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ABSTRACT

Considering a locking material prior to compaction as a special case of a
nonlinearly hardening elastic material, conditions at a discontinuity--a
locking front--are analyzed on the basis of three dimensional theory. This
study leads to the important result that the major compressive principal
stress at a locking front must always be normal to the front, even if the
front is not plane. Based on this general result, the effect of a uniform
step pressure traveling with subseismic velocity on the surface of a half-
space is obtained for the case of a locking material which after compaction
has elastic-Coulomb behavior. Such a material acts linearly elastic if the
state of stress does not overcome internal friction, but slip occurs if the
stresses reach a critical state defined by Coulomb friction. As a special
case the solution applies also for a material which is linearly elastic

after compaction. The stress, velocity and acceleration histories due to
the traveling step pressure are discussed and compared to those in the one
dimensional case of a suddenly applied uniform surface pressure.
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LIST OF SYMBOIS

a Acceleration.

c , c Velocities of P- and S-waves in an elastic medium.

C, D Constants of integration.

E Young's modulus.

f(p) Function of (.

F(II) Function of I,

I l 1 12 , 13 Invariants of strain tensor.

k Number defining behavior of locking materials, 0 < k < 1.

L Superscript in a L, indicating value a't locking.

N In Section II: a positive number.

N In Section III: constant of integration.

p Intensity of step load on surface.

r Radius in polar system of coordinates r, (.

s > 0 Quantity defining cohesion.

S
S Superscript in e , indicating: due to slip.

t Time.

T Superscript in e , indicating: total.

u, ux  Uy , uL Particle velocity, its x- and y-components, and value

directly behind locking front, respectively.

U Propagation velocity of a shock front, or of a locking front.

V Velocity of propagation of surface pressure.

W Strain energy function.

Inclination of locking front with respect to surface.

7 xy Shear strain.

7 " 7(cp) Angle defining direction of principal stress a1 , Fig. 15.
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Aij ,C Aij Increments of oij ) ij•

C Locking strain (positive if compression).

'ij el ) C2 Strains and principal strains, respectively (positive if tensile).

T Angle in system of polar coordinates r, cp.
/

Lame's constants.

x > 0, LO > 0 Constants.

V Poisson's ratio.

p Density.

a > 0 Defined by Eq. (2-41).

oy ij 1 U2  Stresses and principal stresses, respectively (positive if

tensile).

T Shear stress.
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I INTRODUCTION

A preceding report[1], considers the effect of a step pressure prG

gressing with velocity V on the surface of a half-.space, Fig. 1, when the

behavior of the material is governed by internal Coulomb friction. The in-

vestigation [lj studies steady-state solutions, assuming that the material

acts linearly elastic if the state of stress does not overcome internal fric-

tion, but slip occurs if the stresses reach a critical state defined by inter-

nal Coulomb friction. Approximations made in the analysis permit closed so-

lutions, but restrict the result to velocities V below a certain limit.

The present investigation concerns the equivalent steady-state problem,

Fig. 2, for an ideal locking material which, after compaction (i.e., after lockin) I
has the elastic-Coulomb properties assumed in [l. As the first step in the

analysis a study of the locking front is made. Considering the locking materia'L

pricr to compaction as a special case of a nonlinearly elastic material, available

three dimensional theory for nonlinearly elastic media is used to obtain a condition

on the state of stress at a front of discontinuity in such a medium. Thereafter,

the condition obtained at the front, and the approximate procedure developed in

[i] for materials subject to Coulomb friction and slip are jointly applied,

leading to results in closed form. The approximation restricts the results to

velocities V which are less than a certain limit.

If the value of the internal friction is sufficiently large, slip will not

occur, and the present analysis contains the solution for the problem shown in

Fig. 2 for a locking material which acts linearly elastic after compaction.

The problem of one dimensional wave propagation in such a material has been

treated [2], but the two dimensional case, Fig. 2, has not been considered pre-

viously.

Numbers in brackets refer to References on page 53.
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II THREE DIMENSIONAL CONSIDERATION OF LOCKING FRONTS

The problem of determining the effect of a uniform pressure

p(t) acting on the surface of a half-space, Fig. 3, involves only

one dimensional strain, so that it is sufficient to know the stress-

strain diagram relating axx and cxx $ For soils, when such diagram

has the character of Fig. 4a, approximate results have been obtained

by replacing the actual diagram by that of ideal locking materials,

Fig. 4b or c, [3]. The simplification implies that all stresses vanish

until the strain Cxx ) which in this case equals the volumetric strain,

has reached a certain value defining the point of compaction.

In the case of one dimensional wave propagation, Fig. 3, symmetry

requires that the stress at the plane locking front be normal to this

front (i.e., there can be no shear stress). The velocity V of the

front as a function of a can then be obtained from the Rankine-
xx

Hugoniot relations, using the stress-strain diagram, Fig. i.

In more general problems in two or three dimensions a sufficiently

small element of the locking front may still be considered plane, Fig. 5,

but the argument of symmetry cannot be used to draw the conclusions that

the resultant of the stress just behind the front is normal to the front

and that the shear stress TM, vanishes. Nevertheless, it will be shown
All

below that the above conclusion is valid in the multidimensional case

too, but the demonstration requires a much more involved reasoning.
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a) Non-linear Elastic Materials

Postponing the complications due to the effect of slip in a Coulomb

type material, this section is restricted to non-linear elastic materials

which harden with reduction in volume. Conclusions drawn can then be

appli2d to ideal locking materials, because they are special cases of such

a non-linearity.

To study locking fronts, a mathematical description of three dimensional

behavior is required for a homogeneous, non-linear material which acts in

one dimensional strain according to Fig. 4a. Using the concept of a "strain-

energy function" W, [4, p. 95J, the stresses aij in an elastic material may

be obtained as derivatives of W with respect to the strains ¢iJ '

~(2-1)
ii ij =iiij

where the subscripts i and j become, in turn the Cartesian coordinates
.

x, y and z. For isotropic materials the strain energy function must be

invariant to transformation of the coordinates, which requires W to be a

function of the invariants of the strain tensor. For linear elastic

materials this leads [4, p. 102) to the function

Note that [4] uses different symbu.s and a different definition of the

shear strain. To obtain the equations in this paper the following

substitutions were made: The stresses in [4], Xx , Xy , etc., become

a , ) a , etc., respectively; longitudinal strains exx , eyy , ezz

become e , y , e ' while the shear strains exy , eyz , ezx become

2exy , 2y , and 2,x . As a result of the change in definition of

the shear strains, the quantities cij are components of a tensor.



X 2P (I1 ) - 211 12 (2-2)

where A and p are constants, while

I1 - +e +C

= xx yy zz

(2-3)
+ + 2  2 2

2 yy zz zz xx xx yy Ny yz zx

I1 and 12 are invariants of the strain tensor. It is noted that I

describes the change in volume of an element.

To describe the most general case of an isotropic non-linear

material, the constants X Fnd p in Eq. (2-2) should be considered as

functions of all invariants of the strain, of which there are three.

In addition to I1 and I2) given by Eqs. (2-3), there is a third one

[5, p. 180, Eq. (25.11))

I=e C e + 2ee C e 2
3 xx yy zz xy yz zx xx yz

(2-3a)

2 2
yy xz zz xy

However, in order to describe a material which becomes harder with

consolidation, i.e., with volume change, X and P should be just func-

tions of i1, which defines the volumetric strain. it will be shown

beloT, that for the present purpcse, one may assume that A and p are

proportional,

'4



X = X o F( 1 )

(2-4)

P t F(I1)

where X and Po are positive values having the dimensions of Lame's

constants X and p, and the function F(II) is always positive. In

order to represent a hardening material, the derivative of F must

satisfy the inequality

dF 0 (2-5)
d
I

when I < 0. Substitution of Eqs. (2-4) into (2-2) gives

W 020 F(1) 112 _ 2po F( 1) 12 (2-6)

Application of Eqs. (2-1) furnishes, after rearrangement, the stress-

strain relations

aii = F(II)(X0 Ii + 21o eii) +2 F'(I,)[(X + 2p ) I 2

(2-7)

and for i j

dii = 2F(II) P e (2-3)

where
dF(Il )F,(1) 1  (2-9)
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To demonstrate that the assumption made in writing Eqs. (2-4)

is permissible, it will be shown that it leads to a diagram of the

type of Fig. 4 in the case of uni-axial strain in the direction of

the x-axis when all values e ij vanish except e x. For this case

Eqs. (2-3) give I1 = Cxx and 12 = 0, such that F(I1) = F(exx),

F'(I1) = F'(e x). The stress-strain relation is obtained by substi-

tuting these expressions into Eq. (2-7) for i = x:

a = (X + 2)[e+1 )2 F'(cxx)] (2-10)
.x = o2xx xx xx

By definition, the function F is positive and by virtue of Eq. (2-5)

F increases for negative (compressive) strains with 1 xx. The term

Cxx F( xx) in Eq. (2-10) has therefore the character of Fig. 4a, in-

cluding the negative sign in the range exx < 0. The other term,

1 e2 Ff(exx) is also negative. To assure that its absolute value2 xx x

also increases similarly, we prescribe

F" (cxx) > 0 (2-11)

Both terms having the character of Fig. 4a, the entire expression

will have the same character. The strain-energy function (2-6) fur-

nishes therefore a three dimensional expression for materials having

a one dimensional stress-strain diagram of the type of Fig. 4, pro-

vided the function F satisfies Eqs. (2-5) and (11). [An example of

a function satisfying the requirements is F = exp(-Nexx), where N

is a positive number. It is easily verified that Eq. (2-10) gives

6



a a-c diagra-i of the type of Fig. 4a.

The stress-strain relation (2-i) and the expression (2-6) for

W can now be introduced into the Rankine-Hugoniot relations. Con-

sider two dimensional wave propagation for the case of plane strain.

Let the x and y axes, respectively, be normal and tangential to the

front, Fig. 6, while the z-axis is normal to the plane of the paper.

Fig. 6 indicates a rectangular, infinitesimally small element,

in its original shape ABCD, and in its distorted shape A'B'CD, after

the wave front has passed over it. Let U be the propagation velocity

of the front. In the time dt the wave front has traveled the distance

U dt = AD, while point A hes traveled to A', the x and y components

of its motion being u dt and u dt, respectively, where u , u arex y x y

the components of the particle velocities. From Fig. 6 one may read

directly the longitudinal strain

uXx "-U (2-12)
xx U

The minus sign is due to the fact that the positive directions of

a xand u are opposite each other. Noting further that the con-

ventional shear strain 7xy equals 2e , one finds similarly

u
7 = 2¢xy = - -. (2-1-3)7xy x

In the limit dt - 0 the distance AB equals A'B' such that on the shock

front eyy = 0. Further, because of plane strain, cxz = Cyz = ezz = 0



such that only a and e need be considered further. Eqs. (2-3)

become therefore

1- xx
(2-14)

2
12= xy

and from Eq. (2-7):

axx = (Xo + Po) exx F(Cxx) + : [(Xo + 2o ) e 2 + 4o e2 '(cxx)
2 ~xx Y X

(2-15)

11 = azz = Xo xx F(Cxx) +  (Xo + 2o) x+4 C2 F'(x

yy z 0 X 2 0 0 0 XY xx

(2-16)

The shear stresses are obtained from Eq. (2-8):

ax- 2p% exy F(cxx) (2-17)

a =a a = 0 (2-18)

In the time dt in which the front engulfs the element ABCD,

Fig. 6, the x and y-components of the velocities of all the particles

in the element are changed by ux and Uy, respectively. TMe mass of

the element being p U dt dy dz, the change in momentum in the x-

direction can be expressed by the stress Cxx,

p U u = - o (2-19)

8



where p is the density. A similar relation applies for the y-

direction

p U u = - V (2-20)

The minus signs appear again because the directions of the tresses

shown in Fig. 6 are opposite to the positive directions of the velo-

cities. Substituting the values of u and u into Eqs. (2-12, 13),x y

one finds

a =p U C (2-21)

a =2p Ue (2-22)

Eqs. (2-21) and (2-15) give

2 1 2 2 F'(exx)
p U2 = (x ° + 2P o ) F(e ) + x [Xo+ 2p) C + 4p ] e

(2-23)

The division by e xx, required to obtain this result, is always per-

mitted, because a consolidation front is being investigated, such

that exx 0. Substituting Eq. (2-22) into (2-17) gives, after

division by 2exy, the alternative relation

PU2 = P 0 F(e X) (2-24)

This equation applies only if e / 0, the division not being possi-

9



ble if =0.xy

If the shear strain eXy does not vanish, Eqs. (2-23, 24)

should both be valid; however, it can be shown easily that this is

not the case. Noting Eq , (2-5) and exx < 0, X > 01 P 0 0, both

terms on the right hand side of Eq. (2-23) are positive, such that

p U> (X0 + 2%) F(cxx) (2-.25)

This is incompatible with Eq. (2-24). The contradiction disappears

only if e = 0. In this case Eqs. (2-22 and 20) givexy

a =0 , u = 0 (2-26)xyy

It is therefore concluded that on a compaction front the stress re-

sultant and the particle velocity are normal to the front.

Tntroduction of e = 0 into Eqs. (2-15, 16) gives the follow-xy

ing expressions for the stresses at the front:

Xo+ L 2

axx =(XO + 2i'O) exx F(exx) + C 2 F'(e ) (2-27)o x x 2 xx xx

xw+2p. 2
a = =zz X0 Cxx F(exx) + 2 0 xxF'(exx) (2-28)

X 0 Po and F being by definition positive, while exx < 0 (compac-

tion) amd F' < 0 [see Eq. (2-5)), all terms on the right-hand side

of Eqs. (2-27, 28) are necessarily negative. Using these facts,

10



the relative magnitudes of axx and a = a may be compared. The

yy zz

expressions for these stresses differ only in the term containing

F(x and one finds the inequality

I 1 a 1 - i ozzl (2-29)

II

ii 11
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b) Locking Materials, Linearily Elastic after Compaction

The results of Section a) will now be applied to an ideal

locking material having a uni-axial stress-strain diagram of the

type Fig. 4c, i.e. a material which becomes linearily elastic after

locking. Using a limiting process, the diagram 4c is being considered

as a special case of the diagram in Fig. 7, in the limit aL-)0 . The
xx

material corresponding to Fig. 7 is defined as follows:

For compressive strains between 0 and -e, the stresses are

obtained from the nol .linear relations (2-27, 28), reaching values

aL and L = aL for e = -e. For strains beyond this limit the
xx yy zz xx

material is deemed to be linear, having material constants E and v.

The stress increments Aaii after locking,

L (2-30)
S3oii = Cii - aii

can be obtained from the strain increments Ai beyond the locking

strain by using the conventional elastic relations. The x-component

of the strain change is

Lexx =C +e (2-31)

All other components of the strain eij vanish at the front, Eqs.

(2-13a, 13b, 26a), such that all increments Asj also vanish, except

A xx. In this situation (transverse strains being inhibited), the

ratio of the transverse and longitudinal stresses according to linear

theory of elasticity is L , such that
1-V

12



A a A cr A La (-2
yy zz 1x xA (2-32)

Consider now Eq. (2-30) in the limit

lim a L- 0 (2-33)xx

Because the inequality (2-29) requires the absolute values of ayy

and azz to be less than I xx 1 it is necessary that

limoa L = lim aL -* 0 (2-33b) I
L

Going to the limit cia O Eq. (2-30) becomes therefore

711 = Aa ii (2-34)

and substitution into Eq. (2-32) leads to a relation for the stresses

just behind the consolidation front

V
a =a 2-5
yy zz 1-V xx (-5

while according to Section a) all shear stresses vanish:

a = a Y =azx 0 (2-35a)xy yz z

These relations apply immediately behind the compaction front, -md

will be used in Section III as boundary conditions when determining

13



the stresses after compaction at points anywhere behind the front.

The value of the increment of the strain Aexx in terms of

Aaxx obtained from the conventional elastic relations is

A x " E(1-v) Aaxx (2-36)

or from Eqs. (2-31) and (2-34)

l-v-2v2
x C + E(l-v) "xx (2-37)

This relation applies for the stress-strain diagram Fig. 4c. To

obtain the relation corresponding to Fig. 4b, let E-, with the re-

sult

Cxx =- (2-38)

This equation defines the strain immediately behind the compaction

front. Substituting this value into Eq. (2-21) gives the velocity

U of the front

0xx (2-39)
U - P ¢

Fog

Due to axx < 0 (compression), the expression under the root is posi-

tive, as it should be. (Note that only the positive value of the

square root has physical meaning.)



c) Locking Materials, Linearly Elastic but Subject to Slip after

Compaction

Consider finally locking fronts in two dimensional problems

of plane strain for an ideal locking material which behaves linearly

elastic provided internal friction of the Coulomb type is not over-

come, but which will slip when the stresses satisfy Coulomb's rule.

Ref. [1, p. 6, 7] contains for this case a formulation of the

slip condition which is convenient for the present study of the state

of stress at the compaction front. Let a1, "2 be the major and minor

principal stresses in the plane of action, both being restricted to

compression, such that

a< , a2 <o , -a l  >-a 2  (2-40)

Defining a quantity a by the relation

a = " (a1 + s) (2-41)

the possible states of stress in the material are further restricted

to

-" 2 ;- k a (2-42)

where k is a positive number, k < l1, which is related to the angle

of interior friction, while s > 0 defines the value of cohesion.

No slip can occur if

-a 2 > k a (2-43)

15
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while slip occurs if

-a 2 = k a (2-4i4)

Values of -a2 < k a can, by definition, not occur in this material.

The above conditions involve only the principal stresses

a1 and C2 , in the plane of the two dimensional problem. In order

that this formulation remains valid the third stress 3 must lie be-

tween the other two, -aI 
> _ a3 

> -a 2 .

Concerning the strains, it was assumed in [1] that the plas-

tic (or slip) deformations occur without volume change, while the

elastic deformations are negligible. In the present case, a more

refined definition must be derived, allowing for the elastic strains.

Retaining the result obtained in Section a), stating that the

stress resultant at the compaction front is normal to this front,

the state of stress and the associated strains can be obtained re-

latively simply. Consider a rectangular element ABCD, Fig. 8, as

the compaction front passes over it, and let x be a coordinate at

right angles to the front. On the front, the tangential strains

must vanish such that the only non-vanishing strain is e T , where

the superscript T indicates total strain from all causes. For an

elastic-plastic material this total strain is the sum of an elastic

contribution (in the present case non-linear) and of the slip strain,

and we have the relations

16



S T
xx xx xx

e + C =6 C T= (2-45)
Xx yy yy

CZ + CZS = CTZZ
zz zz -o

where e are the elastic strains, e i the slip strains, and y,z are

coordinates in the plane of the front. Adding the three equations

gives

T S S e=x- (C + C +z) (Cx+ C + (I) (2-.6)

The sum of the three strains c is the volumetric strain v and

Ssimilarly the cum of the three strains cii is the volume change dur-

ing slip. In conformity with [1) the latter volume change vanishes,

such that

TCxx =Cv (2-4i7)

The total strain e T is therefore equal to the elastic volume change.
xx

For an ideal locking material, corresponding to Fig. 4b, the volume

change does not depend on the stress level, c. = -e, or

T (2-48)

where e is the locking strain. Eq. (2-48) is identical with Eq.

(2-38) and the velocity of the compaction front is again given by

Eq. (2-39).

17



The state of stress in case of slip is of course different

from the elastic case, Eq. (2-35). Using Eqs. (2-41 and 44), the

major principal stress is a, a-,xx while a2 = ayy, and one finds

the tangential stress

ay =k(ar + s) (2-49)1

If cohesion vanishes, s = o, and

a k a (2-50)yy x

This value of the stress a applies inmediately behind the com-yy

paction front, and will be used later as boundary condition when

determining the stress field behind the front.

Eqs. (2-49) and (2-50) apply only if slip actually occurs,

which depends on the relative values of k and v. To decide if slip

occurs, consider Eq. (2-35) for ayy without slip,

S=(2-51)y-yl-v- xx

If in the case without cohesion

1V : k (2-5P)1-V

Eq. (2-43) is not satisfied, such that slip must occur and Eq. (2-50)

is to be used. If on the other hand

18



:1;> k (2-53)

Eq. (2-4~3) is satisfied such that the behavior a. the front is elas-

tic and the elastic relation (2-35) applies.

19



III EFFECT OF A PROGRESSING STEP LOAD ON THE SURFACE OF A HALF-SPACE

The principal subject of this study is the case of locking mater.als which

may slip after compaction. However, for purposes of presentation it is more

convenient to consider first the less interesting case of a materi.al which,
I

after locking, acts elastically, without slip. The latter material is con-

sidered in this Section as Case A, while the material with slip is considered

as Case B.

Case A. After Locking, the Material is Elastic.

Figure 9 indicates the progressing step load and a system of polar coor-

dinates y, r moving with the load. Dimensional considerations, similar to those

used in (1], require that in the present problem the stresses be proportional

to the load p, but otherwise solely functions of the variable cp,

a, T ... = p f(CP)

The fact that the stresses are only a function of cp implies that the locking

front is a plane, inclined at an as yet unknown angle tp =

The state of stress in the wedge of angle 0 behind the front is governed

by the appropriate equations of elasticity. In similarity to [1], the present

analysis will be restricted to velocities V which are a fraction of the velocities

c and c of wave propagation in the elastic material after locking. The differ-p s

ential equations for the stresses in polar coordinates for this case are given

in (1, Eq. (A-4')5), p. 42 and 43]

20



dTa
- + 0r  %
d(5 r Cp

do
'- + 2T 0 o (3-1)

drp

d2# 2 (Or + a )-

where ar a aP are the normal stresses in the r- and cp- directions, while T is

the shear stress. On the surface p - 0, the boundary conditions are

a(o) - p 7() - o (3-2)

while behind the compaction front, at cp - 0, the conditions (2-35) obtained

in Section IIb apply. Noting that the coordinates x, y, z in these conditions

are normal, and parallel to the front, respectively, the stress symbols are to

be interpreted as follows:

0 - U , 0 -- T

xx %p yy r xy

such that one has two additional conditions:

Cyr(O) -"v o( ) (3-3a)

T(O) - 0 • (3-3b)

The solution of the differential equations (3-1) satisfying the two

conditions (3-2) may be taken directly from Ref. (1] (Eq. A-7),

Sp - D(I + cos 2p) - '(29+sin

o-- p - D( - cos 2) - C(2- sin 29) (3-4)

T- D sin 2p + C(l - cos 2y)
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where C and D are constants to be determined from Eqs. (3-3). It can be

verified by substitution that the second of these equations is satisfied if

C = - N cos 8 D - N sin 8 (3-5)

where N is a new constant to be determined from the remaining boundary

condition (3-3a). Substitution of Eqs. (3-5) and (3-3a) into Eqs. (3-4),

gives two simultaneous linear equations on N and a (). Determining a (8)

one finds

S - p (3-6)C(8 ,., + (1-2v,) 0 cot 0

This equation contains the still unknown angle 0. To determine the latter

the relation (2-39) for the velocity U of the shock and compaction front

is to be used (note ax a )

U2  a " -)(3-7)PC

The velocity U of the front must be the component at a right angle to this

front of the velocity V of the load, requiring

U - V sin 0 (3-8)

Eqs. (3-6, 7, and 8) give

V2  _1- (3-9)
pe V sin2 0 + (1-2v) sin 0 cos 0

This equation defines 0 in terms of V. It is simpler, however, to use this

equation to compute V for given values of 0. If the relationship between V

and 0 is plotted for meaningful values of 0 < v < i , a curve of the type shown

in Figure 10 for V - 1/3 is obtained. The velocity V has a minimumVcr , and
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there are two values of the angle 0 for each value V > V . The criticalcr

minimum value of V occurs for a critical value of the wedge angle 8cr < n/2.

(There are also values 0 > 2.03 in Fig. 10 where V2 < 0. This range of

imaginary velocities V is physically meaningless.)

0 as function of V is double-valued, but can be made single-valued through

elimination of one of the values 0 by qualitative reasoning. One is interested

in a steady state which is the long-time solution to a load p applied to an

expanding region, such that 0 should be less than T7/2, Figure 11. If 0 > 1/2,

Figure 12, one would find the following unreasonable situation. Just behind the

shock front, the particle velocity is necessarily at right angles to the front,

and in case of Figure 12, the velocity would be upward. As the particle velocity

further behind the front changes only slightly from the value at the front, the

downward loads p would produce upward velocities, whizh is not possible. Among

the steady-state solutions contained in Eq. (3-9), those for 0 > rr/2, while

mathematically correct, are physically not appropriate. By reasoning further, that,

in the range - > V > V where solutions exist at all, the solutions ought to be- cr

continuous, we conclude that the solutions for angles in the range r < 8 < n/2
cr

should also be eliminated, and only the range

0 < 0< Ocr (3-10)

furnishes meaningful solutions. In the example, Figure 10, the applicable

values of V are shown as a solid line. The value of P can be found by differen-
cr

tiation of Eq. (3-9), which leads to the condition

tan (20c)
- 2(1-2v) (3-11)
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V

The fact that no steady-state solution was found if the velocity V is

less than a critical value, Vcr , requires discussion. if one considers the

problem of a half-space subjected to an expanding load p, the solution may have

the character shown in Figure 11, where the locking front and the leading edge

- of the pressure p meet at point A. However, it is also possible that the locking

front is a "detached" front, Figure 13, moving ahead of the load p. In this case

the "steady-state" solution, which is an approximate solution near the front of

the applied load, point A, is simply the Huth-Cole solution [6], because in the

vicinity of A the material is elastic and the corapaction front has moved far

away.

Substituting 0cr from Eq. (3-11) into Eq. (3-9), it will be noted that V2

is proportional to p/Pc such that the critical velocity V r is proportional to

crr
/p, and V cr increases with the applied pressure.

Equation (3-6) permits the determination of the stress a at the locking

front, the value of which may be shown to be the maximum of a anywhere. Figure 14

gives a plot of - a/P as function of V, indicating that a varies only slightly,

from unity for V -a up to -1-.37 for V - Vcr *

Case B. After Locking, the Material is Elastic, but Subject to Slip.

For this material, the conditions at the compaction front have been con-

sidered in Section IIc. The relations between the stresses at the front depend

on the relative values of Poisson's ratio v and of the material parameter k.

If, see Eq. (2-51),

< k (3-.12)
1-v -
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slip will occur in an infinitely thin region immediately at the locking front,

and the relations between the normal and tangential stresses immediately be-

hind the front are given by Eq. (2-50). If on the other hand,

-v > k (3-13)

the material at the front will remain elastic, and Eq. (2-35) applies.

Consider first materials where Eq. (3-12) holds, such that Eq. (2-50)
0

applies. Using again the system cf polar coordinates r, p shown in Fig. 9,

the state of stress in the wedge-shaped region 0 < tp < 0 will be subject to

the following boundary conditions:

a r ( ) - k a 1P(0) (3-14a) !

T(O) - 0 (3-14b)

a (0) - - p (3-14c)

T(o) 0 (3-14d)

In the interior of the wedge, the behavior of the material was des-

cribed in Section IIc by a set of equations and inequalities, Eqs. (2-40 to 44).

To simplify the present treatment materials without cohesion will be considered,

such that the quantity s in Eq. (2-41) vanishes, s - 0.

Equations (3-14) give conditions for the stresses at the boundaries of

the wed. e formed by the surface and by the co-action front, but the determi-

nation of the stresses within the wedge is complicated by the fact that one does

not know in this stage in what portion of the wedge slip occurs, and in what

portions the material will act elastically. It will be demonstrated hereafter

that elastic behavior occurs everywhere in the interior of the wedge.
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To show this, the elastic solution will be obtained from the differential

Eqs. (3-1) used in Section A, in conjunction with the boundary conditions

(3-14) appropriate for the case of slip at the compaction front.

Noting that the present boundary conditions (3-14c, d) are identical

with Eqs. (3-2) in Section A, the solution (3-4) of the differential Eqs. (3-1)

applies again,

ar - - p - D( + cos 2 ) - C( + sin 2)

a - - p -D(l - cos ) - C( - sin 2cp) (3-15)

T - D sin 2cp + C(l - cos 2cp)

where the arbitrary constants C and D will be determined from the boundary

conditions (3-14a, b). The second of these conditions is satisfied if

C -- N cos D- N sin (3-16)

where N is a new constant to be determined from Eq. (3-14a). Substitution of

Eqs. (3-14a) and (3-16) into Eq. (3-15) for p - 8 gives two siaultaneous

equations on N and a (). One finds

Cy p (3-17)

and

N -2 (3-18)
20 cos 0 + 1- sin 0

To confirm the claim that the stresses everywhere in the wedge are such

that no slip occurs and that the solution (3-15) is appropriate, it is con-

venient to express the stresses ar , a and T in terms of the principal stresses
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cI and c2 and of the angl. 7 y(cp) which the direction of 01 makes with the

radial, Figure 15. Proceeding similar to the approach in (1, p. 43, Eqs.

(A-8 to 10)], the principal stresses 01 and a2 are expressed by two functions

of cp, namely a z a(y0) an(, k (*p),

al -a
1 (3-19)

02 n - ka

Using the conventional expressions for the stresses in terms of the principal

stresses, one finds

a r a 1Cos 2 + a2 sin2 7 . - (1-4)a cos 27 - K

2 2 2 2
a Y a1 sin 7 + a cosy - - (1-k)a sin y- ka (3-20)

T (a1 - a2) sin 7 cos 7w - (l-R)a sin 7 cos 7

Elimination of a and 1 from these equations yields a relation between 0r

a T and 7

a- a
T 2 T tan 27 - 0 (3-21)

Alternatively, a may be eliminated from the first two Eqs. (3-20) with the

result

Cr - ar 1 (3-22)

l+k cos 27 ar + a

The stresses r ) a and -1 for any value of cp &re given by Eqs. (3-15)r If

- lf the values of C, D, and N from Eqs. (3-16, 18) are substituted. To show

that no slip occuri; in the interior of the wedge, it will be shown that the
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ratio of the principal stresses obtained from Eqs. (3-19)

a2/ 1 - (3-23)

remains within required limits. If aI is the major stress, - a> - a2 slip

will not occur if k > k. However, the formulation (3-20) does not assure

that cI is the major principal stress. If a2 is the major stress, slip will

not occur if k < l/k, such that the general requirement for elastic behavior

without slip becomes

l/k > £> k (3-24)

In similarity to (1, Appendix A], this inequality will be confirmed

step by step in various locations. As a first step, the behavior of the

function k(p) near cp - is considered.

Due to the boundary conditions (3-14a, b), a and a in the location
r

cp are the major and minor principal stresses, respectively, such that by

selecting a - a1 the values of k(5) and y(O) become:

i(R) - k (3-25a)

y(P) - n/2 (3-25b)

To determine the sign of the derivative of k near cp - 0, Eqs. (3-16) are sub-

stituted into Eqs. (3-15). and the result is substituted into Eq. (3-22):

1-R ,, N sin(O 2y) (3-26)

14 cos 2y(p + N(sin S - 2y cos

Taking the derivative of this expression with respect to cp, noting

Eq. (3-25b), and that N according to Eq. (3-18) does not depend on (p, one finds
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d (L-Q k 4N 2 sin 8 cos 0- d J k) 2(3-27)
d4 1+k [p + N(sin 8 - 28 cos 8)]2

N being a real number, the sign of the above expression in the range 0 < 8 < TT

is necessarily controlled by the term cos 8, or

sign d 1-k - sign [cos 8] (3-28)
dyp \l+kj 8M

The value of R(8) - k is by definition in the range 0 < k < 1, as consequence

of which the sign of the derivative of k and of 1-_ are opposite, or finally
14

sign [i (8)] = sign [- cos 8] (3-29)

Equation (3-24) requires that the value of ,k(cp) in the interior of the

wedge must be larger than the value at the boundary, £(8) - k, such that the

derivative k (8) must be negative. Eq. (3-29) gives therefore cos 8 > 0,

restricting the validity of the elastic solution to wedge angles

0<8 < n/2 (3-30)

Next, Eq. (3-21) defines tan (27) as function of the stresses. Using

Eqs. (3-15 and 16) one finds

tan (7) = 2 sin cp sin (0-cp)
tansin (()- (3-31)

In the range of 8 given by Eq. (3-30) the function on the right-hand side

vanishes for cp - 0 and (p 8, assumes negative (positive) values for 0 < (p < 8/2

(8/2 <(p < 8), and becomes infinite for cp w 8/2. Solving for 2y gives an infi-

nite set of solutions. Starting with a value 2y(0) - ±-nil, where n is an arbi-

trary integer, 2y decreases from above starting value for cp - 0 to an end value
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A..

2y(O) = (d n-1) n. [It is easily checked that tan (27) goes through the same

range of values as the right side of Eq. (3-31). Eq. (3-25b), defines the

value Y(P) = TY/2, such that the appropriate value of n must be n = 2, and

Y(0) = T (3-32)

The angle 7 defining the direction of the principal stress decreases gradually

from 7(0) = TT to 7(O) = n/2.

Equation (3-32) defines the position of the principal stress a1 for

cp = 0. Referring to Fig. 15, a1 acts in the radial direction, or a1 = ar( O )"

The other principal stress is then 02 = ( (0). These relations, together with

Eqs. (3-15, 16 and 18) permit determination of the value k(O) from Eq. (3-23):

a a(0) (1-k) + 2k tan ___

K(O) a -- - P (3-33)1 p + 2N sin (l-k) + (l+k) tan 0

The angle B being limited by Eq. (3-30) to 0 < 0 < rr/2 and the material pro-

perty k being limited, 0 < k < 1, numerator and denominator are each the sum

of two positive terms. Further, in the permissible range of 0 the value of

tan e./O > 0, and since 2k < 1+k, the value of the fraction in Eq. (3-33) cannot

possibly exceed unity, k(O) < 1. The smallest value of the fraction occurs

when tan 0/0 is as large as possible, i.e., tan 0/ - c , which case gives a

lower limit, k(O) > 2k/(l+k). In turn, l+k < 2, such that 2k/(l+k) > k, or

finally

1 > R(O) > k (3-34)

The condition for elastic behavior, Eq. (3-24), is therefore satisfied at (p = 0.

As next etep the sign of the derivative R'(0) is determined by differen-

tiation of Eq. (3-26). Noting Eq. (3-32), one finds
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d (2 Ncos 2 (335)
d + [P+ sin +]e (3-n

In the range (3-30), the values of cos 8 and of N, the latter defined by

Eq. (3-18), are positive, such that the above derivative is negative. The

sign of the derivative k being opposite to that of 1-k

i+k

sign [K'(0)] > 0 (3-36)

The results obtained so far may be summarized bv considering Fig. 16

which shows a typical plot of k(). The end points of the curve have been

determined above, k(O) being limited by the inequality (3-34), while k(P) - k.

Equations (3-29, 30 and 36) define the tangents to the curve k(cp) at CP - 0 and

z 8 in the manner shown in Fig. 16. Between these end points k(P) is defined

by Eq. (3-26) as a function of p. The form of this equation is, however, not

suitable to demonstrate that k() is a smooth function, as indicated in Fig. 16.

If Eq. (3-26) is use, the function sin ( - 2cp)/ cos 27 becomes indefinite for

p 0/2 when y(0/2) - 3TT/4 . This difficulty is overcome by computing the value

of sin (2 - ) from Eq. (3-31) and substituting the result into Eq. (3-26),

1-k - 2N sin cp sin (0-cp) 1 (337)
1+k sin 2y p + N(sin - 2cp cos 0)

The first fraction on the right side of this equation is obviously smooth,

because y varies smoothly from y(0) - Tr to 7(O) - 7T/2, see Eq. (3-32) and the

adjoining text. Excluding the end values 7(0) and 7(O), the value of sin 2y < O,

and because N > 0, as previously noted in connection with Eq. (3-35), the first

fraction is necessarily positive.
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-4.

To recognize the character of the second fraction, the value of N,

Eq. (3-18), is substituted

2k
1. 20 cos 0 + - sin 0

1-k (3-38)
l+k

p + N(sin 0 - 2q cos 0) p[2(0-9) cos 0 + sin 0]

In the range 0 < 0 < r/2 all terms on the right side are positive, and the

fraction (3-38) is necessarily positive. Returning to Eq. (3-37) it follows that

1-k> 0 (3-39)

If the maximum value of k, indicated in Fig. 16, were larger than unity, the

expression L-_ would become negative, such that Eq. (3-39) indicates thatl+k

max i(cp) < 1 (3-40)

Allowing for the minimum of k(qp) at cp - , min k .k, the values k(cp) satisfy

Eq. (3-24). It has therefore been proved that the original assumption that

slip does not occur in the wedges, 0 < q < 0, is justified and furnishes the

solution to the problem considered.

To complete the analysis, we obtain the inclination 0 of the locking

front as function of the velocity V of the surface pressure from Eqs. (3-7 and 8)

used in the elastic case. One finds

2_

V2  2 PC (3-41)
k sin 0 + (1-k) 0 sin 0 cos 0
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Just as in t±Ae elastic case, Eq. (3-9), V as function of $ may be plotted,

and the result, shown for k - 1/3 in Fig. 17, is quite similar to the one for

the elastic case, except that Eq. (3-30) restricts the values of the angle $

to the range 0 < 0 < n/2. Real values of V are found everywhere in this range.

These values of V have a minimum Vcr , which occurs for a critical wedge angle,

0cr < r/2. The latter may be found from

tan (20)cr 2(1-k)c (3-42)
Ocr

Figure 17 shows that for values of V near V there are two values of 0,cr

one larger, one smaller than $cr * However, using the reasoning employed in

the elastic case [in the text following Eq. (3-9)], it is concluded that only

wedge angles 0 < 0cr axe physically meaningful. The inapplicable portion of

the curve in Fig. 17 is shown in dashed lines.

The fact that no solution has been obtained if V < V is again ascribedcr

to the fact that a steady state sclution for an expanding surface load need not

have the character of Fig. 11, where the locking front and the face of the

applied pressure move together. For velocities below the critical, a detached

locking front forms, Fig. 13, and the steady state solution is given by [6].

In applications the velocity V of shock waves in air is always larger than V ,cr

such that detached locking fronts are merely an academic possibility. The

solutions derived above apply therefore in cases of practical interest, as may

be seen from the typical example at the end of Section IV.

It is necessary to remember that the solution just obtained, shown in

Fig. 17 for k - 1/3, applies only if the inequality (3-12) is satisfied. For the

example, k - 1/3, this requires v < 1/4. The alternative case, when the inequa-
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lity (3-13) applies remains to be discussed. If the latter inequality,

1->

applies, the stresses at and immediately behind the consolidation front are

elastic, such that the conditions at the boundaries of the wedge are exactly

those used for the elastic half-space, Eqs. (3-2) and (3-3). It will be

shown that the elastic solution found in Section A for these bounldary conditions,

represents a state of stress in which condition (2-43) is satisfied everywhere,

i.e. no slip occurs in any location. This means, that the solution for an elas-

tic material not subject to slip applies in case of the inequality (3-13) also

for the material subject to slip.

To prove above contention, it is noted that the solution in Section A

(for the elastic materip-l) may be obtained from the solution for the material

subject to slip by replacing the value k by the expression v/(l-v). This is

due to the fact that the only difference in the formulation of the two solutions

originates from the boundary conditions for a (s), Eq. (3-3a) and Eq. (3-14a),r

respectively, where in one case the term v/(l-v) occurs, while k occurs in the

other. The results concerning the value of the function k(y) obtained above,

Eqs. (3-19) to (3-42), can therefore be utilized without further computations.

Figure 18 shows a typical distribution of k(cp). At the boundary CP a 0, the

ratio k(O) of the two principal stresses is, by virtue of Ea. (3-3a),

v V > k (3-43)

The end point of the k-curve at 0 is therefore above k. Further, the value

k(O) must be less than unity, because Poisson's ratio is always less than 1/2.
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Replacing k by v/(l-v) does not affect the results obtained in Eq. (3-29),

Eq. (3-34), Eq. (3-36) and Eq. (3-40), defining, respectively, k (0), (O)L (0)

and max k. The values k(cp) lie therefore everywhere between the limits

k < R(cp) < 1 (3-44)

confirming the claim made above that slip does not occur anywhere.

While this was previously stated, it is stressed again that all results

in this Section, for Case A as well as Case B, apply only for velocities V below

a certain limit. This is due to the fact that, in similarity to [1), the

equations of motions in the elastic, wedge-shaped regions were approximated by

Eqs. (3-1). This approximation is reasonable only if the velocity V is a

fraction of the velocity of P-waves

c2 3 (-vL (3-45)p p (i+v) (1-2 v)

where E and v are the elastic constants describing the behavior of the material

after compaction, if no slip occurs. It was shown in [1] that the approximate

Eqs. (3-1) may be used if V/c < 0.20, such that the present results will apply
p

in this range. However, for values of the parameters of interest in applications,

the iocking front makes a very small angle with the surface, 0 < 0.20 (see the

example at the end of Section IV). A comparison with a refined solution shows

that for such small angles of 0, and for reasonable values of Poisson's ratio,

< 1/3, the use of Eqs. (3-1) is permissible even for values of V/Cp higher

than 0.20. The present solution is expected to give good results if the in-

equalities

V 1/3 , < 0.20 (3-46)

and

V/cp < 0.50 (3-47)
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are satisfied. These inequalities insure that V > c , where c - /G/p is the

velocity of shear waves in the elastic (compacted) material. c8 being about

0.60 to O70 cp , the present solution applies for a major portion of the

"subseismic" range, V < c 5
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IV DISCUSSION OF RESULTS

In the previous Section, Case B, the stresses in a half-space were

obtained for locking materials of elastic-Coulomb slip behavior after com-

paction. It was found that two situations must be distinguished, and the

results differ, depending on whether

< k (4-1)
1-V-

or

S> k (4-2)1-VA

The solutions obtained indicate that a locking front occurs, inclined

at an angle 8, Fig. 19, when the velocity V of the applied surface load p

exceeds a critical value V . The value a(8) of the normal stress nt the

front, the relations between V and 8, and the value of 8cr are given, respectively,

by Eqs. (3-17, 4i, 42) in the case of the inequality (4-1), and Eqs0 (3-6, 9, 11)

in the case of (4-2). It was further concluded that only values of 8 < 8 are
-cr

physically meaningful. Figure 17 shows a typical plot of V(8) for k = 1/3

when Eq. (4-1) applies, while Figs. 10 and 14 present V(8) and a (8), respectively,
(P

for v = 1/3 in case Eq. (4-2) holds.

The details of the solution show that, regardless whether Eq. (4-1) or

(4-2) applies, no slip occurs in the interior of the wedge-shaped areas

O < < , which act entirely elastic. However, in the case of Eq. (4-1) slip does

occur within the (theoretically infinitely thin) compaction front. In the case if

Eq. (4-2) slip does not occur at all, not even at this front.
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From the results concerning the stress field, other quantities of

interest can be obtained. One important quantity is the permanent strain

produced at any point due to the passing of the pressur.e front on the

surface. The significant portion of the permanent strain occurs during the

passing of the locking front, the principal strains being

Cl-- - e ) 92 0 (4-3)

where e is the locking strain, while eI  C. are inclined at angles to the

surface of 90° - 0, and 0, respectively. Changes of strain subsequent to

tne passing of the locking front are negligible compared to the locking strain e,

because in an ideal locking material, when no slip occurs, the post-locking

elastic strains are of the order Ip/El < < e. Equations (4-3) define there-

fore the total permanent strain. Without interaction of structure and free

field an originally circular structure, Fig. 19, would be deformed to an

ellipse of the axis ratio I - , nd the original volume of the structure

would be reduced by a factor 1 - e. A cylindrical shell, e.g., will not

strongly resist the deformation into an ellipse, but may be able to resist a

volume change materially. Predictions on the behavior of structures in locking

materials reqt,'.:e therefore further analysis of interaction effects which will

modify the free field results on stress and strain obtained above.

One may also obtain the accelirations a and particle velocities u which

correspond to the stress field obtained in Section III. Again, because we con-

sider an ideal locking materiel, the significant effect is the change in particle

velocity at the locking front. Ahead of the front, u N 0. To obtain the particle

velocity uL behind the locking front, it is noted that the front is plane, such

that the well known relation applying for one dimensional wave propagation
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1n L (4-4)

may be used, where U is the velocity of the front, and uL is the particle

velocity at right angles to the front after locking. The velocity U is

given by Eq. (2-39), where axx means the normal stress at the front, in the

present situation a xx s a (). The particle velocity uL is therefore

UL -(4-5)

where aC () is given by the appropriate Eqs. (3-6) or (3-17). Fig. 20 gives

the time history of the particle velocity u(t), its direction making the angle

900 - 0 with the surface. The jump occurs when the locking front passes the

point of observation. The accelerat-in a vanishes except at the instance of

passing of the front, where a , but the order of the infinity is such that

a dt - uL (4-6)

The direction of a is the same as that of u(t). This result may be used for

the determination of shock factors.

For materials which behave elastically after locking, no separate dis-

cussion is necessary. Statements and results apply, as given for materials

with -.lip when the inequality (4-2) holds.

Typical Example

Consider a soil of density p - 1.8 x lo 4 lb.sec./in. at a pressure level

p a 200 lb./in., when V - 3970 ft./sec. Assume a material with slip, k - 1/3,

V- 1/5, e 0.02. The inequality (4-1) holds, such that Eqs. (3-17, 41, 42)

apply.
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To ascertain that V < V, one finds from Eq. (31-42): c - 1.145 rad.,
cr cr

and from Eq. (3-41) the corresponding value V - 820 ft./sec. < V. Eq. (3-41)
cr

will therefore have a root 0 < 0cr for the above parameters and the analysis

presented above furnishes the stresses, velocities, etc., in this situation.

Solving Eq. (3-41) gives 0 a 0.070 rad., and Eq. (3-17) furnishes the

2
pressure at the shock front, a (8) - 201 lb./in. This pressure differs only

very slightly from the surface pressure p. This is due to the fact that 0 is

quite small whenever V is very much larger than Vcr . The particle velocity

behind the locking front, found from Eq. (4-5), is uL - 20 ft./sec.

Due to the fact that the angle 0 is small, 0 < < 1, the solution differs

only little from the one dimensional one. In the latter the stress at the
s2

locking front for an applied step pressure p = 200 lb./in. would also be

22 while the two dimensional solution gives a (0) -201 2

The analysis presented in Section III is restricted to values of the

parameters which satisfy the inequalities (3-46, 47). Eqs. (3-46) are ob-

viously satisfied. Introducing Eq. (3-45) into (3-47) leads to the requirement

E > 4p(+v 12v 2(4-7)
I-v

which gives in the present case E > 1.5 x 10 lb./in . The value E in this

inequality is Young's modulus in the cokLacted material. At the present time

there is little factual information on this value of E, for loading or unloading,

subsequent to compaction.
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In the example discussed above, the velocity V was substantiallycr

smaller than the shock velocity V in the air. This situation holds generally

for a wide rang of e and p. This is demonstrated by the following table:

Table of Vcr as function of p and e for k = 1/3. v < 1/4

p = 100 lb./in. p = 500 lb./in.

0.01 820 ft./sec. 1840 ft./sec.

0.10 260 ft./sec. 580 ft./sec.

The values of V are much smaller than the shock velocities in air, V 2920
cr

and 6130 ft./sec. for p = 100 and 500 lb./in , respectively.
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V SUMMARY OF CONCLUSIONS

As an introductory step, Section II contains a study of the conditions

on locking fronts in problems of two and three dimensional wave propagation.

Considering a locking material as a limiting case of a nonlinear (hardening)

elastic material, it was found that the normal stress at a locking front must

be a principal stress, such that shear stresses vanish.

Based on the study of the conditions on locking fronts, the paper con-

tains an analysis, giving stresses, strains and particle velocities due to a

progressing step wave on the surface of a half-space of a locking material,

which after compaction is elastic but subject to slip. The slip conditions,

previously derived in [1], define the states of stress necessary to overcome

internal Coulomb friction in terms of a parameter k, which is the ratio of the

minor (compressive) principal stress divided by the major one.

The details of the results, given in Section IV, depend on the relative

values of k, and of Poisson's ratio v as expressed by the inequalities (4-1)

and (4-2). There is a locking front, inclined at an angle 0, Fig. 19,

followed by a gradually varying stress field. Slip occurs only at the locking

front if Eq. (4-1) applies, and not at all if Eq. (4-2) applies.

Because of a simplification in the analysis, the results are restricted

with respect to the velocity V of the surface pressure. In the case of air-

blast on the surface of a granular soil, the "Mach number" must be limited

to V/cp < 0.50, where c is the velocity of P-waves in the compacted material.

The velocity cs of shea- waves being only slightly larger than 0.5 cp , the

h2



range of validity of the present solution covers most of the subseismic range,

V < c • Solutions for higher values of V, particularly for the superseismic

range, V > Cp , require a different approach, left for a future investigation.

As a byproduct of the analysis, the solution for a locking material

which, after compaction, acts elastically, without slip, has also been obtained,

subject to the limitation V/cp < 0.50.

The example at the end of Section IV indicates that, for airblast, the

results of the two dimensional analysis differ only minutely from the results

of the much simpler one dimensional analysis. One can expect that this con-

clusion will also apply for a decaying surface pressure, and one dimensional

results may therefore be used approximately for two dimensional problems.

43



V V

F I IFIG 2

PRESSURE P(t) ON SURFACE X=O

y

,T1  -,,/-CKING FRONT

(Tx 5 x VELOCITY U

F IG - 3



0xE xOxx 0 xx

F) FIG 4 c

LOCKING FRONT

ELEMENT

hL5



FRONT AT TIME t FRONT AT TIME t +dt

F IG .6

'-cr

a -- 
S T RAIGHT LIN E

C/ONSIGTNTS'

MATERIAL rNTNSE

E

4,6



F G G8

COMPACTION FRONT

Fl G 9



6" TOco AT 0

V2 0 TO/ 7 AT i20 35-

p
4- I

3- // I
2 - gVcr-- I- I I

1pcr

0 0.5 1.0 1.5 2.0

F I G. O -V AS FUNCTION OF p (FOR V=1/3)

V V V V

A A

LOCKING FRONT
PARTI CLE ir

VELOCITY .PARTCL

VELOCITY

FIG.lI FIG. 12

h8



- -i

F IG. 13

-p

0 3V 4 5

F IG 14 0-4(f3) AS FUNCTION OF V (FOR V 1/ 3)

___1__



M' Y (/8) =IT/ 2 0

FIG. 15

.0max.k' I

k

0 I

F IG, 16 k( ) WHEN k

50



p

7- TO 00AT P=O

6-

5 N

4-

/17/
2 Ic

0o 0.5 1.0 1. 210

F IG .17 V AS FUNCTION OF p(k=1/3, v 1/4)

w ''

1. 0.

F I G .18 k~ WHEN>k



UNDEFORMED SHELL

DEFORMED SHELL

/ LOCKING FRONT

F 1 1.9

______U =UL 4 -. 1=0

F I G. 20 PARTICLE VELOCITY U (t)

52



REFERENCES

[1] H.H. Bleich and E. Heer, Step Load Moving with Low Subseismic Velocity
on the Surface of a Half-Space of Granular Material, AFSWC-TDR-6-2,
April 1963. (Also, Proceedings ASCE, Vol. 89, No. EM3, June 1963,
pp. 97-129.)

(2] M. Salvadori, R. Skalak and P. Weidlinger, Waves and Shocks in Locking
and Dissipative Media, Proceedings ASCE, Vol. 86, No. EM2, April 1960.

(31 H.H. Bleich and P. Weidlinger, Final Report on Stress Waves in Granular
Materials, AFSWC-RTD-TDR-63-3048., July 1963.

(4] A.E.H. Love, Mathematical Theory of Elasticity, 4th Ed., Cambridge 1927.

(5) A.M. Freudenthal, The Inelastic Behavior of Engineering Materials and
Structures, J. Wiley & Sons, New York, 1950.

[61 J. Cole and J. Huth, Stresses Produced in a Half-Plane by Moving Loads,
Journal Applied Mechanics, Vol. 25, No. 4, December 1958, p. 433.

53



WL TDR-64-8

DISTRIBUTION

No. cys

'1] HEADQUARTERS USAF

Hq USAF, Wash, DC 20330

2 (AFOCE)

1 (AFRNE-B, Maj Lowry)

1 (AFTAC)

1 USAF Dep, The Inspector Gene'ral (AFIDI), Norton AFB. Calif 92409

1 USAF Directorate of Nuclear Safety (AFINS), Kirtland AFB, NM 87117

MAJOR AIR COMMANDS

1 AFSC (SCT), Andrews AFB, Wash, DC 20331

1 AUL, Maxwell AFB, Ala 36112

2 USAFIT, Wright-Patterson AFB, Ohio 45433

1 USAFA, Colo 80840

AFSC ORGANIZATIONS

1 AFSC Scientific and Technical Liaison Office, Research and
Technology Division, AFUPO, Los Angeles, Calif 90045

1 AF Materials Laboratory, Wright-Patterson AFB, Ohio 45433

1 ASD (SEPIR), Wright-Patterson AFB, Ohio 45433

RTD, Bolling AFB, Wash, DC 20332

1 (RTN-W, Lt Col Munyon)

1 (RTS)

1 AF Msl Dev Cen (RRRT), Holloman AFB, NM 88330

1 AFMTC (MU-135, Tech Library), Patrick AFB, Fla 32925

2 AEDC (AEYD), Arlong AFS, Tenn 37289

BSD, Norton AFB, Calif 92409

1 (BST)

1 (BsQ7

1 (BSSF)

2 SSD (SSSD), Los Angeles AFS, AFUPO, Los Angeles, Calif 90045

2 ESD (ESTI), L. G. Hanscom Fld, Bedford, Mass 01731

2 APGC (PGOZF), Eglin AFB, Fla 32542

KIRTLAND AFB ORGANIZATIONS

AFSWC, Kirtland AFB, NM 87117

1 (SWEH)
5 (SWT)

54
I1



WL TR-64-8

DISTRIBUTION (cont' d)

No. cys

AFWL, Kirtland AFB, NM 87117

15 (WLIL)
5 (WLDC, Lt Higgins)

OTHER AIR FORCE AGENCIES

2 Director, USAF Project RAND, via: Air Force Liaison Office, The
RAND Corporation, 1700 Main Street, Santa Monica, Calif 90406

1 Hq OAR (RROS), Bldg T-D, Wash, DC 20333 4

1 AFOSR (SRGL), Bldg T-D, Wash, DC 20333

1 AFCRL, L. G. Hanscom Fld, Bedford, Mass 01731

ARMY ACTIVITIES

1 Director, Ballistic Research Laboratories (Library), Aberdeen
Proving Ground, Md 21005

1 Chief of Engineers (ENGMC-EM), Department of the Army, Wash, DC
20315

2 Director, Army Research Office, 3045 Columbia Pike, Arlington, Va
22204

3 Director, US ArMy Waterways Experiment Sta (WESRL), P. 0. Box 631,
Vicksburg, Miss 39181

2 Director, US Army Engineer Research and Development Laboratories,
ATI!N: STINFO Branch, Ft Belvoir, Va

1 US Army Engineer Division, Ohio River, Corps of Engineers, Ohio
River Division Laboratories (ORDLBVR), 5851 Mariemont Avenue,
Mariemont, Cincinnati 27, Ohio

NAVY ACTIVITIES

1 Bureau of Yards and Docks, Department of the Navy, Code 22.102,
(Branch Manager, Code 42.330), Wash 25, DC

1 Bureau of Ships, Department of the Navy (melvin L. Ball, Code 1500),
Wash, DC 20360 .

1 Commanding Officer and Director, David Taylor Model Basin, Wash 7, DC

1 Superintendent, US Naval Postgraduate School, ATTN: George R. Luckett,
Monterey, Calif
Commanding Officer and Director, Naval Civil Engineering Laboratory,
Port Hueneme, Calif

1 Comander, Naval Ordnance Test Station (Code 753), China Lake, Calif
93557

1 Commander, Naval Ordnance Laboratory, ATTN: Dr. Rudlin, White Oak,
Silver Spring, Md 20910
Officer-in-Charge, Nawral Civil Engineering Corps Officers School,
US Naval Construction Battalion Center, Port Hueneme, Calif

55



WL TDR-64-8

DISTRIBUTION (cont ' d)

No. cys

1 Office of Naval Research, Wash, DC 20360

1 Commanding Officer, US Naval Weapons Evaluation Facility (NWEF,
Code 404), Kirtland AFB, NM 87117

OTHER DOD ACTIVITIES

2 Director, Defense Atomic Support Agency (Document Library Branch),
Wash, DC 20301

2 Commander, Ficld Command, Defense Atomic Support Agency (FCAG3,
Special Weapons Publication Distribution), Sandia Base, NM 87115

1 Director, Advanced Research Projects Agency, Department of Defense,
The Pentagon, Wash, DC 2030).

1 Office of Director of Defense Research and Engineering, ATTN:
John E. Jackson, Office of Atomic Programs. Rm 3E1071, The
Pentagon, Wash, DC 20330

20 DDC (TIAAS), Cameron Station, Alexandria, Va 22314

AEC ACTIVITIES

1 Sandia Corporation (Information Distribution Division), Box 5800,
Sandia Base, NM 87115

1 Sandia Corporation (Tecl'nical Library), P. 0. Box 969, Livermore,
Calif 94551

OTHER

1 OTS (CFSTI, Chief, Input Section), Sills Bldg, 5285 Port Royal
Road, Springfield, Va 22151

1 Office of Assistant Secretary of Defense (Civil Defense), Wash,
DC 20301

1 Massachusetts Institute of Technology, Lincoln Laboratory
(Document Library), P. 0. Box 73, Lexington, Mass 021Y3

2 lIT Research Institute, ATTN: Dr. Eben Vey, 3422 South Dearborn
Street, Chicago 15, Ill

1 lIT Research Institute, A7I1N: Dr. T. R. Schiffman, 3422 South
Dearborn Street, Chicago 15, Ill

1 MRD Division, General American Transportation Corp., ATiN:
G. Nerdhardt, 7501 North Natchez Avenue, Niles, Ill

2 University of New' Mexico, ATTN: Dr. Eugene Zwoyer, Univerosity
Hill, NE, Albuquerque, NM

2 Massachusetts Institute of Technology, Dept of Civil and Sanitary
Engineering, ATTN: Dr. Robert V. Whitma., 7 , Massachusetts Ave,
Cambridge 39, Mass

2 University of Notre Dame, Dept of Civil Engineering, ATTN: Dr.
Harry Saxe, Nntre Dame, Ind

56



WL TDR-6 h-8

DISTRIBUTION (cont 'd)

No. cys

2 Purdue University, Civii Engineering Dent, ATTN: Prof G. A.
Leonards, Lafayette, Ind

1 United Research Services, ATTN: Kenneth Kaplan, 1Pl1 Trousdale
Drive, Burlingame, Calif

2 Scuth Dakota School of Mines and Technology, ATTII: Edwin H.
Oshier, Rapid City, South Dakota

10 Paul Weidlinger, 777 Third Ave, New York, NY 10017

1 Shannon & Wilson, Soil Mechanics & Foundation Engineers, ATTN:
Mr. Stanley Wilson, 1105 North 38 Street, Seattle 3, Wash

1 United ElectroDynamics, Inc., ATTN: Mr. Ted Winston, 200

Allendale Road, Pasadena, Calif

2 Stanford Research Institute, ATTN: F. N. Sauer and G. R. Fowles,
333 Ravens Wood, Menlo Park, Calif

1 Iowa State University, Dept of Theoretical and Applied Mechanics,
ATTN: Glen Murphy, Ames, Iowa

2 University of Illinois, Dept of Civil Engineering, ATTN:
Dr. N. M. Newmark, 111 Talbot Laboratory, Urbana, Ill

1 Princeton University, Dent of Civil Engineering. Princeton, NJ

i University of Illinois, ATTN: D. U. Deere, 111 Talbot Laboratory,
Urbana, Ill

1 St Louis University, Institute of Technology, ATTN. Pr. Carl
Kisslinger, 3621 Olive St, St Louis 8, Mo

1 Dept of Civil Engineering, ATTN: Frank E. Richardt, Gainesville, Fla

1 University of California, College of Engineering, ATT: Prof
Martin Duke, Los Angeles, Calif

1 Portland Cement Assoc., ATTN: Eivind Hognestad, Manager, Struc-

tural Dev. Section, 33 West Grand Ave., Chicago, Ill

1 University of Illinois, ATTN: Prof C. E. Bowman, 111 Talbot
Laboratory, Urbanz, Ill

1 National Engineering Science Co., ATTN: Lars Skjelbreia, 711
South Fairoaks Ave, Pasadena, Calif

1 University of Washington, ATTN: Dr. I. M. Fyfe, Seattle 5, Wash

1 West Virginia University, Dept of Civil Engineering, ATTH: Dr
James H. Schaub, Morgantown, WVa

NorthroD-Ventura, ATTN: Dr. J. G. Trulio, 1515 Rancho Conejo,
Newbury Park, Calif

1 Physics International, ATTIN: Dr. C. S. Godfrey, 2229 Fourth St,
Berkeley, Calif

57



WL TDR-64-8

) ! DISTRIBUTION (cont 'd)
No. cys

1 The Boeing Company, Suite 802, First National Bank Bldg,
Albuquerque, NM

1 Official Record Copy (Lt Higgins, WLDC)

58


