
TM-1563/014/01

SPAN REFERENCE MANUAL

SPAN Data-Transformations and

Stratification Capability

APR9 1965 1,,
4 March 1965

bL L Best Available Copy

TM-1563/014/01*

(TM Series)

SPAN REFEENCE MANUAL SYSTEM

SPAN Data-Tramnformations and DEVELOPMENT

Stratification Capability L.RPORATION

by 2300 COLORADO AVE.

Vladimir V. Almendinger SANTA MONICA

4 March 1965 CALIFORNIA

This document was produced by SDC in performanc.
of contract CPR-11-1543 for the Bureau of Public
Roads, U.S. Department of Commerce. Permission
to quote from this document or to reproduce it,W
wholly or in part, should be obtained in advance
from the System Development Corporation or the j
Bureau of Public Roads.

"1T4-1563/014/00, a preliminary version of this
document, was not published.

4 Marcb 1965 i TM-1563/010/01
(Page ii Blank)

ABSTRACT

This document is one of a series of volumes of the SPAN
REFRECE MANUAL describing the SPAN system for data
management and statistical analysis. The SPAN system
provides an integrated file processing and multivariate
analysis capability for problems involving large data
matrices with large numbers of variables. The system
is oriented to problems of social science in general
and urban data analysis in particular.

This volume describes the specification and use of SPAN
capabilities for the transformation of the contents of
a data file in the course of its input to a SPAN process.
The data-transformation capability allows the user to
state algorithmic procedures leading to the generation
of new data variables as transformations of the source
data. The entity stratification capability provides
for the classification and selection of entity records
according to user-specified criteria.

4 March 1965 i44 TM-1563/014/01
(Page iv Blank)

FOREWORD

Capabilities, specifications formats, and other detnils
of the application of the data-transfoxmation and entity
stratification languages described in this volume correspond
to the following operational components of the SPAN system-

1. SPAII System Library Version 3 (and subsequent
versions); and

2. SPAN System Supervisor (binary deck), dated
February 12, 1965.

The current operational status of the SPAN system is
documented in TM-1563/05C'.

4 March 1965 v TM-1563/014/01

TABLE OF CON1TES

ABSTRACT i

FORWORD.. ... iii

I. INTRODUCTION: THE STANDARD INPI17 PROCESS 1

The Source File I

The Standard Input Process. 2

II. DATA TRANSFORMATIONS * 5

Termse... 5

Variables and Functions of Variables (V or F) 6

Decimal Number Constants (D) 7

Decimal Tntegers (Cl or KI) 7

Octal Integers (C2 or K.. 8

Alphameric Constants and Codes (C3 or K3),......... 8

Complement of Octal Integer Codes (c4) 9

Arithmetic Terms. 0: 9
Boolean Terms.... oo • *...... o.......... 10

Integer Terms o. . .. o-000........ 0 0...... • . . .6009. ii

Expressions 1.1............................. i

Rules for Constructing Expressions. 12

Transformation Statements • 13
Statement Labels- o o..... 14

Condition Statements 14
Special Statementso-s0 15

How to Specify Data Transformations in a SPAN Job....... 17

Data Transformations: Limitations o.......... 18

Transformations Text Error Detection and Diagnoatics 20

Execution Error Detection and Diagnostics........... 22
Examples of Data Transformationso 22

4 march 1965 vi TM-1563/014/o1

TABLE OF CONTENTS (Continued)

III. ENTITY STRATIFICATION-e a s 25

Stratification Statements •.......... 26

How to Specify Entity Stratification................... 27

Enitty 4.,-i,,ani t 4-

Stratification Text Error Detection and Diagnostics 29

Examples of Entity Stratification 31

0

SMarch 1965 1 TM-1563/014/ol

I. INTRODUCTION: THE STANDARD INPUT PROCESS

A typical single SPAN task consists of obtaining information from a source
file and subjecting it to statistical analysis, tabulation, listing, or other
forms of processing. SPAN provides the capability to transform or stratify
data taken from the source file prior to subsequent processing. The methods
for accomplishing this are described in this volume.

As a •imple txnli, thp gcrce file might contain data on the total portlation
and its age distribution by census tracts. The data-transformation capability
makes it possible to compute the new variable "percent population over 65"
for each census tract. The stratification capability makes it possible to
stratify the tracts into groups according to size of population. However,
the stratification process takes place after data transformations so that
one could stratify on the basis of a newly created variable. Thus, in terms
of the above example, one could stratify the tracts into groups according
to percent population over 65. Inherent in the stratification process is
the capability to select or reject tracts on the basis of specified criteria.
The wide range of possibilities in both data transformations and stratification
is discussed in the following sections.

The SPAN capabilities for data transformations and entity stratifications
(including record selection) may be exercised in the following SPAN modules:

Factor Analysis
Regression Analysis
Latent Class Analysis (record selection only)
Rectangular Product ,Moments
File Transformation
STARS Files Abstractor
STARS Files Collator
STARS Files Tabulator
STARS Files Swmuary-Sort
SPAN Report Generator
System for Mixed Data Structures Reduction
SPAN Graphic Display system

THE SOURCE FILE

Only those aspects of file organization necessary to an understanding of
this volume will be covered here; a complete discussion of file organization
is given in TM-1563/015/xx. Furthermore, the discussion will be limited to
"simple files"; a simple file is one In which each record has the same format.
"Mixed data files" and their treatment are discussed In TM-1563/023/xx.

4 march 1965 2 TM-1563/014/01

The typical source file consists of observations on the properties of entities.
Entities might be census tracts, individuals, time intervals, events, or a.ny
other "units"; properties might be population, land area, age, percent
unemployed, and so forth. One can think of the file as a two-dimensional
array; in SPAN, by convention, rows are entities, and columns are properties.
A typical source file is made up of records, each record consisting of the
values of the properties for one entity.

The 'oroperties for a aiven entity are of two types: codes and variables.
Codes are properties that identify the entity, such as census tract code,
man number, X-Y coordinates, event identification, etc. A typical source-file
record permits a total of fifty different codes. Variables are those properties
such as population, age, etc., that represent the computational data for the
entities. Typically, a ma:itum of 1000 variables is possible. Within a
source file record, the set of codes is logically separate from, and precedes,
the set of variables.

THE STANDARD INPUT PROCESS

A file is processed serially, that is, a single record is obtained, transformed,
stratified, and subjected to such further processing as specified. and then
another record is obtained. For ease of discussion, we shall define two
internal regions, the I-region and the X-region. As each record is obtained
from the source file, the codes are placed in the I-region and the variables
in the X-region.

Obviously the user specifies whether a property is a code or a variable.
However, codes and variables, as will be seen, differ in the manner in which
they can be operated upon, and sometizwes the user may find it necessary to
include the same property both as a code and as a variable.

Each code or variable corresponds to one location in the I-region or X-reglon
respectively. (The internal representation of codes and variables will be
discussed later.) The I-region can accommodate 100 codes; since the typical
record contains, at most, 50 codes, additional space is available for new
codes arising from data transformations. Codes are identified by th-ir
location in the I-region, e.g., I(1), 1(2), ... , V(100). Codes 1(99) %nd
I(100) are sometimes used for specific purposes by SPAN mod•les, and are
therefore not always available. The X-region normally accommodates 1400)
variables, identified by their location, e.g., X(l), X(2), etc. The tyTical
record contains a maximum of 1000 variables; additional space is thus available
for new variables arising from transformations. Note that. if the record
contained only 200 variables, locations X(201) through X(1400) would be
available; a similar comment applies to the I-region. The I-region and
X-region are automatically cleared prior to the processing cc the first record.

4 March 1965 3 IM-15b3/014/01

Referring to Figure I-1, we see that a record is taken frcon the source file,
and the codes and variables are placed, respectively, in the I-region and
X-region. If any data transformations or stratification are to take place,
or any subsequent computations are to be made, as distinct from merely
moving data, all of the variables are automatically converted to floating point,
if they are not already in that form.

Data transformations may be made on variable3 or codes. 'ransformations on
variables are normally floating-point arithmetic operations; that is, new
variables are created by arithmetic operations on existing varables. Codes
may be transformed by means of Boolean or integer operations.

Stratification permits the user to assign stratum numbers to each entity
according to a wide range of user-specified conditions. Thus, if one wishes
to stratify a file of records into five groups according to the value of a
given variable, one might assign the stratum numbers 1, 2, ... 5. As the
stratification specifications are executed, the stratum number for each
record is automatically placed in 1(99) and is available, if desired, in
subsequent processing.

If a record does not meet the specified conditions, the stratum number is
automatically set at zero, &nd such a record is rejectel; i.e., it does not
undergo subsequent processing. Thus, selection is inherent in stratification,
and as a special case, one can select any particular records, and thus reject
others, by assigning any non-zero integer as the stratum number to the
records to be selected.

Each record from the source file undergoes the processes shown in FigLure I-1,
and the resulting records can be thoughtof as making up a derivative file.
It is this derivative file that is the "input" for subsequent processes.
Most SPAN-specific processes, such as abstracting, summarizing, and collating,
or calculating a correlation matrix, are specified with respect to the
derivative file. 'his transformation of source file into derivative file is
known as the standard input process. If n- transformations or stratification
are specified, the derivative file will be identical to the source file.
Implications of the standard input process for identifiers of file content,
,uch as lbbels of variables or names of the codes, variables, and entities
sets in a STARS file, are discussed under the healin4g of STARS output file
description in the SPAN REFER' CE MAIUAL volume on "IDta File Manipulation
and Processing," TM-1563/o21/xx.

In thY following two chapters the rules for specifying data transformations
and entity stratification are discussed. The reader should assume that the
data are already in the I and X-region and that he knows the positions of
the various codes and variables.

-ch 1965 TM-1563/014/oi

KDve Source
File Record into
I-region and

X-.-egion

Are
Variables in No

Floating
Point?

Convert Variables
Ves to Floating Point

Transformatiors
Yes

Execute

*0 Transformations
Specifications

>

Yec-

Ty
Yes S;

Stratification Yes

?

Execute
No Stratification

Specifications

I

No Stratum
t Yes

Number Equals
Zero?

Subsequent
Processing

THE STAMARD MPUT PROCESS

Figure I-1

4 March 1965 5 TH-1563/014/ol

II. DATA TRANSFORMATIONS

Data-transformation specifications are used to create new codes or variables.*
Newly created codes and variables can be used in subsequent processing and
to create additional codes and variables. Data-transformatiorA specifications
are executed on each entity reccr4 as described in chapter I. The rules for
specifying data transformations are discussed in this chapter.

Data-transformation specifications are composed of an arbitrary collection of
statements, of which there are three types: (1) transformation statements,
used to specify arithmetic ccomputations; (2) condition statements, used
to control the sequence in which statements are executed; and (3) special
statements. Statement are made up of expressions and these, in turn, of terms.
These and other elements of the data-transformation specification are discussed
below.

TERMS

A term consists of an operand prefixed by its operator. There are three
types of terms: (1) arithmetic terms, (2) Boolean terms, and (3) integer
terms. The type of term is uniquely determined by the combination of operator
and operand; the same symbol is often used for operators in different types
of terms, even though it represents a different operation.

Figure II-1 lists the various possible operands. It will be recalled that
X(15) refers to the 15th location in the X-region, which corresponds to
the 15th variables; 1(23) refers to the 23rd location in the I-region,
which corresponds to the 23rd code. Note that in transformations text
constants are always enclosed in parentheses.

SThe SPAN data-trans'lormation language described in this chapter was
conceived and implemented by Robert A. Hoodes, who participated in
various phases of SPAN development. The principal virtue of the
notation is its easy translatability, leading to a simple but highly
efficient execution method. An early version of the language was first
used by Mr. Hoodes in his IBM 704 MUSP system for multivariate
analysis. Mr. Hoodes is now with the IBM Federal Systems Division.

4 March 1965 6 TK-1563/014/01

TYPES OF OPERANDS

Symbol Name Example

V Floating point variable X(15)

F Function of variable SQRT X(15)

D Decimal nuber constant (-.35)

Cl Decimal integer code 1(23)

C2 Octal integer code 1(23)

C3 Alphameric code 1(23)

c4 Complement of octal integer code -1(15)

]1G Decimal integer constant (Ul)

12 Octal integer constant (077077)

K3 Alphameric constant (HA5Px43)

Figure II-1

VARIALES AND UCTION OF VARIABLES (V or F)

General Form

A variable is represented by X(n), where n
is the index of its location in the X-region.

Variables, such as X(65), are represented internally as floating-point numbers;
they are automatically converted to decimal representation for printout. The
magnitude of a floating-point variable must lie approximately between 10-3
and 103 . Functions of variables, such as SIN X(28), are floating point
numbers. Figure 11-2 lists all defined functions.

4 March 1965 7 TM-1563/014/01

FUNCTIONS OF VARIABLES

Square root SQRT X(90)

Logarithm (natural) *gQ X(90)

Exponential EXP X(90)

Sine SIN X(90)
Cosine Cos X(90)

Arctangent ATAN X(90)

Figure 11-2

The function of a variable is a single operand. Where the function of a
variable would not yield a real number of allowable magnitude, as in
log 0, or e9 0 , the value of the function is set to -0.

D foAL NUM M CONSTANTS (D)

General Form

A decimal number constant consists of a string of decimal
digits with a decimal point at the beginning, at the end,
or between two digits.

The decimal number constant may be signed or unsigned. A decimal number
is represented internally as a floating-point number. The magnitude of a
decimal number constant must lie between 10-14 and 1014, or be zero.
Examples: (-.15), (3.1416), (12.) or (o.).

DECIMAL INMEGS (C1 or K1)

General Form

A decimal integer constant consists of 1-5 decimal digits
written without a deciml point.

A decimal integer code is represented by I(n), where n is
the index of its location in the I-region.

4 March 1965 8 TK-1563/o14/o1

A decimal integer may be signed or unsigned. Its magnitude must be less than
2'r. A decimal integer constant would be expressed as (1492), (-2), or (0).
A decimal integer code is represented by its address, for example, 1(92).
Decimal integers are stored internally as pure binary numbers, occupying
the left-half word, with the right 18 binary bits being all zeros. If a
decimal integer is negative, the minus sign occupies the high-order position
of the binary word; this must be remembered when using negative integers in
Boolean operations.

OCTAL .INTEGERS(C2 or K2)

General Form

An octal integer constant consists of 1-2 octal digits
preceded by the letter 0.

An octal integer code is represented by I(n), where n
is the index of its location in the I-region.

The maximum value of an octal integer is 236. Leading zeros need not be
indicated. Examples: (0356), (0777700007777), (03). An octal integer
code is represented by its address, for example, 1(92). Octal integers
are stored internally as pure binary numbers, each octal digit comprising
three binary bits.

AIPHAMERIC CONSTANTS AND CODES (C3 or K3)

General Form

An alphameric constant consists of 1-6 alphabetic
and/or numeric characters preceded by the letter H.

An alphameric code is represented by I(n), where n
is the index ofits location in the I-region.

An alphameric constant may not include special characters. The H to indicate
mode must be used even if word begins with an H. Examples: (HABC), (H2376),
(H23KV6), (HXAPPY). If the string exceeds six characters, only the six
right-most characters are used. For example, (HALPHAMERIC) is equivalent to
(HAMERIC), i.e., the last six characters.

4 March 1965 9 •T-1563/014/01

An alphameric code is represented by its address, for example: 1(92).
Alphameric words are stored internally as binary numbers, with two octal digits,
and therefore six binary bits, for each character. They are left-justified,
so that the right characters consist of blanks. The IBM 7090 octal (storage)
representation of alphameric characters is given in Appendix A , "7090
Representation of Alphameric Characters."

coIna~T OF OCTAL I GEG CODE (c4)

The l's complement of an octal integer code is indicated by placing a
symbol ahead of the address of a code, for example, -1(15). The combination
represents a single operand.

ARITHMETIC TEMS

Arithmetic terms may be simple or complex. A simple arithmetic term consists
of one operator and one operand. A complex arithmetic term represents a
single operation performed on more than one operand. Figure 11-3 lists the
operators that may be used in simple arithmetic terms; Figure 11-4 lists the
two types of complex terms. Only certain operands may be used with a given
operator; these are indicated in Figures 11-3 and 11-4 by means of the
operand symbols defined in Figure II-1.

SIMPLE ARITHMETIC TERM OPERATORS

Operator Operation Applicable to Operand Types

+ Add V, F, D

- Subtract V, F, D

* Multiply V, F, D

/ Divide V, F, D

TO Store and proceed V

- Store and clear V

Figure 11-3

Division by zero will set the quotient to -0. The difference between the two
"store" operators will be discussed in the section on expressions.

4 March 1965 10 TM-1563/014/01

C01PLEX ARITHMETIC TERMS

Term Operation Admissible Operand Types

SUM x1 THRU x2 Sum operands x1 through V
x2

MED x1 THRU x2 INT x3 Calculate median ever V
variables x- trough x2 ,
with x being the first
elemenQ of a set of
the lower limits of
corresponding category
intervals; if n is the
number of categories, the
(n+l)th element contains
the upper limit of the nth
interval.

Figure 11-4

A detailed example of a median computation will be given later.

BOOLEAN TERM

Boolean terms consist of one operator and one operand. They are listed in
Figure 11-5. Only certain operands may be used with a given operator; these
are indicated in Figure 11-5 with the operand symbols defined in Figure II-1.

BOOLEAN TERM OPERATORS

Symbol Operation Applicable to Operand Types

+ logical-or All C and K

+ logical-and All C and K

/ exclusive-or All C and K

LEFT shift left n bits K1

RIGHT shift right n bits KI

TO store and proceed All C

* store and clear All C

Figure 11-5

4 March 1965 11 TM-1563/014/0l

For Boolean operations, including shifts, recall that all operands are
internally represented as pure binary quantities of 36 binary bits. Shifts
are, in effect, accumulator shifts, not "long" or "logical" shifts; therefore
bits are lost in this process. On a left shift of n bits, (n-i) bits are lost,
while n bits are lost on a right shift of n bits. Vacated positions are filled
with zeros.

INTEGER TRMS

Integer terms consist of an operator and an operand. The operators, and
applicable operands, are given in Figure II-6.

INTEGER T• OPERATORS

Symbol Operation Applicable to Operand Types

+X Integer Add C1
-x Integer Subtract Cl
*X Integer Multiply Cl

/X Integer Divide Cl

OX Store and Clear Cl

Figure 1I-6

EXPRESSIONS

An expression is a string of terms, none of which contains the operator !-]
or t.'4. Each line belov is an example of one expression:

Expression Type

X(52) - X(43) / (2.84) Arithmetic
1(2) * (0770000) I,'r (18) + (IUKE) Boolesn

(.55) - SQM x(55) - X(12) Arithmetic

(0707) / I(8T) + -1(3) Boolean
XI(52) AX 1(33) *X I(1) Integer
MED X(l4) THRU X(21) iNT X(38) To X(80) * (2.) Arithmetic

4 March 1965 12 Tm-1563/014/o1

Blanks are ignored in expressions, so that expressions equivalent to the
above can be written in many ways. In the above examples, each of the
following represents a single term: -X(43); LEFT (18); - SQR•TX(55); - -1(3);
/X 1(33); To X(80); MED X(14) THRU X(21) INT X(38).

RULES FOR CONSTRUCTING EXPRESSIONS

1. All terms in an expression must be of the same type; e.g., all arithmetic
terms, Boolean terms, or integer terms. Mixed expressions are not detected
by the translator and wii yield incorrect results.

2. A complex arithmetic term my appear only as the leading term. Thus the

following is a correctly formed expression,

s10(35) xHRU X(40) * X(2)/(lOO.)

while the following expression is in error,

x(2) * sUt(35) THRU X(40)/(l00.)

3. For expressions made up of either simple arithmetic or Boolean terms the
operator of the leading term is always an implicit [+] . That is, no
operator except the [+I may be used for the leading term, and the (4]
is never written. (See the previously given examples.)

4. Expressions are evaluated from left to right; the operator symbol in each
term defines the relation between the result of preceding terms and the
value ieferred to by the operand. In the expression X(52) - X(43) / (2.84)
the quantity X(43) is subtracted from X(52) and the result is then divided
by (2.84). If one wanted to compute X(43) divided by (2.84) and the
quotient to be then subtracted from X(52) one would need to first perform
the division and then store the quotient in a temporary location, as will
be discussed in the section on Statements. In some cases, other methods
can be used; thus, if the operator ahead of X(43) were a + instead of a -,

one could write X(43) / (2.84) + X(52). In general, if * is a typical
operator and x is a typical operand, then the expression

x1 2x2 "3 x3$ 4x

is evaluated as if it read

(((Xlowvte u)ednxx)
However.. parentheses any not be used for this purpose J n an expression.

4 March 1965 13 Tm-1563/014/01

TRANSFORMATION STAT•4EME

General Form

A transformation statement is an expression terminated by a
term whose operator is (.I or [-XI.

Examples of transformation statements are:

x(52) - x(43) / (2.84) - x(3)
1(2) (070oooo) LEFT (18) * (HOUKE) - 1(2)

X 1(2) +X 1(2) .X 1(4)

The [a) and (=X] operator stores the result of the expression in the location
represented by the operand, that is in a location in the I-region or X-region.
A term 4.ose operator -is (. 1 or (.X] is not part of the expression. A term
whose operattr is 1T101 or [T!X) Ia part of an expression. It stores the
results of the previoua terms into the location represented by Its operand.
The results are also immediately available for the next term. Thus, in the
statement

x(i) + x(2) TO x(3) + x(4) . x(5)

the sum of X(l) + X(2) is stored In X(3), is the.n added to X(4), and the
final result stored in X(5). However, if the total stored in X(5) Is to be
used again, it is obtained from storage by explicitly indicating X(5) in a
subsequent statement. All of the terms in a statment must be of the same
type.

Effect of Transformation Statements on Variable labels

A source-file variable my be the operand of a (T0) or t.o operator. It
should be noted, however, that whenever the value of a source variable Is
replaced in this mniner by a result of data transformtions, the label
associated with the source variable is set to ztero, and the source variable
is no longer available for further processing. Procedures for associating
labels with newly ccouted variables are discussed in Th-1563/021/xx.

4 March 1965 14 T•1-1563/OI14/O

STATEMET LABEI

General Form

A etatment label Is a string of, at most, six
alphanumeric characters bracketed by $ symbols.

Any statement may be assigned a label. For Xl :

$ A51 $; $ MW $; 1 a1l $.

The label is placed ahead of a statement thus

$ N $ x(l) - X(2) aX(3).

Blanks in the label, as elsewhere in the transformations tea~t, are ignored.
A label may stand alone at the end of the transformations text to permit a
terminal transfer to the end of specifications.

CONDITON STATEMENTS

Oeneral torn

F Condition statewente are of the form

where al and &2 are expressions,
0 is a condition operator, and
* Is a statint label.

Condition statoents make It possible to control the sequence In which
statemnts are executed.

4 Mrch 1965 15 TM-1563/014/o0

If the condition asserted by the condition statement is true, transfer is
made to the statement identified by the label. Otherwise, the statement
following the GO TO command is executed. Integer terms are not permitted
in the condition statement. In a condition statement a complex arithmetic
term (for definition, see Figure 11-4) may appear only as the leading term
of the left-hand expression. Both expressions in a condition statement
must contain the same type of terms. A list of condition operators is
given in Figure IX-7.

CONDITION OPEATORS

Symbol Condition Asserted

S•Equal
OR Greater Than

LS Less Than

GQ Greater or Equal

Lg Less or Equal

Figure II-7

Examples of condition statements are:

x(3) (3.0) CM x(25) - LG x((3) GO TO $ =T

x(5) EQ (3.) G T $ 3 $
IM3 IX• (HPKILAD) GO TO $ A"AI $

I(5) * (0 000o777) EQ (NABoocD) ci TO $ max $

If the values of two expressions made up of arithmetic terms are ccKpared,
zero is greater than minus zero. If the values of tvo expressions mmde up
of Boolean terms are ccarred, zero is less than minus zero, since the minus
sign is the high-order bit.

SPEIAL STATD(OMS

There are two special statements: the unconditional transfer and the
veighting function.

4 March 1965 16 TX-1563/014/01

I'n-on&-lon Transfer Statement

General Form

GO To a

where a is a statement label.

For example, the statement

causes the statement labeled 1I9-E to be executed next.

Weighting Function

General Form

WGHT x HU x2 BY x3

where x1 end x2 are reapectively the first and
the last of a range of variables to be
weighted, and

x3 is a multiplier variable.

The weightinr function provides for the multiplication of each of a Ret of X-regik

variables by another variable. Yor example, the otatment

WGHT X(5) THRU X(12) BY X(40)
results in replacement of each variable from X(5) through X(12) by its value
multiplied by the value contained in X(40).

4 march 1965 17 Tm-l563/014/o1

Effect of the Weighting Function on Variable Labels

Although the weighting function my be used to modify the values of source
variables, labels associated with the source variables are not affected by
this process. If the weighting function is used to define new variables, the
operands of the weighting function must appear elsewhere in the transformations
specifications also as operands of the (To! or [=I operators.

HOW _O SPECIFY DATA TRANSFORMATIONS IN A SPAN JOB

DLta-transform'tion specifications are composed of an arbitrary collection of
transformatior. statements, condition statements, and special statements that
are stated ir the particular order in which they are to be evaluated. Data-
transformation specifications that are to operate on the data input to a
particular SPAN job must be included as a sep!rate sentence among the control
specifications for that job. In a control sentence, the specifications text
takes the form of a string predicate of an appropriate control word; that is,
the text is delimited by apostrophies and preceded by a transformationn-
declaring control word.

General Form

TRANSForm
F-TRANs formfJTANsfo

where s is the data-transformation specifications
text (s6000), and

O) stands for source-file number in the case
of multifile input (O = 1,2,3 in the STARS
Files Collator).

A simple example of data-transformation specifications, shoving the control

word and the--spe.ifications text delimited by apostrophies, would be

TANSPOMATIONS x(2) + x(3) 5 x(Sl) SQRT x(2) = x(2) ,.

In most SPAN modules,, data transformations are declared by the control word
TRANqForm. In the STARS Files Tabulator and STARS File Transformation modules,
where transformations can be expressed on results of certain subsequent
processes in addition to those expressed on the input data, control word
TRANsform declares imt data transformations and the word F-TRANsform is
reserved for transformations on data resulting from subsequent processes. In
the STARS Files Collator module, where separate transformation specifications

SMarch 1965 18 n4_1563/014/01

car, be declared on data from any one of three possible source files, control
words i)TRANsform, 2)TPIsform, 3)LThATSfc.rm introduce the first,
second, and third file-data transi'orAtions respectively. uel'initive
information on control words usage in a particular program is given in the
SPAN Control Words Glossary, fl-1563/013/xx.

Within the actual specifications text, blanks and comas are ignored. Terms
and statements need not be separated in any special way; or, if desired,
statements may be separated by conmas. Different transformations my appear
on the same card, or on separate cards indented for readability. For example,
the following two sets of specifications are equivalent:

TRANSFO1#4 'X(5) + (3.) Eq X(29) Go To 1

1 LOG x(1) = x(13),
2 x(l) - x(2) = x(loo)

According to the rules for constructing control specifications in SPAN (see
14-15 6 3/012/xx), it is possible to intersperse coments and other optional
text among the elements of a control sentence. It may be also desirable to
associate explanatory notes with individual statements in the data-
transformation text. The following example illustrates this flexibility:

CAJLXUTE THE FLWING *T SFORMS OF IN•UT DA ---

'X(3) / X(25) = X(u127)' GROSS P0PUIATIoN DENSITr
,x(o)-x(25)=x(6o0), x(3)/x(600)= x(1128)' NET RS.DENSITY.

If one prefers, for clarityp to write transformation statements on separate
cards, enclosing the statements by apostrophies may serve yet another purpose.
Th1e text of data-transformation specifications input to a single SPAN job may
not exceed 6000 characters, including blanks and comns. By enclosing
individual statements in apostrophies and, thus, purging the specifications
text of unnecessary characters, a maximum of meaningful text can be accomodated
in a control sentence without sacrificing readability. Care must be taken,
however, that the control sentence contain an even number of the delimiting
apostrophies.

DATA TRANSFORMATIONS: LIMITATIONS

Data-transformation specifications input .to the STARS Files Collator module
may not contain any arithmetic terms; that is, transformations may be performed
on I-region data only. No similar restriction applies to specifications input
to other SPAN modules.

4 march 1965 19 1T-1563/014/01

The size of internal tables used in the translation of the data-transformation
specifications sets limits, in a particular SPAN Job, on (1) the length of the
specifications text, (2) the number of transformation terms permitted, and
(3) the number of constants permitted. These limits are shown in Figure 11-8.
Appropriate diagnostics are printed if these limits are exceeded. In addition,
space allocated to receive the source data and data transforms, the I-region
and X-region, is of defined size. References beyond the limits of the
I-region or X-region as defined in Figure 11-8, i.e., references such as
X(6073) or I(375), are not detected.

In all SPAN modules, the data-transformation text associated with a control
word may not exceed 6000 characters in length. (In the STARS Files Collator,
where an independent set of data transformations can be specified on each of
three possible source files, this limit applies to each set of specifications
separately.)

DATA TRANSFOIR4ATIONS: LIMITATIONS

I-Region X-Region Maximum Mrans- Maximum
Module Size Size formation Terms Constants

(no. of (no. of (noTofteri6T (no. of
elements) elements) constants)

Factor Analysis 100 400 500 100

Regression Analysis 100 400 500 100

Rectangular Product
ments 100 1400 1000 200

File Transformation 100 1600 1000* 200*

STARS Files Abstractor 100 1400 1000 200

STARS Files Collator I00** 1000** 450*" 90**

STARS Files Tabulator 100 14M0 1000* 200*

STARS Files Summary-Sort 100 1400 1000 200

Combined total for input and subsequent process data transformations.
For each of three possible source files.

Combined total for all source files.

Figure 11-8

4 March 1965 20 T4-1563/014/01

The maximum of transformation terms permitted refers to simple terms. For the
purpose of calculating this' maximum, the SUM and MED complex terms are
equivalent to two and three simple terms respectively. The 00 TO term, whether
appearing in a condition statement or an unconditional transfer statement,
counts as a simple term. The comparison operator combined with the first term
of the right-hand expression in a condition statement counts as a simple term.

The maximum of constants permitted refers to each actual appearance of a
constant in an expression. Statement labels do not enter into the count of
terms or constants. There is no practical limit on the number of labels.

TANSFORMATIONS TEXT ERROR DETECTION AND DIAGNOSTICS

Before a file is actually processed, the data-transformation specifications
text is translated into an internal representation designed for more efficient
execution. The translator detects certain errors in the specifications text
and prints appropriate diagnostic messages. Errors detected are those relating
to (1) excessive size of the transformations text, (2) use of illegal operators
and operands, (3) violation of restrictions on the number of elements of a
specifications text, and (4) incorrect labeling of statements. Other violations
of data-transformation specification rules, such as use of mixed expressions,
are not detected. A detected error in data-transformation.specifications
renders a SPAN job non-executable. Control, in that case, passes to the next
job in line.

Diagnostic messages which may result during processing of data-transformation
specifications are listed below, with comments and examples where appropriate.

Ex-essive Size of Transformations Text

** DATA-TRANSFORMATION SPECIFICATIONS TEXT IS •0 LONGInvER 6ooo aCTm).

This liagnolctic message results from violation of the requirement that the
transformations text associated with a control word not exceed the maximum
length of 6000 characters. In calculating the length of the transformations
text, note that each string-terminating apostrophe used in the control
sentence may cause 1-5 blank characters to be appended to the string to
maintain the internal string length as an integral multiple of six characters.
Blanks so generated would contribute to the character count of the string.

4 March 1965 21 TK-1563/014/01

Illegal Use of Operators and Operands

OPERATOR IS NOT IN OPERATIONS TABLE.

An illegal operator appears in the specifications text, as shown in the
following example:

'IN TRANSFORMATIONS PROGRAM DIAGNOSTIC
OPERATOR IS NOT IN OPERATIONS TABLE.

ERROR SENSED WHILE SCANNING THE UNDERLINED WORD IN TE
FOLLOWING PORTION OF 1iE SOURCE TET ---

XI(l) * XI(15) T XI(24) +

ITOXJ is no+ a legal integer term operator (see Figure 11-6).

FIRST CHARACTER OF A CONSTANT IS ILLEGAL.

The first character of a constant is a non-numeric character other than H,
or - (minus) sign; for example,

(GABC), ((EHAPPY).

ILLEGAL CHARACTER IN AN OCTAL CONSTANT.

Octal constant contains a character other than digits 0 through 7; for
example,

(380).

ILLEGAL CHARACTER IN A DECIMAL CONSTANT.

Decimal number or integer constant contains a character other than the
- (minus) sign or digits 0 through 9; for example,

(136A).

Violation of Certain Restrictions

TOO MANY OPERATIONS SPECIFIED IN SOURCE TEXT.

The maximum number of terms permitted in the specifications text has been
exceeded. See Figure 11-8 concerning limits in various modules.

TOO MANY CONSTANTS SPECIFIED IN SOURCE TUT.

The maximum number of constants permitted in the specifications text has
been exceeded. See Figure 11-8 concerning limits in various tootles.

It March 1965 22 Th-1563/ol4/ol

Labeling Errors

DUPLICATE TRANSFORMATIONS LABELS.

More than one statement has been assigned the same label.

MISSING TRANSFORMATIONS LABELS AS FOLLOWS-- [statement label,]

[statement label 2]

[statement labelil

EXECUTION ERROR DETECTION AND DIAGNOSTICS

Certain error conditions my arise during execution of the data-transformation
specifications. Where, in an expression, the function of a variable would not
yield a real number of allowable magnitude, or where there is division by zero,
the value of the entire expression is automatically set to -0. These
conditions do not result in diagnostic comment. Certain floating-point
operations (in arithmetic terms) when operating on data that are not floating-
point type may result in internal register underflow or overflow. A diagnostic
message is printed if such a condition should occur. The results in that case
are suspect and the source file should be examined for bad data.

EXAMPLES OF DATA TRANSFORMATIONS

In the following, three examples of data trantformations are given. The first
example represents a complete transformation program. The second example
shows how to specify the computation of a median. The third is an example of
the use of the weighting function.

Example I

PEMFRM THE FOLIWING *TRANSFIRMATIONS,

'X(l), x(2) I x(l) -X(lOOl)
X(l) * X(5). X(lOO2)
X(4) + X(M LQ (5.) GO TO 41$
x(4) + x(7) L (20.) Go To 2
(0.) . x(loo3)

$14 x(38)/ X(39) + Y(4) - (1003)
Go To$STOP$

$24 x((0)/ x(39) + x(14) = x(loo3)$STOP$

Note that the lst labeled statement may be "empty" (label $S'rp$), permitting
a transfer to the end of the transformations specifications.

4 March 1965 23 TM-1563/014/01
(Page 24 Blank)

Example II

Assume that the "mediar of school years completed" is to be calculated for a
population distribution by number of school years completed. The following
is the layout of information in the X-region:

variable location

no. of persons, 0-6 school yrs. completed X(10)no. of persons, 6-9 school yrs. completed X(I0)
no. of persons, 9-12 school yrs. completed X1I21
no. of persons, 12-14 school yrs. completed X 13
no. of persons, 14-16 school yrs. completed XiI1)

To compute the median of the values in X(10) through X(14) it is necessary to
have available in the X-region, in consecutive locations, each of the lower
limits of the classification intervals, e.g., 0, 6, 9, 12 and 14 and also the
upper limit of the last interval, e.g., 16, which could be a "dummy" value.
Notice that in the transformation statements below the assignment of these
numbers to specific, although arbitrary, X-region locations is shown.

MNFR 'x(251) EQ (6.) GO TO $NO
0.) x25) (6.0) = x(251) (9.) =X(252)
12.).X 23)114.) -X(254) (16.) .X(255)

$NED NM X(l0) THiU X(14) INrx(25o) .X(lOOl)'.

Note that NED is an operator, but NED is a label. As the first entity is
processed, X-region locations X(250) to X(255) contain zeros. The statements
above set the locations to the desired quantities. After the first entity
there is a 6 in X(251) so that, as a result of the first statement, the
statements setting up the interval locations need not again be executed;
instead, the program immediately proceeds to 04ED$.

Example III

The weighting function has been previously defined, and has several uses. One
possible use is illustrated below, in which, to save writing transformatLon
specifications, instead of:

X(69) * X(208) w X(ol01)
X(70) * X(208) - X(1002) etc.

one could write:
X(69) a X(101)
x(7o) - X(1002) etc.

WGHl X (1001) THu X(1---) BY x(ao8)

If only one variable is to be weighted and label is to be preserved, then one
might use WGHT X(n) THRU X(n) BY X(a) where n and a_ are variable indexes.

4 March 1965 25 TR-1563/014/01

III. ENTITY STRATIFICATION

The stratification facility in SPAN programs allows the user to select or
stratify records from an input file by stating explicit conditions on the
properties associated with an entity. These condition statements are evaluated
during the input processing of each entity record (see Figure I-i). If a
stated condition is true, the entity is assigned the specified stratum number.
If the stated condition is false, the next stated condition is evaluated. If
none of the stated conditions are true, the stratum number is automatically
set at zero; the entity record is thus rejected from further processing, and
the next entity record is obtained, as shown in Figure I-1.

Stratification specifications are executed after transformatiorn have been
performed on the input data. Thus conditions may be stated on both input
variables and their transforms. The stratum number assigned to the entity is
placed into 1(99) and is therefore available to subsequent processes.

Entity stratification specifications could be expressed as a series of condition
and transformation statements. The following transformation specifications, for
example, will assign the stratum number 8 to entities that contain a 3, or a 5
throughi 10, in I(3):

1(3) EQ (3) GO T $CLASSF$

1(3) GQ (5) 00 TO $N"Rfl

Go ly $DEI~rE$

$NET 1(3) Ig (10) GO 70 $CIASSF$

$DELETE$ (0) = 1(99) Go 70 END

$CIASsF$ (8) = 1(99)

The same stratification can be accomplished with the following stratification
specifications:

ASSIGN 8 IF 1(3) = 3, 5-10.

Thus, one can express more concisely a complex set of conditions with respect
to sets of explicit values. However, transformation specifications permit the
use of variables and expressions as condition criteria.

4 March 1965 26 D4-1563/0l;/01

STRATIFICATION STA&EMC

Entity stratification specifications are composed of an arbitrary collection of
statements. These statements, called stratification statements, are made up of
condition clauses, and these, in turn, of criterion values. These and other
elements of the entity stratification specifications are discussed below.

General Florm

ASSIGN n P" c, ,AND c2 ... ,AND ci.

where n is a stratum number defined below, and
c, c2, ... ,ci are condition clauses defined

below.

A stratification statement assigns a stratum number to an entity if the condition
expressed by the statement is true. The statement my contain more than one
condition clause, in which case the clauses are connected in logical-and fashion
by the t,AND) operator. A stratification statement always terminates on a
period [.1 •

The stratum number must be an unsigned integer not exceeding, in most SPAN
programs, 215 in magnitude. In the STARS Files Tabulator, however, the maximum
stratum number is 80.

A condition clause asserts the equality of the value of a variable or code to at
least one of a set of criterion values.

General Form

p'M V

where p is a code or variable, and
v is a set of criterion values of a form

described below.

For example,

1(3) - 3, 5-10, 17, 28-30

asserts that 1(3) equals 3, 5 through 10, 17, or 28 through 30.

4 March 1965 27 TM-1563/014/01

Elements of the condition clause are criterion values or ranges of criterion
values, as shown. The elements are connected by conmas [, in logical-or
fashion. 7he limits of the range are connected by the r- symbol and may be
stated in any order, e.g., 28-30 could be expressed as 30-28.

The criterion values may be decimal conrtants (D), decimal integer constants
(K(), octal integer constants (K2), or alphameric constants (K3), where the
symbols in parentheses are those used in Figure I-1, Chapter II, (and defined
in that same chapter). Note that the following element is possible: -. 1--.3,
for -.1 through -. 3. The statement of a range between two criterion values
is interpreted as the range between their binary code values. In particular,
HABC-HABD is equivalent to 0212223606060-0212224606060. In stratification
text, constants are not enclosed in parentheses.

The criterion values for a code, e.g., 1(72), must be of the type Kl, K2, or
K3; the criterion values for a variable, e.g., X(51), must be of the type D.

The following are examples of stratification statements:

ASSIGN 2 IF 1(75) = 3, 5, 8-lo,HJUNK, AND X(lO) = -. 2-55.3.

ASSIGN 185 IF X(l0) = -35.--36., 39..

In the second example, all periods but the last are interpreted as decimal
points. 7he final period terminates the statement. Minus [-] symbols play a
similar dual role: the first and third [-] signs denote negative numbers,
while the second (-I sign defines the range between -35. and -36..

!!OW 'M SPECIFY ENTITY STRATIFICATION

FEtity stratification specifications that are to operate on the data input
(including data transformations, if any) to a particular SPAN Job must Ue
included as a separate sentence among the control specifications for that Job.
In a control sentence, the specifications text takes the form of a string
predicate of an appropriate control word; that is, the text is delimited by
apostrophies and preceded by a stratification- or selection-declaring control
word.

4 March 1965 28 TM-1563/014/01

General Form

SELECT
STRATIfy s
e) SELEct

where s is the entity-stratification specifications
text (s6ooo), and

S stands for source file number in the case
of multifile input (E = 1,2,3 in the
STARS Files Collator).

A simple example of entity-stratification specifications, showing the control
word and the specifications text delimited by apostrophies, would be

SELECT THE FOLIOWING OBSERVATI0NS I ASSIGN 1 IF X(20)= .0 . .

In most SPAN modules stratification is used ýQ select records from the source
file, and for these modules the control word is SELECT. In the STARS File
Tabulator, the purpose is stratification, and the control word is STRATIFY.
In the STARS File Collator where the selection can be specified on data from
any one of three possible source files, control words J)SELEct, 2)SELEct,
and ' 3)SELEct introduce the first, second, and third file entity-stratification
text respectively. Information on control words usage in a particular module
is given in the SPAN Control Words Glossary, TM-1563/013/xx.

E=TITY STRATIFICATION: LIMITATIONS

The size of internal tables used in the translation >f the entity-stratification
specifications sets limits, in a particular SPAN job, on (1) the length of the
specifications text, (2) the maximum size of the stratum number, (3) the number
of condition clauses permitted, and (4) the number of criterion values
permitted. Appropriate diagnostics are printed if these limits are exceeded.

In all SPAN modules, the entity-stratification specifications text associated
with a control word may not exceed 6000 characters in length. (In the STARS
Files Collator, where entity stratification may be specified independently on
each of the three possible source files, this limit applies to each set of
specifications separately.)

4 March 1965 29 m4-l563/014/01

Other limits vary by module as shown in Figure 11-9.

ENTITY STRATIFICATION: LIMITATIONS

Maximum Maximum Maximum
Module Stratum Number Condition Clauses Criterion Value

Factor Analysis 215 20 100

Regression Analysis 215 20 100

latent Class Analysis 215 20 100

Rectangular Product Moments 215 20 100

File Transformation 215 20 100

STARS Files Abstractor 215 20 100

STARS Files Collator 215 45* 450*

STARS Files Tabulator 80 80 400

STARS Files Summary-Sort 215 80 40W

*Combined total for all source files.

Figure 11-9

In determining the number of criterion values used in a specifications text
note that each expressed range of values counts as a single value.

STRATIFICATION TMIT ERROR DETECTION AND DIAGNOSTICS

Before a file is processed, the entity-stratification specifications text is
translated into an internal representation designed for more efficient
execution. The translator detects certain errors in the specifications text
and prints appropriate diagnostic messages. Errors detected are those relating
to (1) excessivc size of the stratification text, (2) illegal statement syntax,
and (3) violation of restrictions on the number of elements of a specification
text. An error detected in entity-stratification specifications renders a SPAN
job non-executable. Control in that case passes to the next job in line.

Diagnostic messages that my result during translation of entity-stratification
specifications are listed below, with appropriate comments and examples.

4 March 1965 30 TM-1563/014/01

Excessive Size of Stratification Text

* =Ty SELECTION SPECIFICATIONS TEXT IS TOO wwN (oVER
6000 CHARACTERS).

*** ENTITY STRATIFICATION SPECIFICATIONS TEXT IS TOO WONG
(OVER 6000 CHARACTERS).

These messages result from violation of the requirement that the stratification
text associated with a control word not exceed the maximum length of 6000
characters. In calculating the length of the stratification text, note that
each string-terminating apostrophe used in the control sentence my cause 1-5
blank characters to be appended to the string to maintain the internal string
length at an integral multiple of six characters. Blanks so generated would
contribute to the character count of the string.

Illegal Statement Syntax

WHILE EXPECTING AN -IF- OR -AND- WORD, PROGRAM HAS
ENCOUNTERED A WORD IT CANNOT RECOGNIZE.

A condition clause is preceded by an illegal operator, as shown in the
following example:

*** STRATIFICATION PROGRAM DIAGNOSTIC

WHILE EXPECTING AN -IF- OR -AND- WORD, PROGRAM HAS
ENCOUNTERED A WORD IT CANNOT RECOGNIZE.

ERROR SENSED WHILE SCANNING THE UNDERLINED WORD IN TH{E
FOLLWING PORTION OF TH SOURCE TEXT ---

,78-92,AfD IF X(42)=
[,AND IF] is not a legal clause connector. Similar error message would

result if a stratification statement began with (ASSIGN56x22)*J

ILLEGAL CHARACTER IN AN OCTAL CONSTANT.

Octal constant contains a character other than digits 0 through 7T for
example, 0 380.

ILLEGAL CHARACTER IN A DECIMAL CONSTANT.

Decimal number or integer constant contains a character other than the minus
(-] sign, (e.g., 3AB, 57+2) or digits 0 through 9.

4 March 1965 31 TM-1563/014/01

DECIMAL INTEGER IN A DECIMAL NUMBER CRITERION SET.

A decimal number criterion set contains a constant without a decimal point
[.] , as, for example, in the following text:

3.5,6.,.5-i.jI AND X(7) =

Violation of Certain Restrictions

TOO MANY CONDITION CLAUSES IN SOURCE TEXT.

The maximum number of condition clauses permitted in the specifications text
has been exceeded. See Figure 11-9 concerning limits in various modules.

TOO MANY CRITERION VALUE SETS IN SOURCE TEXT.

The maximum number of criterion values permitted in the specifications text
has been exceeded. See Figure 11-9 concerning limits in various modules.

Certain other violations of specification rules for entity stratification are
not detected directly. For instance, a decimal point (.1 appearing in a
decimal integer constant would be interpreted as a period r.] terminating the
statement. If the last statement is not properly terminated by a period, that
statement will be translated incorrectly, and the stratification specifications
will not execute properly. A criterion value beginning with a non-numeric
character other than 0 will be automatically interpreted as an alphameric
constant, unless, of course, it is contained in a decimal number criterion set.

EXAMPLES OF ENTITY STRATIFICATION

Three examples of entity stratification are given below. The first example
shows the straightforward use of stratification specifications for selecting
entity records for the source file. The second and third examples demonstrate
the joint use of data transformations and entity stratification.

Example I

Assume a source file contains 16 records. Code 1(2) is the record sequence
number. Values of variable X(210) range from -50.7 to +200.5.

Records 4, 6 through 8 and 12 in the source file are to be assigned stratum
number U. Reco'rds sequence-numbered 1, 5, 13, and 14 and containing values
of X(210) between 0. and -50.7 are to be assigned stratum number 12. Records
sequence-numbered 1, 5, 13, and 14 and containing values of X(210) between
0. and 200.5 are to be assigned stratum number 13.

~4 march 1965 32 TX1l563/01)4/01

The following specifications will perform the desired stratification:

SELECT 'ASSIG 11 IF 1(2) - 4,6-8,12.

ASSIGN 12 IF 1(2) u 1,5,-13,1)4, AND

x(21o) - 0. -- 50.7.

ASSIGN 13 IF 1(2) - 1,5,l3,1P4, AND

x(21o) - 0. - 200.5. '.

As a result, records sequence-numbered 2, 3, 9, 10, 11, 15, and 16 will not
satisfy any of the stated conditions and will be excluded from further
processing. 7he stratum nuuber values are placed in 1(99) and may be used
in further processing, e.g., as a key for sorting or sunmarizing the
derivative file.

Example II

This example shows the joint use of data transformations and entity
stratification. Records are to be selected on a source file code, 1(2) and if
a computed percentage exceeds 50%.

TRANSFORMATfINS ' SUM x(3) U X(16) - X(lOOl)
x(13) / x(1oo1) * (1OO.). X(1002) '.

SELECT 'ASSIGN 1 IF I(2)=l-5, AND X (1002) - 50.-100. .'.

Example III

The following example again illustrates the use of data transformations in
conjunction with entity stratification. The purpose here is to delet, from
the derivative file all records possessing duplicate values of a key, 1(2).

TRANSFORM ' I(2) EQ 1(60) GOO M1
"0) : I(61) G0TO 2

1 (i) - 1(61)
2 1(2) - 1(60) '.

SELECT 'ASSIGN 1 IF 1(61) -o. '.

4 march 1965 33 TK-1563/01/01
(Lwst Page)

APPENDIX A

' R99O l N2i'TION OF ALPHA1HIC CHAMACTER

Char- BCD Cho,-- BCD Char- BCD Char- BCD

acter Card Tape Storage acter Card Tape Storage acter Card Tape Storage acter Card Tape Storage

12 11 0

1 1 01 01 A 1 61 21 3 1 41 41 / 1 21 61

12 11 0

2 2 02 02 B 2 62 22 K 2 42 42 S 2 22 62

12 11 0

3 3 03 03 C 3 63 23 L 3 43 43 T 3 23 63

12 11 0

4 4 04 04 D 4 64 24 M 4 44 44 U 4 24 64

12 11 0

S 5 05 05 E 5 65 25 N 5 4S 45 V 5 25 65

12 11 0

6 6 06 06 F 6 66 26 0 6 46 46 W 6 26 66

12 11 0

7 7 07 07 G 7 67 27 P 7 47 47 X 7 27 67

12 11 0

8 8 10 10 H 8 70 30 Q 8 s0 50 Y 8 30 70

12 11 0
9 9 11 11 1 9 71 31 R 9 51 51 Z 9 31 71

blank blahk 20 60 + 12 60 20 11 40 40 0 0 12 00

12 11 0
a 8-3 13 13 8-3 73 33 $ 8-3 Si 53 , 8-3 33 73

12 11 0

8-4 14 14) 8-4 74 34 * 8-4 S4 54 (8-4 34 74

This table has been reprinted by permission from 7090/794
Programing System FORTRAN II Propazr ingr, Form No. C26-b054-5.

::'. September I';,.• Page A .. -

T -l563014/01. "SPANS
MANUAL: SPAN Data-Transformations Vladimir . Am
and Stratification Capability."
4 March 1965.

System Dovelopmint Corlorationi/21 Colorado Ave./Suat ManiCa, Caifoirnal

CURRENT MODIFICATION*

Modified Pages Notes and Filing Instructions

7-8 Remove page 7-8 dated 4 March 1965 and replace
with page 7-8 dated 24 September 1965.

9-10 Remove page 9-10 dated 4 March 1965 and replace
with page 9-10 dated 24 September 1965.

11 Remove page 11-12 dated 4 March 1965 and replace
with page 11-12 dated 24 Septewber 1965.

The modified portions of the text are indicated by a double verticle
bar opposite the text.

A "02

2- "epterber 19(5 7 -- 15 '/.. ,J,'

FUNCTIONS OF VAPIABL•

F -Square root UNTOSOFVRALSQSUT X(90)

Logarithm (natural) L*G X(90)
Exponential EXP X(90)

Sine Sill X(90)

Cosine COS X(90)

Arctangent ATAN X(90)

Figure 11-2

The functior of a variable is a single operand. Where the function of a
variable would not yiel I"d a real num~ber of allowable magnitude, as in(4),
log 0, or e90 , the value of the function is set to -0.

DECfl4AL NUHM CON~STAN1TS (D)

General Form

A decimal number constanb consists of a string of decimal
'i1pits w2 .h. •an• at the ' a"e e:",
or between two digits.

The decimal number constant may be signed or unsigned. A decimal number
iJ6s represented internally as a floating-point number. The magnitude of a
decimal number constant must lie between 10-14 and 1014, or be zero.
Examples: (-.15), (3.1416), (12.) or (o.).

DECDAL INMEGS (Cl or E0)

General Form

A decimal integer constant consists of 1-5 decimal digits
written without a decimal point.

A decimal integer code is represented by I(n), where n is
the index of its location in the I-region.

2L 7cptember 19'5 8 TM-1563/0l4/OiA

A decimal integer may be signed or unsigned. Its magnitude must be less than
215. A decimal integer constant would be expressed as (1492), (-2), or (0).
A decimal integer code is represented by its address, for example, 1(92).
Decimal integers are stored internally as pure binary numbers, occupying
the left-half word, with the right 18 binary bits being all zeros. If a
decimal integer is negative, the minus sign uccupies the high-order position
of the binary word; this must be remembered when using negative integers in
Boolean operations.

OCTAL INTEGERS (C2 or K2)

General Form

An octal integer constant consists of 1-12 octal digits
preceded by the letter 0.

An octal integer code is represented by I(n), where n
is the index of its location in the I-region.

36The maximum value of an octal integer is 2 ". Leading zeros need not be
indicated, Examples. (0356), (0777700007777), (03). An octal integer
code is represented by its address, for example, 1(92). Octal integers
are stored Internally as pure binary numbers, each octal digit comprising
three binary bits.

ALPH1-iERIC CONSTANTS AND CODES (3 or K3)

General Form

An alphameric constant consists of 1-6 alphabetic
and/or numeric characters preceded by the letter H.

An alphameric code is represented by I(n), where n
is the index of its location in the I-region.

An. aiphameric constant may not include special characters, but may include blank
spaces to be treated as characters. The H to indicate mode must be used even if
word begins with an H. Examples: (HABC), (I2376), (H23KV6), (HIAPMY). If the
string exceeds six characters, only the six left-most characters are used. For
example, (HALPHAMERIC) is equivalent to (HALPHAM), i.e., the first six characters.
Blank spaces occurring within the six character positions following an H are
treated (and counted) as characters.

An alphameric code is represented by its address, for example: 1(92).

Alphameric words are stored internally as binary numbers. with two octal digits,
and therefore six binary bits, for each character. They are left-justified,
so that the right characters consist of blanks. The IBM 7090 octal (storage)

representation of alphameric characters is given in Appendix A , "7090

Representation of Alphameric Characters."

COMLENT OF OCTAL INTEGE CODE (c4)

The l's complement of an octal integer code is indicated by placing a r-i
symbol ahead of the address of a code, for example, -1(15). The combination
represents a single operand.

ARITI24ETIC TER.S

Arithmetic terms may be simple or complex. A simple arithmetic term consists
of one operator and one operand. A complex arithmetic term represents a

single operation performed on more than one operand. Figure 11-3 lists the
operators that may be used in simple arithmetic terms; Figure I1-4 lists the
two ty-pes of complex terms. Only certain operands may be used with a given
operator; these are indicated in Figures 11-3 and i1-4 by means of the
operand symbols defined in Figure II-1.

SIMPLE AR ITW•.ETIC TM OPERATORS

j-rator Operation .:.picauil to Cverand Types

+ Add V, F, D

Subtract V, F, D

* Multiply V, F, D

/ Divide V, F, D

To Store and proceed V

Store and clear V

Figure 11-3

Division by zero will set the quotient to -0. The difference between the two
"store" operators will be discussed in the section on expressions.

COleLEX ARITHTIC TERMS

Term Operation Admissible Operand Types

SUM xITIfRU x2 Sum operands x 1 through V
x 2

I=K x1 THRU x2 IWT x3 Calculate median over V
variables x 1through x2 ,

with x being the first

elemenQ of a set of
the lower limits of
'.orresponding category
intervals; if n is the
number of categories, the
(n+l)th element contains
the upper limit of the nth
interval.

Figure II-4

A detailed example of a median computation will be given later.

BOOLEAN TEPJIS

Boolean terms consist of one operator and one operand. They are listed in
Figul'e 11-5. Only certain operands may be used with a given operator; these
are indicated in Figure 11-5 with the operand symbols defined in Figure II-1.

BOOLEAN TERM OPERATORS

Symbol Operation Applicable to Operand Types
+i c i C

* logical-and All C and K2, K3

exclusive-or All C and K2, K3

LEFT shift left n bits El

RIGHT shift right n bits K1

To store and proceed All C

store and clear All C

Figure 11-5

.-or Boolean operations, including shifts, recall that all operands are internally
represented as pure binary quantities of 36 binary bits. Shifts are, in effect,
accumulator shifts, not "long" or "logical" shifts; therefore bits are lost in
this process. On a left shift of n bits, (n-i) bits are lost, while n bits
are .)st on a right shift of n bits. Vacated positions are filled with zeros.

U TEGM TMMS

Integ" " termL* consist of an operator and an operand. The operators, and
applicable operands, are given in Figure II-6.

INUEGEB TFRIM OPMI•2ATORS

Applicable to Operand Type C1 Applicable to Operand Type K1
(Decimal Integer Code) (Decimal Integer Constant)

3ymbol Operation Symbol Operation

Integer Code Add Integer Constant Add

-X Integer Code Subtract - Integer Constant Subtract

•X Integer Code Multiply * Integer Constant Multip2y

/X Integer Code Divide / Integer Constant Divide

=X Store and Clear

Figure II-6

]DEPRiS IOur

An expression is a string of terms, none of which contains the operator [2
or [=Xl. Each line below is an example of one expression:

X(52) - X(43) / (2.84) Arithmetic

1(2) * (0770000) LI'FT (18) . (HOUKE) Boolean

(.55) - SRTX(55) - J,1:(2) Arithmetic

(0707) / I(87)+ -1(3) Boolean

XI(52) /X 1(33) *X 1(l) Integer

1.WD X(i4) TIHRU X(21) INT X(38) TO X(80) * (2.) Arithmetic

4 March 1965 12 TM-l563/014/01

Blanks are ignored in expressions, so that expressions equivalent to the
above can be written in many ways. In the above examples, each of the
following represents a single term: -X(43); LEFT (18); - SQRTX(55); - -1(3);
/X 1(33); To X(80); MED X(L4) TIWU X(21) INT X(38).

RULES FMR CONSTRUCTING EXPRESSIONS

1. All terms in an expression must be of the same type; e.g., all arithmetic
terms, Boolean terms, or integer terms. Mixed expressions are not detected
by the translator and will yield incorrect results.

2. A complex arithmetic term my appear only as the leading term. Thus the

following is a correctly formed expression,

stmX(35) xnU X(40) * X(2)/(lOO.)

while the following expression is in error,

x(2)' * SubW(35) 7U X(40)/(100.)

3. For expressions made up of either simple arithmetic or Boolean terms the
operator of the leading term is always an implicit [+1 . That is, no
operator except the (+J may be used for the leading term, and the [+ J
is never written. (See the previously given examples.)

4. Expressions are evaluated from left to right; the operator symbol in each
term defines the relation between the result of preceding terms and the
value referred to -. 2• ".pc-and. In the expression X(52) - X(41) / (2.84)
the quantity Xk3,j s. au•-•acted from X(52) and the result is then divided
by (2.84). If one wanted to compute X(43) Q4vided by (2.84) an: the
quotient to be then subtracted from X(52) one i;ould need to first perform
the division and then store the quotient in a temporary location, as will
be discussed in the section on Statements. In some cases, other methods
can be used; thus, if the operator ahead of X(43) were a + instead of a -,
one could write X(43) / (2.84) + X(52). In general, if *D is a typical
operator and x is a typical operand, then the expression

is evaluated as if it read

mn bXeuX2)e x3)Orpe e
However, parentheses may not be used for this purpose in an expression.

DOCUMENT CONTROL DATA 16
"I ORIGINATIN 0 ACTIVITY (C.=e 8610) 3.

Unclassified
System Development Corporation,
Santa Monica, California

2. REPORT TITLE

SPAN~ RP'ERCE KMAJAL JPAN DATA- RABSFORMATIONS AND1 STRA!IIFICATIOLS CAABlIT.
4. DESCRIPTIVE NOTES (Type ofmport and 1Incluive doteo)

S. AUTHOR(S) (Loot e.. fit name. 1*00*'

Almendinger_, V. V. _._or_ _ _ _ _

6. REPORT DATE To. TOTAL NO. OF PAgES ?S. NO. OP 1IPI

24 September 1965 7
a. CONTRACT 0• o IANT NO. CPR-II-1543, for SO. o0o,.ern=AONe REPOnT ,umeaw'aJ

thm Bureau of Public Roads, U. S.
SPOJ6CT NO. Department of Commerce T4-1563/ol4/olA

16. NVM (Amg o S aw be d.

d.

10. AVA IL A@ILITY/LIMITATION NOTICE8

? This document has been cleared for oren publication and maq be disseminated by
-the Clear-Ig Houle fgor Feder- Scientific & Tejh-ical Informatia-.

11. BUPPLEMEiTA MRY Modifies l5 I"
TM-1563/014/ol, by V. V. Alaendinger,
dated 4 March 1965, DDC number:
AD-613 2859

13 AESTRACT

LINK A LINK 9 LINK CKey WONO
-, o, NoL.1 WT NoLR OT

SPAN Systm
Data Management
Statistical Analsis
IBM 7090 Computer
IBM 70* Computer
Social Science
Urban Data Analysis

