J
at h = 10 km.

octal

octal

+ 200 word 1

+ 201 word 2
at h = 1000 km.

46

PBUF 6 Cells

PBUF is used in subroutine MARTINI for use in the computation
of zonal harmonics. PBUF contains values of P for n = 0, 1, 2, 3, 4 and 5.

n

PBUF + 0 P = 1

+ 1 P. = U
1 z

+ 2 ?2

+ 3 P3

+ 4 P.
4

+ 5 P5

47

POBUF 27 Cells

POBUF is used by subroutine WILBUR, and contains the data from
each observation card (one at a time) so that a hard copy listing of the
Input observations may be obtained.

POBUF + 0 Satellite No. BCD

1 Equipment type BCD

2 Station ID BCD

3 Accuracy BCD

4 YYMMDD (year,mo.,day) BCD

5 Hour Fl. Pt.

6 Minutes PI. Pt.

7 Seconds Fl. Pt.

8 Elevation or declination Fl. Pt.

9 Range Fl. Pt.

10 Range rate Fl. Pt.

11 Max. frequency shift BCD

12 Brightness BCD

13 Maximum BCD

14 Minimum BCD

15 Time interval BCD

16 Not used

17 Message No. BCD

18 Equinox BCD

19 Not used

20 Observation number BCD

21 Not used

22 Right ascension indicator BCD

23 Azimuth or Rt.ascen.seconds i Fl. Pt.

24 Rt. Ascen. minutes Fl. Pt.

25 Rt. Ascen. hours Fl. Pt.

26 Observation type

48

PPBUF 5 Cells

PPBUF Is used in subroutine MARTINI for use in the computation
of zonal harmonics. PPBUF contains values of P' for n = 1, 2, 3, 4, 5

PPBUF + 0 P' = 1

+ 1 P,2

+ 2 P,3

+ 3 P,4

+ 4 P',

49

PREDBF 11 Cells

PREDBF has two uses:

(1) Whsn the weight and bias information is printed, PREDBF
is used to hold information in output format.

PREDBF + 0 o range (km.)

+ 1 O azimuth (deg.)

+ 2 a elevation (deg.)

+ 3 CT range rate (km/sec)

+ 4 range bias (km.)

+ 5 azimuth bias (deg.)

+ 6 elevation bias (deg.)

+ 7 range rate bias (km/sec)

+ 8 time bias (sec.)

(2) PREDBF is used to hold initial or final conditions as used
in the integration buffer. This allows the integration
scheme to be restarted with a minimum of computation.

PREDBF + 0 time = W + 1

+ 1 A time = W + 2

+ 2 last time = w + 3
+ 3 direction = w + 4
+ 4 • L N - = w + 5
+ 5 a

X
X = w + 6

+

+

6

7

a
y

a
z L y

z

= w
= w

+ 7

+ 8

+ 8 h
X

•
X = w + 9

+

+

9

10

h •
y
•
z

= w

= w

+ 10

+ 11

50

RBUF 9 Cells

RBUF is used in subroutine MARTINI for the computation of tesseral
harmonics. RBUF contains entries of R (U) for n and in up to 4.

n,m z

• Cn.) - pn.m <V

RBUF + 0
«1.1 '

= 1

+ 1 R2.2

+ 2 R3.1

+ 3 R3.2

+ 4 R3,3

+ 5
\l

+ 6 R4.2

+ 7 R4,3

+ 8 R, , 4,4

51

'
RPBUF 8 Cells I

RPBUF is used in subroutine MARTINI for the computation of tesseral
harmonics. RPBUF contains entries of R' for nand m up to 4.

n,m I
RPBUF + 0 R' 2 2

--- , ·-·-·····-- I
+ 1 R'3,1

I
+ 2 R'3,2 - . ·~- ' .. - "'

+ 3 R'3,3 I

+ 4 R'4,1 ' + 5 R'4,2
I

+ 6 R\,3

+ 7 R'4,4 I

I

r
I

I

I

I

52 I

SBUF 151 Cells

SBUF contains sensor Information which was originally stored in
SBLOC. SBUF and BIBUF occupy the same locations in core; however, SBUF is
not set until BIBUF is no longer needed. After SBUF is set up, the SBLOC
area is used for temporaries to save space in core.

SBUF + 0 00000SSS, BCD Sensor Number

+ 1 0

+ 2 X

+ 3 X/cos 8

+ 4 Z

+ 150

Up to 29 more sets of
sensor no., 0, X, X/cos9,
Z, followed by one BCD
word of 00000ZZZ

53

SIGN 7 Cells

SIGN contains the standard deviations of the corrections to the
elements after each iteration. SIGN is used only for output purposes. If
an element is not being corrected, the entry in the buffer is set to octal 0
to suppress printing.

SIGN +0 er n

+ 1 <* a
xn

+ 2 cr a yn

+ 3 CT U
o

+ 4 °Q

+ 5 a i

+ 6 ff B

54

SINCOS 8 Cells

SINCOS contains the sines and cosines of X_, 2X.,, 3X„, 4X„ which
b b b b

are necessary for the computation of tesseral harmonics in the MARTINI

subroutine.

SINCOS + 0 cos XE

+ 1 sin XE

+ 2 cos 2''E

+ 3 sin 2h
+ 4 cos 3XE

+ 5 sin 3XE

+ 6 cos *XE

+ 7 sin "h

55

TAPBUF 128 Cells

TAPBUF is used as an output buffer to accumulate one block of
prediction points to be written on the binary ephemeris tape (logical 12)

TAPBUF + 0 t (min)

+ 1 x (e.r.)

+ 2 y (e.r.)

+ 3 z (e.r.)

+ 4 x (e.r-/ke.)

+ 127

56

TBUF 15 Cells

TBUF is used in subroutine DIVDIF for temporary storage while
interpolating with a fourth order divided difference method. The contents
of TBUF are quite variable and cannot be described as single quantities.

TBUF + 0 thru TBUF + 14 Temporaries

57

1

TERMS 8 Cells

TERMS contains the coefficients to he included in the least squares
solution matrix. These coefficients are computed by CMPCF or CORRD depending
on the type of observations. Only the coefficients related to elements being
corrected are computed; these are packed into the TERMS buffer in the
following order: n, a , a . U , Q. 1, B.

° ' xn' yn' o

TERMS + 0 CA / An/n

+ 1
Aa

xn
+

+

2

3
yn

CAu
0

+ 4 CÄfl

+ 5 CAi

+ 6 CAB/B

+ 7 R (weighted residual)

TERMS is set up as above when all seven elements are being corrected.
If a and i were not being corrected TERMS would be:

yn

TERMS + 0 CA / An/n

+ 1
xn

+ 2
0

+ 3 CAQ

+ 4 CAB/B

+ 5 R (weighted residual)

+ 6 0

+ 7

58

W 203 Cells

See Appendix for description,

59

WBUF 151 Cells

WBUF contains sensor weighting Information for range, azimuth,
elevation, and range rate. There are about 16 sets of sensor weights
assembled In the program; these may be changed or extended by Introducing
weight and bias cards on logical tape 7.

WBUF +

+

+

+

0

1

2

3

4

00000SSS, BCD sensor number

(e.r."1)

I/o (rad.)

l/a;

(rad/1)

(ke/e.r.)

Up to 29 sets of sensor number,

1/CV l!°k' 1/CTh* 1/CTp' followe<

by 1 BCD word of 00000ZZZ.

150

60

Z2BUF 7 Cells

Z2BUF is used in the CDLTBIN subroutine for temporary storage
while computing Bessel Functions for &B/B correction. Z2BUF is used for
two different purposes, depending on the magnitude of Z/2.

For Z/2 < 1 For Z/2J

Z2BUF + 0 1 1

+ 1 (Z/2)2/ll 2/Z

+ 2 (Z/2)4/2l (2/Z)2

+ 3 (Z/2)6/3! (2/Z)3

+ 4 (Z/2)8/4l (2/Z)4

+ 5 (Z/2)10/5t (2/Z)5

+ 6 b lank (2/Z)6

61

Logical Tape 7

Position

Block 1 Word 1

Block 2

to Block 4

' WEIGHT

BCD

BCD

BCD

Contents

Identification

1 to 30 weight and bias

cards followed by an

ENDSIGMA card: stored

in code mode, 12 cards

per block.

0

FIGURE 3. SENSOR WEIGHT AND BIAS TAPE FORMAT

62

Logical Tape 12

Positioi

Word 1

Contents

Block 1 BCD

Word 2 BCD

Block 2
to Block N-l

1

2

48

48

bit

bit

floating

floating

point

point

t

X

Time since epoch (minutes)

(earth radii)

3 48 bit floating point y (earth radii)

* 48 bit floating point z (earth radii)

5 48 bit floating point
•
X (e.r./ke)

6 48 bit floating point
•
y (e.r./ke)

7 48 bit floating point
•
z (e.r./ke)

17 more sets of t, £» t
followed by 2 words of
fixed point 0

Up to 18 sets of t, £, f
> followed by 1 word of

alpha-numeric Z's

FIGURE 4. BINARY EPHEMERIS TAPE FORMAT

63

3.3 MEMORY STORAGE DIAGRAM

ASSIGNMENT
NO. OF
WORDS

EXECUTIVE i

SYSTEM
FILES

PROGRAM

BMEWS
AREA

r

I

V

f

OCTAL
LOCATION

EXECMOD1 6707i0

EXECMOD2

MASTER ASSIGN AREA

00000

EBLOC o40010 15064

OBLOC 500010 31464

SBLOC 138810 43274

SPIRDECA 670810* 46050

BMEWS 65O010 63234

6708 does not include 785 locations assigned within SBLOC that are
used by SPIRDECA after initialization.

'IGIIRE 5. "EMoVi' .'.TORAGE . AGRAM

64

SECTION 4

SUBROUTINE DESCRIPTIONS

This section contains a description of each subroutine used by the
Spiral Decay Program. Each subroutine description lists the purpose, usage,
subroutines used, size, description; flow charts are included when necessary

4.1 ALPHABETICAL INDEX TO SUBROUTINE DESCRIPTIONS

Name

ADBASH

ALREC

ANGSUN

AZREC

BCDTIM

BEGIN*

BIAS

CALH

CALU

CARDER

rnERiv

C.DLTB

CDLTBTN

Function

Numerical Integration Routine

Compute A, Ds L from a, ?

Compute a, 6 of the sun

Compute A, D, L from a, h

Convert Time to BCD Date

Compute classical elements at Epoch

Apply Biases to the Observations

Compute Height

Compute U

Output Card Error Comments

Derivative Routine for Cowell Integration

Compute CAB/B

Initialize Subroutine CDLTB

Page

70

71

72

74

76

77

80

81

82

83

84

86

89

65

Name

CHECK

CHECKI

CHGCWD

CHGNXN

CMPCF

CNTRL

C0EFF2

COELTS

COMDEL

CÖMDQ

COMRMS

COMXLX

CORRD

CREKT

DELOUT1

DELOUT2

DELTAU

DERIV

DIVDIF

DOTPR

ELMOUT

ELMOUT1

FTAPEW

GETSEN

GETWGT

GIPAR

HEAD

 Function Page

Test for Convergence 91

Initialize Subroutine CHECK 93

Modify Output Routine PRNTMAT 94

Setup Least Squares Matrix 95

Compute Coefficients for p, A, h, p 95

Differential Correction Control 93

Control Coefficient Computation ^Q5

Convert Elements for Output 107

Compute A L 108

Compute Aq 109

Compute Root-mean-square no

Compute L \\\

Compute Range Rate Coefficients 112

Apply Corrections to the Elements \\^

Print Delta Elements H6

Print Final Results 117

Compute A u j^g

Compute Derivatives nq

Divided Difference Interpolation ^20

Compute Dot Products 122

Print Corrected Elements after Convergence 123

Print Corrected Element after Each Pass 124

Wrap-Up Ephemeris Tape 126

Retrieve Sensor Information 127

Retrieve Weighting Information 128

Store Information for Program GIPAR 129

Output Page Headings 130

66

Name Function Page

IHEAD1 Initialize for Page Headings

INITIAL Initialize for Integration

INITL Print and Process Cards

INPUT Unpack and Validate P Cards

ITAPEW Initialize Ephemeris Tape

JNDRAG Compute Drag Perturbations

LPART Compute L Modulo 2n

LSQ Clear Least Squares Matrix

LSQR Build Least Squares Matrix

LSQS Solve Least Squares Matrix

MARTINI Compute Bulge Perturbations

MATRIX Compute Correlation Matrix

M0D2PI Modulo 2™ Subroutine

MOVBUF Move Observation Buffer

MOVDAT Retrieve Processed Observations

NXTOB Retrieve Observations in OBLOC Format

OBVEC Reformat Observations

PAGECON Page Control for Output

PCONTRL Prediction Control

PHLAH Compute 0, \, h

PRERES Compute New Epoch Elements

PRINTW Print Weights and Biases

PROOBS Reformat Observation Buffer

PRNTMAT Print Correlation Matrix

RDPRES Compute Radiation Pressure

RDTSB Compute Range Rate

READOBS Read Observations from Tape

131

132

133

134

144

145

149

150

151

152

153

158

160

161

163

165

167

169

170

182

183

186

187

189

190

191

192

67

Name Function Page

REJECT1

REJECT2

RESICK

RESOUT1

RESOUT2

RESOUT4

RESREJ1

RESW

RESWBF

REVSUB

RHOSB

RINEL

RR2AHL

SAVCON

SAVELM

SAVICK

SAVW

SAVWBF

SAV5PTS

SENLOC

SETSBUF

SETW

SINEL

SORTOB

SUBOUT

SUBOUTI

SUBXYZ

First Pass Rejection

Range Rate Rejection

Restore Integration Buffer

Output Residuals

Convert Time to BCD for Residuals

Print Page Headings for Residuals

Residual Rejection

Restore Integration Buffer

Restore Integration Buffer

Update Revolution Number

Compute P

Restore Initial Elements

Convert Elements

Save Card Images

Save Elements

Save ICK Buffer

Save Integration Buffer

Save Integration Buffer

Save Elements for Interpolation

Compute Sensor Location

Store Sensor Information

Set Buffer for SUBXYZ

Save Initial Elements

Sort Observations by Time

Output Prediction Ephemeris

Initialize for Output

Compute Position and Velocity

193

194

195

196

198

198

199

200

201

202

203

204

205

207

208

209

210

211

212

213

214

216

217

218

219

220

221

68

Name Function Page

TAPEW Write Ephemeris Tape 224

TEMP Compute Epoch Temperature 225

THGRC Compute 0
GR

226

WEIGHT Read Weights 227

WILBUR Piint Observations 229

WSETU? Set Integration Buffer 230

4.2 SUBROUTINE DESCRIPTIONS

I

I

I

1

I

I

I

I

I

I
69

PURPOSE:

ADBASH
SPIRDEC

To integrate a system of seven first order
differential equations from X = X to X = X

n n+1:

Yi = fi (X' Yl' Y23 ••' Y7); l = lj 2; •' 7

CALL SEQUENCE: After initialization (see "How to use ADBASH"'),
to start or continue integration simply,

a JMP ADBASH

CX + 1H Error Return

a + 2H Normal Return

INPUT: Y , Y , Y Y and X, for X = Xfl

OUTPUT: Y v Y 1' V *3' . Y7 andX. for X = X (1 7 n+1

SUBROUTINES: Program: LPART, DERIV, CDERIV

STORAGE
r 'QUIREMENTS:

METHOD:

REFERENCE:

520 decimal or 1010 octal locations.

The Adams-Bashforth (A-B) method, together with the
Runge-Kutta (R-K) method of integration are employed
in this subroutine. R-K is used as a starting proce-
dure so that an adequate number of step-wise solutions
may be obtained to build a difference table needed by
the A-B method. The interval of integration is
automatically varied to keep the discrepancy between
the integrated values and an absolute error check within
prescribed limits.

A detailed description of this subroutine is included in
the Appendix section of this manual.

70

ALREC
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute A, D, L if a, f> are observed,

JMP ALREC

ALPHA = a (rad)

DELTA * « (rad)

ASUBX = -sin (ALPHA)

ASUBY = cos (ALPHA)

ASUBZ = F/0

DSUBX = [-sin (DELTA)] x [ASUBY]

DSUBY = [sin (DELTA)] x [ASUBX]

DSUBZ = cos (DELTA)

XLSUBX = [■ cos (DELTA)] x [ASUBY]

XLSUBY = [-cos (DELTA)] x[ASUBX]

XLSUBZ = sin (DELTA)

PHILCO - FSIN, FCOS

15 Cells

Computes the values listed under Output,
Called by subroutine MOVDAT.

71

PURPOSE:

CALL SEQUENCE:

INPUT:

To compute the sun's position at time t.

JMP ANGSUN

OUTPUT:

W + 1

EPOCH

XLSUNO =

Cl

C2

C3

C4

C5

XLSUNT =

SUNLX

SUNLY

SUNLZ

ALSUN

DLSUN

t (minutes since epoch)

days and frac from 195Ü to epoch

_.. at beginning of year
o

.985647346 deg/day

1.91633 deg

C - from TLC subroutine

2.578909

.4336428

L at time t

CSALS

SNALS

CSDLS

SNDLS

= COS 01

= sin a

= cos 5

= SI n 6

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

PHILCO - FSIN, FCOS, FATAN

23 Cello

Computes the L:OI lowing:

LQ = C (t) + Le + C
t o

where t = days since Jar,. 0.0

sin
C1^3
57.295.

ANGSUN
SPIRDEC
1 of 2

72

DESCRIPTION:
(continued)

!_f<
1 JC5 sin o/Qj »_ = tan } Cr sin o/r

SUNLX = cos a cos 6Q

SUNLY = cos 6n sin a-„

SUNLZ = sin 6a 9

ANGSUN
SPIRDEC
2 of 2

2L0
afl - - "<CAsinl L-l "Lfl

t 57.295... [* \ 57.295/ t

73

AZFEC
SFIRDEC
1 of 2

PURPOSE: Ho compi
arf. ?bs

te A. D.
=r ved.

L if

CALL SEQUENCE: JMP AZREC

INPUT: ALPHA - A (rad)
DEL LA = n (rad) PKIRD
COSTH = co= 9
S;NTH - 51 a e

OUTPUT- ASUBX
ASUBy
AS'JBZ
PS iX
DS UBV

DSUSZ
XLSUBX
XL- JEV

XLS.'f-Z

SUBROUTINES : Pti'L/r - FS::\
T
, FC OS

= 0

STORAGE
REQUIREMENTS. bl Ceil1

DESCRIPTION: Computes A, D, L from ehe following formulation,
Used by subroutine MOVDAT.

AS:\7 - ?in (ALPHA)
A£'."i = :o? (ALPHA)
AS ZT - F/O

M.S 'AH = -cos (DELTA) COS (ALPHA)
XL3 Mi = c s (DELTA) sin (ALPHA)
XLS ZH = sin (DELTA)

DS XI = sin (DELTA) cos (ALPHA)
DS. ' - -rir (DELTA) sin (.ALPHA)
DS ZT - r..'o (DELTA)

I D,

SVNPH = fin 0
COSPH -- cos 0

ESÜBZ = F/0

XLS^TBX = L _S + L ,E + L UZ
xh x yh x zh x

XLS'. BY = L .S + L UE + L .Z
xh y yh y zh y

XLSUBZ = L . S + L . E + L tZ
xh z yh z zh z

ASUBX =AS+AE+AZ
xt x yt x zt x

ASUBY =AS+AE+AZ
xt y yt y zt y

AST.'BZ =AS+AE+AZ
xt z yt z zt z

PSl'BX =DS+DE+DZ
xt x yt x zt x

DSUBY =DS+DE+DZ
xt y yt y zt y

DSVBZ = PS+PE+DZ
xt z yt z ztz

AZREC
SPIRDEC
2 of 2

DESCRIPTION: ZSUBX = cos 0 cos 9
(continued) ZSUBY = cos 0 sin 8 Z

ZSb'üZ = sin 0 j

SSUBX = sin 0 cos 6 1
SSUBY = sin 0 sin ° • S
SSUBZ = -cos 0 J

ESUBX = -sin 9
ESUBY = cos 9 > E

j

75

BCDTIM
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

Tc convert time (min since epoch) to BCD date.

TMA (Time in min.)
JMP BCDTIM

EPOCH = days and fractions since 1950

BCD
left justified

OBYEAR = YY

OBMO = MM >

OBDAY = DD

FOBHR = F/hours

FOBMIN = F/min

FOBSEC = F/sec

System - DKLOK, SEPSUB

17 Cells

Time is converted co days and added to EPOCH. This
time is converted to BCD (YYMMDD), by PKLOK subroutine,
The fraction of a day remaining is then converted to
float\ngpt. hours, min., sec.. If the seconds > 59.9
the time is rounded to the nearest minute.

76

I
BEGIN
SPIRDEC
1 of 3

PURPOSE: To comp ute initial orbit com
element :s.

CALL SEQUENCF: JMP BEGIN

INPUT: HXO = h
xo

HYO = h
yo

HZO = h zo
AXNO = a

xno
AYNO = a

yno
XLO = L

0

XKERTM = k
e

OUTPUT: P P UO

RTP = V7 XNO

WX W
X

AXO

WY W
y

AYO

wz w z AZO

COSI = cos i QO

SIM = sin i

XINCL = : i

SINO = sin Cl

XNODEO - n
ESQ =

2
e
0

EO e

AO

RTA

a

=v%-

= U

= n

xo
= a

yo
= a

zo
= q.

SUBROUTINES: Program - ARCTAN
Philco - FSQRT

STORAGE
REQUIREMENTS: 43 Cells

77

DESCRIPTION: p A/h 2 + h 2 + h 2

V xo yo zo

yp~~-4> RTP

-*► p

W h ^ tTV x = xo —> WX , x->y,z

V^
cos i = W —> COSI

z

sin 1 = »l-COS 1 SINI

i = tan
-1 sin l

cos i
•XINCL

sin Q = W / sin i —> SINO
x

cos 0. = W / sin i
y

coso

0 = tan
sin Cl
cos Cl

2 2 , 2
e = a + a
o xno yno

=V7 EO

■^ XNODEO

-> ESQ

a = p/ (1-e —-> AO
o

VT -5> RTA

U = L -Q > UO
o o

n = k -'i /a 3 —»-XNO
o e^ o

BEGIN
SPIRDEC
2 of 3

78

BEGIN
SPIRDEC
3 of 3

DESCRIPTION:
(continued)

a = -sin fi • cos i • a + cos Q a > AXO
xo yno xno

a,^ = +cos i * a,™„ • cos 0 + sin fi a > AYO yo yno xno

a = sin l * a
zo yno -> AZO

q = a (1 -e)
^o o o -> QO

79

BIAS
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To subtract biases from the observations.

JMP BIAS
(Return)

BIASAD = C/HLT, EBLOC; C/HLT, BIBUF

BIBUF = buffer of biases stored by sensor

Observations starting in location EBLOC

See description

None

22 Cells

The sensor number is extracted from an entry in the
observation buffer and BIBUF is searched for a match.

If a match is found, the range, angle, and range-rate
biases are subtracted from the observed quantities.
Convert the time of the observation to minutes since
epoch, subtract the time bias, and store in same cell (2,1).
If bit 0 of the word containing the station number is 1,
then the VERLORT/PRELORT corrections are applied. Keep a
count of negative observation times in the right address of
MCOUNT for the SORTOB subroutine. If no match is found,
proceed to the next observation without any error indication,

This procedure is continued until the sentinel of Z's is
found at the end of the observation buffer.

80

CALH
SPTRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute height above sea level.

JxMP CALH

UX = U
z

R = r

F = f = 1/298.3

H = h (e.r.)

(None)

8 Cells

H = h = r-1 + U 2 F + 3/2 F2 U 2 (1-U 2)
2 Z Z

81

CALU
SPIRDEC

PURPOSE: To compute U

CALL SEQUENCE: TMD C/HLT.
JMP CALU

, w + 5: ; C/HLT, X

INPUT: W + 5 =

+ 6 =

+ 7 =

+ 8 =

+ 9 =

+ 10 =

X

y

z

X

y

z

OUTPUT: R « r X = x XDOT = X

UX = U
X

Y = y YDOT = y

UY = U
y

uz = U
z

Z = z ZDOT = z

SUBROUTINES: PHILCO = FSQRT

STORAGE
REQUIREMENTS: 12 Cells

DESCRIPTION: Moves values from W + 5 thru W + 10 to
X, Y, Z, XDOT, YDOT, ZDOT,

Computes the following:

r =1 Jx + y + z

U
X

- x/r

U
y

= y/r

u = z./r

82

CARDER
SPIRDEC

PURPOSE:

CALL SEQUENCE:

To output card error comments.

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

(4 entrances)

(1) TMA (Word)
JMP CARDER

(2) TMA (Word)
JMP CARDERA

(3) JMP CARDERB

(4) TMA (Word)
JMP CARDERC

Word = BCD at T47
XR3 = location of 1st word of the erroneous card

Comment on hard copy - (see description)

System - PANT
Program - PAGECON

44 Cells

The subroutine will insert the given parameter into
one of the following, corresponding to the entrance:

(1) "Error in field ending in Col. XX"

(2) "System expects card with X in Col. BO"

(3) (No Comment)

(4) "Card repeated, too many cards of type X."

The program will then output the comment (or no comments)
followed by:

1 8 16 24 32 40 48 56 64 72 80

(80 Column Card Image >)

1 Line Space

Ce'l CARDSW is set 4- 0 to indicate this subroutine has been
used .

83

CDERIV
SPIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute the derivatives of position and
velocity elements with respect to timj, using
the effects of radiation pressure, drag and/or
bulge perturbations as specified on P Cards.

JMP CDERIV

W + 1 = time since epoch (min.)

5 = F/0

6 = x

7 = y

8 = z

9 = x

10 = y

11 = z

And input needed for subroutines listed.

W -i 187 = F/0

188 = dx/dt

189 = dy/dt

190 = dz/dt

191 = dx/dt

192 = dy/dt

193 = dz/dt

XJJD = x

YDD = y

ZDD = z

XDGR = xx

YDGR = ys

ZDGR = z^

SUBROUTINES: Program - CALL', MARTINI, JNDRAG, RDPRES

25 Cells

This subroutine is called only when executing the
Cowell integration. The perturbative effects are
computed by the subroutines, MARTINI, JNDRAG, RDPRES.
The derivatives of the elements are then computed and
stored in the Adams-Bashforth buffer (W + 187 to W + 193)

84

CDERIV
SPIRDEC
2 of 2

3
FORMULATION: XDD = x = px/r x S*y,z

XDGR = x = x0 + x_-x x > y, z

W + 187 = F/0

188 = dx/dt = k x e
189 = dy/dt = k y

190 = dz/dt = k z
e

191 = dx/dt = k xV

e
192 = dy/dt = k yS

193 = dz/dt = k zN

e

85

CDLTB
SPIRDEC

1 of 3

PURPOSE:

CALL SEQUENCE:

To compute scalar differential expression for
B = Cu A

For range and angles*

JMP CDLTB

TAM (C^B/B)

For range rate:

JMP CDLTBA

TAM (CAB/B>

INPUT:

OUTPUT:

SUBROUTINES:

Output of subroutines: C0EFF2, CORRD, CDLTBIN

(A) reg = C. . and output listed under description,

Program - CORRD

PLilco - FEX

STORAGE
REQUIREMENTS:

DESCRIPTION:

106 cells

This subroutine must be initialized by CDLTBIN subroutine.
There are two entrances to the program: (1) for range and
angles - JMP CDLTB, (2) for range rate - JMP CDLTBA.

Formulation:

For range and angles, if any of n/n or a or a is not J xn yn
being corrected, its coefficient will be computed as follows:

CDLTN = C Wn UN (Li ' V) + RN (Li * U)
1
C

CDLTAXN = C
Aaxn

U (L. . V) + R (L. . U)
xn l xn l

1
a.

CDLTAYN = C
Aayn

U (L. . V) + R (L. . U)
xn l yn l cr.

w^ere i = -, A or h

and L. is L, A or D corresponding to the observed

quantity.

86

1

I
CDLTB
SPIRDEC
2 of 3

DESCRIPTION: If ehe range rate entrance is taken and the 3 elements
(continued) are not being corrected, the coefficients will be computed

by ising part of the CORRD subroutine. The values will be
stored in CDLTN, CDLTAXN, CDLIAYN.

Howe'er; if the elements are being corrected for p, P, A,
or h. the values will be unpacked from TERMS, TERMS+1, and
7ERMS+2 respectively.

Then compete the following.

COS2CM = cos 2x1 = 2/a f - 1 if e * o
_xn_2j o

o /

= 0 if e = 0
o

SIN20M - sin 2 = • 1 cos" 2,

Set up buffer ALFBUF as powers of O with Ot defined as:

c.. = -(sin2 i) (f/2h) cos 2X

where f flattening = 1/298.3

h = perigee height

ALFBJF = »°/0! = F/l

n
ALFBÜF+N = y__ 1 < n < 6

n'.

Compute the following, which will be used to solve for
6, (and ?e/ .

PARTA - B + {,B. + r/ O- B2) + J_ (3 -5Bo; . . ,+u
6 (3 -5 ' 7 • 9 • 11B, >

1 2~! 3! 3 6! 6

PARTA2 = (B .-1/2-3 BJ+2(3B -1/2 • 3 5B0) +^(3 -5 • 7 • 9B - 1/2
1 2 2 3 TT ->

4'.
3 -5 • 7 '9 • HBr)

6

87

CDLI'B
SPIRDEC
3 of 3

DESCRIPTION:
(continued)

PARTA3 = (3B -3-5B -1M-3-5-7B)+...+cT (3-5-7B4 • 3-5*7'9B5

+ l/4-3-5-7*9'HB6)

PARTE3 = B. + -yB„ + u 3-B„ + ... + a 3*5*7«9B,
•2 fc'-J

5":

PARTE2 = (B, - 1/2 3-B.) + o(3«B,-l/2 3-5B.) + + y
I 3 3 4 3T

(3-5-7B -1/2 3-5-7«9B,)
5 0

PARTE ■ (3B0 -3-5B, - l/4-3-5-7Bc) +<y (3-5B. - 3-5«7Bc 3 4 5 4 5

+ 1/4-3-5-7-9B,)
0

where 1) powers of a are in ALFBUF

2) 1-3 (2N-1) B are in BNNBUF
n

3) 1-3 . (2N-3) B are in BNBUF n

6a Solve for oa/Rt and oe/6t Se.

a - exp \~z)
6t

(PARTA)+ (f/tan2uj) 2 (PARTA2)+C-/tan2'Ju)4 (PARTA3)

e . = exp(-z) (PARTE)+(<vtan2u)) (PARTE2)+(.'tan2ur (PARTE3)

AB/B
Solve for CAo . = (M-M)(aBOn) '6a, 3CA . (oa/6t) - (C. a

An/n Aaxn xn

6e% + Ciayn V <S> <7?

88

::•:■:£ :N

- . r 2

F.RFJsE:

CALL SEQ 3VIE;

INF.I:

A<~ f~r CDLTB s;br : ..'In-,

JM? CDLPBI1S

JOi> . ;':

S'/BR? :~NES:

S rORAGE
REQ'..' IR EMENI 5:

DESCRIPTION:

SKNTRL = C OXXXXXXX

AS'^W = W6378165 (m/er)

I" .j:'-. r.zrd-d r. r S . DAY Z s'-far cr_:tire

Set descripti~n

P r jg t a-n - ? . EXi Z , JNDRAG . Mi"LTS LB

96 Cells

rest if correcting B; if net exit. I'se part of JNDRAG

s ±r;-:;ir= to compete S and leg p (h. , T), i = 1, 2
J-

aod perigee density (PTT) .

"Then compute density scale height;

3 4

HS1B1?
6378.165 log 10

10

(35^-63+2) log P (h.,T.)
6

!3S -4S-1) log P (hi;
2

+ (3S -2S-2) l.gP (h ,T)
2

-OS2 -l) log P (v r.

TX•■'.■'-= ■_• n^tar-.r. valves needed for CDl.T'l

ABRHO = (a BP*-; / 2

POV'H = p/hr

A.OV H a'h

ZZ - ae/h

8C)

CDLIBIN
SPIRDEC
2 of 2

DESCRIPTION:
(continued)

Test z/2:

If z/2 < 1, set Z2BUF as follows:

Z2BUF = F/l

2r
Z2BU

r'.
L J. j Z j • • « -, ,v

rhen solve for B ,
n'

5 (-/2)
B - E

n r=0 77«

2r

(r!) (n+r)'.
n = 1, 2, ... 6

If z/2 > 1 :

Z2B~V = I

Z2BLT+. = /2| L_
> ^* J-j • • »j -3

Set up BNBuT and BNNBUF:

e B

where

h\ a l

V yr~v~z
E L

= 1 and L = L
n,m n,m-l

where n = 1, ..., 6

(m-]-/2-n m-1/2+n)

2mz

The series should be tr_ncated when:

n, m > 1

~n, m-1

What-ver the value of Z/2, set switch JMPTBL + 3 = C/JKP,
PA1: C/JMP, SOLPRTA in CDLTB subroutine.

90

I
CHECK
SP'/RDF:
i o: 1

PJRFGSE:

CALL SEQ.ENCE:

INPi :■:

T':• check for correction cycle convergence

JMP CHECK

01 IP.T:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

= 0" "OX, X = No. of iterations Rpr

RCNI - No. of residuals

RMS = Current root mean square of residuals

GCDRMS = Previous RMS

DOP _AC- - Flag for Aq check

DON = Aq max

CONTEST = c for allowable RMS change for convergence

See descriptior.

Program - CHECK:. COMDQ

65 Cells

This is not a closed subroutine in all cases. If the

differential correction should continue., the subroutine

exit employs the Jump Register (closed». If the D.C.

converges;, the exit is to location C0NC0M; if the D.C.

divergesj to location DIVCOM.

\\) A- CHSW+IH, tve second pass RMS must be saved for

:u';twt at the end of the D.C. if the first pass is

an "n :nly" correction. Otherwise, the first nass

RMS Is saved.

A: CHQ-

Ci a ar d a are not being correcred, there is no
xn yn

need tor a tS\ check. If they are being corrected,

and a Al test is requested, the fallowing procedure

is foil >wed

I
91

CHFCK
SPIRDEC
2 of 2

DESCRIPTION: (a) A3 is computed by COMDQ subroutine
(continued) ., . . ,

(b) a may increase oy any amount but it may only

decrease by Aq max (from P Card 3). If the

decrease. > Aq max. Aa and Aa are modified
- xn yn

by 1/2 and the test is repeated until Aq <- A<3 max.

(3) At CHRMS, test the RMS:

(a) Compute the change in the RMS. If it is less

than CONTEST (usually .01),then convergence

has occurred.

(b) If the change is greater, exit to CONCOM, test

if the current RMS is greater than the previous

one. If it is, the correction is diverging.

If the RMS increases on 4 consecutive iterations,

exit to DIVCOM.

(c) At CHSW2:

If the change is greater than CONTEST, but the RMS

is smaller than the previous one, the number of

iterations (location RPT) is decreased by 1 and

tested for 0. If RPT ^ 0, the D.C. will continue.

(d) At CCC200:

If RPT = 0 for the first time, a comment will be

printed stating that CONTEST will be multiplied by

5 and the D.C. will be repeated for the same number

of iterations.

(e) At CCC190:

If RPT = ö for the second time, the run will be

terminated by a comment stating that convergence is

not determined.

92

CHECK1
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

To initialize subroutine CHEuK

JMP CHECK!

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

SKNTRL - 0 DXXXXXXX

the last 7 bits correspond respectively to B, i,

Ü. U, a , a 2 n 3 o5 xn' yn
If the bit is = 1, the element is to be corrected.

CNF LAG = 1, then do n only correction first.

See description.

Program - CHGNXN

14 Ceils

(1) Sets the following switches in the CHECK subroutine:

CHSW2 = JMP CCC200

CHSW1 = JMP CHQ

CHSW = JMP CHSW+1H

(2) Moves SKNTRL to KNTRL. Tests if n only correction, if yes

Set KNTRL = 0 Ü1 and CHSW = JMP CHN

(3; Sets OLDRMS = F/1000000

DIVFL = 0 0

CÜUNTL - C/HLT, N,where N - number of bits = ! in KNTRL

(4) Uses subroutine CHGNXN to set up matrix size.

93

Ciu-CWD
SP1RDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To modify the output control words for
subroutine PRNTMAT.

JMP CHGCWD

COUNTR = C/HLT.O; C/HLT,N

N = matrix size

lu N_7

Modified control words for subroutine PRNTMAT.

None

19 cells

If the matrix to be printed by subroutine PRNTMAT
is a 1 x 1 or a 7 x 7, no modification of the output
control words is necessary. If the matrix is a 2 x 2
to a 6 x 6, the control words must be modified to pick
up the correct locations in buffer MATRIXB.
(See subroutine MATRIXB for definition of buffer.)

94

I CHGNXN

:T.T:>EC

PURPOSE:

CALL SEQUENCE:

INPUT-

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To set. up parameters for least squares subroutines

'IMA C/HLT.N N - matrix size
IMF CHGNXN

[A) = C/HLI ,N

COUNTL
■:OlNTR
CO'A'TLR
1SOF1
:,SQP?
".SQF3
LSQP&
1.SQF5
LSQP6
LSQST1
LSQSP3
LSQDN

Pi-o;:ran-i - LHGCWD

18 CVlls

COUNTL = C/HLT,N; C/HLT,0
COUNTR « C/HLT.O; C/HLT,N
COUNTLR = C/HLT,N; C/HLT ,N

LSQPI = C/HLT, TERMS + N; C/JMP, LSQMULT
^SQP2 = C'HLT , All + N2 + 1; C/JMP, LSQL0D2
LSQFj = C/HLT, ß11 + N; C/JMP, LSQLOC
LSQP5 -= C/HLT, N-l
LSQP6 = C/HLI, N + 1; C/HLT, N + 1

LSQSP1 = C/HLT, N
LSQSP3 = C/HLT,N; C'HLT.N
LSQDN = C/TDM, 0,2; C/.UXOL, N, 2

9'-)

CMPCF
SPIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

If range or angles are observed, to compute the
residuals and differential expressions which are
entered in the least-squares matrix.

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

TJM

or

CM

CMPCFY

CMPCFY

for range

for angles

JMP

TAM

TQM

KNTRL = 0

CMPCF

(unweighted residual)

(weighted residual)

—OXXXXXXX,

The last 7 bits correspond to the 7 elements

, a , n,
xn

B, i, fi, U , a
o yn

If = 1, then the element is being corrected.

LTERMS --= C/HLTR, TERMS

and output of C0EFE2 subroutine

See description.

Program - CDLTB

41 Cells

The following formulas ax^ solved for, as indicated
by KNTRL, and packed into the TERMS buffer to be
entered in the least squares matrix by subroutine LSQR,

If P is observed, the terms are:

0,1 =

1,1 =

2,1 =

<y (ID + <y (L-u)

«V (L-V) + (V (L-U)

(uYN) (L-Y) + (Ry (L-U)

3,1 =| (Uu) (L-V) + (Ru) (L-U)

1
cr.

1

1
a

for n

for a
J

for a
)

for U

xn

yn

96

CMPCF
SPIRDEC
2 of 2

DESCRIPTION:
(continued)

ä,l =, (cos i) (L-V) - 'sin i; (cos U) (L-W)

5,1 = (sin U) (L-W)

6,1 = (See results of CDLTB subroutine,
it is used to compute this term)

fcr n

for l

for B

7.1 - (p - P) —
c a.

weighted residual

The unweighted residual is (P - p)

If A or of is observed:

In the formulas for n through i, substitute
1 1

A for L, and —- for —— — — DO. a
c A p

The weighted residual is: P (A-ALj -— ;
^c°A

The unweighted residual is: P„ (A*AD
a.

.1 h or a is observed:

In the formula for n through i, s-bstitute D

for L, and -^- for — .

The weighted residual is: P (D*AD
pcah

and ehe ur^-ighred residual is P (D-AL).

97

CNrRL
SPIRDEC

1 of 5

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

To control the differential correction.

JMP CNTRL
JMP (Error)
(Normal Return)

Observations starting in EBLOC
OANDE ■ C/HLT, OBLOC; C/HLT, EBLOC

XLO
AXO
AYO
AZO
HXO
HYO
HZO

Elements at epoch

Input required for all subroutines used.
Input from P Card 3.

DLTNN

DLTAX

DLTAY

DLTUO

DLTND

DLTIN

DLTB

RMS

System

Program

An/n

Aa

Aa
y

AU
o

A n
A i

AB/B

root mean square of weighted residuals

PANT

PAGECON, MOVDAT, INITIAL, CDLTBIN, SAV5PTS,
ADBASH, REVSUB, SAVICK, SAVWBFS DIVDIF, SAVW,
SETW, C0EFF2, RESW, RES0UT1, SAVELM, COMRMS,
LSQS

106 Cells

98

CNTRL
SPIRBEC

2 of 5

DESCRIPTION: This subroutine is primarily a logic routine to
control use of the subroutines which are necessary
for a differential correction

The observations are stored and retrieved in order
starting at epoch. The closest observation before
epoch is the first; then order the observations
backward in tima to the earliest one before epoch,
The observations after epoch are stored next in
chronological order Epoch can be anywhere in
relation to the observations, i.e. before, after,
or in the middie. The integration control is set
to handle each situation most efficiently, The
integration starts at epoch and goes back in time
to the earliest observation;, then everything is
reinitialized and integration begins at epoch and
goes forward in time to the latest observation.

If at any time during the integration the time or
revolution number requested for the new epoch is
found (P Card 3). the elements are saved to avoid
repetition of integration. If the new epoch falls
outside the span of the observations, subroutine
PRERES will continue or initialize the integration
to find the new epoch elements (See subroutine
PRERES)

A. The following are executed only once;

(1) Set these locations t 0.

PFJ SÄV indicates new epoch elements
have not been found

SAVELEM - subroutine SAVELM has not
been called

FIRST - some observations may be
before epoch

(2) Force a page for output

(3) Zero the least squares matrix buffers

99

CNTRL
SPIRDEC

3 of 5

DESCRIPTION:
(continued;

(4) Set the following:

REJCNT = 0/0 (REJCNT is number of rejected
residuals)

RCNT = 0/0 (RC'.rr is number of accepted
residuals)

SUM = F/0 (SUM is sum of squares of
weighted residuals)

REV = E7REV (EPREV is epoch revolution)

(5) Retrieve the first observation. If no
observations, take error exit.
Otherwise, determine whether the first
observation is before or after epoch,
i.e. should the integration be backward
or forward in time with epoch as a base?
Set necessary switches accordingly.

B. Initialize for the first integration:

(1) Call subroutine INITIAL to start with the
epoch elements.

(2) Initialize the CDLTB subroutine with CDLTBIN.

(3) Use subroutine SAV5PTS to save the epoch
elements as the first entry in the inter-
polation buffer (ICK).

C. Begin the basic integration loop:

(1) Integrate for the next point using ADBASH
subroutine.

(2) Update the revolution number with REVSUB
subroutine.

(3; Save the elernent set with subroutine SAV5PTS.

(4) If the buffer for interpolation does not
contain 5 elements sets, go to step C(l).
Otherwise go to D.

100

CNTRL
SPIRDEC

4 of 5

DESCRIPTION: D. Look for new epoch elements:
(continued)

(1) If the new epoch elements have been found,
go to step E. Otherwise determine if
searching for a revolution number or a time.

(2) If b> revolution, test if current revolution
number is equal to the new epoch revolution
number. If not, go to E. If it is, save the
last element set in the ICK buffer as the
element set corresponding to the revolution
number. Save other values necessary for
PRERES subroutine and set PRDSAV = 0 indicating
elements have been found.

(3) If by time, test if new epoch time is within
the time span of the interpolation buffer.
If not, go to E. Otherwise, interpolate for
the elements at the new epoch time. Save
other necessary values for PRERES subroutine,
and set PRDSAV = 0.

E. Search for elements corresponding to observation
time:

(1) If the observation time is not within the
time span of the interpolation buffer, go
to step C to omit the first time and add a
new one.

(2) If it is within the time span, interpolate
for the elements at the observation time.
Pass these elements to the C0EFF2 subroutine
which will compute the residuals and the
partial derivatives and enter them in the
least squares matrix buffers.

(3) Output the residuals if requested.

(4) Retrieve the next observation:
If on the same side of epoch as the
.previous observation, go to step E;
if not, go to step F.
If end of observations, go to step G.

101

CNTR1
SPTRDEC
5 of 5

DESCRIPTION: F. Reir.itialize co integrate fcrward from epoch:
(continued)

(1) If already initialized, go to step E.
If not, test if new epoch elements are
before epoch.

(a' If yes, and if elements have not
been found, save the buffers
necessary to restart integration
by PRERES subroutine.

(t; If after epoch, reinitialize
several switches and go to step B,

G. Test for new epoch elements:

(1) If the new epoch elements have been found,
go to step H. If not, determine where new
epoch is in relation to epoch. Save buffers
to restart under several conditions. At
times it is more convenient to initialize
for the integration to the new epoch elements,
i.e. if all the observations are before epoch
and the new epoch is after epoch.

H. Solve for the delta elements:

(1) Compute the root mean square of the residuals.

(2) If t'rere are enough observations accepted,
solve the l^ast squares matrix with subroutine
LSQS. If n:-, take an error exit to location
FINISH.

(?) The re.sv.lts of solving the least squares matrix
(delta elements) are in a buffer. Unpack the
buffer ar:d exic.

102

M

I

■

t/l cn
3C CG

P >
P W <

tfl
O VI

° 5 < 9
5" f-< <
3s 7;

>
5j <; ►— a:

X
L2 S £

> b fr •■
E 5
S :■" g js

— U- UJ W V

2iHS

x £1
H - -_ <; f- f--

f- C X H > O. 5; ?" -0
a; c w =c

"■ u: £ C Haw
Iz C J l ■
>- U- J- <

F '<$

&T

-U-i-

-* H
:n Ed 2 Ps

H g

I

;, 8
2

n
104

C JEFF 2
SPIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute the coefficients for the least squares
matrix and residuals for each observed quantity.

j'MP C0EFF2

OBFLC = observed quantities

SIGMA1 = dp

SIGMA 2 = CTp

S7GMA3 = aa

SIGMA4 = Ti

RGSDL = (P - Pc) (KM)

ARSDL - P^ A. (L -L) (KM)

DRSDL = Pc D. (L -Lc) (KM)

RRSDL = (P - 0.) (KM/SEC)

>

A if accepted

.£ rejected

RC-FLG =

ALP' L£- =

DLFLG =

RRFLG =

REJFLG = 1 * if anv rejected

I A if ali accepted

Modified k and B matrices in All and Bll buffers.

Program - SUBXYZ, RHOSB, COMXLX, DOTPR, CMFuF, RESREJ1,
LSQR, CGMDEL, CORRD, REJECT1, REJECT?.

93 Cells

First computes R's and l,'s at time f..
The": t=?ts OBFLG for observed quantities and computes
the specified residuals and coefficients using subroutines
CMPCF and CORRD. Tests if the residuals are accepted or
rejected. If accepted,the coefficients are added to the
matrices A and B using subroutine LSQR. If rejected, a
flag is set, corresponding to the residual to indicate
rejection.

105

]
C0EFF2
SPIRDEC
2 of 2

DESCRIPTION 4 switches must be preset before calling this subroutine:
(continued)

ll) for 1st pass only.

COEFR JMP REJECT1

COEFA JMP REJECT1

COEFH JMP REJECT1

CCEFRR JMP REJECT2

(2) fcr the 2nd through n passes:

COEFR JMP RESREJ1

COEFA JMP RESREJ1

COEFH JMP RESREJ1

COEFRR JM? RESREJ1

106

COELTS

S?TRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE

REQUIREMENTS'

DESCRIPTION;

To prepare values for output by ELMOUT.

;MP COELTS

XLO
AXNO

AYNO

HXO

HYO

HZO

B

REV
QO

SINI

ESQ
P

P37A02

XNO

LPR1NT = L (cleg)

AXPRINT = a
xn

AY PRINT = a
yll

HXPR1NT = h
x

HYFRINT = h
v

HZ PR IN 7 = h
z

BPR1NT = B

PREV = Rev No.

HSUBQP B h (k '

PAPRINT

•'.None)

19 Cells

P. (minutes)

Computes HSUBQP and PAPRINT
Used t

output

moves other values to output cells
o prepare initial, final, and prediction elements for

107

COMDEL
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT;

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute AL , AL , AL
x y z

JMF COMDEL

P / P x c

P / P
2 C

XLSLPX

XLSUBY

X-SUBZ

XLX =

XLY *

XUZ =

DELrX
DELTY
DEJJTZ

(Ncn?;

6 Ceils

DELTX = XLSJJBX - XLX

DELTY = XLS'JBi" - XLY

DELTZ = XLSUBZ - XLZ

from AZREC or ALREC subroutines

108

COMDQ
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

To compute delta q,

JMP COMDQ

DLTNN = An/n

XNO = n

DLTAX = Aa

DLTAY

AXNO

AYNO

QO

EO

AO

= Aa

= a xno
= a

yro
= q.

= e

= a

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

DELTAQ = Aq

Philco - FSQRT

13 Cells

If e #0, then o '

q = - 2/3 An. q - a
/o o o

a Aa + a Aa
xno xn yno yn

If e =0, then
o

q = - 2/3 An, q - a"V ft n /n no oy
2 2

a^V/Aa + Aa o V xn yn

109

COMRMS
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPIT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute root mean square

JMP COMRMS

RCNT = C/HLT,N where N - number of accepted
weighted residuals

SUM = surr of squares of accepted weighted residuals

ACCCNT = C/HLT,N

RCNT = N (floating point)

RMS = rool: mean square

(None",

16 Cells

ACCCNT = RCNT

RCNT is converted to F.P.

RMS = V SUM /RCNT

110

PURPOSE: To compete L

CALL SEQUENCE: UMP COMXLX

INPUT: RHOX = P
X

RHOY = c
y

R40Z = p
z

RriOC = p

COMXLX
SPIRIEC

OUTPUT: XLX = L

X-T]

XLZ = L

SUBROUTINES: '.None)

STORAGE
REQUIREMENTS: 5 Cdl;

DESCRIPTION: XLX = p / p
x c

XLY = p / o
y ' c

XLZ = p / p
z c

111

CORRD
SPIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE;

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute coefficients of range-rate correction
equations and the range-rate residuals.

JKT CORRD

TAK {unweighted residual)

TQM (weighted residual)

KNTRI = 0 OXXXXXXX

L FEU IS = C/HLTR, TERMS

,-nd output of C0SFF2 subroutine

iwi'.ch C0RRDS4 must be preset to JMP CORRDC before

entering this routine.

Set description.

Pr.grim - RDTSB, CDLTBA

15 Cells

First these formulas must be solved:

EXOM = a (e cos E - e")

EYÜM =Vl -e2 (a e cos E)

VDOT = rv/'r

2 RSQ = r

RCÜBE = r~

RVDOT = rv

XMUA32 =rfT a3/2

_r— 3/2 r
RDOTU

UDOTU i^m vr?
a (e cos E - e)

(a e cos E)

112

>f:RTF«.

DESCRIPTION:
(continued)

RJPDrN = r/3 + (•;--' > (RDO?_.

"JDOTN = rv/3 + (TJ-7) (UDOTU)

RDTXN = sin (£ + u>) -a - (a > (e sin e)
yn xn 3

Ri TYX = a = C-J3 v.£ + '-J) - a > <.e sin e;
xn yr.

V^"a 5/2

„T'TXN =
„V^^a"

-XTYX = .VwW^a

c?s fE + a>) - a (— + 1
xn pa

2
sin (E + «>) - a (— + 1<

yn pa

RB070R = f/r

TEMP" = P r + P T + P U
xx y y z z

TEMP2 = P V + P V + P I" xx y y z z

TEMP3 = PW+PW+PW
xx y y z z

Läv:.ne I o f-Vü- -f ,- :ni'".':.'r:c tn^se i.-cmu-as, the following quantities
art f:,r-d in the TERMS buffer as described by ehe bits
in KNV.'R".:

JAr./r

'Adv-n

" Aii0

CAf./B J

R

115

> Correction coefficient«

(weighted residual)

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

CREKT
SPIRDEC
1 of 2

To apply corrections to the elements.

JMP CREKT

DLTNN = An/n

DLTAX = Aaxn

DLTAY = Äayn

DLTND = A

DLTIN = Ai

DLTUO = AU
o

DLTB = AB/B

See description

Philco - FSIN, FCOS, FSQRT, FLOG2X, F2X

46 Cells

The delta elements are applied and new elanents
are computed as follows:

XNO n = n (1 + An/n)
o o

C, A/m = B (1 + AB/ß) IAB/RI -" 0.25
a * I ~

uo ~~ U = U + AU
o o o

AXN0 = a == a ~H
xno xno

Aa
xno

AYNO = a = a +
yno yno

Aa
yno

ESQ

=

2 2
e o - a + xno

2
a

yno

EO V 2
e = Ve
o o

XNODEO — Cin = On + AOn

SINO sin Or

COSO :os Clr

114

DESCRIPTION:
(continued;

XT.WJL

cos:

+ A:

COS L

SINI

WX

WY

sin l

(sin i) (sin fi)

(sin i) (cos Q)

WZ COS 1

XLO

AO

L = U + Q
o o

ke \ 2/3

CREKT
SFIRDEC
2 of 2

RTF

HXO

H70

HZO

AXO

AYO

AZO

QO

p = a (1 - e) r o o

f
h

xo

yo

W

h
zo

= V^ x

= \/rWy

yo

zo

= (cos Q) (a) - (cos i'> (sin Q) (a)
xr.c • yno

= (sin Ci) (a) + (cos i) (cos Q) (a)
xnc yno

= (sin i) (a)
yno

a (1 - e)
o o

115

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBOUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

DELOUT1
SP1RDEC

To print the delta elements after each D. C. pass

JMP DELOUT1

DLTNN = An/n x

DLTAX = A

DLTAX = A

DLTUO = ^

^n

3yn

all floating point
DLTNO = Ap

DLTIN = Ai

DLTB = AB/B I

RMS = weighted root mean square

DELTA N/N

DELTA AXN

DELTA AYN

DELTA UO

DELTA NODE

DELTA I

DELTA B

RMS

System - GLOP, PANT
Program - PAGECON

53 Cells

Forces a page, prints headings, values, 10 spaces, and
updates PAGECON.

I

1

i

1

i
i

116

DFLCT2
SKRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINE:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To print the last pass element corrections5
old and new rrr.s, and accepted and rejected count,

JMP DELOÜT2

DLTNN
DLTAX
DLTAY
DLTJO
DLTND
DLTIN
DLTB
RMS
ORMS
ACCCNT
REJCNT

DELTA N/N
DELTA NXN
DELTA AYN
DELTA UO
DELTA NODE
DELTA I
DELTA B
OLD RMS
NEW RMS
No. of residuals used and rejected

System - PANT, GLOP
Program - PAGECON

56 Cells

Forces a page.
Prints the comment "DC Converged •• The nexr corrections
would bä...." Then prints headings., delta elements, old
and new rmSj accepted and rejected residual count, gives
8 spaces and updates PAGECON.

117

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROTJTINES:

STORAGE
REQUIREMENTS:

DESCRE'TION:

To compute ~u

JMP DELTAU --

XOBS
YOBS
ZOBS
ux
UY
uz

DELU

Program - ARC~N

•·

19 Cells

DEL TAU
SPIRDEC

RU = XOBS·UX + YOBS·t~ + ZOBS•UZ = COSDU

SINDU = WX (UY ZOBS - UZ•YOBS) + WY (UZ•XOBS - UX•ZOBS)
+ WZ (UX•YOBS - UY•XOBS)

DELU = tan -1 (SINDU/RU) (mod 2n)

118

DER IV
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

To compute the derivatives cf the N, M elements
with respect to time, using the effects of radiation
pressure, drag and/or bulge perturbation as specified
on I Girds.

JMP DERIV

See Input for MARTINI, JNDRAG, RDPRES
and SUBXYZ subroutines.

XDGR

YDGR

ZDGR

DGR

DDGR

D

AXGR

AZGR

SMLGR =

x
.\
y
.\ z
\

D

D

= D

= a

= a

W + 187 = d(L)/dt

188 = d(a)/dt

189 = d(a)/dt
y

190 = d(a)/dt
z'

191 = d(h)/dt

192 = d(h)/dt

193 = d(h)/dt
z

SUBROUTINES: Program - SUBXYZ, MARTINI, JNDRAG, RDPRES

STORAGE
REQUIREMENTS:

DESCRIPTION:

97 Cells

Uses SUBXYZ to compute r, r; computes specified
perturbative effects to be used; and computes the
derivatives, storing them in the ADBASH buffer
(W + 187 to W + 193).

119

DIVDIF
SPIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

To interpolate for elements using a fourth-order
divided difference method.

JMP DIVDIF

ICK buffer (See description)

T = t (min. since epoch)

TBJF = temporary storage buffer

ICK + 40 = L

42 = a
3

43 = a
2

44 = h

45 = h
y

46 = h

> at time t

SUBROUTINE: None

STORAGE
REQUIREMENTS: 38 Cells

DESCRIPTION: Given the 5 sets of time and elements in buffer ICK,
the subroutine will interpolate for the elements at
time t, where t < t < t 4, using the following

formula to interpolate for each element:

x = x + (t~-) x.-x
1 o + (t-t0)(t-t)

/X2-X1

t -t 1 2 Cl

x.-x
1 o

t.-t
1 o/

t9-t 2 o

+ (t-to)(t-tl)(t-t2)

/ X3"X2

\

W| /V*l xl-Xo\ j

Vfc2 t2-t V!i h"fco
2 o

t- - t
3 o J

120

DIvDIF
SPIRDEC
2 of 2

DESCRIPTION:
(continued)

+ (t-tQ) (t-tp (t-t?> (t-t3)

VX3 X3"X2 '

"4 "3 3 "2

fc4" fc2

/ x„,-x.. VX1

V'l
fc3 " h

(■- -t) (t -t)

X3"X2
t3-t2

X2"X1

Vh
. V Vh

X2"X1
t2-t1

x.-x
1 o

t -<-
"1 "o

t0-t
2 o

'W (Vto)

ICK Buffer Format

ICK + 0
>

t o
+ 1 L

o
+ 2 a

X

+ 3 a
y

+ 4 a
z

+ 5 h
X

+ 6 h
y

+ 7 h

5 sets of time and elements

+ 32

+ 33

+ 34

+ 35

+ 36

+ 37

+ 38

+ 39

a

h
3

h

121

DOTPR

SPXRDEC

*1

PITBDOCl?.

CALL SEQUENCE:

j-u compute dot products of vector in the (A), (Q) , (D)
registers with U, V, W

TMA

TMQ

(L)
x

(L)
y

TMD ('L)
z

JMP DOTPR

INPUT: UX
UY
UZ
VX
VY
VZ
WX
WY
WZ

OUTPUT: ADOTU
ADOTV
ADOTW

SUBROUTINES:

DESCRIPTION:

(None)

ADOTU - L U + L U + L U
x x y y z z

ADOTV «LV+LV+LV
XX y y z z

ADOTW =LW+LW+LW
XX y y z z

122

ELMOLT
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

To output initial, final, and new epoch element? at
the end of the differential correction.

JMP ELMOUT

Initial elements in INELT buffer.
New epoch elements in PREDBF buffer
Final elements in:
XLO
AXNO
AYNO
HXO
HYO
HZO

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

REV

See description

Program - RINEL, BCDTIM, COELTS, PRERES, PAGECON
System - PANT, GLOP

157 Cells

Prints comment:
"Initial, Final, and New Epoch Elements" Prints headings,
then restores initial elements to output cells and prints
them. Prepares and prints final elements. Uses sub-
routine PRERES to obtain new epoch elements and prints
them. Then prints comment: "End of DC" and updates
PAGECON. Also prints card images of P Cards necessary to
run CALIB.
Punches the following cards in P Card formats:
(1) Corrected elements (PI & P2)
(2) New Epoch elements (PI & P2)
(3) Cards for calibration program (PI, P2, P3)

and the cards P5-P8 which were used in the
current SPIRDEC run.

123

ELM0UI1
SPIRDEC
1 of 2

PURPOSE: To print the corrected elements after each
differential correction.

CALL SEQUENCE: JMP ELM0UT1

INPUT:

OUTPUT:

PREV

LPRINT

AXPRINT-

AYPRINT

HXPRINT

HYPRINT

HZPRINT

BPRINT

HSUBQP

PAPRINT

OBYEAR

GBMD

OBDAY

FOBHR

FOBHR

FOBMIN

FOBSEC

REV

TIME

L

AXN

AYN

HXO

HYO

HZO

B

PER. ALT

PA

rev. no.

L (deg)

a
xno

a
yno

h
y

h
z

C, A/m
a

Hq (km)

Period (min)

BCD Time

These are not program locations
bet output headings

124

ELM0UT1
SPIRDEC
2 of 2

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

Program - COELTS, PAGECON, BCDTIM, PRNTMAT
System - PANT, GLOP

53 Cells

Uses BCDTIM to prepare time for output. Uses COELTS
to compute values and correct elements to the output
units. Prints "Corrected Elements". Then prints
headings, values, and updates PAGECON. If the DC is
converging, PRNTMAT will be called to print the
standard deviations and correlation matrix of the
delta elements. If divergent, the last corrected
element set will be punched on P cards 1 and 2.

125

FTAFEW
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To wrapüp the binary ephemeris . ■'

JMP FTAPEW

TAPBUF = ephemeris buffer
TAPCNT = C/HLT, TAPBUF + X

Sentinel of Z's

System - S\S, SYSNO, SYSIO

9 Cells

Writes the final block on the binary ephemeris
tape on logical 10 - the sentinel being Z's in
the current blo:k. Then the tape is rewound
with lrckout.

126

I
I
I
I

PURPOSE:

CALL SEQUENCE:

INPUT:

GETSEN
SPIRDEC

To retrieve sensor information.

JMP GETSEN
(No sensor data)
(Normal return)

BIASAD = C/HLT, EBLOC, C/HLT, BIBUF

BIBUF = SBUF = Modified buffer of sensor information

STAID = 00000SSS

OUTPUT: PHIRD = CP

XLAMBA = X

XOVCT = x / cos 9

CAPZ = Z

SUBROUTINES: None

STORAGE
REQUIREMENTS: 10% Cells

DESCRIPTION: Given a sensor numbe
search through SBUF until a match or Z's are found.

(1) If Z's are found, the error exit (+1H) is taken.

(2) If a match is found, the information will be
unpacked to the cells listed under output.

127

GEIWGI
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To retrieve weights.

; JMP &E7WGX
JMP (No Weights)
(Normal Return)

Weights in WBUF

55? : SS*.'»
ere SSS ls the nation number.

SIGMA1 = CTP

SIGMA2 = ap*

SIGMA3 = aA

SIGMA4 = o;

None

11 Cells

Search WBUF for * mot. u

found, unpack
f°^ He -htsTo^H " 3 -*"■ *•

128

GIPAR
SPIRDEC

I

I

i

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

To prepare input for the GIPAR program.

JMP GIPAR

T

ORGDAY

ORGTM

X

Y

Z

FTFLAG

PFIAG

GIPADR

minutes since epoch

daje since beginning of year

fraction of epoch day

x (in km or e.r.)

y (in km or e.r.)

z (in km or e.r.)

left address is the next location
in the GIPAR buffer

An entry in the GIPAR buffer:

Word 0 X

1 y
2 z

3 day number

4 fraction of day

5 ZZZZZZZZ

SUBROUTINES: Program - SEPSUB

STORAGE
REQUIREMENTS: 21 Cells

DESCRIPTION: Before th* e first entry to tl
must be set co C/HLT, EBLOC + 20 and EBLOC + 20
must be set « ZZZZZZZZ. The subroutine will
update GIPADR as it makes entries to the buffer.

(1) Convert time from minutes since epoch to days
since the beginning of the year and fraction
of day; then store.

(2) Test PFLAG:

(a) If PFLAG « 0, store x, y, z

(b) If PFLAG f* 0, convert x, y, z from km. to e.r.
and store. PFLAG + 0 means subroutine SUBOUT
has converted x, y, z to km.

(3) Store sentinel of Z's and update GIPADR.

129

HEAD
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To output a new page with the page headings.

JMP HEAD

Parameters set by 1HEAD1 subroutine.

New page with the described page headings.

System - PANT, GLOP

52 Celts

1st tine - Spiral Decay SPDC Program Page X

2nd line - Satellite No. = XXX Satellite name - x-x(10 charact

2nd line (cont) - Element set no. = xxx Time of EPOCH =
YY MM DD HH MM SS .SSS

130

IHEAD1
SPIKDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

To initialize the page heading routine (HEAD)

racters)

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

JMP IHEAD1
(Return)

SATN =
ORGDA =
ORGTM =

0 —0 NNN, Satellite number
days since 1950*1
fraction of day/

Epoch

PAGENO = 0—0
PDAY = MMO — 0
PYEAR = , A 19YY00
SATEL = NNNO — 0, N = SATN
HEAD2 + 3 H = ADDR of BCD MONTH
HEAD5 to HEAD5 + 5 = (BCD EPOCH Time in cells for
output call sequence.)

System - AKLOK
Program - BCDTIM

26 Cells

Uses AKLOK to get PDAY and PYEAR -
Uses BCDTIM to get Epoch in BCD ready for output
Sets up parameters necessary to output page heading
as done by HEAD.

131

:s'ii :AL
SP:"f<DE(

PURPOSE:

CALL SEQUENCE:

INPUT:

lo initialize for the ADBASH sibroutine,

:MP INITIAL

XLO
AXO
AYO
AZO
HXO
HfO
HZf

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS-

DESCRIPTION:

See description.

Program • WSETUP

9 Cells

Moves elements to W buffer by calling WSETUP
Sets T (W + 3) = F/O
Sets switch ADP tc 1/1T15
Sets switches ADDER1 to ADDER7 to a (JMP DERI/;
in the ADBASH subroutine.

132

iftlTL
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To print the cards images of the parameter cards
(P cards 1 thru 10) and process them.

JMP INITL
JMP (ERROR)
(NORMAL)

Parameter cards (P cards) in CONBUF

See description.

Program - PAGECON, INPUT
System - PANT

19 Cells

Prints card images of cards in CONBUF; then calls
INPUT to process these cards.

133

INPUT
SPIRDEC

1 of 10

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To unpack and validate the Input parameter
cards (1-10).

JMP INPUT
JMP (error)
(Normal return)

P Cards (1-10) in CONBUF
PCOUNT » C/HLT, N

where N ■ number of P cards

See description.

Program - XSRCH, RR2AHL, CARDER, SAVCON

System - FSKLOK, FXFLT, INITEL, NXTELM, FYKLOK

370 Cells

The input parameter cards need not be in order; they are
unpacked according to the number in Column 79, using
subroutine XSRCH.

If no error is found on a card, a bit will be set in
location CARDS:

1/1T0

1/1T1

1/1T2

1/IT3

1/1T4

1/1T6

1/1T7

1/1T8

1/1T9

1/1T10

P Card 1

P Card 2

P Card 3

P Card 4

P Card 5

P Card 6

P Card 7

P Card 8

P Card 9

P Card 10

134

DESCRIPTION:
(continued)

All
floating
point

INPJT
SPIRDEC
2 of 10

The remainder of any card in error is not validated
beyond the error; however, an attempt will be made to
validate the remaining cards. Subroutine CARDER will
be used to output the card image of the erroneous card
with a comment indicating the first field in error;
location CARDSW will be set ^ 1. If an error occurs
during XSRCH conversion, a comment will be printed with
the card image, but with no field indicated.

The subroutine XSRCH will unpack each of the cards into
the locations:

g Card 1 If Col. 78 = A

Col. 1 - 12 XLO (rad)

13 - 24 AXNO

25 - 36 AYNO

37 - 49 HXO (er/k^min)

50 - 62 HYO (er/kemin)

V 63-75 HZO (er/kemin)

If Col. 78 = B

X (km)

Y (km)

Z (km)

XDOT (m/sec)

YDOT (m/sec)

ZDOT (m/sec)

If type B elements are input, subroutine RR2AHL will be
used to convert them to type A elements with the results
stored in the locations for type A elements. If no errors
set bit 0 in CARDS = 1

P Card 2

SATN Col. 1-5 (Binary)

6-15 SATNM, SATNMfl (Binary)

17 - 32 YY, YY + 1 (Binary)

33 - 37 EPREV (F.P.)

38 - 40 ELNO (FX.P)

Having unpacked the card, the following will be done:

TOY = 0 0 YY, YY = BCD year

Using subroutine FSKLOK;

ORDGA = days since 1950 to epoch (F.P.)

ORGTM = fraction of epoch day (F.P.)

Then the card image will be saved using subroutine SAVCON,
for use by subroutine ELMOUT.

If no errors, set bit 1 in CARDS = 1

135

INPUT
SPIRDEC
3 of 10

DESCRIPTION:
(continued)

P Card 3

Col. 1 CRAIG (FX.P.)
2 WGTFLG (FX.P.)
3 PW (FX.P.)

6 BFLAG (FX.P.)

7 DFLAG (FX.P.)
8 RPFLAG (FX.P.)
9 PREDFLG (FX.P.)

10-25 PRTIM, PRTIM+1 (BCD)

26-32 SKNTRL (BCD)

33 RPT (FX.P.)

34 CNFLAG (FX.P.)

35 DQFLAG (FX.P.)

36-39

40-42

DQN

ABSMX

(F.P.)

(F.P.)

43-45 ABMX2 (F.P.)
46-48 XISTSG (F.P.)
49-51 KAPPA (F.P.)

52-58 B (F.P.)
59 ROFLAG (FX.P.)
60 RESOPT (FX.P.)

62-64 CONTEST (F.P.)
66-68

69-71

F10

F10AV

(F.P.)

(F.P.)

72-75

76-78

AP

GAMMA

(F.P.)

(F.P.)

136

INPUT
SPIRDEC

4 of 10

DESCRIPTION: Having unpacked P Card 3, the following validations
(continued) and conversions will be made:

If ROFIAG t 0,1,2, set ROFLAG = 0

If RPT = 0, then ERROR (No. of iterations not specified)

If SKNTRL = 0, then ERROR (Elements to correct not specified)

If B is to be corrected:

1) If B = 0, then ERROR

If B is not to be corrected:

2) If DFIAG t 0, then B, F10, F10AV, AP cannot = 0

3) If DFIAG = 0, then B, F10, F10AV, AP are not checked

If DQFLAG ± 0, then DQN cannot = 0

If ABSMX = 0(then ERROR (Rejection criteria cannot = 0)

and/or ABMX2 = 01

If XISTSG = 0, then set = F/1.5

If KAPPA = 0, then set = F/l

If RPFLAG t 0, then GAMMA t 0, and compute RPC0N3 = GAMMA. B/2.2

If DFIAG = 0, set RHO = F/0

If PREDFLG:

1) = 0, use FSKLOK to convert PRTIM, PRT'XM+1 to days
since 1950 and fraction of day respectively.

2) = 1, use FXFLT to convert PRTIM, PRTIM+1 to revolution
number and store in PRTIM

3) = 2, do not use PRTIM, PRTIM+1

If CONTEST = F/0, set = F/.01

137

INPUT
SFIRDEC
5 of 10

DESCRIPTION: Cor.verc SKNTRL fr^m BCD to binary in reverse order:
(continued)

SKNTRL = ÖXXXXXXX (N, AXN, AYN, U, Q, i, B, BCD

to SKNTRL = 0 OXXXXXXX (&, i , fi, U, AYN, AXN, N) binary

Convert: DQN from km to e.r.

ABSMX from km to e.r.

AEMX2 from km/sec to er/kemin

If no errors are found, set DCFLAG t 0 and bit 2 = 1 in CARDS

c8e SAVCON to same card image for ELMOUT.

P Card 4

Col. 2-5 LTBUF+1 (F.P.)

ö LTBLT+2 (FX.P.)

7 LTBUF+3 (FX.P.)

8 LTBÜF+4 (FX.P.)

9 FTFLAG (FX.P.)

1C-25 PRTIME, PRTIME+1 (BCD)

■:.} PFLAG (FX.P.)

41 3ITLAG (FX.P.)

42-45 LX3UF+5 (F.P.)

49-51 PKAPPA (F.P.)

52-58 PB (F.P.)

66-68 PF10 (F.P.)

69-7. PF10AV (F.P.)

72-75 PAP (F.P.)

76-78 PGAMMA (F.P.)

138

INP'JT
SPIRDEC

6 of 10

DESCRIPTION:
(continued)

The following validations and conversions will be made:

If PKAPPA = F/0, set = F/l

If DF1AG ^ 0, then PB, PF10, PF10AV, PAP cannot = 0 or ERROR

If PFLAG = 0 and BTFLAG = 0, then ERROR (no output requested)

If BTFLAG = 1, then LTBUF + 5 cannot t 0, or ERROR

If FTFLAG:

1) = 0, use FSKL0K to convert (BCD) PRTIME, PRTIME+1
respectively to days since 1950 and fraction of day.

2) =1, use FXFLT to convert PRTIME, PRTIME+1 to
revolution number and store in SREVF.

If LTBUF+4 t 0, then PGAMMA cannot = 0, or ERROR

If no errors were found, set PPPFLAG $ 0 and bit 3 in
CARDS = 1

p Card 5

/
Col. 1-10

11-20
All
floating

21-30

point < 31-40

41-50

51-60

I 61-70

W + 12

+ 13

+ 14

+ 15

+ 16

+ 17

+ 18

The buffer W is used by the ADBASH subroutine. The values
input will override the assembled values in these locations
as the absolute error criteria.

SAVCON will be used to save the card for ELM0UT. If no
errors, bit 4 in CARDS will be set = 1.

139

;NP.I
SHRDEC

7 of 10

DESCRIPTION:
(continued)

P Card 6

Col. 1-9

10-18

13-27

28-36

JBUF

JBUF+1

JBUF+2

JBUF+3

All
floating
point

If this card is input, it will override the assembled
values in JBJF. Subroutine SAVCON will be used to save
the card image for ELMOUT and bit 6 in CARDS will be
set = 1 if no errors.

P Card 9

Col. 1-5 PRT+0

6-8 1

9-13 2

14-18 3

19-21 4

22-26 5

27-31 6

32-34 7

35-39

40-44 8
9 (

45-47 10

A8-5^ 11

53-3? 12

58-60 13

61-65 14

66-/0 15

71-73 16

74-78 17

All

floating
point

140

INPUT
SPIRDEC
8 of 10

DESCRIPTION:
(continued)

This card contains the intervals desired to be printed
or put on an empheris tape in a prediction.

One pass is made through the buffer to count the number
of sets of intervals (3 fields = a set).

Then the buffer is checked to set that the times are in
order. If not, an error exit is taken.

If the times are in order, PRT + 18 will contain the
number of sets of intervals (T47) and bit 9 in CARDS
will be set = 1.

P Card 10

Col. 1-15 GIT + 1,2 y

16-30 + 3,4
,

31-45 5,6 \ All BCD

46-60 7,8

61-75 9,10 '

Each set of 2 words is checked for blanks. If not blanks,
use FSKLOK to convert to floating point days and fraction.
If all fields are blank, go to error exit.

Check to see that times are in order. If not, take error
exit; otherwise, set bit 10 in CARDS = 1.

P Card 7

Col. 1-9 CSNM + 0

10-18 + 1

19-27 + 2

28-36 + 3

37-45 + 4

46-54 + 5

55-63 + 6

64-72 + 7

All
floating
poir

141

INPJI
SPIRDEC
9 of 10

DESCRIPTION:
(continued)

P Card 8

Coi. 1-9

10-18

19-27

28-36

37-45

46-54

55-63

64-72

CSNM + 8

+ 9

+ 10

+ 11

+ 12

+ 13

+ 14

+ 15

All
floating
point

J

These cards contain the tesseral coefficients for the
MARTINI subroutine. SAVCON is used to save these card
images for ELMOUT. If either or both cards are input,
TESRAL is set « 1.-

If no errors on P Card 7 & 8 bits 7 and 8 respectively
will be set = 1 in CARDS.

Having unpacked and validated the input parameter cards,
further checks are made:

If neither P3 nor P4 was input, ie, DCFIAG & PPPFLAG, = 0,
the job cannot be run.

If neither or only one of PI and P2 were input, then the
elements will be retrieved from EBLOC and a comment
printed. If EBLOC has no elements, the job will be
terminated.

If PREDFLG = 0,

PRTIM will be made minutes since epoch by a double
precision operation of:

PRTIM = (PRTIM-ORGDA) X 1440 + (PRTIM+1 - ORGTM)

If FTFIAG = 0,

PRTIME will be made minutes since epoch in the same
manner as PRTIM.

142

I
INFJT
SPIRDEC
10 of 10

DESCRIPTION:
(continued)

Using FYKLOK, ORGDAY will be computed as days from
beginning of year to epoch.

If EPREV > 100,000 it will be modulated 100,000 as
a 5 digit revolution number is maximum.

If TESRAL ± 0, ie, P7 and or P8 were input, location
CARDS will be tested to see that both were input. If
not, a comment will be printed and the job terminated,
as boch or neither are required for the MARTINI subroutine

Having successfully passed all preceding checks, location
CARDSW will be tested. If = 0, no errors were found on
any card, and the job may be run. (EXIT + 2H). If
CARDSW ^ 0, one or more cards were in error, and the job
will be terminated (EXIT + 1H).

143

ITAPEW
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To initialize ephemeris tape for output

JMP ITAPEW

SATNM
SATNM ..} Satellite Name BCD
1 block on tape 1C
See description.
TAPCNT = C/HLT, TAPBUF

Program - TAPEW
System - SYS, SYSNO

8 Cells

Positions tape to 1st block writes 1 block on tape
(1st 2 words are the satellite name - last 2 words are
zero), which fulfills requirements of the XYZLA
program .

144

I
JNDRAG
SPIRDEC
1 of 3

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

To compute perturbative effects due to
the atmosphere.

JMP JNDRAG
JMP (Error), h < LOLIMIT
(Normal Return)

Dr'LAG = J 0 do not

= |_ 1 comput

{

t compute drag perturbations

e drag perturbations

LOLIMIT = J 50 kn for D.C. and Prediction

10 km only for Cowell option

TEMPO = Exospheric temperature at epoch from TEMP
subroutine

A - from P Card 3 or P Card 4

B - C
D

A/m

KAPPA - from P Card 3 or P Card 4

ASCON2 = F/6378.165

THDOT = e

•Output from SUBXYZ routine at time t.

XD^GR = j£

YPTGR

ZDTGR

-D

D

Yr::.:.. - FASIM, FSIN, FSIN, FSQFT, FTENX
Prjg.ram - GA.ÜH, ANGSUN

337 Cells

145

JNDRAG
SPIRDEC
2 of 3

DESCRIPTION: This subroutine uses the Nicolet II (1964) dynamic

atmosphere tables from 120 km. to 1000 km., and the
Coesa (1962) tables from 0 km. to 120 km. The table
at location NICOLET is comprised of packed octal
words for 10 km. altitude increments.

This subroutine is called by DERIV and CDERIV
subroutines, however, there is a special entrance
(JNDRAGI) and exit (JNSW) for subroutine CDLTB,
which uses JNDRAG to compute log p (h±, T), where
i = 1, 2, 3, 4 in order to compute density scale height.

The subroutine performs the following functions:

(1) Correct for latitude and longitude from sun.
The ANGSUN subroutine computes the position
of the sun. a and * of the sun, a and 6 .

o o

-1

e = tan-Vuy|

0 = sin _1 u
z

(2) Compute log p (h., T) for four altitudes.

(3) Interpolate for log P (h, T) from results
of (2).

(4) Compute P from log p (h,T)

(5) Compute the velocity relative to the atmosphere:

\ ' X + 6y

v
y - y - ex

V =
z

x y z

146

I JNDRAG
SPIRDEC
3 of 3

DESCRIPTION: (6) Compute the perturbative accelerations
(continued) due to drag.

XDTGR - ^ - \ (B P Kg | 6376.165)

YDTCR = £ = vy (B p Kg | 6378.165)

ZDTGR = z^ = uz (B P Kg | 6378.165)

L47

9
<t
cc

w X
>
< A

to 01
OS
X

ft
0 g
$ £5 2

< >->

fo o
2 H

m
W OS

06

co

.83

CO

H X

CM

Q. .c ■
CJJ 4J i-t O
Q «.C £

oco V

cj »p <|.c

5 <H a CN

CO
«3-

t
0
O w _

pu O C O
§ »-• 0 ±J
O r-< u
O X

1 TJ
c

WH «9 1
1 V

C £ 9

o § <:
B

w

m ir» ir> • • •
NN (M

c » »
•H 0 O
(0 U U

t
I-

s 0t

0
53 a
ft A

6 Hfl
CJ

•k

P

O *

CO

§

OS
X

M
OS
X

M a
x <>J

b -

o
o *

I.".

^

pa
H <:
CO (H ll

w

l- Ä

"T
0

FIGG F. 7. J^RAß FLOW '^TAGRA'I

LPAFT
SPJRDEC

PURPOSE: Given a quantity, X in radians, this subroutine will compute
Y and Z such that:
1. Y and Z have the same sign as X
2. Y is exactly divisible by 2rr
3. -2~ < Z < 2*
4. Y + Z = X

CALL SEQUENCE: TMA X
JMP LPART

INPUT: The input consists only of the quantity X in the A register
in floating point.

OUTPUT:

SUBROUTINES:

Upon return from LPART, the A register contains Y, and the
Q register contains Z. Both Y and Z are in floating point.

None

STORAGE
REQUIREMENTS: 14 Words

149

LSQ
SPIRE-EC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To zero matrix buffer All to All + 48

and Bll to Bll + 6

JMP LSQ

All and Bll buffers must be located sequentially

in cr-re.

F/O in buffer All to All + 48 and Bll to Bll + 6

'None)

4 Cells

See purpose.

150

LSQR
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT.

To form a least squares matrix.

JMP LSOJ

C, thru C ,. in
1 n+1

cells TERMS thru TERMS + n

Modified matrix in All buffer and Bll buffer,

SUBROUTINES: None

STORAGE
REQUIREMENTS: 15 cells

DESCRIPTION: Add values in TERMS
and B (Bll buffer).

buffer to matrices A (All buffer)

"*C1 Cl :C1 C2 -cic,T ":c'cn+i~

:C2C1 'C2C2 :C2Cn : C2 Cn+1

A=
1 !

1 1

1

1 B=
1

1

1 1

1 1

t

1

1

1

nc c. S c c0 n 1 n 2 . , . ZC c
n n

£C C ,.
n n+1 I

151

LSQS
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To solve the matrix equation AX = B for X.

JMP LSQS

A matrix in All buffer

B matrix in Bll buffer

Solution X in LSQX buffer

Philco - FMAIN, FMAMU

Program - MATRIX

15 cells

The top half of matrix A is accumulated at each entry
to LSQR. When entry is made to LSQS, the terms of A
are moved to the bottom half. Then the Philco matrix
inversion subroutine (FMAIN) and matrix multiplication
subroutine (FMAMU) are used to solve the equation for
X. The solution is left in buffer LSQX through LSQX+(n-l).
After the A matrix is inverted, subroutine MATRIX is
called to solve for the standard deviations and correlation
matrix of the delta elements.
(See LSQR for matrix definition.)

152

MARTINI
SPIRDEC
1 of 5

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute the perturbative effects of the
earth 's bulge.

JMP MARTINI

BFIAG {= 0 do not c
= 1 use pert

ompute perturbations
turbations

W + 1 = t(min)

AE = a
e

uz = u
R = r

X = x

Y = y

THGR = 0

f= 0, ui
1= 1, uä

gr
TESRAL J = 0, use only zonals

use zonals & tesserals

Buffers: JBUF, CSNM

XBDGR = x\

YBDGR = yx

ZBDGR = zN
B

and values listed under description

System - ARCTAN
Philco - FSIN, FCOS, FSQRT

169 Cells

RTI

If

T3TJZ2 = Vl-"T 2

z

V^T 2
* 0 If VI^" =

SSUBX

SSJ'BY

SSUBZ

s„ = u u /VMT
2
' x z

s„ = u_ r /VTu"
y z

Vi^
z

F/0

-U
z

F/0

153

MARTINI
SPIRDEC

+ 0

E
X

E
y

s -v
u /
X

If

E
X

E
y

Vt

2 of r

if VT

ESUBX

ESUBY

•u2

Z

2
-U = 0

z

DESCRIPTION:
(continued)

Vl-U2

z
F/l

Vi. ■u2

Z
F/0

ESUBZ = E
z

= F/O E
z

= F/0

ZSUBX = Z
X

= U
X

Z
X

= U
X

ZSUBY = Z
y

a U
y

Z
y

= U
y

ZSUBZ = z
z

= u
z

z
z

= u
z

Compute P and P for zonals for n = 2, 3, 4, 5

1) Pn - 1/B'|<2n-1) 0B?o.1 - (n-l)Pn.2J

where P = F/l, and P. = U
o 1 z

P = U P . + n P ,
n z n-1 n-1

where P^ = F/l

QQ = ae/r

QQ + 1 = u/r"

If TESRAL = 0, only compute zonal effects:

2) GE = g

GS = g

et

st

GU = g
ut

F/0

F/0

F/O

tesseral effects are set = 0

154

I

I

I

I
4-

MARTINI
SPIRDEC
3 cf 5

1
GEZ = 8Q» = F/0 ez

GSZ = e = uVwT2" I * /al" -'
 a-2" n=2 n lr

wher. J2 - J5 are stored in JBÜT + 0-*JBUF + 3 consecutively

-SZ D8t' X

YBDGR = ^-^ + su£)zy+(gez + get)Ey+(g8j+g8t)Sy

ZBDGR . £ . (gu2 + ^ ^ + «^ + ^ ^ + ^^ ^

(and exit)

If TESERAL * 0 use the tesseral harmonics. Substitute
th« following for step (2) and go to step (3).

Compute Rpm and R^ for all 2 < „ < 4 and m < n, where

R - P *„, - nm nm . —,—

z

and R' =Yl-"J 2 p' nm z nm

and are solved as follows:

155

MARTINI
SPIRDEC
4 of 5

DESCRIPTION: R^STV: R = «»-DV^T2
" R . .

(continued) mm z m-JL, m-l

where R.. = F/l

R21, R31, R41 R p/
 n,l n

R32' R43 : R n, n-1 = (2n-l) U R , .
' z n-1, n-1

R42 : R -— -(n+m-1) R _ + (2n-l) U R .
 nm n-m n-2,m z n-l,m

This formula is the general expression for R but is
nm

only used for R,„ to save program space and time.

/
Rnm : R7 =Vl-U 2 R ., - mU R nm z n,m+i z nm

where R ., = F/0
n,n+l

The values of R are stored in buffer RBUF+0 - RBUF+8,
nm

and for Rx in buffer RPBUF+0 - RPBUF+7.
nm

TEMP2 = XE = tan"1 (y/x) - t (RPTIM) - 9

Then build buffer SINCOS containing cos X, sin X

cos 4X, sin 4X consecutively in SINCOS+0 - SINCOS+7 .

156

MARTINI
SPIRDEC
5 of 5

DESCRIPTION: Solve the following for the tesseral harmonics:

(continued) ^^ 2 < n < 4 and n<n

4 n ,n
6Ü = g . = - -2Vl-U2 S E (nfl) W Rnm(Cnmcos mX H-S^sin mX)

JC r * n=2 m»l \r|

4 S /a \n f,E = e = - - 2 E ä R (C sin mX -S cos mX) (m)
°et 2 „ , H nm nm nm et r n=2 m=l \r |

4 n
GS = K = - -9 E E faef R' (C cos mX + Snm sin mX)
"ö &st l „ , — nm nm nm

r n=2 m=l \r \

Where C„0 S„_ C, S., are stored consecutively in
22 22 44 44

CSNM+O-CSNM+15 , These values must be input on P cards

7 and 8 and will be a number or F/0.

Having solved these equations, go to step (3).

157

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

MATRIX
SPIRDEC
1 of 2

To compute a correlation matrix and the
standard deviations of the delta elements.

JMP MATRIX

A " matrix from LSQR subroutine in buffer All

COUNTR = C/HLT, 0; C/HLT, N N = Matrix Size 1 < N < 7

Standard deviations in buffer SIGN

Correlation matrix in buffer MATRIXB

(See description)

Philco - FSQRT

55 Cells

-1
To avoid destroying the A matrix in All buffer,
the half matrix is moved to buffer MATRIXB.

The variance-covariance matrix is defined by

c2..
LL

Vc..c.."
where C. . are elements of A

To compute this, each column is divided by the root
of the diagonal term, and then each row is divided
by the root of the diagonal. The roots of the
diagonal terms (which are the standard deviations)
are stored in buffer BUF and are then moved to the
appropriate locations in buffer SIGN for output
purposes. The position in the buffer is dependent
on the elements being corrected. (See PRNTMAT
subroutine for buffer positions). MATRIX is called
by subroutine LSQS.

158

MATRIX
SPIRDEC
2 of 2

DESCRIPTION:
(continued)

The correlation matrix is defined:

11
Cll Cll

12
Cll C22

ii
cncJj

c

C22 C22

2L
V

c22 cn
n

c.. c.

1 < J < 7

The values are stored by column in MATRIXB.

159

MOD2PI
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To Modulate a number between 0 and 2 TT radians.

TMA (number)
JMP MOD2PI
TAM (number)

(A) reg = number to be modulated 2 TT

TWOPI = 2 TT radians

(A) = number (mod 2 TT)

(None)

3 Cells

Adds or subtracts 2 TT radians from the number in
the (A) reg until it is between 0 and 2 TT radians

160

MOVBUF
SPIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To move the observation buffer,

TMA OCOUNT
JMP MOVBUF

Observations in 10 word format and in 6 word
format starting in location EBLOC.

Left address of OBSREJ = number of observations rejected

Left address of OBSLEFT = number of observations in 10 word
format

Left address of OBSPROC = total number of observations
processed

Left address of OCOUNT = number of observations processed
to 6 word format in one group

OANDE = C/HLT, OBLOC; C/HLT, EBLOC

See description

13 Cells

Because of core limitations,the observations in the
10 word format of OBLOC are converted to a 6 word
format (see below). Initially up to 984 observations
(10 words/observation) are in EBLOC.
Subroutine PRCOBS controls the formatting of the
observations into 6 word entries. Subroutine MOVBUF
is called by PR00BS and OBVEC (which is called by PRCOBS).

Procedure:

(1) Add the number of observations that have been converted
to a 6 word format (OCOUNT) to the number of observations
rejected (OBSREJ). Multiply this number by 10 and set up
the move instructions at location MOVSW, if the result
is less than 4096; otherwise print"more than 77 observa-
tions rejected" and exit.

(2) Multiply the number of observations still in the 10 word
format (OBSLEFT) by 10 and add it to the total number of
observations in a 6 word format (OBSPROC) which is
multiplied by 6. This number is stored in OCOUNT as the
total number of cells to be moved up.

161

MOVBUF
SPIRDEC
2 of 2

DESCRIPTION:
(continued)

(3) After moving the buffer up,
set OCOUNT = 0

OßSREJ = 0

WOBMARK = C/HLT, OBLOC; C/HLT, EBLOC

(4) Store Z's in the next available location at the
end of the buffer and move this location to In<!ex
Register 0.

EBLOC

Up to 984
observations

in OBLOC
[format (10 words/obs.)

Up to 332
observations
in 6 word

format

1.62

MOVDAI
SFIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

To retrieve next processed observation.

JMP MOVDAT
JMP (End of observations)
(Return)

Processed observations in EBLOC.
Current address in EBLX from location SAVOBS.
Sensor data in SBUF.
Weights in WBIF.

STAID
OBFLG
T
CAPX
CAPY
CAPZ
CXDOT
CYDOT
RANGE
SIGMA 1
ASUBX \
ASUBY
ASUBZ
DSUBX
DSUBY
DSUBZ
XLSÜBX
XLSUBY
XLStEZ
SIGMA3
SIGMA4 J
SIGMA2
RODOT

if range observed

if angles observed

} if range-rate observed

PrDgram » GETSEN, SFNLOC, AZREC, ALREC, GETWGT

27 Cells

163

DESCRIPTION:

MOVDAI
SPIRDEC
2 of 2

1) Unpacts the following from processed observation"

STAID
OBFLG
T
RANGE
RODOT
ALPHA
DELTA

2) Use subroutine GETSEN to retrieve sensor data.

3) Use subroutine SENLOC to compute:

THTA = 9
SINTH = sin e
COSTH = cos 8

4) If azimuth and elevation were observed, call
subroutine AZREC to compute A, D, L.

5) If right ascension and declination were observed,
use subroutine ALREC to compute A, D, L.

6) Compute the following:

CAPX = X = (cos 9) (X/cos 9)
CAPY = Y = (sin 9) (X/cos 9)
CXDOT = X = -Y.e
CYDOT = Y = X 9

7) Retrieve the weights for this observation using
subroutine GETWGT.

8) Update SAVOBS to next observation and exit.

164

NX TOB
SrlREE;
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

To retrieve observations and corresponding
weights.

oMP NXTOB
JMP (End of Obs)
JMP (No Sensor Data)
JMP (No Weights;
JMP (Normal Return)

OSTROB - right address = njnr?r of sbs + I
Observations in EisLX
Weights ir. WBLF

STAID

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

DELTA
ALPHA
RANGE
RODOT
and output of subroutine GETSEN

Program - GETSEN

39 Cells

(1) Unpact the following from the current Dbservaticn
in EBLOC:

STAID - CO00OSS3

T *
: c-.j. A

ALPHA

RANGE

RODOT

uTlPE

> floating p :.Lr.r.

GC000C0.'

(2) Search WBUF to find weights for the senscr number
in STAID. If no match, exit +3H (No weights return).
Otherwise gc r.o step (Vi .

65

NXTOB
SPIRDEC
2 of 2

DESCRIPTION:
(continued)

(3) Check to see that a weight is in WBUF for
each observed quantity of the observation.
If not, exit +3H.

(4) If all weights are entered, call subroutine
GETSEN to retrieve the sensor data. If no
sensor data, exit +2H. If sensor data, exit
+4H (normal return).

Each call to NXTOB will retrieve the next observation,
until an end of observation return is taken (+1H).

166

OBVEC
SPiUDEC
L cf 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENT'S:

To compute and/or store values in FOBLOC for
one observation at a time.

JMP OBVEC

OBFLG = 0- -0 XXXX (See PROOBS for description,

STAID = 00000 SSS Station number.

I = time (minutes since epoch)

RANGE-

R0DOT

ALPHA

DELTA

floating point

See POBLOC format in PROOBS

T

THTA = 90

SINTH = sin 6

COSTH = cos 9

CAPX = X

CAFi' = Y

and output cf OBVECP, 0BvECQ: AZREC, ALREC, RRATE

Pr ..gram - M0VBVI

15 Cells

167

OBVEC
SPIRDE:
2 of 2

DESCRIPTION: 1) An entry is stored in the new observation format
in the address specified by index register 0:

Word 0 TOOOOSSS

1 time

2 range

3 range rate

A alpha

5 delta

2) Add 1 to 0BSPR0C
Subtract 1 from OBSLEFT
Add 1 to MCOUNT

a) if MCOUNT < 332, then exit

b) if MCOUNT = 332, call subroutine
MOVBUF to move the buffer up.
(See MOVBUF for description.)
Then exit.

168

PAGECON

SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To keep a count (T15) of the lines output/page and force
a new page with headings when count > 55.

TMA C/HLT,N
JMP PAGECON
JAZ ()
N = No. of lines of output, set N « 55 to force page
(.") = 0 means new page was output

See Call Sequence

(1) Updated line count
and/or
(2) New page with headings when lina count > 55.

Program-HEAD

7 Cells

Updates line count (LINECNT) and jumps to subroutine HEAD
(to output headings) when LINECNT > 55. If the previous
JMP to PAGECON put out a new page a second one cannot be
forced.

169

PCONTRL
SPIRDEC

1 of 8

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To control the prediction option.

JMP PCONTRL
JMP (Error)
(Normal)

P Card 4
An element set from P Cards 1 and 2 or 6 Card
element set or from the differential correction,

Prediction ephemeris as requested - printed
and/or written on a binary tape.
(See description)

System
Program

FYKLOK
ITAPEW, SUB0UT1, SEPSUB, INITIAL, SAV5PTS,
TEMP, SAVW, SETW, SUBXYZ, RESW, TAPEW, FTAPEW,
SUBOUT, ADBASH, REVSOB, DIVDIF, CALU, GIPAR

298 Cells

This subroutine contains the logic necessary to control a
prediction. There are several options; some can be combined
but not all:

(1) Predict by revolution number or time.

(2) Output hard copy and/or binary tape.

(3) Prediction within one or more time intervals at
specified time increments.

(4) Predict backward or forward in time from epoch.

(5) Request points (maximum of 5) to be left in core
for a GIPAR run.

170

FLONTRL
SPIRDEC
2 of 8

DESCRIPTION: Because several of these options can be combined, the
(continued) logic is rather complicated.

A. The subroutine is initialized as follows:

(1) Set several switches.

(2) Initialize the buffer to be used by GIPAR
(starts in EBLOC + 20).

(3) Set switches controlling a prediction by
time or revolution number.

(4) Initialize the binary tape if requested.

(5) Initialize the printed output if requested.

(6) Move some values from P Card 4 to locations
used. If the prediction follows a D ,C.,
same results, such as B, override the input
on P Card 4.

(7) Test mode:

(a) If prediction only:

(1) Move more values from P Card 4

(2) Compute vB/2.2

(3) Set REV = epoch revolution number

(b) If D.C. and prediction:

(1) Move new epoch elements from buffer
to locations used.

(2) If time prediction, change final time
from minutes since epoch to minutes
since new epoch.

(3) Convert new epocb time from minutes
since epoch to a base epoch.

171

PCONTRL
SPIRDEC

3 of 8

DESCRIPTION: (4) Initialize page heading routine
(continued) (IHEAD1) to print new epoch in

page headings.

(5) Call subroutines THGRC, BEGIN.

(6) Set REV * new epoch revolution
number.

(8) Initialize interpolation buffer:

(a) Call subroutine INITIAL to initialize
AD BASH.

(b) Save initial elements as first set in
the interpolation buffer.

(c) Set T = 0 (printed output time)
BT = 0 (binary tape output time)

(d) Call subroutine TEMP to compute
temperature at epoch.

(9) Test if GIPAR points requested:

(a) If requested, prediction interval points
will be ignored - if not, go to step A(10)

(b) Convert GIPAR time from üays and fractions
to minutes since epoch.

(c) Delete GIPAR points not between epoch
(or new epoch) and the final time.

(10) Test if predicting forward or backward in time
and set switches and locations accordingly.

(a) If predicting backward and if requesting
prediction intervals, changes signs of
interval buffer to negative.

172

PCüNTRL
SPTRDEC

4 of 8

DESCRIPTION
(continued)

(11) Test if printed output requested:

(a) If not, go to step B.

(b) If yes, test if GIPAR points requested

(1) If not, go to A(ll)(c).

(2) If requested, set a switch for GIPAR
logic and move the first time requested
to T.

(c) Test if prediction intervals requested

(1) If not, go to step B.

(2) Otherwise, move start time, end time,
and time increment to T, LTBUF+1 and
ENDT respectively; also move start
time to BT.

B. Basic integration loop:

(1) Call ADBASH to integrate to next point.

(2) Test if drag perturbations are greater than an
epsilon; if so, switch to Cowell option for decay.

(3) Update, revolution number if necessary.

(4) Save the new point in the interpolation buffer.

on. (5) If 5 points are in the buffer for interpolati
go to step B(6); if not, go to step B(l).

(6) Test if current revolution number equals final
revolution number if a revolution prediction was
requested:

(a) if not equal, go to step C

(b) if equal, go to step D(5).

173

I
PCONTRL
SPJRDEC
5 of 8]

DESCRIPTION C Binary tape loop:
(continued)

(1) If no tape output was requested go to step D.

(2) Test if binary tape time is within the time span
of the interpolation buffer.

(a) If not, test if printed output was requested:

(i) Go to step B(l), if not requested.

(2) Go to step D, if requested

(b) If in the range of the interpolation buffer

(1) Interpolate for elements at the time

(2) Use SUBXYZ subroutine to convert to
r, r

(3) Call subroutine TAPEW to output the
point

(4) Update the time

(5) Test if time or revolution prediction

(a) If time, test if 1 st time
> final time; if not > go to
step C(2)(b)(5)(b); if equal,
wrap up the binary tape and
turn off tape option; if >,
set t equal final time, and
loop to C(2) once more.

(b) For revolution or time, test for
prediction intervals; if not, go
to step C(2); if yes, test if time >
end time; if <, go to step C(2);
if >, , • -1 time = end time and go
to step C(2) ,

174

PCöNIRL
SPIRDEC

6 of 8

DESCRIPTION: D. Printed output loop:
(continued)

(1) If time prediction, zest if time > final time:

(a) If >, go to D(5).

(b) If <, go to step D'2).

(2) Test if time is in span of interpolation buffer

(a) If not, go to step B.

(b) If yes, interpolate for elements at the
time; convert to r, f, and output the point.

(3) If GIPAR points were requested, call subroutine
GIPAR to convert and store the values

(a) If revolution prediction, go to D(3) (b) (2) (a) .

(b) If time prediction - test if more times

(1) If not, turn off prediction interval
option and go to D(5)(b)(for revolution
prediction) or to D(5)(a) (for time
prediction).

(2) If yes, compare next time to final time:

(a) if £ put next time in I and go
to D(l)

(b) if > go to D (3) (b)(1).

(4) If GIPAR points not requested, update time3 and test
for prediction intervals:

(a) If no intervals, go to D ,*2) .

(b) If intervals:

(1) If time < end time, go to D(2)

175

PC ONTO L
SPIRDEC

7 of 8

DESCRIPTION: (2) If time > end time, set time = end
(continued) time and go to D(2) the first time;

second time, check for end of intervals,
if end, go to D(5)(b) (for revolution
prediction), to D(5)(a) (for time
prediction), if not end, move next
interval times from buffer, reset switch
and go to D(2).

(5) Switch at D(l)(a)

(a) First time, set time to final time, set
switch to second time, go to step C.

(b) Second time, test if tape output:

wrap up tape, if yes
then exit +2H (normal exit)

E, Cowell option.

When a satellite decays to about 90 km. altitude, the
drag coefficient is such that integration should
continue in the Cowell mode.

(1) A test is made for backward integration, which
is not allowed for decay.

(2) Since the interpolation buffer now contains N,::
elements, it is necessary to integrate backwards
for sufficients points to replace the N ,M elements
with r, r, for the same time range,

(3) Set the integration to go forward integrating tor
r f elements until the interpolation buffet contains
5 points.

(4) The first time the buffer is full, save the intet-
poiation buffer, time for restart in the decay-
corridor .

(5) Test for tape output, If requested, test if the
output time is in the range of the interpolation
buffer. If so, interpolate for the elements,
output the point, update the time. Continue
looping until the time range is excluded, then
go to E(6) ,

176

PCONTRL
SIIRLEC
8 of 8

DESCRIPTION: (6) Test for printed output. Follow the same
(continued) procedure as step E(5). Go to step E(3)

when the time range is excluded.

The loop of steps(3)through(6)will continue
until the CDERIV subroutine (called by ADBASH)
exits to step EC7). Thi3 is done when the
vehicle drops below 10 km. At this point, the
decay corridor is produced.

(7) Print comment that vehicle decayed.

(a) If first entrance5 doable the value of B and
print a comment to this effect. If tape output
was requested, wrap up the epheireris tape and
turn off the tape output option. Restore the
values saved at step E(4; and go to step E(5)
to produce an empheris for a drag coefficient
of twice the original value.

(b) If second entrance, multiply the original B
by 1/2, print a comment and follow the same
procedure as E(7)(a) only with a different
value of B.

(c) If third entrance, exit (+2H) the decay
corridor and prediction are completed.

177

\START /
PCONTRL

SET
SWITCHES
TO 1

INITIALIZE
BUFFERS

FOR GIPAR
POINTS

SET A SWITCH
DEPENDENT ON

TIME OR REV.
PREDICTION

UNPACK
MORE

PARAMETERS
FROM P CARD 4

MOVE NEW
EPOCH
ELEMENTS

BEGIN
COMPUTE

CLASSICAL
ELEMENTS AT
NEW EPOCH

SET REV. NO.
TO REV. NO.

OF NEW
EPOCH

GITA

CONVERT GIPAR
TIMES TO

MINUTES SINCE
EPOCH

COMPUTE a
INITIALIZE
REV. NO. HO

SET FINA:
TIME RELAT

TO START
TIME

PCSTRT
INITIAL

INITIALIZE
INTEGRATION
BUFFER

SAV5PTS
SAVE ELEMEN

IN
INTERPOLATION

BUFFER

2NTS\

y

DELETE
GIPAR POINTS
NOT WITHIN
PREDICTION
TIME SPAN

©H
SET ADBASH

TO
INTEGRATE

BACKWARD

PREDIC
/^NjACKWARD- F0RWAS

V J >^ OR BAC1<

£*£ ARD-7101 JL FIGURE 8. PCONTROL FLOW DIAGRAM (1 of t
178

\START /
PCONTRL

sEt ALL
SWITCHES
TO 1

INITIALIZE
BUFFERS

FOR GIPAR
POINTS

SET A SWITCH
DEPENDENT ON

TIME OR REV.
PREDICTION

BEGIN
COMPUTE

CLASSICAL
ELEMENTS AT
NEW EPOCH

UNPACK
MORE

PARAMETERS
FROM P CARD 4

COMPUTE a
INITIALIZE
REV. NO. \-o

MOVE NEW
EPOCH

ELEMENTS

SET REV. NO,
TO REV. NO.

OF NEW
EPOCH

PCSTRT
INITIAL

INITIALIZE
INTEGRATION

BUFFER
\ ____

SET FIN/
TIME RELA1

TO STAR!
TIME

SAV5PTS ~\
SAVE ELEMENTS

IN
INTERPOLATION

BUFFER I

SET ADBASH
TO

INTEGRATE
BACKWARD

GITA
CONVERT GIPAR

TIMES TO
MINUTES SINCE

L EPOCH

DELETE
GIPAR POINTS
NOT WITHIN
PREDICTION
TIME SPAN

o* PREDI
BACKWARD" F0RWA

OR BAC

Gen Adm
ARD-7101 M,

FIGURE 8. PCONTROL FLOW DIAGRAM (1 of
178

i

ITAPEW
INITIALIZE

BINARY
OUTPUT
TAPE

SUBOUTI
INIHALIZE
FOR PRINTED

OUTPUT

UNPACK
PARAMETERS

FROM
P CARD 4

-©

o

of 4)DIAGRAM (1 of 4)
178

Gen Ad

Jon 60
FIGURE 8. PCONTRL FLOW DIAGRAM (2 of 4)

179

X

TURN OFF
THE BINARY
APE OUTPUT
OPTION

SUBXYZ
COMPUTE

x, y, z

-*©

RESW
RESTORE THE
INTEGRATION

BUFFER

TAPEW
WRITE THE

OUTPUT POINT
ON THE
INARY TAPE

RESTORE TIME:
UPDATE THE

NEXT OUTPUT
TIME

= 1

TIME

' SET T To
LAST INTERVAL.

TIME

SET
SWITCHED

TO 2 *0
DIAGRAM (2 of 4)

179

UPDATE
TIME FOR
OUTPUT

SET TIME TO
FINAL TIME;
SET SWITCHES

T„MZ ARD-7101 ©
FIGURE 8. PCONTRL FLOW DIAGRAM (3 of

180

DIVDIF
INTERPOLATE
OR OUTPUT

POINT

SAW
SAVE

INTEGRATION
BUFFER

SE'IV
ET INTEGRATION
BUFFER TO THE
OUTPUT POINT

5LTXYZ

COMPUTE

x, y, z,

x, y, z >-©

XIIKE\
^ PUT \ _^ ,/ OR REV.

GIPAR/ \ PREDICTION
V :ORE /

DIAGRAM (3 of U)

180

W

(

i im
 C.^ARD

PGOWEL

ADBASH
INTEGRATE
FROM T TO
T + AT

REVSUB
UPDATE THE
REV. NO. IF
NECESSARY

SAV5PTS
SAVE THE LAST
POINT IN THE
INTERPOLATION

BUFFER

MARY
VPE

K. „~TPTTT
QUESTED,

OUTPUT TIME
IN SPAN OF
INTERPOLATION
\ BUFFER/

DIVDIF
INTERPOLATE
FOR THE
OUTPUT
 POTNT

UPDATE THE
OUTPUT
TIME -*©

FTAPEW
WRAP UP
BINARY OUTPUT

TAPE
/

TURN OFF
BINARY TAPE

OUTPUT
OPTION

RESTORE VALUES
TO START COWELL
EQUATIONS AT
START OF DECAY

\M (4 of 4)

PHLAH
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

To compute cp, X, h

JMP PHLAH

OUTPUT:

SUBROUTINE:

STORAGE

REQUIREMENTS:

DESCRIPTION:

UX

PI

XIMFSQ

TWOPI

X

Y

RPTIM

W + 1

THGR

PHI

XLAMD

H

LFLAG

Program

System

Philco ■

18 Cells

= U
z

TT radians

- (1-f)2

= 2 TT radians

= x

= y

= rad/solar min.

= t (min. since epoch)
= e

gr

= * (deg)

" * (deg) -180° (W) < X < + 180° (E)

= h (km)

= E or W for X(BCD)

M0D2PI, CALH

ARCTAN

FSQRT

PHI = cp = -—"1
tan

-1

K> vnrj (i. f)2

}
THETA = tan (y/ar)

XLAMB = - t (.0043752691) - THGR + THETA

Uses CALH subroutine to compute h.

182

PRERES
SPIRDEC
1 of 3

PURPOSE:

CALL SEQUENCE:

INPUT.

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To retrieve or compute trie new epoch elements.

JMP PRERES

SOLDUZ = last U from DC
z

SREV = last rev. no. from DC

PRDSAV = 0 means new epoch elements found in DC

= 1 continue integration until new epoch time

EPREV = epoch rev. no.

SAVELEM = 0; continue DC integration to compute elements

= 1; initialize integration to compute elements

and input required for subroutines.

LPRINT = L (deg)

xn

yn

AXPRINT =

AYPRINT =

HXPRINT = h
x

HYPRINT = h
y

HZPRINT = h
z

BPRINT = B

HSUBQP = h (km)
q

PAPRINT - pa (min)

and time in BCD format.

Program - INITIAL, RESWBF, RESICK, ADBASH, REVSUB,
SAV5PTS, DIVDIF, SAVICK, SAVWBF, BCDTIM

51 Cells

There are 2 main paths to take in this subroutine:
(1) to retrieve the new epoch elements which were
computed in the DC, i.e., the new epoch elements
were in the span of the observations, (2) to continue
the integration started by the DC until the new epoch
time is reached.

183

PRERES
SPIRDEC
2 of 3

1
!

DESCRIPTION:
(continued')

If the new epoch elements were found in the D.C.
(PRDSAV = 0), the values that were saved at the
time are restored and the rest of the values
computed:

Restore: BOO + 0 = a
xno

+ 1 = a
yno

+ 2 = B

+ 9 = L (rad)

3-13 = h —

■> AXPRINT

-3» AYPRINT

-5> BPRINT

■> LPRINT (deg)

-> HXPRINT

+14 = h

+ 15 = h

-> HYPRINT

-> HZPRINT

Compute:

HSUBQP = hq (km) = {a (1-e) - l] 6378,165 km
e.r

where BOO + 3 = a

BOO + 4 = e'

PAPRINT = P (min) = 2n (l-.Se^) (3 sin2 i-1) P3JA02 + 1
3 ,22

P
n L o

where BOO + 5 = sin i

BOO + 6 = p

BOO + 7 = n
o

Use subroutine BCDTIM to get time in BCD format,
where BOO + 8 = t (min since epoch).

184

PRERES
SPIRDEC
3 of 3

DESCRIPTION: II. If the new epoch elements have not been found,
(continued) then test to see if the D.C. integration must

be initialized (SAVELEM + 0). If so, the Adams-
Bashforth subroutine must be initialized, then
integration will begin at epoch. If not^ -jhe
Adams-Bashforth buffer will be restored to the
time of the last observation, then integration
will continue until the elements are found for
the new epoch time.

Having found the new epoch elements, the
procedure will be the same as that listed
under I.

This routine is called only by the ELM.0UT
subroutine when the elements are to be printed.

185

PRINTW
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To print the weights and biases being used
in the differential correction.

JMP PRINTW

Weights in WBUF
Biases in BIBUF
WANDBI = C/HLT, WBUF; C/HLT, BIBUF

Weights and biases printed on hard copy,
(See description)

Program - PAGECON
System - PANT, GLOP

92 Cells

This subroutine is called by option, if Column 3
on P Card 3=1. The weights and biases are
printed as follows:

(1) Print heading

(2) Retrieve an entry from WBUF and BIBUF.
Convert to output format.

(3) Output the Sensor Number and the weights
and biases.

(4) When a new page is necessary, go to step (1)
Otherwise, go to step (2).

The subroutine will exit when a word (00000ZZZ) ii
found in WBUF,

186

PROOBS
SPIRTEC

1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT-

SUBROUTINES :

STORAGE
REQUIREMENTS:

DESCRIPTION:

To set up the processed observation.

JMP PROOBS

Observation biases in BIBUF buffer, stored by
station number.

Observations - start location is EBLOC'terminated
by Z's.
Sensor file in SBLOC.

OSTROB = C/HLT, 0; C/HLT, N+l, N * number of observations
SAVOBS = C/HLT, (Address), Address = 1st location to be

used for a processed observation
PREDFLG = new epoch option

Processed observation buffer, modified sensor buffer.
(See description)

Program - BIAS, SORTOB, SETSB'JF, NXTOB, OBVEC, PAGECON,
MOVBUF
System - GLOP

55 Cells

(1) Use BIAS subroutine to make a pass through the
observations and apply biases.

(2) Call subroutine SORTOB to sort the observations
in the order to be processed.

(3) Use subroutine SETSBUF to make a pass through
the observations and move sensor information
required co SBUF.

(4) Set OCO'JNT, MCOJNT, OBSPRX, OBSREJ = 0/0

Set OBSLEFT = C/HLT, N; N ■ number of observations

(5) Retrieve an observation using NXTOB:

(a) if'no sigmas"return, skip observation,
print comment, subtract 1 from OBSLEFT
and add 1 to OBSREJ.

(b) if"no senscr"return, follow same procedure
as (a).

187

PROOBS
SPIRDEC
2 of 2

DESCRIPTION: (6) Set the bits in OBFLG corresponding to the
(continued) observed quantities:

1/1T47 - P

1/1T46 - A & h

1/1T45 - 0/ & 6

1/1T44 - P

(7) Use subroutine OBVEC to compute values and
store them.

Continue steps (5VC0 until an "end of observations
return" from NXTOB; then

(8) If OCOUNT t 0, use subroutine MOVBUF to move
remaining observation buffer up.

(9) If PREDFLG =2, set PRTIM = time of the last
observation.

See the listed subroutines for output format and
block formats.

I

I

188

1
PRNTMAT
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To print the standard deviations and the
correlation matrix of the delta elements.

JMP PRNTMAT

SCOUNTR = C/HLT, 0, C/HLT, N Where N ■

SIGN + 0 = an

1 = a a

1 matrix size

xn
2 = a a

3 =

4 =

5 =

yn
a U

a n

6 = a B

MATRIXB - MATRIXB +27
Contains the correlation matrix.
It is of variable size depending on the
elements being corrected.

See description.

SUBROUTINES: System - PANT, GLOP

74 Cells

Prints headings and values for the standard
deviations. Then print the headings for the
matrix and N lines of the matrix as specified
by location SCOUNTR.

189

RDPRES
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute the perturbative acceleration due to
direct solar radiation pressure, fv.

JMP RDPRES

RPFLAG 4 ? no Perturbations
j 1 compute perturbations

RPCON3 = *-B"/2'.2

XRDGR = xv r
YRDGR = yv J

 r
ZRDGR = z* r

Philco - FSIN, FCOS
Program - ANfiSUN

34 Cells

If RPFLAG = 0, the subroutine sets XRDGR, YRDGR, and
ZRDGR = F/0 and exits. Otherwise it computes the following:

Call subroutine ANGSUN to compute L , then:

cosiji =
h -i

If cos ♦ > 0, then satellite is in sunlight

x^ = (v • B/2.2) Lx0

y\ - (V • B/2.2) Ly0

zNr = (v . B/2.2) Lz0

If cos y < 0, then compute:

sin (ill + 7)) = sin \|r cos T) + sin 71 cos %

2 2
= (cos iji -1) (1/r -1) + cos i|i/r

If sin (\|i + 7i) > 0, the satellite is illuminated so compute

r" . Otherwise fx is set = 0.

190

I
I

RDISB
SPIRDEC

PURPOSE: To compd te range rate

CALL SEQUENCE: JMP] XDTSB

INPUT: XDOT = X

YDOT = y
ZDOT = z

CXDOT = A

CYDOT = Y

CZDOT = Z

XLX = L
X

XLY

XLZ =

L
y

L
z

OUTPUT: RHODT = Sc
RODTX = K
RODTY

RODTZ = P
z

SUBROUTINES: ^None^

STORAGE
REQUIREMENTS: 8 Cells

DESCRIPTION: RODTX - XDOT + CXDOT = p = x + X
x

RODTY = iDOT + CYLOI = p = y + Y
.y

RODTZ = ZDOT = p = z
z

RhODT = (5 L+p L+p" L = p
x x y y z z c

191

READOBS
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINE:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To read observations from logical tape 0.

JMP READOBS

OANDE = C/HLT, OBLOC; C/HLT, EBLOC
and observations on logical 0.

Observations in EBLOC
SAVOBS - left address is the location of the Z's

terminating the observations

System - SYS, SYSNO, SYSIO

13 Cells

This subroutine is called only when OUTOPT = 1.
OUTOPT is the output option from the SPSJOB Card.
The option should be set to 1 with more than 492
but not more than 984 observations in the input.
In this case, the Executive routine will write
all the observations on logical 0,
read them in only once.

SPIRDEC will

Subroutine READOBS does the following:

(1) Rewind logical 0
EBT.OC—>Index Register 3

(2) Set MCOUNT = 0
Read 1 block into the address at location T100;
it is EBLOC initially.

(3) Test every 10th word for Z's in the block
just read:

(a) if no Z's are found, add 10 to the address
at TI00, add 10 to Index Register 3, add 1
to MCOUNT:

if MCOUNT = 12, go to step (2)
if MCOUNT < 12, continue searching for Z's.

(b) if Z's are found, save the location of Z's
in the left address of SAVOBS and exit.

192

REJECI1
SPIRDEC

PURPOSE

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To accept or reject a residual for range or angles
for 1st pass.

TMA (residual)
JMP REJECT1
JAZ (rejected)

ABSMX = rejection criteria (e.r.) for range and angles
SIGMAI = weight corresponding to the observed quantity

RCNT = C/HLT, N; C/HLT, 0
SUM = F.P.
REJCNT = C/HLT, N; C/HLT, 0

Program: RESREJ1

6 Cells

If the absolute value of the unweighted residual
< ABSMX, then RCNT is increased by 1, and the weighted
residual squared is added to SUM.

If greater than ABSMX, then RCNT and SUM are not affected.
But the REJCNT (rejected count) is increased by 1, the
REJFLG is set to asterisks, and the (A) register is cleared
to indicate rejection.

193

REJECT2
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To accept or reject a range rate residual for 1st pass.

TMA (residual)
JMP REJECT2
JAZ (rejected)
ABMX2 = rejection criteria (e.r./kemin)
SIGMAI = a-

o

RCNT = C/HL1, N; C/HLT, 0
SUM = Floating point
REJCNT = C/HLT, N; C/HLT, 0

Program: RESREJ1

6 Cells

then RCNT is increased If lunweighted residuall < ABMX2.
by 1 and the weighted residual (squared) is added to SUM,

If |unweighted residuall > ABMX2, then RCNT and SUM are
not affected, but the REJCNT (rejection count) is increased
by 1, the REJFLG is set to astericks, and the (A) register
is cleared to indicate rejection.

194

RESICK
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To restore elements to continue integration,

JMP RESICK

BOO + 16 - BOO + 55
Contains the last 5 sets of elements

ICK + 0 - ICK + 39

Contains the same element sets

None

4 cells

To continue integration for a prediction or the
new epoch elements, the ICK buffer must be restored
for the DIVDIF subroutine.

195

PURPOSE: To output observation residuals.

CALL SEQUENCE: JMP RES0UT1

INPUT: OBFLG = flag for observed quantities

RHOC = Pc

RGSDL = Ap

ARSDL = AA

DRSDL = Ah

RRSDL = AP

OUTPUT: P, a & 6 or A & h, P residuals

RESOUT1
SPIRDEC
1 of 2

These residuals flagged with asterisk if rejected
Also, VMAG, DELU, U, BETA, Time, Station Number

SUBROUTINES; Program - DELTAU, RESOUT2
System - GLOP, PAGECON

STORAGE
REQUIREMENTS: 80 Cells

DESCRIPTION: If only range rate was observed, VMAG is not computed
otherwise

VMAG =~W (RGSDL)2 + (ARSDL)2 + (DRSDL)2

If angles were not observed, U, At, and BETA are not
computed, otherwise:

XC:S = p L - X = x
ex o

YOBS = p L - Y = y
c y ;o

ZOBS = P L - Z = z
c z o

OBSR ="\/x 2 + y 2 + z 2

o 'o o

196

RES0UT1
SPIRDEC
2 of 2

DESCRIPTION: RESOUT1 uses subroutine DELTAU to compute Au
(continued)

Then computes U:

U = tan"1 SINU
+ DELU COSU

Computes At (DELU)

A t = (- Au/ V*P7~ (r2 / k)
e

BETA . sin"1 | <*, Wx + y<> Wy + ^ ^ /^JT^TTJ

where -90° < BETA < 90°

Tests RESOPT:

if RESOPT = 0, then print angles in deg.

if RESOPT = 1, then print angles in km.

197

RES0UT2 &
RES0UT4

SPIRUEC

PURPOSE-

CALL SEQUENCE;

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To convert time to BCD and output page heading if
necessary.

JMP RES0UT2

T = t (Min.)
STAID = 0 OXXX, X = Sta. No.

OBYEAR)
OBMO
OBDAY 1 BCD time
FOBHR
FOBMIN
FOBSEC j
STAID - Left Justified

Program - BCDTIM, PAGECON
System - PANT

43 Cells

RES0UT2 converts time to BCD, tests if new page headings
are needed. If so, it calls RESOUT4 to print page
headings.

198

RESREJ1
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To accept or reject a residual on all D C
passes except the first.

TMQ
TMA
JMP
JAZ

MAX
ASTK

(weighted residual)
(residual)
RESREJ1

(residual rejected)

= weighted rejection criteria

RCNT
SUM

= C/HLT, N
= Floating point

REJCNT = C/HLT, N
REJFLG = * or blank

(None)

7 Cells

If | weighted residual | > MAX, then REJCNT is increased by 1,
REJFLG = *, and (A) reg. =0

If | weighted residual | < MAX, then RCNT is increased by 1,
(weighted residual)2 is added to SUM, and REJFLG = blank.

199

RESW
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

To restore values to the Adams-Bashforth buffer

JMP RESW

QQ + 1

2

3

U

5

6

7

x

= L

= a
j

= a
3

a

= h

= h

= h

OUTPUT: W + 5 =

o =

7

8

9

10

11

L

a

= a

= a

= h
3

= h

= h

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

Program - SETW

2 Cells

Restores values saved in QQ + 1 to QQ + '/ to W + 5 to W + 11
to continue the Adams-Bashforth integration.

200

RESWBF
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To restore W buffer

JMP RESWBF

PREDBF buffer (11 cells)

W + 1 to W + 11 restored from PREDBF buffer (11 cells)

Program - SAVWBF

3 Cells

Restores W buffer to last point in ADBASH subroutine
in order to restart integration.

201

REVSÜB
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To update the revolution number

JMP REVSUB

UZ = U at t
z

OLDUZ = U at t - At
z

U at t
7.

Rev No at t

OLDUZ =

REV

None

5 Cells

A switch CNTSW must be preset before calling the
subroutine:

If integrating forward from epoch:

CNTSW = C/JAN, CNTB; C/TMA, F/l

If integrating backward:

CNTSW = C/JAP, CNTB; C/TMA, F/-1

If the signs of UZ and OLDUZ are the same,
the rev. no. is not modified.

If the signs are different, then a node has been
crossed. If it is the ascending node, the rev. no
mod if ltd by 1 .

202

RHOSB

SPIRDEC

PURPOSE: To c< >mpute range

CALL SEQUENCE: JMP RHOSB

INPUT: X = X

Y ■ y
Z = z
CAPX = X
CAPY = Y
CAPZ = Z

OUTPUT: RHOC = P^
RHOX

c
= px

RHOY = Py
" °Z RHOZ

SUBROUTINES: Philco - FSQRT

STORAGE
REQUIREMENTS: 11 Ce lls

DESCRIPTION: RHOX = X-K;APX

RHOY = Y-KAPY
RHOZ = Z-+CAPZ

(ie.p = x t X)
X :4

RHOC = J,
(RHOX) + (RHOY) + (RHOZ)

203

RINEL
SPIRDEC

!

PURPOSE: To rest': ;>re initial elemc

CALL SEQUENCE: JMP RINEL

INPUT: INELT buff er

OUTPUT: LPRINT = L (deg)

AXPRINT = a
xno

AYPRINT = a
yno

HXPRINT = h
X

HYPRINT = h
y

HZPRINT = h
z

BPRINT = CDA/m

HSUBQP - H (km)

PAPRINT = period (min.)

SUBROUTINES: Program _ (5INEL

STORAGE
REQUIREMENTS: 2 Cells

DESCRIPTION: Moves va lu< 2 from INELT b

204

I

RR2AHL
SPIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS;

DESCRIPTION:

To convert r, f elements to a, h, L

JMP RR2AHL
(return)

X = x (km)

Y = y (km)

Z = z (km)

XDOT = x (km/sec)

YDOT = y (km/sec)

ZDOT = z (km/sec)

HXO =

HYO =

HZO =

AXNO =

AYNO =

XLO =

xo

yo

zo

xno

yno

+ cells on next page

Philco - FSQRT
System - ARCTAN

94 Cells

Converts from r, f to a, h, L using the following
formulation.
Called by subroutine INPUT only.

205

HXO = h
xo = y z - z y

HYO = h = z x - x z
yo

HZO =h = x y - y x
zo J J

P = h 2+h 2 + h 2=p
xo yo zo

RR2AHL

SP7RT-EC
2 oi 2

RR2AHL Formulation

RTP = ^ p

WX = W = RXO/ " p
x. _1_. '

~\l 2 2 2
R = h + y + z - r

UX = U - x/r,
x '

ROOT = f = (xx + yv + zzWr

ESINEV = r vp =esinv

ECOSV = p/r -1 = e cos v
2 2

ESQ = (e sin v) + (e cos v)

EO = e = ' e2

o o

VX = v = (rx - xr) (.)x

A = a = p/l-e2

• i A i , - 1 .y - Vx LLO = 1 = tan —'
o x + Vy

= e

0 < 1 < 360
- o —

•ysz

X —-»VjZ

»y>z

XNO = N = K /a 3/2

AX=a = U ecosv-V e sin v .
XX X

AXNO = a .,, - (a. W - a . W) / \l-W ' xno y x x y ' z

Vl-Wz2 - W2 1-W AYNO = a Vl-Wz" - Wz 'a W + a W) / z r x x y y' z

v - E = tan"L ! e SIn v ■l + l'e + e cos v^
| 2 2
j_-'.e sin v) + (e cos v + 1) (1 + 1-e)

QQ + 2 = v - M = v-E + r e sin v /'l - e
2 / p

XLO = L =1 - f'v-M)
o o

X —,i ,\ , z

206

I

SAVCON
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To save card images of the parameter cards.

TMD C/HLT, SCONBUF+X

JMP SAVCON

Index register 3 = 1st location of a parameter
card image in CONBUF

See description.

None

4 Cells

The parameter card image is moved to the buffer.
SCONBUF, to be used by subroutine ELMOUT fc
output purposes. :or

SCONBUF + 0 to + 9

+ 10 to + 19
+ 20 to + 29
+ 30 to + 39
+ 40 to + 49
+ 50 to + 59

P
P
P
?
P
P

C.-ud
Card
Card
Card
Card
Card

2
3
5
6
7
8

207

SAVELM
SPrk:)E:

PURPOSE: .<-,- -/-* • -_ ..-5 K;ä;a'\ to con. ur-e
ii:~%~i:io~ :.:• 've n=w epcch elements.

CALL SEQUENuF JM? >A.£,.\

INPUT: 5 aeco 0. c.emar.ts in the ICK bjffer
RFV •- tivj .'. ;jn n, Tiber
GLP'JZ - a: :hs pievio.s c ir.e pcint

V - AL'BASH i .'ier

OUTPrJT: See desc.-i- o~

SUBROUTINES. Program - SAVW3F. SAVICK

STORAGE
REQUIREMENTS; 5 Cells

DESCRIPTION. This subroutine is only called by the D.C, control
subroutine (CNTRL) if the new epoch t^me requested
is outside the star, of the observations and on the
opposite sice r,f the old epoch from the last
observation. A :hird requirement for using this
routine is that the old epoch must be within the
Äpi-: of ehe observations.

"he subroutine Mi -.

/I; "se 5AVWÜ? to save W+ 1-*»W + II

se SAvl'CK to save ICK —>ICK H 3'-

;';, Pave R-P.V in SREV
'■'■: I .: SOLDUZ

S :r. Sr..VtL.tv - >i L'dui-ir-L' ^;t s -'".' ~ .ire
W? .1 'JSPd

l"vc .-<- va ' ues c • -.■ t, • d i t 1' •• s . : : o .' ' " ': ^^ : h l' ■

208

I
I
I
-»

1

I

I

I
I

SAVICK
SPIRDEC

PURPOSE: To save values to compute the new

CALL SEQUENCE: TMD
JMP

C/HLT, ICK+X; C/HLT, BOO+8
SAVICK

INPUT: AXN = a
xn

AYN

B zs

a
yn

CD A/m

A = a

ESQ =
2 e

SINI = sin i

P = P

XN = n

ICK buffer from DIVDIF subroutine

OUTPUT: BOO + 0 = a
xn

+

+

L = a
yn

2 = B

+ 3 = a

+ 4 = e2

+ 5 = sin i

+ 6 = p

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

+ 7 = n

+ 8 thru +15 = new epoch elements

+ 16 thru +55 = last 5 sets of integrated elements

Program: SAW, SETW, SUBXYZ, RESW

14 Cells

Saves the new epoch elements in BOO + 8 thru BOO + 15.
Values saved in BOO + 0 thru BOO + 7 are necessary to
prepare the new epoch elements for output. In BOO + lb
thru BOO + 55 the last 5 sets of elements are saved to
continue integration if a prediction is desired.

209

SAVW
SPIRDEC

I
I

PURPOSE:

CALL SEQUENCE:

INPUT:

To save the elements in the Adams-Bashforth buffer

IMP SAVW

W + 5

6
—i

/

8

9

10

11

■ L

= a
s

= a
>

= a
2

= h

= h
>

= h

OUTPUT: QQ + 1

2

3

4

5

6

7

L

a
x

= a

= h

= h

= h

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

Program - SETW

I CelIs

Moves values from W + 5 thru W + 11 to QQ + 1 thru QQ + 7
so that other values may be placed in W + 5 thru W + 11
to be able to use the SUBXYZ subroutine.

210

I SAVWBF
SP:RDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To save W buffer

JMP SAVWBF

W buffer

W + 1 to W + 11—»PREDBF +0 to PREDBF + 10

(None)

5 Cells

Saves 11 cells of the W buffer in order to restart
ADBASH subroutine.

211

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SAV5PTS
SPIRDEC

To save elements for interpolation

JMP SAV5PTS

W + 1 = t (min)

5 - L

6 = a

= a

8 -

10 = h

11 = h

See description,

ICK + 0 - t
+ 1 - L
+ 2 - a

+ 3 - a

+ 4 = a

+ 5 = h

> 5 set.-

+ 6 = h

i =

+ 39

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

None

8 Cells

Buffer ICK contains 5 sets of elements at t - t .
When t. is no longer needed, elements at t„ - t,- are
moved to replaced t. - t,. And the elements at t,

1 H 6
in the W buffer are moved to replace the elements at

V

212

SENLOC
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute 9, sin 6, cos 6

TMA T
JMP SENLOC

t = minutes since epoch

XLAMBA =

THGR

RPTIM =

THTA

SINTH

COSTH

9

.0043752691

9 at time t

sin 9

cos 9

Philco - FCOS, FSIN

6 Cells

THTA = 9 = t (.0043752691) + X + 9
E gr

213

SETSBUF
SPIRDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINE:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To set up a modified SBLOC in SBUF.

JMP SETSBUF

BIASAD = C/HLT, EBLOC; C/HLT, BIBUF
Observations starting in EBLOC
Sensors in SBLOC

Modified SBLOC in buffer SBUF
See buffer layout under description.

System - SGET

19 Cells

Starting with the first observation, extract the
sensor number:

(1) if the sensor information is in SBUF, go to
the next observation

(2) if the sensor is not in SBUF, call subroutine
SGET to unpack the entry in SBLOC, and store
only 5 quantities for the sensor in SBUF, then
go to the next observation

(3) if SBUF is full (30 sensors), exit without error
indication. The retrieval routine GETSEN has an
error exit.

The sensor information must be moved, since SBLOC is
used for a working buffer and for temporary storage.
SBUF is the same buffer as BIBUF; BIBUF (bias buffer)
is no longer needed at this point.

214

SETSBIT
SPIRDEC
2 of 2

DESCRIPTION: SBUF Format
(continued)

SBUF + 0 00000SS3 Sensor Number

1 CO (radians) PHIRD

2 X (radians) XLAMBA

3 x / cos 9 XOVCT

4

i

Z CAPZ

i

i
i

i

145 OOOOOSSS

146 CO

147 X

148 x / cos 6

149 Z

150 ooooozzz

5 words / entry - to a maximum of 30 sensors - terminated
by OOOOOZZZ after the last entry.

215

SEW
SPIRDEC

PURPOSE: To move interpolated elements at time t to the
Adams-Bashforth buffer.

CALL SEQUENCE:

INPUT:

JMP SETW

ICK + 40

41

kl

-- L

a
>

= a

44

45

4>)

h_

h

OUTPUT: W + 5

6

L

a

8

9

10

11

= a

- h

SUBROUTINES: None

STORAGE

REQUIREMENTS:

DESCRIPTION:

4 Cells

ICK + 40 thru ICK + 47 contains elements at time t

computed by the DIVDIF subroutine. To compute the

x, y, z position at this time, these values must be

in W + 5 thru W + 11 to use the SURXYZ subroutine.

216

SINEL
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS;

DESCRIPTION:

To save initial elements for output

JMP SINEL

LPRINT =

AXPRINT =

AYPRINT =

HXPRINT =

HYPRINT =

HZPRINT =

LQ (deg)

xno

yno

xo

yo

z o
BPRINT = C A/m

HSUBQP = perigee altitude (km)

PAPRINT = period (minutes)

Input values in buffer
INELT - INELT+8

None

4 Cells

Moves input values to the INELT buffer in the
order indicated.

217

SORTOB
SPIRDtC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To sort the observations by time.

JMP SORTOB

MCOUNT = C/HLT, 0; C/HLT, N
N - nuribe- of negacive observation times

OANDE = C/HLT, 03LOC; C/HLT, [d,^X

See description

None

33 Cells

(1) Set the right address of TEMPI and TEMP2 to the
number of observarions minus one.
Set switch S0RT0B3 to sort the reservations in
true time order.

(2) EBLOC—>Inoei. Register 4
EBLOC + 10 —2>Index Register 5
C/HLT, 0BLOC; C/HLT, EBLOC—>QQ

(3) PREDBF-»Index Register 6

(4) Sort observations in tine order - make as many
passes through the observations as the number in
TEMPI, using TEMP2 to tell when one pass is complete,
TEMP2 will match TEMPI at ere start of each pass.

(5) Test MCOUNT:

(a) if = 0, exit

(b) if £ 0, zhen there are some observations
before epoch, (i.e. sw negative times).
The&e must be resorred in reverse order.

Example: buffer order would be
-2, -100, 2 100
since observations will be
retrieved in this order.

218

SUBOL'T
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To output the prediction ephemeris

JMP SUBOUT

NEWPAGE = page indicator

PFLAG = print option

X

Y

Z

XDOT

YDOT

ZDOT

•»■

HEDLIN

HEDLINI

VALLIN

VALLINI

= x

= y

= z

= X

= y

= z

= t (min)

) from SUBOUTI

According to value of PFLAG. (See description.)

System - GLOP, PANT

Program - PAGECON, PHLAH, BCDTIM

65 cells

If NEWPAGE = 0, then outputs headings at the top of
a new page, using locations HEDLIN and HEDLINI.

If PFLAG = ° t - 3, subroutine PHLAH is called to
compute 0, \, h.

If PFLAG = 1 or 3, then x, y, z, x, y, z, are
converted to output units of km and km/sec.

The values requested by PFLAG are then printed
and PAGECON is called to update the line count.

.21.9

SUBOUTI
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To initialize subroutine SUBOUT.

JMP SUBOUTI

PFLAG = 0, 1, 2, or 3 T47 (print option 7rom P card 4)

See description.

Program - PAGECON

14 cells

Sets up parameters for SUBOUT (HEDLIN, HEDLINI,
VALLIN, VALLINI) according to PTLAG.

Then use PAGECON to force a page and sets
NEWPAGE = 0.

If PFLAG = 0 or 2:

HEDLIN - C/TMA, LINE4; C/TIJ, U NE43

HEDLINI = 0 0

VALLIN = C/TMA, P0C7D; C/TIJ, HEDL23

VALLINI - 0 0

If LAG = 1

HEDLIN = C/TMA, LINE4; C/TIJ, LINE4A

HiiDLINI = 0 0

VALLIN = C/TMA, P0C7D; C/TIJ, HEDL21

VALLINI = 0 0

And sets switch SUB0UT2 to jump to SUB0UT7.

If PFLAG = 3

HEDLIN = C/TMA, LINE4, "/TU, LINE4B

HEDLINI = C/HLT, 0; C/TIJ, LINE4A

VALLIN = C/TMA, P0C7D; C/TIJ, HEDL23

VALLINI = C/HLT, 0; C/TIJ, HEDL21

And sets switch SUB0UT2 to jump to SUB0UT8.

220

SUBXYZ
SÖIRDEC

1 of 3

PURPOSE: To compute r, r from A, h, L

CALL SEQUENCE: JMP SUBXYZ
JMP (ERROR)
JMP NORMAL

INPUT: W + 5 = L

W + 6 - a
X

W + 7 = a
y

W + 8 = a
z

W + 9 = h
X

W + 10= h
y

W + 11= h
z

OUTPUT: X = X
Y = y
Z = z
XDOT = X
YDOT = y
ZDOT = z

plus necessary intermediäre quantities listed on. following
pages.

SUBROUTINES: Program - ARCTAN

STORAGE
REQUIREMENTS; 100 cells

221

I
SUBXYZ
SPIRDEC]
2 01 j

Kepler's Equation:
(1)

COSEO = cos (E + ü))

SINEO = sin (E + o3)

ECOSE = SINEO (a) + COSEO (a)
yn xn

QQ = i - ECOSE

ESINE = SINEO (a) - COSEO (a)
xn v yr/

Test: EPSI = i ESINE + U - EOI j
! 1 - ECOSE

if < e , iterate again to Eq. (1) after , EOI by
replacing to a maximum of 50 times,
then take error exit from sub- EOI - EPSI
routine l

if > e , continue

R = A (1 - ECOSE) = r

RDOT = (Va \|i / r) ESINE = r

RVDOT = (sa^ / r) , 1-e2 = rv

COSU = ESINEJd- 1-e2 a - a + COSEO a/r

yn xn

SINU = SINEO - a - a ESINE (1- /1-e2"1) a/r
yn xn

AR = a/r

UX = COSU ' N + SINU ' M
x x

UY = COSU ' N + SINU ' M
y y

UZ = COSU ' N + SINU " M
z z

VX = COSU " M - SINU ' N
x x

VY = COSU ' M - SINU ' N
y y

VZ = COSU ' M - SINU * N
z z

222

SL'BXYZ
SPIRDEC
3 of 3

X = r (Ux) = x

Y = r (Uy) = y

Z = L- (U) = z
z

XDOT = fTJ + r v V = x
X X

YDOT = f U +rvV = y
y y

ZDOT =fU +rvV =z
z z

223

TAPEW
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT :

OUTPUT:

To write a binary ephemeris tape on logical]

JMP TAPEW

W+l - t (min)
X (e.r.)
Y (e.r.)
Z (e.r.)
XDOT (e.r./kemin)
YDOT (e.r./kemin)
ZDOT (e.r./kemin)
TAPCNT = C/HLT, TAPBUF + X

One block on the binary ephemeris tape for XYZLA
subroutine when buffer is full.

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

System - SYS, SYSNO, SYS10

16 Cells

Adds t, x, y, z, x, y, z to tape output buffer (TAPBUF)
When the buffer is full, one block (128 words) is
written on tape. TAPCNT is updated.

224

I

I

wJKLm

TEMP
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute temperature at epoch.

JMP TEMP

F10AV = F10

F10

AP

= F

= Ar

10

ORGDAY - days from beginning of year to epoch= D

TEMPO = T0 (°K)

None

19 cells

T0 = 974° + 4.2° (F10 - 150) + 0.004° (?10 - 150)2

V0 = T0+ 1.9° (F10 - F10)

T0 = Ti + F10 sin An (D-60)
365

))|jo.39°- r
'+0.15° sin<2^ (D-1501

125

THGRC
SPIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To compute 9 at epoch

JMP THGRC

TOY = 0 OY, Y = BCD year

ORGTM = fraction of epoch day

THGRO = 6 from TLC subroutine
gr

ORGDAY = days since beginning of year

TO = days and fraction since beginning of year

THGR = 8
to

ORGTM = minutes in epoch day

Program - TLC, MOD2PI

13 Cells

THGR = 8 + (Days since beginning of year) (0.9856473354) +

(fraction of day) (360.9856473)

Converts ORGTM from fraction of day to minutes

226

WEIGHT
SPIPDEC
1 of 2

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To read the weight tape and set up the
weight and bias buffers.

JMP WEIGHT

Weights and biases on logical tape 7
WANDBI = C/HLT, WBUF; C/HLT, BIBUF
NXTWGTA = C/HLT, ABUF +120; C/HLT, 0

See description

System - PANT, SYS, SYSNO, SYS10
Program - XSRCH

82 Cells

This subroutine is called if WGTFLG = 1
(Column 2 on P Card 3), which indicates that
a weight tape is mounted and should be read.

The following procedure is executed:

(1) Read a block from logical tape 7 initially,
then only read a new block when all cards
in the block have been processed:

(a) if the first word of a card is ENDSIGMA,
the tape is complete, rewind logical 7
and exit.

(b) if not ENDSIGMA, unpack one card using
XSRCH

(1) Set WCTBUF = 00000SSS
where SSS = Sensor Number

(l.i Save the address of the next
card in NXTWGTA.

227

WEIGHT
SPIRDEC
2 of 2

I
I

DESCRIPTION:
(continued)

(2) Search WBUF to find a word of 00000ZZZ or
the same Sensor Number.

(a) if the Sensor Number is found, replace
the assembled valaes with ehe new values
after conversion as fellows:

WBUF (Weight Buffer) bIBJF (Bias Buffer)

Word 0 00000SSS Word 0 OOOOOSSS

1 1/Sp (e.r.) 1 -Bp ''e.r.)

2 1/CA (rad)
.-^ -BA (rad)

3 l/ah (rad) 3 -Bh (rad)

4 I/o (e.r/K) 4

5

-B (e.r/K)

-B (min)

Go to Step (1)

(b) if the sensor number is not found, but
00000ZZZ is found check to see if there
is room for another entry

(1) if there is no room (i.e. 30 sensors
have been entered), print a comment
and go to step (1), skipping the entry

(2) if there is room,follow same procedure
of storing and computing values at (2) (a),
also add a word of 00000ZZZ at the end
of each buffer.

228

I
WILBJR
SFIRDEC

PURPOSE:

CALL SEQUENCE:

INPUT:

OUTPUT:

SUBROUTINES:

STORAGE
REQUIREMENTS:

DESCRIPTION:

To print the inpat observations.

JMP WILBUR

Observations starting in location EBLOC,
terminated by a word of Z'^.

Observations printed in card format on hard c?pv,

Program - PAGECON, SEPSUB
System - PANT, GLOP, DKLOK

164 Cells

This subroutine is called by option, if Column 1 on
P Card 3=1. The observation? are in OBLOC format
and must be converted to card format for output.
The observations will be printed in the same order
as they are in the input deck, as they have not yet
been sorted. In addition, the column numbers will
be printed at the top of each page. A space will
appear between each field of the observation card
for clarity.

229

PURPOSE:

CALL SEQUENCE:

INPUT.

OUTPUT:

SUBROUTINES:

SIORAGE
REQUIREMENTS:

DESCRIPTION:

WSET.P
SPIPLEC

To set up W buffer for Adams-Bashfcrth integration

JMP WSETIP

XLO = L

AXO - a
>

AYO = a
xo

yo
AZO = a

HXO = h

HYO = b

HZO = h

zo

xo

yo

zc

W + 1 = F/O

W + 5 = XLO

W + 6 = AXO

W + 7 = AYO

W + 8 = AZO

W + 9 = HXO

W +10 = HYO

W +11 = HZO

(None)

10 Cells

Moves lenient sec at epoch, i.e. (W + 1
W buffer for subroutine ADBASH.

= TM to

I
i
i
I
I
I
I
I
I
I

230

APPENDIX

ADAMS-BASHFORTH INTEGRATION

The Adams-ßashforth (A-B) method together with the Runge-Kutta (R-K)
method of integration are employed in this subroutine. R~K is used as a starting
procedure so that an adequate number of step-wise solutions may be obtained to
build a difference table needed by the A-B method. The interval of integration is
automatically varied to keep the discrepancy between the integrated values and an
absolute error check within prescribed iimits.

1-1. R-K PROCEDURE FOR STARTING

To start the Adams-Bashforth procedure, a series of R-K integration
steps (at equal intervals of X) are generated until enough points are available
to set up the difference table needed by A-B.

The system of equations to be solved is given by.

Y = f i'X Y V v «

1=1,2,...,/

Y. (X) = Y.
l c i o

Let Y be the valie of \ at X=X and f the derivative of Y at X-X ^nd
let h be the step size of the independent variable X 'note chat the subscript "i"
has been omitted for simplicity,», ihe R-K method uses the classical fourth-order
formulas:

K, = hf (X , Y)
1 n n

K- = hf (X + 7 h, Y + 7 K.)
2 n 2 • n 2 1

231

K = hf (X + | h, Y + ^ K)
3 n z n z z

K, = hf (X + h, Y + IO
4 n n 3

Yn+1 = Yn + 6 (K1 + 2K2 + 2K3
+ V

a. Interval Control and Modifications

The method of interval control, while in the R-K section, concists of
generating, from the point X , Y and its derivative f , two R-K points Y ,
Y and their derivatives f ,,, f .0. With this information, a Simpson's Rule
• n+z . r , n±l . n-rz r

integration is performed on the integral:

/Sy = f"*2 f. dx

By Simpson's Rule:

«■? «n + 4f«H+W

The following evaluation is made for each of the seven equations:

AY"(Yn+2 ■ V| ■ '

e. = absolute error control supplied by the user for each equation.

If, lor any of the seven equations, the value 6 equals or .xceeds 0,
then h is reduced by 1U ' , and the integration is restarted from X , Y . This on
procedure is repeated until all ft are less than 0: then the values of X "'» Y
are returned to the user as valid points.

b. Difference Table Construction

After the appropriate number'5'' of R-K integration points have been
generateu, and seven values of f (j = 0, 1, ..., 6^ at equal steps are available,
then the difference table required by A-B is constructed.

*The program generates 4 R-K points per 1 A-B point, therefore, 25 R-K points
must be available to start A-B.

232

I
I

•e difference table is formed as follows:

V n x

0 ^n+1 2
Vn+1 l Vn+Z 3

0 Vm-2 2 Vn+3 4

Vn+2 j_ Vn+3 3 Vn+4 5

Vn+3 2 Vn+4 4 Vn+5 ß

Vn+3 j Vn+4 3 Vn+5 5 V

Vn+4 2 Vn+5 , Vn+6

Vn+4 j Vn+5 3 Vn+6

Vn+5 2 Vn+6

Vn+5 , Vn+6

n+6

Vn+6

where:

V„+ n+6

Vk = Vk " Vk"l

0
Vk= fk ; k = n> n+l: . n+6

After this difierence table has been formed, only the V7 ,,
difterences are savad for A-B computations.

. AB SIXTH ORDER INTEGRA 13 ON

The A-B integration method consists of:

1. Computing a predictor

x
2. Computing new differences, VJ , based on the

results of the predictor.

3. Computing the corrector (the final result;.

233

Ihe predictor is of the form

6 _r V
"n+1 = Y + h

n

B0 =
i

Bl = 1/2

B2 =
5/12

B3 =
3/8

B4" 251/720

B„ =
5 95/288

ko B' Vn

&6 = 19087/60480

The corrector is of the f orm
6 / r Y J. = Y + h r- R ' r? r

n+1 n L. r Vn+1 r=0

B0 = l

*[= -1/2

B2' = -1/12

B' - -1/24

B.' = -19/720
4

B5' = -3/160

B^ = »863/60480

234

The diiferen if VI Sid in the corrector are competed by
Vn+i 0

evaluating the derivative cf the predictor f ,, (O ,,» : then
n+i Vrr+i

•3. A-B INTERVAL CONIKOL AND MODIFICATION

Ait^i the corrector has been computed, the quantity ° is evaluated.

8 = predictor - corrector) - e

e. = absolute error control
l

If, for any equation, £>0; then the interval, h, will be decreased
by 1/2. New differences,^ (r=l, 2, ...6), based on half the old
interval are then computed by:

v„6

.125 .0625 .0390625 .02734375 .0205078125

V„(

0 .25 .125 .078125

0 0 .125 .09375

0 0 0 .0625

0 0 0 0

0 0 0 0

v„°

.0546875

.0703125

.0625

.03125

.041015625

.0546875

.0546875

.0390625

.015625

V,,1

Vn
2

i

! I
: v6i

With the new h and W , repeated attempts are made to integrate

from .< to x+b until, for all equations, Ä < 0,

When all 6 < 0, a new set of differences (J r,) will be
~~ vn+l

computed by evaluating the derivative of the corrector <§7),
then evaluating: ^

Vn+i Vn+i
r-1

; r=l, 2, ..., 6

235

The A-3 routine will check if a larger interval h may be .sed and still
keep the errcr within prescribed limits. The doubling criteria are.

1. ."here m_3t have previously been seven integrations
by AB without a change in h.

2. All 6 < - .956?

If these eric,
differences Of based

Vn+1 i

Vn+1

-, 3
n+i

r-, 4
^n+1

VrH-

Vn+1

! 0

i

i c

a ire satisfied, then h is doubled and a new sat cf
: t*ice the old interval are commuted bv:

-i

16 -32

-i

vJ.
i i

! Vn+1

-, 3
'n-"-l

24 V, n+1

I f— 5 !

«i iVnJl

Vn+1 Vr+1

The t ,, are retarned to the „ser at this point, ihe new W ,. and h
n+i vn+1

(if any; will be tried on the. r.ext see.'.

i 4.SPECIAL CONSIDERATION FOR Y
l,n

The first equation, V, (located at W+5), is carried modulo 2^ for all
computations within ADBASH. Tht&~feature allows absolute (only, errcr control to
be used for this variable. The value Y. , ,, , however, will not be modulo 2": b_t
will be Y, (as entered by the user) plus üY, by integration.

l,p. L,n

The "modulo 2TT" feature restricts the user to input Y in radians, and also
restricts the derivative routine to accept Y. in radians (mod 2T).

i,n

236

!

I

1-5. FLOW CHARTS AND WORK REGION DESCRIPTION

AD01

SAVE INDEX
REGISTERS

0 THRU 5

I
SAVE

INITIAL
VALUES

I
REPLACE Yi

WITH Yl FROM
PREVIOUS

INTEGRATION

FIGURE 1-1. ADAMS-BASHFORTH FLOW DIAGRAM (1 OF 6)
 ZU

©-

©■

@y

INITIAL
STEP SIZE

X
<'FOREWARDK

OR \P(
BACKWARD y~

BACKWARD

NEGATE
THE STEP

SIZE

ADDER1
F

DERIV

SAVE
DERIVATIVES
IN DIFFERENCE
AREA

AD 04 I
SAVE
INITIAL
DERIVATIVES

AD05 I
SET FLAG
FOR FIRST
OF TWO
R-K STEPS

=3"
A

INITIALIZE
A Y'8

I
UPDATE

Y's

I ADQ8
X + Ax

2
— X

ADDER2 I
DERIV

APQ9 I
UPDATE
A Y's

I
UPDATE
Y's

ADDER3 I
DERIV

AD10 A
I ■

UPDATE

A Y's

I
UPDATE

Y's

ADDER^

.FIGURE 1-1. ADAMS-BASHFORTH FLOW DIAGRAM (2 of 6)
238

9
UPDATE
A Y's

I
UPDATE
Y's

ADDER5

<

1
DERIV

AD14

SET FLAG
FOR SECOND
R-K STEP

HAVE
2 R-K STEPSN^ YES

BEEN
DONE

SAVE INITIAL
Y's FROM
FIRST

R-K STEP

I
SAVE

AY'S FROM
FIRST

R-K STEP

I
INITIALIZE
FOR SECOND
R-K STEP

EVALUATE
A Y BY

SIMPSONS
RULE
INTEGRATION

ERROR =
AY . AY

SIMP K *

:s
ERROR

WITHIN
PRESCRIBED
LIMITS F(

VAL£

'YES

NO
D

NO
ADP =
D/2.1B15

YES

/DX BE \ NO
/INCREASED X i \ NEXT y

XvTIME /

1 YES

Ü ">
L0u,t" A X

—•> A X
1 (<D

.FIGURE 1-1. ADAMS-BASH FORTH FLOW DIAGRAM (3 of 6)
239

AD18

REPLACE
THE INITIAL

Y'a

RESET
Y's FOR
DERIV

I
REPLACE
INITIAL

1 PY'g

| REINITIALIZE
DIFFERENCE
TABLE AREA

MiUt
10 ' A X

I
X — X

o

-J

RESET FLAG
FOR

CONSECUTIVE
R-K STEPS

©

AD20

UPDATE FLAG
FOR

CONSECUTIVE
RK STEPS

ADBASHX

AD21

SHIFT
PREVIOUS DY's
DOWN ONE

I
INSERT

LAST DY's
IN DY TABLE

I
INSERT

NEW DY's
IN DIFFERENCE
TABLE AREA

COMPUTE
DIFFERENCE
iTABLE

UPDATE A X
ACCORDING TO
THE DIFFERENCE
TABLE INTERVAL

B1J FIGURE 1-1 ADAMS-BASHFORTH FLOW DIAGRAM (A of 6)

240

ADDER6

AD27

COMPUTE
THE

CORRECTOR

ERROR =
PREDICTOR
CORRECTOR

UPDATE FLAG
FOR CONTINUOUS

A-B STEPS

ADDER 7_

(

I
DERIV

5

MULTIPLY
DIFFERENCES
TIMES THE
HALVING MATRIX

I
£ A X

— AX

I
X — X

o

RESET FLAG
FOR CONTINUOUS
A B
INTEGRATIONS

FIGURE 1-1. ADAMS-BASHFORTH FLOW DIAGRAM (5 of 6)

241

AD30 £
UPDATE
THE
DIFFERENCE
TABLE

ERROR -
PREDICTOR
- CORRECTOR

YES

AMI
MULTIPLY
DIFFERENCES
TIMES THE
DOUBLING
MATRIX

I
2 A X
-Ax

I
RESET FLAG

FOR CONTINUOUS
A-B STEPS

FIGURE 1-1. ADAMS-BASHFORTH FLOW DIAGRAM (6 of 6)
242

Description of W Buffer (Work Region)

Word

Not Used
T
AT to be attempted on next entry to ADBASH
T at step start
Integration direction; + or - any non zero number
L
a

z -i

'a

Y,i

W + 0
+ 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9
+10
+11
+12
+13

+14

+15

+16

+17

+18

For the variables listed above each column, the following locations contain:

Absolute Error Control

a

W + 36 W + 60 W + 84 W + 108 W + 132 W + 156 W + 180 VI
+ 37 + 61 + 85 + 10n + 133 + 157 + 181 v\
+ 38 + 62 + 86 + 110 + 134 + 158 + 182 v>
+ 39 + 63 + 87 + 111 + 135 + 159 + 183 v{
+ 40 + 64 + 88 + 112 + 136 + 160 + 184 v*
+ 41 + 65 + 89 + 113 + 137 + 161 + 185 vl
+ 42 + 66 + 90 + 114 + 138 + 162 + 186 vl

243

W + 187
+ 188
+ 189
+ 190
+ 191
+ 192
+ 193
+ 194
+ 195
+ 196
+ 197
+ 198
+ 199
+ 200
+ 201
+ 202

z-1

Derivatives

K
L1" total revolations (radians)
L partial revolution (radians)
L "

Y's at step start

locations contain:
For the variables* listed above each column, the following sets of 5

a

© W + 31 W + 55 W + 79 W + 103 W + 127 W + 151
z

W + 175

© + 32 + 56 + 80 + 104 + 128 + 152 + 176

@ + 33 + 57 + 81' + 105 + 129 + 153 + 177

© + 34 + 58 + 82 + 106 + 130 + 154 + 178

0 + 35 + 59 + 83 + 107 + 131 + 155 + 179

1. After a Range Kutta step:

@ Y at the half step

(2) Y at the step start

Q) AY if the second half step

0 A \of the first half step

(5) Y at the step start

2A4

i

2. After an Adams Bashforth step:

@ Predictor

©
©

©
(5) Predictor - Corrector)

ft
The predictor and corrector constants, B' , are stored as follows:

W + 26 B
o

+ 27 B'
o

+ 50 Bi

+ 51 K
+ 74 B2

+ 75 K
+ 98 s
+ 99 B3

+ 122 B4

+ 123 K
+ 146 B5

+ 147 B5

+ 170 B6

+ 171 B6

All locations not mentioned are used for temporary working storage,

245

I-6.HOW TO USE ADBASH

The remainder of this.-Appendix gives specific instructions in the use
of the f-o^raji.

ADBASH has been designed to integrate a system of first order differential
equations over some range of X from X0to X final♦ Given a set of initial conditions,
ADBASH will, on each successive jump to the subroutine, give a step by step solution
to the system of equations. The subroutine will automatically control the step size
so as to keep the error within the limits specified by the user.

To obtain values of Y., Y„, ..., Y , at discrete values of X, the user
should code his program to perform some type of interpolation, using points computed
by ADBASH that surround the point of interest. This type of coding will allow ADBASH
to work efficiently and use an optimum step size.

Any error exits from ADBASH must be coded into ADBASH by the user. An
error exit is provided at a + 1H.

T 1 ■ DERIVATIVE SUBROUTINE (SUPPLIED BY USER)

At each entry, the derivative subroutine must compute the derivatives of
the system, using the current values of X and the Y., and store the results in the
W buffer. L

The first instruction of the derivative subroutine must be: TJM exit.

The return instruction of t" e derivative subroutine must be: exit JMP 0.

Output Input

W + 1 X

+ 5 Y (mod 2TT;

+ 6 Y2

+ 7 V
'3

+ 8
\ '

+ 9 Y5

+ 10 Y6

+ 11 Y7

W + 187 Yi

+ 188 Y
2'

+ 189
*3

+ 190 V4

+ 191 Y5

+ 192 Y6

+ 193
*;

To minimize time the derivative subroutine should perform only the function
stated above

246

i

INITIALIZATION

3

J

J

be defined
Before the first of any series of calls to ADBASH, the following must

W (work) Region

W + 1 = X
o

+ 4 = direct! an of inte

+ 5 = Yi

+ 6 = Y2

+ 7 = Y3

+ 8 =
\

+ 9 = Y5

+10 = Y6

+11 = Y7

+12 = V
+13 =

%
+14

=

3
+15 =

'4 »
Absolute
error

+16 =

%
control

+17 = X
+ 18 M

Control Word

any non zero number

ADP - set this to 1/1T15

247

i/erivative Subroutine Calling Setup

The name of the user supplied derivative subroutine must be inserted
into the address portion of seven locations within ADBASH. These
locations are*

ADDER1, ADDER2, ADDER3, ADDER4,
ADDER5, ADDER6, ADDER7

This may be accomplished as follows:

TIJ NAME
TJM ADDER1
TJM ADDER2

IJM ADDER7

Optional Initialization

RKINDT (initial step size in fit. pt.)
This is defined as 0.35 within ADBASH but may be
changed by the user.

ADFERRK (number of R-K steps taken to generate one A-B point
This is defined as 4RK/1AB within ADBASH but may be
changed to any value below:

1/1 T15 = 2RK/1AB
1/1 T17 = 8RK/1AB
1/1 T18 =• 16RK/1AB
1/1 T19 = 32RK/1AB

248

1-9. SAMPLE FLOW CHART

J

The following diagram illustrates a typical application
using ADBASH:

i.
INSERT DEFIV.
SUBROUTINE
NAME INTO
A^DERl, ADDER2,

lADDER7

I
INITIALIZE

DIRECTION,
ERROR CONTROLS

(W REGION)

~T~
1/1T15

ADP

USE x AND y's
GENERATED BY
ADBASH AS PER
PROGRAM
REQUIREMENTS

 ►+ r
(JMP ""N

ADBASH)-—#
ERROR
RETURN

INTEGRATION
IS

COMPLETE
PROCEDE

1
1 FIGURE 1-2. ADBASH APPLICATION

1
249

I

I -.0. TO USE RUNGE-KUTTA INTEGRATION ONLY

During a series of jumps to ADBASH, the user may restrict the procedure
to use Runge-Kutta integration only.

To use R-K only:

1. Set ADP = 1/1T15 before the first of a series of jumps
to ADBASH.

2. Before the second and each successive call to ADBASH,
set ADP as follows:

Option I: ADP = D/2.1B15; This will permit
ADBASH to decrease or increase the
step size as prescribed by the
error controls.

Option II: ADP = D/2.2B15; This will permit
ADBASH only to decrease the step
size as prescribed by the error
controls.

250

