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It is known that by means c¢f additional surfaces, the
thrust of a jet or jet sheet can be enhanced (thrust augmen-
tation). This especially applies to Coanda-deflected jet
sheets because of the inherent stronger entrainment into
curved flow surfaces,

The flow from a two-dimensional subsonic nozzle -as
deflected by quadrants. A composite thrust-augmenting sur-
face was added, and the effect of its shape on thrust aug-
rentation was studied at various nozzle pressure ratios and
radii of the quadrants.

This investigation yielded a maximum thrust augmenta-
tion of 1.21 for several optimum configurations, which was
governed primarily by the relative magnitude and direction
of the momentum of the secondary (entvaired) flow in rela-
tion to the primary (nozzle) flow momentum. Thrust augmen-
tation decreased with increasing nozzle pressure ratio but
was independent of the quadrant radius. Some of the ob-
served results were predicted theoretically. Suggestions
for possibly introducing higher thrust augmentation are
offered,



1. INTRODUCTION

The Coanda effect is believed to have a wide range
of possible applications for V/STOL aircraft. For instance,
it may be used for turning two-dimensional or annular jet
sheets (replacing closed ducts), for instantaneocus thrust
and lift control (by means of shrouds, for example) during
transition from hovering to forward flight, for stability
and control purp. 28, or for focusing annular jets,

For all the above apvlications of the Coanda
effect, two basic problems arise:

(a) how to turn the jet sheet at the minimum possible
loss in jet mcmentum, and

(b) whether, where additional surfaces are feasible
(in analogy, e.g., with straight ejectors), thrust
augmentation is possible.

This experimental study deals with the question of
augmenting the thrust of Coanda-deflected jet sheets by
means of additional (secondary) surfaces.



2. THE PROBLEM

It is known that the free surface of a Coanda-
deflected jet sheet entrains more ambient air (about twice
as much) as this surface would entrain if it were straight.
A higher rate of entrainment causes:

(a) faster mixing, which should lead to a reduction
of the required mixing length and ducts,

(b) increased secondary flow velocities and conse-
quently reduced static pressures on secondary sur-
faces, wrich, if properly arranged. can augment
the basic jet momentum thrust.

) It is the object of this experimental investiga-
tion to find out more about the shape of thrust augmenting
surfaces for optimum thrust augmentation. To facilitate
configurational changes, especially of the thrust augment-
ing surfaces, and to be able to use existing equipment, a
two-dimensicnal test setup was chosen,

s



3. THE TEST RIG

The thrust augmentation rig 'Fig. 1) consists of a
Coanda surface (quadrant) and a seriez of adjustable flaps
(the thrust augmenting surfaces; see alsc (Fig. 3). The
two~-dimensional jet sheet ejected from the primary flow
nozzle is turned through 90 deg by means of a surface (sec
Fig. 2). The flaps are used to provide boundaries for the
mixing of the primary with the secondary air flow and to
control the air flow direction., Both quadrants and flaps
are mointed between glass sidewalls to ensure two-dimension-
ality. The glass sidewalls are 8 in. apart. Since the
nozzle exit is 1/8-in. thick, the aspect ratio of the pri-
mary flow (jet sheet) is initially 64 while the aspect of
the diffuser averages out to be only abcut 2. Since a mini-
mum aspect ratio of about 100 would be desirable in order to
keep "all the frictional forces on the side wall glass
plates. he observed thrust augmentations should, in our
case hei., be substantially less than those which would be
obtained with a primary flow-to-nozzle aspect ratio of 100
or more.

Three Coanda surfaces or quadrants of radii, two,
three, and four inches, were employed. The internal flap
which is attached directly to the Coanda surface remained
vertical throughout the experiment, except for the case
where it was varied for the sole purpose of studying the
effect of the change of diffuser angles on the lift force.

As can be egsen in Pig. 1, a pit, 5 by 2 feet wide
and 2-1/2 feet deep, was dug at the exit of the augmenta-
tion rig so that any ground effect was eliminated. By using
two bent metal sheets, the exit flow was divided into two
parts and then diverted to either side of the augmentation
rig. ’

A flexible sheet of metal, also 8 inches wide, was
attached to the top and center external flaps in such a
manner that the surface exposed to the secondary flow was
curved with its two ends tangent to the top and center flaps,



3.1 ITS VARIABLES

There are fifteen possible variables associated
with the experimental aquipment grig 3). Not only can a
total of five angles be altered (a, B, vy, 6, and ¢ alon
with eight linear dimensions (L, M, N, 1, a, R, 4, and t
but also the temperature and pressure ratio (T¢/Ta and
Pt/Pa respectively) can be varied.

Of these fifteen independent variables shown in
Fig. 3, thuse variables considered to be most directly re-
lated to the diffuser and secondary flow entrance angles
(four angles and two linear dimensions) as well as the pres-
sure ratio are listed below:

(a) @ - the angle between the tangent to the lip of
the top exterior flap originating from the top of
the quadrant (near the 2nd of the nozzle) and the
horizontal,

(b) B - the angle of the top exterior flap from its
vertical position.

(c¢) < - the angle of the lowest exterior flap from the
vertical position.

(d) ¢ - the angle of the interior flap (attached to
the Coanda surface) from the vertical.

(e) R - the radius of the Coanda surface or quadrant.

(£) 4 - the width of the channel (distance between the
interior and center exterior flaps).

(g) Pp/Pa - the ratio of the primary flow total pres-
sure to the ambient atmospheric pressurs.

Of the above seven variables, the first and major
portion of the experiment involved the variation of a, B,
and 4 while ¢ and 7y remained constant at zero and six
degrees respectively for the two~-, three- and four-inch-
radius Coanda surfaces.

3.2 The Air Supply

A svall gaz turbine engine (Blackburn and General
Aircraft Turbomeca Palouste 500), housed in a soundproof
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room and remotely controlled, was used as a compressed air
source for these tests. The compressed air, bled off the
engine compressor., could be delivered at temperatures of up
to 230 deg centigrade, at pressure ratios of up to 3.7, and
at a weight flow of up to 2.7 1lb/sec. A large water cooler
reduced the air *“emperature to about 10°C (50°F). This
cooled air was ducted to the settling chamber and the sub-
sonic nozzle by means of eight-inch-diameter piping.

The mass flow was measured by a U-tube water mano-
meter, which indicated the pressure difference across an
orifice plate situated in an eight-inch pipe through which
the primary flow flowed to the settling chamber. The total
pressure of the primary flow was indicated on a mercury
manometer board connected to a pressure probe located in the
settling chamber.

3.3 The Balance Systems

The weight of the thrust augmentation rig (see
Fig. 1) was suspended primarily by a balance with a fixed
fulcrum (which gives a constant lift for small deflections
of the test rig), and the remaining small portion of the
rig!'s weight was suspended by a strain gauge balance system,
the deflections of the lever arm, causing a small change in
1ift, are included. The measurements of the horizontal
(drag, Dp) and vertical (lift, Lg) forces on the thrust aug-
mentation rig by means of the strain gauge balance were made
possible by the physical separation of the Coanda surface
and the nozzle. During the experiment, this gap defined by
the horizontal disctance, { , and the vertical distance, a ,
was kept constant at & = 1/% in. and a = 1/10 in. with
the engine off. The linkages of the strain gauge system
allowed the drag forces and the mutually perpendicular com-
ponents of the lift to be maasured independently of each

other. The strairs associated with these forces ave measured

on an SR-4 strain indicator (type N), and ihe actual forces

can be obtained directly from the calibration of the balance,

Furthermore, force measurements on the thrust aug-
menting surface alone werec made possible by avoiding any
rigid physical connection between it and the two glass
plates, The three exterior flaps were supported solely by
a frame connected to another strain gauge system mounted
rigidly to the frame of the thrust augmentation rig. Again,
as with the main strain gauge balance, both the mutually
perpendicular 1ift, Lp, and drag, Dp, forces were measured
on another SR-4 strain indicator.
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All the strain gauge electrical bridge networks
were arranged so that they were self-compensating with re-
spect to external temperature changes.

The nozzle top surface is faired in, and the pres-
sure on this fairing was measured with six flush static
pressure taps (Fig. 2a) connected to a water manometer board,
giving the lift on the nozzle, LN, assuming ambient atmos-
pheric pressure on the bottom surface of the nozzle. A sub-
sonic nozzle, seven inches in length, was used in order to
reduce the blockage effect of the settling tank on the
secondary flow along the nozzle top fairing. The thickness
of the exit slot of the nozzle was one-eighth of an inch.
Thus the exit slot area of the nozzle was one square inch,
since its width was eight inches,
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4, ISENTROPIC, INCOMPRESSIBLE THEORY OF THE 'THRUST
AUGMENTATION RIG

There are two main principles of thrust augmenta-
tion associated with this experiment. The first is to ef-
ficiently entrain a relatively large amount of ambient air
into the primary flow and thereby increase the mass flcw,

m,, and decrease the exit velocity, V,. Thus the exit momern-
tum (ma-vs) is increased, assuming that frictional effects
cause relatively low energy losses,

The second aspect of this thrust augmentation rig
is that the vectorial difference between the outlet and
inlet momentum in the direction perpendicular to the initial
direction of the primary flow can pe increased by varying the
shape of the external flap combination.

Thus the vertical reaction forcé or lift can be
increased to a value greater than the reaction force from a
simple unshrouded subsonic nozzle.

5.1 MOMENTUM BOX THEORY

Figure 4 illustrates a general form of the thrust
augmentation rig with the angles of the flow streamlines
defined at the entrance and exit areas. The primiry flow
variables have the subscript 1, and the inlet station con-
sidered is at the throat of the nozzle (of area A,). The
secondary flow variables, denoted by the subscript 2, in-
clude the velocity, Vp , at the entrance area, A, , lo-
cated betwsen the nozzle exit and the lip of the top exterior
flap. The angle of entrance of the secondary flow stream-
lines to the vertical is € . The secondary flow entrance,
A} , as shown in Pig. 4, has identical notations except thatc
a prime mark is used. It is assumed that at point X on
the nozzle, the secondary flow velocity over the nozzle ap-
proaches zero (from a maximwn value at the exit of the nozzle
Thus the vertical reaction force, Fy , will include the lift
over the nozzle. I+ is furthermore assumed that a normal to
the exit area, A, , is parallel to the vertical streamlines
of the uniform outlet velocity, V,; and the vniform gtatic
pressure at the exit is assumed to equal the ambient atmos-
pheric pressure.



Let Fy; and Fy{; be the resultant veriical
{y-direction) and horizontal (x-direction) internal wall
reaction forces respectively. Thus the vertical 1ift on the
thrust augmentation rig as well as on the nozzle is ideally

A% 3 "a’ 3
- [ [pt{v j2cos{e'-a')cos €' + (p!'-P_} - cos «']dA’ (4-1la)
At 2 S 2 a : 2
2
whilic
e . T~ -_-2 i N P ‘dA
H Z:L}-l 1 \Pl a)J 3

The above equations cao be simplified by defining
a *ermy A= [VE/(V)2], the ratio of the mean square ve-
locity V? = 1/A [p VBdA to the square of the mean value
V = 1/A[p VdA . By integrating the properties of the
ilow over the cross-sectional A} , Bernnulli's equation Le-
comes (PL4=~Pa) = -p,/2 - %,(VL)%,"where the mean pressure is
defined in general gy p = 1/A ﬁ;;JdA. Further, the values
fror cos at , sin ' , cos €' and sin €! within the inte-
grais can be averaged as shown below for instance for the
case of cos at,

cos at = cos a! T - P )da:d
[ (et - 7)ans fA;( )(p} - P )an!
Al -
2
1 22 1)@ 1 :
- [ - 5 (V!)Zcos a dA! (4-2)

p - 1
- =2 21 (Tr)2a01 A
2 7\2(‘]2) Aa
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As the flow becomes more non-uniform, the term
A rises above unity, its minimum value for a uniform
velocity profile. Making use of the above expressions and
assuming the exit and secondary flows to be incompressible,
it can be shown that

= v )2 1
P [(Va) A+ 3 A

v')2 1 At
5 ALV )2 cos a .

- [ (V')2cos(er - at)cos €t dA!' ] (4-3a)
A 2 2

while

Pl = v 2 s - -~ £ 21(¥U1)2 Sin ot At
FY plxl(vl) A1+ (p1 1>a)41s.l 5 )\z(va) sin « Az

+ [ p(V!)2cos(€t - at)sin €' dA! . (4-3b)
At 2 2
2

For the condition of a' = €' (as for instance
along area A}l), the last term in Eq. (i-3a) becomes

L (v;)‘cm a' dA!

which then can be reduced to

cos al {J(v;)'aa; = cos a' A;(V;)’A; . (4-4)

Combining now the last two equations furnishes

cos g' = -——-L-——-f (V!)®cos a! aa!
xl(vn)ﬂlc An a

10



which is the same expression as that previously given as
Bq. {4-2). The equation for the vertical lift, W can
then be greatly simplified and becomes

'y = P[V?'s - % ) Tos o (\7;)%\;' . (b-5a)

This equation expresses the fact that P} becomes
a maximum when the inlet momentum along the vertical
y-coordinate is zero for both the primary and secondary flow.
This condition is fulfilled for the secondary flow if ¢!
(and a') approach 90 deg. However, in general, the angle €'
is not large. (It was found that the secondary flow stream-
lines near the nozzle follow "he contour of the nozzle while
the flow near the 1lip of the exterior flap follows the lip
contour. Thus, the flow near the nozzle has a high value of
€! , which is desirable, while most of the flow near the
lip approaches under a relatively low angie €').

The object of this experiment was to increase ¢!
or € as much as possible, while keeping the secondary flow
inlet momentum as large as possible. If one assumes that
the inlet momentum (of primary and secondary flow) remains
constant for given values of a and d/t , independently of
B (see Fig. 3), then increasirg ¢ to an optimum value
could, it seems, be achieved by varying the angle, B , of
the top exterior flap.

Por the condition a' = ¢! , the horizontal reac-

tion force component r; can be obtained as

Ty =P, [xl(vl)'al] + épx; sin a' (V;)'A; (4-5b)

assuming that the term (P - Pa)A, is small enough to be
neglected,

b.2 The Momentum Equatiop for Ideal Fiuid Flows

According to BLAS1US's THEOREM, the resultant
force of an ideal flow acting on a two-dimensional body is
always perpendicular to the free stream direction, or, the
resultant force (thrust or drag) in the direction of the
free stream is zero. To make an analysis possible of the
otherwise very complex real flow model under experimental

11
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investigation in this study, ideal and incompressible fluid
flow is assumed, Applying BLASIUS THEOREM to the ideal
fluid flow through a straight (not curved) duct, the momen-
tum equation (zero thrust or drag) reduces to

2 \ - Y -
P (V;) cos(e! a')dhé + (p; Pa)A;

i

Al

2
T2 = _ - T2 _

+ p VA + (p1 Pa)A1 P Aa Ve (4-6)

assuming that Pg = Pa. If the duct is curved, as it is in
the configuraticn here under investigation, Bgq. (4-6) still
applies for the above stated assumptions. External (wall)
forces solely force the flow to change its direction but do
not induce any velocity or pressure changes of the primary
and secondary flows at inlet or of the mixed flow at the
outlet cross section.

Since A! is many times larger than A, and
assuming that the average static pressure of the primary
flow is approximately equal to that of the secondary flow,
the term (P, - Pa)A, is, in the following discussion,
omitted since it is considered negligible in comparison
with (P} - Pa)A;. Consequently, the outlet momentum equals

L .ﬁ - . .
P Ah Vs " by A v:

+p i'(v;)‘coc(cl-a')-da; - g(v;)a.x; Al (4-T)
2

Subctituting 8q. (#-7) in Bq. (4#-3), the following expression
is obtained:

m{ =P Axv:
ylg‘[(v;)' . co-(c'-a')-(v;)ﬁ . cos(et=-al!) + cos(e!)]- dA;
2

At %
-2 (V)R LAt + R (VI)Z . Al . cos al . (4-8)
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Consequently, the amount of thrust augmentation,
defined as the ratio of the vertical measured 1lift, Ly,
(corresponding to Fy) to the isentropic thrust of the un-
shrouded nozzle, (p,-Vi-A;); , would be ideally

T =

I ‘_.5
\pl . Vl Al)*

o ) . . 1 —_— -

[ (Vt)2.coslet-c1)-[l-cos €t ].-dAY =~ 5 A'.(V!)®(1l-cos a!)a

‘_l,-”(z)'. )[ ] > 22(2)( G)E_’
\ '2
‘ 12

(a Vl)i (4-9)

assuming that the isentropic thrust (p, -_V§ - A;); equals
the measured primary rlow momentum, p, - vf - A,

Comparing the momentum term, [a4(Vi)Z-.cos(e! - at).
[1-cos €'}-dA', , with the pressure term, A1(Vi)Z.1/2-
{1-cos a')-A4 , it can be seen that cos{e'-a!') corresponds
to 1,/2 while (l-cos €!') corresponds to (l-cos a''. As
long as cos(et-a') is greater than 1/2 or |e' - a!|
is 1less than 60 deg, then the flow should enter at the
largest angle of ¢! possible, even at the cost of decreas-
ing (cos a') in order that the highest value of augmentation
is obta‘ned,

If ideal conditions were present such that a maxi-
mum amount of mass flow was entrained for a given area and
averuge velocity (that is, the streamlines are parallel to
the normal vector of the entrance area, or if a! =¢!'),
then

2

1

v
P Ly . &2 e [2(1 -~ @os &1 -
Vo= 1+ (p ) v, [2(1 cos ¢t)]. (4-10)

1

e
W h%

-

Under the above conditions, maximization occurs upon maxi-
mizing A4 (the non-uniformity of the velocity profile at

the secondary flow entrarnce area) as well as €', In causing
AL  to increase the total momentum, composed of both the
momentum terms (p - V1¥ . Aj) and the pressure contributions
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([Pa - p4] - A!) are augmented. Furthermore, if €! is made
larger, the vectorial difference between the outlet and inlet
dynamic momentum is increased in the outlet momentum's direc-
tion. Thus it can be seen that the thrust augmentation is
simply caused by the change in the total momentum!s magni-
tude and direction of the entrained (secondary) flow. (If

at = €' =0% then ® = 1.0 even if A{ is large.)

Since it is dassired that the secondary or entrained
flow undergo the greatest change in total momentum, it would
seem advantageous that through mixing, the primary flow
should lose the largcst possible amount of momentum to the
secondary flow. This would lead to a uniform exit velocity
profile or A, = 1.0 , assuming that the static pressure at
the exit is equal to the ambient pressure.

The degree of momentumn transfer and the loss of
energy are major factors in thrust augmentation. Since en-
trainment relies on viscosity, and since viscosity induces
frictional losses, the kinetic energy of the exit flow can-
not equal that of the primary flow. Defining a mixing effi-
ciency as the ratio of the kinetic energy of the exit to
primary flow,

Tnix * (ma/ml) . (vsﬁl)z ) )‘s/)‘l ) (H-11)

The efficiency of this experiment: was found to be approxi-
mately 20 per cent., Of course, the lower the mixing effi-
ciency, the lower is the entrained mass flow and exit momen-
tum,

4.3 Zhe Continuity Rquation

Consider the continuity and momentum equations:
KTIN v'. lagt) . t = p.V - -
p,°V, A+ p{'v‘ cos(e'-qt) an! = P VA, (4-12)
2
A V¥ =g A VX . 1)2 tag!).dAt =71 /2.(VT)2
PR VY = p A VI +p {'(Va) cos(e'-a') daa! 7\2/2 (Vz) Al

4-7)
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From Eq. (4-12),

2
(Vv )2 = 1 [A' v - %l A . 61] (4-13)

2 coéz(e'—a'f' az s 12

where the average values of cos(e'-a!) are defined as:

-1
1(yr)2.a1
7\2(v2) A2

cos (et-at) | (V;)a-cos(e'-—a')-dA'
1 Al 2

1
VY . At
2 2

){'(v;) - cos(e! - a')-aal.  (4-14)

| el
cosa(e at)

Combining Egs. (4-13) with (4-7) gives Eq. (4-15).

- P -
. 2 . 4 . R 2 , o
AS (vs) 2 Ala (vl) )\l + Aa

" g 1 2 (y \2 ' 2 2 P \z P 1 !
523[(1\32) .(vs) + (An) .(vl) -Lp/ -2 —*p A”.Au.vs.vll
(4-15)

where

conl(e ' -0'7-12‘_

A - A (4-16)

2 2 conﬁc'-a')

or
(Va)z[}‘s - A:::I‘\:sz] + (Vs)[a.)‘:m;a.‘-'x.(px/p)]

= (V)RIA A _(p /p) + Ni.AL AL (p /p)%] =0 .  (4-17)
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If cosﬁ(e'-a') and cos,(€'-a') are approximately equal,
then has a maximum value of about Al/2 for the case
where e' = a', Solving Eq. (4.17),

<|

xll.
1/ — A' A _LfJL_EL'/‘f_) . (1'__18)

For )\3 = 1.0, Eq. (4-12) yields

Vi Al v
(p/p) - = = = -1" - £ . = -Asl-;]
V1 A cosa(e -at) P, Vl ]
(P/P )A Al - A
= - | +2——ag 4+ 1} ).
cos (e'-a') dl - A' .MT 1l - 5;2.7\2
(4-19)

Assuming that the shape of Al is chosen such that
its normal is parallel to the corresponding local velocity
vector (that is, €' = q'), the value of thrust augmentation,
® , equals (from Eq. 4-10)

v 2 Al _— p
Pl. Vz 21 1 P 12
2
p/P A ALAY Al _L &
= 1 ¢ 1 - A? . --L-ﬂa——-'rl_h' 'R+1 ..}.‘2. (l-COBE') pA'
s2 a s2 2 1
(4-20)
where
Al
ny o -2

16

1

1!-



For a given optimum physical confiquration and
suitably high values of €' and a!' , it would seem to be
desirable for the shape of A) (as defined above) to ap-
proach a straight line, as indicated in 7ig. 4 by A ,
causing the effective value of A}l to kecome smaller.

The product A}, - A5, in Eq. (4-20), cannot ex-
ceed unity in order that ¢ be a real number. However, if

AL, - A2 approaches unity, ¢ is also increased. if
Al = AL/2, then the maximum value ~f A}, is 2/A! for
€' = a'. HBowever, the larger |e!'-at !gecomes, the larger

AL, and/or A}, must be, to compensate for any loss in
thrust augmentation.

In conjunction with A}, being large, A}, should
be small, or A}l (or A,) should be as small as possible.
Furthermore, it would be preferable for the primary flow to
be incompressible.

In conclusion, it can be said that a rositive con-
tribution to thrust augmentation can be obtained only if at
least a portion of the entrained air enters the system at an
angle different from the exit flow angle., Also, the entrance
area of the entrained flow should be as small as possible
while the inlet momentum of the entrained flow should naturally
be high,

If the momentum box is extended to include also
the complete primary air supply unit (as, e.g., in an air-
borne self-contained vehicle) and if the inlet momsntum of
the flow into this unit is assumed to be parallel to and in
the same direction as the outlet momentum (p, : V3 . A,),
then this inlet momentum must be subtracted iron the result-
ing lift force of the thrust augmentation rig. Another case
is the possibility of having the inlet momentum of the pri-
mary flow enter the air supply unit at right angles or even
in the opposite direction to the final outlet momentum, and
thus potentially optimizing the resultant thrust augmenta-
tion,

In addition, the flow over a Coanda surface en-
trains almost as much as a free jet entrains on both un-
bounded surfaces,

4.4 Theoretical Lift on the Coanda Surface

The major porticn of the total lift is contributed
by the Coanda surface, If one could define the primary flow
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accurately as it flows around the Coanda surface, then,
theoretically, the pressure difference across it, Ap, could
be oLtained by equating it to the centrifugal force,

P, tVi/R. Thus the pressure on tne Coanda surface, pc ,
would be equal to th« static pressure, pg , on the free sur-
face of the primary flow jet sheet minus the pressure dif-
ference, Ap = Pg - Pc , wWhich is ideally constant for a
given nozzle, cuadrant, and pressure ratio. Assuming am-
bient atmospheric pressure below the Coanda surface of radius
R , the lift on the quadrant becomes

R(P, - p.) = R(P, - [p, - &P])

I

-— - 01
R(P, ps)+pJL t - V]

= pl.t.VE'+ p + (R/2) - vz
(4-21)

where p, is the pressure on the Coanda surface and

(Pa - pg) =1/2 - p - V§. Since R 1is 32 times the value
of t for the 1/8-in. nozzle and 4.0-in. quadrant, it would
seem that a large lift could be obtained if the flow velocity
Vg , was high at the free surface of the primary flow. For
a set value of d/t and a , the velocity of the secondary
flow, V, , can be increased by increasing the exterior top
flap angle, B , and thus by decreasing the entrance area,
A, . However, if the secondary flow velocity remains high
(and it doels at the surface of the exterior flap, *hen the
gain in 1lift on the Coanda surface may be eliminated by the
increased negative lift on the external flap, since there

is a larger projected area in the horizontal plane if £ is
large.
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5. PROCEDURE

5.1 PROCEDURE INDEPENDERT GF THE PRESSURE RATIO OR
COANDA SURFACE USED

For any one cf the three quadrants considered, the
angles, a and £ , and the channel width, d , were varied
while the diffuser angles, v and ¢ , remained constant at
6 deqg and 0 deg respectively. Since the diffuser angles re-
mained constant, the main change in the diffuser shape was
caused by the variation of d , the channel width. One can
see that for a given value of B and d , the height of the
three exterior flaps (or augmenting surface) with respect to
the Coanda surface can be varied by changing the angle a .
However, by altering the length of the bottom exterior flap,
N (Fig. 3), by extension pieces, the length of the diffuser
can be maintained at a constant length equal to the length
of the interior flap, M.

Before each run, the three external flaps were
fixed at the desired positions corresponding to the required
values of a, B, and y. The zero readings for all the lift
and drag strain gauges were then taken on the SR-4 strain
indicators. 1In taking the zero force readings of the thrust
augmentation flaps, care was taken to obtain the true values,
i.e,, to eliminate the friction between the sides of the
fiaps and the glass side plates which could cause the flaps
not to return to the exact equilibrium position. The
Palouste gas turbine engine was then started, the required
pressure ratio was set, and the test readings were taken,

Next, the nogzle top fairing with its six flush
pressure taps was placed on the nozzle, and the readings
were.observed on a water manometer board. The fairing pres-
sure varied smoothly along this surface. 8ince physical
limitations did not allow pressure taps to be located as far
forward a3 the tip of the fairing, the pressure readings of
the six pressure taps were extrapolated for the fairing tip
pressure, Thus the 1lift on the nozzle could be calculated
assuming ambient pressure on the lower side of the nozzle.

This lift, ly, associated with the nozzle, was then

added to the lift, Lg, exerted on the entire thrust augmenta-
tion rig, to give the total 1lift, Lp .
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5.2 “he Three-Inch Coanda Surface

The first Coanda surface (quadrant tested) was of
3~-in. radius, and all the combinations of angles between O
and 90 deg ot 30-deg intervals (0°, 30°, 60°, 90“) for both
a and £ were considered while the channel width, 4 , was
varied (i.e., combinations of a = 0%, 30°, 60°, 90° with
B = 09, 309, 60°, 90°) for a pressure ratio of 1.50.

After these data had been collected, it was noted
that when the total lift on the r<g, Lg, was plotted against
d (whether or not a fixed value of a or f was maintained)
two general types of curves resulted., One type of curve in-
dicated a monotonic increase in lift with d and an asymtoti.
approach to a value of lift approximately equal to the isen-
tropic thrust, Thy, of the primary flow. In other words, no
thrust augmentation occurred (see, for example, Fig. 1l5a).
However, with the other type of curves, the lift of the rig
increased with d as before, but a maximum was reached for
d X 3 inches, which was greater. than the isentropic thrust
of the primary flow, Thy. Then, as d was increased further
the lift decreazsed toward a value approximately equal to
Thj. The characteristics of the second type of curves showed
that there was a maximum vertical lift for d/t equal to
about 26 where t , the thickness of the nozzle exit, is
1/8 in. It was also noted that the latter characteristics
were strongest for the cases where:

(1) a=30° pB=0°  a/t =260 (Fig. 15b)
(2) a=60°, B =30° a/t=26.0 (F.4. 13b)
(3) a=90° B =60° g/t=60.0+ (Fig. 23a)

where ¢ (see Figs. 3 and 6) is the distance from tha top of
the quadrant next to the nozzle to the lip of the top ex-
terior flap. 1In the last case where a = 90°, d ie entirely
dependent on the angle £ ; thus the variable g/t 1is used
since d/t remains constant if B is constant. Thus, case
(3) is not as truly indicative as cases (1) and (2), since
the vertical 1ift is highly dependent on the value of d/t.

However, the result did infer a possibility that
a linear relationship may exist between a and B {i.e.,
a - B = 30°) for the cases where 2 maximum in thrust augmen-
tation might occur,
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To test waether a lincar relationship 4id exist,

he intervals at which the angles of a and @£ were changed
were reduced to 10 deg from 30 deg. The effect of keeping @
censtant at cevtain values while o and d werxre varied was
examined, Als>, a was kept constant at specific angles
while B and d were varied appropriately in consideration
cf the possible linear relationship. As observed froam the
results indicated in Figs. 23b, 24a and b, and 25a and b.
the relationship « - B = 30° + 2° seemed to hold true for
the lift on the thrust augmentation rig, using the J-in.

Zoanua surface at a pressure ratio of pt/Pa = 1.50.
o2 3 ine Two-Inch Quadrant

Next, the two-in. Coanda surface (as shown in
Fig. 2a) was used in place of the three-in. quadrant, with
the interior flap ~+1ill vertical and the bottom external
flap again at six . .grees tc the vertical, A test similar
to that conducted for the three-in. quadrant was performed
to see if thers» was still a limear relationship between a
and £ . As can be observed from Figs. 12 and 13, the re-
lationship a - B = 40° + 2° seems to yield the maximum
value of total lift, Up , if 4/t has a value of about 25,
It should also be noted in Fig, 1l3a that for a = 90° , the
maximum L7 is at { equal to about 54 deg since d ,
which increases with B , tends towards the opt’mum width
of d/t = 26.

5.4 The Four-Inch Quadrant

Again using the same diffuser angles and 2 pres-
sure ratio of 1.50, the four-in., quadrant was tested in a
procedure similar to that outlined for the two preceding
Coanda surfaces. It was ohserved that a - f = 20° + 2 for
4/t equal to about 26 yielded the maximum set of total
lifts, Lp . (See FPigs. 32 and 33.)

5.5 Effect of Pressure Ratio

Keeping the four-in., quadrant in place, the pres-
sure zatio, pt/Pa , was increased from 1.5C to 1.89 and
then to 2.00 for the same positions of a, B, und 4. Conse-
quently, the primary jet flow was sonic for the pressure
ratio of 1.89 and underexpanded for the pressure ratio of
2.00, since the nozzle was subsonic in design,
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The zame angie relationship, a - B = 20° + 2° ,
was observed ayiin at the pressure ratios of 1.39 (Pigs. 39
and 40) and 2.00 (¥Figs., 46 and 47). Bur the non-dimensional
chanmnel width, 4/t . corresponding to the maximum 1ift was
increased !from 20 &t p/Pz = 1.50) to about 23 fcr the
primary flow @t sonic velocity. Por the underexpanded flow,
d,/t was found to be betw=en 28 and 30.

5.6 £92 Non-Dimensicvsalized Mzasured Forces

Zack ‘non-dimensional” force was obtained by taking
the actual measured fcrce, F (reduced to pounds), and divid-
ing at by the corresnunding product of the mass flow, m ,
and T, tre square root of “he total primary flow tempera-
ture 1n degrecs Rankine. The va. ues of m - /T are 0.342,
0.453 anu 0.488 'slugs,sec. VPR) for tre pressure ratios of
1.50. 1.8) and <¢.07 :espectively and a* the atmospheric
pressure ot 29.44 in. of mercury.

5.7 Cefinition of Thrust Augmentation

The definitici: of thrust augmentaticn used was the
ratic of tne measared "non-dimersional” total 1ift, nnﬁnwﬁF:
to the ideal or isentropic "non-dimensional"” jet thrust
given by

(p,/P,; XL - 3

A'2 U JS Al A LA S
— PRT . e e ' (5-1)
Ty vl (P /Py "?L

Thus

. — ]
¢ aJvT . v/JT . (5-2)

Assuming a nozzle exit area of exactly 1.00 sq. in.
with a 1,50 pressure ratio, the isentropic thrust at an am-
bient pressure of 29.44 in, of mercury would be 12.45 1b,

The measured value of m - +T was 0.342 slug/sec R,
while the ideal value fo 'M/v%% for a pressure ritio of
1.5C is 36.2 ft/sec - ‘JER. Thus the measured thrust, Lt ,
is 12.40 1b. The difference between the isentropic thrust
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and the measured thrust is less than one percent (see Sec.
6.3.4% for an explanation). Aleo, the exit area of the 1/8-in,
nozzle might be slightly larger than 1,00 sq. in.

5.8 Effect of Dififuser Angles

The variation cf the total 1lift and drag was in-
vestigated at a = 60°, B = 40° and 4/t = 26 for the four-
in. quadrant., The interior flap angle, ¢ , was set at 0°,
-1° and -2°; and <y , which was 6 deg throughout the previous
experiments, was varied. The results are shown in Figs. 49
and 50. Figure H50b indi~ates a slight gain in the "non-
dimensional" total 1ift for ¢ = -1° ; but when ¢ is in-
creased to -2°, the lift drops substantially. Note also
that the diffuser yields the optimum Lp at an included
angle of v - ¢ = 6° for all three values of ¢ .

Separation of flow seems o occur at vy » 7° , as
indicated, especially in Fig. 49b, by the sudden decrease in
lift in the region of larger <. values, This was also rb-
served by the DeHavilland Aircraft of Canada, Limited.

By the use of wocol tufts. it was found that at
¢ = 0° and 7y = 6° , the nutlet floi' was vercical, except
very near the exterior flap, where ine flow velocity was
comparatively low. Ever w..en ¢ was made negative, the
exit flow remained mainly vertical.

Since the exit fiow velocity profile (see Fig. 52b)
was parabolic in shape vith the maximum velocity at the
center of the diffuger and the flow direction mainly verci-
cal, little cruld be lopis to be gained by increasing the
magnitude 2¢ ¢ and decreasing 7y . However, it seemed odd
that for ¢ = -2° there is a definite decrease in lift, It
is believ»d t' L this is due to the large suction pressure on
the inter,ov {.9p, especially near the Coanda surfacs, where
the flow velocity is large. This suction pressure is just
a result of the e»° 1sion of the Coanda effect into the dif-
fuser. (The . agni.. . of ¢ could ba increa: 24 to, at
leagt, minus 15 dog ‘'ithout separation of the flow 2tc¢ the
bottum of che interior flap.) The pressure on the ugpper
porticn of the interior flap, where there is probably sepa-
ration and reattachment, becomes more and more negative,
causing a further decrease in lift as ¢ is increased in
magnitude.
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6. DISCUSSION OF RESULTS

6.1 THE LINEAR RELATIONSHIP OF o AND B

The linear relationship of a - B8 = 40°, 30° and
20° + 2° for the two-, three- and four-in. quadrant, re-
spectively (where d/t has certain values depending on the
pressure ratio), determines whether a maximum value of 1lift
has been reached for a particular value of a or B). How-
ever, as noted in Figs. 13b, 33k, 39b, 46a, ard 47b, the
curves are relatively flat around the maximum. This indi-
cates that the configuration defined by tae relationship of
(a = B) is not necessarily the only possible one whereby a
maximum value of lift can be obtained for a particular value
of a or B.

From the results obtained for the two- and three-in,

uadrants, it can be seen that if the angle difference
?a ~ B) is more than 20 deg from the observed constant opti-
mum (40° for R = 2.0 in. and 30° for R = 3.0 in.,), then the
lift drops appreciably. This fact was made use of when the
four~in., quadrant was tested. The range of varying a and
8 about the optimur value of a - B = 20° + 2° was there-
fore reduced.

Pigures 14, 26, 34, 41, and 48, which indicate the
variation of the non-dimensgional lift and drag forces with
a 1in accordance with the optimum linear relationship of
a and B , show that the non-dimensional total lift is an
almost constant maximum when B is larger than 20 deg and
until a approaches 80 deg. These muximum total lift values
arc as li:.ted below:

ERRSSURE RATIO  MAXIMUM TOTAL LIPT, xj/mﬁr'

(ft/maz JOR)
1,50 43,0 to 43.5
1,89 52.0
2.00 h3.25



However, if B 1is increased beyond 20 or 30 deg,
it is evident that the non-dimensional lift, L, and drag,
D, measured by the strain gauge palance, decrease slightly

1s a and B are cortinudusly increased according to the
linear relationship of a - B = constant.

Since Lg and Dg are highly dependent on the
secondary flow inlet momentum, and since they both decrease

simultaneously, it must be inferred that the secondary flow
.nlet momentum must decrease slightly with increasing a ,

r that the momentum flow must enter in a more vertical di-
‘ection as o and f are increased. A combination of these
wo possibilities is highly likely as well as an increase in

he negative pressure momentum term, Ag/é(V;)z(l-cos a)(Az),
ssociated with an increas in a .

. e The Secondary Flow Entrance

Even though the streamline angle of the secondary
low, €', increases .n general with a , there is no notice-

ble increase in the total 1lift when B 1is increased beyond
0 or 30 deyq.

Take the momentum box defined in Fig. 4 with the
econdary flow entrance defired by a'!(a'' is not necessarily
qual to €'"), It would be reasonable to assume that, in
eneral, as a''" is increased, a'" increases faster than e,
specially in the important region near the lip of the top
xterior flap, where ths momsntum per unit area is the high-
st, This more rapid increase of a'" near the top flap's
ip has the tendency to decrease the rig's lift (see Bq. 4-9),

In addition to the above detrimental effect while
acreasing a , the entrance area, Ay, , of the secondary flow
as illustrated in Pig. 6) does not decrease with a if a
3 increased beyond about 40 deg. The following three rea-
>'ns may be responsible for the inability to decrease the
rea A, and consequently potentially to increase the lift;

{1) the acquiring of a favorable pressure yradient on

the metal sheet joining the top and center exterior
flaps,

(2) the blockage of the entrained flow.

(3) the velocity profile at the entrance, A,.
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6.2.1 Favorable Pressure Gradient

To achieve a favorable pressure gradient along the
metal sheet (see Fig. 3) attached to the exterior flaps, the
velocity of the flow along it should continually increase.
This requires a continually converging cross-section.

Figure 7 illustrates an optimum configuration for the four-in.
quadrant where a = 60° and B = 40°. Also shown for

a = 60° are the configurations where B is 30° and 50°.

Note that where £ 1is less than 40 deg, thc ~econdary flow
channel is converging. For B > 40°, the channel, initially
convergent, begins to diverge. Consequently, future experi-
mentation should include some variation of the distance at
which the metal sheet begins to separate from {" e top ex-
terior flap (as indicated as a dashed line for B = 50° in

Fig. 7).

6.2.2 Blockage of the Secondary Flow

As stated in Ref. 3, obstruction of the secondary
flow is a major reason for low values of thrust augmentation,
Figures 1 and 2b show that blockage of the secondary flow
can be caused not only by the nozzle in combination with the
top exterior flap, but also by the settling tank, especially
as o and B are increased.

6.2.3 ec : - Profile

The obstruction to the secondary flow is reflecteAd
in the velocity profile across the entrance, A_, as indi-
cated in Fig. 51. Por the optimum valuer of 3/% , the ve-
locity, and thus the inlet momentum per un:t area, is high-
est near the lip of the top flap. This seems to be caused by
the obstruction of the flow due to the settling tank and by
the flow's enforced departure from its natural path of en-
trainment, For smaller values of a , this portion of the
total inlet momentum is tending to flow in a less vertical
direction than for higher values of a , where the flow along
the 1lip of the top flap becomes more vertical, However, for
the portion of the secondary flow nearer the nozzle, where
the momentum per unit area is lower, increasing the values
of a and B does cause that portion of the flow to enter
at an angle more parallel to the axis of the nozzle (i.e.,
€ or €! approach 90°).
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Tnrough flow visualization experiments, a closer
inspection of the increase in momentum per unit area near
the lip of the top flap as well as the magqnitude of turning
of the remainder of the secondary flow as a function of #
and for certain values of a and d/t might be useful for -
improvements in the design of the secondary air inlet.

If the positions of maximum and minimum velocities
could be interchanged, the 1lift on the Coanda surface could
definitely be increased (high values of € ), while the nega-
tive lift on the top exterior flap would be decreased in
magnitude (low €). Thus the amount of thrust augmentation
should be noticeably higher,

6.3 Thrust Augmentation

6.3.1 The Deflection of the Secondary Flow

As stated before, the important function of the
top external flap was to lessen the vertical component of
the inlet momentum without decreasing the actual mnagnitude
nf tne inlet momentum, By increasing A8 from z: ‘o to 20 deg
to 30 deg, this can be achieved to a certain ext¢ at, The
possible gain in lift increases in proportion to .he radius
of the Coanda surface (although the maximum poss:ble total
1ift is independent of the radius used). For a ressure
ratio of 1.50, the optimum measured augmentation :s four per
cent tor the two-in. quadrant, but almost seven r:r cent for
the tour~in, quadrant. The reason is that for the smaller
cv.drant, the velocity over the nozzle and secondary flow
over the free surface of the primary flow over the COGnda
surface is noticeably higher for the condition of B = 0°
and a = 40° for the two-in. quadrant than for the four-in,
quadrant with B = 0° and a = 20°., This is illustrated in
Figs. 8a, 15b, and 27a, where the static pressure over the
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nozzle is inversely proportional to the radius and quite
constant with the varying channel width. Thus a greater
portion of the secondary flow {assuming approximately equal
secondary mass flows) has a higher value of € for the
quadrants of lower radii, R. This leads to a higher initial
lift, Lg, for P = 0° for small radii.

6.3.2 Lift on the Coanda Surface

Since the lift on the Coanda surface, excluding
the thrust aigmenting effects of additilonal surfaces, is,
according to theory,

- _ - .t .92 -
R(P, - P) =R(P, = pg) +p -t -V, (4-21)

it follows that for a certain pressure ratio, nozzle, and
B = 0° , the lift should be a constant and independent of
the quadrant's radius since (Pa - Pz) could be considered
to be approximately proportional to (1/R) if the lift over
the nozzle can be cornsidered tz be a reasonable representa-
tion of the magnitude of the secondary flow velocity, Vg ,
at the free surface of the primary flow.

A possible reason for the above-mentioned higher
velocity of the non-entrained secondary flow over the Coanda
surface for smaller radii is that in order for that portion
of the secondary flow, which has not received direct energy
transfer from the primary flow, to avoid undue total pres-
sure losses, the secondary flow must be ideally irrotational,
Thus, the velocity would tend to be inversely proportional
to the magnitude of the radius of curvature of its stream-
lires, PFor a smaller radius quadrant, the radius of curva-
ture of the secondary flow of the assumed interface between
the primary and secondary flows over the Coanda surface would
naturally be lower; thus the velocity would be higher. Of
course, the frictional effects in the flow prevent a purely
irrotational flow,.

However, the total 1lift depends not only on the
1ift on the Coanda surface, but also on the magnitudes of
the 1lift on the nozzle fairing and on that (usually negative)
acting on the external flaps.

The 1ift on the exterior flaps is highly dependent
on the static pressure on the underside of the top external
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flap. Also, the velocity profile of the secondary flow at é
the entrance, A, , (Fig. 51), indicates a low pressure and
high velocity near the flap. For the same reason that the
secondary velocity is apprnximately inversely proportional
to the radius of curvature of its streamline over the Coanda
surfaces, the velocity at the top flap and its 1lip can
probably be decreased by increasing the radius of curvature
of the lip at its bo*tom, thereby reducing the radius of
curvature of the streamlines near the lip. If this velocity
is reduced, then the negative lift on the top flap will be
reduced, For this reason, as well as for cbtaining a con-
verging entrance channel, an optimum entrance as shown in
Fig. 5 is suggested. This configuration is simply a curve
that is the envelope of top and center flap surfaces shown
in Fig. 6 for the four-in. quadrant,

6.3.3 Thrust Augmentation at Low Pressure Ratios

Using the four-in. quadrant with the flaps havin
the configuration corresponding to a = 60°, B = 40°, y =
and ¢ = 0°, the channel width, d, was varied for pressure
ratios of 1.30 and 1.10.

For the pressure ratio of 1.30, a maximum value of
thrust augmentation of 1.21 was obtained when 4/t equaled
25.0.

Approximately the same thrust augmentation was
measured “or a pressure ratio of 1,10, with 4/t being be-
tween 24 and 25, These values of ¢ were identical with
the maximun thrust augmen-.ation for a pressure ratio of 1.50.

6.3.4 ange in ssu a w nstant ottle
Setting

An increase in the momentum of the primary flow
should result if a and P are increased at a fixed primary
total pressure, since the static pressure at the nozzle exit
is decreased., However, for a total pressure, pt, equal to
1.5 times the atmospheric pressure, Pa, the change in the
actual pressure is less than 0.5 per cent. For example, for
Pt = 2.00, the per cent change of p¢/Pa 18 still less than
0.75 per cent for the configurations investigated.
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6.3.5 Lift on the External Flaps

As noted in Figs, 8 through 11, 15 through 23, etc.,
where the non-dimensional 1lift is plotted against, d/t, the
lift on the external flaps increases rapidly as the channel
width initially increases. Then, as the channel widta is
increased further, the flaps' lift approaches a value clouse
to zero. The lift on the flaps (positive or negative) de-
pends on the pressure difference acting across them and on
the magnitude of projected horizontal area. If o and d
are held constant, then the larger the value of £ , the
larger are both the pressure difference across the external
flaps and their projected horizontal area. The lift on the
exterior flaps can only be positive for a smalil angle of £,
since only then is the projected horizontal flap area small,
allowing the flow over the lip of the top flap to cause a
positive contribution to the lift. The velocity of the flow
over the lip is increased the closer the lip is to the pri-
mary flow, or the smaller the entrance areas. (Compare the
values of Lp/mvT in Figs. 27b, 28a, and 28b, where the
maximum value of Lp is for B = 20°,)

However, when the pressure ratio is increased, any
positive contribution of the external flaps decreases (see
Figs. 41 and 48) and even becomes negative for the respective
values of optimum channel width and low values of £ . It
seems that the pressure and frictional forces on the bottom
exterior flap (at y = 6°) offset the gain attributed to the
lip of the top flap with increasing pressure ratio.

For the tests where the internal flap was vertical
(¢ =~?2), the magnitude of the distance between the curves,
Lp/mvT and Lp/mJT , for any value of d/t represents
the quantity of non-dimensional lift on the Coanda surface
aloni (see Figs. 8 through 11, 15 though 23, 27 through 31,
etc,).

6.3.6 a terna aps

The drag is, of course, due to the same pressures
as the lift, except that now the projected vertical areas,
instead of the projected horizontal flap areas determine its
magnitude., 8ince the projected vertical area of the lip of
the top flap is negligible, the drag force on the thrust
augmenting surface acts inward or in the negative direction.
Oonly when d/t is large enough so that the velruity of the
secondary flow near the exterior flap is small does the flaps!'
drag approach zero.
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6.3.7 Lift on the Nozzle Fairing, Iy

Since there is a decrease in pressure over the
nozzle toward icts exit, caused by the secondary flow velocity
increase, there will be a resultant lift due to the pressure
difference across the nozzle. As noted in Figs. 8 through
11, 18 and 22, and 27 through 31, a maximum lift on the
nozzle is approached as d/t is increased from zero. The
value of d/t where the maximum nozzle lift occurs is
usually less than that value of d/f corresponding to the
maximum value of total lift., As d/% is increased further,
the nozzle 1lift, LN , decreases to a value corresponding to
ar: unshrouded Coanda surface and nozzle (but this value is
not zero).

The maximum nozzle lift is the result of (a) an
increase in the secondary flow velocity due to a decrease in
its entrance area, A,, and (b) the effect of blockage to the
secondary flow entrainrent, created by the boundary of the
exterior flaps. Assuming that o and B as well as the
entrained secondary mass flow remain constant, the smaller
the entrance area, the larger is the velocity of the secondary
flow over the nozzle fairing. However, the entrained mass
flow is not constant with respect to 4/t , for there are
blockage or interference effects on the secondary flow mix-
ing by the external flaps. As the exterior flaps are moved
Farther cut, this blockage or obstruction to entrai-ment
will be decreased and the secondary mass flow will ct nse-
quently increase,

6.3.8 Lengthening of the Diffuser

In order to maximize the kinetic energy of the
exit flow, an optimum amnount of mixing should be achieved.
Upon lengthening the diffuser in increments of three in. up
to one foot, above that length of M used during most of
the experiments (see Figs. 1 and 2b), no significant increase
in total 1lift was observed. Thus, it could be concludeded
that the initial length of the diffuser was sufficient.

6.4 Sugges s fo e ase rust Augmentation
1. At present, the flexible metal sheet joining the

two top exterior flaps does not provide a continuously con-

verging channel for large values of 8 and, consequently,

smaller secondary flow entrance areas, A,. In order that a
favorable pressure gradient may exist throughout the entrance
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channel, the metal sheet should be fastened to the top ex-
ternal flap so that it would be able to diverge from the top
flap to a larger extent, Thus, for a given value cf a and
d/t , 3 may be ircreased to a further extent than before,
and yet a converqging channel may still be maintained. Also,
the middle exterior flap angle, & (Fig. 3), could be varied
so as E§ form an optimum shaped channel (especially for

a = 20~),

2. For any flow to be icentropic, the velocity of
that flow must be inversely proportional to the radius of
curvature of its streamlines. Consequently, it might be
advisable to increase the radius of curvature as the lower
portion of the lip attached to the top external flap. If
the entrance area, A,, of the secondary flow (proportional to
the proximity of the top flap to the primary flow) is not
altered, then the velocity along the top external flap should
decrease, leading to a decrease in magnitude of the negative
lift on the exterior flaps for large values of £ .

Figure 5 illustrates both a continuously converg-
ing channel and a large radius of curvature on the lower
portion of the 1lip.

3. If it is desirable to change the constant angle
difference (a - B) in the linear relationship of a and 8
while keeping the radius of the quadrant constant, then the
length of the top flap could be altered, However, it is be-
lieved that small changes in length will affect the total
lift no more than a change in the radius of the quadrant.

4, According to Ref, 4, related increases in the hori-~
zontal and vertical distances of the gquadrant from the nozzle
exit wi)l cause a lift increase on the Coanda surface. This
is dQue to the decrease in primary flow velocity over the
surface caused by the air entrained into the jet sheet under-
side. whereby the frictional losses along the Coanda surface
are decreased.

The maximum possible angle ¢ of the secondary flow
at the secondary entrance was 90 deg (due to the boundary
created by the nozzle). However, in the case of horizontal
and vertical gaps (on the upper side of the jet sheet), the
angles of entrainment could range between 90 deg and 180 deg
on the lower side (corresponding to high angles of ¢! for
the secondary flow).
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5. According to verbal information obtained from ex-~
periments perforied at the DeHavilland Aircraft Company of
Canada, Ltd,, and at th2 National Research Covncil of Canada,
Ottawa, thrust augmentation devices using the Coanda effect
were greatly improved by the introduction of a tertiary flow
. entrance below the Coanda surface. The interior flap, then
separate from the quadrant ard having a suitable 1lip, should
e adjusted vertically, horizontally, and ngularly with
respect to the quadrant.

6. In Ref, 5, a four-in. quadrant was used with 1,/8-
in. nozzle (1 = a = 0). It was found that if the quadrant
was rotated through 20° (such that the top of the quadrant
was rotated away from the nozzle), the lift on the quadrant
was increased.

This increase came about because the flow was ro-
tated in such a way that the outlet momentum became a maxi-
mum in the vertical direction,

For a fixed channel width, d, the practical diffuser
angle or the boundaries of the flow in the thrust augmenta-
tion rig diffuser are restricted by (a) separation along the
exterior flap (y > 7°) and (b) the increase of negative
pressure along the vpper portion of the interior flap (due
to the Coanda effect) with the increase in magnitude of ¢ .
Since two requirements for high thrust augmentation are a
high value of A,, (maximum of two theoretically) and effi-
cient mixing, it might be advisable to turn the Coanda sur-
face and possibly obtain a high area ratio, Asa, along with
more efficient mixing. Also witb the increasé of A,, , the
negative pressures along the flaps may be reduced. Further-
more, a tertiary entrance may become more effective,

7. From the results obtained from theory as well as
from the velocity and pressure profiles of the secondary
flow (Fig. 51), another inlet (see point "A" in Fig, 5) just
above the diffuser on the exterior flap side would be de-
sirable. Thus tlhie secondary flow would be allowed to enter
at anglés of up to -180° even for high values of a. (In
the present configuration, the flow angle would be limited
to +90Y by the nozzle.) Furthermore, this air inlet in the
exterior flaps would allow the entrained fiow to enter in a
more natural direction and may consequently increase the
efficiency of the mixing, Also, by lessening the enforced
departure of the entrained flow from its natural path of
entrainment (that path of the entrained flow if no exterior
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flap was present), the negative pressure causing a negative
1ift for higher values of a on the top exterior flap would
be greatly diminished.

With the problem of obstruction to the secondary
flow decreased by a suitably shaped exterior flap entrance,
the flap angle, a , could be made more effective by increas-
ing the entrance angles, € or €' , while a high velocity
may still be maintained for the primary air flowing over tlre
Coanda surface, Vg (see Sec. 4.4), by decreasing the entrance
area, A, , appropriately.
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7. CONCLUSIONS

The following conclusions can be drawn from the
presented experimental results:

1. The Maximum Total Lift Is Independent of the Radius
of the Coanda Surface

When a pressure ratio of 1.50 or less (1.30 and 1.10)
was used, the thrust augmentalion for the three Ccanda sur-
faces used was at a maximum between 1.20 and 1.21., However,
when the primary flow was approximately sonic, the thrust
augmentation ratio was only a little greater than 1.106.
when the pressure ratio was increased to 2.00, the thrust
augmentatison ratio., @ . decreased slightly to a little less
than 1.16 for the subsonic nozzle,

Conscegquently, it would seem that as the pressure
ratio is increased above 1 50, the thrust augmentation ratio
decreases, This is in accordance with the theory which in-
dicates that the highest thrust auymentation is obtained
when the flows are incompressible. Also, frictional effects
are less for smaller velocities.

z. The Most Effective Increase Is in Total Lift Due
to the Variable Top External Flap

Under the present experimental conditions, little
4ain in the total lift, Lr, if any, is obtained by increas-
ing the ancle £ of the top exterior flap beyond 20 or 30
deg., The gain in total lift that can be obtained by in-
creasing P from 0° (which corresponds closely to the use
of one single inflexible exterior flap) increases as the
radius of the Coanda surface is increased, even though the
maximum tctal l1lift remains constant for a constant pressure
ratio. For a pressure ratio of 1,50, the possible gain in
total 1ift obtained by altering B from zero degrees is
approximately four per cent f£for the two-in. quadrant and is
almost seven per cent for the four-in, quadrant.

When the pressure ritio is increased to 1.89 and

2 00, the ratio of the maximu: 1ift (at B > 20° and a < 80°)
to that 1ift obtained for B : 0° is about 1.05.
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As the pressure ratio was incre: ied beyond 1.50,
there was an appreciable decrease in maximum thrust augmen-
tation. A large portion of this decrease is caused by the

low aspect ratio of the thrust augmentation rig resulting in
large frictional losses for high-velocity flows.
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FIG. 1 THE THRUST AUGMENTATION TEST RIG AND SETUP

38




COANDA SURFACES (2- and 3-Inch Radii) AND THE NOZZLE
FAIRING

2{») THE THRUST-AUGMENTING SURFACES, QUADRANTS,
AND NOZZLE
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SCHEMATIC DIAGRAM ILLUSTRATING THE FIFTEEN
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FIG., 7

CONFIGURATIONS OF THE TOP EXTERNAL FLAP FOR
o = 60° WITH THE FOUR INCH QUADRANT.
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VARIATION OF NON-DIMENSIONAL FORCES WITH THE BI‘CONDABY FLOW
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VARIATION OF NON-DIMENSIONAL FORCES WITH THE SECONDARY
INTRANCE ANGLE, o<, CORRESPONDING TO THE RELATIONSHIP: &¢-
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