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f DETERMINATION OF THE SHAPE

OF A FREE BALLOON

Scientific Report No. 4

I
I. INTRODUCTION

In a previous report the general equations were developed for deter-

Imining the shapes and stresses of axi-symmetric balloons. In succeeding

reports2,3 examples of various balloon types were presented. In this

report three additional types of balloons will be considered: 1) balloons
fit with cylinder-end sections, including those completely cylindrical;

2) balloons with taper-tangent end sections; and 3) balloons with the pay-

load attached by a tangent-cone harness.

II. GENERAL EQUATIONS AND SOLUTION

The general equations1 for the shape and stresses of a balloon are

do tc z w r'- b r(z + a /(r tin

d(r t M)
dsI _~ ti) r' z

and

r' = sine

z= co-,

I! -1-



- where the prirme refers to differentiation with respect to gore position para-

meter (s). Tne symbols used throughout this report are defined in Appendix I.

- The equations in (1) are derived respectively from summations of the forces

normal and parallel to an elemental rectangular area of the balloon surface.

These equations are restricted to balloons made from thin, flexible, inelastic

material; they may be solved numerically by the Ringe-Kutta method. The

solution is started at the bottom of the balloon where the payload is attached.

An estimate is made of the bottom apex angle. The initial meridional stress

(tin) is thereby determined, since

L
rt = zlrcos I

0 0

The value of the circumferential stress (tc) may be specified as desired.

Values of the variables are determined by successively incrementing s.

The solution is complete when the 6-Uloon shape closes at the top.

Several methods have been presented2 ' 3 for determining the balloon

weight and volume. It has since been found that a superior method includes

the differential expressions for weight and volume as part of the above set of

simultaneous equations defining the balloon shape. The equations to be in-

cluded are

dV 2
d z'

As the total number of gore increments is increased, the volume and area

- converge to final values about as rapidly as the balloon coordinates converge.

i ~-z --
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III. MODIFIED EQUATIONS

3 A. Cylinder and Cylinder-End Balloons

3 Figure 1 shows what the shape of a cylinder-end balloon would be if

all the material were fully deployed.

i, I

N El r

Ir

ME -. "% r-

Figure 1. Sketch of cylinder-end balloon with end sections opened

A cylinder balloon is treated as a cylinder-end balloon whose cylindrical

Z portions meet. Except for the cylindrical portions, the balloon is fully
tailored and has a constant material unit weight. The cylinder ends are

treated as portions of a natural-shaped balloon which have avarying material

SL unit weight. When r is less than ro (in Figure 1), the weight of an

W elemental circumferential band of width (ds) is clearly

w(21r)r ds.

S(This weight and the expressions that- follow are the same in the upper end

section except that r is replaced by r 1 .)

IL
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Then the effective weight per unit area is

.v(Z'Iro) ds

~r ds =~row(/rr)

By replacing w in Equations (1), we have in the cylinder-end sections:

d tc Z- wlro r' b z + a) /(r )

(Ia)

d(r tm
S-tc r' + w(r ) z'

dV
The form of r', z', and dis unchanged, but the area equation becomes

S~dA
d = Z IT.rdo

0

To find ro, it is necessary, to specify the initial meridional stress (t).

The total film load is
I

T L/cose =ZI-r t
0 o m

0

so

r = L/(ZITt cos eo).
0

• The initia, .n. ridional stress is known from material strength considerations.

!As s is beinm- incremented, the stress will exceed its original value because

zof the material weight. When r = ro, the shape equations revert to the form

lof Equations (1). Finally, when t reaches a second predetermined value,m

:Equations (la) are'used again with r replaced by r 1 .

-4-
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B. Taper-Tangent Balloons

I As was the case for cylinder-end balloons, it is helpful to examine the
shape of a taper-tangent balloon as if all the material were fully deployed

3 (see Figure 2).

Tangency points 1

I I

Figure Z. Sketch of taper-tangent balloon with end sections opened
(Note: s = 0)

In Figu-e 2, it is also clear that in the areas where there is fullness due

to the taper-tangent end section, the weight'ot an elemental band of width (ds)

is

w(Z¶l) [r 0 + (s - s ) sin,6' ds.

IIn the lower end section r° and so are used; in the upper end section
r and s1- are used.

S5-



The modified share equatipns are then

[-=tc z wro+ (s so sinj r - b r (z + a /(r tm

i ~~~~~ ~( b) m ( i }z

d(r tI ds -t r, + W r° + (So)si

The area equation is

dA + -+ S ino)s

Balloon shapes of this type are computed in much the same way as the bal- I
loon shapes of cylinder-end types. The angle.d may be initially specified

as zero. The actual value is then found by iterative trial and error. After

r passes its maximum and after tm reaches a specified value, 9 is set to

equal e ; r0 becomes r 1 , so becomes s 1 , and the shape equations used

change from the form of Equations (1) to that of Equations (lb).

C. Tangent-Harne.s Balloon

In previous reports and up to this time, all payloads have been considered I

to be applied at the axis of symmetry. For the tangent-harness balloon, the.I-

:payload is attached at a circumferential ring. There are several ways this L-

can be done. The particular method we have chosen herein applies the pay- I
load tangentially. There is a discontinuity in meridional stress and in radius

of curvature at the ring, but no discontinuity in the slope of the shape curve.

The balloon is approximately spherical below that point. The method used

to compute the balloon shape depends upon the circumferential stress. Two

stress conditions are discussed below: meridional and circumferential stress

equal; and circumferential stress equal to zero.

-Ft!
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1. Meridional and Circumferential Stress Equal

j 3 If t = tm, Equations (1) may be modified and simplified. By replacing.

t with tm, the first of Equations (1) becomes

de z' wr' t-b(z+a)
dsr t m

If the left-hand side of the second of Equations (I) is differentiated,

d(r t
m t r'+rt 't

i ffds m m

and is set equal to the right-hand side, rearranged, and integrated, then

t w z + tBE m m
0

SFor initial values, note that at the bottom of the balloon, E) = 90: and

R R then
C m

c mba + w =z--- 2t 1.r /RI

I! or initially,

-I
d~ -l ba+ w

SdsR Zt
- m m

0 0

where a, w, and tM are specified.

w -7-



During computation it is more convenient to use the differential form -

of t Then,

de z' w r' +blz+a)

m

(1 c)

dt m

These equations are integrated from the bottom upward until a specified

payload attachment point is reached. At that point t is increased by

L/(2lr cose).

The computation is continued until the balloon closes at the top. To yield a

flat-topped balloon, the proper a, t , and harness attachment for a given
0w are found by trial and error.

2. Circumferential Stress Equal to Zero

If t = 0, Equations (1) becomec

u - b(z + a)] /tm

(ld)
d(r t

ds -wrz

Note that this case is not quite as 'simple'as the case where t = tm,
nbecause the second equation does not now integrate directly. The initial

Ivalue of isds

_w + ba
t

-8-



I Note that this value is twice as large as the initial value when t = t .c m
The initial values of d(r tm)/ds and t are zero.

By differentiating r tm,

d(r t
m +rt

ds r' tm m

we see that

Ir' t
t ' w z'- m w cos 0- t (sin e)/r; (2)
m r - m

and for t finite,

lim t '-.- - oo at the bottom
r---O m

- + 00 at the top.

This result could have been anticipated from the previous findings for zero-
3

circumferential stress, natural-shaped free balloons. At the top, not only

t but t approaches infinity, because r t at the top is finite when
m m In[ r =0.

When these equations are used to find balloon shapes, observe certain

precautions: First, it is not possible to start at the top or the bottom and

use Equation (2) because of its infinite character. Therefore, it is neces-

sary to use Equations (Id). Secondly, at each point on the balloon there

:1 must be correspondence between r tm and ti. If t is finite, (r t)

is zero. At the outset r tm will change very little; during the numerical

evaluation t will tend to be a very small value rather than the specified

value t This will cause dG/ds to be unrealistically large. However.

by initializing r t at an arbitrary finite value, the numerical

F 9



integration will proceed smoothly. This amounts to specifying t at a smallm

but non-zero radius r; t will now be infinite at the bottom when r = 0.
m

For the balloon designs which would use the tangent-harness concept, it is

not desirable to use the material fullness and special end fittings requited

to accommodate the extra-high stress. Therefore, the shapes of such

balloons, where t = 0, will not be presented.c

IV. NON-DIMENSIONAL EQUATIONS

The equations in Section III are most easily used by reducing them to

non-dimensional form. This is done by using the proper combinations of b

(the unit buoyancy of the lifting gas) and A (a length proportional to the

volume of gas required to lift the payload alone). The results will then be

independent of the altitude, the lifting gas used, and the payload. The non-

dimensional equations are listed in Table 1 and the symbols are defined in

Appendix I. The differential equation for volume is

d (V~ 0 Z

Volume and weight are related:

bV=P+W

or

V W
3 1+

The weight is

w k Z(A/)

Remember that the area used for balloon weight is the surface area of the

balloon material--not the area developed by rotation of the balloon shape.

- 10-
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-I Table 1. Non-Dimensional Forms of the Balloon Shape and Area Equations

Fully Tailored Part

d e
d(ý Y nt.M T5 +kZ

I (A)=zT•.

Cylinder-End Part

rA3r

d(5  m)

d A

Taper-Tangent-End Part

de [+'-k (c7'- e) sin,6ej '5 +)]'(tm
II

M +• k ro+ <10) sn•

• I -Note: 'In this table, •':sin 0 and •':Cos 0.



Table 1. Non-Dimensional Forms of the Balloon Shape
and Area Equations (Continued)

Tangent-Harness Design (t 0)
c

do rr

d(am

Tangent-Harness Design (t = tn)
c m

m

- 12 -
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V. RESULTS

ii A great deal of effort and computer time have been required to find solu-

tions to the equations in Section IV. The existence of an equation does not

imply the existence of a solution. In each case it has been possible to find

solutions; but the search for the proper combination of parameters has been

llI tedious and at times frustrating.

In the following paragraphs all the results are non-dimensional. When

applying these or other previously tabulated results to an actual case, note

the following: From the definition of

I b w/kLA

ii From the definition of Tm,
m

"51 b to/' AZ

S I By equating, we find that

I A-- (•n)(~)
r w

Since

[- P=bA3

a load-altitude curve can be calculated for a given 2, trn, and (t /w).
O m

For example, for polyethylene at 400 psi stress, (ti /w) is approximately

constant at 987 feet for all sigmas. 0

SL In all cases one of the boundary conditions has been that the balloon

shape must close with a horizontal tangent at the top.

II -13-
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A. Cylinder and Cylinder-End Balloons

1. Circumferential Stress Equal to Zero

Figure 3 shows the shape of a cylinder-end balloon when sigma varies

and when the initial stress is consant. A value of t 3. 0 was chosen

so a sigma as large as 1. 0 could be used. For lesser values (1t. 0)m

there is no solution when sigma is as large as 1. 0. Corresponding results

for meridional stress are given in Figure 4. By comparing Figures 3 and

4 we can see that the shape changes at the top from fully tailored to cylin-

drical when T exceeds 3.0. This is an arbitrary value chosen to main-m
tain approximately the same stress value in both cylindrical ends.

The effect of changing the initial meridional stress for a constant sigma

is shown in Figures 5 and 6. The dashed lines show th- shape of the cylinder

ends. Again the change to a cylinder occurs at the top when the initial stress
.value is reached. For the example chosen (2= 0. 2) the balloon becomes a

;full cylinder when T is slightly larger than 0. 4. When t = 0.4,
0o 0

fthe cylinder radius is greater than the maximum radius of the balloon shape;

so in effect sigma is slightly larger than the initially specified value.

Gore lengths and weights of various cylinder-end balloons are shown in
.Figures 7, 8, and 9.

1I4
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Figure 9. Weight and gore length of balloons with cylinder-end and
taper-tangent end sections and varying initial stress[ (Zero superpressure, zero circumferential stress, 0= 0. z)
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2. Circumferentuai Stress Eaual to Meridional Stress

Note that it is not possible to have circumferential stress equal to

meridional stress at the bottom of the balloon when the .payload is applied

at a po:nt Fullness of some kind is required and therefore circumferential

stress must be zero. The circumferential stress remains zero until the

radius of the balloon exceeds the radius of the end section. At that point

in this design, circumferential stress is set equal to meridional stress.

The conditions studied were for zero or low superpressure and for low

material stresses. Specifically. in the superpressure range of 0Oo(•. 3
and in the typical polyethylene meridional st-ress range of T = 1 or 2,

pical~~sude changelen in =1or
no soluttons were found for balloons with a fiat top. The sudden change in

circumferential stress was the comnplicaring factor. All solutions were_

either too small- -resulting in a peaked top, or too large--resulting in a re-

ent-ant top. There were io intermediate solutions for the conditions studied.

An example of the shape and stress for a balloon with some top loading

is shown in Figures 10 and 11. The characteristic inflection in the profile

is apparent- The discontinuity in meridional stress is due to the introduction

of --iarcumferential stress. Because the meridional stress continues to increase,

as opposed to the designs in Figures 4 and 6, the upper cylinder-end section I
starts immediately above thi- maximum radius, The weight of this design is

W/P = 0. 979: the load a-. the bottom is L/P = 0. 685; the load at the top is3
F/ P 0.315; and the volume is V/? = 1. 979,

From a practical standpoint it vould be bett•er to increase circumferential

stress smoothly from its initial zero value. This would permit flat-top 3olu-

tions at zero superpressure and would probably make it possible to carry the

stresses equal to the very top of the balloon.

This design could be an alternate solution to the problem for which the

taper-tangent design was evolved.

-2 -2I
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in its fully tailored section and equal to -zero in its
end sections

(0. 176, 0~. 88Z)
(L/P =0. 685, F/P =0. 315)
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I B. Taper-Tangent Balloons

Taper-tangent balloons are much like cylinder-end balloons. Thus,

examples with only zero circumferential stress are presented here. Figures

12 and 13 show the effect of varying the initial mneridional stress for a constant

sigma = 0. 2. Important differences between these results and the results in

Figures 5 and 6 can be noted. In the top of a taper-tangent design, the change-

over from the fully tailored section to the end section must occ.,r at a meri-

dional stress value lower than the initial value; otherwise, the final radius

will tend to be small and will result in excessive meridional stress. In Figures

12 and 13 the changeover was made arbitrarily when the meridional stress ex-

ceeded one-half the ini' •l value. However, when T' equaled 0. 8 or less,

the meridional stress always exceeded one-half the initial value and the change-

over occurred at the first point above the maximum radius.

3 In general, taper-tangent balloons are heavier than cylinder-end balloons.

The gore lengths and weights are shown in Figure 9. Note that when Cr is
0

reduced to about 0. 4, the taper-tangent and cylinder-end designs merge into the

3 full-cylinder design.

.II
I
I

I
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C. Tangent-Harness Balloons with Meridional and Circumferential

Stress Equal

1. Method of Calculation

Considerable difficulty was experiencea in determining the shape of these

balloons. Rather than closing smoothly at the top, the balloons had re-entrant
or peaked tops. Examination of the first of Equations (1c) shows the reason.

By re-writing this equation.

d_ cose b(z+a) +w sine
ds r t m

Usually, z and w are negligible by comparison and t is approximately

constant. So

dO cosOe
d-s r -a constant.

- Cos ' and r are small at the top. So as r decreases, (cos 8)/r will

tend to become large--the direction depending on the sign of cos e. Only
if all the balloon parameters are chosen correctly will (cos 19)/r behave

-(a constant). Divergence at the top is the rule rather than the exception.

Trial and error is used to find the proper combinations of parameters. Fcr

a particular application, one would usually choose a material weight and

desired ,-orking stress. By combining these factors with knowledge of the

payload, inflation gas. and operating altitude, 2 and initial t become
m

fixed. By varying harness radius and S, a solution can be found wherein

the balloon will close at the top with the correct curvature and will have the

weight and volume in proper proportion. The top cutvature should be

b(z + a) - w
2 t

m

where z and t are the values at the top. As usual, the weight and volumeni
relationship should be 1

-28-
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2. Numerical E.xample

The example chosen is for a balloon at 100, 000 ft carrying 300 lb. The

material weighs 0.0115 lb/ft and the working stress is 174 lbift. The lifting

gas is helium and the superpressure is 6. 34 lb/ft . The fixed parameters are:

I )X= 68.80 1<= 100.0

2= 0.3358 'C = 40.01 0

The shape is very nearly spherical. The ratio of minor and major axes

[is 0.994. Stresses vary as shown in the following table:

I Location Stress

At Bottom 40. 000

At Harness:

Below 40.004

Above 43. 260

I At Equator 43. 414

At Top 43. 570I
The weight and volume results are:

[ W/P =1. 69 and W =507 lb

SV/A3 2.69 and V = 876b 000 ft 3

[ For the above conditions iv: is interesting to see that the harness radius

must be about 0. 19 i13, 1 ft).I

S-9 29-
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APPENDIX I

DEFINITION OF SYMBOLS

The symbols used in this series of reports are defined below and illus-

trated in Figure I-l1

Symbol Definition Dimension

a pressure head at bottom of balloon length

b difference in weight densities of air force per unit 'oluine
and inflation gas

k constant = (27

p gas pLessure across the balloon force per unit area
materia!

r radial coordinate of a point on balloon, length
measured normal to the axis of sym-
metry

circumferential stress in balloon force per unit length
C material

t meridional btress in balloon material force per unit lengthmt
t, t constants I

1

s gore coordinrate of a point on the bal- length
loon, measured :n the meridaonal
direction from the bottom apex

w unit weight of balloon material force per unit area

z height coordinate of a point on bal- length
loon, measured parallel to the axis
of symmetry from the bottom apex

A area of balloon surface length squared
I

B buoyant force on balloon force

F vertical load at top apex of balloon force I

I-2

---



G gross lift of balloon = b V force

L payload suspenced at bottom apex force
of balloon

P balX.on total payload force

R radius of curvature in the circum- length
C ferential directon = r/cos &

R radius of curvature in the lengthm meridional plane

T total film load = 2 ýr t force
m

V bao.loon volume length cubed

W balloon weight force

Tt = r-t /P-
m m

d = a/A

=r/A

o- = s/A

- =t /bA 2

C
2

=t /bX -

1/3S= (z2r) (wl/b)

= angle between the balloon material in the end sections and
the axis of symmetry--if the end fittings were released
and the material fully deployed- -measured in a plane con
taining the axis of symmetry

= angle between tangent to the balloon surface and axis of
symmetry, measured in a plane containing the axis of
symmetry

-If
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t m"
e

r

Balloon cross section s

Element of
balloon surface

Normal f
to surface

View of balloon showing

location of surface element

Rc

Enlarged view of
surface element

Figure I-1. Pictorial presentation of principal symbols
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APPENDIX IT

SPHERICAL BALLOONS

A balloon with minimum possible weight would be perfectly spherical.

The volume and gore length of a sphere are derived below in terms of the

design parameter (P). Symbols are defined in Appendix T,

The gross lift of a balloon is

bV=W+P.

The weight and volume of a sphere are

W • z w 5

W 4 Vr wv

3|

V = (4/3) 7r 3 - |

so

W 42w (3V/47r) /3

Thus,

b V (36Tr)1/3 (Vz13 w+P.

By non-dimensionalizing and noting that

P =b X

k Z-w/b A

J1

=I

iII- 2



we have

S1/3 /

I A? 1+1)--)':l

The weight, as usual, isI
W V

The volume is conveniently solved for by iteration. LetI
3 V

then Equation (11-1) becomes

3 18) -.., ;!:-2,

Also let

Yl = an approximate solution to (Il-2)

I Y2 = a better approximate solution to (11-2)

I x1 = the value of T for which yl would be a soiuw_-on

1'3 1

! 3
Then by Newton's method,

'18)1/3 y1

""Scarborough, J. B. Nurnericalmathematicai analysis, third ed Balurmore
Johns Hopkins Press, 1955.
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The gore 'length of a sphere M

s/I

By introducing the sphere weight,

2 V W
S w

Then by non-dimensionalizing;

Results for volume, gore length- and other physical characteristics are shcwr.

in Table II-1. When = 0. the gore length is determined by our knowledge
3 r

of V/3 By combining volume and gore length, V

Iri
3

or i

V 4 (S\

But when =0.

S~V

Asimple check of Table 11-iwl show that the various powers of ore length
and volume are not mutually compatible 'e.g. , for2E= 1.0, (.7573#0884.
However, the data in the table are coi~rect; each number was compu.ted to a
accuracy greater than is shown and rounded off to five decimal places,

4-;
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soN

(:), z = 7. 402Z03301,

and

1. 94889
=0 _

2I
( 3. 79817.

For comparisor,, the weight of spherical balloons is plctted in Figure 8.

1
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