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PREFACE 

Part of the RAND research program for the National 

Institutes of Health consists of basic supporting studies 

in mathematics. This Memorandum points out some 

interesting properties of a certain type of differential 

equation that frequently arises in the course of 

constructing mathematical models of physical phenomena. 

This, is of importance in connection with the study of 

more realistic models of chemotherapy, of the type being 

studied under NIH GM-09608. 



-V— 

SUMMARY 

Equations of the form du/dt - g(u(t),u(h(t))) 

arise in a number of scientific contexts.  In this 

paper, we point out some interesting properties of the 

solution of 

u' (t) ■ — u(t — 1 — k sxn a)t) + sin at. 

These properties were obtained by means of numerical 

solution. 
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MATHEMATICAL EXPERIMENTATION IN TIME-LAG MODULATION 

1, INTRODUCTION 

In the detailed study of physical phenomena, it is 

frequently found that the traditional ordinary 

differential equation must be replaced by the more 

complicated functional differential equation (see [1,2,3]) 

In particular, we have me*, equations of the form 

(i.i)       a| = g(x(.)). 

where xO) denotes dependence on the past history of 

the process over  [0,t]  in several mathematical models 

of t.ie heart-lung complex f4]. Examples of equations of 

this nature are 

(i.2)      ^| - g(x(t:,x(t - D). 

^ - g(x(t),x(h(x,t))). 

^ - g(x(t), J x(t - sMs)ds\ 

0 

The solution of these equations not only constitutes an 

analytic challenge, but also requires a considerable 

arount of computational care and ingenuity, even with 

modern computers at our disposal.  This is especially so 

if we wish to calculate the solution ovei a long time 
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Interval. In [5,6,7], we have indicated various tech- 

niques that nay be used for numerical purposes. 

Before tackling large systems of equations of this 

nature, with unpredicfable analytic behavior, it is 

essential to test our algorithms on simpler equations. 

Consequently, we felt that it would be interesting to 

study equations of the form 

(1.3)    3^ - - u(t - 1 - k sin cut) + sin at 

for different values of a, cu, and k. As we shall see 

below, some interesting effects are observed.  In 

particular, a variable time-lag produces effects hitherto 

associated with nonlinearity. 

2.  A PERTURBATION ANALYSIS 

In order to have some idea of what to expect from 

the calculations, let us apply a perturbation technique 

to the case u) • a - 2TT, where k « 1.  The equation is 

(2.1) u^t) - - u(t - 1 - k sin at) + sin at, 

which we write in the form 

(2.2) u'ft) - - u(t - 1) + k sin atu'ft - 1) 

+ sin at + 0(k2). 
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Write 

(2.3) u(t)  - u0(t) + k^Ct) + -., 

and then substitute and equate coefficients of    k    to 

obtain the equations 

(2.4) u^(t)  - - u0(t ~ 1) + sin at, 

u, (t) - - u, (t - 1) + sin atu^t - 1), 

At the moment, we are interested in the steady—state 

periodic solutions.  These exist, since all of the roots 

of the characteristic equation 

(2.5)    x - - e~X 

have negative real parts   (see  [11, Chapter 12).    We could 

use  the Laplace transform, but it is simpler to set 

(2.6) UQ(t)  - c,   sin at + c« cos at. 

and equate coefficients.  A direct calculation yields 



irr 

4n    +  1 4TT    + 1 

(recall that    a - 2i). 

The equation for    u,(t)     then  takes  the form 

9  2 

(2.8) u{(t)  - - u^t - 1)  +      ^    2 + p^t), 
1  + 4TT 

where Pi (t)  is a periodic function with mean value 

zero. 

Hence, u, (t)  has a steady-estate fom of the 

following type: 

9 2 

(2.9)       - -  Ä 
u^t) -     2 + P2(l:)' 

1 + 4T 

where Po(t)  is again a periodic function with mean 

value of zero. 

Since u(t) = UQ + ku, + •••,  we are led to expect 

a nonzero mean value for u(t), the "output," even though 

the "input," sin 2'Tt, has mean value of zero.  This is 

a resonance effect, which is not predicted if a) ^ a. 

3.  NUMERICAL RESULTS 

Let us now examine the numerical results, which we 

obtained via two independent methods.  For the values 

k - 0.01, 0.05,  the solutions of (2,1), subject to the 

initial condition u(t) «0,  t < 0,  over the interval 

0 < t < 18 are shown below. 
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Calculating the mean values, we find, approximately. 

(3.1)    k - 0.01,     0.0052, 

k - 0.05,     0.0240. 

The term    2-2k/(l + 4n2)    yields 

(3.2) k - 0.01, 0.0049, 

k - 0.05, 0.0243. 

The perturbation analysis appears valid. 

Carrying out  the numerical  integration for the 

further values    k - 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 

we obtain steady—state periodic  solutions in all cases, 

and the mean value as a function of    k    has  the 

following  form   (see Fig.   1). 

In Fig.   2 and Fig.  3,  we  show what the solution 

looks like for    k - 0.1 and 0.9,   respectively. 

^•__ GENERATION OF^HARMONICS 

One of the  functions of nonlinearity is to generate 

harmonics.     This  is useful  in itself,  as for example  in 

frequency multiplication,  which is necessary to create 

different wave  forms—as,  say,   in  the multivibrator.     It 

is  interesting  then to note that a variable periodic 



time  lag has  a great capacity for  the generation of 

harmonics.     Consider,   for example,   the  following 

graph   (Fig.   4),  obtained  from the  equation 

(4.1) u^t)   - - u(t - 1 - k sin 2~t} + sin ^ 

i 

u(t)  =0,     t <  0. 
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