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ABSTRACT 

Two problems involving the derivation of bounds on distribu- 

tions with a decreasing failure rate (DFR distributions) are presented. 

Given that an item has a decreasing failure rate,   sharp upper and 

lower bounds on the burn-in time to achieve a specified mean residu- 

al life are derived The bounds rely only on the     DFR    assump- 

tion and a knowledge of the first moment and a percentile of the 

failure distribution. 

An early estimate of the five year survival proportion (com.- 

monly called the five year cure rate) is of great interest in assessing 

the value of a treatment for a mortal disease such as cancer.    As- 

suming that the distribution 01 time to death is     DFR    and assuming 

a knowledge of the mean and a percentile,   sharp upper and lower 

bounds on the survival proportion are obtained. 

In addition some bounds on the hazard rate and density of a 

DFR     distribution are given. 
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1.    Introduction.    The need for complex electronic equipment in lo- 

cations where replacement of failed parts is impossible (e.g. , 

ballistic missiles,   satellites,  etc.) has necessitated the production 

of very reliable components such as semiconductors.    One method 

vhich is almost universally used to help achieve high reliability is to 

pre-age or burn-in the components to eliminate the "sports" or early 

failures.    It has long been known that semiconductors,   for example, 

exhibit infant mortality yet do not wear out      (See: Blakemore, 

Kronson,   Von Alven,   1963, Norris,   1963; Von Alven,   196Z; and Von 

Alven,  Blakemore,   1961); that is,  they exhibit a decreasing failure 

rate (are    DFR   ).     The problem which now presents itself is how 

long to burn-in the component to achieve a specified reliability.    The 

problem has been answered in the past by assuming a Weibull distri- 

bution of time to failure (Von Alven,  1962; Watson,  Wells,   1961),   for 

which there seems little statistical validation.    However,  this as- 

sumption is not necessary.    It suffices to assume that the distribu- 

tion is   DFR   and its first moment and a percentile are known in 

order to obtain sharp bounds on the residual mean life.   It is a simple 

matter once the bounds are known to determine the minimum burn-in 

time to achieve a specified residual mean life.    This is shown in 

section I.    Although the burn-in problem is developed in terms of a 

particular example,   burning-in can clearly be used to advantage on 

any item which exhibits a decreasing failur** rate. 

A problem which bears some slight similarity to the burn-in 

problem is that of estimating the five year survival proportion in a 



population of cancer patients (also called five year cure rate 

Berkson,   Gage    1952   '• When a new treatment is tested clinically 

it is desirable to obtain an estimate,  as early as possible,   of its ef- 

fectiveness.    One objective indication of this is the five year survival 

proportion.    Berkson and Gage (195Z) have estimated a related quan- 

tity,  the cure proportion,  by assuming in the interests of mathemati- 

cal expediency that the death rate due to cancer is a constant.    It is 

well validated that the death rate from cancer is decreasing with 

time (Culler,  Axtell,   1963, Berkson,  Gage.   195Z) and this fact is 

used together with a knowledge of the mean and a percentile of the 

distribution of time to death,  to obtain   sharp upper and lower bounds 

on the five year survival proportion.    This is discussed in section 3. 

The most appealing feature of the solutions presented to the 

preceding two problems is that no assumption of a parametric ex- 

pression for the probability distribution is made.    Such an assump- 

tion would be very difficult to verify using the truncated data from 

semiconductor :ife tests or the small sample data resulting from a 

clinical trial.    Yet it is possible to obtain a reasonable estimate of 

the mean life and early percentile for a truncated life test.    This 

information together with the   DFR   assumption enables us to obtain 

bounds on the relevant quantities to be evaluated. 

Nearly all the work completed to date on bounds for distribu- 

tions possessing a monotone failure rate has been done by two 

authors,   Barlow and Marshall (see: Barlow.   1963, Barlow and 

Marshall.   1963,   !964a and 1964b),  who have often collaborated. 



Barlow and Proschan (1964) also develop many applications of these 

bounds in the field of reliability theory. 

Only the relevant bounds are set forth in sections 2 and 3, 

while the bounds are derived in section 4.    A few additional theorems 

are added to complete the discussion of bounds for   DFR   distribu- 

tions. 

Mathematical Preliminaries.     If the failure distribution     F     has 

density    f   ,   then the failure rate     q(t)     is defined for those values 

of    t     for which     F(t>  <  1    by 

q(t)   - iW 
F(t) 

where     P(t)   =   1 - F(t)    and it is assumed that     F(0")   =  0   .       The 

failure rate is also known as the hazard rate and by actuaries as the 

"force of mortality". 

It can be readily verified that     q(t)   =  - ^TI log F(0    .   when a 

density exists.    Hence     F     is     DFR (IFR)     if     log F(t)     is convex 

on    [0,or]      (concave where finite).     This fact forms the basis of 

many of the proofs of section 4. 



2.    The Burn-in Problem.    The only items which are burnt-in to any 

extent are semiconductors,  although burn-in could well be applied 

more widely.    Hence,  we use semiconductors to illustrate our dis- 

cussion of the burn-in problem. 

A few remarks will made on the life distribution of a semicon- 

ductor since there is still some disagreement as to the actual shape 

of the distribution.    Peck (Von Alven,   1962,  Chapter Z) asserts that 

his data on semiconductors exhibits first an increasing failure rate 

and then a decreasing failure rate.    He supports this by 'J. physical 

explanation of the cause of the initial   IFR   .    Other authors (i.e., 

Norris,   1963* maintain the distribution is   DFR   and the   IFR   ,  but 

this theory is more intuitive than well supported by life test data. 

The great bulk of work in the life testing of semiconductors supports 

the theory that there is no wear-out,  and the failure rate is always 

decreasing.    In particular,  ARINC Research Corporation (Blake- 

more,   Kronson,   Von Alven,   1963; Von Alven,   Blakemore,   1961) 

tested 10, 300 individual devices with approximately 200,000 separate 

life test measurements and reported they could not detect any wear- 

out,  but found in almost every case the life distribution was   DFR   . 

The time to burn-in to achieve a specified reliability has been 

determined in practice by assuming the life distribution is either 

Weibull or lognormal.    This affords a very rapid and simple method 

for evaluating the burn-in time but in the niajority of cases where 

these distributions are assumed,   it is done with little statistical val- 

idation. 



\ non-paramntrie   approach baaed purely on the    DFR    assump- 

tion obviates this uncertainty of distribution validity and ^ives slurp 

bounds which although more conservative,   Hoes guarantee achieving 

the specified reliability  since it is valid for * larger class of distti- 

butions. 

Bounds are set out belo-v on the survival probability and the 

residual mean life hased on the assumption that the distribution le 

I" 1 R    and its rru-an and a percentile are known. 

F   DFR   Mh = 1 ,    F(?   )  = p   and   £    < I   or    1 - p< e     p 

(^.1) 

(^.^ 

F(t)   ■> 
f 

r „-"K 
F(t)   - 

-ot 

0 < t < ? -   -   p 

t>5p 

0 < t < ? 
-   -   p 

l^p 

where     F = 1 - F .   The residual mean life at time   t   is denoted by 

(.'.3) 
\   F(x)dx rtl4)eblt   ^     .    t<? 

b2 p 

r 
i> i» _ .t 

F(X)dx      i 

r(t)     -   * - p 

Where        a     is the unique solution of 

U.5) oe'^'P = l-p 

and     b.    ,   b.    satisfy 

7 .t 
Note that when distribution is    DFR    ,   ?    < I   implies I- p < e    P   . 

P- - 



. > 

1 - p = e-bl5l 

The proofs of (2. l)through(Z. 4)are given in thcorrms (4./.) through 

(4. c») of Section 4. 

The most interesting result,  the lower hound on the mean re- 

sidual life,   is useful only up to time     ^      ,   for after this time the 

hound is constant and so gives no indication of the effect of increased 

hurn-in.    However,   even in the light of this,   the restriction on the 

perc.entile that    C    <1     or     1 - p <   e    P    does not appear restric- 

tive in the burn-in problem as it is unlikely that the item would be 

burnt-in for a time greater than its mean life. 

By the use of equation (2.3),  the burn-in time to achieve a 

specified mean residual life has been calculated and is given in 

tables 1 through 3. 

Bounds in terms of the first and second moment have little 

usefulness since the sharp lower bound on th" mean residual life in 

this case is the value of the mean,   thu'j giving no indication of the 

benefit gained by burn-in.    Bounds on the survival probability for 

this case have been calculated by Barlow and Marshall (1963). 

The burn-in of semiconductors is sometimes carried out at an 

increased stress to accelerate the ageing,  (^ee Norris,  1963).    This 

may introduce many complications in the prediction of the optimal 

burn-in time.    However,   it will be assumed that it is possible to con- 

vert from the un-accelerated burn-in time to the accelerated burn-in 



time.    This could possibly be done with the use of the A.rrhenius 

relation,   althoußh Von Alven    states that the Eyring rel-itionsmp 

may possibly be better. 

IF  
Personal communication. 
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3.    Bounding the Survival Proportion.      A frequently used objective 

index of the effectiveness of a treatment is the proportion of patients 

surviving the disease for five years.    (See for example,   Berkson, 

Gage,   1952).    This will be called the five year survival proportion 

although it has been genera'ly called by the misleading name of "five 

year cure rate" by the medical profession.    Clearly the word cure is 

inappropriate as even in so mortal a disease as cancer it is not cer- 

tain that the patient is cured when h» has survived five years. 

Berkson and Gage (195Z),  have discarded the idea of a survival 

percentage in favour of computing the cure proportion, defining the 

patient cured when his death rate is the same as the normal mortali- 

ty rate.    Catler and Axtell (1963) point out that in some cancers this 

is never achieved and they redefine cure as the achievement of a 

stabilized death rate.    But with both Berkson,   et  al and Cutler, 

et  al,   information is required over a long span of time to estimate 

the cure proportion. 

Although the five year survival proportion does not give as ac- 

curate a picture as the cure proportion (where the latter is relevant) 

it does afford a good indication of the effectiveness of a treatment 

and can be calculated more simply and at an earlier time than can 

the cure proportion. 

An extension of the work already done in this field would be to 

predict the five year survival proportion at the end of only say one 

year  of a tiiniral trial,   thus enabling an early assessment of the 

treatment to be made. 
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The mathematical model will be simplified by assuming that 

the probability of death due to normal causes is independent of the 

probability of death due to cancer.    This clearly oversimplifies the 

issue but Berkson and Gage (1952) maintain that this assumption does 

give reascnable results.    Thas 

(3.1) F(t:   ■ Pn(t)Pc(t) 

where     Tit)     is the survival probability in time     t     and     F (t)     and 

F (t)     are respectively the probabilities of death from "normal 

causes" and from cancer in time    t   .    It is assumed that     F      is n 

known from life tables.    Also 

(3.2) q(t)   =   qc;t>   +   qjt) 

where     q(t)    is the death rate at time     t    and the subscripts     c 

and     n    are as in (3.1). 

Berkson and Gage (1952) have shown that     q  (t)     is decreasing 

at a rate which is a function of the mean time to death of the untreat- 

ed patients.    The normal mortality rate,    q  (t)    ,   is increasing. 

Thus     q(t/     is initially decreasing and then increasing. 

If the time at which     q(t)     changes from decreasing to in- 

creasing is large compared with 5 years,   bounds on    F   (5 years) 

may be estimated by assuming that     F     is     DFR   .    Thus from a 

knowledge of the mean and a percentile of     F   ,   bounds on     F   (5 

years) may be determined by using equations (2.1) and (2.2),  and 

from this     F     (5 years) can easily be determined from equation (3.1). 

A less accurate but surer method would be to adjust the ob- 

servations of the time to death to obtain an estimate of the     DFR 
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distribution     F    .    Hence by a straightforward application of the 

DFR    bounds,  we may obtain bounds on     F    (5 years). 

Bounds on the failure rate at five years may also be evaluated 

to give a further indication of the effectiveness of the treatment. 

These bounds can be estimated by the use of the     DFR    bounds 

given below and equation  (3.2) 

F   DFR   , ^ = I   r  F(?   ) ? p   and   ?    < 1   or   1 - p< e'?P 

(3.3) q(t + )  >   a 

where     o    is defined by the unique solution to (2. 5) , 

«      t = 0 
(3.4) q(t')   <    { 

^ bj     t > 0 

See theorems (4.6) and (4.7) for proofs. 
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4.    Bounds on   DFR   Distributions. 

4.1.    Bounds Given the Mean and a Percentile    have great ap- 

peal since good estimates of these two quantities can be obtained 

from limited life test data.    In addition,  the desired bounds are all 

nontrivial which is in contrast to the case where the first two mo- 

ments     fx.     and     \i?     are given.    In this case the lower bound on the 

mean residual life is trivial and sharp (i.e.   is the value     JJI.) . 

The     DFR     distribution with mean    Hi = ^     implies an upper 

bound on the percentile.    The lower bound is zero,  and both bounds 

are sharp. 

re"?P        .    ?     <  1 
(4   1) 0  <  I - p  <  1 p 

1
 ^ne) ^  >  1 

P .      P 

This result is  proved by Barlow and Marshall (1963). 

Two distributions will be defined.    Let 

1 L(l-p)e l     "p'  ^   ,    x >  C 

where    X    =   1 - J.      , 
bl bl 

and    ß    and     b,     are given by 

(4.3) ß e"bl5P   =   1 - p   ,    (0  < 0  <  1) 

oc 

and \      7,   (x) dx   =  1   ; 
Jo     Dl 

Clearly     J,       has mean     u.   =  1    and   p       percentile      C 
b. 1 p 

Let     K,        be the subclass of     J.        which   it       DFR   .    A 
^1 bl 
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lemma will now be proved to facilitate the proof of theorem 4.1. 

Lemma 4.1    If the   p       percentile     ?       of     K.        satisfies the con- 

ditions (4^1) then the distribution of the class     K.        which gives the 
* 

maximum value to the mass at the origin is     K, ♦    ,   where     b.     is 

the minimum value of    b.     such that    b.  =  b,    ; i.e., an exponential 

on       [0.«^]    i   with possible mass at the origin. 

Proof.   Clearly the distribution of the class    1.       which attains 
  bl 

maximum mass at the origin is given by     b.  =  0   ; but it is not   DFR 

since it must be log concave.    As    b.     increases from zero (thus 

decreasing     /3  ) ,  b       increases but less rapidly,  and the distribu- 

tion will first be     DFR     when     b. =  b,    ,   attaining then the maxi- 

mum mass at the origin for a distribution     K.       .    The equation of 

this distribution is 

(4.4) \     ,    (x)   ^cre"^ 
12 

where     a    is the minimum solution of 

(4.5) 
1 - p = ffe"01^ 

o< 1 

Note that a solution     o     is guaranteed by the conditions on the per- 

centile,   and that for     ?     <   1     the solution to (4.5) is unique,   but for 

C     >  1     there may be two solutions. 
P - 

Theorem 4.1.   If     F     is     DFR     with mean     ^.  = 1   ,  and   p       per- 

centile     ?       is given and satisfies the condition     1 - p <  e     P   ,   then 
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F(x)   > 0e-ox 

r(x)   < Qe'ox 
X^P 

<*, and     o    is defined as the unique solution of    o-e       P   =   1 - p   . 

Proof. Suppose that the theorem is false.    Then by convexity,   either 

(i) or (ii) is true. 

(i)        F(x)   <  oe -ax 
,     for some     x <   C 

(ii)       F(x)   >  oe ,     for some     x  >  C       and   F(x)   >  ^e  a 

for     x  <  ? 
-     P 

Suppose case (i): 

log(l-p)       

logl^c        ) 

Figure 4.1 

By log convexity     F(x)  >  ae when     x > C      •    Construct two 

exponential curves,      e "il(x)     and     e'i2(x)     where     i^x)     and 

/-,(x)     are linear in     x    and such that 

'l<V  =  e-'z^p'   =  1 e    *    p'   =  e    ^,   P    =   i - p 

F(x) - e"il(x) ]   dx   =  0 

IfM-e-W]   dx   =  0 
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Now clearly     e    ^       >  o-e for     x  >  C       and hence 

-ii(x) -Ox e    1        <  oe for     x  < ? Thus a    DFR   distribution has been 
P 

constructed with the same mean and percentile as the exponential 

R(x)   =  oe ,   but a greater mass at the origin,  which by lemma 

4. 1 is impossible. 

Suppose case (it): 

log{l-p)    -^ 

logF(x) 

lcg(ae"OX) 

Figure 4. 2 

By log convexity of     DFR   distributions there must be a single 

crossing,   say at     x.    ,   where     x.   >  5      .    By assuming a percen- 

tile at    x.    ,  and noting that the solution    or     is unique since 

1 - p <  e     P   ,   it can be seen from case (i) that case (ii) is im- 

possible.   I 

Note that the condition on the percentile     1 - p  <  e     P 

which it was necessary to assume to assure a unique value of     o    is 

always satisfied by a   DFR   distribution for    £     <  1   . 
P - 
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It does not appear likely that this restriction will limit the applica- 

bility of the bounds as it is hard to imagine estimating a percentile 

at     C     >   1     in a distribution.    In order to prove some theorems on 
P 

bounds,   a class of   DFR   distributions     C_     is posited with mean 

fi   = 1     and   p       percentile     C        satisfying     1 - p  <   e     P    . 

I^ip- re-V .     0 < x < T 
H-6'      ^' = {e.b2xMb,-bl,T .    -x;T 

where     b.     and    b,     satisfy 

(4.7) l-i^.   + ^r 

(4.8) 1 - p   =  exp(.b2Cp + (b2 - b^T ) 

and for this class to be   DFR   ,   b    < b.    . 

T >  C , 
"     P re-blX .      0  <  x  <  T 

,4-9) G
TW = {^xMb^bDT x>T 

b.     and     b,      satisfy (4.7) and 

(4.10) 1 - p  =  e"bl?P 

and     b     ^   h,      for     G_     to be    DFR    . 

Lemma   i   Z       Assuming     1 - p  <  e     P    for every     T   <  ?       there 

is a solution of (4.7) and (4.8) continuous in     T    ,   and for every 

T  >  C        there is a solution of (4.7) and (4.10) continuous in     T   . 

Proof:    T   <  ? By substituting for     b,     from (4.7) into (4.8) we 
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obtain 

and it is desired to show this always has a solution b 1 . Since the 

distribution is IFR and -s 1- p < e p , we see b 1 > 1 

Let 
-b1T 

{ 
- b1T e - 1 -1 } h(b1) = exp -b1T- e (sp- T)(l + bl ) - l+p . 

Now lim h ( b 
1
) = e-s p - 1 + p ::_ 0 

bl-1 

lim h{b1) = -1 + p < 0 
b

1
-oo 

Thus as the function is clearly continuous in b
1 

, there exists 

a solution such that h(b1) = 0 • 

Since b > 1 
1-

and the mean I-Ll = l ' O'T must cross 

once from below and thus b 2 < b
1 

• 

solution f o r 

i.e. 

Hence 

From (4.10) it can be seen that there is always a 

bl . 

'1 
b 1 = - ! log (1-p) 

p 

1 - exp ( f log (1- p)) _
1 

+ . p } 
s-1 log (1- p) 

p 

which has a solution continuous in T for all T > s . 
p 

-x 
e 

Since 1 - p < e -sp and I-Ll = 1 it can clearly be seen that 

b2 < bl • ~ 
Note that lim ~T(x) 

T....;O 
where o is defined uniquely 

by (4. 5). This limit will be denoted by G
0

(x) • 



Use is made in the following theorems of the fact that GT 

and F must cross at least once if they have the same ftrst mo-

ment. The various possibilities for the intertwining of log GT 

and logY are shown below. 

X 

l og( 1-p) 

log( 1-p) 

l og(l-p) log(l-p) 

Theoretn 4. 2: lf F is DFR and has first moment ~1 = 1 and 

th E p percentile s p given, and also 1 - p < e- p • then 

-blt 

F (t) < { e -at 
ae 

0 < t < ~p 

t > ~p 

20 

X 
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and the inequalities are sharp,    b.    is defined by equation (4.10) 

and     o      by equation (4.5). 

Proof: 

0 <   t <   4 From the log convexity of     F(x) 

F(t)   < G.   (t)     . 0 1 *   <  ?p 
p 

t  > C From theorem 4.J, 
 E. 

Tit) < GQ(t)      , t > ?p    " 

Theorem 4. 3:    If     F     is   DFR   and has     Ki = ^    anc^   P       percentile 

5       given and also     1 - p  <  e     P    ,   then 

roe'ot       .      0  <  t  < ? 
F(t)  >   ^      h,t "      "    P 

"    .e'1^ t  > ? 
P 

where     b.     is defined by (4.10) and     or     by (4. 5).    The bound is sharp. 

Proof: 

0  <  t  < £ This bound follows directly from theorem 4.1. 

C     <   t  < oc  : The proof is obvious.    The bound is "epsilon" 
_E        - 

attained by      lim    GT(x)   . 
T—• oc 

Theorem 4.4:    If     F    is   DFR   ,   ^ = 1     and the   p       percentile    ? 

given and also     1 - p   <    e     P   ; then 

\      F(x)dx ..     1 .    bit 1 ♦  ^  c 



II 

where     b.     is defined by equation (4.10) and    b,     is defined by 

the equations (4.7) and (4.10) with     T = C 

Proof: 

For     t   < 5     :   Since     F(x)  <   G^   (x)     ,      x <   ? 

r(x)dx >   \      G-   (x)dx       ,      t  < 5 
t ^t       ^p P 

therefore 
,X ,,00 

F(x)dx \     C. (x)dx r -t       qp /i     1   v    blt ,  1 >    £     =  (l-T-)e   l   + ,- 
F(t) C   (t) ^l ^1 

p 

For     t  > C The proof will be treated in two cases based 
 E 

on the crossings of    C-   (x)     and     F(x)     for     x ^ C 
Sp -     P 

Case (i): Consider the extremal distribution     G»   (x)    and let 

it cross     F(x)    at     u(£   )  >  £ Obviously due to log convexity the 

crossing is from above. 

Since      T'x)   <  GL   (x) x  <  u (€   ) 
"     ^p " P 

„or , .oo 

(    F(x)dx i     Cc  (x)dx 
^t ^   "'t p 

F(t) ~ Ck (t) 
t < u(€p) 

Now by Theorem 4.1     ^(x)   <  Cn(x)     for     x  >  C       .    Thus due -     0 -     p 

to log convexity of     P(x)    ,   for every    x   ,  u( ^ )   <  x   < »  ,   it is 

always possible to find a value     T ,   0  <  T  < 4       ,   such that 

u(T) = x   . 
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rvwdx r GT(x)dx 
1 >   inf —  '    t>u(f   ) 

Tit) T<? C   (t) p 

Case (ii):       u(?  ) = C     •    By a similar reasoning to case (i) it may 

be shown 
r.OT 

( r(x)dx C cT(x)dx 
>    inf          —     P 

Fit)        "   T<^ GT(t) 

=    inf ^ 

-   P 

1 * =   —.    where    b,     is the value of    b, 
, ♦ <: c 
hl 

calculated at     T = *• 
P 

Thus,   the lower bound for the mean residual life while not 

trivial for     t > £       is nevertheless not dependent on     t     and so can 
-   P 

give no information on the merit of continued burn-in. 

th The orem 4.5:    If    F     is   DFR   and     ^i = ^    ancl t^16   P       percentile 

^        is given and also    1 - p  <  e     P   ,   then 

i r(x)dx      \ G0(x)dx 

- . t < c 
r(t)     -       G0(t)        0      -   p 

Proof:    The proof follows directly from theorenn 4. 3 
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Theorem 4.6:    If     F     is    DFR   with first moment     \i. - 1     and 

p       percentile      £      ,   and     1 - p  <  e     P   ,  and has hazard rate     q 

then   l q(t   )   >  a    ,   where     a    is the solution of (4.5). 

The bound is sharp. 

Proof;    The proof follows directly from Theorem 4. 1. 

Theorem 4.7:    If     F     is    DFR   with     ^   = 1     and     p1     percentile 

C       and     1 - p <   e     P     and hazard rate     q     then 
P 

r oc        .        t = 0 
q(t   )   <   | 

b. t > 0 
A      > 

where     b.     is the solution of (4.7) and (4.8) for     T = t   , t < C      ; 

and     b.     is the solution of (4.10) for     t > C The bound is sharp. 

Proof:    t = 0        The bound is trivial and is attained by the distribu- 

tion    Gp    . 

0   <  t  < ?   :   By the log convexity of the   DFR   distribution it 

can be seen that at    t 

q(t")  < b1 

t  >  ^ Clearly by log convexity 

q(t")   <  bj    . 

The bound is relatively trivial and is "epsilon attained" by the 

distribution     lim     C-,    . 11 



^5 

4. Z.      Bounds Assuming the First Two Moments Are Given. 

Barlow and Marshall (1964   ) have given bounds on the survival 

probability of the   DFR   distribution when the first two moments are 

given.    The same methods used to bound the survival probability 

may be used to obtain sharp bounds on the residual mean life,   the 

failure rate and the density of the distribution.     These bounds are 

stated below and proofs for them may be found in Lawrence (1964). 

\     F(x)dx 

(411) 
1              F(t) 

1   »I 

(412) 

r F(x)dx 
"t 

u          -        

ret) 

(4.13) q(t")   <  a* 

(4.14) q(t + )   >  a* 

sup     a. exp(-a. t) 
T > t 

sup 

-    < a< 1 

(4.15)   f(t") < y 

.   sup 
max <.   T > t 

sup 
T < t 

max 

.       t = 0 

, 0<t<1 

a exp(-a t) 

aj exp(-ajt) 

a2exp{-a2tf (a2-al)T} 

a exp(-o't) 

>.l<t< -l-r 

sup a^expi-a^t + (a^-aJT} 
T < t C C C     i 

> 
t> 
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min <r 

inf 

i   < a < \ 
o cxp(-ot) 

(4.16)  f(t + )    >   < 

^>.    0 < t < 

inf       a-expf-a-jt + ia   -a,)T} 
T < t 

2     1' 

- 117 

inf        a-,exp{-a,t + (a,-a.) T) 
T < t 

^7 

Where     a.    ,  a,     are the unique solutions of (4   17) and (4. 18) with 

T  = t   . 

(4.17) 1   =   a1"1(l.exp(-a1T) )   +   a"1 exp^T) 

(4.18) 
-2 -2 

=  a"   (l-(alT + l)exp(-a1T)} + a"   (a2T + l)exp(-a1 T) 
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