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ABSTRACT

This research memorandum describes a data processing technique for

analyzing the Doppler-shift properties of a radio channel. A computer

program has been developed that computes the power spectrum of power

scattered by the radio channel as a function of Doppler shift. This

program was developed in conjunction with phase-stable CW experiments

which were performed on two HF paths. The experiments were part of a

simulation experiment conducted by Stanford Research Institute for the

United States Army Electronics Laboratories and the Defense Atomic

Support Agency.)
*

The program computes the power spectrum of the time variations of

the response of the radio channel to a CW tone relative to the trans-

mitted frequency.

References are given at the end of the memorandum.
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I INTRODUCTION

In a study recently conducted at Stanford Research Institute, the

natural radio channel is viewed as a randomly time-varying linear filter.2

The purpose of this study was to develop mathematical channel models that

would enable one to analyze the performance of various communication

systems in the presence of signal perturbations induced by the propagation

medium.

In this study the radio channel is represented by a time-variant

channel transfer function, H(t,f), which is a complex random quantity

that is wide-sense stationary in both time and frequency. This funcion

is simply defined as follows. If the input to the channel is

ei27r(f + f o)t }

x(t) = Ree 0 } (la)

then the output is

i2ir(f + :c)t

z(t) = Re {H(t-f)e (lb)

Complex envelope notation is employed in Eq. (1); the symbol Re { }
denotes the real part of the cemplex quantity in the braces, and f is

some reference frequency.

The second-order statistical variations of H(tf) are summarized

by the time-frequency autocorrelation function:

R = E[H*(t,f) H(t + a,f + )] (2)
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I

where the symbol E[ ] denotes the mathematical expectation of the
quantity in the brackets. The Fourier transform of R(c)) is called

the channel scattering function:

S(XT) = f ei2(X - H(,) dado (3)

The chznnel scattering function is the density of power scattered by

the channel to the Doppler frequency X and the time delay T. 2 Thus

the channel scattering function yields an immediate physical charac-

terization of the frequency- and time-dispersive properties of the

propagation medium. The function

T(T) = J' S(X,T) dX (4)

is calle:d the channel delay profile. since it yields the density of

power scattered by the channel as a function of time delay. Similarly,

the function

D(X) = f S(XT) dT (5)

is called the channel Doppler profile. since it yields the density of

power scattered by the channel as a function of Doppler shift.
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II THE CHANNEL DOPPLER PROFILE

The channel Doppler profile is the power spectrum of the wide-sense

stationary time variations of the channel transfer function. From Eqs.

(3) and (5) one can deduce that the Doppler profile can be written as

the Fourier transform of the autocorrelation function RH(aO). Observe

that this autocorrelation function ignores the wide-sense stationary

frequency variations of the channel transfer function.

E[H * t~f) H(t + af)] = R H(cYO) (6)

-i2nk (7
D(X) = jrRH(a.,O) e-iT)c du (7)

Hence the Doppler profile is merely the power spectrum of the time

variations of the channel response (amplitude and phase) to a CW tone

at a fixed frequency. It is evident that the Doppler profile can be

estimated with the amplitude and phase measurements obtained from a

phase-stable CW experiment, since such an experiment measures H(tf).

It is convenient to introduce the quadrature components of H(tf):

H(tf) = U(t) + iV(t) . (8)

In Eq. (8) the frequency dependence of the quadrature components is

suppressed because the frequency f will remain fixed in all arguments

that follow. The autocorrelation function R(ty,0) can be expressed in

terms of the autocorrelation functions associated with the quadrature

components:
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I

RH(0',0) = RJU(cY) + RVV(o) + i {R UV ( C - R VU(a) (9)

where

RUU() = E[UMt)U(t + )]

and similarly for R VV(a) and R VU(). In most cases of practical in-

terest,

RUU~ci) = RV(ct)

RUV() = - Rvu (C)

which implies that the autocorrelation function RH(o,0) can be written:

RH (cyO) = 2RUU(c) + i 2 RUv(a) . (10)

By using Eq. (7) and the fact that RUU(a) is an even function of a and

UV(o) is an odd function of a, the Doppler profile is obtained in the

form

DCX) = 2j'%UCa)cos2TXceda + 2SRUV()sin2TXadia . 11

These conditions are necessary for wide-sense stationarity of the

process Re{H(t,f)ei2Tl(f + fo)t} in time.
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Observe that the Doppler profile is symmetrical about zero if and only

if RV(o!) is zero for all cy. When

x(t) = Re {ei2v
( f + f)t

is the input to the channel, the (two-sided) spectrum S (u) of the re-z

sulting narrow-band output process

z(t) = Re H(t,f)e + f0t

can be expressed in terms of the Doppler profile

1 1
Sz(u) = D(u - fo + f [) + 1 D(- u - [fo + f ) (12)

Thus, if DMX) = 0 for lXI > f + fO, the Doppler profile is merely a

frequency-shifted version of the narrow-band spectrum Sz (u).
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III DESCRIPTION OF THE POVER SPECTRUM PROGRAM

The input to the power spectrum program that computes the channel

Doppler profile consists of two data sets; each data set corresponds to

N equispaced samples of one of the quadrature components. The corre-

sponding sample mean is subtracted from each member in each data set,

and the result is then prewhitened. Prewhitening of sample data im-

proves the results of the spectral averaging which is performed later

in the program. Let W(t) be the result of prewhitening U(t); then the

pre%,hitening characteristic used in the program relates W(t) and U(t)

in the following simple manner:

W(t i ) = U(t.) - 0.6U(ti ) (13)

This prewhitening characteristic multiplies the input spectrum by the

quantity
3

1.36 - 1.20 cos2nT%

where T is the sampling period. Observe that the high frequencies are

emphasized relative to the low frequencies.

The next step in the power spectrum program computes the sample

autocovariances4'5 and crosscovariances

RUUCr , R CV T) R VV(, and R VU(Tr.

where

1N-i
R (T) E U(t)U(t + )

) i N 1 Jj=l
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N-i
R (T) Z U(t.)V(t. + '.)

UV i N.j~

and similarly for R (T i) and R VU(T). These covariance functions are

computed for lags out to one-third of the record length.
3

The results of the covariance computations are then used to com-

pute the one-sided cosine transform of 1/2 (%U(T.) + R(T.)) and the

one-sided sine transform of 1/2 (RUIv(Ti) - R VU(Ti) . These transforma-

tions are consistent with Eqs. (7) and (9).

Spectral averaging is then performed on the results of the cosine

and sine transformations. Spectral averaging is necessary because the

Fourier transform of the sample covariance function will not converge

to the true power spectrum even for an infinite number of samples.
4

This computation may be viewed as obtaining an estimate of the average

of the true power spectrum in a small region about a particular fre-

quency as opposed to obtaining a point estimate of the true power

spectrum at that frequency. The function that defines the small region

over which the spectrum is averaged is called a spectral window.
3,4, s

The program uses the hanning spectral window3 which performs the

following simple averaging on the results of the cosine and sine trans-

formations:

A(O) = 1/2 P(O) + P(l/2NT)

1 1 1
A(k/2NT) = I P(k - I/2NT) + - P(k/2NT) + - P(k + l/2NT)

for 1 < k N - 1

A(I/2T) = 1/2 P(N - I/2NT) + 1/2 P(l/2T)

where P(k/2NT) is the result of the cosine or sine transformation at

frequency k/2NT, and A(k/2NT) is the resulting spectral average at

frequency k/2NT.
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The program then corrects for the prewhitening initially performed

on the input data. This is accomplished by merely dividing the spectral

average A(k/2NT) by tke quantity

1.36 - 1.20cos k

Finally, Doppler profile estimates are obtained for positive

Doppler frequencies by summing the averaged and corrected sine and co-

sine transformations, while estimates for negative Doppler frequencies

are obtained by subtracting the averaged and corrected sine transfor-

mation from the averaged and corrected cosine transformation. See

Fig. 1 for a flow chart of the power spectrum program.

The power spectrum program was operated in two modes, a 1-minute

mode and a 2-minute mode. The 1-minute mode processes 1,200 samples

of amplitude and phase spaced at 50-msec intervals. This yields a

20-cps bandwidth with a power spectrum estimate every 1/40 cps. The

2-minute mode processes 1,200 samples of amplitude and phase spaced

at 100-msec intervals. This yields a 10-cps bandwidth with a power

spectrum estimate every 1/80 cps.

Figure 2 displays the results of processing a test case in which

input data possessing tones at 1 and 3 cps were simulated. The test

case illustrates the accuracy and resolution of the program. Examples

of Doppler profiles measured on the Fort Monmouth to Palo Alto path

(4100 km) and the Thule to Palo Alto path (5050 km) appear in Figs. 3

and 4.1 Amplitude and phase measurements were obtained on both paths

by transmitting a phase-stable CW tone at 7.366 Mc.
1

Since the purpose of this memorandum is merely to explain a data

processing technique used to compute channel Doppler profiles, the

physical interpretation of the measured Doppler profiles is deferred

to a final report to be issued under this contract.
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