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FOREWORD 

This Technical Documentary Report has been prepared in 
four volumes, as follows: 

Contractor's 
Volume      Title  Publication Number 

I       Program Development U- 3005 

II       Operating Instructions U- 3006 

III       Programmer's Manual U- 3007 

IV       Operations Summary (U) S- 2990 

Publication of this technical documentary report does 
not constitute Air Force approval of its findings or 
conclusions.  It is published only for the exchange 
and stimulation of ideas. 



SPIRAL DECAY AND SENSOR CALIBRATION 

DIFFERENTIAL CORRECTION PROGRAMS 

ABSTRACT (U) 

This document presents the theory, operation, and coding details 
of and experience with a computer program for the accurate prediction of 
the reentry corridor of an earth satellite undergoing orbital decay due to 
atmospheric friction.  This program is also useful in the precision pre- 
diction of satellite positions for other purposes such as sensor calibration 
and weapon systems. 
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SECTION 1 

INTRODUCTION 

This report documents Aeronutronic1s approach to the formulation of a 
computer program for high-precision orbit determination within the SPACETRACK 
computational environment.  Although originally intended for terminal decay 
corridor determination for satellites executing spiral decay, this program has 
evolved, within the limitations imposed by the Spiral Decay Technique Development 
Contract, as a highly effective tool for a majority of the high-precision require- 
ments of the SPACETRACK center, including spiral decay, weapon command and control, 
and sensor calibration.  Through an extended period of joint contractor and 
SPACETRACK analyst application of this class of programs to the rapidly-changing 
spectrum of operational requirements on the SPACETRACK center, a high degree of 
analyst proficiency and operational utility have also been developed. 

Specifications for the Spiral Decay class of programs are conveyed in 
Table I.  Two programs are involved: 

(1)  Spiral Decay (SPIRDEC) is an orbit determination and 
prediction program, with weighted differential correction 
capability for osculating elements and ballistic coeffi- 
cient. Current limitations are to non-equatorial 
satellites with eccentricities less than 0.9* (no 
ballistic coefficient correction) and 0.1 (with ballistic 
coefficient correction) . 

* For the higher eccentricities, lunar and solar perturbations become increasingly 
important.  These are not included in the current version of the program. 



TABLE I.  SPIRAL DECAY PROGRAM SPECIFICATIONS 

Operating System 

Ephemeris Integration 

Numerical Integration 

Initialization 

Geopotential 

Atmosphere 

Differential Correction 
(Weighted) 

Sensor Input Data 

Observation Capacity 

Prediction Capability 

Acquisition Capability 

Restart Capability 

SPS B-3 / Philco 2000 
Schedule Tape Mode 

Variation of Parameters 
Cowell Entry Option 

Sixth-order Adams-Bashforth with 
Runge-Kutta Start 
Automatic Interval Control 

SPACETRACK Mean Elements 
Osculating (M, N) Elements 
Geocentric Position and Velocity 

Zonal Harmonics Inclusive of Fifth- 
order 
Non-zonal Harmonics Inclusive of 
Fourth-order 

Jacchia-Nicolet Dynamic Model Above 
120 Kilometers 
COESA 1962 Static Model Below 120 
Kilometers 

Six Osculating Parameters (M, N 
Formulation) 
Ballistic Coefficient 
Sensor Location Timing and Observation 
Biases(Using CALIB Program) 

Internally Compiled Table for Biases and 
Weights, with Optional Override 

Up to 984 Observations; Sorting Internal 
to Program 

Geographic and/or Geocentric Cartesian 
Coordinates 

Binary Ephermis Tape for XYZLA Program 

Punches Parameter Cards for Both Spiral 
Decay and Calibration Programs 



(2)  Sensor Calibration (CALIB) is a differential correction 
program for determining biases in sensor location, timing, 
and observed quantities, utilizing a reference orbit 
determined from an independent sensor network (normally 
either PRELORT or Baker-Nunn data), using the SPIRDEC 
program. 

The SPIRDEC program has been compiled in both SPS B-2 and SPS B-3 versions to 
accommodate the SPACETRACK system change to be installed during January 1965. 
Although the operating instructions conveyed with this report reflect a B-3 
capability for the CALIB program as well, delivery of a B-3 version coincident 
with this report is not planned.  In the interim, the SPS A-l version of the 
SPIRDEC and CALIB programs, documented in the Milestone II report,* shall be 
available. 

In the development of the Spiral Decay class of programs, particular 
attention has been paid to those factors considered limiting in a useful spiral 
decay and weapon command and control capability.  Important considerations which 
have influenced the program design include: 

(1) Environmental factors which influence the trajectory, 
primarily the atmospheric density and gravitational 
perturbations, must be carefully considered.  Such 
considerations lead to the inclusion of a dynamic model 
atmosphere and longitude-dependent (tesseral) harmonics 
in the geopotential, inclusive of fourth-order."" 

(2) The rational application of statistical weights to ADC 
sensor data cannot be made without first providing for 
the large known biases in these sensors.  The Spiral 
Decay program will accept and process both weight and 
bias data for sensors and, through the interfacing 
Sensor Calibration program, will determine location, 
timing and observation biases for selected sensors, 
utilizing either ADC or independent (PRELORT, Baker- 
Nunn) sensors as a reference network. 

*  "Spiral Decay and Sensor Calibration Differential Correction Programs - 
Milestone II Draft", 31 March 1964, Aeronutronic Publication U-2559. 

** The fifth zonal harmonic is also included. A subroutine is now in checkout 
which extends the potential to the ninth-order zonal and sixth-order non- 
zonal harmonics.  A change note to this documentation will be issued upon 
completion. 



(3)  Since this class of programs will normally provide nearly- 
real-time support to SPACETRACK spiral-decay and weapon- 
oriented requirements, every effort has been expended to 
provide a precision orbit capability of the highest 
computational efficiency.  This is reflected in the choice 
of the variation-of-parameters method for ephemeris calcu- 
lation, and in the derivation and application of analytical 
differential correction equations." 

To accomplish these ultimate objectives while providing a meaningful 
interim capability, a series of programming milestones was established. These 
milestones, with technical and programming targets, are listed below: 

Milestone 

I (31 December 1963) 

II (31 March 1964) 

III (30 June 1964) 

IV (30 September 1964) 

V (31 December 1964) 

Technical and Programming Target 

Demonstrate the application of the 
variation-of-parameters approach, 
with analytic correction equations, 
to a decaying satellite (object 292) 

Demonstrate, in the live SPACETRACK 
computation and data environment, an 
interim capability for Spiral Decay 
calculations (objects 632, 707) 

Deliver an interim operational (SPS B-2) 
capability for Spiral Decay calculations 
Demonstrate an interim sensor calibra- 
tion capability (objects 759, 811) 

Demonstrate a weapon support capability 
in the SPACETRACK environment. 

Deliver "final" operational (SPS B-3) 
capability for Spiral Decay and weapon 
support. 

* This approach has been demonstrated, in the SPACETRACK environment, to exceed 
the computational speed of the competitive COWELL approach by a factor of four 
or more, with better accuracy. 



Highlights in the development of these capabilities include the scheduled visual 
confirmation of two satellite decays during the Milestone II demonstration 
(See Section 4) and the subsequent scheduling of four additional visual confirma- 
tions . 

This report documents the Milestone V program status.  Subsequent sections 
and appendices provide a detailed technical description of the Spiral Decay and 
Sensor Calibration programs. 



SECTION 2 

ORBIT DETERMINATION PROGRAM 

Except in the somewhat trivial case of a point mass moving in a pure 
central force-field, the so-called "Two Body Problem," it is generally impossible 
to derive orbital elements from observations by direct analytical means.  The 
process usually employed is to create a dynamical model of the motion and then 
to adjust the constants introduced into this model until the best possible fit 
to the observations is obtained in the sense of least squares.  The problem is 
very similar to the one faced in classical celestial mechanics; the solutions 
discussed here draw heavily from the theory and practice of celestial mechanics. 

The principal differences between modern orbital theory of artificial 
satellites and classical celestial mechanics theories arise in part from the fact 
that the artificial satellite environment includes perturbative forces such as 
aerodynamic drag, earth-bulge, and the like, and in part from the availability of 
high-speed computing equipment and electronic instrumentation providing range and 
range-rate data, as well as angles. 

2.1 DIFFERENTIAL CORRECTION PROCEDURE 

Reduced to its simplest form, the differential correction technique 
involves the following five steps (identified in Figure 1): 

Step 1.  Raw observation data is corrected for known systematic 
errors (biases) as determined from calibration efforts. 
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Step 2.   Beginning with a tentative estimate of the injection conditions 
and other "constants" entering into the equations of motion, an 
ephemeris is produced by integrating these equations. At each 
time for which an observation exists, this ephemeris is trans- 
lated into a "representation" for those observations available 
from the particular sensor. 

Step 3.  In the absence of unknown observation errors, and for exact 
knowledge of the injection conditions and environment governing 
the motion, the representations and corrected observations 
would be identical.  In practice, however, they are not identical, 
and their differences, or "residuals," serve as a basis for 
differentially correcting the initial constants, as shown in the 
following steps 4 and 5. 

Step 4.  Cause and effect relations between injection conditions and 
subsequent observations are highly nonlinear. Where corrections 
to these injection conditions and subsequent changes in residuals 
are small, the problem is readily linearized.  For each observed 
quantity, a scalar differential expression relating the known 
residual to the unknown changes in injection conditions and other 
parameters defining the motion is derived. 

Step 5.  The system of linear equations, one for each observed quantity 
and normally heavily overdetermined, is solved in the sense of 
weighted least squares for the differential corrections to the 
injection parameters.  Some insight into the convergence of the 
procedure is available by examing the weighted sum-of-squares 
of the residuals, and the variance-covariance matrix of the 
differential corrections. 

Normally, steps 2 through 5 will be repeated until the weighted sum-of-squares of 
the residuals becomes stationary.  During this iterative process, observations 
which do not fit the orbit may be rejected. 

Execution of the foregoing five basic operations is quite involved and 
requires meticulous attention to detail.  Such items as the atmospheric model, 
geopotential, and choice of reference systems must be correctly handled to ensure 
the greatest precision. 



2.2 PROGRAMMING SYSTEM 

To facilitate the eventual application of the Spiral Decay Program within 
the ADC Spacetrack Center, yet permit interim experimentation and simulation at 
496-L (Bedford, Massachusetts), Aeronutronic and the ADC Spacetrack Center, the 
Semiautomatic Programming System (SPS), A-l version, was utilized in the first 
milestone. The successful demonstration of the Milestone II version in the ADC 
environment, and the desire on the part of ADC personnel to utilize these procedures, 
made an interruptable (B-2) version of this program desirable.  Thus, the Milestone 
II program was prepared in two versions: 

(1) An interruptable (B-2) version of the Spiral Decay module, 
permitting application of this procedure during periods 
where the ADC computer(s) are providing backup for other 
ADC functions. 

(2) A noninterruptable (A-l) version of the Spiral Decay and 
Sensor Calibration modules, in which the executive system 
has been modified to prevent truncation of time.  This 
latter feature is considered essential to meaningful cali- 
bration work. 

The operating instructions for both A-l and B-2 program versions, operating in the 
Schedule Tape Mode, were conveyed in the Milestone II draft of the present report.* 

The present report applies to programs operating under the control of the 
B-3 system, which is interruptable and uses new formats accommodating five-digit 
satellite numbers. 

2.3 EPHEMERIS INTEGRATION 

The ephemeris integration represents a major portion of the computational 
burden for spiral decay calculations.  Since no satisfactory theory is yet available 
to perform this integration by general perturbations (development of the perturba- 
tions into series and integrating term-by-term) for orbits highly perturbed by drag, 
the special perturbations technique (numerical step-by-step integration) has been 
employed. 

* Aeronutronic Publication U-2559, 31 March 1964 



The coordinates are referred to the mean equinox of a fixed epoch 
and the true equator of date.  For detail refer to the definitions of 
lt   J, K, etc., in Appendix VII. 

Of the several formulations available in special perturbations, 
the variation-of-parameters method has been employed for two reasons: 

(1) The technique supresses the dominant central 
gravitation term in the geopotential by inte- 
grating parameters which, in the absence of 
perturbative effects, are constant. 

(2) The parameters integrated in the variation-of- 
parameters method may be related, through scalar 
differential expressions, to observed coordinates 
at future times, thereby permitting a fully analyti- 
cal development of the differential correction. 

These factors contribute to computational efficiency by (1) permitting 
large integration step size (or fewer derivative evaluations per revolution) 
and (2) facilitating communication between the ephemeris and differential 
correction modules of the program. 

Of the several available formulations for variation-of-parameters, 
the a_, h formulation* has been used, since it exhibits no zero-eccentricity 
singularities. 

During the last revolution of a satellite executing spiral decay, 
the perturbative accelerations become too large to be efficiently accommodated 
by the variation-of-parameters method.  A transition to the Cowell formu- 
lation of the equations of motion during this revolution is provided. 

a.   Numerical Integration Method 

The variation-of-parameters method leads to seven first-order 
differential equations,with time or one of the anomalies as the independent 
variable. 

* A complete derivation of the equations is given in Appendix VI.  The 
mathematical steps involved in both ephemeris integration and differential 
correction are conveyed in Appendix I. 

10 



Prior to Milestone IV, expediency dictated program compilation with the 
Runge-Kutta integration subroutine, a fourth-order technique requiring four (4) 
derivative evaluations per step.  This self-starting technique permits great 
flexibility in specification of time interval, but at the expense of running time. 
Comparable precision and stability, however, is available with higher-order pre- 
dictor-corrector methods requiring fewer derivative evaluations per revolution. 
The final program thus is compiled with such an alternative numerical integration 
subroutine, Adams-Bashforth.  The Runge-Kutta technique will continue to be used 
for starting purposes. 

Representation of observations for residual computation demands that 
satellite coordinates at arbitrary observation times be calculated.  Initially, 
and again for expediency, the program numerically integrates to each observation 
time. For situations where a large number of observations exist, such as sensor 
calibration work utilizing raw data derived from the AF Satellite Control 
Facilities, the additional integration step for each observation becomes in- 
efficient.  To avoid this unnecessary computational burden, a fifth-order divided 
difference interpolation procedure has been included, permitting the interpolation 
for observation times in an ephemeris table of arbitrary time interval (as 
determined by the integration error control). 

b.  Drag Perturbations 

A number of atmospheric models, which include dynamic terms to represent 
deviations from "standard" models, are in use.  Those dynamic effects which have 
been identified from satellite acceleration studies include seasonal and longitude- 
dependent terms, as well as those correlated with solar radiation and planetary 
magnetic effects. 

At altitudes below 300 km., representing the region of interest during 
the last few days of spiral decay, the variations in density due to important 
dynamic terms are given in Table II. 

11 



TABLE II.  VARIABILITY OF DYNAMIC ATMOSPHERE TERMS* 
(orders of magnitude) 

Altitude      Diurnal      Seasonal      Solar(F  )      Magnetic(A ) 

150 km          0 0          0.14 0 

200 km           0 0.07           0.54 0.05 

250 km        0.06 0.10          0.86 0.09 

300 km        0.14 0.12          1.00 0.14 

At higher altitudes, these effects are even greater. 

These considerations have led to the incorporation of a dynamic model 
atmosphere in the spiral decay program.  The Jacchia-Nicolet model'"'' has been 
utilized; this model includes significant geometric and solar radiation terms 
above 120 km.  The formulation of the Jacchia-Nicolet atmosphere subroutine is 
given in Appendix II. 

c.  Gravitational Model 

In the selection of terms to be included in the gravitational model for 
the earth, careful consideration must be given to terms which either (1) lead to 
secular and/or long period terms which, if neglected, would be aliased into other 
effects, or (2) can lead to short period radial displacements with consequential 
drag coupling. 

Based upon these considerations, zonal, sectorial, and tesseral terms 
have been included in the gravitational model.  For Milestones I and II, the J 
term was implemented.  A general expression for the earth model permitting the 
inclusion of a consistent set of the harmonics through n,m =4,4 is now used. 
The formulation of this earth model is conveyed in Appendix I.  The values of the 
coefficients of the non-zonal harmonics, which are still undergoing redefinition 
by several investigators, are specified by two parameter cards in the program 
input. 

* H. K. Paetzold, "Model for the Variability of the Terrestrial Atmosphere above 
150 km", submitted to COSPAR working group IV, "Reference Atmosphere", 1962 
January. 

**L, G. Jacchia, "Temperature Above the Thermopause", Smithsonian Inst. 
Astrophysical Observatory Special Report No. 150, April 22, 1964. 
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2.4 DIFFERENTIAL CORRECTION 

The differential correction involves the formulation of scalar differ- 
ential expressions relating observation residuals to corrections to the parameters 
defining the representation; these parameters normally include six initial condi- 
tions or elements defining the orbit and a seventh parameter related to the 
interaction of the satellite with drag environment. Where sufficient observation 
redundancy exists to permit the determination of additional parameters, sensor 
biases (range, angles, timing) or geometric factors entering into the representation 
(such as geocentric coordinates of the observer) may also be determined. 

The scalar differential expressions take the following form: 

n    bO 

tfli   =      £    L.   AP. 
j-i  *Pj    J 

where 0. are observed coordinates and the p. are parameters to be corrected.  Two 
conditions must be met to solve for the AP-> namely: 

(1) There must be at least as many observations as parameters 
(i>n) to solve the system of linear equations, and 

(2) The selected parameters must be capable of being related 
to observed coordinates by linear differential expressions, 
without singularities at critical parameter values. 

The first condition is readily met with modern electronic instrumentation, and the 
overdetermined system of equations is solved in the sense of weighted least squares. 
This approach assumes that observation errors are statistically uncorrelated, a 
reasonable assumption for SPACETRACK observations if the biases can be predetermined. 
Under these conditions, the variance-covariance matrix of orbit parameters reveals 
the quality of the determination and may be printed out for inspection. 

The second condition above implies that the partial derivatives exist for 
the complete range of parameter values encountered in the differential correction. 
Attempts to differentially relate, for example, the orbit eccentricity and perigee 
argument to observed coordinates through linear differential expressions must fail 
at zero eccentricity for the eccentricity j.s, by definition, non-negative and the 
perigee argument indeterminate. A number of parameter sets exist which can be 
successfully related to observed coordinates through linear differential expressions 
at this critical eccentricity*.  Some of these sets, such as the M, N pattern 

See, for example, Aeronutronic Report U-880. 
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utilized in the Spiral Decay Program, may be differentiated to provide a completely 
analytical formulation for the differential correction, thereby leading to sub- 
stantial economies in computational time. 

With the exception of the drag parameter, the M, N form for the differ- 
ential correction has been adequately documented".  Analytical differential 
expressions for the drag parameter have also been derived, and this derivation is 
included as AppendixIV to this report. 

In addition to the differential correction features cited above, the 
Milestone III version was to have included limited differential correction in the 
Cowell entry option.  It has been demonstrated (see Section 6), however, that the 
variation-of-parameters method will accommodate tracking data extending into the 
incendiary region of decay.  Experimentation has also established the desirability 
of including geometric terms in the drag correction equations arising from earth 
flattening, which can lead to density variations equivalent to a scale height. 
The formulation of these expressions is given in Appendix IV. 

*In addition to U-880, sources include the Proceedings of the JPL Seminar on 
Tracking Programs and Orbit Determination, 22-26 February 1960, and Koelle, 
"Handbook of Astronautical Engineering" McGraw-Hill, 1961, Section 8.112. 
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SECTION 3 

SENSOR CALIBRATION PROGRAM 

In Appendix V, scalar differential expressions have been developed which 
relate observation residuals — in range, range-rate, azimuth and elevation — to 
biases in sensor location, time reference and observed coordinates.  This theory 
has been implemented in a Sensor Calibration Program, designated CALIB, operating 
in the Schedule Tape Mode, A-l system.  This Section presents a description of the 
procedure; operating instructions are given in Volume II.  Results of operational 
applications of these techniques are conveyed in the Operations Summary, Volume IV. 

The calibration procedure involves the consecutive application of two 
differential correction procedures as shown in Figure 2. 

The first step involves the definition of a highly precise reference 
orbit derived by processing tracking data from sources of high confidence level 
and redundancy.  The most appropriate tracking system for this purpose is the 
network of PRELORT radars operated by the 6594th Aerospace Test Wing (Sunnyvale, 
California) in support of AFSC satellite programs.  These radars track a co- 
operative S-band beacon carried by most AFSC satellites, and the tracking data 
rate for this network is in excess of 1500 observations/day even for relatively 
low (100 n.m.) satellites.  The quality of these data and of the earth and 
atmospheric model used to define the satellite motion is demonstrated by the 
ability to fit these data, even over relatively long time spans, to the order of 
100 meters.  To facilitate the utilization of these data within the ADC computa- 
tion environment. AFSC has contracted for preparation of a 160A computer program 
to translate PRELORT data tapes into SPADAT BCD card format, and to prepare a 
standard teletype tape for transmission into SPACETRACK. 
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Additional data sources can be exploited for performing this calibration 
function, either to complement the PRELORT data or to replace it where the satellite 
does not carry an active S-band beacon.  Baker-Nunn camera data, for example, lacks 
the redundancy and intrinsic metric desirable for calibration exercises, but will 
strengthen the PRELORT data, where greatest emphasis is placed upon range data. 

The design of the Spiral Decay differential correction program provides 
for the definition of the reference orbit to the desired precision.  The necessary 
interface between the SPIRDEC  and CALIB programs, as shown in Figure 2, is a 
vector defining the parameters of the reference orbit; provision has been made in 
the SPIRDEC program to format and print the parameter card images for control of 
CALIB directly. 

The second step in the Sensor Calibration procedure also involves a 
differential correction procedure.  Beginning with the reference ephemeris and with 
observations derived from the sensor undergoing calibration, a weighted least- 
squares determination is made of those sensor properties — sensor location, time, 
and observation biases — which lead to the best fit of the tracking data to the 
reference ephemeris.  This step is performed by the CALIB differential correction 
program, which permits the selective determination of any combination of the seven 
sensor properties, data permitting.  In addition to these biases, CALIB also 
determines RMS values for the individual observation types, to be used as weights 
in subsequent applications of the sensor data. 

Although these procedures could have been assembled as a single program, 
the following considerations influenced the decision to prepare two programs with 
a simple, program-defined interface: 

(1) More flexible use of memory is permitted, particularly in 
subsequent B-2 and B-3 versions of these programs, where 
certain memory regions are denied. 

(2) The simultaneous determination of biases and orbit parameters, 
in a single pass involving both PRELORT and ADC sensor data, 
may alias the reference orbit parameters unless the freedom 
to determine all biases in the candidate sensor is permitted. 
Few such data situations will exist. 

It is important to note that the earth model and atmosphere constants must be 
identical in the two programs, to permit the accurate reconstruction of the 
reference ephemeris in the CALIB program. 

17 



The current operational version of the calibration procedure operates in 
the Schedule Tape Mode, A-l version. Restriction to the A-l operating system was 
necessitated by the manner in which time is processed in executive modules of the 
B-2 system, where the representation of time since 1950.0 as a floating point 
number introduces errors in tens of milliseconds.  In the A-l master tape utilized 
at ADC/496L for calibration work, these modules have been modified to represent 
time in fixed point and double precision, thereby avoiding this source of error. 
These modifications have now been introduced into the B-2 and B-3 executive 
modules, paving the way for the subsequent compilation of the CALIB program in 
these systems. 
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SECTION 4 

SPIRAL DECAY EXPERIMENTATION 

During the application at ADC of procedures developed under 
this study for spiral decay corridor determination, six visual confirma- 
tions of decay were successfully scheduled.  Four of these represented 
Russian satellites which, by virtue of their lower inclinations, were 
more likely to decay over the populated middle and equatorial latitudes. 
Two of these scheduled visuals (on objects 632 and 707) were made during 
the demonstration at ADC of the spiral decay capability in March, 1964, 
while a third provided the first visuals on two consecutive revolutions. 
These three satellites are discussed in detail in this section. 

The visuals described above involved observers in North America 
and represent the best documented observations.  Additional visuals were 
scheduled through the 1127th Field Activities Group, Fort Belvoir, includ- 
ing object 834, 1 August, 1964, at Carnarvon, Australia; and object 796, 
27 May, 1964, at Maracaibo, Venezuela.  The visuals on 911 were made by 
both ground observers and SAC aircraft commanders, above the Arctic circle, 
and were scheduled through NORAD. 

4.1  OBJECTS 632 and 707 DECAY 

To evaluate the performance of the Spiral Decay program, 
Milestone II version, in the ADC data and computation environment, the 
tracking records of two Russian Cosmos Satellites, Spacetrack Objects 707 
and 632, were reduced on a real-time basis in ADC centers at L. G. Hanscom 
Field and Colorado Springs.  Both exercises were successful beyond expec- 
tations, resulting in visual confirmation of decay in each case.  Equally 
gratifying was the performance of the variation-of-parameters method, coupled 
with the analytic differential correction technique which (in the case of 
Object 632) converged readily on tracking data extending into the incendiary 
region of decay. 

Object 707 was a cylindrical body of low area-to-mass ratio.  The 
data reduction for this exercise was performed at L. G. Hanscom Field by 
SCAF and Aeronutronic personnel.  The success of this venture may be measured 
by results presented in Table III. The low area/mass ratio of this object 
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TIME 

(Day: Time) 
POSITION 

27-.0128Z 44°.2N 
115°.W 

TABLE III 

CORRELATION OF VISUAL OBSERVATIONS AND  EPHEMERIS 

SPACETRACK OBJECT  707 DECAY 
(Based upon data over 3/26 0208Z - 3/26 2225Z) 

OBSERVER COMMENTS 

94km 

27:0129Z 45°.7N 
110°. 0* 
89km 

ro  27:0130Z 
o 

47°.ON 
105°.0W 

82km 

Finley AF WX Station 
Finley, N.D. 

"Dim object report moving 
SW to NE" 

27-.0131Z 47°.9N 
100°.W 
70.0km 

Baudette, Minn. 

Duluth, Minn. 
(SAGE Direction 
Center, 4 observers) 

"Red-orange object directly 
overhead; pieces falling off." 

"Three objects; visible trail lasting 
5 sec. behind first object; one object 
appeared to descent in local area." 

27:0132.54Z Madison, Wisconsin 
(Moonwatch) 

"Sparking object, 4 elev., 355 
azimuth" 

* The ephemeris for object was based upon a single drag coefficient implying structual  integrity. 
The low W/C A and con 
to the intact object. 

The low W/C A and confirmed breakup would permit pieces to go beyond the impact area corresponding 



and its shape suggest a collection of dense components (rocket motor, 
payload) joined by light structual components and tankage.  One would 
expect the aerothermodynamic environment to rapidly strip away these 
lighter structual components, creating a variety of objects of differing 
area/mass ratio, each following an independent course.  This speculation 
is supported by visual evidence, which verified the onset of high heating 
rates (Fargo, N.D.)> the breakup of the satellite (Baudette, Minn.), and 
the independent decay of at least three objects (Duluth, Minn.).  The 
correlation between these phenomena and the ephemeris provided by the 
Spiral Decay program is excellent, as demonstrated in the Table. 

The decay exercise for Object 632 was conducted at Colorado 
Springs.  The area/mass ratio of 632 was also quite low, as noted in 
Table IV.  Nine fits were obtained over the last 72 hours of lifetime, 
each requiring approximately 10 minutes of computer (Philco 212) time. 
Highlights of each iteration are presented in TableIV; these include 
(1) the fact that all fits over the last 72 hours (and probably greater 
intervals) defined a decay window of approximately one hour and (2) no 
iterations on any fit were divergent.* This latter property of the 
Spiral Decay program is readily appreciated when it is noted that, on 
fit #1 beginning with SPADAT mean elements, range-rate residuals of 
3 km/sec and larger were common on the initial pass through the data. 
Visual confirmation of 707 decay in its early stages was provided by 
a weather observer in Duluth, Minn.; poor weather over the Eastern 
states and mid-Atlantic precluded sightings extending on into the most 
probable decay region (extending from the Azores into South Africa). 

It is highly probable that 632 decayed in several fragments 
as in the case of 707.  In order to evaluate the possible decay corri- 
dor for objects of various area/mass ratios, a sequence of decay 
trajectories was integrated, beginning with the visual evidence of 
decay over Duluth at 0726Z.  In particular, a Moonwatch observation 
was reported about 0900Z from the Northeastern U.S.  Based upon a fit 
including tracking data during this decay phenomenon, an object with 
an area/mass ratio even as low as 0.0002 m2/kgm would not complete 
another revolution.  Since it is difficult to visualize a satellite 
component with these properties, and since both Moorestown and Prince 
Albert radars gave negative reports on this post-decay revolution, 
confirmation of this report is lacking. 

*Since the observations accepted from iteration to iteration varied, 
divergence is arbitrarily defined as an increase in the weighted rms 
of five percent or more on successive iterations. 
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TABLE iv 

SPACETRACK OBJECT  632  DECAY 

PRE-DECAY   ANALYSIS 

UL 
Data Interval 

(Dav:      Zulu Time) 
Decay  Time 

(Dav:   Zulu Time) 
Drag    Parameter 
Meters     kgm 

RMS  Fit 
(Weighted*) 

Divergent 
Iterations 

1 26:0446 -  27:1511 30:0817 0.01631 1.03 0 

2 27:1758 -  28:1600 30:0911 0.01630 0.70 0 

3 27:1753 -  28:1732 30:0856 0.01647 0.85 0 

4 28:0400 -   29:1242 30:0818 0.01666 0.86 0 

5 29:0351 -  29:1941 30:0803 **0.01694 1.06 0 

6 29:0351 -  29:2113 *** **0.01684 1.22 0 

7 29:0351 -  30:0016 30:0806 **0.01688 1 .36 0 

8 29:0351 -  30:0423 30:0757 

POST- ■DECAY 

**0.01698 

ANALYSIS 

2.02 0 

9 29:1701 -  30:0727 30: 0747 **0.01746 
(6 element  fit) 

2.84 0 

*   Generally based upon TIP bias/weight recommendations, as revised by results of the object 759 (1964 March 3-5) 
calibration effort 

**  Beginning with Fit 5. transitional drag effects were introduced 

*** Although solution was convergent, convergence test failed to meet stringent (one percent) test on successive 
values of weighted rms before the pre-designated maximum number of iterations was exceeded. 



4.2  OBJECT 803 DECAY 

One of the better documented decay exercises involved the 
COSMOS 31 (Object 803) payload, launched on 6 June, 1964.  A TIP 
exercise conducted at SPACETRACK during the week prior to decay 
successfully scheduled visual confirmations of decay during revolu- 
tion 2161, along a corridor extending across the Northwestern U.S., 
at 20 October, 0516Z.  Reports of unusual meteoritic phenomena on 
the previous revolution 2160 prompted an appeal in Canadian news 
media for detailed reports.Of the resulting fourteen reports sub- 
mitted, a majority correlated with the timing and direction of 803, 
leaving little doubt that some component of 803 had decayed over 
Ottawa, Ontario, at approximately 2353 local time (20 October, 0353Z). 

Further analysis was conducted to determine answers to 
the following questions: 

(1) What mechanism separated Object 803 at least one 
revolution before decay, and 

(2) What was the nature of the object that decayed 
prematurely? 

The analysis presented here supports the conclusion that an array 
of solar cells was separated by aerodynamic forces near the ascending 
node, revolution 2160, and decayed twenty minutes later over Ottawa. 

Examination of the ephemeris during the last few revolutions 
revealed that the perigee of the orbit was near the ascending node.  A 
one-minute interval ephemeris was produced for the last revolutions to 
examine the altitude variation around the orbit; the following values 
were determined: 

Altitude in Vicinity of 

Ascending Northern Descending Southern 
Rev Node Antinode 

149 km 

Node Antinode 

2159 141 km 144 km 157 km 

2160 133 km 137 km 132 km 142 km 

2161 119 km Decay 

Two mechanisms may be effective in removing a component of 
Object 803 near the ascending node of revolution 2160, aerodynamic and 9 

aerothermodynamic.  The dynamic pressure is still quite low (~0.025 kg/m ) 
but capable of inducing substantial vibration loading on structures of 
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poor aerodynamic design.  The aerothermodynamic effects at 130 km border 
on heating rates sufficient to induce structural failure.  The combination 
of these effects at 130 km should be sufficient to separate large surfaces 
with limited structure designed for deployment after orbit injection; 
antenna and solar cell arrays fall into this category. 

To evaluate the nature of the object which decayed over Ottawa, 
a sequence of decay trajectories was run for a variety of drag coefficients, 
based upon position and velocity derived at the ascending node, revolution 2160. 
The area-to-mass ratio leading to visual decay phenomena over Ottawa (at 110 km) 
was 0.18 m^/kgrn, compared with 0.01 for typical payloads and 0.03 for typical 
rocket bodies.  (A family of these trajectories is plotted in Figure 3.) 

The final evidence suggesting the actual identity of the object 
lies in the reported visual phenomena.  Some of the reports follow: 

"...oblong in shape, with a long trail of sparks..." 

"...lights were a vivid yellow and seemed to be like small 
illuminated windows in a long row.  Smaller lights, like 
sparks, were seen beside the main body...approximately 
20 lights strung out in a row resembling lights of a 
passenger train." 

"...left a long trail of illumination behind it, resembling 
the trail left by an ascending rocket in a fireworks 
display." 

"...a row of lights down the centre... looked like a distant 
train where the train's outline cannot be seen." 

"...like a stream of lights in irregular pattern, those lights 
in front being quite bright...Each light seemed to hold 
its (relative) position." 

"...a continuous bursting of multicoloured sparks, which 
appeared to be coming from a common object as they were 
in a straight line." 

"...lights were white and surrounded by a yellowish luminosity 
with a long liminous tail..." 

Materials commonly used for optical enhancement of reentry 
objects include the easily-ionized metallic oxides of such elements as 
cesium, selenium, indium, calcium and iron.  As a corollary, some of 
these materials are also efficient photoelectric media and are used in 
solar energy converters.  Thus the reported visual phenomena could be 
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explained by a solar-cell panel, dispensing individual cells along the 
higher trajectory as the bonding material failed, which acted as efficient 
converters of heat to visual energy as the lower altitude range was reached, 
The area-to-mass ratio derived above tends to support this conclusion. 
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APPENDIX I 

EPHEMERIS AND DIFFERENTIAL CORRECTION 

PROCEDURE 

1.1  VARIATION-OF-PARAMETERS EPHEMERIS COMPUTATION 

The formulation of the variation-of-parameters method for ephemeris 
computation is presented in this section.   In principle, the variation-of-para- 
meters method formulates the equations of motion in terms of dependent variables 
which, in the absence of perturbative (non-two-body) forces, are constant.  Such 
a formulation, used in a differential correction procedure, enhances the compu- 
tational efficiency through (1) more efficient ephemeris integration, particularly 
where perturbations are small, and (2) effective application of differential 
correction based upon analytical expressions presented in Section 1.2. 

The variation-of-parameters method involves the steps shown in Figure 
1-1.  Each of these steps is formulated below; in practice, they are programmed 
as subroutines which are called by a control program based upon the numerical 
integration procedure used.  Each pass through the procedure advances time by 
a designated amount At; repeated application will define future position and 
velocity from epoch elements. 

a.  Derivative Evaluation 

(1)  Oblateness (bulge) 

A fairly general Earth model has been included in the SPIRDEC and 
CALIB programs, inclusive of zonal harmonics of the geopotential through the fifth 
order and tesseral (longitude-dependent) harmonics through the fourth order.  The 
most efficient procedure for computing these terms is to define perturbative 
accelerations in the S   (south), E (east) and Z (zenith) coordinate system, as 
follows: 

1B - S gs + E h  + Z gr 

where g , g^ 
in Table I-I. 

and g are defined, in terms of the potential function $, as shown 

* See also Appendix VI, Variation-of-Parameters for Low Eccentricity Orbits. 
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TABLE 1-1.       EXPRESSIONS FOR  g      o   ,  and  g 
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Table 1-2 conveys the series to evaluate the associated Legendre 
functions and the formula used to compute their derivatives.  The derivatives 

always occur with the factor VI - U  in Table 1-1. 

The series expressions are not presently used in the appropriate sub- 
routine (MARTINI).  That subroutine conforms to the specifications in the 
Milestone II Report*, Appendix A. A new subroutine (MONICS) with an extended 
potential (n^ = 9 and ^ = 6, presently) has been validated but not yet 
integrated into the operational program.  MONICS uses the series, avoiding the 
singularities at the equator and poles by numerical checks. 

The values of the sines and cosines of multiples of the East longitude 
may be found conveniently by the recursive relationships: 

sin n XE  =  2 sin (n-1) \£ cos \     - sin (n-2) \£ 

cos n X£  =  2 cos (n-1) \£ cos \£ - cos (n-2) \£ 

(2)  Drag 

The perturbations due to atmospheric drag are determined by 
entering the LJDRAG subroutine,which determines the atmospheric density 
corresponding to the satellite's altitude from a dynamic model atmosphere and 
translates this to a corresponding acceleration.  The density model currently 
employed is due to Jacchia, with approximating curves in transitional regions 
provided by Lockheed.  The formulation for this density model is given in 
Appendix II.  (An additional entry into this subroutine is used to determine 
perigee density and scale height, in order to initialize the drag differential 
correction procedure.) 

To compute the drag perturbation, the height H above the oblate 
spheroidal earth is first calculated (See Appendix V, Section 3): 

H = (r-1) - | f2 (U )4 + (f + | f2) U 2 
2      z 2      z 

determined. 
The atmospheric  density  corresponding  to  this  altitude  is   then 

The relative air velocity vector, V,   is computed by assuming  that 
the atmosphere  is rotating at  the  same angular velocity as  the Earth: 

v      = x +yP   ,  where  9 ■ 0.058,834,47 radians/k'^nin 

V      = y -x& 
y 

* Walters, L. G., Hilton, C. G., and Crossin, P. A., "Spiral Decay and 
Sensor Calibration Differential Correction Programs", Aeronutronic 
Publication No. U-2559, 31 March 1964. 
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TABLE 1-2.  ASSOCIATED LEGENDRE FUNCTIONS AND THEIR DERIVATIVES 

Legendre Polynomials:   m = 0 

Pn (UJ = Po n (V n  z    n,U  z 

Associated Legendre Functions: n-m 

P   (U ) =   (2n)!      (1 - u2) 

m 
2 

2 

c 
r *> 

U 
u,ui  z    -                  Z z 

2n n'. (n-m)! / 
r=0 

where co=L 

and 

n-m-2r 

'r-l 

(n-m-2r+2) (n-m-2r-H) 
2r (2n+l-2r) 

v^ 
Derivatives: 

P'       (U )   = P       .,(11) 
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n       z VTT7 

Sectorial:     m = n 

P . ,   (U )   = 0 
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V = z 
z 

V = (V'V )^ 

The drag acceleration then is 

rD =» - - Pv B V 

C A 
where B a D /m is the ballistic parameter. 

(3)  Radiation Pressure 

The magnitude of the force acting on a satellite due to direct 
solar radiation pressure is 

F  -   |F I  «  7  P  A 

where    A    is the effective cross-sectional area of the satellite to 
radiation pressure 

P    is the solar radiation pressure in the vicinity of the 
Earth, assumed constant at 4.5 x 10 5  ty116* 

2 
cm 

7     is a factor depending on the reflecting characteristics of 
the satellite's surface; if the incident energy is reflected 
specularly or is absorbed and re-emitted tsotropically, 
7  - 1 

By neglecting the solar parallax, which is only 11 seconds of arc at 1000 miles 
altitude, 

F       -F L 
-e       e -© 

where L  is a unit vector directed to the Sun. 
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The points at which a satellite enters and leaves the Earth's 
shadow are continuously changing due to the apparent motion of the Sun 
and the perturbations on the orbit.  The shadow effect can be handled 
very easily, however, in the special perturbations case.  A check is made 
at each integration step to determine whether the satellite is illuminated 
or in the Earth's shadow.  If the satellite is in the shadow, the radiation 
force does not act. 

Consider the plane which passes through the centers of the Earth, 
Sun, and satellite as shown in Figure 1-2.  The Earth's shadow is assumed 
to be cylindrical.  The dot product of L^and r gives 

L • r 
cos ilf = —Q — 

Clearly, if cos if  is positive, the satellite will be illuminated by the 
Sun.  If cos if   is negative, use is made of the triangle CES and the 
angle T, obtained from triangle TES: 

sin Tl = - 
r 

Consideration of Figure 1-2 reveals that when (t + V)  <-  180°, the satellite 
is still illuminated.  However, when (i + T) > 180°, the satellite will be 
in the Earth's shadow.  In this case, the radiation force does not act. 
The test can readily be made on the sign of the quantity 

sin (\lf + V)   =  sin if  cos V  + sin V  cos if 

where sin if  and cos V  are always positive. 
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If tin (V' + T)) > 0, the satellite It illumtneted. 

If the satellite it illuminated, calculate 

*RP* & Lx. 

*RP " & S. 

*RP 

F 
L.. 

b.  Calculation of Variation of Parameters 

The total perturbative acceleration can now be used to determine the 
perturbative derivatives of the parameters, as follows: 

X=*B + iD 

rf ■ r   • r 

ss a L  ' L 

rf a r   • f 

D  ■ 
rf 

' 7T 
ti 

rf 

& 2ss 

rBS 
■ W   ' LN 

iy z(rbN) 

'  <"V  / ̂P 

a* * 
(Dr  - Drs - Hi) 

a * 
/1I 

*a * W x a 

■e v ■ ej .a 
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t.m. -r eV 
/Si V i + J 1 - e' 

r x rx 

The derivatives, as used in the Runge-Kutta routine, are: 

dL  u     TN L — - k  L + n 
dt    e 

da 
jT - k a^ 
dt   e - 

dh 

dt   e — 

c.   Numerical Integration Procedure 

The expression given above represent seven first-order differential 
equations, with time as the dependent variable.  In the Milestone I and II 
versions of the SPIRDEC and CALIB programs, these are integrated by the Runge- 
Kutta procedure, utilizing an optional Simpson's rule test for truncation 
error to define an optimum variable time interval. 

d .   Calculation of Position and Velocity 

At each time point where derivatives are to be evaluated, or where 
observations are to be represented, the space position and velocity are 
determined from the parameters a, h and L by the following procedure: 

p - h . h 

2 

a = 
1 - e2 

k r- 
3/2 
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2)* (i-wz

2)* 

M    - - 
y 

w   w 
z     y 

N 
y 

w 
X 

' (i-wz
2)* 

M    =   (1-W  2)^ N     =  0 
z z z 

a       » a   •  N 
xN      —      — 

a .. ■ a   •  M 
yN       —      — 

N W 
V x 

0     ■ arc  tan zr - arc tan —rr N -w 

U*L-0  if W    2>   0 
z 

L+fi   if W    < 0 
z 

0  <; U  <r 2   TT 

Kepler's   equation  is   solved  by   iteration  using   the Newton-Raphson 
method with  an  initial  guess   for   (E+ ID  )   of U   [  i.e.,   (E+ (i)  )     - U ] 

[U+esinE.   -   (E+»)    ] 
(E+(!))._,_-   ■   (E+CD).   -     \ : *      radians 

l+l l e cos E.   -   1 
l 
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where 

e cos E. * a M cos (E+Oü). + a XT sin (E+u) ). 
i   xN l yN l 

e sin E. - a XT sin (E+uu). - a ._ cos (E+ ou) . 
l   xN I yN l 

The iteration is concluded when 

-8 
(E+(i))i+1 - (E+u))i <  10 

(If,   after 50 iterations,   the criterion  is  not met,   the run  is   terminated, 
comment  to this  effect  is written on  the  output   tape.) 

After Kepler's  equation  is   solved,   the calculations  continue: 

r ■ a   (1  -  e cos E) 

f - ^^ (e  sin E) 

rv 
y~"u~ä    A/T~    2 

v a *—w—      VI  -  e 

e  sin E 
cos  u ■ — [  cos   (E +U) ) 

r 
a      + a 

xN ^ (i + 7TT7)] 

e  sin E 
sin u - - [   sin  (E +uu )   -  a XT  -  a /—     —7    J 

yN        «M  (1 + V 1 -  e2) 

U - N cos u + M sin u 

V *  - N sin u + M cos  u 

r « r U 

* - f U + rv V 

This  completes  the calculation of position and velocity  from the M,  N parameters 
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1.2  WEIGHTED DIFFERENTIAL CORRECTION 

The differential correction procedure relates observation residuals 
to incremental changes in the orbit parameters.  Raw observation data, corrected 
for known systematic (bias) errors, are compared against their representations, 
based upon the computed orbit.  Their differences (residuals) are related by 
scalar differential expressions (equations of condition) to incremental changes 
in the parameters defining the computed orbit.  This ordinarily heavily over- 
determined system of equations is solved for parameter changes in the sense of 
weighted least squares, utilizing weights reflecting the statistical confidence 
in the corrected data, as determined from sensor calibration efforts. 

a.   Representation of Observations 

Given the sensor latitude $, east longitude Xp and sea-level height 
H, the following procedure computes representations of range p , range-rate 
pc , and the direction cosines of the unit vector L directed from the sensor 
to the satellite for time t, in minutes since epoch: 

Compute local sidereal time 0 at time t: 

Ö "X T7 + © ,  + 0.004,375,269,1 t   (Mod 2 n ) 
Ei       tO 

Compute sensor location vector, R: 

X - - L(I- e2 sin20)"^ + H J cos 0 cos 0 

Y - - L Ü- p2  sin20)"^ + H J cos 0 sin 0 

Z « - [ (l- € 
2) (1- e 

2 sin20)'^ + H J sin 0 

Compute the slant range,  p : 

Ü  * r_ 4- R, where £ is the satellite's computed position at time t. 

p  - (p   • P )* K c    ^c    — c 

Compute unit vector from the station to the satellite in the equatorial co- 
ordinate system: 

£ c 
L 
-c   P c 
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Compute range rate, p  , from 

P  " £ + E> where the components of R are given by 

f . 
X - -Y 9,   9 = 0.058,834,47 

R  /  Y - X 9 

Z - 0 

then  p  -L-p  - L  (x + X) + L  (y + Y) + L z, 

b.  Definition of Residuals 

If range is observed, the residual is 

Rl ■ P " Pc 

If azimuth, A, and elevation, h, are observed, the residuals are, 
respectively, 

R2  "   P c  I ■   (t - ic) 

where 

Ro   *   P      £ '   (L  -  L ) 

A-A,S + AUE + AUZ 
— xh — yh — zh — 

D*DUS + D,    E + DUZ 
— xh —        yh — zh — 

L^L.S + L.E + L.Z 
— xh — yh — zh — 
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The jS, E, Z unit vector system and the horizon oriented L, , A, , D, unit vector 
system are defined by: 

(   S  s sin i>  cos 0 
x 

S {  S  = sin ^ sin 9 

i S  ■ - cos ^ 
z 

(     L , « - cos A cos h 
xh 

M "yh 
sin A cos h 

L , ■ sin h 
zh 

(   E 

E (     E 

I * 

- sin 9 

cos 9 

0 

f  A , » sin A 
xh 

M A , = cos A 
yh 

A , * 0 
zh 

; Z ■ cos i  cos 9 
X 

Z <  Z  ■ cos <J sin 9 
*  y 

V Z ■ sin 4> 

f     D , ■ cos A sin h 
xh 

D, /  D , - - sin A sin h 
-h ^   yh 

D . » cos h 
zh 

If right ascension, a , and declination, 6 > are observed, the 
residuals are: 

R -  p  A • (L - L ) 
4    K c —   —  —c 

R  -  P  D • (L - L ) 

where 

L ■ cos 6 cos  a 
x 

L ■ cos 6 sin  a 
y 

\ L - sin 6 
z 
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( A ■ - sin  a 
x 

A < A ■ cos a 
y 

A » 0 
z 

f D ■ - sin 6 cos  a 
x 

) ■ - sin a sin  6 

D cos  6 

See Figure 1-2 for these vector relationships. 

If range rate, p , is observed, 

R»pAp«(p-p)  P 
DC C      C 

c.   Differential Correction 

The residuals in the observations are related to the changes in 
the elements through first-order scalar differential expressions of the form 

R. 
l 

n   /i 

An 

/ 

Aa Aa 
xn xn + /. Aa 

Aa 
yn yn. 

Ol o 

where the form of the coefficients, C , depend on the observation type, time 
of observation, and the observation weights.  These coefficients, which have 
been developed by means of first-order partials, are functions of the orbit 
elements and computed observations. 

The coefficients are computed by first establishing the R and U 
coefficients at time t. 
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C«l«iti«l Sphtr 
C«nt«r#d At 
Observer 

FIGURE 1-3.  VECTOR RELATIONSHIPS 
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R * (- ) e sin E 
u   r 

R = -7 r + (U - U ) R 
n   3 o  u 

xN 
a2 r I (7 ) ' axN - cos (E + a; )  J 

RyN = (7 > [ \N " Sin (E + w >  J 

u. = (r ) V 1 - e< 

u = (u - u ) u 
n        o  u 

UxN " r    {(1 + I ) Sin (E + » )  + 

a XT e sin E xN 
I e2 - (1 + /l- e ) e cos E 

(1 + Vl-e ) -2 Vl-e2 
yN 

1 + Vi-< 

UyN S:7 V (1 + a } COS (E + * } + 

a ., e sin E 
yN 

j e2 - (1+V 1-e2) e cos E 

(1 + V 1-e2)2 Vl-e2 

xN 

1 + Vl-e 

(1)  Coefficients for slant range observation 

When the slant range is observed, the residual and coefficients 
are given by the expressions: 

R - R. a 
1  P 

-1 
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C -    r L     •   U R    + L VU     I   o A n        [ —c      -    n      —c      -    n J 
-1 

CA -   f L     "   U R v + L     •  V U ..   1 A avN       L "c      "    xN      ~c      ~    xN   J 
a'1 

'xN P 

CA -   r L     'URMH     -VUla"1 

A a L -c      -    yN      -c      -    yN  J    p 

-1 
P 

A  TT       - |[ L •   U R    + L     •   V U    "I   a A U L —c       ~u       —c       —    u J     p 

Ä      - L *  V r  cos  i  -  L     *  W r  sin  i  cos  u 
A n L *"c                     -c                           J 

■ r L •  W r sin ul a 
A i L "c   -          J  p 

The expressions for C» . are presented in Appendix IV. 

i 

(2) Coefficients for azimuth and elevation observations 

When azimuth A is observed, then R • R  ( p  a A)   
anc* the 

~       z     c  A 
coefficients are obtained by replacing L by A and a      by p  a  A, where a . 

is the standard deviation in the azimuth measurement. 

For elevation observations, R - R» ( p  a . )  and the corre- 
3    en 

spending coefficients are obtained by replacing L with &\ a    is replaced by 

p  a  , j  where a , is the standard deviation in elevation angle. en n 

(3) Coefficients for range-rate observations 

For range rate observations, preliminary coefficients are com- 
puted from: 

R  -    (^4* (-)3  (e cos E - e2) u       x a   r7 
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R.     - ~ +   (U  - U  )  R 
*N        3 o'     u 

*xN "     {Jt)h   (7)3   [   8in   (E + W >   '  ÄxN e  Sin E  "  ayN     1 

yN 
<-j|-)*   (f)3  [   -  cos   (E + a) )   -  ayN  e  sin E + a^  ] 

U 
u 

(JL)*   (*)3      JiTj    e  sin 

u     -   ^ + (u - u ) U 
n 3 o       u 

U xN 
(j^ AS /7T7 :os   (E + uu )   -  a xN 

2 

ap 

0 _ -    <-*->*  (f)3 V 1 - e2 
yN a r 

lin  (E + u> )   -  a yN 
\ 

1 + *- ap 

/    J 

2\    -i 

The range rate coefficients are then computed as 

C.    -< L • U [ p_ (R  - vU ) - p  R "I + p  • U R 
A n   ] -c - L  c  n    n   K c n J   — c - n 

n 

+ L • V [p„ (U + - U ) - p   U  ] + p -VU 
-c - L ^c  n  r n   K c n J   -s-c — n 

CAQ   *<   L • U [ p  (R „ - V U M) - p  R ._ ]+ p • U 1 
Aa    |-c-LKc  xN     xN    *c xN    L.C    — 

-1 

*xN 

+ L     •  V[   pc   (UxN + fUxN-    Pc%]   +   £c^UxN      *P 
-1 
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Aa yN 
L   '  U [p     (R M  - V U 
—c    — u,"c   """yN yn ""c  "yN J       ~c    —    yN 

p     R      ]+    PUR 

+ L   •   V [ p      (UM+£UM)-     p     UMl+p      •   V U —c    —    Hc       nN       r    yN ^c    yN        — c    — yN yN 

- <    L   •   U CAn -<   L   •   U  Tp     (R     -  v U  )   -  p       R     1  + p     "   U R AU —c    —  -Kc       u u K  c     u  -'       — c    —    u 

>     <* 
-1 

AC: 

+ L   •   V  [p     (U    + - U  )   -     p     U     1  +     D   '   VU I —c    — UKc       u       r     u Kc     u  J -^c    —    u       r 

<   -     D    L   •  U r v cos   i + L   *  V  cos  i[o       r   -   p       r   "1 

-1 

+6  • V r cos i + L ' W sin i[p   (r v sin u - r cos u 
1. c  — — c  —     LKC 

+ p  r cos u ] - p  ' W r sin i cos u I a- -1 

■ < L * W [p       (r v cos u + r 
i    i —c - L  c 

sin u) -  p r sin u "| 
^c 

+ D  * W r sin u 
c — 

-L 
a • 

The coefficient C    is given in Appendix IV. 
AB 

(4)  Differential Correction Solution 

Let 

N 
E CiJ AJ 

RU 

represent all such equations of condition, where C  are the coefficients, 
R. . are the accepted observation residuals, A. areJthe corrections to the 
orbital elements, and N is the number of elements to be corrected and is the 
number of accepted observation residuals.  The resulting matrix equation is 
solved to give the correction, A .in a least square sense, to the orbital 
elements at time, t .  These corrections are applied as follows (primes 
denote corrected elements): 
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u' 
o 

u + 
o 

A U 

o 
B + A B 
o     o 

xNo    xN 
a „ + Aa 

xN 

yNo   yNo 
a „ -I- A a 

yN 

Q ' 
o - o    + A n o 

i' o »    i    -f  A i o 

L' 
o 

- U1  + 0 '   if W 
O                O                2 

L' 
o 

- U'   - Q '   if W 
o           o           z 

■ cos i £ 0 

Following the above calculation of the corrected elements, another 
representation of the observations is performed, on the basis of the corrected 
elements, and another set of residuals is formed by using the same input 
observations.  The weighted RMS values of sets of consecutive residuals are 
compared to define convergence of the computational process. 
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APPENDIX II 

JACCHIA-NICOLET 
DYNAMIC ATMOSPHERE MODEL 

The physical properties of the outer atmosphere are governed by 
two relations between pressure P,and density, p.  The first is the equation 
of hydrostatic equilibrium 

dP 
dh =  -gP 

where g is the acceleration of gravity at height h.  The second is the ideal 
gas law. 

MP = kpT 

Here k is the Boltzmann constant, but M, the mean molecular mass, and T, the 
temperature, are additional variables. Fortunately, the temperature is 
practically independent of h above a level called the thermopause.  The 
variations of mean molecular mass, however, must be assumed according to some 
theory.  This theory concerns itself with the dissociation of molecules and 
the diffusion of atmospheric constituents.  The resulting atmospheric model, 
obtained by integrating the above equations is a static atmosphere.  It 
depends also on the boundary conditions assumed at the lower boundary.  Upon 
this static model, variations due to solar activity can be effected. 
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By employing Nicolet's model for density variations with height 
and temperature, Jacchia^ has demonstrated excellent correlation between solar, 
geomagnetic and geographic phenomena and exospheric temperature, the latter 
derived from satellite accelerations using Nicolet's static model.  By reversing 
this procedure, temperature may be derived using Jacchia's formulas, and the 
density from Nicolet's model; this procedure has been implemented in the Spiral 
Decay Program to provide a flexible dynamic atmosphere model. 

II.1  RELATION OF SOLAR, GEOMAGNETIC AND GEOGRAPHIC PHENOMENA TO TEMPERATURE. 

Temperature is computed from Jacchia's expressions, beginning 
with the input quantities. 

F      10.7 cm flux 

F n    F_n averaged over three solar rotations 

A      Geomagnetic index 
P 

The following are provided by the program: 

D      Day number 

00» *0 Position of the sun (right ascension and declination) 

0      Sidereal time at vehicle 

0      Geocentric latitude of vehicle 

h      Height above sea level 

Nicolet, M., "Density of the Heterosphere related to Temperature" SAO Special 
Report 75, 19 September 1961.  (SAO has furnished an improved tabulation of 
this model.) 

^■Jacchia, L. G., "The Temperature above the Thermopause" SAO Special Report 150, 
22 April 1964. 
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Temperature is computed as follows: 

Compute the average night time minimum temperature ( K) 

T    =  974° + 4.°2   (F1A -  150) + 0.°004   <?in -  150)2 

o 10 1U 

Compute the night time minimum for the day 

T; = TO + I.°9 (F10-?10) 

Add the semiannual term 

T    = T?   + 
o o 

[o.°39 + 0.°15  sin2TT    j^]] 

x F-n  sin 4^ D-60 
365) 

Correct for latitude and elongation from sun (see figure II-l) 

Define:     2 T) = (0' - fig) 

2 s = (0' + y 
the maximum daytime temperature at latitude 0 is 

T_ = T  (1 4- R cos1" 71) u o 

and the minimum nighttime temperature at latitude 0 is 

T = T  (1 + R sinm?) 
IN   O 

where T  is the global minimum in the exosphere. 

Empirical values for R and m, derived by Jacchia and Slowey, are 0.3 
and 2.5 respectively. 

Hö = $ - afl (radians) 

T = HQ - £ + 0.21 sin (H0 + ^)     - TT < T < + TT 

2.5^ | ,      2.5-1      2.5^    2.5 T 
T1 - T = 0.3 T <J sin *'"? | 1 - cos l'5 T + cos *'*T\  cos *#* i 

°l L 2j 
Finally the geomagnetic effect is added 

T = T1 + l.°2 A 
P 
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Cone Containing Vehicle Radius Vector 

Equator 

Subsolar 
Bulge 

FIGURE II-1. RELATION OF VEHICLE LATITUDE TO SUBSOLAR BULGE 
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II.2  APPLICATION OF NICOLET'S STEADY-STATE MODEL 

Given the altitude and temperature, density is determined by inter- 
polation in Nicolet's steady-state model.  This model, tabulated for 10 km 
altitude and 50° temperature increments, involves almost 3000 storage locations. 
In order to reduce this number to a reasonable value, series representations 
were evaluated.  In particular, for each altitude, a third order polynomial 
provides a satisfactory representation for the variations of log density with 
temperature, i.e. 

T-1100  , R  T-1100 + C 
T-1100 

400 log p (h,T)- log p (hf 11.00) - A j  400 400 

i.      J 
The four values needed to determine log density from temperature — log p (h,1100), 

A, B, C -- for each altitude increment are compacted, two words to 
each cell, into the 48 bit word structure of the Philco 2000, requiring less 
than 300 core locations.  Below 120 km, the limit of the Nicolet II tables, 
values of log p derived from the C0ESA 1962 model are used; the densities at 
100 and 110 km have been adjusted slightly to assure a smooth transition. At 120 km, 
the SAO density has also been decreased slightly.  This is in the direction 
indicated by Slowey's reduction of Explorer 17 data.3 

Given the temperature, four values of density are derived for two 
altitude increments above and below the actual satellite altitude. Density 
and scale-height for the satellite altitude are derived from these points. 

This model follows Nicolet's selection of molecular temperature as 
the essential parameter.  Any refinements in the relationship between this 
temperature and geophysical parameters can easily be incorporated into the 
model in the future.  For instance, the indication^ that the geomagnetic index, 
K , is better correlated with atmospheric fluctuations than is A may result in 
apdifferent "geomagnetic effect" formula. 

II.3   INTERPOLATION FORMULAS 

Given the temperature, four consecutive values of log p are derived, 
two for altitudes higher than the satellite altitude h, and two below.  (Near 
the ends of the table, more values will be used on one side than the other). 
These altitudes are designated by the subscripts -1,  0> ls and 2.  Then, 
defining s = 0.1 (h-hQ ) for 10 km tabular intervals in altitude, 

^Slowey, J. "Atmospheric Densities and Temperatures from the Drag Analysis of 
the Explorer 17 Satellite" SAO Special Report 157, 1 July 1964. 
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log p (h,T) = -MB-IMB-2) lQg p (h^? T) 

+ (s+lHs-l)(s-2)  lQg p (hQj T) 

- <»"><■> <"2>    log 0 (hl, T) 

^-^KsK-ii     logp T) 

The density scale height, H , is given in km. by 
P 

H '"    A u p      Ah 

= . lo8p10 

10 
. 3s -  6s + 2 

6 

+ 3s2 - 4s -   1 
2 

-3s2 -  2s -  2 
2 

3s2 -   1 

log p (h_ll T) 

log p (h0, T) 

log p Qiv  T) 

f-±    log p (h2, T) I 

II.4  DENSITY ABOVE 1000 km 

Above 1000 km, the density is extrapolated from tabular values at 
1000 km by assuming an isothermal atmosphere with constant scale height as de- 
termined at 1000 km, i.e. 

log p (h, T) = log p (1000, T) - H(IOOQ^T)   log e 

Thus, the normal interpolation procedure is used to derive H (1000, T) from four 
values of log p (h, T) for h = 970, 980, 990, and 1000 km. 
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Since 8=2, 

Io* 10 e 

H(1000,T) 
= 

2 
z 
i— 1 

ai 
log p (hi 

, T) 

where 
h-l 

= 970 km 3-l ■ + 1/30 

ho = 980 ao = - 3/20 

hl 
= 990 al 

= + 3/10 

h2 
= 1000 a2 = - 11/60 

Thus, above 1000 km 
2 

log p (h, T) = log p (1000, T) - (h - 1000)  £  a  log p (h , T) 
i—1 
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APPENDIX III 

SCAIAR DIFFERENTIAL EXPRESSIONS FOR 

ORBIT PARAMETERS 

An orbit determination is a procedure for translating observations 
into a theory of the orbit suitable for producing a prediction or ephemeris. 
The orbit determination method employed herein is based upon differential 
correction preceded by a "representation" or calculation of the observations 
from a preliminary or approximate theory.  The representation is accomplished 
by special perturbations or numerical integration of selected equations that 
define the motion or departures from an initial reference orbit.  In the 
interests of computational efficiency, two departures from the engineering 
practice of differential orbit correction have been made: 

(1) The linear differential correction formulae are 
obtained analytically by differentiating relation- 
ships between the observations and the orbit, and 

(2) The representation of the observations from a pre- 
liminary orbit, required for the computation of 
observation residuals, is carried out by the 
variation-of-parameters method, thus avoiding the 
time-consuming aspects of the numerical integration 
of the total acceleration into an orbit. 
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The resulting method has demonstrated outstanding computational 
efficiency, as evidenced in the experimentation described in a subsequent 
volume,   and ability to cope with a wide variety of observation patterns. 

This section deals with the choice of parameters utilized in 
the orbit theory and presents a derivation of the linear correction form- 
ulae for translating topocentric observation residuals into corrections 
of the orbit parameters utilized in the representation of the observa- 
tions. 

III. 1 SELECTION OF ORBIT PARAMETERS 

The degree of success of a differential correction depends 
largely upon the perspicacity of the choice of the parameters that rep- 
resent the orbit in the correction process.  Any choice of parameters 
which leads to nearly linear relationships between cause (errors in the 
parameters) and effect (topocentric observation residuals) over the 
expected range of the values of the parameters forms the basis for an 
adequate orbit theory.  Additional considerations of computational 
simplicity and compatibility with other aspects of the representation 
or correction procedures serve further to restrict appropriate choices 
of the parameters.  A conventional choice, including eccentricity, e, 
and argument of perigee, 00f is unsatisfactory because of the inevitable 
tendency toward lower eccentricities of geocentric satellites interacting 
with the upper atmosphere.  As the eccentricity approaches zero, prior to 
decay, the argument of perigee becomes more poorly defined and loses its 
value as a reference direction from which the position (anomaly) of the 
object is measured.  Alternatively, a choice of parameters involving 
nodal longitude, Q  , and inclination, i, leads to a singularity as i 
approaches zero, forQ   becomes poorly defined.  The latter consideration 
is not important in the present application but must be considered prior 
to the appearance of equatorial satellites. 

The choice of parameters utilized in the development of this 
theory involves quantities identified with a coordinate system based 
upon orthogonal unit vectors, N, M, W (Figure III-l)directed respectively 
to the ascending node, the northern antinode, and normal to the orbit plane. 

The six parameters selected are the following: 

L    mean longitude of the satellite measured in 
o 

a „ = e cos GO 
xN 

a „ * e sin O) 
yN 

two planes from the vernal equinox (i.e. 
a + oj + M > 
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NORTH 
CELESTIAL POLE 

FIG. Ill-1.PROJECTION OF ORBIT ON CELESTIAL SPHERE, WITH 

ORIENTATION UNIT VECTORS AND ANGLES DISPLAYED 
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a     semi-major axis of the osculating orbit 

Q longitude of the ascending node 

i     inclination of the orbit from the equator plane. 

The choice of the M, N and W coordinate system and of Q  and i as parameters 
are subject to revision when equatorial orbits are considered.  These param- 
eters are wholly adequate, however, for the satellites which are the subjects 
of the present study. 

Another argument governing the choice of orbit parameters is 
the compatibility with the ephemeris integration program.  In the variation 
of parameters procedure  employed in this study, the derivatives of LQ, a 
and the angular momentum h -Jp  W. are determined from the perturbative 
(non two-body) force field; their integrals then do not involve the domi- 
nant central-mass gravitational term and an extremely efficient ephemeris 
program results.  The duplication of parameters between the correction 
formulae and the ephemeris integration formulae leads to minimum of trans- 
lation steps between the two. 

III.2. THE DIFFERENTIAL RELATIONSHIPS 

This presentation is logically divided into three parts.  The 
first is a derivation of the differential expressions relating position 
and orbit parameters in the orbit plane and involves the properties of 
a two-body orbit.  The second extends the differentiation to the orienta- 
tion of the orbit plane (specified by Q  and i in this formulation).  The 
third step brings in the observer and leads to the final differential 
correction formulae employed in this study. 

a. Differential Expressions for Position Components in the Orbit Plane 

This section is concerned with the derivation of the differential 
relationships between the adopted parameters and the position components in 
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the orbit plane.  These derivations are conveniently separable from the 
broader problem in that these quantities depend only on four of the six 
parameters, i.e. , a, UQ = MQ + CD = L0 - Q, aXfj = e cos CD, avN ■ e sin ^ , 
and the analysis involves only scalar two-body formulae.  The remaining 
differential relationships are derived in section HI,2b from the expres- 
sions for the vectors defining the orientation of the orbit plane. 

The whole of the analysis will employ the N, M and W unit 
vectors to specify the orientation of the orbit plane and the reference 
directions in this plane.  The N and M vectors lie in the orbit plane 
with N directed to the node as shown in Figure III-l.The sense of W is 
determined by that of the angular momentum, northerly for direct (east- 
ward) motion.  Position in this plane is denoted by the components x^ 
and y.jq defined by: 

x„ - r cos u = N* r 
N   

y  ■ r sin u = M-r_ (2) 

where u, the "argument of the latitude," is given by 

U = V + CD (3) 

These angles and other quantities used in this section are defined in 
Figure III-1.0ther two-body expressions used in this development include: 

n = k ' M \i   a (4) 

U = U  -I- n (t - t ) 
o     v    o 

E - e sin E = M = U -  CD 

r = a (1 — e cos E) 

r cos v = a (cos E — e) 

r,—2 . 
r sin v = a »1 — e  si in E 

(5) 

(6) 

(7) 

(8) 

(9) 
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Reference to the glossary will clarify the meanings of these quantities. 

The differential expressions for x^  and y^ are obtained by 
differentiating (1) and (2). 

Ax = Ar cos u — rA u sin u (10) 

Ay = Ar sin u + rA u cos u (11) 

The determination of A r follows from (7). The determination of rAu 
is made in terms of its components rAv and rAü), the first of these 
from the derivatives of (8) and (9) and the latter from the derivatives 
of the parameters e cos a) and e sin OD.  These parameters will be denoted 
axN anc* avN> respectively, in subsequent developments.  They are the 
components, referred to axes determined by N and M, of a vector a_ directed 
to perigee with magnitude e. 

The procedure outlined above is relatively straightforward and 
will be summpjized in this section.  Starting with the parameters a^ 
and a 

yN 

Aa __ ■ A(e cos (JD) = A e cos CD - e Ao) sin O) 
xN 

Aa M = A(e sin GO) = Ae sin OD + e Ao) cos a: 
yN 

Expressions for Ae and eAüü follow directly: 

Ae = Aa WT cos ü) + Aa„ sin O) (12) 
xN yN 

e ACJD = -Aa M sin a) + A a „ cos oo (13) 
xN yN v  7 

Next, the differential of (7) yields Ar: 

rA a 
Ar =   -h aeAE sin E - aAe cos E (14) 

The term AE follows from (4), (5), and (6), for 

* Appendix VII 
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An 
n 

3    A_a 
2      a 

AU =  AUo + (t - to) An =   AUo - \ (U - UQ)  ^i 

and   finally 

AE « -    AU    - -  Ao) r o       r -i(U-U)- — + -sinEAe 2 o7   r    a r 

Substitution  for   AE   in   (14)   leads  to 

3 2 2 
Ar = -^[r--(U-Uo)~esinE]   +   AUQ   [yesinE] 

9 
+ ACJD [- — e sin E 1 + Ae [ - a cos E + — e sin E ] L  r L r 

Further substitution for ACJD and Ae from (12) and (13) leads to the 
form 

Ar = R AU + R — + R KT Aa XT + R M Aa M u   o    a  a     xN   xN   yN   yN (15) 

The R's are the partial derivatives of r with respect to the indicated 
parameters and are tabulated below: 

R = — e sin E 
u   r 

R =r--(U-U)R a      2      o'     u 

R M = — [ a  -  cos (E + 0) ) ] 
xN   r  L xN J 

R M = — [ a M - sin (E + 0) ) ] yN   r  L yN 7 
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Alternative expressions may be derived for use in special circumstances, 
but the present form is well suited to the low-eccentricity orbits of 
the present analysis. 

For the partial derivatives entering into rAu, the differen- 
tials of rAv are obtained from equations (8) and (9) as follows: 

Ar cos v — rAv  sin v *   Aa   (cos E — e)   -  aAe — a  sin EAE 

and 
i                  A                         A     l/T"   """2*    .     _       a e  sin E    A Ar  sin v + rAv cos v *   Aa VI — e     sin E    Ae 

yfTTr e 

+ a   yl - e     cos EAE 

from which 

»/i 2    A _       a  sin E      A rAv = aV   1 -e     AE+       A e 

N/TT e 

Following  the  substitution pattern established above  for   A e and    AE 
leads   to 

Aa 
rAv  = V     AU    +V      + VM   Aa       + V M   Aa M (16) 

u o a    a xN xN yN yN 

where the coefficients or partial derivatives are 

v msL sfTT? 
u   r  T 

V = - | (u ~ u ) v a     2      o'     u 
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V 
xN — [ /l - eZ  sin E cos CD (1 + -) + *     /TT Jin 0) ] 

yN 
a    /     2 r 

= — [y 1 -e   sin E sin (i) (1 + -) - 
r  L p 

..    s/TTJ cos 00] 

The instability of these derivatives for low-eccentricity is a reflection 
of the indeterminate nature of perigee in a nearly circular orbit. 

The rAo) component of rAu follows directly from  (13). In 
combination with (16) there results 

rAu =  rAv + r Ad) 

U      AU    + U    — + U KT  A a       + U „   Aa 
u o a     a xN xN yN yN («> 

with   the   coefficients 

a2    / 2 
U     . V     = — \/l-eZ 

u u        r 

U     - V     = 
a a - 2  (D " Uo)  Uu 

Ü „ ■ —    f    (1  + -)   sin   (E  +CD)   + a XT e  sin 
xN        r      L    v a7 v        w/ xN 

2 /~~ 2 
e    — (1+yl— e)e  cos E 

>/l  - e2   (1  +   \/l - e2) 

x» 

1  + /l-e2 
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j -d  [ - (1 + £) cos (E + o>) + .  e .in E •* ~ V *   ^ ~ «'? t  c°' ' 

\/l -e' (1 + Vl -O* 

♦ ^ ] 

♦ JT7 

In Che above expressions, special care has been taken in the 
arrangement of terms so that no computational problems arise as the eccen- 
tricity approaches zero.  These expressions for Ar and r A u will be 
combined in the following section with the differential expressions in- 
volving orbit plane orientation. 

b.  Differential Expression Extended to the Orientation of the Orbit Plane 

The orbit plane orientation enters into the analysis through the 
expression for the observation vector o  , shown in Figure III-2 and defined 
by 

£«r+R«rU+R 

where R is the "station" vector from observer to geocentric.  Differen- 
tiating leads to 

A£ « ArU + r AU + AR .(18) 

For the present analysis, AR is assumed zero, and no attempt to correct 
station location will be made.  The expression for Ar is given in Eq. 
(15); the expression for Au remains to be determined. 

The changes in U can be attributed to two sources; the change 
in orientation of the orbit plane and the change in position of the 
object within this plane.  These can be determined from the identity 

U ■ N cos u + M sin u 

AU =  A N  cos  u + A M sin u +   Au   (M cos  u - N  sin u) (19) 
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FIG. III-2. OBSERVATIONAL FRAMEWORK 
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The quantities of A N and AM can be related to the parameters Aft and Ai 
through the following line of reasoning.  Starting with the definition of 
the orientation parameters in terms of W 

W:  - 

W - sin ft sin i 
x 

W = — cos ft sin i 
y 

W ■ cos i 
z 

(20) 

Differentiation leads to 

AW     =  cos   ft   sin  i  Aft   + sin  ft    cos   i   A i x 

AW    =  sin   ft    sin  i  Aft   — cos  ft    cos   i   A i 
y 

AW    = - sin  i   A i 
z 

The coefficients of Aft and of Ai can be expressed in terms of M and 
N from their components. 

N:  - 

M:  - 

N = 
X 

cos ft 

N = 
y 

sin ft 

N  = 
z 

Ü 

M = 
X 

— sin ft cos i 

M = 
y 

cos ft cos i 

M = 
z 

sin i 

(21) 

(22) 
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Thus 

AW » N Aft sin i - M Ai 

Similarly, by differentiating (21) and (22)  expressions for A N and AM 
follow. 

AN = M AH cos i - W Au  sin i (23) 

AM = - N AH  cos i + W Ai (24) 

By combining  (18), (19), (23) and (24),the expression for A£ assumes 
the form: 

A£ = ArU + rAu (M cos u - N sin u) 

+ rAft [  cos i (M cos u - N sin u) - W sin i cos u) ] 

+ rA i (W sin u) (25) 

or, expressed in terms of the U, V, W unit vectors 

A£ = ArJJ + (rA u + r AH   cos i) V 

+ (rAi sin u - r Afi  sin i cos u) W (26) 

The six orbit parameters enter this differential expression explicitly 
as A i and Aft , and implicitly through Ar and rA u as given by (15) 
and (17).  Then combination leads to: 
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Aa 
Ap       -    AU     (U R    + V U )  + « (U R    + V U ) £. o  v—   u      —   u7        a    x—   a      -   & 

+   Aau(URH+VUj+Ai       (URiU+VU1I)  + 
xN xN      ""    xN v** v"      "~    v" yN  **    yH V*' 

+ Aft   (Vr cos i-Wr iini cos u) 

+ A i  (W r sin u) (27) 

where the partial derivatives denoted by Ry, Uu, etc., have been pre- 
viously defined. 

c. Extension to Topocentric Observation Residuals 

The final step in the derivation of the differential relation- 
ships involves the translation of A_£, as expressed in (27),into differ- 
ential expressions expressed in the topocentric observer's geometry. 
Appropriate observed quantities include pairs of angles, such as topo- 
centric right ascension and declination or altitude and azimuth, and 
range.  These observation residuals may be recognized in the AjD expres- 
sion by writing 

A£  = A(pL) s Ap L+pAL (28) 

and the definition of L in terms of topocentric right ascension and 
declination: 

L:  J 

L « cos 6 cos a 
X 

L * cos ö sin a 
y 

L - sin ö 
z 

(29) 
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The differential AL is expressed by 

AL:     H 

AL    = — cos   3   sin a  Aa — sin 5   cos a    AÖ x 

AL    = cos 6   cos a Aa — sin ö   sin a   AÖ 
y 

AL    =  cos 6 A5 z 

By defining two additional orthogonal vectors, A and D, both mutually 
perpendicular to L and with A lying parallel to the equatorial plane 

A: J 

A = — sin a 
x 

A = cos a 
y 

A = 0 z 

(30) 

D: H 

D = — sin 6 cos a 
x 

D  = — sin ö sin a 
y 

D = cos 6 z 

(31) 

the AL can be expressed as 

A L = A cos 6 Aa + D A6 

or 

A£  = L Ap + A p cos 6 Aa  + D pAö (32) 

Thus the successive dot products of Ap with the vector triad L, A and 
D leads to scalar differential expressions for Ap , p cos 6 Aa and pA<5 
respectively.  In practice, the vectors L, A and D may be defined either 
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by the observation or by the representation; with incomplete observations, 
i.e., only one or two of the coordinates such as obtained by range-only 
or angle-only instruments, the L, A, D triad must be obtained from the 
representation. 

Differential expressions involving altitude and azimuth obser- 
vations njay be ^similarly obtained by defining the horizon system vector 
triad L, A and D, whose horizon components are 

L:  -J 

L , = — cos A cos h 
xh 

L , ■ + sin A cos h 
yh 

L . = + sin h 
zh 

(33) 

j A ,    = + sin A 
xh 

<v 

A: A ,   = + cos A 
yh 

A      - 0 zh 

(34) 

D:  H 

D , - + cos A sin h 

D , - - sin A sin h 
yh 

Dzh - + cos h 

(35) 

whsrt A is ths azimuth angle measured east from north, and h tha altituda 
angla measured from tha local horizon. 

Thess horizon componants must ba rotatad into tha aquator sys- 
tam, to which tha componants of A£ ara referred, by 

Lx " Lxh 8x + Lyh 'x + L«h Zx 

S " Lxh 8y + Lyh «y + L,h Zy 

L - L . 8 +L.E +L.Z z   xh z   yh z   zh z 

k—>  Ä. £ 
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where 

£:  < 

S - sin 0 cos 9 
x 

S - sin 0 sin 6 
y 

E:  < 

s   - 
z 

— cos 0 

E     = 
X 

— sin e 

E     = 
y 

+ cos e 

E   - 
z 

Ü 

Z     - 
X 

cos 0 cos 8 

*:   < Z = cos 0 sin 6 
y    ^ 

Z = sin 0 z     ^ 

and where 0  is the astronomical latitude and 9 is the local sidereal 
t ime. 

Then 

AL = A cos h A A + D Ah 

and 

A£ * L Ap + A p cos h A A + D Ah (36) 

Thus scalar differential expressions relating the orbit parameters to 
topocentric altazimuth observation residuals are readily obtajiied by 
successive dot products of A£ , given by (27), with L, A and D again 
determined either from observation or representation. 
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APPENDIX IV 

SCALAR DIFFERENTIAL EXPRESSIONS FOR DRAG 

The development of the secular drag perturbations for a satellite 
moving about a spherical earth has received considerable attention in the 
literature 1>2,3  jn or(jer to adapt these theories to a differential- 
correction procedure for earth satellites executing grazing entry, where 
drag represents the primary perturbative influence, this theory has been 
extended to include, in the determination of density variations along the 
path, the altitude variations arising from motion over an oblate earth. 
This altitude variation is significant for highly inclined satellites, 
amounting to 21 km. at the poles. 

IV. 1 DETERMINATION OF DENSITY VARIATIONS ALONG PATH 

Altitude variations over the earth's surface arise from two factors, 
as illustrated in Fig.IV-1. The variation due to eccentricity is 

r - q ■ ae (1 - cos E) 

from the perigee distance q.  A second altitude variation is that due to 
oblateness, where the earth radius varies over the earth as 

R = a      [l-fU2+ff2 (U4-  U2)    ]   ,   U    =  sin  i  sin   (v -k OJ) e z z       z z 

where f is the flattening coefficient ( s 1/298.3).  Combining these effects, 
the altitude variation along the path from that determined at the two-body 
perigee point is given, to first order in flattening, by 

ae (1 - cos E) + f (U2 -  P2 ) a 
z    e   e 
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Two - Body 
Perigee 

FIGURE IV-1.  HEIGHT ABOVE OBLATE EARTH 
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where p  is determined at the two-body perigee point.  This expression may 
be expressed in terms of the single variable E by the substitution 

v ■ E + e sin E + ... 

For a first order theory in flattening and eccentricity, this sequence is 
terminated at v - E, and 

U - sin i sin (v + w) - sin i sin (E + uu) 
z 

Further manipulation leads to an altitude variation along the path given by 

ae (1 - cos E) +  **"  a [ cos 2u> - cos 2 (E + UJ) ] 
i e 

The density variations along the path, assuming an isothermal (exponential) 
atmosphere in the vicinity of perigee altitude is then given by 

p -  p^ exp -k [  ae  (1  - cos E) + f 8*n 1 aß  (cos  2u> - cos 2E cos 2uu 

+ sin 2E sin 2<i> )   ] >      (1) 

where p is the perigee density, determined from an appropriate density model, 
and k~l is the scale height, similarly determined. 

IV.2 SECULAR VARIATION IN SEMI-MAJOR AXIS 

Differentiation of the vis-viva (energy) integral leads to the 
expression for variations in semi-major axis, as follows: 

2 
H 2 m  I 

r  a J a 
1 + e cos E 
1 - e cos E 

2a' 
and 2f • f - 2ss - -, av, or ax - —- ss 

where f is the velocity vector and f is the perturbative acceleration. 
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For drag, the acceleration component s* along the path is given by 

1 + e cos E 
-\*9i2 1      * 

- 7 Bp- 
2   a 1 - e cos E 

Following the procedure outlined in ref. (1), the variation in semi-major axis, 
with eccentric anomaly, is derived: 

da 
dE 

r/i 
7T - Bp a 1 + e cos E 

6 
1 - e cos E 

3/2 (2) 

(1 - e cos E) 

as given in ref. (1).  Three variable expressions are involved, and the following 
comments are germane: 

© 
© 

The variations in density, due to orbital eccentricity and/or 
oblateness, are very large.  Eccentricity effects can represent 
many scale heights even for relatively low (~0.01) eccentricities, 
and oblateness can lead to density variations of the order of one 
scale height for highly inclined orbits. 

This second term arises from variations in satellite velocity, and 
is very small (~ 3e) for low eccentricity orbits. 

This third term arises from radial distance variations.  In addition 
to the small variation (~ e) for orbits of interest, this term 
partially offsets the second term above. 

Thus, the significant variations in semi-major axis arise from the variations 
in density encountered along the path.  In the following analysis, the 
secular variation in semi-major axis shall be determined, and subsequently 
used to define the scalar differential expression for the differential correction 
of drag. 

The introduction of the density variations along the path, eqn. (1), 
into  (2)  leads to 

g - - BP„ a2 exp (-kae) exp (kae cos E) • (1 + 2e cos E +..) 

exp r  .r  8in2i -kfae -— (cos 2u) -cos 2u> cos 2E + sin 2u> sin 2E) 
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The last exponential term is expanded in a Taylor series involving terms of the 
form: 

n  p 

-,   (1 - cos 2E) + sin 2E tan 2u) 
n. 

2 
n       kfsin i       „ 

, a ■ -  a  cos 2u) 

with the observations: 

(1) Despite the factor f in a, a is not a small number, but rather 
approaches unity at altitudes representative of terminal decay. 
This arises from the factor k, the reciprocal scale height, and 
requires that sufficient terms be carried to permit the factorial 
term to define convergence. 

(2) In the binomial expansion of the bracketed quantity, and the sub- 
sequent integration on a per-revolution basis to define the secular 
variations in the parameters, all odd functions of E (and ou) vanish. 

The expansion of the bracketed quantity leads to even functions of E of the form: 

cosrE (1 - cos 2E)8 

Their subsequent integration, on a per-revolution basis, defines a sequence of 
integrals of the form: 

-i- f 
2TT J 

2TT 

exp (z cos E) F(cos E, 1 - cos 2E) dE 

where z ■ kae 

These integrals define Bessel functions of imaginary argument; Table IV-lpro- 
vides a table of these integrals and the generating series for the B (z) terms, 
for small argument (z £ 2).  For large argument, asymptotic series for related 
functions are available. 

By performing these operations, the sequence of terms for the 
secular variation in semi-major axis is derived, as given in Table IV-2 Terms 
of order e have not been included, for the reasons given earlier. 
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TABLE IV-1 

BESSEL FUNCTIONS OF IMAGINARY ARGUMENT 

Integrals of the Form 
2TT 

— J  exp(z cos E) F( cos E, 1-cos 2E) dE 

Kernel,F 

1 

(1-COS-2E) 

(1-COS-2E)2 

(1-cos 2E)3 

(1-cos 2E)4 

(1-cos 2E)5 

2 cos E 

2cosE (1-cos 2E) 

2cosE (1-cos 2E)2 

2cosE (1-cos 2E)3 

2cosE (1-cos 2E)4 

cos E 

co82E(l-cos 2E) 

cos2E(l-cos 2E)2 

co82E(l-cos 2E)3 

cos2E(l-cos 2E)4 

Integral 

Bo(z) 

3-B2(z) 

3-5-B3(z) 

3.5-7.B4(z) 

3-5.7.9-B5(z) 

z B^z) 

z B2(z) 

3z B3(z) 

3-5-z B4(z) 

3.5.7.Z B5(z) 

BQ(z)   -  \ Bx(z) 

Bx(z)   - \    [3-B2(z)] 

3-B2(z) - h    C3-5-B3(z)] 

3-5'B3(z) - \    [3-5.7-B4(z)] 

3-5-7 B4(z) - h   C3-5-7-9 B5(z)] 

For small argument (z £ 2): 

Bn(z) 

r-0 

(z/2) 
2r 

rl (n+r)! 
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TABLE IV-2 

EXPRESSION FOR SECULAR VARIATION IN SEMI-MAJOR AXIS 

6a        _ 2 ,    v j^ * -Bpn na    exp(-z) 
2 3 4 

Bo + aBi + IT (3'V + 3T (3'5'V ♦ AT <3*5*7'V + ■••] 
+ (a tan 2u>)' (B^ 3-B2)  +a(3-B2-% 3-5'B3) + fy  (3'5'B^ 3'5'7-B^     +   .. 

-I- -|  (a tan 2üü)4 (3-B2-3-5'B3 + | 3*5-7-B4) + a(3'5'B3-3-5-7'B4 + | 3-5'7'9'B^  + •■] 

00 
o 

TABLE   IV-3 

EXPRESSION FOR SECULAR VARIATION IN ECCENTRICITY 

1 6e 
e 6t 
1 oe        „ /    \ a 
I 77 Ä "Bprr Pn exP(-z)fi 2*r Bl + 0i2+^3-B3+fr3-5-B4+fr3-3-7-B5+   ...1   + 

+  (a tan 2u>V 
a 

(B2-%.3-B3)  + a(3-B3-^-3-5-B4)  + yr  (3.5-B4-%-3•5-7^)  +   ...    + -] 
+ -|  (a  tan 2uu)4 (3-B3-  3-5-B4 + i 3'5-7-B5) + a(3« 5^-3 «5 • 7 ^ + ^3'5-7'9-B^  + ••] 



IV.3 SECULAR VARIATION IN ECCENTRICITY 

A similar procedure leads to the secular variation in eccentricity, 
given in Table IV.3, preceding page. 

The apparent tangent terms in Tables IV.2 and IV.3 present no 
difficulty, since they are associated with factors of a to give: 

<* i J:  sin i   .  0 a tan 2uu ■ - kf —-— sin 2uu 

IV.4 SCALAR DIFFERENTIAL EXPRESSIONS 

Secular variations in semi-major axis and eccentricity have been pre- 
sented above; additional secular variations in inclination perigee and node 
arise from atmospheric rotation, but are of minor importance in differtntial 
correction.  In addition, the computational investment required to include 
short-period terms is unwarranted for the range of eccentricities considered 
here. 

Orbit parameters included in the differential correction include 
mean motion n, a N ■ e cos u) and a  - e sin uu.  The differential correction 
for drag is incorporated by expanding the scalar differential expressions 
(given in Appendix I for the two-body parameters) to include terms in AB, 

B 
as follows, where Af represents an observation residual. 

' An 
Af 

'An 
n 

_2 -2 . JL . £a        AB \ 
nQ   2  a  6t 

U V   B j 

+ C Aa 
XN 

Aa M + axN I iS • (t-t ) Ä 
xN       e 6t      o'   B 

+ C Aa 
yN 

Aa 
yN 

a XT 1 6e .   v AB 
+  yN-— (t-t ) T 

e6t    °  B 

-h CAn AO + CA. Ai + CATT AU 
Aki      Ai      AU   o 

o 

See Reference (1) for partial derivation, 
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The expressions for — and ~r-  are given in Tables IV.2 and IV.3. The apparent 
6t    °t 

indeterminacy of the C.   and C.   coefficients for circular orbits is more 
xN       yN 

6e 
apparent than real, for the — expression contains a factor z = kae.  In 

practice, the e term in z is associated with the cos uu and sin uu terms to avoid 
division by e. 
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APPENDIX V 

SCALAR DIFFERENTIAL EXPRESSIONS FOR 

SENSOR CALIBRATION 

This appendix develops the 4x7 matrix of coefficients relating 
residuals in the four observation components - range, range-rate, azimuth and 
elevation - to corrections to sensor coordinates, latitude, longitude, and 
height above the reference ellipsoid, and to biases in range, azimuth, eleva- 
tion and station time. Although the determination of bias in range-rate is a 
trival extension of this theory, the existence of a scale factor error is more 
probable, and is revealed in a characteristic range-rate residual pattern. 

V.l  SCALAR DIFFERENTIAL EXPRESSIONS FOR SENSOR LOCATION* 

The problem presented is that of correcting a geodetic position by 
using observations of a satellite for which a definitive orbit has been deter- 
mined.  To elaborate, assume that an observation network has been established. 
The stations comprising this network are assumed to be tied together exceedingly 
well; that is, their geodetic positions are assumed to be accurately known. 
Further, it is assumed that observations from the stations of this network have 
resulted in the determination of a definitive orbit for the satellite.  Observa- 
tions of this satellite are also made from an isolated observing site, of which 
the approximate location is known. Corrections to the site's assumed position 

* Koskela, P., Nicola, L., and Walters, L. G., "Station Coordinates from 
Satellite Observations," ARS Journal, Vol. 32, p. 253, February 1962. 
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must now be obtained by using the satellite observations. The position obtained 
in this way is referred directly to the reference spheroid and therefore has the 
advantage of being independent of local gravitational anomalies. 

The problem may be visualized with the aid of Figure V-l. As the 
satellite describes its orbit about Earth, its position with respect to the 
dynamical center is defined by the known vector r, tabulated as a function of 
time.  The observer's position is given by R, a vector conveniently represented 
by the components xc and y in the meridian plane and by the local sidereal time 
or hour angle of the vernal equinox 0.  For a fixed observation point on Earth, 
only the sidereal time varies as Earth rotates. 

The observations are components of the vector £, either its magnitude, 
slant range p, or direction cosines L, expressed in terms of the topocentric 
angles right ascension and declination or elevation angle and azimuth. 

The station vector R can be written as 

-x cos 0 I - x sin 9 J - J - y K (1) 

where I, J, and K are unit vectors directed along the x, y, and z axes respectively. 

9 ■ 6GR + \ 

where ^_ is the longitude of the observer measured positively to the east, and 
9 R is the Greenwich sidereal time.  9^ may be calculated from 

GR 

GR 

9no + 0.004,375,26905 (t-t ) 
GRn o 

where 9__  is the Greenwich sidereal time in radians at some arbitrary epoch, 
GRp 

and (t-tcJ is the mean solar time interval, in minutes, since that epoch.  The 
observer'8 coordinates in the meridian plane are 

x    -  (C + H)   cos 4> c 
yc -  (S + H)   sin <|> 

where      (See Section V.3) 

(1 -  e2 sin2 4 ) < 

(1 -  e2) C 
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FIGURE V-l.  POSITION RELATIONSHIP OF OBSERVER, SATELLITE AND DYNAMICAL CENTER 
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H is the height above the reference ellipsoid in Earth equatorial radii, and 

2        2 
e    - 2f - f 

where f is the flattening or oblateness, e the eccentricity of the adopted 
reference ellipsoid, <p the geodetic latitude, and a Earth's equatorial radius 

The fundamental relationship between the positions of the observer, 
dynamical center, and satellite may now be written as (see Figure V-l) 

£ = r + R 

or, using Eq. 1 

£-r - x cos 0 I - x sin 9 J - y K 
c      —   c      —  Jc — 

This equation may be differentiated to relate the incremental changes 
A£, residuals in range or angular position of the satellite generally taken in 
the sense observed minus computed, to the corresponding changes A£ (orbit un- 
certainties) and toAR (station errors).  If it is assumed that the orbit is 
adequately known, it will remain uncorrected during the station correction pro- 
cedure, and the incremental changes A r_ can be set to zero.  Following this 
procedure 

A£ =Ax  [ -I cos 9 - J sin 9 ] -Ay K + 

AX E [±*c sin 9 - J x 
— c 

cos e ] 

This differential expression may be transformed into the more familiar 
spherical coordinates involving latitude and height above the reference ellipsoid; 
neglecting second and higher order terms, the vector differential expression 
becomes 

A£ - [y  (I cos 9 + J sin 9) - x K ] A<t 

+ [xc (I sin 9 - J cos 9) ]  AX£ 

+ [ - xc (I cos 9 + J sin 9 ) - yc K ] ^JJ 
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An alternative expression, in terms of the vector triad S   , E and Z defining 
the observers south, east and zenith directions may be written, again ignoring 
terms of order e^ (flattening) in the coefficients for this differential 
expression: 

A£=   (C + H) A<|>   S   -   (C + H)   cos <t>AX£ E  -AHZ 

Successive dot products of this vector expression with the triad of vectors 
L, A, , D, , defined by the observed quantities, leads to the coefficients for 
sensor location in terms of range, azimuth and elevation, as given in Table V-l, 

The comparable coefficients for range-rate may be derived from 

pAp - £'A£=^AR , since Ar = 0. 

Taking  the  time derivative, 

pA/b   =   ( £  - jb L)*A R +£-A R 

From 

R =   -   (C + H)   Z 

AR =  (C + H)A<t)S   -   (C -I- H)   cos X   A0E  -AH  Z 

and   from 

R       ■      nXR,£=SK 

AR       = (C + H)A<|>[ö(S  J   -  S   I   ] x- y- 

-   (C + H)   COS<I>AXE    lö(E^  -  E  I)] 

+ AH   [0(Z J   -   Z  I) ] 
x—        y- 
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These substitutions in the equation forpA/b, above, lead to 

pA/b - (C + H) A<t>[£#(£ -^+£xW] 

- (C + H) cos<J)AXE [ E •(£ - pL + £x H)] 

-AH [z-(ib_-ibL + £ x|})] 

These expressions are given in Table V-l. 

V.2  SCALAR DIFFERENTIAL EXPRESSIONS FOR TIME AND OBSERVATION BIAS 

The sensor timing error AT may be identified by the equivalent orbital 
Au  (■ nAT ) required to bring the 8rbit timing into agreement with the sensor 
observation0times. These coefficients are identical to those employed in the 
orbit differential correction.  In theory, the relation of timing toAu through 
the mean motion n is strictly valid for low-eccentricity orbits; in practice, 
the iterative application of these expressions produce rapid convergence. 

The additional terms in TableV-lrelating to biases in the observed 
quantities, are trivial. 

V.3  COORDINATES OF THE SENSOR AND THE SATELLITE 

This section is appended to derive the expressions for sensor location 
used in the program and the expression for the height of a satellite above the 
oblate spheroid. The last expression is cited on Page 4 of Appendix I and 
Page 1 of Appendix IV. 

The meridian section of the earth is assumed to be an ellipse. The 
coordinates of the intersection of the radius vector with the spheroid are 

t 
x = r cos 0 = a cos E 

y = r sin 0* = a Vl-e2  sin E 
c   c e 
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TABLE V-l.    SCALAR       DIFFERENTIAL       EXPRESSIONS       FOR       SENSOR       CALIBRATION 

SENSOR LOCATION ERROR 

(C+H) A0 -(C+H)  cos   0AX -AH 

TIMING 

n AT 

OBSERVATION BIASES 

Ap Ah, 

RANGE 
Ap 

AZIMUTH 
vo  p cos h A A 
o 

ELEVATION 
pAh 

RANGE-RATE 
pA£ 

*'**> 5-1*1 M* V^u + ^V 1 0 0 

^•4 5-4 Z'4 (-0) V(^Ru + ™u) 0 p cos h 0 

^"2h K.Dfc *•% D. • (UR    + VU  ) —h    — u      — u 0 0 P 

|S(£ - J>L + £cfl) E-(£- AL + #&) Z   <£ - pL + £xQ) (A - fo)' QIR   + VU ) 

+ £  [U(R    + vU  )  + 

V(0    + vR  )] —    u           u 

0 0 0 



where x , y , a and e are the same as in V.l above and 0'is the geocentric 
C     W     w 

latitude. E, the eccentric (or reduced) latitude, corresponds to the 
eccentric anomaly in the orbital ellipse. 

/!  2N   2 J   2    2 /n  2   2 AiN    2 ,,  2N (1-e ) x  + y  = r   (1-e cos 0 ) ■ a   (1-e ) 
c    c    c e 

a. Geodetic Sensor Location 

Consider a small change of eccentric latitude. This will produce 
(see Figure V-2) the coordinate changes 

-dx  = ds sin 0 = a dE sin E 
c e 

_   o 
dy = ds cos 0 = a dE Vl-e  cos E Jc e 

where ds is the displacement along the meridian. 

Thus, 

(1-e2) (dxc)
2+(dyc)

2=(ds)2(l-e2sin20) = (aedE)
2(l-e2) 

from which 

ds    . A      Vl-e" sin 0 
sin E =   Ar,     sin 0 =  

K VT7 
a dE 
e Vl-e2 sin2 0 

and 

1-e  sin 0 

For a point on the spheroid then 

a cos 0 
= C cos 0 

and 
a  (1-e2) sin 0 
e 

Vl-e2 sin2 0 

= S sin 0 
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Equator 

FIGURE V-2. MERIDIAN CROSS-SECTION OF EARTH 



Since height, H, is ordinarily measured opposite to the direction of gravity, 
for a general point and in particular for the sensor 

x  « (C + H) cos 0 
c 

y  -  (S + H) sin 0 

as in V.l above. 

earth is 

b. Height Above Oblate Spheroid 

In terms of geodetic latitude, the distance from the center of the 

since 

2  I    2 
r  = a  V1-e   1 - e co 
c     e .« M 

(1 - e2) + e2 sin2 <t>' 
c     e 

1 1 

r  = a 
c     e 

U * sin 0 
z 

r = a 
c   e 1 + (1-f)2 Uz 

r = a 
c   e 

r ■ a 
c   e 

r ■ a 
c 

/l + (2f-f2)  1 + 2f + 0(f2)  Uz
2^   ' 

/l + 2f+3f2 + 0(f3)  U2
2> 

e £ - (ff* f2) uz
2 + Jf

2uSo (f3)j 

.1 

2 

93 



APPENDIX VI 

VARIATION-OF-PARAMETERS FOR 

NON EQUATORIAL  ORBITS 

In the variation-of-parameters technique, the parameters of 
an osculating orbit are determined by the actual position and velocity 
at a given instant. These parameters describe the two-body orbit that 
the object would follow if all subsequent perturbations were removed. 
Thus, in Fig.VI-l,the full curve represents the actual disturbed path 
of an object, and the two dotted ellipses represent the osculating two- 
body orbits derived from position and velocity at the points A and B, 
respectively. 

When the two points are close together, the elements of the 
two osculating ellipses will differ by relatively small amounts. 
Hence, these elements may be visualized as parameters that vary with 
time because of the disturbing forces. 

The ephemeris program employs the variation-of-parameters 
technique and thereby overcomes the computational inefficiency of nu- 
merical integration methods where the total acceleration is computed 
and integrated step-by-step.  Computational efficiency is achieved by 
replacing the integrated variables by parameters which, in the two-body 
case, are invariant.  Thus, the numerical integration required relates 
only to the components of the force field which disturb the two-body 
motion.  These perturbations are extremely small in comparison to the 
central force term during normal orbiting flight. An alternative per- 
turbation technique, the so called "Encke" method which integrates de- 
partures from the two-body orbit, is not well adapted to the integra- 
tion of a satellite orbit when the object is exposed to continuous drag 
over the orbit. 
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Actual, disturbed path 

Osculating orbits 

FIGURE VI-1.  OSCULATING ORBIT DEFINITION 
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In the following analysis, the time rate-of-change or varia- 
tion of functions will be divided into two parts as follows: 

If f is any function, 

1 
ke dt    dT 

f + f (1) 

where T ■ ke (t-tQ), the normalized time. 

In Eq.   (1) f (f-dot) is the "two-body variation" that would 
hold at the instant if all subsequent perturbations were suddenly re- 
moved, i.e., the variation in the instantaneous osculating orbit;  and 
f  (f-grave) is the perturbative variation, i.e., the part of the varia- 
tion caused by the disturbing forces (in this case the atmospheric drag 
and Earth's bulge). 

For some functions the perturbative variations are zero be- 
cause the instantaneous osculating orbit is defined so as to yield for 
their variations the same values as the actual orbit.  Thus, for x, y, 
and z referred to non-rotating axes, 

&    - x ,     xN = 0 ,     x - y,z* (2) 

and for velocity functions independent of orientation, 

fr    -    i i    -  0 (3) 

♦Denotes that similar relations hold for y and z components 
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42. * i  ,       £  = 0 (4) 
dT 

For the elements that would be constant in two-body motion, 
the variations are consequences of the disturbing forces alone.  For 
example, 

4*  = a
N  ,       a = 0 (5) 

dr 

4ü = nv ,       n  = 0 (6) 
dr 

The anomalies, v and E, and the mean longitude, L, have both 
kinds of variation because they are referred to a perturbed or "accel- 
erated" origin.  Thus, 

4Y-    =    v + v    , v    =    r'tyjuTp (7a,b) 
dr 

4i    =    E + EN    , t    •    r'1 sTjTTa (8a,b) 
dT 

4L    s    i + £ (9a) 
dT * 

Since L = M = n/ke,   the  last of  these expressions  is more  familiar  in 
the  form 

4L    =    n + k t (9b) 
dt e 

The parameters which are integrated in the low-eccentricity 
ephemeris program are: 

h = *J~p    W       - the orbital angular momentum vector 
per unit mass 

a  = e P - a vector defining eccentricity and 
perigee location 
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L  = M + (JO + ft     -  the mean longitude of the object 

The vector, h, is a logical choice for satellite orbits 
since it embodies the orientation of the orbit plane as well as the 
two-body properties of the orbit.  The vector, a, combines the effects 
of eccentricity and perigee location in a way which maintains continui- 
ty through zero eccentricity.  The remaining parameters define the po- 
sition of the object in its orbit. Seven quantities are integrated, 
including six components of the two vectors, rather than the minimum 
six, to avoid complications in the evaluation of 
some of the parameters. 

In the application of the variation-of-parameters technique, 
the perturbative variations in the parameters must be related to the 
components of the disturbing accelerations. The perturbative variation 
in n, the mean motion, follows from the definition, 

n = ke sfji       a (10) 

leading to 

*    =  - |na'^ s (11) 

To relate n to the force field, it is necessary to express £ in terms 
of the perturbative variations in velocity, r_.  This is readily accom- 
plished through the vis-viva integral, 

3 = r-r « jLl[ 2- - i ] (12) 
r  a 
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Differentiation yields 

dr 
2r   • S- .^dr + Jida. n) 

dT rz dr     a2 dT 

However, r is independent of orientation, and the semi-major axis and 
mean motion are constants in two-body motion. Therefore, using Eqs. 

(3) and  (5), and the definition given in Eq.   (1), leads to 

2r • (r + £ )  = - 2£ r + H- av (14) 
rz    a* 

The first terms on each side of Eq.  (14) are equivalent, since they 
arise in the differentiation of the two-body problem. The perturbatlve 
component of a is therefore 

i      = 2*ir.£ (15) 

Combining Eq.       (15)  with Eq.       (11)   yields 

jLt n*      *  - 3na   r •£ Q6) 

Eq.  (16) then relates n to the forces tending to disturb the two- 
body motion. These forces are embodied in £ and include contributions 
from drag and the Earth's bulge.  It is interesting to note that the 
mean motion is affected only by the tangential component of r ; drag 
is, therefore, responsible for the secular variations in n. 

By similar reasoning, other parameters may be related to the 
non two-body components of the force field. The angular momentum, h, 
is immediately expressed through its definition, 

^h » r x r (17) 

Therefore, by a shortcut differentiation process that may be inferred 
from the foregoing differentiation of r«r, 
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Jß  hN =  r x rv (18) 

because h and r^ are both zero. 

Next, the vector, a, can be expressed as 

N/7? a  = Ö r - D r (19) 

where D is defined as follows: 

■JjuD    =    r-r        and N//7 D    =    r-r   - iJL (20) 
r 

Differentiation leads to the expression for «^ , 

Mi «  (2r-£ ) r - (r-rx ) r - (r-r) £ (21) 

The perturbative expression for the mean longitude, L, is 
complicated by its dependence upon the rotation of the orbit plane 
about the instantaneous radius vector, r, as well as the transverse ac- 
celeration components.  Thus, 

ü    =  MS +   c&  + it (22; 

for direct motion. 

While each of the three angles on the right- 
nand side in Eq♦    (22)   behaves badly for small eccentricity or 
small inclination, their sum Is      is well behaved. 

The vectors, r_ and U, are not instantaneously affected by the 
perturbations, so -^arises solely from the perturbations of the orbital 
axes.  From Fig. VI-2(a) 

= L'<£ ■   - 1't 
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but      a = e P 

so       -evx = £•£    = Qxix + Qyky  + Qzäz (23) 

The orthogonal component of the perturbative acceleration is 

rÖ    = W-r  = Wvx + Wvy
V + W *V (24) 

where W is the unit vector perpendicular to the instantaneous orbit 
plane. 

The perturbations of the orientation angles are caused by the 
rotation of the orbit plane about the instantaneous radius vector, r_. 
From Fig. VI-2(c) 

N  = U cos u - V sin u , (25) 

and 

M = U sin u + V cos u, (26) 

where 

u ■ v + a). (27) 

From Fig. VI-2(b), looking along the instantaneous line of nodes, 

uN =  - rf cos i (28) 

Now,  at any instant,   the  true  longitude  is 

i   »    u +  ft (29) 

so that 

/   -   u*     +   rf    -    ft (l-coi 1) (30) 
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But from Fig.VI-2(b), Eq.(25), and the fact that U = 0, so that 

u-w' = -w-y% = 0, 

it sin i  =  -W-rf = N-W^ =  -V-V^ sin u (31) 

Now,   V    =    WxUso'v/pV    =    hxU    =    rxrxU 

or »sTpV    =     (rr   -  rr)   / *T\± 

so  that 

NTP    V +   VpVN      =     (rf>  . i>r)   /^ (32) 

because  rx    = 0 and  rj = 0. 

Now dotting W  into Eq. 02)   above  and noting  that 

W-V  = 0   , 

and 
W-r  = 0 

because  of  orthogonality, 

VJ.W    =    r =JL    =  -V-Wv    . (33) 
4Tp 

Substituting  Eq.       (33)   into Eq.       (31)   and recalling Eq.        (24), 

rf    m    A sin u   . (34) 

NJLTP  sin  i 

Finally, entering these relationships into Eq.   (30), 

A        r  sin u   (1-cos  i)   rb 
l .  

•s/jLt p sin i 
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or 

(r sin u tin 1) rb 

V/i p  (1+cos i) 

But 

and 

to 

Ing t  : 

s ■ r sin u tin 1 

cot i - Wf  , 

z (rb) 

<1+W2) ,TM£ 
(35) 

The following fundamental relationship! are used In derlv- 

- a ein E , 

a tin E 4L 
r coe v * a (cot E - e) , 

r tin v « a ^1-e2 sin E , 

I -• <l-e cos E)f 

L  ■ M+a)-fn-M+n# 

n  ■ a + o . 

DifferentIsting Eq.   &2), 

so that 

(36) 

(37) 

(33) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 
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Differentiating Eq.   (40) and Eq.   (37), 

(e cos E)  = £  cos E - e Es sin E = L      av , (45) 

(e sin E)N  = ev sin E + e Ev cos E = JüL - I i.  e sin E, (46) 

from which 

rr jin E + I i   [  (§• + 1) cos E - e] 
-VTTa        2 a L a ' 

(47) 

and 

e EN = 22. cos E ~ t ^ <§. + 1) sin E 
2 a 

(48) 

Now differentiating Eq.   (38) and rearranging terms, 

a EN sin E  =  rvx sin v + a^ (cos E - e) - aex . (49) 

Substituting Eq.   (39) and Eq.   (40) and dividing out a sin E , 

EK    = vv>/T^: rr   1 a^ fl „.  P   e sin E . 
J~ßl       2  a 

Differentiating Eq.   (36) and introducing Eq.   (46), 

(50) 

rf = Ev - (e sin E)N  = t  - r=r + T r e 
Ma  i a 

(51) 

Combining Eq.   (50) and Eq.   (51), 

rf     =   V^   ^2       -   4St   • 
s'jua 

Finally,   using Eq.       (44)   and Eq.       (52), 

LN    =   £   - 2rfX A> 
-s/JIT       1  +   N/ 1-e2 

(52) 

(53) 
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(a) 

(b) 

(c) 

FIGURE VI-2.     VECTOR RELATIONS 
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APPENDIX VII 

LIST OF SYMBOLS 

Many of the symbols used in this document occur with the same 
meaning throughout the various volumes.  These have been defined below. 
We have attempted to avoid inventing new notation wherever possible . 
The symbology is closest to that of Baker and Makemson,  Introduction 
to Astrodynamics, Academic Press, 1960.  This in turn is based on the 
notation of Herrick,who follows closely the recommendations of the 
International Astronomical Union. 

Some symbols,which are used only once, are defined at that 
place and not in this list.  Subscripts are sometimes an obvious use 
of a symbol defined in this list to delimit another symbol.  Such a 
subscript is not generally defined separately.  For any other omissions 
apologies are offered. 

Vectors are denoted by underlines.  While most vectors symbol- 
ized with capital letters are unit vectors, R, for instance, is not. 

Superscripts 

• (Dot) Derivative with respect to T (canonical time) 

(Grave) Perturbative derivative with respect to 

— (Bar) Average 
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LIST OF SYMBOLS 

A 

A 

aXN 

YN 

Azimuth angle, measured eastward from north in the horizon 
plane 

Effective cross-sectional area of the satellite 

Unit vector perpendicular to the line-of-sight vector, 
L, in the direction of increasing right ascension 

Unit vector perpendicular to the line-of-sight vector,!,, 
in the direction of increasing azimuth 

Geomagnetic index 

Semi-axis major of ellipse or hyperbola, mean distance 

Mean equatorial radius of the earth 

eP, vector integral of the equations of motion 

e cos i = a * N 

e sin ju = a • M 

B 

B 

B 

Subscript denoting bulge (asphericity) perturbations 

Ballistic parameter, 
SA 

Modified  Bessel  function of  imaginery argument,   Z: 

2     n 

B   (z)   =      - I   (Z) 
n z n 

Bias in 0. stored in BIBUF 
l 

Semi-axis minor:  b = a VT7 
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Auxiliary quantity used to find station coordinates: 

■TF ■ a       e2 sin2 I 

C Total atmospheric drag coefficient 

C* , Coefficient of A i in the equations of condition (differential 
correction), where i is a parameter to which correction is 
sought 

C. . Coefficient of cos j X in tesseral harmonic of order i 
1 > J 

c Speed of light 

c Subscript indicating computed value or a quantity derived 
from the ephemeris computation 

D Auxiliary variable: "fiT     D = rf 

D Day Number 

D Subscript denoting drag (atmospheric) perturbations 

D Unit vector perpendicular to line-of-sight vector, L, 
in direction of increasing declination 

D Unit vector perpendicular to line-of-sight vectors, L, 
in direction of increasing elevation angle 

d Differential operator 

E Eccentric anomaly 

E Unit vector to east point of horizon 
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10 

10 

Flux of solar radiation at 10.7 cm 

F,Q averaged over three solar rotations 

Magnitude of the force of solar radiation pressure 

Flattening of earth spheroid 

% 

Acceleration of gravity 

Components of the perturbative acceleration due to the 
earth's asphericity in the easterly, southerly and radial 
directions. Note that radial is defined here in the 
geocentric, not geodetic, sense and thus southerly is 
perpendicular to the geocentric radius and not in the 
local horizon plane 

Subscript denoting Greenwich meridian 

H 

H 

H 
I 

H 

Scale Height 

Unit vector perpendicular to line of nodes in the equator 
plane 

Hour angle of the sun 

Density scale height 

h 

h 

h 

h 

Height above sea level 

Subscript indicating horizon coordinate system 

Elevation angle 

Vector integral of the equations of motion: "yp   W 

yiT h is the angular momentum per unit mass 
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1^ Unit vector toward the foot of the mean vernal equinoctial 
colure of epoch on the true equator of date 

I (z) Bessel Function of imaginary argument and order n 

inclination of the satellite orbit to the equator plane 

Unit vector to foot of summer solstitial colure on the 
true equator of date 

Unit vector to the north pole of the true equator of date 

k reciprocal of scale height 

k Gaussian gravitational constant, square root of the product 
of the universal constant of gravitation and the mass of 
the earth,  k - 0.07436662 (earth radii)3/2 per minute 

k1 Dimensionless number equal to k , ratio of canonical to 
ordinary solar time. 

L Mean orbital longitude 

L Line-of-sight unit vector 

i True orbital longitude 

M Mean anomaly 

M Unit Vector toward northern antinode of the orbit 
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m mass of satellite 

N Unit vector toward ascending node 

Mean angular motion of satellite 

General notation for an observed quantity 

o 

o 

0 

Subscript referring to epoch, t 

Subscript indicating observed value or a quantity derived 
from observed values 

Subscript denoting sun 

0 

n 

n,m 

P' 

P' 

P 

Pi 

n,m 

Period of revolution 

Pressure 

Unit vector to perigee 

Solar radiation pressure 

Legendre polynomial order n 

Associated Legendre function 

Derivative of the Legendre polynomial with respect to 
its argument 

Derivative of the associated Legendre function with 
respect to its argument 

Semi-latus rectum, parameter of conic section 

General notation for a parameter describing the satellite 
motion 
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Q apogee distance 

2, Unit vector parallel to velocity at perigee 

q perifocal distance 

R Distance of observing station from center of earth 

R Subscript denoting radiation pressure perturbations 

R Vector from observing station to center of earth.  Its 
components are X, Y, Z 

R P   U-uV1/2 
n,m n,m     z 

R' P'   (1 - U 2)1/2 

n,m n,m     z 

r Radial distance from center of earth to satellite 

£ Position vector of satellite.  Its components are x, y, z 

r. . Correlation between corrections to elements i and i 

2 
S C(l - e) , auxiliary quantity used in finding station 

coordinates 

j5 Unit Vector to South point of horizon or similar unit 
vector perpendicular to radius vector. 

S.. Coefficient of sin j X in tesseral harmonic of order i 
ij 
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s 

s 

s 

Fraction of interpolation interval 

arc length 

speed, magnitude of velocity vector 

Temperature 

time 

U 

U 

Mean argument of latitude 

Unit vector toward satellite 

True argument of latitude 

V Unit vector in orbit plane perpendicular to radius vector 
in direction of increasing anomaly, transverse unit vector 

true anomaly 

W Unit vector perpendicular to orbit plane in same direction 
as angular momentum vector 

R • 1^ component of station vector 

£ • _!, component of satellite position vector 
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^J • R component of station vector 

J • £ component of satellite position vector 

K • R component of station vector 

z K • £ component of satellite position vector 

ae 
z — argument in the analytic integration of drag 

n 

Of right ascension 

2 
QT l/2kf sin  i a cos 2 u> , argument in the expansion of the 

analytical arag perturbations to account for the oblateness 
of the atmosphere 

Reflectivity of satellite 

Differential operator producing a small finite increment, 
especially a residual 

Ö Declination 

€ Small criterion for convergence or error test 

e Obliquity of the ecliptic 
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Tl 

T 

sin"  (r ), auxiliary angle used in radiation pressure 
perturbations 

Minimum angular distance from subsolar bulge (Appendix II, 
Volume I) 

9 Sidereal time 

\C 

Upper bound (fraction) for correction to ballistic parameter 

Tabular coefficient of ballistic parameter to account for 
variation of drag coefficient with altitude 

x, X, Geographic longitude measured east from Greenwich 

Longitude west of Greenwich 

Gravitation constant, usually unity 

v 

v 

speed with respect to atmosphere, ground speed 

Velocity with respect to atmosphere, ground velocity 

Maximum angular distance from subsolar bulge (Appendix II, 
Volume I) 

n Longitude of perigee 

subscript denoting perigee value 
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p Atmospheric density 

p Range, distance from sensor to satellite 

p Position vector of satellite with respect to sensor 

y Summation operator 

O Standard deviation 

T canonical time   T a kf(t - t ) 
o' 

T Modified hour angle of subsolar bulge (Appendix II, 
Volume I) 

$ Potential 

0 Geodetic or astronomical latitude 

01 Geocentric latitude 

♦ Elongation from Sun 

O Right ascension of the ascending node 

w Argument of perigee 
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