TM-1563/014/01

SPAN REFERENCE MANUAL

SPAN Data-Transformations and

Stratification Capability

4 March 1965

ARCYLIVE COPY Rest Available Copy

™-1563/014/01#

—m—

TE
VIEMO

CRHNIGAL
RAN

ANDUM

(TM Series)

SPAN REFERENCE MANUAL SYSTEM
SPAN Data-Transformations and DEVELOPMENT
Stratilication Capability LLRPORATION
by 2500 COLORADO AVE.
Vladimir V. Almendinger SANTA MONICA
L March 1965 CALIFORNIA

This document was produced by SDC in performancc

of contract CPR-11-1543 for the Bureau of Public

Roads, U.S. Department of Commerce. Permission

to quote from thls document or to reproduce it,

vholly or in part, should be obtained in advance SoC

from the System Development Corporation or the /
Bureau of Public Roads. ~—_

*‘m-1563/01h/00, @ preliminary version of this
document, was not published.

L March 1965 1 ™-1563/010/01
(Page ii Blank)

ABSTRACT

This document is cne of a series of volumes of the SPAN
REFERENCE MANUAL describing the SPAN system for data
management and statistical anaiysis. The SPAN system
provides an integreted file processing and multivariate
analysis capability for problems involving large data
matrices with large numbers of variables. The system
is oriented to problems of social science in general
and urban data analysis in particular.

This volume describes the specification and use of SPAN
capabilities for the transformation of the contents of

a8 data file in the course of its input to a SPAN process.
The data-transformation capability allows the user to
state algorithmic procedures leading to the generation
of new data variables as transformations of the source
data. The entity stratification capability provides

for the clasgsification and selection of entity records
according to user~-specified criteria.

L March 1965 114 TM-1563/014/01
(Page iv Blank)

FOREWORD

Capabilities, specifications formats, and other details

of the application of the data-transformation and entity
stratification languages described in this vclume correspond
to the following operational components of the SPAN system-

1. SPAN System Library Version 3 (and subsequent
versions); and

2. SPAN System Supervisor (binary deck), dated
February 12, 1965.

The current cperational status of the SPAN system is
documented in TM-1563/05C,

4 March 1965 v T™-1563,/014/01

II.

TABLE OF CONTENTS

ABSTRACT + e eeosvsocosssososssossernsarocsscassssassosccsasaseece 1
FORWORD: e e cvvvoeoooessssoosanseossccossssocssscsvesssvasssonss 111
INTRODUCTION: THE STANDARD INPUT PROCESS. ..ttt erernnsnse
The Source File...ccevieceansns crseccenaresansen ceossena
The Standard Input Process......... cesereecrsesssesanenas
DATA TRANSFORMATIONS: « ¢ o oo v vesoneseocanavocesosoannooocsonens
TEYME e s ccrsosvsvesssvsssossescavsescsssasssnsscsscascescssacs
Variables and Functions of Variables (V or F)eeeoesoasss
Decimal Number Constants (D)eeececsceccssoscaascoscencss
Decimal Tntegers (Cl OF Kl)eesenoooovoeosvoosncessooase,
Octal Integers (C2 OF K2)ueeeesecssoccassoosnassencosccns
Alphameric Constants and Codes (C3 OF K3)iveeveeeonvooss
Complement of Octal Integer Codes (ClU)......eeeeveeeseas
Arithmetic TeIMB ececrsvesosscnsrosssocssssssascsnsasssess

O W0 @ ©® =1 N OV W N e

o

Boolean Rm‘........l.."‘........l......l..ll..‘.l... l

Integer Tems..’.'....0.".‘.".0.....'.........0.......

EE

EXpressionB.eeeccceercccsscessesoosscencrovesssesssssonns
Rules for Constructing EXpressionBeccccceccccccccesccess 12
Transformation StatementS.eccscescsecsccsccoocccsssessess 13
Statement LADElSececcesecssososcosvasscrssossssescossssosss 1l
Condition StatementBece.ocesececosaccvssscevsososscssssas
Special StatementBecsceceecncescessnssossecvocoscncosvace
How to Specify Data Transformations in a SPAN Job,,......
Data Transformations: Limitations........cececveccevees
Transformations Text Error Detection and Diagnostics....
Execution Error Detection and Diagnostics.....eccceevce.
Examples of Data Transformations..cccccessveccesascccsss

RRI=xzhH &%

4 March 1955 vi ™-1563/014/01

TABLE OF CONTENTS (Continued)

IIT. ENTITY STRATIFICATION: cetevceocssesacnssosssesscnasesssssases £5
Stratification StatementS.ceceesreesccssocssesccsssanes 26
How to Specify Entity Stratificationc..ceecececeecsceee 27
Entity Suiatification; Limitetione...... teccrarasannns 28
Stratification Text Error Detection and Diagnostics....
Examples of Entity Stratification..ecicecvecivecenenans

B3

4 March 1965 1 ™-1563/014/01

I. INTRODUCTION: THE STANDARD INPUT PROCESS

A typical single SPAN task consists cf obtaining information from a source
file and subjecting it to statistical analysis, tabulation, listing, or other
forms of processing. SPAN provides the capability to transform or stratify
data taken from the source file prior to subsequent processing. The methods
for accomrlishing this are described in this volume.

As a ocimplie example, the mource file might contain data on the total population
and its age distribution by census tracts. The data-transformation capability
makes it possible to compute the new variable "percent population over 65"

for each census tract. The stratification capability makes it possible to
stratify the tracts into groups according toc size of population. However,

the stratification process takes place after data transformations so that

one could stratify on the basis of a newly created variable. Thus, in terms

of the above example, one could stratify the tracts into groups according

to percent population over 65. Inherent in tne stratification process is

the capability to select or reject tracts on the basis of specified criteria.
The wide range of possibilities in both data transformations and stratification
is discussed In the following sections.

The SPAN capabilities for data transformations and entity stratifications
(including record selection) may be exercised in the following SPAN modules:

Factor Analysis

Regression Analysis

Latent Class Analysis (record selection only)
Rectangular Product Moments

File Transformation

STARS Files Abstractor

STARS Files Collator

STARS Files Tabulator

STARS Files Summary-Sort

SPAN Report Generator

System for Mixed Data Structures Reduction
SPAN Graphic Display system

THE SOURCE FILE

Only those aspects of file organization necessary to an understanding of

this volume will be covered here; a camplete discussion of file organization
18 given in T™-1563/015/xx. Furthermore, the discussion wiil be limited to
"simple files"; a simple file is one in which each record has the same format.
"Mixed data files" and their treatment are discussed in T™™-1563/023/xx.

4 March 1965 2 ™-1563/014/01

The typical source file consists of observations on the properties of entities.
Entities might be census tracts, individuals, time intervals, events, or aay
other "units"; properties might be population, land area, age, percent
unemployed, and so forth. One can think of the file as a two-dimensional
array; in SPAN, by convention, rows are entities, and columns are properties.
A typical source file is made up of records, each reccrd consisting of the
values of the properties for one entity.

The vroperties for a civen entity are of two types: codes and variables.

Coaes are properties that identify the entity, such as census tract code,

man number, X-Y coordinates, event identification, etc. A typical source-file
record permits a total of fifty different codes. Variables are those properties
such af population, sge, etc., that represent the computational data for the
entities. Typically, a maiimum of 1000 variables is possible. Within a

gource file record, the set of codes is logically separate from, and precedes,
the set of variables.

THE STANDARD INPUT PROCESS

A file is processed serially, that is, a single record is obtained, transformed,
stratified, and subjected to such further processing as specified, and then
another record is obtained. For ease of discussion, we shall define two
internal regions, the I-region and the X-region. As each record is ocbtained
from the source file, the codes are placed in the I-region and the variables

in the X-region.

Obviously thec user specifies whether a property is a code or a varjable.
However, codes and variables, as will be scen, differ in the manner in which
they can be cperated upcn, and sametimes the user may find it necessary to
include the samec property both as a code and as a variable.

Bach code or variable corresponds to one location in the I-region or X-region
respectively. (The internal representation of codes and variables will be
discussed later.) The I-region can accommodate 100 codes; since the typical
record contains, at most, 50 codes, additional space is available for new
codes arising from data transformations. Codes are identified by their
location in the I-region, e.g., I(1), I(2), ..., I{(200). Codes I{99) and
1(100) are sometimes uscd for specific purposcs by SPAN modules, and are
therefore not always available. The X-region normally sccommodates 1400
variables, identified by their location, c.g., X{1), X(2), etc. The typical
record contains a maximum of 1000 variables; additional space is thus available
for new variables arising from transformations. Note that if the record
contained only 200 variables, locations X(201) through X(1400) would be
available; a similar corment applies to the I-region. The I-region and
X-region are automatically cleared prior to the processing of the first record.

L March 1965 3 ™-15063/014/01

Referring to Figure I-1, we see that a record {s taken from the source file,
and the codes and variables are placed, respectively, in the I-region and
X-region. If any data transformations or stratification are to take place,

or any subsequent computations are to be made, as distinct from merely

moving data, all of the variables are automatically converted to floating point,
if they are not already in that form.

Data transformations may be made on variables or codes. Transformations on
variables are normally floating-point arithmetic operations; that is, new
variables are created by arithmetic operations on existing variables. Codes
may be transformed by means of Boolean or integer operations.

Stratification permits the user to assign stratum numbers to each entity
according to 8 wide range of user-specified conditions. Thus, if one wishes
to stratify a file of records into five groups according to the value of a
given variable, one might assign the stratum numbers 1, 2, ... 5. As the
stratification specifications are executed, the stratum number for each
record is automatically placed in I(99) and is available, if desired, in
subsequent processing.

If a record does not meet the specified conditions, the stratum number is
automatically set at zero, and such a record is rejectei; i.e., it does not
undergo subsequent processing. Thus, selection is inherent in stratification,
and as a special case, one can select any particular records, and thus reject
others, by assigning any non-zero integer as the stratum number to the
records to be selected.

Each record from the source file underroes the processes shown in Figure I-1,
and tne resulting records can be thougitof as making up a derivative file.

It is this derivative file that is the "input” for subsequent processes.

Most SPAN-specific processes, such as abstracting, summarizing, and collating,
or calculating a correlation matrix, are specified with respect to the
derivative file. This transformation of source file into derivative file is
known as the standard input process. If n~ transformations or stratification
are specified, the derivative file will be identical to the source file.
Implications of the standard input process for identifiers of file content,
such as lubels of variables or names of the codes, variables, and entities
sets in a STARG file, are discussed under the heading of STARS output file

description in the SPAN REFERENCE MANUAL volume on "Data Flle Manipulation
and Processing,” TM-1563/021/xx.

In the following two chapters the rules for specifying data transformations
and entity stratification are discussed. The reader should assume that the
data are already in the I and X-region and that he knows the positions of
the various codes and variables.

4 ,».ch 1965 b T™-1563/014/01

Move Source

File Record Into
I-region and

X-region

Are
Variables in
Floating
Pointv?

No

Convert Variables
to Floating Point

J

Yes

Transformatiors
?

Execute
Transformations
Specifications

J

Stratification Yes

Execute
No Stratification
Specifications

.

Stratum
Number Equals
Zero?

No Yes

g

y

Subseyuent
Processing

THE STANDARD INPUT PROCESS

Figure I-1

4 March 1965 5 ™-1563/014/01

II. DATA TRANSFORMATIONS

Data-transformation specifications are used to create new codes or variables.#®
Newly created codes and variables can be used in subsequent processing and

to create additional codes and variables. Data-transformation specifications
are executed on each entity recad, as described in Chapter I. The rules for
specifying data transformations are discussed in this chapter.

Data-transformaticn specifications are composed of an arbitrary collection of
statements, of which there are three types: (1) transformation statements,
used to specify arithmetic computations; (2) condition statements, used

to control the sequence in which statements are executed; and (3) special
statements. Statement are made up of expressions and these, in turn, of terms.
These and other elements of the data-transformation specification are discussed
below.

TERMS

A term consists of an operand prefixed by its operator. There are three

types of terms: (1) arithmetic terms, (2) Boolean terms, and (3) integer
terms. The type of term is uniquely determined by the combination of operator
and operand; the same symbol is often used for operators in different types

of terms, even though it represents a different operation.

Figure II-1 lists the various possible operands. It will be recalled that
X{(15) refers to the 15th location in the X-region, which corresponds to
the 15th variables; I(23) refers to the 23rd location in the I-region,
which corresponds to the 23rd code. Note that in transformations text
constants are always enclosed in parentheses.

* The SPAN data-transiormation language described in this chapter was
conceived and implemented by Robert A. Hoodes, who participated in
various phases of SPAN development. The principal virtue of the
notation is its easy translatability, leading to a simple but highly
efficient execution method. An early version of the language was first
used by Mr. Hoodes in his IBM TO4 MUSP system for multivariate
analysis. Mr. Hoodes is now with the IBM Federal Systems Division.

L March 1965 6 ™-1563/014/01

TYPES OF OPERANDS 1
Symbol Name Example
v Floating point variable X(15)
F Function of variable SQRT X(15)
D Decimal number constant (-.35)
c1 Decimal integer code 1{23)
ce Octal integer code 1(23)
C3 Alphameric code 1(23)
ch Complement of octal integer code| -I(15)
K Decimal integer constant (11)
K2 Octal integer constant (@77077)
K3 Alphameric constant (HASPX43)
| S— — S——

Figure II-l

VARIABLES AND FUNCTIONS OF VARIABLES (V or F)

General Form

A variable is represented by X(n), where n
is the index of its location in the X-region.

Variables, such as X(65), are represented internally as floating-point numbers;
they are automatically converted to decimal representation for printout. ghe
magnituge of a floating-point variable must lie approximately between 10-3

and 10°. Functions of variables, such as SIN X(28), are floating point
numbers. Figure II-2 lists all defined functions.

4 March 1965 7 T™-1563/014/01
[— FUNCTIONS OF VARIABLES

Square root SQRT X(90)

Logarithm (naturai) e x(90)

Exponential EXP Xx(90)

Sine SIN Xx(90)

Cosine cds x(90)

Arctangent ATAN X(90)

|

Figure II-2

The function of a variable is a single operand. Where the function of a
variable would not yield a real number of allowable magnitude, a&s in (-h)ﬁ',

log O, or e9°, the value of the function is set to -0.

DECIMAL NUMBER CONSTANTS (D)

General Form

or between two digits.

A decimal number constant consists of a string of decimal
digits with 2 decimal point at the beginning, at the end,

The decimal number constant may be signed or unsigned.

A decimal number

is represented internally as a floating-point number. h'Ihe magnitude of a

decimal number constant must lie between 10°+" and 1l

Examples: (-.15), (3.1416), (12.) or (0.).

DECIMAL INTEGERS (Cl or K1)

, or be zero.

General Form

written without a decimal point.

A decimal integer constant consists of 1-5 decimal digits

A decimal integer code is represented by I(n), where n is
the index of its location in the I-region.

4 March 1965 8 ™-1563/014/01

A_decimal integer may be signed or unsigned. Its magnitude must be less than
. A decimal integer constant would te expressed as (1492), (-2), or (0).
A decimal integer code is represented by its address, for example, I(92).
Decimal integers are stored internally as pure binary numbers, occupying
the left-half word, with the right 18 binary bits being all zeros. If a
decimal integer is negative, the minus sign occupies the high-order position
of the binary word; this must be remembered when using negative integers in
Boolean operations.

OCTAL INTEGERS(C2 or K2)

General Form

An octal integer constant consists of 1-12 octal digits
preceded by the letter O.

An octal integer code is represented by I(n), where n
is the index of its location in the I-region.

The maximum value of an octal integer is 236. Leading zeros need not be
indicated. Examples: (@35f), (@777700007777), (#3). An octal integer
code is represented by its address, for example, I(92). Octal integers
are stored internally as pure binary numbers, each octal digit comprising
three binary bits.

ALPHAMERIC CONSTANTS AND CODES (C3 or K3)

General Form

An alphameric constant consists of 1-6 alphabetic
and/or numeric characters preceded by the letter H.

An alphameric code is represented by I(n), where n
is the index of its location in the I-region.

An alphameric constant may not include special characters. The H to indicate
mode must be used even if word begins with an H. Examples: (HABC), (H2376),
(H23KV6), (HHAPPY). If the string exceeds six characters, only the six
right-most characters are used. For example, (HALPHAMERIC) is equivalent to
(HAMERIC), i.e., the last six characters.

I ——

L March 1965 9 ™-1563/014/01

An slphemeric code is represented by its address, for example: I(92).
Alphameric words are stored internally as binary numbers, with two octal digits,
and therefore six binary bits, for each character. They are left~justified,

80 that the right characters consist of blanks. The IBM 7090 octal (storage)
representation of alphameric characters is given in Appendix A , "T090
Representation of Alphameric Characters."

COMPLEMENT OF OCTAL INTEGER CODE (Ch)

The 1's complement of an octal integer code is indicated by placing a (-1
symbol ahead of the address of a code, for example, =-I(15). The combination
represents a single operand.

ARTTHMETIC TERMS

Arithmetic terms may be simple or complex. A simple arithmetic term consists
of one operator and one operand. A complex arithmetic term represents a
single operation performed on more than one operand. Figure II-3 lists the
operators that may be used in simple arithmetic terms; Figure II-4 lists the
two types of complex terms. Only certain operands may be used with a given
operator; these are indicated in Figures II-3 and II-4 by means of the
operand symbols defined in Figure II-1.

SIMPLE ARITHMETIC TERM OPERATORS

Operator I Operation Applicable to Operand Types

Add
Subtract
Multiply
Divide

Store and proceed

Store and clear

Figure II-3

Division by zero will set the quotient to -0. The difference between the two
"store" operators will be discussed in ‘he section on expressions.

4 March 1965 10 ™-1563/014/01

' COMPLEX ARITHMETIC TERMS
H
I Term Operation Admissible Operand Types]
SUM X THRU X, Sum operands X, through N
X
2
MED Xy THRU X, INT x Calculate median cover \',

3 variables X through Xs)
with x_ being the first

element of a get of

the lower limits of
corresponding category
intervals; if n is the
number of categories, the
(n+1)th element contains
the upper limit of the nt
interval.

Figure II-k4

A detailed example of a median computation will be given later.

BOOLEAN TERMS

Boolean terms consist of one operator and one operand. They are listed in
Figure II-5. Only certain operands may be used with a given operator; these
are indicated in Figure II-5 with the operand symbols defined in Figure II-l.

BOOLEAN TERM OPERATORS

L_ S 1 ti Applicable t d J
L ymbo ‘Ir Operation J pplicable to Operand Types J

+ logical-or All C and K
* logical-and All C and K
/ exclusive-or All C and K
LEFT shift left n bits K

RIGHT shift right n bits K

¢ store and proceed All C

= store and clear Al C

Figure II-S

4 March 1965 11 ™-1563/014/01

For Boolean operations, including shifts, recall that all operands are
internally represented as pure binary quantities of 36 binary bits. Shifts
are, in effect, accumulator shifts, not "long" or "logical" shifts; therefore
bits are lost in this process. On a left shift of n bits, (n-1) bits are lost,
vhile n bits are lost on a right shift of n bits. Vacated positions are filled
with zeros.

INTEGER TERMS

Integer terms consist of an operator and an operand. The operators, and
applicable operands, are given in Figure II-6.

INTEGER TERM OPERATORS

Symbol Operation 1LApplicable to Operand Types
+X Integer Add a
-X Integer Subtract a
*X Integer Multiply a
/X Integer Divide c
=X Store and Clear a
Figure II-6
EXPRESSIONS
An expression is a string of terms, none of which contains the operator (=)
or [=X]. Each line below is an example of one expression:
Expression Iype
Xx(52) - x(43) / (2.84) Arithmetic
1(2) # (#770000) LEPT (18) + (RPUKE) Boolean
(.55) - SQRTX(55) - X(12) Arithmetic
(#707) / 1(87) + -1(3) Boolean
x1(52) /x 1(33) *x 1(1) Integer

MED X(14) THRU X(21) INT X(38) 1¢ x(80) * (2.) Arithmetic

4 March 1965 12 T™-1563/014/01

Blanks are ignored in expressions, so that expressions equivalent to the
above can be written in many ways. In the above examples, each of the
following represents a single term: -X(u43); LEFT (18); - SQRTX(55); - -I(3);
/X 1(33); TP x(80); MED x(14) THRU X(21) INT X(38).

RULES FOR CONSTRUCTING EXPRESSIONS

1.

All terms in an expression must be of the same type; e.g., all arithmetic
terms, Boolean terms, or integer terms. Mixed expressions are not detected
by the translator and wili yield incorrect results.

A complex arithmetic term may appear only as the leading term. Thus the
following 1s a correctly formed expression,

SUMX(35) THRU X(40) * x(2)/(100.)
while the following expression is in error,
X(2) * suMx(35) THRU X(40)/(100.)

For expressions made up of either simple arithmetic or Boolean terms the
operator of the leading term is always an implicit {+] . That is, no
operator except the [+ﬁ may be used for the leading term, and the (+)

is never written. (See the previously given examples.)

Expressions are evaluated from left to right; the operator symbol in each
term defines the relation between the result of preceding terms and the
value 1eferred to by the operand. In the expression X(52) - X(43) / (2.84)
the quantity X(43) is subtracted from X(52) and the result is then divided
by (2.84). 1If one wanted to compute X(43) divided by (2.84) and the
quotient to be then subtracted from X(52) one would need to first perform
the division and then store the quctient in a temporary location, as will
be discussed in the section on Stutements. In some cases, other methods
can be used; thus, if the operator ahead of X(43) were a + instead of a -,
one could write X(43) / (2.84) + X(52). 1In general, if @ is a typical
operator and x is & typical operand, then the expression

X1 8x,0x 9 X),
is evaluated as if it read

((x 9%,)@,)0,x,)

However, parentheses may not be used for this purpose in an expression.

4 March 1965 13 ™-1563/014/01

TRANSFORMATION STATEMENTS

General Form

A transformation statement is an expression terminated by a
term whose operator is (=) or [=X].

Examples of transformation statements are:

X(52) - x(43) / (2.84) = X(3)
1(2) * (@770000) LEFT (18) + (HPUKE) = I(2)
X 1(2) +X 1(2) =X I(k)

The [=) and [=X] operator stores the result of the expression in the location
represented by the operand, that is, in a location in the I-region or X-region.
A term whose operator "is (=] or (-xﬁ is not part of the expression. A term
vhose operatur is [TP) or [T¢X) is part of an expression. It stores the
results of the previous terms inte the location represented by its operand.

The results are alsc immediately available for the next term. Thus, in the
statement

X(1) + x(2) 0 X(3) + X(4) = X(5)

the sum of X{(1) + X(2) is stored in X(3), is then added to X(4), and the
final result stored in X(5). However, if the total stored in X(5) ls to be
used again, it is cbtained from storage by explicitly indicating X(5) in a
subsequent statement. All of the terms in a statement must be of the same
type.

Effect of Tranaformition Statements on Variable labels

A source-file variable may be the operand of a [T¥) or [e) cperator. It
should be noted, however, that vhenever the value of a source varisdble is
replaced in this asnner by a result of data transformations, the label
associated vith the source variable is set to zero, and the source variable
is no longer available for further processing. Procedures for associating
labels with newly computed variables are discussed in TN-1563/021/xx.

L March 1965 1k ™-1563/014/01

STATEMENT LABELS

Ceneral Forma

A statement label is a string of, at most, six
alphanumeric characters bracketed by § symbols.

Any statement may be assigned a label. For example:

$A51 §; $ NEXT §; $ 11111 8.
The label is placed ahead of a statement thus
$ vovw $ x(2) - x(2) = x(3).
Blanks in the label, as elsevhere in the transformations text, are ignored.

A label may stand alone at the end of the transformations text to permit a
terminal transfer to the end of specifications.

CONDITION STATEMENTS

?—
Ceneral Form

Condition statements are of the form
. 04, of 7 »

vhere s and ., are expressions,

® 1is a condition operator, and
8 18 & statement label.

Condition statements make it possidble to control the sequence in wvhich
statements are executed.

4 March 1965 15 ™-1563/01k/01

If the condition asserted by the condition statement is true, transfer is
made to the statement identified by the label. Otherwise, the statement
following the G T cammand is executed. Integer terms are not permitted
in the condition statement. In a condition statement a complex arithmetic
term (for definition, see Figure II-4) may appear only as the leading term
of the left-hand expression. Both expressions in a condition statement
must contain the same type of terms. A list of condition operators is
given in Figure II-T.

CONDITION OPERATORS

Symbol Condition Asserted

b—* %

R Equal

GR Greater Than

LS Less Than

(¢4] Greater cr Equal

IR Less or Equal
““

Figure II-T

Examples of condition statements are:

X(3) + (3.0) &® x(25) - L¥G X(13) G T¥ $ NEXT $
X(5) R (3.)cf 858
I(3) BQ (HPHILAD) Gf T¢ $ AGAIN $

I(5) * (#TTTTO000TTTT) EQ (HABOOCD) Gf T¢ § SMIIE §
If the values of two expressions made up of arithmetic terms are compared,
tero is greater than minus zero. If the values of twvo expressions made up

of Boolean terms are compared, zero is less than minus zero, since the minus
sign is the high-order bit.

SPECIAL STATEMENTS

There are tvo special statements: the unconditional transfer and the
veighting function.

L March 1965 16

Uncrondicion Transfer Statement

T™-1563/014/01

General Form

G T s

vhere 8 is a statement label.

- ——

For cxample, the statement

Gf ¥ $ HERE $
causes the statement labeled ITRE to be executed next.
qsiﬁptingiFunction
General Fomrm

WGHT X THRU X, BY x3

vejighted, and
3

wvhere X end X, are reapectively'thé first and
the last of a range of variables to be

x, 18 & multiplier variable.

-

The weiphting function provides {or the multiplication of each of & set of X-regic
variables by another variable. l'or example, the statement

WGHT X(5) THRU X(12) BY x({k0)

results in replacement of each varisble from X(5) through X{(12) by its value

multiplied by the value contained in X{40).

L March 1965 17 T™-1563/014/01

Effect of the weighting Function on Variable labels

Although the weighting function may be used to modify the values of source
variables, labels associated with the source variables are not affected by

this process. If the weighting function is used to define new variables, the
operands of the weighting function must appear elséwhere in the transformations
specifications also as operands of the [T} or [=1 operators.

HOW "0 SPECIFY DATA TRANSFORMATIONS TN A SPAN JOB

Data-transform.tion specifications are composed of an arbitrary collection of
transformatior. statements, condition statements, and special statements that
are stated ir the particular order in which they are to be evaluated. Data-
transformation specifications that are to operate on the data input to a
particular SPAN job must be included as & separate sentence among the control
specifications for that job. In a control sentence, the specifications text
takes the form of a string predicate of an appropriate control word; that is,
the text is delimited by apostrophies and preceded by a transformations-
declaring control word.

General Form

TRANSForm W
F-TRANsform £
~) TRANs forn

vhere s is the data-transformation specifications
text (S6000), and
@ stands for source-file number in the case
of multifile input (0= 1,2,3 in the STARS
Files Collator).

A simple example of data-transformation specifications, showing the control
word and the-spezifications text delimited by apostrophies, would be

TRANSFPRMATIONS ' X{2) + X(3) = X(51) SQRTF X(2) = X(2) °.

In most SPAN modules, data transformations are declared by the control word
TRANSForm. In the STARS Files Tabulator and STARS File Transformation modules,
vhere transformations can be expressed on results of certain subsequent
processes in addition to those expressed on the input data, control word
TRANsform declares input data transformations and the word F-TRANsform is
reserved for transformations on data resulting from subsequent processes. In
the STARS Files Collator module, where separate transformation specifications

4 March 1965 18 ™-1563/014/01

carn be declared on data from any one of three possible source files, control
words 1)TRANsform, 2)TKANsform, 3)TRANSform introduce the first,

second, and third file-data trunsforumtiions respectively. uvetinitive
information on control words usage in a particular program is given in the
SPAN Control Words Glossary, TM-1563/013/xx.

Within the actual specifications text, blanks and commas are ignored. Terms
and statements need not be separated in any special way; or, if desired,
statements may be separated by commas. Different transformations may appear
on the same card, or on separate cards indented for readability. For example,
the following two sets of specifications are equivalent:

TRANSFPRM "X (5)+(3.)BRX(29) ATLLAGK (13)-X(13)
Rers A M ER e R e i

TRANSFORM ' X(5) + (3.) BQ X(29) Gp 19 1
18G X(13) = X(13), Gf 19 $2%
1 186 x(14) = x(13),
$28 x(1) - x(2) = x(100k) .

According to the rules for constructing control specifications in SPAN (see
TM-1563/012/xx), it is possible to intersperse comments and other optional
text among the elements of a control sentence. It may be also desirable to
agsociate explanatory notes with individual statements in the data-
transformation text. The following example illustrates this flexibility:

CALCULATE THE FPLIWING *TRANSFPRMS OF INPUT DATA ---

'X(3) / x(25) = x(1127)' GR@SS PPPULATIPN DENSITY
'X(20)-Xx(25)=X(600), X(3)/X(600)= X(1128)' NET RES.DENSITY.

If one prefers, for clarity. to write transformation statements on separate
cards, enclosing the statements by apostrophies may serve yet another purpcse.
The text of data-transformation specifications input to a single SPAN job may
not exceed 6000 characters, including blanks and commas. By enclosing
individual statements in apostrophies and, thus, purging the specifications

text of unnecessary characters, a maximum of meaningful text can be accommodated
in a control sentence without sacrificing readability. Care must be taken,
however, that the control sentence contain an even number of the delimiting
apostrophies.

DATA TRANSFORMATIONS: LIMITATIONS

Data~transformation specifications input.to the STARS Files Collator module

may not contain any arithmetic terms; that is, transformations may be performed
on I-region data only. No similar restriction applies to specifications input
to other SPAN modules.

L March 1965 19 TM-1563/014/01

The size of internal tabies used in the translation of the data-transformation
specifications sets limits, in a particular SPAN job, on (1) the length of the
specifications text, (2) the number of transformation terms permitted, and

(3) the number of constants permitted. These limits are shown in Figure I1-8.
Appropriate diagnostics are printed if these limits are exceeded. In addition,
space allocated to receive the source data and data transforms, the I-region
and X-region, is of defined size. References beyond tne limits of the
I-region or X-region as defined in Figure 1I-8, i.e., references such as
X(6073) or I(375), are not detected.

In all SPAN modules, the data-transformation text associated with a control

word may not exceed 6000 characters in length. (In the STARS Files Collator,
wvhere an independent set of data transformations can be specified on each of
three possible source files, this limit applies to each set of specifications

separately.)

r DATA TRANSFORMATIONS: LIMITATIONS
J P
I-Region | X~-Region | Maximum Trans-

Size Size formation Terms| Constants
{no. of | (no. of (no. of terms)
elements)| elements)

Factor Analysis 100 Loo
Regression Analysis 100 400 500 100

Rectangular Product
ments 100 1400 1000 200

File Transformation 100 1600 1000* 200%
STARS Files Abstractor 100 1400 1000 200
STARS Files Collator 100 1000%+ L50mmn QoM
STARS Files Tabulator 100 1Lkoo 1000% 200%
STARS Files Summary-Sort 100 1400 1000 200

Combined total for input and subsequent process data transformations.
For each of three possible source files.
HCombined total for all source files.

Figure I1I-8

4 March 1965 20 T-1563/014/01

The maximum of transformation terms permitted refers to simple terms. For the
purpose of calculating this maximum, the SUM and MED complex terms are
equivalent to two and three simple terms respectively. The GO TO term, whether
appearing in a condition statement or an unconditional transfer statement,
counts as a simple term. The comparison operstor combined with the first term
of the right-hand expression in a condition statement counts as & simple term.

The maximum of constants permitted refers to each actual appearance of a

constant in an expression. Statement labels do not enter intc the count of
terms oOr constants. There is no practical limit on the number of labels.

TRANSFORMATIONS TEXT ERROR DETECTION AND DIAGNOSTICS

Before & file is actually processed, the data-transformation specifications
text is translated into an internal representation designed for more efficient
execution. The translator detects certain errors in the specifications text
and prints appropriate diagnostic messages. Errors detected are those relating
to (1) excessive size of the transformations text, (2) use of illegal operators
and operands, (3) violation of restrictions on the number of elements of a
specifications text, and (4) incorrect labeling of statements. Other violations
of data-transformation specificatiorn rules, such as use of mixed expressions,
are not detected. A detected error in data-transformation.specifications
renders a SPAN Job non-executable. Control, in that case, passes to the next
Job in line. '

Diagnostic messages which may result during processing of data-transformation
specifications are listed below, with comments and examples where appropriate.

Ex~essive Size of Transformations Text

*#» DATA-TRANSFORMATION SPECIFICATIONS TEXT IS TOO LONG
{OVER 6000 CHARACTERS).

This diagnoctic message results from violation of the requirement that the
transformations text associated with a control word not exceed the maximum
length of 6000 characters. In calculating the length of the transformations
text, note that each string-terminating apostrophe used in the control
sentence may cause 1-5 blank characters to be appended to the string to
maintain the internal string length as an integral multiple of six characters.
Blanks so generated would contribute to the character count of the string.

L March 1965 21 TM-1563/01k/01

Illegal Use of Operators and Operands

OPERATOR IS NOT IN OPERATIONS TABLE.

An illegal operator appears in the specifications text, as shown in the
following exumple:

##% TRANSFORMATIONS PROGRAM DIAGNOSTIC
OPERATOR IS NOT IN OPERATIONS TABLE.

ERROR SENSED WHILE SCANNING THE UNDERLINED WORD IN THE
FOLLOWING PORTION OF THE SOURCE TEXT ---

XI(1) * X1(15)_TP XI1(2k) +
[T¢X] is no* a legal integer term operator (see Figure I1I-6).
FIRST CHARACTER OF A CONSTANT IS ILLEGAL.

The first character of a constant is a non-numeric character other than H,
@, or - (minus) sign; for example,

(GABC), ((HHAPPY).
ILLEGAL CHARACTER IN AN OCTAL CONSTANT.

Octal constant contains a character other than digits O through T7; for
example,

(¢ 380).
ILLEGAL CHARACTER IN A DECIMAL CONSTANT.

Decimal number or integer constant contains a character other than the
- (minus) sign or digits O through 9; for example,

(136A).

Violation of Certain Restrictions

TOO MANY OPERATIONS SPECIFIED IN SOURCE TEXT.

The maximum number of terms permitted in the specifications text has been
exceeded. See Figure 1I-8 concerning limits in various modules.

TOO MANY CONSTANTS SPECIFIED IN SOURCE TEXT.

The maximum number of constants permitted in the specifications text has
been exceeded. See Figure II-8 concerning limits in various modules.

L March 1965 22 TM-1563/014/01

Labeling Errors

DUPLICATE TRANSFORMATIONS LABELS.
More than one statement has been assigned the same label.

MISSING TRANSFORMATIONS LABELS AS FOLLOWS-- [statement label
[statement iabel

11
5)

LI B I A)
LU B B)

[statement labeli]

EXECUTION ERROR DETECTION AND DIAGNOSTICS

Certain error conditions may arise during execution of the data-transformation
specifications. Where, in an expression, the function of a variable would not
yield a real number of allowable magnitude, or where there is division by zero,
the value of the entire expression is automatically set to -0. These
conditions do not result in diagnostic comment. Certain floating-point
operations (in arithmetic terms) when operating on data that are not floating-
point type may result in internal register underflow or overflow. A diagnostic
message 1s printed if such a condition should occur. The results in that case
are suspect and the source file should be examined for bad data.

EXAMPLES OF DATA TRANSFORMATIONS

In the following, three examples of data transformations are given. The first
example represents a complete transformation program. The second example
shows how to specify the computation of a median. The third is an example of
the use of the weighting function.

Example I
PERFYRM THE FPLIYWING *TRANSFYRMATIONS,

2) / x(11) =x(1001)
5; gxé(l?gag Gp TP 1
T .

i Z) IR (20.) Gp ¢ $28

$ST¢r $

13 X(38)/1;(gg§;;f(k) = (1003)

$28 x(b0)/ X(39) + x(k) = x(1003)

$s1¢P$ ',

Note that the last labeled statement may be "empty" (label $SIPPS), permitting
a transfer to the end of the transformations gpecifications.

>

P

- &
gvvvvv
¥ + & +

L March 1965 23 ™-1563/014/01
(Page 24 Blank)

Example II

Assume that the "median of school years completed” is to be calculated for a
population distribution by number of school years completed. The following
is the layout of information in the X-region:

variable location
no. of persons, 0-6 school yrs. campleted x(10)
no. of persons, 6-9 school yrs. completed x(11)
no. of persons, 9-12 schooi yrs. completed X ng
no. of persons, 12-1% school yrs. completed X(13
no. of persons, 1i-16 school yrs. completed x(1k)

To compute the median of the values in X(10) through X(14) it is necessary to
have available in the X-region, in consecutive locations, each of the lower
limits of the classification intervals, e.g., 0, 6, 9, 12 and 14 and also the
upper limit of the last interval, e.g., 16, which could be a "dummy" value.
Notice that in the transformation statements below the assigmment of these
numbers to specific, although arbitrary, X-region locations is shown.

TRANSFARM 'X(251) BQ (6.) Gf T¥ &MED$
0.) = X(250) (6.0) = x(251) (9.) =X{252)
12.) «X(253) (1k4.) =Xx(254) (16.) «X(255)
MED MED X(10) THRU X(14) INT X(250) =X(1001)°'.

Note that MED is an operator, but MED is a label. As the first entity is
processed, X-region locations X(250) to X(255) contain zeros. The statements
above set the locations to the desired quantities. After the first entity
there is a 6 in X(251) so that, as a result of the first statement, the
statements setting up the interval locations need not again be executed;
instead, the program immediately proceeds to MED.

Example III

The weighting function has been previously defined, and has several uses. One
possible use is {llustrated below, in vhich, to save writing transformation
specifications, instead of:

X(69) * x(208) = Xx(1001)

x(70) * x(208) = X(1002) etc.

one could vrite:
x(69) = x(1001)

X(70) = X(1002) etc.
WGHT X (1001) THRU X(1---) BY X(208)

If only one variable is to be wveighted and label is to be preserved, then one
might use WGHT X(n) THRU X(n) BY X(m) where n and m are variable indexes.

S

L March 1965 25 TH-1563/014/01

I1Y. ENTITY STRATIFICATION

The stratification faciiity in SPAN programs allows the user to select or
stratify records from an input file by stating explicit conditions on the
properties associated with an entity. These condition statements are evaluated
during the input processing of each entity record (see Figure I-1). If a
stated condition is true, the entity is assigned the specified stratum number.
If the stated condition is false, the next stated condition is evaluated. If
none of the stated conditicns are true, the stratum number is automatically
set at zero; the entity record is thus rejected from further processing, and
the next entity record is obtained, as shown in Figure I-1.

Stratification specifications are executed after transformations have been
performed on the input data. Thus conditions may be stated on both input
variables and their transforms. The stratum number assigned to the entity is
placed into I(99) and is therefore available to subsequent processes.

Entity stratification specifications could be expressed &s & series of condition
and transformation statements. The following transformation specifications, for
example, will assign the stratum number & to entities that containa 3, or a §
through 10, in I(3):
I1(3) EQ (3) GP TP $CLASSF$
I(3) GR (5) G TP $NEXT$
Gf ¥ $DELETE$
$NEXT$ 1(3) IR (10) Gf TP $CLASSF$
$DELETE$ (0) = I(99) G T¢¥ END
$CLASSFS (8) = 1(99)
$ENDS

The same stratification can be accomplished with the following stratification
specifications:

ASSIGN 8 IF I1(3) = 3, S5-10.

Thus, one can express more concisely & complex set of conditions with respect
to sets of explicit values. However, transformation specifications permit the
use of variables and expressions as condition criteria.

L March 1965 26 TM-1563/01! /01

STRATIFICATION STATEMENTS

Entity stratification specifications are composed of an arbitrary collection of
statements. These statements, called stratification statements, are made up of
condition clauses, and these, in turn, of criterion values. These and other
elements of the entity stratification specifications are discussed below.

General Form

ASSIGN n IF ¢y »AND Cp ovs »AND cy-

vhere n is a stratum number defined below, and
cl,ca,...,ci are condition clauses defined

belov.

A stratification statement assigns a stratum number to an entity if the condition
expressed by the statement is true. The statement may contain more than one
condition clause, in which case the clauses are connected in logical-and fashion
by the E,?ND] operator. A stratification statement always terminates on a
period {.] .

The stratum nmumber must be an unsigned integer not exceeding, in most SPAN
programs, 215 in magnitude. In the STARS Piles Tabulator, however, the maximum
stratum number is 80.

A condition clause agserts the equality of the value of a variable o:r code to at
least one of a set of criterion values.

General Form

PV

vhere p is a code or variable, and
v is a set of criterion values of a form
descrided below.

For example,
1(3) = 3, 5-10, 17, 28-30

asserts that I{(3) equals 3, 5 through 10, 17, or 28 through 30.

4 March 1965 27 T™-1563/014/01

Elements of the condition clause are criterion values or ranges of criterion
values, as shown. Thec elements are connected by commas {,] in logical-or
fashion. The limits of the range are connected by the {-] symbol and may be
stated in any order, e.g., 28-30 could be expressed as 30-28.

The criterion values may be decimal cornstants (D), decimal integer constants
(K1), octal integer constants (K2), or alphameric constants (K3), where the
symbols in parentheses are those used in Figure II-1, Chapter II, (and defined
in that same chapter). Note that the following element is possible: -.l--.3,
for -.1 through -.3. The statement of a range between two criterion values

is interpreted as the range between their binary code values. In particular,
HABC-HABD is equivalent to $212223606060-#212224606060. In stratification
text, constants are not enclosed in parentheses.

The criterion values for a code, e.g., I(72), must be of the type K1, K2, or
K3; the criterion values for a variable, e.g., X(S1), must be of the type D.

The following are examples of stratification statements:
ASSIGN 2 IF I(75) = 3, 5, 8-10,HJUNK, AND X(10) = -.2-55.3.

ASSIGN 185 IF X(10) = -35.--36., 39..

In the second example, all periods but the last are interpreted as decimal
points. The final period terminates the statement. Minus [-) symbols play a
similar dual role: the first and third (-] signs denote negative numbers,
while the second (-] sign defines the range between -35. and -36..

HOW TO SPECIFY ENTITY STRATIFICATION

Fntity stratification specifications that are to operate on the data input
(including data transformations, if any) to a particular SPAN Jjob must lie
included as a separate sentence among the control specifications for that lob.
In a control sentence, the specifications text takes the form of a string
predicate of an appropriate control word; that is, the text is delimited by
apostrophies and preceded by a stratification- or selection-declaring control
word.

L March 1965 28 T™-1563/014/01

General Form

SELECT |
STRATIfy s
®)SELEct

where s is the entity-stratification specifications
text (S6000), and
@ stands for source file number in the case
of multifile input (® = 1,2,3 in the
STARS Files Collator).

A simple example of entity-stratification specifications, showing the control
word and the specifications text delimited by apostrophies, would be

SELECT THE FPLISWING ¢BSERVATI@NS ' ASSIGN 1 IF X(20)= .0 . '.

In most SPAN modules stratification is used tc select records from the source
file, and for these modules the control word is SELECT. In the STARS File
Tabulator, the purpose is ctratification, and the control word is STRATIFY.

In the STARS File Collatcr where the selection can be specified on data from
any one of three posrible source files, control words })SELEct, 2)SELEct,

and ‘ 3)SELEct introduce the first, second, and third file entity-stra*tification
text respectively. Information on control words usage in & particular module

is given in the SPAN Control Words Glossary, TM-1563/013/xx.

ENTITY STRATIFICATION: LIMITATIONS

The size of internal tables used in the translation .f the entity-stratification
specifications sets limits, in a particular SPAN job, on (1) the length of the
specifications text, (2) the maximum size of the stratum number, (3) the number
of condition clauses permitted, and (4) the number of criterion values
permitted. Appropriate diagnostics are printed if these limits are exceeded.

In all SPAN moduies, the entity-stratification specifications text associated
vith a control word may not exceed 6000 characters in length. (In the STARS
Files Collator, where entity stratification may be specified independently on
each of the three possible source files, this limit applies to each set of
specifications separately.)

b March 1965 29 ™-1563/014/01

Other limits vary by module as shown in Figure 1I-9.

ENTITY STRATIFICATION: LIMITATIONS

Maximm Maximim Maximum
Stratum NumberjCondition Clauses|Criterion Value

Factor Analysis 1o 20 100
Fegression Analysis 21: 20 100
Tatent Class Analysis 2 20 100
Rectangular Product Moments 215 20 100
Fiile Transformation 212 20 100
STARS Files Abstractor 215 20 100

STARS Files Collator o12

STARS Files Tabulator 80
STARS Files Summary-Sort 215

Lson
400
400
% Combined total for all source files. I

Figure 11-9

F=

o*

g &

In determining the number of criterion values used in a specifications text.
note that each expressed range of values counts &s a single value,

STRATIFICATION TEXT ERROR DETECTION AND DIAGNOSTICS

Before a file is processed, the entity-stratification specifications text is
translated into an internal representation designed for more efficient
execution. The translator detects certain errors in the specifications text
and prints appropriate diagnostic messages. Errors detected are those relating
to (1) excessive size of the stratification text, (2) illegal statement syntax,
and (3) violation of restrictions on the number of elements of a specification
text. An error detected in entity-stratification specifications renders a SPAN
Job non-executable. Control in that case passes to the next job in line.

Diagnostic messages that may result during translation of entity-stratification
specifications are listed below, with appropriate comments and examples.

e T ———

4 March 1965 30 TM-1563/014/01

Excessive Size of Stratification Text

#++% ENTITY SELECTION SPECIFICATIONS TEXT IS TOO LONG (OVER

#+# ENTITY STRATIFICATION SPECIFICATIONS TEXT IS 100 LONG

These messages result from violation of the requirement that the stratification
text associated with a control word not exceed the maximum length of 6000
characters. In calculating the length of the stratification text, note that
each string-terminating apostrophe used in the control sentence may cause 1-5
blank characters to be appended to the string to maintain the internal string
length at an integral multiple of six characters. Blanks so generated would
contribute to the character count of the string.

Illegal Statement Syntax

WHILE EXPECTING AN -IF- OR ~-AND- WORD, PROGRAM HAS
ENCOUNTERED A WORD IT CANNOT RECOGNIZE.

A condition clause is preceded by an illegal operator, as shown in the
following example:

#t# STRATIFICATION PROGRAM DIAGNOSTIC

WHILE EXPECTING AN -IF- OR -AND- WORD, PROGRAM HAS
ENCOUNTERED A WORD IT CANNOT RECOGNIZE.

ERROR SENSED WHILE SCANNING THE UNDERLINED WORD IN THE
FOLLOWING PORTION OF THE SOURCE TEXT ---

3,78-92,AND_IF X(42)=

[,AND IF) 1s not a legal clause connector. Similar error message would
result if & stratification statement began with [ASSICN 56 X(22)a] .

ILLEGAL CHARACTER IN AN OCTAL CONSTANT.

Octal constant contains a character other than digits O through 7; for
example, @ 380.

TLLEGAL CHARACTER IN A DECIMAL CONSTANT.

Decimal number or integer constant contains a character other than the minus
(-] sign, (e.g., 3AB, 57+2) or digits O through 9.

4 March 1965 A TM-1563/014/01

DECIMAL INTEGER IN A DECIMAL NUMBER CRITERION SET.

A decimal number criterion set contains a constant without a decimal point
{(.], as, for example, in the following text:

3.5,6.,.5-1.,1, AND X(7) =

Violation of Certain Restrictions

TOO MANY CONDITION CLAUSES IN SOURCE TEXT.

The maximum number of condition clauses permitted in the specifications text
has been exceeded. See Figure II-9 concerning limits in various modules.

TOO MANY CRITERION VALUE SETS IN SOURCE TEXT.

The maximum number of criterion values permitted in the specifications text
has been exceeded. See Figure II-9 concerning limits in various modules.

Certain other violations of specification rules for entity stratification are
not detected directly. For instance, a decimal point [.] appearing in a
decimal integer constant would be interpreted as a period [.] terminating the
statement. If the last statement is not properly terminated by a period, that
statement will be translated incorrectly, and the stratification specifications
will not execute properly. A criterion value beginning with a non-numeric
character other than ¢ will be automatically interpreted as an alphameric
constant, unless, of course, it is contained in a decimal number criterion set.

EXAMPLES OF ENTITY STRATIFICATION

Three examples of entity stratification are given below. The first example
shows the straightforward use of stratification specifications for selecting
entity records for the source file. The second and third examples demonstrate
the Jjoint use of data transformations and entity stratification.

Example 1

Assume a source file contains 16 records. Code I(2) is the record sequence
number. Values of variable X(210) range from -50.7 to +200.5.

Records 4, 6 through 8 and 12 in the source file are to be assigned stratum
number 11. Records sequence-numbered 1, 5, 13, and 1k and containing values
of X(210) between 0. and -50.7T are to be assigned stratum um number 12. Records
sequence-numbered 1, 5, 13, and 1L and containing values of X(210) between

0. and 200.5 are to be assigned stratum number 13.

i March 1965 3 ™-1563/014/0L

The following specifications will perform the desired stratification:
SELECT 'ASSIGN 11 IF 1I(2) = 4,6-8,12.
ASSIGN 12 IF 1I(2) =1,5,13,1k, AND
x{210) = 0. -- 50.7.
ASSIGR 13 IF 1(2) =1,5,13,14, AND
X(210) = 0. - 200.5. '.

As a result, records sequence-numbered 2, 3, 9, 10, 11, 15, and 16 will not
satisfy any of the stated conditions and will be excluded from further
processing. The stratum number values are placed in I(99) and may be used
in further processing, e¢.g., as a key for sorting or summarizing the
derivative file.

Example II

This example shows the joint use of data transformations and entity
stratification. Records are to be selacted on a source file code, I(2) and if
a computed percentage exceeds 50%.

TRANSFYRMATIfNS ' SUM X(3) THRU X(16) = X(1001)
x(13) / x(1001) * (100.) = X{1002) '.

SELECT 'ASSIGN 1 IF I(2)=1-5, AND X (1002) = 50.-100. .'.

Example III

The following example again illustrates the use of data transformations in
conjunction with entity stratification. The purpose here is to deletr from
the derivative file all records possessing duplicate values of & key. X{2).

TRANSFORM ' I(2) EQ I(60) G#TY 1
10) = I(61) GPTY $28
$18 (1) = 1(61
$2¢ 1(2) = 1(60) .

SELECT 'ASSIGN 1 IF I(61) = 0. '.

4 March 1965 33 ™-1563/01% /01
(Last Page)
APPENDIX A
J09C REPRESENTATION CF ALPHAMERIC CHARACTERS

Char- BCD Char- BCD Char- BCD Char- BCD

acter | Card | Tape | Storage||acter |Card | Tape | Storage|| acter | Card | Tape | Storage||acter {Card | Tape | Storage
12 11 0

1 i 01 01 A 1 61 21] i 41 41 / 1 21 61
12 11 0

2 2 {0z | 02 B 2 | 62 22 K 2 | 4 ° s 2 22 62
12 11 0

3 3 {03 | 03 c 3 | 63 23 L VL ! T 3 23 63
12 1 0

4 4 |04 | O4 D 4 | 64 24 M 4“ “ U 4 | 2 64
12 11 0

5 5 [os | os E s | 65 25 N 4 45 v 5 25 65
12 11 0

6 6 |06 | o6 F 6 | 66 26 o 6 | 4 % w |6 26 66
12 11 0

7 7 |07 | o7 G 7 | 67 7 P 7 | @ 47 X 7 7 67
12 1 0

8 8 100 | 10 H 8 | 70 0 Q 8 | so 50 Y (] 30 70
12 1 0

9 9 1 | n 1 9 | 3t R 9 | 51 st z 9 31 7

blank |blank | 20 | 60 + 12 | 60 20 - 1 | 40) 0 0 12 00
12 11 0

= |83 [13 | 13 . |83 | 73 3 $ [8-3 | ss 53 , [8-3 | 33 73
12 1 0

L ! 8-4 14 14) 8-4 74 34 * 8-4 54 54 { 8-4 34 74

™his table has been reprinted by permission from IBM 7 TO9%
Programming Systems FORTRAN II Programming, Form No. - -5.

cw September 17%% Page A ™ML Lk

¢ MODIFIGATION TO: /\ "
™-1563/014/01, "SPAN REFERENCE _ ku‘t\ ‘nadimifm
and Stratification Capability,"
L March 1965.

MANUAL: SPAN Data-Transformations
System Daveiopment Corporation, 2300 Colorado Avs., Santa Menica, Califernla

CURRENT MODIFICATION*

Modified Pages Notes and Filing Instructions

7-8 Remove page 7-8 dated 4 March 1965 and replace
with page 7-8 dated 24 September 1965.

9-10 Remove page 9-1C dated 4 March 1965 and replace
with page 9-10 dated 24 September 1965.

11 Remove page 11-12 dated 4 March 1965 and replace
with page 11-12 dated 24 Septerber 1965.

*
The modified portions of the text are indicated by a double verticle
bar opposite the text.

Ala02

o~ s

2e Cepterber 1975 T =15 3/01-/01A

i FUNCTIONS OF VARIABLIS L
+' Square root SQRT X(90)
Logarithm (natural) 1ga x(90) II
Exponential EXP X(90)
Sine st X(90)
Cosine cfs x(90)
Arctangent ATAN X(90)
L S |
Figure II-2

The function of a variable is a single operand. Where the function of a
varisble would not yield a real number of allowable magnitude, as in (-h)%,

log O, or e9°, the value of the function is set to -0.

DECIMAL NUMBER CONSTANTS (D)

General Form

A decimal number constant consists of a string of decimal
nipite Wwolll w wellnil peant at the Yoglirdie. sl *ve end,
or between two digits.

The decimal number constant may be signed or unsigned. A decimal number
is represented internally as a floating-pointhnumber. h'Ihe magnitude of a
decimal number constant must lie between 10-1“ and 10% ; Or be zero.

Exemples: (-.15), (3.1416), (12.) or (0.).

DECIMAL INTEGERS (Cl or K1)

General Form

A decimal integer constant consists of 1-5 decimal digits
written without a decimal point.

A decimal integer code is represented by I(n), where n is
the index of its location in the I-region.

24 Beptember 1975 8 TM-1563/014 /014

A_decimal integer may be signed or unsigned. Its magnitude must be less than
215, A decimal integer constant would be expressed as (1492), (-2), or (0).
A decimal integer code is represented by its address, for example, I(92).
Decimal integers are siored internally as pure binary numbers, occupying

the left-half word, with the right 18 binary bits being all zeros. If a
decimal integer is negative, the minus sign ouccupies the high-order position
of the binary word; this must te remembered when using negative integers in
Bociean operations.

OCTAL INTEGERS(C2 or K2)

General Form

An octal integer constant consists of 1-12 octal digits
preceded by the letter O.

An octal integer code is represented by I(n), where n
is the index of its location in the I-region.

The maximum value of an octal integer is 250- Leading zeros need not be
indicated. Examples: (@356), (@#777700007777), (#3). An octal integer
code is represented by its address, for example, I(92). Octal integers
are stored internally as pure binary numbers, each octal digit comprising
three binary bits.

ALPHAMERIC CONSTANTS AND CODES (C3 or K3)

General Form

An alphameric constant consists of 1-6 alphabetic
and/or numeric characters preceded by the letter H.

An alphameric code is represented by I(n), where n
i1s the index of its location in the I-region.

An elphameric constant may not include special characters, but may include blank
spaces to be treated as characters. The H to indicate mode must be used even if
word besins with an H. Examples: (HABC), (HR376), (H23KVS), (HHAPPY). If the
string exceeds six characters, only the six left-most characters are used. For
example, (HALPHAMERIC) is equivalent to (HALPHAM), i.e., the first six characters.
Blank spaces occurring within the six character positions following an H are
treated (and counted) as characters.

D
¥
~
1
al
~

-~ . s P B fe s
T Seprember 1068 ‘ TVoLT LT

An alphemeric code is represented by its address, for example: I(92).
Alphameric words are stored internally as binary numbers, with two octal digits,
and therefore six binary bits, for each character. They are left-justified,

so that the right characters consist of blanks. The IBM 7090 octal (storage)
representation of alpheameric characters is given in Appendix A , "T7090
Representation of Alphameric Characters."

COMPLEMENT OF OCTAL INTEGER CODE (C4)

The 1's complement of an octal integer code is indicated by placing a [-] ll
symbol ahead of the address of a code, for example, «I(15). The combination
represents a single operand.

ARITHMETIC TERMS

Arithmetic terms may be simple or complex. A simple arithmetic term consists
of one operator and one operand. A complex arithmetic term represents a
single operation performed on more than one operand. Figure II-3 lists the
operators that may be used in simple arithmetic terms; Figure II-4 lists the
two types of complex terms. Only certain operands may be used with a given
operator; these are indicated in Figures II-3 and II-4 by means of the
operand symbcls defined in Figure II-l.

SIMPLE ARITHMETIC TERM OPERATORS
T ~rator Operation crpalcanie vu Cperand Types
_ -y
+ Add vV, F, D
- Subtract V, F, D
* Multiply v, F, D
/ Divide vV, F, D
¢ Store and proceed \'f
= Store and clear \
— - J

Figure II-3

Division by zero will set the quotient to -0. The difference between the two
"store" operators will be discussed in the section on expressions.

tentemcer Uk

™el5n 3/ 00a/

4
pu

COMPLEX ARITHMETIC TERMS

1

Term

Operation

F
Admissible Operand Type

S

SUM ﬁ THRU x2

HED Xy THRU X

3

Sum operands xl through
*2

Calculate median over
variables Xy through X5)

with x, being the first

clement of a set of
the Llower limits of
~orresponding category
intervals; if n is the

(n+l)th

interval.

number of categories, the
element contains
the upper limit of the nt

f

I

A deteiled example of a median computation will be

BOOLEAN TERMS

Boolean tems consist of one opcrator and one operand.
Only certain operands may be used with a given operator; these

Figure 11-5.

Figure II-U

given later.

They are listed in

are indicated in Figure II-5 with the operand symbols defined in Figure II-l.

Figure II-5

BOOLEAN TERM OPERATORS l
Symbol Operation Applicable to Operand Types
+ logical-or All C and K2, K3
* logical-and All C and K2, K3
/ exclusive-or All C and K2, K3
LEFT shift left n bits Kl
RIGHT shift right n bits Ki
T store and proceed All C
l— = store and clear All C

[e 1t

Ly
. Jeptember 1 C 14 T-1002 /010 /014

“or 3oolean opcrations, including chifts, recall that all operands are internally
represented as pure binary quantities of 36 binary bits. Shifts are, in effect,
accumulator shifts, not "long" or "logical™ shifts; thercfore bits are lost in
this process. On a left shift of n bits, (n-1) bits are lost, while n bits

are .>st on a right shift of n bits. Vacated positions are filled with zeros.

INTEGER TERMS

Integ * terms -~onsist of an opecrator and an operand. The operators, and
applicable operands, arc given in Figure II-6.

INTEGER TERIM OPERATORS

Appiicable to Operand Type Ki
(Decimal Integer Constant)

Applicable to Operand Type Cl
(Decimal Integer Code)

D T

Integer Code Add | + § Integer Constant Add

Operation

Integer Code Subtract
Integer Code Multiply
rInteger Code Divide

§ Integer Constant Subtract
| Integer Constant Multiply

Integer Constant Divide

Store and Clear

Figure II-6

IXPRESS IONG

An expression is a string of terms, none of which contains the operator [-’
or [=X). Fach line below is an example of one expression:

Tyrreanion Z!EE
X(52) - x{(43) / (2.84) Arithmetic
1(2) * {@770000) LIFT (18) + (HPUKE) Boolean
(.55) - SGRTX(55) - x(12) Arithmetic
(r07) / 1(8T) + -1(3) Boolean
XI1(52) /X 1(33) *x 1(1) Integer

MED X(1h) THRU X(21) INT X(38) 79 x(80) * (2.) Arithmetic

4 March 1965 12 T™™-1563/014/01

Blanks are ignored in expressions, so that expressions equivalent to the
above can be written in many ways. In the above examples, each of the
following represents a single term: -X(43); LEFT (18); - SQRTX(55); - -I(3);
/X 1(33); TP X(80); MED X{il4) THRU X(21) INT x(38).

RULES FOR CONSTRUCTING EXPRESSIONS

1.

All terms in an expression must be of the same type; e.g., all arithmetic
terms, Booclean terms, or integer terms. Mixed expressions are not detected
by the translator and will yield incorrect resul<is.

A complex arithmetic term may appear only as the leading term. Thus the
following is a correctly formed expression,

SUMX(35) THRU X(40) * Xx(2)/(100.)
while the following expression is in error,
X{2) * SUMX{35) THRU X(L40)/(100.)

For expressions made up of either simple arithmetic or Boolean terms the
operator of the leading term is always an implicit [+]) . That is, no
operator except the {+ may be used for the leading term, and the (+]

is never written. (See the previously given examples.)

Expressions are evaluated from left to right; the operator symbol in each
term defines the relation between the result of preceding terms and the
value referred to by .2 cpevand. In the expression X(52) - X(L2) / (2.84)
the quantity X(«), .s sut.acted from X(52) and the result is then divided
by (2.84). If one wanted to compute X(43) a.vided by (2.84) an. the
quotient to be then subtracted from X{(52) one would need to first perform
the division and then store the quotient in a temporary location, as will
be discussed in the section on Statements. In some cases, other methods
can be used; thus, if the operator ahead of X(L43) were a + instead of a -,
one could write X(43) / (2.84) + X(52). In general, if @ is a typical
operator and x is a typical operand, then the expression

xl&%x265x3ihxh
is evaluated as if it read

(((x B x5)@yx3)y x))

However, parentheses may not be used for this purpose in an expression.

DOCUMENT CONTROL DATA - R&D

-

1. ORIGINATING ACTIVITY (Comesete suthor) 8o
Unclassified
System Development Corporation, g
Santa Monica, California

3. REPORYT TITLE

SPAN REFERENCE MANUAL JPAN DATA~TRANSFORMATIONS AND STRATIFICATIONS CAPABILITY,

4. DESCRIPTIVE NOTES (Type of regpert and inclusive detes)

5. AUTHOR(S) (Last name. Hrat name, initial)

Almendigg_;‘l V. V.
¢ REPORT DATE V9. TOTAL NO. QF PAGES 70. NS. OF MZPa

2b September 1965 7

84 CONTRACT OR GRANT NO. leﬁ, for 08 ORIGINATOR'S REPCRT NUMBER(S)
th= Bureau of Pubiic Roads, U, S.
b smosser no. Department of Commerce ™=1563/014/01A

¢ . m'.nn REPOAY NOB) (Any ofher mambere ot may bo sseigned

d.
10. AVAIL ABILITY/LIMITATION NOTICES

This docmnent has ‘been clea.red for onen publication and w be disseminated by

1". BUPPLI!CNTANY NOTI. [le8 13 IMI”
™=1563/014/01, by V. V. Almendinger,
dated 4 March 1965, DDC number:
AD-613 285

13. ABSTRACY

T Trrv

-

XEY WORDS

5LINK A

LINK ®

Link €

ROL 8

LA

nOLE

L4

ROLE

vn#

SPAN System

Data Management
Statistical Analysis
IBM 7090 Coamputer
IBM 7034 Ccmputer
Social Science
Urban Data Analysis

