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ABSTRACT

Two problems involving the derivation of bounds on distribu-
tions with a decreasing failure rate (DFR distributions)are presented.
Given that an item has a decreasing failure rate, sharp upper and
lower bounds on the burn-in time to achieve a specified mean residu-
al life are derived The bounds rely only on the DFR assump-
tion and a knowledge of the first moment and a percentile of the
failure distribution.

An early estimate of the five year survival proportion (com-
monly called the five year cure rate) is of great interest in assessing
the value of a treatment for a mortal disease such as cancer. As-
suming that the distribution ot time to death is DFR and assuming
a knowledge of the mean and a percentile, sharp upper and lower
bounds on the survival proportion are obtained.

In addition some bounds on the hazard rate and density of a

DFR distribution are given.




l. Introduction. The need for complex electronic equipment in lo-

cations where replacement of failed parts is impossible (e.g.,
ballistic missiles, .;satellites, etc.) has necessitated the production
of very reliable components such as semiconductors. One method
which is almost universally used to help achieve high reliability is to
pre-age or burn-in the components to eliminate the '"sports' or early
failures. It has long been known that semiconductors, for example,
exhibit infant mortality yet do not wear out (See: Blakemore,
Kronson, Von Alven, 1963; Norris, 1963; Von Alven, 1962; and Von
Alven, Blakemore, 1961); that is, they exhibit a decreasing failure
rate (are DFR ). The problem which now presents itself is how
long to burn-in the component to achieve a specified reliability. The
problem has been answered in the past by assuming a Weibull distri-
bution of time to failure (Von Alven, 1962; Watson, Wells, 1961), for
which there seems little statistical validation. However, this as-
sumption is not necessary. [t suffices to assume that the distribu-
tion is DFR and its first moment and a percentile are known in
order to obtain sharp bounds on the residual mean life. It is a simple
matter once the bounds are known to determine the minimum burn-in
time to achieve a specified residual mean life. This is shown in
section 2. Although the burn-in problem is developed in terms of a
particular example, burning-in can clearly be used to advantage on
any item which exhibits a decreasing failure rate.

A problem which bears some slight similarity to the burn-in

problem is that of estimating the five year survival proportion in a



population of cancer patients (also called five year cure rate
Berkson, Gage 1952 '.- When a new treatment is tested clinically

it is desirable to obtain an estimate, as early as possible, of its ef-
fectiveness. One objective indication of this is the five year survival
proportion. Berkson and Gage (1952) have estimated a related quan-
tity, the cure proportion, by assuming in the interests of mathemati-
cal expediency that the death rate due to cancer is a constant. [t is
well validated that the death rate from cancer is decreasing with
time (Cutler, Axtell, 1963, Berkson, Gage, 1952) and this fact is
used together with a knowledge of the mean and a percentile of the
distribution of time to death, to obtain sharp upper and lower bounds
on the five year survival proportion. This is discussed in section 3.

The most appealing feature of the solutions presented to the
preceding two problems is that no assumption of a parametric ex-
pression for the probability distribution is made. Such an assump-
tion would be very difficult to verify using the truncated data from
semiconductor .ife tests or the small sample data resulting from a
clinical trial. Yet it is possible to obtain a reasonable estimate of
the mean life and early percentile for a truncated life test. This
information together with the DFR assumption enables us to obtain
bounds on the relevant quantities to be evaluated.
Nearly all the work completed to date on bounds for distribu-

tions possessing a monotone failure rate has been done by two
authors, Barlow and Marshall (see: Barlow, 1963, Barlow and

Marshall, 1963, 1964a and 1964b), who have often collaborated.



Barlow and Proschan (1964) also develop many applications of these
bounds in the field of reliability theory.

Only the relevant bounds are set forth in sections 2 and 3,
while the bounds are derived in section 4. A few additional theorems
are added to complete the discussion of bounds for DFR distribu-

tions.

Mathematical Preliminaries. If the failure distribution F has

density f , then the failure rate q(t) is defined for those values
of t for which F(t) <1 by

fit)

F(t)

q(t) =

where F(t) = 1 - F(t) and it is assumed that F(0") = 0 . The
failure rate is also known as the hazard rate and by actuaries as the
""force of mortality'.

It can be readily verified that q(t}) = - Hd? log F'(t) , whena
density exists. Hence F is DFR {IFR) if log F(t) is convex
on [O,or:] {concave where finite). This fact forms the basis of

many of the proofs of section 4.



2. The Burn-in Problem. The only items which are burnt-in to any

extent are semiconductors, although burn-in could well be applied
more widely. Hence, we use semiconductors to illustrate our dis-
cussion of the burn-in problem.

A few remarks will made on the life distribution of a semicon-
ductor since there is still some disagreement as to the actual shape
of the distribution. Peck (Von Alven, 1962, Chapter 2) asserts that
his data on semiconductors exhibits first an increasing failure rate
and then a decreasing failure rate. He supports this by 4 physical
explanation of the cause of the initial IFR . Other authors (i.e.,
Norris, 1963} maintain the distribution is DFR and the IFR , but
this theory is more intuitive than well supported by life test data.
The great bulk of work in the life testing of semiconductors supports
the theory that there is no wear-out, and the failure rate is always
decreasing. In particular, ARINC Research Corporation (Blake-
more, Kronsor, Von Alven, 1963; Von Alven, Blakemore, 1961)
tested 10, 300 individual devices with approximately 200, 000 separate
life test measurements and reported they could not detect any wear-
out, but found in almost every case the life distribution was DFR

The time to burn-in to achieve a specified reliability has been
determined 1n practice by assuming the life distribution is either
Weibull or lognormal. This affords a very rapid and simple method
for evaluating the burn-in time but in the n.ajority of cases where
these distributions are assumed, it is done with little statistical val-

idation.



A non-parametric approach based purely on the DFR assump-
tion obviates this uncertainty of distribution validity and gives sharp
hounds which although more conservative, does gnarantee achicving
the specificd rehliability since it is valid for o larger class of distr-
butions.

Bounds are set out below on the survival probability and the
residual mean life based on the assumption that the distributicn i

I"I'R and its mean and a percentile are known.

*
F DFR pl:l, F(§P) = p and SLEI or l-p«< e-gp
o . 0<t<E
(2.1) Fry > - - — f
- ¢l , t> ¢
p
_ s . 0 t<E
(2. 2) F(t): - o
ne » l>&.:
P

where F =1-F . The residual meanlifeattime t is denoted by My

s
=y by bt -

(2. 3) by _&'_i(i_i > _r(ll 5 B S5
F(t) BZ .t ép
F (1) G SR

Where a is the unique solution of

(£.5) ne-nF'P =1-p

and bl ; bZ satisfy

§

x -
Note that when distribution is DFR , Ep <1 implies l-p <E"p




2 L- e P18p R e P1fp
I YR R
iR 1 2
l-p = e Plép

The proofs of(2.)through(2.4)are given in thecorems (4. 2) through
(4.5) of Section 4.

The most interesting result, the lower hound on the mean re-
sidual life, is useful only up to time En , for after this time the
bound is constant and so gives no indication of the effect of increased
burn-in. However, even in the light of this, the restriction on the
perceantile that £p <1l or l-pc« e'ep does not appear restric-
tive in the burn-in problem as it is unlikely that the item would be
burnt-in for a time greater than its mean life.

By the use of equation (2.3), the burn-in time to achieve a
specified mean residual life has been calculated and is given in
tables 1 through 3.

Bounds in terms of the first and second moment have little
usefulness since the sharp lower bound on th: mean residual life in
this case is the value of the mean, thus giving no indication of the
benefit gained by burn-in. Bounds on the survival probability for
this case have been caiculated by Barlow and Marshall (1963).

The burn-in of semiconductors is sometimes carried out at an
increased stress to accelerate the ageing, (Bee Norris, 1963). This
may introduce many complications in the prediction of the optimal
burn-in time. However, it will be assumed that it is possible to con-

vert from the un-accelerated burn-in time to the accelerated burn-in



time. This could possibly be done with the use of the Arrbenius

. *
relation, although Yon Alven

may possibly be better.

Personal communication.

states that the Eyring relationsmp
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3. Bounding the Survival Proportion. A frequently used objective

index of the effectiveness of a treatment is the proportion of patients
surviving the disease for five years. (See for example, Berkson,
Gage, 1952). This will be called the five year survival proportion
although it has been genera’ly called by the misleading name of 'five
year cure rate' by the medical profession. Clearly the word cure is
inappropriate as even in so mortal a disease as cancer it is not cer-
tain that the patient is cured when he has survived five years.

Berkson and Gage (1952), have discarded the idea of a survival
percentage 1n favour of computing the cure proportion; defining the
patient cured when his death rate is the same as the normal mortali-
ty rate. Cutler and Axteil (1963) point out that in some cancers this
is never achieved and they redefine cure as the achievement of a
stabilized death rate. But with both Berkson, et a. and Cutler,
et al, information is required over a long span of time to estimate
the cure proportion.

Although the five year survival proportion does not give as ac-
curate a picture as the cure proportion (where the latter is relevant)
it does afford a good indication of the effectiveness of a treatment
and can be calculated more simply and at an earlier time than can
the cure proportion.

An extension of the work already done in this fieid would be to
predict the five year survivai prcportion at the end of only say one
year of a ¢'ini-ail tria., thus enabiing an ear'y assessment of the

treatment *¢ be made.
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The mathematical mode! will be simplified by assuming that
the probability of death due to norma!l causes 1s independent of the
probability of death due to cancer. This clearly oversimplifies the
issue but Berkson and Gage 1952} maintain that this assumption does
give reascnable resul:s. Thus
3.0 Fit - I-'n(t)Fc(t)
where F(t) is the survival probab:lity in time t and Fn(t) and
Fc(t) are respectively the probabilities of death from '""normal
causes' and from cancer intime t . It is assumed that Fn is
known from life tables. Also
(3.2) q(t) = q_{t} + q_(t)
where q(t) is the death rate at time t and the subscripts ¢
and n areas in (3.1).

Berkson and Gage {i952) have shown that qc(t) is decreasing
at a rate which 18 a function of the mean time to death of the untreat-
ed patients. The normal mortality rate, qn(t) » is increasing.
Thus q{t; is initially decreasing and then increasing.

If the time at which qft) changes from decreasing to in-
creasing is large compared with 5 years, bounds on Fc (5 years)
may be estimated by assuming that F is DFR . Thus from a
knowledge of the mean and a percentile of F , bounds on F (5
years) may be determined by using equations (2.1) and (2.2), and
frora this P'c (5 years) can easily be determined fromequation(3.1).

A less accurate but surer method would be to adjust the ob-

servations of the time to death to obtain an estimate of the DFR
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distribution Fc . Hence by a straightforward application of the
DFR bounds, we may obtain bounds on Fc (5 years).

Bounds on the failure rate at five years may also be evaluated
to give a further indication of the effectiveness of the treatment.
These bounds can be estimated by the use of the DFR bounds
given below and equation (3.2)

F DFR , p =1, F(EP)'zp and Epsl or 1-pc¢ e p

(3.3) alt’) > o

where o 1is defined by the unique solution to (2.5).

_ f © t=0
(3.4) q(t ) < +
L

b,

See theorems (4.6) and (4.7) for proofs.
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4. Bounds on DFR Distributions.

4.1. Bounds Given the Mean and a Percentile have great ap-

peal since good estimates of these two quantities can be obtained
from limited life test data. In addition, the desired bounds are all
nontrivial which is in contrast to the case where the first two mo-
ments  p, and p, are given. In this case the lower bound on the
mean residual life is trivial and sharp (i.e. is the value pl) :

The DFR distribution with mean My = 1 implies an upper
bound on the percentile. The lower bound is zero, and both bounds

are sharp.

{e‘gp TRt

<£pe)" B>

(4 1) 0<1l-pc<

This result i8 proved by Barlow and Marshall (1963).

Two distributions will be defined. Uet

(4.2) T (x) ={
) (l-p)e.(x.gp)bZ , X > Ep

where -‘Tb = l-Jb ,

1 1
and B8 and b2 are given by
(4.3) Be™¥P - 1.p, (0<B<
oC
and g -Jb (x)dx =1 ;
0 1

Clearly Jb has mean My =1 and pth percentile Ep ;
1

Let Kb be the subclass of J which is DFR . A

1 b

1
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lemma will now be proved to facilitate the proof of theorem 4.1.

Lemma 4.1 If the pth percentile Ep of Kb satisfies the con-
1

ditions (4.1) then the distribution of the class Kb which gives the
\

. C e L
maximum value to the mass at the origin is Kb* , where bl 18
1

the minimum value of bl such that bl = b2 , i.e., an exponential

on [0,r] , with possible mass at the origin.

Proof. Clearly the distribution of the class -‘Tb which attains
1

maximum mass at the origin is given by bl = 0 ; but it is not DFR

since it must be log concave. As bl increases from zero (thus
decreasing B8}, bZ increases but less rapidly, and the distribu-

tion will first be DFR when bl £ bZ , attaining then the maxi-

mum mass at the origin for a distribution Rb . The equation of
1

this distribution is

(4.4) K, oy (9 =ae™

where o is the minimum solution of
l1-p-= ae-agp

(4.5) }
. a<l

Note that a solution o is guaranteed by the conditions on the per-

centile, and that for § < 1 the solution to (4.5) is unique, but for

Ep > 1 there may be two solutions.”

_Theorem 4.1. If F 1is DFR with mean M =1 , and pth per-
€p

centile Ep is given and satisfies the condition 1-p < e~ , then
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F(x) >ae™® , x< Ep
F(x) < ae” X , x > &
- = °p
and o is defined as the unique solution of ae"%p 2 1. p

Proof. Suppose that the theorem is false. Then by convexity, either
(1) or (ii) is true.

(i) F(x) < oe 7% , for some x < §

tii)  F(x) > 0¢™@ , for some x > Ep and F(x) > ae” ¥

for xfE

Suppose case (i):

Ty

log F (x)
£,(x)

log(ne'nx)

Figure 4.1

By log convexity Fx) > (:re.a’x when x > § . Construct two

e-ll(x) and e-lZ(x)

exponential curves, where ll(x) and

lz(x) are linear in x and such that

e hED) | e L

£
‘S P I F - e"l(")} s = 0
o \

0
5‘ {F(x)- e-lz(x)} dx = 0
EP
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Now clearly e-lg(x) > ae”™ for x > Ep and hence

- -a
e hix) ae” ¥ for x < Ep . Thus a DFR distribution has been
constructed with the same mean and percentile as the exponential

K(x) = ae.arx . but a greater mass at the origin, whick by lemma

4.1 is impossible.

Suppose case (ii):

log (1 - p)

Figure 4.2

By log convexity of DFR distributions there must be a single
crossing, say at S where x| > §p . By assuming a percen-
tile at S and noting that the solution @ is unique since
l-p«< e-gp , it can be seen from case (i) that case (ii) is im-
possible. "

Note that the condition on the percentile 1-p < e P
which it was necessary to assume to assure a unique value of o 1is

always satisfied by a DFR distribution for &p <1
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It does not appear likely that this restriction will limit the applica-
bility of the bounds as it is hard to imagine estimating a percentile

at Ep > 1 in a distribution. In order to prove some theorems cn

bounds, a class of DFR distributions GT is posited with mean

My =1 and pth percentile §p satisfying 1 - p < e-ep

-~ >p , 0 <x< T
(4.6) G..(x) = {c -7
T e-b2x+(b2-b1)T x> T
where b1 and bZ satisfy
-bT -b)T
(4.7) 1 - 1-; 4 2 5
1 2
(4.8) l1-p = exp(-bZEp + (b, - b)) T)
and for this class to be DFR , b2 < bl
T> § S
_— P e 1 , 0 <x< T
(4.9) G..(x) = { -7
T e-b2x+(bz-b1)T x> T

bl and b2 satisfy (4.7) and

(4.10) 1-p = e P1fp

and b f.hl for GT to be DFR .

§

Lemma 4+ ¢ Assuming 1-p < e P for every T < §p there
is a solution of (4.7) and (4.8) continuous in T , and for every

T > §p there is a solution of (4.7) and (4.10) continuous in T .

Proof: T < § : By substituting for bZ from (4.7) into (4.8) we
A -’p
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obtain
-b)T
= -b)T e -1, -1
l-p = exp{-blT -e (§ - T)(1+T) }
and it is desired to show this always has a solution b1 . Since the
distribution is IFR and 1-p < e-gp , we see bl =* 1
Let
-b T
. -bT 1 -1)
h(b)) = exp{-blT- e P1T(E - T +_T_) } - e
Now lim  hb) = efp-1+4p> 0
b,—1 -
1
Ilim h(bl) = -14p < 0
b1—°oc

Thus as the function is clearly continuous in b1 , there exists

a solution such that h(bl) =

Since bl > 1 and the mean My = ) GT must cross e

once from below and thus bZ _<_ bl

T > £ : From (4.10) it can be seen that there is always a

solution for b1

i.e. b, = - &+ log(l-p)
1 EP

L= exv(; log (1 - p))
Hence = exp(-E- log (1- p)>{l +

log (1-p)

which has a solution continuous in T forall T > Ep
Since 1-p < e’EP and My = 1 it can clearly be seen that

b, < b .|

Note that lim G..(x) = ge ¥
T—0 T

where a is defined uniquely

by (4.5). This limit will be denoted by G (x) .
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Use is made in the following theorems of the fact that GT
and F must cross at least once if they have the same first mo-

ment. The various possibilities for the intertwining of log GT

and logF are shown below.

T

£ x T S x
1 | I
| | |
l | :
| |
| ! ' '
log(1-p) — —\! |
|
s log G |
{ ’g T log(l-p) | — — — log F
log F ‘
log GT

log(1-p) log(l-p)

Theorem 4.2: If F is DFR and has first moment H =1 and
pth percentile &p given, and also 1 - p < e-gp , then
e-blt ;s D <t < 13
Fo< { o = s
e , t >
a Ep
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and the inequalities are sharp. b, is defined by equation (4.10)

1
and o by equation (4.5).
Proof:
0<t< %P . From the log convexity of F(x)
F < t) 0< t <
() < Gg (t) <t< Ep
o)
t > € From theorem 4.1,
— B
F(t) < Gyv t> g I

Theorem 4.3:. If F is DFR and has pl=l and pth percentile

Ep given and also 1 - p < e %P . then
rare-at O g 6
F(t) > - . P
S lg g 2lt t > ¢
o
where b1 is defired by (4.10) and o by {4.5). The boundissharp.
Proof:
0 <t < Ep : This bound follows directly from theorem 4.1.
EE <t <o The proof is obvious. The bound is '"epsilon"

attained by lim CT(x) : ”

T— o

Theorem 4.4: If F 1is DFR , M) =1 and the pth percentile Ep

given and also 1 - p < e-gp ; then

or
F(x)dx 1, byt 1
S; >{(l—gl)e R T thP
- 11
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where bl is defined by equation (4.10) and b2 is defined by

the equations (4.7) and (4.10) with T = Ep

Proof:
For t SEP: Since F(x) < Ggp(x) . X < Ep
o
S F(x)dx > (‘xcg (x) dx , t <§
t Lt P P
therefore
o A 00
S‘ F(x)dx ( Gg (x)dx
t S ot p =(l-%)eblt+%
Fiy ~— c‘:s (t) 1 1
P
For t > § : The proof will be treated in two cases based
on the crossings of GE (x) and F(x) for «x > §p
P
Case (i): Consider the extremal distribution GE (x) and let
P

it cross  F(x) at u(Ep) > £p . Obviously due to log convexity the

crossing is from above.

Since Fix) < Gg (x) x < u(§p)
o i 00
5 F(x)dx ‘S GE (x)dx
e = L P t < u(€ )
Fio = G (v - P
P
Now by Theorem 4.1 ¥ (x) < Go(x) for x > Ep . Thus due

‘o log convexity of F(x) , for every x , u(ép) < x <o, itis

always possible to find a valne T, 0 < T < Ep , such that

u(T) = x
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[» o
rf(x)dx S' GT(x)dx
* t t
Ol > inf It 2 U(Ep)
F(t) T_pr GT(t)
Case (ii): u(€ ) =§ . By a similar reasoning to case (i) it may
=  =F P
be shown
o0 o«
S F(x)dx GT(X) dx
t inf t ;> gp
F(t) T<¢ GT(t)
1
= inf
T<¢ Ez
- P
1 *
T =y where b2 is the value of b2
b

2
calculated at T = Ep ”
Thus, the lower bound for the mean residual life while not
trivial for t > Ep is nevertheless not dependent on t and so can

give no information on the merit of continued burn-in.

Theorem 4.5: If F is DFR and M =1 and the pth percentile

3 is given and also 1 -p < e-EP , then

C
F (x) dx S G,y (x) d
t

Flo  ~ Gyl TP

74
i
Qi
-
A
ury

Proof: The proof follows directly from theorem 4. 3”
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Theorem 4.6: If F is DFR with first moment py =1 and
§

pth percentile Ep ,and 1-p< e P , and has hazard rate q

then q(t+) >a , where o 1is the solution of (4.5).

/

The bound is sharp.

Proof: The proof follows directly from Theorem 4.1. ”

Theorem 4.7: If F is DFR with p1=l and pth percentile

Ep and 1 -pc< e'EP and hazard rate q then

_ r o ’ t = 0
q(t ) <
= 1b
1,
where bl is the solution of (4.7) and (4.8) for T =t , t< Ep j

and b, is the solution of (4.10) for t > Ep . The bound is sharp.

1

Proof: t =0 The bound is trivial and is attained by the distribu-

tion GO

0 <t< §p: By the log convexity of the DFR distribution it

can be seen that at t

q(t’) < b
t > § Clearly by log convexity
— P

q(t’) < b

The bound is relatively trivial and is "epsilon attained'" by the

distribution lim “
T
T—wo
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4.2. Bounds Assuming the First Two Moments Are Given.

Barlow and Murshall (1964 ) have given bounds on the survival
probability of the DFR distribution when the first two moments are
given. The same methods used to bound the survival probability
may be used to obtain 8harpbounds onthe residual mean life, the
failure rate and the density of the distribution. These bounds are

stated below and proofs for them may be found in Lawrence (1364).

or
F(x)dx
(4.11) w, = — > K
F (1)
or
F(x)dx
t4.12) be : t < l*
F () a,
- *
(4.13) q(t’) < a)
(4.14) q(t") > a)
[ , t=0
-a,t
p et
- 2
sup a exp(-a t) 1
.g. <ag<l
“z -
max< gt = a‘exp(-alt) > l<t<’Jz
= > ’
(4.15) £(t7) < T2t - -
sup a,exp{-a,t+(a,-a,)T)}
T :t 2 2 2 1
e _
[ sup aZexp(-at) ]
£ cacl .
max .< rg >, t> 2-2
sup azexp{-azt+(a2-al)T}
L T <t
- - -
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[ inf o?exp(-m) o
-2- <ac<l "
“ — ——
minéz >, Oftfzz
(4.16) f(t+) > < 'irnf<t azcxp{-azu»('az-al)T}
M2
inf azexp{-azu»(az-al)'r} . t >
T <t -
Where a; , a, are the unique solutions of (4.17) and (4.18) with
T =t
(4.17) = a;l(l -cxp(-alT) ) + aél exp(-alT)
M2 2 L2
(4.18) ~ = a, {l-(alT+l)exp(-alT)} +a, (aZT+l)exp(-a1T) :
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