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ABSTRACT

Modifications of the basic balloon-shape equations are developed for
cylinder and cylinder-end bailoons, taper-tangent balloons, and tangent-
harness balloons. Examples of the shape of these balloons are presented,
and corresponding meridional stresses are determwned. Zero and non-

zero circumferential stresses are considered.
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DETERMINATION OF THE SHAPE
OF A FREE BALLOON

Scientific Report No. 4

I. INTRODUCTION

In a previous report1 the general equations were developed for deter-
mining the shapes and stresses of axi-symmetric balloons. In succeeding

reports examples of various balloon types were presented. In this
report three additional types of balloons will be considered: 1) balloons
with cylinder-end sections, including those completely cylindrical;

2) balloons with taper-tangent end sections; and 3) balloons with the pay-

load attached by a tangent-cone harness.
II. GENERAL EQUATIONS AND SOLUTION

The general equations1 for the shape and stresses of a balloon are

de _ ' 1
a—g—[tcz -wTrT —br(z+a)]/(1'tm)
" ) (L)
dirt_)
__d_n}_:t r+wr z,
s fod ‘
and
r' = sin®
z'=C0-‘-e,
-~ - l -
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where the prirae refers to differentiation with respect to gore position para-
meter (s). The symbols used throughout this report are defined in Appendix I. -
The equations in (1) are derived respectively from summations of the forces
normal and parallel to an elemental rectangular area of the balloon surface,
These equations are restricted to balloons made from thin, flexible, inelastic
material; they may be solved numerically by the Runge-Kutta method. The
solution is started at the bottocm of the balloon where the payload is attached.

An estimate is made of the bottom apex angle. The initial meridional stress

(tm) is thereby determined, since
r t L
o

m 27cos eo

The value of the circumferential stress (tc) may be specified as desired.

Values of the variables are determined by successively incrementing s.

The solution is complete when the b:lloon shape closes at the top.

iy

e
h

Several methods have been presentedz’ 3 for determining the balloon

IR

weight and volume. It has since been found that a superior method includes x
the differential expressions for weight and volume as part of the above set of

simultaneous equations defining the balloon shape. The equations to be in-

cluded are

1

\

fl

[W¥]

=
LK

ds -
dv _ 2,
aﬂ'—s-—7rl‘ Z K

As the total number of gore increments is increased, the volume and area

converge to final values about as rapidly as the balloon coordinates converge.
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III, MODIFIED EQUATIONS

A, Cylinder and Cylinder-End Balloons

Figure 1 shows what the shape of a cylinder-end balloon would be if
= all the material were fully deployed.

5:%:-

= !

i

i

Figure 1. Sketch of cylinder-end balloon with end sections opened

k)

-

A cylinder balloon is treated as a cylinder-end balloon whose cylindrical

portions meet. Except for the cylindrical portions, the balloon is fully
tailored and has a constant material unit weight. The cylinder ends are
treated as portions of a natural-shaped balloon which have avarying material
unit weight. When r is less than T, {in Figure 1), the weight of an

elemental circumferential band of width (ds) is-clearly

oo

w(2T ro) ds.

o

(This weight and the expressions that follow are the same in the upper end

section except that r_is replaced by rl.)

T
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Then the effective weight per unit area is

BN

«{(27Tr )} ds
_____G.__._ = W(r /r)
27r ds o) )

By replacing w in Equations (1), we have in the cylinder-end sections:

\

g_i_z [tc z' - w(r ) r' -br(z+ a)] /(xt )
\ (1a)
dir t_) " ) |
—5 =t r'+ w(ro) z'. )

The form of r', z', and %g- is unchanged, but the area equation becomes

da _ -
E- 2"1‘0.

To find r o, it i3 necessary to specify the initial meridional stress (tm X
The total film load is -0

-3
I

- 0y
L/coseo =21 T, tmo,

SO

Le
1]

L/(Z'ﬂ'tmo cos ?o).

The initia, .n. ridional stress is known from material strength considerations.

As s is bein; incremented, the stress will exceed its original value because

PRI T REE O P L R

3

of the materizl weight. When r = T the shape equations revert to the form

il

il

?of Equations (). Finally, when t reaches a second predetermined value,

SEquations (la) are used again with r_ replaced by T

SR
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B. Taper-Tangent Balloons

As was the case for cylinder-end balloons, it is helpful to examine the

shape of a taper-tangent balloon as if all the material were fully deployed
(see Figure 2).

Tangency points /

Figure 2. Sketch of taper—taﬂgent balloon with end sections opened
i {Note: s, = 0)

In Figvre 2, it is also clear that in the areas where there is fullness due
to tH’e taper-tangent end section, the weight;:oi an elemental band of width (ds)

is

w(21) {ro + (s - so) sin/?} ds.

“In the lower end section T, and 8¢ are used; in the upper end section
) and sl- are used.

|
|
|
i
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g—?:[tc z! -w{ro+(s -5.) sin'g} r'-br (Z+a)J/(1‘ t)

The modified shape equatiyns are then

> (1b)

d(rtm) .
- f 3 PP
T'tcr +w{ro+(s-so)smﬂ}z.

: The area equation is

%: 2. r + (s - so) sin/?}.

Balloon shapes of this type are computed in much the same way as the bal-
loon shapes of cylinder-end types. The angle./f may be initially specified
as zero. The actual value is then found by iterative trial and error. After
r passesits maximum andafter t reaches a specified value, / is set to

equal © ; T, becomes T S, becomes s and the shape equations used

1’

ciiange from the form of Equations (1) to that of Equations (1b).

C. Tangent-Harnesgs Balloon

In previous reports and up to this time, all payloads have been considered

ito be applied at the axis of symmetry. For the tangent-harness balloon, the
épayload is attached at a circumferential ring: There are several ways this
gcan be done. The particular method we have chosen herein applies the pay-
éload tangentially. There is a discontinuity in meridional stress and in radius
of curvature at the ring, but no discontinuity in the slope of the shape curve.
The balloon is approximately spherical below that point. The method used

‘to compute the balloon shape depends upon the circumferential stress. Two

stress conditions are discussed below: meridional and circumferential stress

equal; and circumierential stress equal to zero.

3
g
=
=3
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1. Meridional and Circumferential Stress Equal

¥t =
c

R = R_; then
c m
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tC with tm’ the first of Equations (1) becomes

wr' + bz + a)

ao_z
ds r

d(r tm)

ds = tm

t
m

r'+rt ',
m

t = wz+t
m m

o

For initial values, note that at the bottom of the balloon,

t t
-_<c ., m _ T .
ba +w=g-t+ g Ztm/‘lm,
c m o o
or initially,
do _ -1 ba + w
ds R 2t ?
m m
fol o
where a, w, and tm are spccified.
o
-7 -

t Equations (1) may be modified and simplified. By replacing

If the left-hand side of the second of Equations (1) is differentiated,

and is set equal to the right-hand side, rearranged, and integrated, then

90 = 90° and

£
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During computation it is more convenient to use the differential form ~
of t . Then,
m

do_z' wr'+b(z+a)
ds  r t
m
4 (1c)
dt
m 1
- wz'.

7/

These equations are integrated from the bottom upward until a specified

payload attachment point is reached. At that point tm is increased by
L/(2Tr cos 8).

. The computation is continued until the balloon closes at the top. To yield a
; flat-topped balloon, the proper a, t and harness attachment for a given

w are found by trial and error. ©

2. Circumferential Stress Equal to Zero

I tc = 0, Equations (1) become ) -

%§-= - [w r! + b{z + a)] /tm
‘ (1d}
)
/
Note that this case is not quite as'simple’as the case where tc = tm’

because the second equation does not now integrate directly. The initial
1

0 .
value of Is is
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Note that this value is twice zs large as the initial value when t. =t

The initial values of d{(r t_)/ds and rt_ are zero.
m m

By differentiating r t

dirt )
—-—d—m—z r't +rt ',
) m m
we see that
T' tm
t '=wz'- Swcos ©-t (sinB)/r; {(2)
m T m
and for t finite,
m
lim t '-» -ocoat the bottom

r--=0

—e + 00 at the top.

This result could have been anticipated from the previous findings for zero-
circumferential stress, natural-shaped free balloons. 3 At the top, not only
t ' but t approaches infinity, because r t at the top is finite when

m m m

r=0,.

When these equations are used to find balloon shapes, observe certain
precautions: First, it is not possible to start at the top or the bottom and
use Equation (2) because of its infinite character. Therefore, it is neces-
sary to use Equations (1d). Secondiy, at each point on the balloon there

must be correspondence between rtm and tm. It is finite, (rt )

o o
is zero. At the outset r t will change very little; during the numerical

evaluation t will tend tc be a very small value rather than the specified
value te - This will cause d&/ds to be unrealistically large. However,

o
by initializing r tm at an arbitrary finite value, the numerical




* integration will proceed smoothly, This amounts to spccifying tm at a small

but non-zero radius r; tm will now be infinite at the bottom when r = 0,
For the balloon designs which would use the tangent-harness concept, it is
not desirable to use the material fullness and special end fittings required
to accommodadate the extra-high stress. Therefore, the shapes of such

balloons, where t. = 0, will not be presented.

IV. NON-DIMENSIONAL EQUATIONS

The equations in Section III are most easily used by reducing them to
non-dimensional form. This is done by using the proper combinations of b
(the unit buoyancy of the lifting gas) and A (a length proportional to the
volume of gas required to lift the payload alore}). The results will then be
independent of the altitude, the lifting gas used, and the paylocad. The non-
dimensional equations are listed in Table 1 and the symbols are defined in

Appendix I. The differential equation for volume is

L ute

Volume and weight are related:

bv=P+W
or
v w
— = 1+-——.-
3 P’
X
The weight is
W 2
=k Z(a/").

Remember that the area used for balloon weight is the surface area of the

balloon material--not the area developed by rotation of the balloon shape.
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Table 1. Non-Dimensional Forms of the Balloon Shape and Area Equations*

Fully Tailored Part

de

Gos [Ts %2 gt -gig ] is 7y

d( f)
—Sa——_‘}:'g +k25§

z‘r‘;(%)=2'§-

it B s W, s ¢ 0 s

A

1
i
;
|
]
|

]
=
&
2
|
E
=
=
=
=
gl

Cylinder -End Part

g7= [‘ré' -kZSvO g -g({ +o<)]/(§‘2’m)

.
St

s s,

Taper-Tangent-End Part

EE:[Té k2{§ + (o - d)mn/}g 5’(§+0C)]/(5'r)

d (e T,,)
—%—— TC'+RZ{S’ +(0-0‘}smlg}§

E a(-i;(iz) =27/'{§°+(c7-d‘°) sin/}.

A

R s A M e

" Note: In this table, g‘ = sin & and é’ ' = cos 6.
' - 11 -
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Tangent-Harness Design (t = 0)

kLo g

Tangent-Harness Design (l:c = tm)

de _g' kZg'+§ +K

do S ’Tm’
d‘rm
-—a-’—-‘—‘ kz‘é'
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LA {k25‘+4’ +a<]/1’

Table 1. Non-Dimensional Forms of the Balloon Shape
and Area Equations (Continued)
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V. RESULTS

A great deal of effort and computer time have been required to find solu-
tions to the equations in Section IV. The existence of an equation does not
imply the existence of a solution. In each case it has been possible to find
solutions; but the search for the proper combination of parameters has been

tedious and at times frustrating.

In the following paragraphs all the results are non-dimensional. When
applying these or other previously tabulated results to an actual case, note

the following: From the definition of Z,
b=w/kd ).

From the definition of Tm’

o o
By equating, we find that
tm
A= DA o)
Tm w
o
Since
P=bA,

a load-altitude curve can be calculated for a given Z ) Tm , and (tm /w).
For example, for polyethylene at 400 psi stress, (tm /w) s approximgtely

constant at 987 feet for all sigmas. °

In all cases one of the boundary conditions has been that the balloon

shape must close with a horizontal tangent at the top.

- 13 -




A, Cylinder and Cylinder-End Balloons

1. Circumferential Stress Equal to Zero

Figure 3 shows the shape of a cylinder-end balloon when sigma varies
%and when the initial stress is constant. A value of Tm = 3.0 was chosen
so a sigma as large as 1.0 could be used. For lesser values (fm = 1.0)

:there is no solution when sigma is as large as 1. 0. Corresponding results
gfor meridional stress are given in Figure 4. By comparing Figures 3 and
4 we can see that the shape changes at the top from fully tailored to cylin-
%drical when Tm exceeds 3.0. This is an arbitrary value chosen to main-

%tain approximately the same stress value in both cylindrical ends.

‘ The effect of changing the initial meridional stress for a constant sigma
1s shown in Figures 5 and 6. The dashed lines show th: shape of the cylinder
éends. Again the change to a cylinder occurs at the top when the initial stress
%value is reached. For the example chosen (2: 0. 2) the balloon becomes a
full cylinder when tm is slightly larger than 0.4. When ;{"m = 0.4,

g;the cylinder radius is goreater than the maximum radius of the balloon shape;

gso in effect sigma is slightly larger than the initially specified value.

Gore lengths and weights of various cylinder-end balloons are shown in

éFigures 7, 8, and 9.

- 14 -

4

%
2
4
:
£
g
g
=
:
)

AN




PR ¢ . s
M es B L wasdga 4 v «
ORI SIS HEEH IR D ; T
S (S S| S S N
|t AR o ddid o &
H " ‘. W gt
e J RS EEN S od
- N 1 S s Sheet
e i ey ee v Lo BRI
I P P S
. I I SN ‘- g N
Ty . e ' H . SR B RETRE 1Ys
H = « ....g. vadw b -
o~ . - b . A\ d
RS PR DU TN ”.r.m . .
“ e ‘. M- ,
. PR g o« g ow
DN X . . ] . + “w
- - N I JURA BN
. . mew o v s
NP R ¥ '
P B S
R P S . Ve
Caww - - . vl ! N
PSS N S ‘e e
.. e R I ,
I
T § e o |
‘. .
.
e
brove cemet wwinee o
O
__ o
.
Tli......—l.l..j .
1
. N 1
: i
X
P e g

1.5

e fomiee PV -
I S P

P

v

oa L i
R

f
I
!

[P PR q; .

- 15 -

r/x
Shapes of balloons with cylindrical end sections

and an

.t

1

tial stress value of 3

The dots indicate the boundary between the

cylinder-end and the fully tailored part.)

. __V
] . .J._W
: | " ! o
L -
. e . U = Z
S SR ¥ N S N -~

- i

(Zero superpressure, zero circumferential stress)

(Note

3ed Bend -

- *
: i1 i o
1™ »d I8 8 “ B
LR} * a“ty \ e
1 iz f. 3]
i e u g
2 : : :
. . RR We
Halie e C7
' ﬂ Y EEL
. P g o1
b @y ..m.._»
,
i THLLL HEPES
i
Hul gidon T
BT
- 1
8 Byt sipda

Slvy




vy
o ¢ - W gt pn— wh w w n pe g PRV W,y g i
B I TS L ACN IR . g e T g -
! PP Gebad BAS | SR Rt 1
LERERE T :
ot pwe pi __z,.r g 4 v
.—». [} m
1 Ja |
<041 Apedsn o e n
- Hﬂ (oAl yBER!
! . U et ey vhey s
EERE IR P o evyed M _
ERERE vodt BRI . i i Enak!
presdie LY o 1
; e .! g & I i b
NI Iatdoply [y p i 1o
! RS ESRaE & i LH
I g ! ! i
; - - wogn

Toeg § e s

, -4 .,w 4 “_.A 43
" Jie v +

;ﬁuh 1.8 frtaberiihi

o =1 | e TS

H

2.1

b

*
> B

-

~erd2 § —}

=t foy i
3 ==f$ rud

.

oo & 4

P
.

e

inder-end balloons with an

I
' | ' )
1

s/
1

(Zero superpressure, zero circumferential stress)

[E B

.

[
»
s BT i Ao c IRES ey g 5,
. o ; RdRIRERE D AN ARREY IR O '
SN IR SCE E EARIN PR MUCTY BRI SN AN
" ...J.“...,,.T...... e b e s o (o] O
, . .. i “ § hora L o . o)
) o o S i i e ~ Q
PUNR T r— ot smpepumgon e ) (7)) u '
. , . 03
. B AU Q5
e J Cped | 7]
.t yr il
L)
: - - O
S NS m,u
T g
. . 1
T Ta
it o oyt
[ - ﬁ
: h
,.: i i m e )
-tk .,L ._.m.. ot ;.
ir (ARt B Doy 1
if e Is 1oL |
3 F;W : bbrt h
: il : - L Ty ,
3 e ki Sginibegity Li \
71 r

3
]
|
:
~re

=
Tt

;

1

It

porpm

Figure 4.

U g nruagy wea T "

pi e i

ey 1] AT - +
o > “w 3 gt g !anr.w.»

, 553 R T F1w+

e L :T:LT. Fypul fuge -
(3 o . 4 G

L3ae.t L =3 . * oy ’ SCERIYE L)

-
ui
1
[
-T-
it
i
&1
!
-4
8
4
:

b«
ks

257

|
!

. ' . " * 1 [ T ¥ .
[

, . | « . ]
. i
N , . Cima e s [———" troms w4 1 ieneng [ 7T | R ]




-
.

W s ;
—
o~
b
.n .
o o
<) ! 8 0 S
Q_~ 1 « n (5]
- w 9 H 4
g o ! g e S
m 2 D = o
b = - (8] o’ Q ,
K o o (] ool uu |
G 0 IS — [+ b.nu Py~ i
J o= w | i~ I £ _
b (o] Q e ~ o) -
Y - T |
gl 8! 7§ v
7 n | m m S i
(3} ]
. k= o
‘ C g
- O o *
“ o N . _
L -u 123 y M |
. 3w g “« I
SR A @
H 0 g =4 [} )
: ~ o @ .
LA owm® o
' ] o I £
_a—,_ u.u.m ¥ 7
iﬂ.. ; . aﬁ m e
' — . bol 1)) h
' f.m N b
RN o BON
N vhEogs &
IS T B DN [« TR 01 Q
B dEOu 2z
i1 r-a N c
:.!ilﬂ..:.. N >~ ** )
<kl ) “‘
L odd 0
gl g ,
_1:.,.4.... - wo
ik 4
T
~N

p R e R e L

:.
tf




oo oI EHRIE Rt B R o

iy g gy oy agar =
P

,...512 .:_....x
; .
. N I

v 0 b R

S 1L

L X - - W

" “ N ww i ¥ t
O m e b !
S RS B T re .
T T ; o 2
R TORNE T b SORRIERE:
N A A 1 't e BarRs “r....“
caba [ .m‘. + “ A Frodbsy § oo N Fpbefde bl
: . s RN 43R KR ¥y ....._ RARA .
: 20 HEEeN SRERREANE

.......4 .
N
M S
. e
T N
X .
' . « s
+ AR RS .
CEE . R [ .
s s " ...........,‘*ll..:.........-t.,.:m R
g T
. L.
PR
.
'
t » .
P v o s § s
; ! - ,
Ca . i

IR N
1} o

)

S -

0" {0

Py

T
Fps

R

i

]

2.4

1.6

1.2

s/A
Meridional stress in cylinder-end balloons

with varying initial stress

\
nessanprnd

0.2)

(Zero superpressure, zero circumferential

stress, 2,

Figure 6.

» »

i
¢ PO ey

" !

A g

[
P

-

- 18 -




al stress)

2
&

ferent

essure, zero circum

WSO SR T T T T

|

Gore lengtn of cylinder-end balloons with various
values of initial meridional stress

(Zero superpr

Figure 7.

528




o T T R e PR v

L e

e’
e

) u.x

Sl ey s Bl
TR TS i

by e, g ol

IRV,

(s82X35 TBIIUAIIJUWNDIID 0I2Z ‘sanssaadiedns ozxay?)
89338 [RUOYPIIDLL
TBI3TUT JO sanjeA SNOTILA YIIM SUOOT[RY pus-IapuljAd jo pue suooileq [edtisyds Jo yfiapmy

‘R san8ry

0.8

0.6

0.2

, Tt = h SR T
S N S S PEIN E ST A PS¢ PP
m RIS L BT TOREY TN PR B I
— E 3 SES1 LS ARNT] R
T T ST
. . ] N
o ! Ted i 2 RT3 SO NN RSN UL
SPRIN SN SRR .+ NSNS N S SUPE X AN SN B | S —
ool e . v a Mo
§ ¥ ! i * " _ w ‘ e.
- _ri .t . e w ' ; { e e N ,‘w AN
¢ m i | | .- . ;
R R EEE T A A - 9 :
. , i , N ,
R B \
PN ! P (.
. el
e ke e e v b ] b
! ! vt
' i
. . Py ! g .
I i § . ! Am ,
w oo o
N O I e
P! ,
. i ' .
P
. “ ‘
.. S S ‘
' P o
I N e}
R EEN R L
e e o R . oy
T TR P P A b o2
; : S S B f.m s wd L
S S -t __ s e i “ :
” ot F bl b
ST N IR ' ! R K
43 RN ERE~s DR SR T o _ L
T nt.hhrm: : N | ! , -




PRI

w/P
: LLEGEND
i ! -
SIS SASIRPIIS SSUN U I 4 e Rl e e
i , T {Cylinder end
5.0 ; e }‘; - - T _ﬁ“;r—!
‘ { Ltaper tangent
(S/A)max _N—*:" o Y T Asymptote
N
-
2.5 !
2.0 : - <
0.4 0.6 7.8 1.0
T
m
o

Figure 9. Weight and gore length of balloons with cylinder-end and
taper-tangent end sections and varying initial stress
(Zero superpressure, zero circumferential stress, J,= 0. 2)
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2. Circumferent:al Stress Equal to Meridional Stress

Note that 1t 1s not possible ¢ have circumferential stress equal to
meridional stress at the bottom of the balioon when the .payload is applied
at a po:nt  Fullness of some kind is required and therefore circumferential
stress must be zero. The circumferential stress remains zero until the
radius of the balloon exceeds the radius of the end section. At that point

in this design. circumferential stress is set equal to meridional stress.
g q

The conditions studied were for zero or low superpressure and for low
material stresses. Specifically in the superpressure range of 0S X< 3
and in the typical polyethylene meridional stress range of ’[.fm =1 or 2,
no solut:ons were found for balloons with a fiat top. The suddén change in
circumferential stress was the complicaring factor. Ali solutions wern
. either too small--resuiting in a peaked top, or too large--resulting in a re-

" entrant top. There were a0 intermediate solutions for the conditions studied.

' An example of the shzpe and stress for a balloon with some top loading

15 shown in Figures 10 and 11, The characteristic inflection in the profile

15 apparent. The discontinuity in meridional stress is due to the introduction
Eof ~1rrcumferential stress. Because the meridional stress continues to increase,
“as opposed to the designs 1n Figures 4 and 6, the upper cylinder-end section
‘starts immediately above the maximum radius, The weight of this design is
W/P = 0.979: the load at the bottom is L/P = 0.585; the load at the top is

F/P = 0.315; and the volume 1s V/)\3 = 1.979.

From a practical standpoint it would ve bettar to increase circumferential
stress smoothly from its initial zero value. This would permit flat-top 3olu-
tions at zero superpressure and would probably make it possible to carry the

siresses equal to the verv tep of the balloon.

This design could be an alternate solution to the problem for which the

taper-tangent design was evolved.
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equal to meridional stress in its fully tailored section and

Shape of a cylinder-end ballecon with circumferential stress
(Z

BE=TYMITT) COET ADENE IRETTINESE FEIN EECH EEad BYE Ik J
R A2 SEONE EEES CAREY I X8 FEAE FEb il
: ML e S L, :
x i ﬂ.r, FERZINUET FEDU RETY e }
e et GRannRias SRR EUNCY SEEPS L, SUpUN: L0 i Lo ﬂ
«s Bubun B ‘e .
D G L 8 PO 1 .
B ) T . g
1 1 , oA . < .m |
N At N O AP < 8 o~ :
. AT d " 0 ! ﬁ
e b e e g g iy —t 2 Ve o~
Tfreg L . UM 'R _ A - n o N b
T ] Ir e = ?ge _ |
ENETY IES b KRR — N IRS) § IR ;w ©on ,
CTERTIL P ‘ e
1l LR : : ‘ Ho~
RS (3 PR iy % % NN .u.. A 50 P
SRR EN % I ot ST SO I L o H RN 0%
[ & Joeiiifrioermer oot ] DU | DO e N
1 r i gt <1 + ] o elolo
N
o—°
o -
..mO
o
@

(L/P

Figure 10.

4242

i g g l ‘ l { - iy ‘ g ! i i - g0t _f ‘ AR ”:_a.__“_iww nn__a.:,._xu “ﬁ_.ﬁ .,_- E E
R A RO A AR B A 0 WO S R B,




RSO MR

e R A

JURPRINEEIT Eb T IT RSP

o

- 24 -

] m '
-
g )
oo s
B+
, 29
= ]
e 1000 .L;lx H.mqu o] m m wN
dopball: fiistiisy =8
wh R Rake yARM o
T S 3 QL
¥ [kt & ) [™
"'rm JCoRN BN o v
28 s v
+ 1l M O
[l epra ¢ e ™ ]
3 1ol ] T -
L IRAR m m
v pit o
e : W. 8
i 800 N
- =] «Q
.An... s pnd r 8
ﬁ.lu. | et )
0 o
Ty
«
et
3
o
o
H
o
|

ts fully tailored section and equal to

—
[Ty]
o)
o
=)
1"
o,
% ~
m =F
t -
0 md%
! 62
= Feibiy_
.mm % o__
M SOP
S KUY
. &N
sog50d ‘

Figure 11.




!u e . ~ u

.

B. Taper-Tangent Balloons

Taper-tangent balloons are much like cylinder-end balloens. Thus,
examples with only zero circumferential stress are presented here. Figures
12 and 13 show the effect of varying the initial meridional stress for a constant
sigma = 0.2. Important differences between these results and the results in
Figures 5 and 6 can be noted. In the top of a taper-tangent design, the change-
over from the fully tailored section to the end section must occ.r at a meri-
dional stress value lower than the initial value; otherwise, the final radius
will tend to be small and will result in excessive meridional stress. In Figures
12 and 13 the changeover was made arbitrarily when the meridional stress ex-

ceeded one-half thc ini* ul value. However, when 'me equaled 0. 8 or less,
) o)
the meridional stress always exceeded one-half the initial value and the change-

over occurred at the firstpoint above the maximum radius.

In general, taper-tangent balloons are heavier than cylinder-end balloons.

The gore lengths and weights are shown in Figure 9. Note that when ”Cm is
. o
reduced to about 0.4, the taper-tangent and cylinder-end designs merge into the

full-cylinder design.
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C. Tangent-Harness Balloons with Meridional and Circumferential
Stress Equal

1. Method of Calculation

Considerable difficulty was experiencea in determining the shape of these
balloons. Rather than closing smoothly at the top, the balloons had re-entrant
or peaked tops. Examination of the first of Equations (1c¢) shows the reason.

By re-writing this equation. -

gl_g_cose b{z + a} + w sin @
ds ~ B )

r t
m

Usually, z and w are negligible by comparison and tm is approximately

constant. So

de _ cos 6
ds © - - a constant.

Cos A and r are small at the top. So as r decreases, (cos 8)/r will

tend to become large--the direction depending on the sign of cos . Only
i if all the balloon parameters are chosen correctly will (cos @)/r behave

{2 a constant). Divergence at the top is the rule rather than the exception.

. Trial and error is used to find the proper combinations of parameters. Fer
a parricular application, one would usually choose a material weight and
des:red v.orking stress. By combining these factors with knowledge of the
payload, inflation gas. and cperating altitude, 2, and initial 'lfm become
fixed. By varying harness radius ande{, a solution can be found wherein
the balloon will close at the top with the correct curvature and will have the

weight and velume in proper proportion. The top cu#vature should be

b{z + 3} - w

2t ?
m

where z and t, &re thevalues atthetop. As usual, the weight and volume

relationship should be
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2. Numerical Exampie

The example chosen is for a balloon at 100, 000 ft carrying 300 1b. The
material weighs 0.0115 1b/ftz and the working stress is 174 1b/ft. The lifting

gas is helium and the sugperpressure is 6. 34 lb/ftz. The fixed parameters are:
A= 68.80 XK =100.0
Z2' = 0.3358 T, = 40.0

o

The shape is very nearly spherical. The ratio of minor and major axes

is 0.994. Stresses vary as shown in the following table:

Location Stress
At Bottom 40. 000
At Harness:
Below o 40.004
Above -'-‘13. 260
At Equator 43.414
At Top 43.570

The weight and volume results are:

W/P

1.69 and W = 507 1b

3 3

V/ix 2.69 and V = 876.000 ft

For the above conditions, 1t is interesting to see that the harness radius
must be about 0.19 (13.1 ft).
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APPENDIX I

DEFINITION OF SYMBOLS
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APYENDIX I

DEFINITION OF SYMBOLS

The symbols used in this series of reports are defined below and illus-

trated in Figure I-1.

Szmbol

a

b

Definition
pressure head at bottom of balloon

difference in weight densities of air
and inflation gas
constant = (27,")'1/5

gas piessure across the balloon
materizl

radial coordinate of a point on balloon,
measured normal to the axis of sym-
metry

circumferential stress in balloon
material

meridional s:ress in balloon material
constants

gore coordinate of a point on the bal-
loon., measured :n the merid:onal
direction from tne bottecm apex

unit weignt of balloon material

height coordinate of a point on bal-
loon, measured parallel to the axis
of symmetry from the bottom apex
area of balloon surface

buoyant force on ballocn

vertical load at top apex of ballocon

I-2

Dimension

length

force per unit -olume

force per urnit area

length

force per unit length

furce per unit length

length

force per unit area

length

length squared
force

force
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kP

il

Q

t-t

gross lift of balloon = b V

payload suspenced at bottom apex
of balloon

ballson total payload

radius of curvature in the circum-
ferential direct.on = r/cos &

radius of curvature in the
meridional plane

total film locad = 27 » ¢
m

ba.loon volume

balloon weight

rtm/P= gfm
:a/A
= z/A
- f?,’b)1/3
= r/‘)‘
= s/A
2
=t /bA
2
:tm/b)\ -

1/3

= {(2m {(w/BA)

force

force

force

length

length

force
length cubed

force

= angle between the balloon material in the end sections and

the axis of symmetry--if the end fittings were released

and the material fully deployed--measured in a plane con

taining the axis of symmetry

= angle between tangent to the balloon surface and axis of
symmetry, measured in a plane containing the axis of

symmetry

I-3
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i View of balloon showing
! location of surface element

btk

t
m

Balloon cross section

Element of
balloon surface

Normal
to surface

Ernlarged view of
surface element

Figure I-1. Pictor:ial presentation of principal symbols
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APPENDIX 11

SPHERICAL BALLOONS
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APPENDIX II

SPHERICAL BALLOONS

A balloon with minimum possible weight wouid be perfectly spherical.

The volume and gore length of a sphere are derived below in terms of the

design parameter (Z). Symbols are defined in Appendix I.

The gross lift of a balloon is
bV=W+P.

The weight and volume of a sphere are

W=47 r2 W
‘ V= (4/3) Tr;
SO
W= 47w (3v/am; 23,
Thus,

/3

bv=36em/3 23w+ P

By non-dimensionalizing and noting that

P=bA>

kz‘:W/bA’
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we have

2/3
Y=1vagt/3 Z(—V?) , ey
A X
The weight, as usual, is
wov o,
P~ "3
A
The volume is conveniently solved for by iteration. Let
y3 _ vV
= —5;
A
then Equation (1I-1) becomes
v =1+ 08t/33.2 -2

Also let
y; = an approximate solution to {II-2)

a better approximate solution to {II-2}

<
(WX
1

¥
"

the value of }; for which vy would be a solu':on

e =173 1.
'8.." \Yl ’——'2_

o

i

..

*Scarborough, J. B. Nvmericalmathematical analysis, thirded Baltimore
Johns Hopkins Press, 1955.




The gore length of a sphere
s= 7 r.
By introducing the sphere weight,

4
T4

|

Then by non-ciimensionalizing,

BF () () )

Results for volume, gore length. and other physical characteristics are showr

in Table II-1. When 2 = 0. the gore length is determined by our knowledge
of V/ 7\3. By combining volume and gore length,

. 453
Vo= Z S
.s,,rz
or
V. _4_ _5)3
N o3rl A

But when Z = 0,

>«

A simple check of Table iI-1 will show that the various powers of gere length

and volume are not mutually compatible {e. g., forZ = 1.0, (2. 7527)3 # 20.85847".

However, the data in the table are correct; each number was computed to a
accuracy greater than 1s shown and rounded off to five decimal places.
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- 80O
\3 2
s - .3._25 = 7.402203301,
| A Z =0 -
and

1l

1.94889

>
™
1
(o]

s

—

|3 =0

3.79817.

"

For comparisor, the weight of spherical balioons isplctted in Figure 8.
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