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ABSTRACT 
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I 

The vibration properties of a plate or a rod with 

attached mechanical structures, called resonators, are studied 

by transfer matrix and Green1s function techniques* The plate 

may be in a vacuum, or acoustically coupled to water on one side . 

The effects of an added resonator at a given frequency depend only 

on its response strength in each of its modes of vibration. Ex¬ 

pressions are derived for the strengths of several useful resona¬ 

tor types. Boundary conditions for the plate, such as clamping 

or simple support, are satisfied by the mathematical device of 

attaching resonators of infinite strength, A piston cut out of 

the plate material is handled similarly. Formulas for the inter¬ 

actions ("influence coefficients") between the modes of different 

resonators are given. Expansions are developed for the transcend¬ 

ental integrals that arise in the problems treated. 
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1. INTRODUCTION 

Mechanical devices attached to a plate serving as a 

baffle were introduced as part of the CONTACT sonar system under 

development at TRG Incorporated, in order to make the flexible 

plate behave like a perfectly rigid wall for a selected frequency 

range. The resonators (see Fig. 1-1, at the end of this report) 

are attached to the back of the baffle, and at their resonant fre¬ 

quency have the same effect on the plate motion as though they were 

almost infinite masses. Earlier calculations of their effects were 

given in Appendix XIII of TRG-142-TR-2 (1963), based on the assump¬ 

tion that they were spaced so close together that an average density 

of resonators could be used. It has been determined more recently 

that the sr? chests which house the transducer elements of the sonar 

system affect the plate motion in roughly the same way as the reso¬ 

nators attached to stiffen the plate, and may be even more important, 

since the total mass of the sea chests is comparable to that of the 

resonators. Thus it appears desirable to find exact and general 

methods for analyzing a whole class of similar problems, involving 

structures attached to and interacting with a plate. 

The present report gives methods of calculating the effect 

of resonators of different types attached to a plate in various geom¬ 

etries. An associated report in this series, TRG-142-TN-64-11, by 

Yarmush and aronson, presents experimental results on the vibration 

properties of bars as modified by attached resonators. 

A resonator attached to a plate at a point can vibrate in 

either the axial mode, in which compressional waves are set up in 

its material, or in a transverse mode, corresponding to a flexure 

or swaying of the resonator. (See Fig. 1-2.) Similarly, various 

modes exist for sea chests. The strength of a resonator is defined 

in Section 2, and then methods of calculating it are discussed. Sec¬ 

tion 3 gives the Green's functions for a few kinds of resonators, 
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that is, the effect a resonator has on the plate when it is caused 

to vibrate with unit excitation. 
! 

A resonator attached at a point acts as a secondary 

source that produces an outgoing displacement wave in response 

to the displacement at its base (in the axial mode) or in response 

to the slope at its base (in the transverse mode). If there are 

several resonators, these secondary waves will produce additional 

responses at the attachment points and so on. Section 4 gives 

formulas for determining the net effect of all these waves, when 

a driving force is imposed at a single point. 

In the earlier Sections (3 and 4) only two-way infinite 

rods, or plates extending indefinitely in all directions, are 

discussed. These are considered to be in free space. A plate 

carries either a finite number of resonators, or an infinite 

number of identical types in a regular array. 

Treatment of a rod of finite length is reduced to treat¬ 

ment of a two-way infinite rod by an artifice, developed in Sec¬ 

tions 5 and 6, in which non-physical resonators are attached to 

an infinite rod and have the effect of breaking it. These sec¬ 

tions also contain a calculation of the strength of a transverse 

resonator of several segments and two different treatments for a 

rod having a thickened portion. 

A traveling pressure wave on a rod is considered in 

Section 7. Infinitely many resonators are attached to the rod 

in a repeating pattern. There may be several different kinds of 

resonators in the repeating arrangement. 

The effects of an infinite ocean of water on one side of 

a plate are discussed in Section 8. It turns out that if there are 
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resonators attached to the plate, one can first find the properties 

of the system without resonators and then, so to speak, attach the 
¿I 

resonators to the coupled plate-water system. In many cases, the 

formulas in the wave number domain that are valid in the presence 

of water differ from those without water in a simple way - the 

term that represents the inertia of an element of the plate vi¬ 

brating at the given frequency must be increased by an "added mass" 

term due to the water that participates in the motion of the plate. 

However, at certain wave numbers the "added mass" is imaginary, 

which means that a disturbance is propagated through the water. 

This section also considers systems of parallel plates immersed 

in water, with upper and lower plates bounding the fluid. 

Further kinds of resonators are discussed in Section 9, 

and also pistons, which are analyzed mathematically as the result 

of superimposing several kinds of fictitious or generalized reso¬ 

nators. 

Finally, Section 10 contains evaluations for many of the 

integrals that arise in earlier sections. 

In summary, Sections 2, 3 and 4 contain a more elementary 

treatment than the rest, and Section 10 is purely mathematical. 

The effects of water coupled to the plate are not discussed until 

Section 8. It has been convenient to introduce many kinds of 

mathematical resonators in order to satisfy various boundary con¬ 

ditions. 

Much of the treatment speaks of a homogeneous rod, rather 

than a homogeneous plate, but e^ery rod problem is analogous to a 

plate problem. Thus a rod stretched along the x-axis and vibrating 

in the xz-plane satisfies the same equation of motion as a plate 

whose median surface is in the xy-plane, if the plate executes 

vibrations such that the displacement is independent of y. The 

w»* .. .... .... »■»«•‘»■‘«■»»»“»»■»MwwiMnwiiMimiMinitum 
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plate stiffness must of course be used ^ 

coefficient. The reverse relation i °f ^ ^ 8tlffnes 
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2* TYPES OF RESONATORS: CALCULATION OF THEIR STRENGTHS 

A single physical resonator can have several modes of 

vibration, but it is more convenient to speak of fictitious reso¬ 

nators, each oscillating in only one mode. Then a real one is the 

result of superposition of several such fictitious types. 

2•1 Domain of Sensitivity and Response 

A physical resonator is attached to a plate by a weld 

over some area. In the mathematical treatment, this can be ideal¬ 

ized in several ways: A standard TRG resonator can be considered 

as exerting its force on one point. On the other hand, a seachest 

is attached over an annulus. When this is approximated as a circle, 

it can be called a rim resonator. It will also be useful to intro¬ 

duce a disc resonator, which is attached at all the points within 

a circle. Thus it is convenient to speak of the domain of sensi¬ 

tivity of a resonator - either a point, a curve, or an area. If 

the domain is not a point, then the resonator need not be sensi¬ 

tive to the plate displacement to the same extent at different point 

of the doman. Thus we introduce a weighting function w*(r), for 

sensitivity, and we normalize w* by setting the integral of (w*(r))2 

over all points r of the domain equal to unity. All the significant 

features of an axial or force resonator, insofar as it will affect 

the plate motion at a fixed frequency iu, are summed up in the fol¬ 

lowing definition: 

An axial resonator is a device which in response to a 

weighted average of the displacement over its domain, exerts a force 

on the plate at each point of the domain. In general, the force is 

not uniform and is given by F(co) w(r) , where w(r) is a weighting 

function for response, (normalized so that the integral of (w(r))2 

is unity) , and F(a>) is the strength of the resonator at frequency cu. 

Similarly a transverse resonator responds to a weighted 

average of the slope by exerting a moment G(uj)w(r) at each point r 

of its domain. Here G is also called the strength. For a resonator 

whose domain is a point, it is necessary to specify the direction 

of the moment. Thus physically there will be a different mode for 

¡mwiitunivuntimi» 
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each direction. However, all such modes can be viewed as the re¬ 

sult of superposition, with appropriate coefficients, of any arbi¬ 

trarily chosen two of them. 

The reciprocity relation between sources and responses, 

when applied to the resonator materials, leads to the conclusion5 

that the weighting functions for sensitivity and response must be 

equal. Nevertheless a non-physical type of resonator will be intro¬ 

duced later to handle a special problem, and it will be necessary 

to use different functions in that case. Thus we have made the 

distinction from the beginning. 

Strength of An Axial Resonator with a Uniform Weight 

Function. 

The response in the simplest axial mode is due to compres- 

sional vibrations set up in the resonator material due to displace¬ 

ment of the base. The strength is the magnitude of the total force 

exerted in opposing unit displacement of the bar or plate. This 

will now be computed &ra resonator made up of several segments, 

each segment being homogeneous and having a uniform cross-section. 

Note that a disturbance with planar wavefronts, such as we assume, 

does not satisfy the exact boundary conditions on the sides of seg¬ 

ments, but the error introduced is negligible. 

2•2.1 One-Segment Axial Resonator 

We first consider a resonator that is a cylinder of 

cross-section area S attached to the plate along its base. The re¬ 

sonator material has Young's modulus E and density p. Hence the 

speed of sound in it is 

c = 

Let L be the length of the cylinder, and ^(y) the local displacement 

of the material at height y above the base. 
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The force exerted by the resonator back on the 

plate ivS 

ES 
y = 0 

But tí 
y = 0 

is proportional to n(0). The strength of the reso¬ 

nator F(œ), is defined as 

F(œ) = 
ES òn(O) 

% 
We shaj.1 determine F(cu) as a special case of a more general result 

in Section 2.2.2. Here, we may notice that Final Report TRG-142- 

TR-2 vol. III, Appendix XII contains a calculation of F(co) by 

Victor Mangulis. He finds 

F^) = - tan (ujL/c) 

When ujL/c is small, the resonator behaves as a rigid rod, and F 

reduces to 

F(cu) ^ - p SL cc^ 

The factor p SL is of course the mass of the resonator. 

When (n +^)^, there is a resonance, and the 

formula above predicts infinite strength, which means that an in¬ 

finite force will be produced in response to any non-zero displace¬ 

ment of the plate at the attachment point. Actually, dissipation 

in the resonator material and non-linear effects will keep the 

strength finite, but there will be a phase change of ^ as æ moves 

across the resonant frequency. 
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2.2.2 Axial Resonator Made Up of Several Segments 

The above-mentioned report also gives a deriva¬ 

tion for the case of two segments; here a generalization is pre¬ 

sented for a resonator made up of any number of segments. The 

segment nearest the plate will be numbered 1 (see Fig. 2-1). Con¬ 

sider a typical segment, say the i-th, (not the last) and let the 

zero of the y-coordinate correspond to its base (the end nearer 

the plate). From the equation for compressional vibrations of a 

cylindrical rod, it follows that the displacement n will be sinus¬ 

oidal : 

n(y) = A cos ky + B sin ky, 

where 

k = cd/c . 

Then 

r,' = = - Ak sin ky + Bk cos ky 

and r|^ denote the values at the base of the i-th segment. 

r'o = A 

= kB 

ri = r¡0 cos ky + ¿ r¡¿ sin ky 

r)' = - rj0 k sin ky + cos ky 

In particular, this must be true at the outer end o£ the segment 

(of length L) , where the displacement and derivative are r,eir\'e: 

r,e = no cos k*“ + ¿ r'¿ sin L*a' 

ri* = - ri k sin L*a -h n* cos L^cu 
‘e ‘o ‘o 

Let n0 

Then 

and so 
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F 

íi 

E 

r 

Here we have introduced the abbreviation 

L* = “ =[L VpTF] 

Consider all the segments more remote than the 

i"th. These may be considered when taken together as forming a 

resonator of strength Fi+r When the i-th segment is added, one 

has a new resonator of strength Fr A formula expressing F, in 

terms of Fi+1 will now be derived. It will then be possible to 

compute the strength of a resonator of any number of segments, 

by adding one segment at a time, starting at the outer free end 

with a fictitious extra segment of zero length and zero strength. 

By definition of the strength of a resonator, 

Fi+i is tlle force exerted across the junction between the i-th 

and (1+1)-th segments, divided by the displacement there. The 

force is given by the expressions 

ôq, 
E, S. i = iöi ajT 

äVi 
~àÿ~~ 

where the derivatives are evaluated on the appropriate sides of 

the junction. It should be noted that at a junction between seg¬ 

ments of different cross-sections, a plane compressional wave in 

the segment with smaller cross-section will produce a complicated 

combination of congressional and shear waves in the other segment, 

since the condition of zero pressure along the portions of the base 

not in contact with the other segment must be satisfied. However, 

the shear waves and non-uniform compressional waves are attenuated 

extremely rapidly with depth into the segment. One can also say 

that the equation above comes from a macroscopic view, because it 

is not true that the pressure is uniform across the interface. 

We can write 

ft,.. - 
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and also 

We now have four equations connecting n¿, r)e, n;, Fi, and Fi+1, and 

can solve for in terms of Fi+1. If we introduce the abbreviations: 

S* = ES/c = sVËp , 

then we find 
F. . - uÆ* tan L*o> 

F. = - coS* ~~--j.-^ 
1 Fi+1 tan L*œ + 

Writing K = arctan (Fi+1/œS*> , 

this becomes 

F^ = - ouS* tan (L*cjd + K) 

The strength of a resonator of N segments can thus be written in a 
convenient form 

F = » o)S* tan (-L*œ + arctan X 

S* tan(-L*œ + arctan (-^ X 
2 

• • • 

S* tan(-L*co) ) . ..). 

It is noteworthy that the four constants needed to give the properties 

of a segment appear only in the two combinations: 

sî - siV^~ 

■ Lj. Ty/Pi/Ei 

2-2.3 Condition for Resonance in a Limiting Case 

The resonator will have infinite strength at fre¬ 
quency CD if 

œ3* + F2 tan L|cu = 0 . 
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When there are only two segments, then 

]?2 = ~ 03S* tan L*o) 

and so the condition becomes 

Now for a range of dimensions that we have been concerned with 

(SJ/S* very small and L* comparable to LJ), the lowest mode occurs 

when L*œ and L*<d are both small, and so the tangent can be replaced 

by a linear approximation, yielding 

* S1 E1 1 

Let D-^ and D2 be the diameters of the segments, assumed 

to have circular cross-sections. Then 

Note that E2 and do not appear here. The outer segment behaves 

only as a mass and the inner one only as a spring. 

3 Transverse Mode of a Point Resonator 

A physical resonator can also undergo flexural vibrations, 

similar to those of a rod with one end clamped and the other free. 

On a plate, the vibration need not take place all on one plane, 

but mathematically we can superimpose two transverse point reso¬ 

nators, each of which is allowed to vibrate in one plane only(the 

planes of the resonators being perpendicular to each other). The 

strength of a transverse resonator is the magnitude of the moment 
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it exerts in opposing a unit change of the slope at the resonator 

attachment point. Transverse oscillations of a many-segment reso¬ 

nator can be handled by introducing a matrix which gives the dis¬ 

placement and its first three derivatives at a point in terms of 

the displacement and first three derivatives at a neighboring point. 

This will be done in Section 5.2. 

A Simpler derivation for a single segment was given by 

V. Mangulis in the report already cited. We merely quote his re¬ 

sults : 

Let 

p = density 

S = cross-sectional area 

E = Young's Modulus 

I - moment of inertia of a cross-section of the cylinder 

o o 
1,4 caps üT S 
k - “El = I • 

Then the strength G(a>) is given by: 

G(o>) = Elk <!os kh sinh kL - sin kL cosh kL 
1 + cos kL cosh kL 

2*4 More Complicated Types Attached at Points 

At an earlier stage, resonators were considered having the 

cross-section shown in Fig. 2-2. This can be approximated by com¬ 

bining segments that separately oscillate in compressions! or trans¬ 

verse modes. 

Thus segment 1 is a cylinder that executes axial vibrations. 

Segment 2 is a circular disc vibrating transversely, interacting at 

its center and along its rim. Segment 3 is a cylinder that behaves 

as an axial rim resonator (see Section 2.5) 

One can also conceive of resonators which are not cir¬ 

cularly symmetrical, but have a helical ridge, as a screw with 

large threads. Then a displacement of the plate will excite com- 



plicated torsional vibrations in the resonator, which in turn in- 

duce torsional vibrations in the plate. 

2.5 Axial or Force Resonators Attached Along a Rim 

Resonators that are sensitive to the displacement along 

a circle of radius R can be thought of as idealizations of pipe 

sections welded to the plate. Because of the linear nature of the 

response, the total effect can be analyzed into the response for 

the individual Fourier components of the plate displacement along 

the circle. We consider that the resonator itself has circular 

symmetry. Let r and 0 be polar coordinates using the center of 

the attachment circle as origin. Then in response to the dis¬ 
placement 

00 

n(R,0) = a + 2 (a cos n© + b, sin 0) , 
n=l “ n ' > 

a physical resonator will 

1 
2tFr 

00 

F a + 2 o o n 
n=l 

exert the force 

cos n0 + b n n n 

per unit arc-length 

sin n0)]. 

Here Fn, for n - 0,1,2,..., is the strength of the physical resonator 

m the n-th mode. We shall indicate how the F can be computed if 

the physical resonator is a circular pipe section of length L and 

inner, outer radii Ri, Ro. Then the attachment radius R is taken 

as an average between R. and R 
1 o 

2’5‘l -The Azimuthally-Independent Mode n = Q 

terrn for n = 0 in rj(R,0) corresponds to a 
uniform displacement of the points of the attachment circle. In 

respoase to this, the physical resonator will behave as a rim axial 

or force resonator. That is, planar compressional waves will be set 

up, and the strength can be computed by the methods of Section 2.2 

using the cross-section S: * * 

S = tt(Ro2 - Ri2) . 
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2.5.2 

the form 

The Tilting or Swaying Mode 

The value n = 1 corresponds to a displacement of 

q = cos 0 

or q = sin 6 

The response to such a displacement will be a rocking or tilting 

motion. Computation of the force exerted back on the plate is 

difficult without the following simplifications: 

We assume that each cross-section of the pipe remains 

circular during the motion, and think of the pipe as made up of 

elements parallel to its axis. Then the stretching of the elements 

is a linear function of the distance from the neutral median surface, 

and so the arguments used in thih-rod theory can be applied, using 

the moment of inertia appropriate to the hollow cross-section. The 

pipe thus becomes a transverse resonator of one segment, which would 

respond to the slope of the plate at the center of the attachment 

circle by exerting a moment at the center. This moment must be 

replaced by an equivalent distributed force on the rim, varying as 

cos 9 or sin 0. 

The approximations will be close when L/R is large and 

Ri/R0 Is small. If the pipe is thin-walled one might expect dis¬ 

tortion of the cross-section. 

2.5.3 Shear Modes 

For n greater than 1, the displacement q = cos n0 

or q = sin n0 will set up shearing motions such that the elements 

of the cylindrical segment slide parallel to each other. Further¬ 

more, it is probably inadequate to assume that the cross-sections 

remain circular. 

In our application, the seachests are so massive that they 

efrectively produce the boundary condition that the attachment rim 

must remain planar, even though the plane of the rim is displaced 

« «WWH-U «-I 
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from equilibrium and tilts back and forth. As will be discussed 

later, this is equivalent to requiring a seachest to have infinite 

strength in each mode corresponding to a displacement q = cos n0 

or n = sin nQ, for n = 2,3,... 

2.6 Transverse or Moment Resonators Attached Along a Rim 

The transverse modes of a rim resonator exert moments 

pointing radially on the plate at the points of the attachment 

circle. ïhese arise in response to a weighted average of the 

slope along the circle, where the slope is always measured in a 

plane that contains the center of the attachment circle and is 

perpendicular to the plate. 

2.6.1 Azimuthally-Independent Mode 

The simplest mode, that for n = 0, results from 

a dishing or cupping of the plate that is circularly symmetrical. 

This tends to produce a "breathing" mode of the pipe (Fig. 2-3) , 

that is, the oscillations of each particle of the pipe are radial. 

Thus they can only be realized physically by stretching or com¬ 

pressing the pipe material. 

For our seachests, the strength in this mode is not 

sufficiently large to be considered infinite. Tne response back 

on the plate will also depend on the elastic properties of the 

solder of the weld, and the shape of the footing. We may assume 

that the plate and seachest meet at 90° at each point of the rim. 

2.6.2 Modes with Azimuthal Dependence 

The mode for n = 1 corresponds to a slope measured 

radially that varies as cos 0 or sin 0. This slope can be obtained 

by a tilt of the plate, regarded as plana.;, over the attachment 

circle and within it. Thus the mode is not distinct from the n = 1 

axial mode (the swaying mode), if the plate is nearly planar over 

the attachment circle. 

The modes with higher n are difficult to analyze but are 

expected to be strongly coupled to the corresponding axial modes. 



16. 

2.7 Resonators Responding Over an Area 

Several kinds of physical resonators that are sensitive 

over an area will be discussed in Section 9. One would like to de¬ 

compose such systems into a complete set of ideal resonators that 

correspond to normal modes of vibration. However, modes that do 

not interact with each other for a resonator in isolation will 

interact through the plate after attachment. The plate interactions 

cannot be calculated until the results of Section 4 are available. 

Thus consideration of these resonators must be deferred. 
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3. GREEN'S FUNCTIONS FOR INFINITE RODS AND PLATES WITHOUT 

RESONATORS 

We consider a homogeneous two-way infinite rod, or a 

homogeneous isotropic plate, extending to infinity in all directions. 

3.1 Force Concentrated at a Point 

A concentrated unit force, oscillating with angular fre¬ 

quency co radians/second, is applied at point r*. The resulting dis¬ 

placement of the plate or bar is observed at point r. This defines 

the Green's function Q(r*,r) of the system. Since we assume homo¬ 

geneity and isotropy, Q depends only on the vector distance between 

r* and r. 

The letter Q will be reserved to denote Green's functions 

of systems without resonators, and the letter G for systems with 

resonators (to be studied beginning in Section 4). 

3.1.1 Infinite Uniform Rod 

The equilibrium position of the axis of the rod 

is taken as the x-axis. It executes vibrations in the xy-plane. 

The equation of motion of the rod is 

ÒK 

where 

n(x) = rod displacement at x 

E = Young's modulus of the rod material 

I = moment of inertia of a cross-section about an 

axis normal to the xy-plane (it is assumed that 

this is a principal axis). 

Z dx = non-elastic force on an element of the rod. 

El is called the flexural rigidity of the rod for vibrations in the 

xy-plane. The force on the rod is due to the inertia of the rod 

material, plus the impressed force. The inertial force is clearly 
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-psã • 
where p is the rod density and S is the cross-section area. 

The Green's function Q(r*,r) is defined as the displace¬ 

ment at r when a force varying as e"icot is applied at r*. Thus we 

obtain: 

El e-iœt _ pSa:2Q(x*)x)e“ia5t = 6 (x*-x) eicüt 

or 

- £.Sœ2Q = 6 Cx*-x) 

Ò? ËT“* - El 

The boundary conditions are that the displacement at infinity is 

finite, and there is no incoming wave from infinity. 

Define the wave-number k by 

k4 = pSo)2/EI . 

Then it can easily be checked that 

Q(x*,x) = 
4EIk 

_e-k|x*-x I +ieik|x*-xl 

A formal derivation is given in Addendum 1. The real part of the 

bracket is the negative of 

B(ky) = e“kly I + sin k|y| 

where y = x*-x. The power series expansion for B: 

B(w) = i - 1 - (i+l)w2/2 + |w|3/3 + 
• t • 
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shows that the first and second derivatives of B are continuous at 

y = 0, but the third is discontinuous there. The imaginary part 

of Q has continuous derivatives of all orders everywhere. 

Another useful way of decomposing Q is into the real 

exponential term, which can be called the near fieldjand the com¬ 
plex exponential, or far field term. 

3• •2 Infinite Membrane Under Uniform Tension 

The problem of a membrane is considered here as 

it provides the simplest illustration for some of the mathematical 
tools that will be used later. 

The equation of motion under a sinusoidal applied force is 

2 
!V\ - p à_2 „ Ptx.zje-1“* 

òt 

Here the membrane Is in the xz-plane, and 

H = displacement out of equilibrium plane 

T = tension on the membrane 

p = mass of the membrane per unit area 

The Green's function is defined as the displacement n that 

results when the pressure P is concentrated so as to be a delta- 
function 6 (x*-x)6 (z*-z)e"^aii:1 

We transform to polar coordinates r, 9, with the force 

point as origin, assume a response of the form 

Q(r)e-lœt: , 

and set 

k = cu/c = cu/y T/p 

Then the equation of motion becomes 
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1 Mïl 
Tr Tr 

after cancelling the time-dependent factor. Note that the product 

6(x*-x)6(y*-y) is replaced by 6(r)/2Trr. This is dimensionally 

consistent, since a delta-function of a length has the dimensions 
of an inverse length. 

The equation above will be solved by using the Hankel trans¬ 

form of order zero. As the precise form of this transform is not 

standardized in the literature we give the definition that is used 
throughout this report. 

If Q(r) is defined for 0 < rC«», then the transform ^(p) 
of Q is defined by 

Q(P) = / Q(r)r JQ(pr)dr , 

where Jq is the Bessel function of the first kind of order zero. 

The transform is self-reciprocal, that is, 

00 

Q(r) =/ Q(p)p J0(rp)dp 

It can be easily seen that the Hankel transform of order zero, when 
applied to 

+1 
r dr 

produces 

-P2 Q(p) . 

Another result that will be useful is: 
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/ ^(ax) J (bx)x dx = 6(a-b)/a 
o 

Tills is a form of Hankel!s theorem, which is usually stated in an 

integral form that avoids mentioning a del ta-function. If b = 0, 
it becomes 

I J(ax.)x dx = 5 (a)/a, 
o 

which shows that the transform of ö(r)/r is the constant 1. Now 

applying the Hankel transform to the equation of motion, we obtain 

- P2 Q(p) + k2 Q(p) = 1/2ttT 

or 

and then inverting the transform, 

Q(r) 
P J0(pr)dp 

The integral must be interpreted as a contour integral to be well- 

defined. The real part can, however, be considered as the Cauchy 

principal value (often denoted by putting a bar through the integral 

sign). But from standard tables, we find 

JQ(ax)x dx 
= - ( /2)Yo(ay) 

Re Q (r) = (l/4T)Yo(kr) 

and so 
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There will also be a pure Imaginary contribution to Q(r) from an 

indentation in the path to go around the pole at p = k. This term 

is ¿(i/4T)JQ(kr), where the sign depends on whether the path goes 

below or above the pole. Because of our choice of time dependence 

e , an outgoing wave must have the form of a constant multiple 

of Ho(kr) = J0(kr) + iYo(kr). Thus we obtain finally 

Q(r) = (-i/4T)Ho(kr) , 

where Hq is the Hankel function of the first kind of order zero. 

For typographical convenience, the supercript (1) usually affixed 

to H will be omitted in this report. 

3.1.3 Infinite Isotropic Plate 

The plate equation is 

where 

E = Young's modulus 

o = Poisson's ratio 

h = plate thickness 

P = plate density 

The following abbreviations will be introduced 

D = -2~ = flexural rigidity 
12 (1-c ) 

2 2 \ 

= free wavenumber 
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The Green's function for a concentrated force at (x*,z*) then 

satisfies: 

(V4 - k4)Q(x,z) = 6(x*-x)6(z*-z)/D 

After transforming to polar coordinates, and applying the Hankel 

transform, as for the membrane, we obtain 

r pJ0(pr)dp 
; ra J —5-7¾— 

O p -k 

Then breaking up l/(p4-k4) into partial fract ions, 

Q(r) = -X— 

4irk D 

pJQ(Pr)dp 
/ J-TJ- 

O p¿-k¿ 

+ / 
00 P>J0(pr)dp 

“Tí2“' 

The first integral has already appeared in the membrane problem; 

the second integral can be derived from it by replacing r by ir 

and then making ip the variable of integration. Unfortunately, 

however, the standard definition of the modified Bessel function 

Ko of the third kind inserts an extra factor tt/2 : 

K0(z) = (ttí/2) Hq (iz) 

and thus Q(r) becomes: 

Q(r) = -li- H (kr) + 
4x D 0 27rk D 

T- K0(kr) 
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The first term is, as mentioned earlier, an outgoing wave; the 
second represents a standing wave. The logarithmic infinities 

at r = 0 in Kq and in the Yo part of Ho cancel each other, leaving 

a discontinuity in the third derivative of Q. 

3.2 Force on a Rim 

The displacement of a plate in response to a distributed 

force applied on a circle can be found by integrating the Green's 

function just given for a concentrated force. However, when the 

strength of the force is a sinusoidal function of the angle, the 

displacement can be found directly from the equation of motion. 

3.2.1 Uniform Strength 

The force integrated over the circumference of 

radius R will be normalized to unity. On transformation to polar 

coordinates, the equation for the Green's function becomes 

^ V'> - §£# 

As earlier, we take the Hanke1 transform of both sides. For the 

right side, we use the relation already given in Section 3.1.2. 

Then we find 

= Tí f f 1(p)j0(pr) J0(Pr)P dP > 
o 

where we have introduced the abbreviation 

f(p) = D(p4 - k^) . 

The integral for QR(r) is a special case of a more general form 

for which the explicit evaluation is given in Section 4.4.3. See 

also 10.1. 
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From the form of the integrand, we note that 

QR(r) - Qr(R) 

This is an example of a reciprocity relation. 

3.2.2 Sinusoidal Variation of Force 

The force on the circle is now assumed to vary 

as cos nö, for n - 1,2,3,... . The case n = 1 is of primary in¬ 

terest, since the reaction back on the plate of a seachest oscil¬ 

lating in the tilting mode has this form. To normalize the force, 

we require that the square of its magnitude, integrated over the 

circle, be unity. This will introduce an extra factor of 2, as 

compared to the case of a uniform distribution. The equation of 

motion is then 

(Va - k^)Q(r,@) : 

where Q(r,9) has the form: 

Q(r,0) ^ Qr n(r) cos n0 

This time, Hankel transforms of order n are taken, and the right 

side is evaluated by using the relation: 

00 

j Jn^ax^Jn'' x dx fCa-bi/a . 
o 

Then we obtain: 

QR,n(r) : ~0R ■ f 1(p)Jn(pK)J (pr)p dp 
o 

The integral is evaluated in section 10.1. 

n 
J 
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3.3 Concentrated Moment on a Bar or Plate 

As a preliminary to the later investigation of the effect 

of a transverse point resonator, it will be useful to find the dis¬ 

placement produced on a bar or plate without resonators by a concen¬ 

trated moment of unit strength. 

In this simple situation the displacement at r due to a 

moment of unit strength at r* is found by differentiating the cor¬ 

responding Green's function for a concentrated force. Thus for 

a plate, let 9 = 0 be the direction of the moment in the plane of 

the plate. Then differentiating the integral of section 3.1.3 under 

the sign of integration, we obtain the following formula for the 

Green's function Q^: 

QT(r,0) = /" f~1(p)J1(rp)p2dp . 
o 

or differentiating the evaluation, 

QT(r,9) - Hl(kr) - ^ _ 

3.4 Moments Distributed on a Circle of Radius R and Pointing 

Radially. 

3.4.1 Uniform Distribution of Moments 

In this configuration each point of the plate on 

the circle experiences a moment point outward of strength l/2ir per 

unit arclength. This moment distribution can be regarded as the 

limit, as e goes to zero, of two uniform force distributions with 

opposite senses on circles of radii R-e and R+e. Since the Green's 

function of Section 3.2.1 has been normalized to unit total force, 

the expression there given for QR(r) can be differentiated with 

respect to R to obtain the desired Green's function Q?: 



27. 

/ f"1(p) J1(pR) Jo(pr)p2dp 

3.4.2 Moment Strength Proportional to cos 9 

Inasmuch as the strengths are always measured 

with the radially outward direction as positive, the component 

parallel to G = 0 of the moment at each point is positive. This 

moment distribution can be synthesized just as in Section 3.4.1, 

from two force distributions on circles of radii R-e and R+e, each 

varying as cos G. 

3.5 Reciprocity Relations 

Consider an infinite plate with a point force applied at 

r*. We will later want to know the average displacement of the plate 

on the circumference of a circle of radius S, the center being at s. 

That is, using r as a vector variable, we will want 

A = / Q(|r*-r|)6(|r-s|-S)dr 

where Q is as in Section 3.1.3. It can be shown (see Addendum 3) 

by using the idea of a two-dimensional convolution, that 

A = Qs(|r*-s|) 

where Qg is the Green's function for a rim force resonator. 

More generally, consider a plate on which a distributed 

force of total magnitude unity is applied uniformly on a circum¬ 

ference of radius R and center r*. The average displacement on 

another circle of radius S and center s is 

/ f-1(p).J0(pR) J0(pS)J0(p| r*-s|)p dp 
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and this expression is symmetrical between the circles. Thus it 

equals the average displacement on the circle of radius R due to 

a unit force evenly distributed on the circumference of radius S. 

These results are obviously generalizations of the simple 

reciprocity relación for the point-force, point-displacement Green’s 

function of Section 3.1.3. 
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4. GREEN1S FUNCTION FOR A ROD OR PLATE WITH ATTACHED RESONATORS 

4.1 Equation of Motion 

In deriving the equation of motion for a place bearing 

both axial and transverse point resonators, it is convenient to 

think of continuous distributions of each of these types. 

Let A(x,z) be the density of axial point resonators at 

the point (x,z). Each resonator is taken as of unit strength. This 

means that the force exerted on an element of area dx dz in response 

to the displacement t] is rj A(x,z)dx dz. (It is understood that the 

time dependence has been factored out of t], and that A depends on 

the frequency.) Let a distributed pressure P(x,z) be applied to the 

plate. Then the equation for q is 

D(v\ - k\) = P(x,z) + A(x,z) T) 

where D and k were defined in section 3.1.3. 

For transverse resonators, the motions in perpendicular 

planes will be handled independently. That is, each physical reso¬ 

nator, which can vibrate in many planes, is considered as resulting 

from the superposition of two kinds, say the xy and zy kinds. An 

xy resonator responds only to the slope of the cross-section of the 

plate that lies in the xy plane, and the moment it exerts on the 

plate lies in the same plane. Similarly for the zy resonators. 

These two types are assumed to have the same density T(x,l) over 
the plate. (This corresponds to physical resonators which are made 

up of segments of circular cylinders. One can imagine resonators 

for which the cross-sections parallel to the plate are elliptical. 

Then the densities of the two component types *of resonators would 

be unequal.) 

We first study the effect of the xy resonators only. Then 

the dimensionality of the system is lowered, and thin-rod theory can 

be used. 

Consider a beam with a continuous distribution of trans¬ 

verse resonators. The distribution is described by a density function 
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T(x) whose units are moment/unit rotation/unit length. On an 

increment dx of the beam the increment of moment dm is therefore: 

dm = T(x) dx . 

But from simple beam theory, 

and therefore the contribution of the transverse resonators to the 

shear force per unit length is 

r»T ^ T| d ^ dnK d / rrt / \ drw 
EI yi ' -e ■ æ <T« s> • 

For the zy resonators, the contribution is, by a similar argument, 

■4" W*»2) • 

The sum of the two terms can be written in the form 

div (T(x,z) grad t^x^)) . 

Therefore the equation of motion for a plate bearing axial point 

resonators with strength-density A(x,z) and transverse point reso¬ 

nators with strength-density T(x,z) is 

D(V^ - k f) r, = p + At, + div (T grad q) , 

where P is the driving pressure distribution. The same equation 

will hold for a uniform rod, provided that V4 is interpreted as 

d /dx , and D is set equal to El. Of course, the term involving 

T must be interpreted as the lower-dimensional analog: 
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_d_ 

dx 

^•2 A Plate or Rod with I Axial Point Resonators 

The i-th resonator, of strength Fi(cü) , is attached to the 

plate or rod at the point specified by the vector i = 1,..., j. 

Thus the density function A becomes 

I 

A(r) = £ F,(co)6(r-s.) . 
i=l 1 1 

A unit oscillating force is applied at r*. 

The Green's function G(r*,r) for the system is then by 

definition the displacement at r. The equation of motion for the 

plate becomes 

D(v4-k4)G(r*,r) 6(r*-r) 

I 

+ Fi(cl})6(r-si)G(r*,r) . 

4.2.1 Assumed Form for G 

It is clear that each resonator on a plate will 

act as the origin of a new circularly symmetric disturbance, and 

each resonator on a rod will similarly be the center of a distur¬ 

bance with right-left symmetry. Thus one expects that G has the form 

G(r*,r) = Q(r*-r) + Z ^ Q^-r) , 

where Q is the Green's function in the absence of resonators that 

was discussed in Section 3.1.1 (for the case of a rod) or 3.1.3 

(for a plate). On the other hand, a Green's function should be 

symmetric in its variables, and so we assume the following bilinear 

form: 
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G(r*,r) - Q(r*-r) Q(r*-si)MijQ(r-Sj) 
Î 

where the are undetermined coefficients, and we substitute into 

the equation of motion. As this procedure will be repeated for many 

different kinds of resonators, the details have been relegated to 

Addendum 2. 

4.2.2 Explicit Evaluation of the Green's Function 

The results can be expressed as follows: Define 

the matrix N by 

Nij = Q(si-sj) - (Bij/F^œ)) 

Then 

M = N"1 

Thus the Green s function for the plate with resonators depends on 

the inverse of the matrix N, which involves all the interactions 

Q(si_sj) between pairs of resonators. 

Note that N and M are symmetrical in their indices. As 

their elements are in general complex, they are not Hermitian. 

It is helpful to write out the explicit form of the Green's 

function for one resonator of strength F: 

G(r*,r) = Q(r*-r) - Q(r*-s) ---T Q(s-r) . 
Q(0)+F_i 

4-2-3 Algebraic Transformation of the Expression for G 

There is an interesting modification of the formula 

for G which may be useful for certain kinds of large-scale problems 

for electronic computers. 
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Suppose that one is interested in the Green's function when 

the source is at any of P possible points r*, r*,...,r* , and the 

observation point can be any of the same points . We combine these 

P points with the I resonator points, distinguishing between them 

by the index. Thus we write 

SI+1 = ri >••••’ si+p = rp 

and we define an augmented matrix N*, having I+p rows and columns: 

= Q(si-sj) - (6^/Fp , i,j = 1,2,...,I+P 

where F = <» if 1 = 1+1,.., ,I+P. Thus the upper left block of N*, of 

N rows and N columns, is the same as the matrix N previously defined. 

The formula given earler for the Green's function is equi¬ 

valent to the following prescription: 

Find the inverse M* of N*. Extract the lower right block 

of M* containing P rows and P columns. Invert this block. The 

(p,q)-th element of the inverse is G(r*,r*). 

This procedure may be symbolized as follows: 

(Q I) 
/ 

ij Qi,i+q 

QI+p,I+q 

Here I is the unit matrix of P rows and P columns. 0 is the zero 

matrix,(with I rows and P columns at the appearance on the left, 

but P rows and I columns at the appearance on the right). G is the 

matrix with elements G(r*,r*) 
p’ q 
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4.3 A Resonator on a Rod as Vibration Isolator 

It is now possible to discuss an isolation effect observed 

when a single axial resonator is attached between the source and 

the observation point on a rod. For this case, we recall that 

Now assume that 

J , k|s-r I » 1 k r*-s 

that is, the distances from the resonator to the source and the 

observation point are large compared to the wavelength of free vi¬ 

brations at the frequency of interest. Then the decreasing expo¬ 

nential term in Q can be discarded except in Q(0). That is, we 

retain only the far field term. Thus 

G(r*,r) ^ ieiklr*-rl 
/. ni» J 4Dk 

Introduce the assumption that s is between r* and r: 

eik|r*-s|eik|s-r|= eik(r*-r) 

Then 



35. 

The bracket can be rewritten as: 

3 
F(cii) - 4Dk' 

3" 

F(œ) - ADk"' - iF(o:) 

Now there will be at least one value of o> for which 

F(o>) = 4Dk3 , 

and then the value of the bracket is zero. Thus at this frequency 

the far field produced by the resonator cancels the far field pro¬ 

duced directly by the source, and the resonator acts as a vibration 

isolator. 

If one retains the near field produced by the source, then 

the frequency of isolation is shifted somewhat, and there is an out- 

of phase component that is not canceled. 

4.4 Plate Bearing A&imuthally-Independent Rim Resonators 

Rim force resonators of strength F^(œ) ,...., FN(tu) are 

attached to an infinite plate. The i-th resonator is sensitive to 

the average displacement on a circle of radius with center s^, 

and exerts its force uniformly on this circle. 

Some of the resonators can actually be point resonators. 

Then the limit of zero radius must be taken in the formulas that 

follow. 

Once more we assume that the applied force is concentrated 

at the point r*. The Green's function G(r*,r) is defined to be the 

displacement at r due to a point source at r*. 

By analogy with the arguments of Section 4.1, the equation 

of motion of the plate can be written: 

D(V4-k4)G(r*,r) = 6(r*-r) 

+ 2 F, 

j j 

/G(r*,r')6(|r'-s.| -R^dr 

This is actually an integral equation. 
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4-4-1 Assumption of a Form for G 

We now apply the results of Section 4.2 to guess 

the general form of the solution. There will be a term Q(r*-r) due 

to the direct effect of the source on r. Each rim resonator will 

act as the source of a circular wave which will be proportional to 

Vsi-r>> the Green's function in the absence of resonators for an 

applied force uniformly distributed on a circle (see Section 3.2.1). 

The proportionality constant will involve interaction constants be¬ 

tween the resonators, and the average displacement on the i-th reso¬ 

nator circle due directly to the source. In view of the reciprocity 

relation discussed in Section 3.5, the average displacement is the 

same as Qr^^-s^. Thus we assume the following form for the Green's 

function of the entire system: 

0(r*,r) . Q(r*-r) - ^ Q^Sj-r) . 

^ J 

4-4.2 Results of Substitution 

Once more the details appear in Addendum 2, for a 

very general case. One defines an interaction integral Q(R.,R.,|s -s.|) 

for the i-th and j-th resonators. It is the average displacement on J 
a circle of radius Ri due to an oscillating force of unit strength 

distributed uniformly on a circle of radius R when the distance 

between centers is (s^Sj). By reciprocity, the indices i and j can 

be interchanged in this description. It is shown in Addendum 2 that 

Q(Ri’Rj > I s^Sjl ) - /Qr (Sj-r')6(| r-sj-R)dr' 
«j 

■ /«"'wvpv-vpvvpK-Sjbp ¿P 
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Now define a matrix N by 

Njj = Q(Rt >Rj > I si"Sj| ) - (Bij/Fi) 

Then it is found thac 

M = N"1 , 

in complete analogy with the earlier result for point axial reso¬ 

nators. 

4.4.3 Va te of the Interaction Integral 

The integral is evaluated in Section 10.1 as 

QCRj.Rj, Sl-Sj > ^OcRpj^kRjï^tklsj-Sjl) 

- I0(kR1)I0(kSj)K0(k|s1-sj|) 

provided that i ^ j and 

R. + R, < s. - s. 
i j v I i j 

as will be true for two physical seachests. 

If i = j, then 

QCRx.R, ,0) = -i-y 
L 1 2Dk 

Tfi r J0(kR1)H0(kRjL) 

Io(kRi)K0(kRi) 
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4,5 Mm Resonators with Azimuthal Dependence 

We now consider a more general system in which there are 

N resonators whose weight functions vary with azimuth. The i-th 

resonator is sensitive to the weighted integral 

¿ / cos n(Ri,0i)d0i , 

where 0^ is the polar angle of a coordinate system with the cen¬ 

ter si of the i-th attachment circle as origin, and 1)(^,0^,) is the 

displacement at a point on this circle. The force exerted on the 

points of the circle is F^(o)) cos ^0^. The equation of motion can 

be written down by analogy with earlier forms. Again we seek a 

solution of the form 

G(r*,r) = Q(r*-r) 

N 

"iJQRi’ni(r*,Si)COS niGî MijQRj ,n^^sj >r)cos 

where Qr.^ is the Green's function of Section 3.2.2. It is found 

(see Addendum 2) that 

M = N"1 , 

where 

Nij ’ vij - • 

Vij is the Interaction constant between the i-th and j-th resonators. 

It is the average of the displacement on th<_ i-th circle, weighted 

according to the i-th weight-function, due to an applied unit force 

on the j-th circle varying as the j-th weight-function. Because of 

reciprocity, the roles of the two resonators can be interchanged in 

this description. An integral form for is given in Addendum 2. 
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In general, the polar coordinate systems set up at the 

different resonators will have different prime directions, but as 

discussed earlier, one need only consider modes which have axes 

either parallel or perpendicular to a fixed direction. 

We specialize to the case of tilting rim types, i.e., 

n^ = 1 for all i, each having its axis of tilt perpendicular to a 

fixed direction 9=0. Let be the angle between the vector 

s^-Sj and 9=0. Then the interaction integral is given by: 

= (-1/2) (cos 2Í2) / f_1(p) J1(pRi) Jj^ÍpRj) J2(p (sj^-SjDp dp 

+ (1/2) /V1(p)J1(pRi)J1(pRj)J0(p|si-s.|)p dp 

The integrals are evaluated in Section 10.1. 

4.6 Transverse Point Resonators 

A transverse resonator can be approximated as a very close 

pair of axial resonators that exert equal and opposite forces at 

the attachment points. The pair is sensitive to the difference in 

the displacements at the two points. The transverse resonator is 

obt lined in the limit as the separation goes to zero while the 

strength of both members of the pair goes to infinity in such a way 

that the product remains finite. 

The Green's function for a rod or plate bearing transverse 

resonators at s^,...,s^ will be 

G(r*,r) = Q(r*-r) -f 2 QT(r*-s.)M.jQ1 (sj-r) , 

^ J 

T à -1 
where Q (x) = -^Q(x) . Setting M = N , we will have 

hj = vij - <6tj/0j> 
where Gj is the transverse strength of the j-th resonator 
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On a rod, the interaction constant between two resonators at 

s. and s. can be written very simply as 
^ J 

•SiTSiJ Q(si"sj) = 
Q(si-Si) 

ôs^ 1 J 

On a plate, the derivatives must be taken along the direc 

tions of the moments, which will not in general coincide with the 

direction of s^-Sj. It is more convenient in this case to consider 

the transverse point resonator as the limiting case of a rim force 

resonator with weight function cos (9 + a), for some angle a. As 

noted earlier, the form with arbitrary angle a results from super¬ 

position of two standard modes with angles zero and rr/2. 

Thus, taking the equation in Section 4.5 for , and 

letting and approach zero, we obtain the following limiting 

form, appropriate to two transverse point resonators, each with 

tilt axis perpendicular to 0 = 0: 

00 -1 

VijRiRj (-^/8)(008 2ß)/ f (p)J2^plsi"sj^p dp 

+ (1/8)/ f"1(p)J0(p| s^^-s. |)p3dp 
o J 

After evaluation, this becomes a constant multiple of 

- (cos 2n)(H2 -i(2/7r)K2) + Ho -í(2/tt)Ko 

where the functions are all evaluated for the argument kjs^Sjl. 
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4.7 Rim Moment Resonators with Constant Weight Functions 

Physically, we are dealing with the "breathing" modes of 

a set of seachests. The interaction integral between two of 

these can be found from the interaction integral for two rim force 

resonators by differentiating with respect to the radii of both 

resonators : 

1 
Id Ç J1(kRi)J1(kRj)Ho(k|si-sj|) 

I1(kRi)I1(kR.)Ko(k|si-sj|) 

4.8 Mixed Types on a Plate 

A plate bearing physical point resonators and seachests 

must be handled by considering all possible interactions between 

the various modes. A physical point resonator has one axial and 

two transverse modes (in perpendicular plates); a seachest has two 

infinite series of modes, one set responding to the displacement, 

and the other set to the radial slope. 

The interaction integral for a rim moment resonator and 

any other resonator is obtained by differentiation, with respect to 

the radius, of the integgral for the corresponding rim force reso¬ 

nator. A point axial resonator is a limiting case of a rim force 

resonator with uniform weighting; a point transverse resonator is 

the limiting case for cos 0 or sin 0 weighting. Thus all integrals 

that arise can be ultimately thrown back onto the interaction inte¬ 

gral for two rim force resonators with weight functions cos 

and cos n902. The integtal is written down in Addendum 2 and is 

evaluated in Section 10.1. 
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MATRIX MEXJODS FOR RESONATORS ON A ROD 

5.1 Transfer Matrices Based on Derivatives 

5.1.1 A Homogeneous Rod 

An infinite rod bearing resonators may execute free 

vibrations of arbitrary frequency in the absence of any impressed 

force. If there are no resonators, these are sinusoidal with wave- 

number k(oo). When resonators are attached, the motion can be studied 

conveniently using a matrix that relates the displacement and its 

first three derivatives at one point to the same four properties 

at another point. 

As fundamental solution of the equation of motion of the 

homogeneous rod without impressed forces 

where = oj^ph/D as usual, we take 

H(x) = —7 (sinh kx - sin kx) 
2kJ 

3T V 

H has the convenient properties 

ii 

ITT + 

H(0) = H'(0) = H"(0) = 0 

Hm (0) = 1 

The first three derivatives of H can be taken as the remaining 

linearly independent solutions. Thus the first derivative I of 

H(x) has the properties 

1(0) = 1' (0) = 0 

I"(0) = 1, I"' (0) = 0 

Similarly for the second and third derivatives of H. 
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Let Y(x) be the column vector whose four components are 

the displacement r, at x and its first three derivatives: 

Y(xq) at a point xQ determines Y(x) at an arbitrary point x through 

the matrix relation 

Y(x) = M(x - xo)Y(xo) 

where M is the 4x4 matrix whose elements are 

in which the argument of all the functions is x - x . Of course, 
^ I M- I ^4' 

the fourth and higher derivatives can be simplified, since Hv - k H. 

Clearly 
M(a + b) = M(a)M(b) . 

The inverse of M(a) will be M(-a) , which is obtained from M(a) by 

changing the signs in M in u checkerboard manner (that is, inserting 

minus signs in front of H and its even-order derivatives). 

5.1.2 Transfer Matrices for Resonators 

Now consider an axial resonator on ¿ rod. One can 

define a transfer matrix that gives the displacement and its first 

three derivatives immediately to the right of the resonator in terms 

of these quantities immediately to the left. 
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The axial resonator produces a force proportional to the 

displacement. This force is proportional to the change in the third 

derivative across the resonator 

D = F(cu)t| 

Therefore the transfer matrix across the attachment point is 

A transverse resonator produces a moment proportional to 

the local slope. This moment is proportional to the change in the 

second derivative. 

,2 
j ump in —* 

dx^ 
] = 

As a physical resonator is 

axial and transverse resonators, its 

the result of superimposing 

transfer matrix is 

Mphys 

0 

1 

GM 
D 

0 

0 

0 

1 

0 

Now consider a segment of the rod of length L, with a 

physical resonator at itr. extreme right end. Because of the ordi¬ 

nary convention on matrix multiplication, the matrix for the com¬ 

bined rod plus segment is 

»phys M<L> 
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In this manner, one can write down the transfer matrix for a finite 

rod with any number of attached resonators. 

5.1.3 Infinite Array of Resonators; Free Vibrations 

One case of interest is an infinite rod bearing a 

regular array of identical resonators with spacing L between them. 

The matrix for N segments of length L, each with its resonator at 

the right hand end, is of course 

<Mphys M<L»N ' 

If one considers N segments having resonators attached at their 

mid-points, then the matrix is 

[M(L/2)^hyg M(L/2)]N . 

A segment in this sense is symmetrical between right and left. 

Another way of producing symmetry is to split each reso¬ 

nator into two halves, and attach the halves to the segments that 

meet at the attachment point. If we write Mq for the matrix formed 

from MphyS replacing all the diagonal elements by zero, that is, 

Mo = MPhys I > 

then the transfer matrix for a segment of length L bearing half of 

a physical resonator at each end is Z: 

Z = [l + (Mo/2)j M(L) [l + (Mo/2)] 

lhe four eigenvalues of Z must occur in two reciprocal pairs, say 

, 1 1 
A’ I ’ u> Ü 

This follows from the right-left symmetry of a segment. If a dis¬ 

turbance is multiplied by X at one end of the segment, as compared 

to the other, then there is another disturbance, obtainable by 
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applying the right-left symmetry, that is reduced bv the factor 

1/A. Similarly for the other pair. The eigenvalues will not be 

real, in general. 

5.1.3.1 Free Vibrations 

One can now study the existence of free or 

self-sustained vibrations of the infinite bar with resonators by 

considering the limit of ZN as N goes to infinity. No energy is 

applied to the bar at any point, hence the transfer matrix is suf¬ 

ficient to describe the behavior. 

Suppose one eigenvalue * of Z has absolute magnitude 

greater than 1. Then Z^ has the eigenvalue >^, which goes to in¬ 

finity as N increases indefinitely. This is not allowed by the 

boundary condition that the displacement of the bar must be finite 

even at infinite distances. If 1/x has absolute value greater than 

1, the same argument applies. The conclusion is: a free vibration 

of the infinite rod with resonators can exist only if Z has an eigen¬ 

value with absolute value 1. 

5.1.3.2 Procedure to Determine the Eigenvalues of Z 

Let P be the diagonal matrix whose diagonal ele¬ 

ments are, in order, -1, +1, -1, +1. Then 

M-1 (L) = P M(L) P 

This is the algebraic formulation of the verbal prescription for 

M '''(L) given at the end of Section 5,1,1. Furthermore 

Z“1 - (I + M0/2)"1M"1(L)(I + Mo/2)_1 

=-- (I - M0/2)P M(L) P(I - Mo/2) 

= [p(I + Mo/2)p] PM(L) P [p (I + Mo/2)p] 

= PZP 
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Let Y be an eigenvector of Z corresponding to the velue A : 

ZY = AY 

Dividing by AZ, we have 

PZPY = Z’1Y = A-1 Y 

and then summing, 

(PZP + Z)Y = (A-1 + A) Y 

Half the elements of PZP + Z will be zero, namely those for which 

the sum of the row and column indices is odd. 

Let Q be the permutation matrix that applied on the left 
T 

interchanges the second and third rows, and Q its transpose. Then 

A ^ + A will be an eigenvalue of Q(PZP + Z)Q^, which will have the 

following structure in terms of its 2x2 quarters: 

C 0 \ 

Io D) 

(0 is the 2x2 zero matrix). Thus one obtains two lower-order 

eigenvalue conditions: 

det (C - (A-1 + A) I) = 0 

det (D - (a-1 + A) I) = 0 , 

and as a matter of fact, these will turn out to be the same equation. 

5.1.3.3. Calculations of Eigenvalues 

For convenience, we write 

f = F/2D 

g = G/2D 

and we break up M(L) and M^yg into 2x2 blocks: 
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M(L) 
Mphys 

0 

I 

where 

/h<3> h(2) 

\HW h<3) 

(the argument of all the functions is L), and 

/° g\ 
S = 

f 0/ 

Then we find, from the definition of Z, 

(U + VS 
k4V + SU + US + SVS U + SV/ 

The elements of PZP + Z are either twice the corresponding elements 

of Z, or else zero. After multiplying by Q and QT, we obtain the 

following determinants! equation from the upper left corner: 

(H^3)+fH-(>'1+X)/2 

k^H^+gH^+fH^+fgH^ H^+gH^-Cx"1**) /2 

The lower right quarter yields the same determinant with the diagonal 

elements interchanged. We then obtain 

x”1+> = 2H^3^ + fH + gH^ 

± Y(fH-gH(2))2 - 4H(1) ((k4+fg)H(1) + gk4H+fH(2)) 



5.2 The Strength of a Multi-Segment Transverse Resonator 

The strength of a conçound transverse resonator will now 

be coinputed by regarding it as made up of segments of thin rods and 

introducing a transfer matrix for each segment. For concreteness, 

we assume three segments (Fig. 5-1) . 

The x-axis is now taken along the resonator axis, and the 

displacement t| is measured perpendicular to it. The transfer matrix 

for a segment of length L and wavenumber k will be written M^CL) . 

5.2.1 Junction Conditions 

At the junction P2 between segments 2 and 3, we 

apply the conditions of continuity of displacement and slope. We 

also equate the macroscopic moments and forces on opposite sides of 

P2. Note that we cannot inquire, into the microscopic shear-forces 

per unit cross-section area at J2 without running into contradictions 

thin-rod theory does not give an exact description very close to an 

abrupt change in cross-section. (See Section 5.5.2 for a more exten¬ 

sive discussion.) The transfer matrix J2 that gives displacement 

and derivatives at the left side of P2 in terms of those on the right 

The transfer matrix M from the right end of the outer 

segment to the left end of the inner one is then 

M = ^(½) J], (l2) J2 

The boundary conditions at the outer (free) end are of course 

ri" = t)1 " = 0. At the inner (attached) end one can, for greatest 

sinçlicity, use the clamping conditions q = V = 0. However, we 

shall discuss more general conditions. 
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5.2*2 Explicit Formulas for a Two~Segment Resonator 

For each i, we break up (L^) into quarters, with 

^ (Ll) 
Ui Vi 

Wi Xi 

From the form given in Section 5.1.1, we have of course 

Xi = Ui 

Wi " k4vi 

The junction matrix J is similarly broken up into 2x2 blocks 

J “ ' 0 rl 

where I is the 2x2 unit matrix, and 0 the zero matrix. Then 

M = JX ^2(L2) 

U1 U2 + V1 

W1 u2 + X1 

rW. 

rW, 

U1 V2 + V1 rX2 

W1 V2 1- X1 rX2 

where now 

r = ^ 

Let be the vector whose conçionents are the displacement and its 

derivatives at the base (the left end of segment 1) and Yp the same 

for the outer free end. Then from the relation 

Yb = M Ye 

and the boundary conditions r)'1 = r)'" = 0 for a free end, we obtain 

«Bill ira#? 



from which we have 

( 

The strength of a transverse resonator was defined as 

the moment exerted in response to unit slope of she plate at the 

base point. If we assume that the resonator always meets the base 

at right angles, then rji equals this slope, and in any case, t^' is 

proportional to the moment exerted on the base. Thus to determine 

the strength, we must have an equation of the form 

= const. 

Instead, we have two linear equations in four unknowns. In an ele¬ 

mentary treatment, another equation is adjoined by assuming that 

the displacement is very small, and so can be set equal to zero. 

Then rd' becomes proportional to and so the strength as a trans¬ 

verse resonator is well defined. 

It may be noted that if one is concerned only with the 

condition for a resonance of the resonator, it is not necessary to 

introduce the assanction that is negligible. The resonance con¬ 

dition is that a finite slope produces an infinite moment. This 

becomes 

det (¾¾ + rV1W2) = 0. 
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Note that n¿" will also be infinite if this condition is satisfied. 

Thus at resonance there is infinite resistance to a non-zero slope 

at the base and also to displacement of the base point, 

5,2.3 An Elastic Solid as Base 

Bycroft (Proc, Roy Soc. 248A, p. 548»[1956]) has 

treated the problem of a rigid circular disc resting on a semi- 

infinte elastic solid or an elastic stratum, and subjected to oscil¬ 

lating forces of various kinds. In particular, he considers forces 

producing motion about a horizontal axis passing through the center 

of the disc, and traction forces parallel to the surface. From his 

analysis, one can determine two numbers and e2 such that 

He remarks that the elements of the matrix that are here written 

as zero are actually non-zero, but are very small in comparison 

with e^ and 62» Using this new relation between the four deriva¬ 

tives, we can write 

which is a homogeneous system of two linear equations in two un¬ 

knowns. The condition for resonance is that there must be non-zero 

solutions, or: 

Here the and have been replaced by the corresponding expressions 

in Uj. and Vi, which are given explicitly at the beginning of 5.2.2. 
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Although the condition for resonance of a transverse reso¬ 

nator on an elastic layer is comparatively simple, the determina¬ 

tion of the moment and force delivered to the interior of the layer 

is more complicated. This information is necessary if we wish to 

define the strength of the resonator on the elastic base. Another 

way of looking at the problem is this: The elastic material in the 

immediate neighborhood of the attachment area is in imagination 

separated from the rest of the base, and considered as some new 

kind of segment of the resonator, between the old segment 1 and what 

is now considered as a rigid base. In view of the conpllcation, 

further results (which could be derived from Bycroft’s work) have 

not been obtained. 

5.2.4 Values for e-^ and 62 

Bycroft's formulas for e^ and e9 can be simplified 
to the following, for small radii a: 

n = 

n = 

0.187 El ..,, 
-3- n 

ua 

,(3+.t)El .,,, 
löna 

where E 

I 

a 

t2 

= elastic modulus of segment 1 

= moment of inertia of segment 1 

= radius of segment 1 

U 
- 7\T+ “ 

= Lameos constants for the elastic base 

5.3 Transfer Matrix for a General Obstacle on a Rod 

Transfer matrices can be defined for inhomogeneities in 

the structure of an infinite rod that are more general than reso¬ 

nators. One simple configuration is the following: An infinite 

bar of uniform thickness h has a step of height ah, where 0 ^ a < 1, 

as shown in Figure 5-2. A similar configuration consists of a rod 

with two equal triangular notches on opposite sides, as in Fig. 5-3. 

Tills configuration will be called a pinch. 



Both types of inhomogeneities have the common property 
that they can be considered as localized at a point. They are 
invariant under rotation of the figures through 180 ^ and they are 

both characterized by a single dimensionless number a which can 

range from zero to one. However, we shall not exclude other types 
of obstacles, in particular, a thickening of the rod over a finite 
length. 

5.3.1 Existence of a Transfer Matrix for an Obstacle 

Consider an obstacle applied at a point s, as for 
instance a step. Let r* be to the left of s, and r to the right. 
Let E(r*,r) be the transfer matrix from r* to r; that is: 

(i) (r) 2 E,,(r*,r)n(:i)(r*) 
j=0 ^ 

i = 0,1,2,3. 

Let M(L) be the transfer matrix for a homogeneous rod segment of 
length L, and B(a) the transfer matrix that will represent the 
effect of the obstacle. Then 

E(r*,r) = M(s-r)B(a)M(r*-s) 
or. 

B(a) = M“1(s-r)E(r*,r)M"1(r*-s) 

This can be regarded as the definition of B(a). E and M are physi¬ 

cally well-defined; in order to be meaningful B(a) must not depend 
on the exact position of s between r* and r. 

5.3.1.1 Need for Finite Separation Between Obstacles 
The existence of a matrix B(a) for some ob¬ 

stacles depends on the fact that the problem has been linearized, 
and the thickness h is taken to be much smaller than any length 
of interest in the x-direction. Consider a rod with two steps of 

height ah and bh with a + b < 1, separated by a distance d (Fig. 5-4). 
Then the transfer matrix across the steps is B(b)M(d)B(a). Now sup¬ 

pose that one could allow d to go to zero. Then the two steps would 
merge into a single step of height a + b, and we would have 

'll 

kiilik .'lií.-iSríi 
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B(a + b) = B (b) B (a) , 

Any solution of this functional equation in matrices must have the 

form 

B(a) = exp aC , 

where C is some constant matrix, and the exponential is defined by 

V2 y3 
eXp X = 1 + X + -TJ-“ + ‘Tjrr + . • 

Now this solution will not behave in a physically acceptable manner 

as a + b approaches 1, because in the limit the physical system 

consists of two detached semi-infinite rods. The root of the 

difficulty is that there are two. limiting processes Involved, namely 

h -> 0 and d 0, and it is not permissible to interchange the order; 

d must always be large compared to h. 

5.3.1.2 Dimensionless Number a Close to Unity 

If a is small for a step or pinch, one would 

equate displacements and slopes across the step: Birl, B22«l. 

However if a is nearly equal to 1, it is not physically realistic 

to equate the slopes on opposite sides of a step, because there will 

be a hinge effect (see Figure 5-5). The displacements of the mid¬ 

lines can also not be equated, as there will be an oscillatory mo¬ 

tion of the median line on one side relative to the other. 

5.3.1.3 Distributed Obstacle 

For an obstacle distributed between »j and s2> 

such as a thickening (see Fig. 5-6), we define a transfer matrix 

B giving the derivative on the right of s2 in terms of the deriva¬ 

tives on the left of s^: 

YR(e2) - BlY (sp 

Then we again have 

E(r*,r) = M(s2-r)B M^-s^ . 

IWnWOTMfWinr 
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I 
1 

I 
I 
1 

I 
I 

B 

1 

K 

5.3.2 Consequences of Reciprocity 

Certain properties of transfer matrices for con¬ 

centrated or distributed obstacles can be deduced without any signi¬ 

ficant knowledge of the obstacle structure. That is, the special 

form of M(L) for a homogeneous rod and the reciprocity property of 

Green's functions lead to restrictions on the form of the transfer 

matrix. 

5.3.2.1 Reflection in Minor Diagonal 

The superscript S on a symbol for a matrix will 

be used to indicate reflection about its minor or non-principal 

diagonal. Then from the explicit form of M(x-x0) given in Section 

5.1.1, we see that 

M8 (L) - M(L) 

A fundamental relation is 

(¾¾)s - C2S 

for two arbitrary 4x4 matrices ^ and C2. An easy way to verify 

this relation is to take the transpose (indicated by T) of both 

sides: 

Now the combined operation ST applied to a matrix is a reflection 

through the center. That is, the i-th row becomes the (5 - i) -th 

row, and similarly for the columns. Thus ST simply renumbers rows 

and columns in the same way, thus preserving the meaning of matrix 

multiplication. This establishes the last-written relation. On 

taking its transpose, we obtain the desired result. 

5.3.2.2 Inverse of E 

We now show that the transfer matrix E for a 

segment bearing inhomogeneities anj here along its length satisfies 

the condition 

sP. " 
- rrT 

B 
s ï 

. • k!1 1 '■ : 
rflaïG; m —-TV-'-:.:. n *-•**•! "«www* 
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e“1 = P ES P 

where P is the diagonal matrix with diagonal elements -1,1, -1,1. 

We first observe that 

£"*■*■ (r*,r) = E(r,r*) 

Let Dr be the column vector whose elements are, in order, 

the differential operators 1, ò/òr, à2/òr2, ò3/òr3. Then there must 

be a row vector e of four functions: 

e= (e3(r*,r), e2(r*,r), e1(r*,r) , eo(r*,r)) 

such that we can write, in operator form: 

E(r*,r) = Dr e . 

Each e^(r*,r), considered as a function of r, satisfies 

the rod equation of motion on both sides of the point r == r*. At 

that point it has a discontinuity of magnitude + 1 in the deri¬ 

vative with respect to r of order 3 - i. Furthermore, e^ satisfies 

a boundary condition that there are no incoming waves at the ends 

of the segment. This condition makes each e^ unique, and then be¬ 

cause of the relationship between the orders of the discontinuous 

derivatives we have: 

^i 
e.(r*,r) = -- r eQ(r*,r) i = 1,2,3. 
1 òr*1 

Let ArV( be the row vector of derivative operators with 

respect to r* 

(ò3/ôr*3, c?/òr*2, è/ôr*, 1) 

Then 

ê = Ar* eo(r,r*) 

and so 

E(r*,r) = DrAr*eo(r,r*) 
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where Dj.A^ is a 4 x 4 matrix of differential operators. 

Sr Jr* 

(The indexing for the rows and columna starts from zero, rather 
than one.) In an analogous way, we find 

E(r,r*) = Dr¿Ar e*(r,r*) , 

where e* is the element in the upper right comer of E(r,r*). 

The equation 

e*(r,r*) = eQ(-r*, -r) • 

egresses the reciprocity property of the Green1 a function for a 
force applied at a point: the displacement at r due to a unit force 
applied at r* is equal to the displacement at r* due to a unit force 

applied at r(cf. Morse and Feshbach, Methods of Theoretical Physics, 
pp. 870-3). For obstacles such as pinches, steps or thickenings, 

which are exactly described by the full three-dimensional theory of 

elastic solids with self-adjoint boundary conditions, this reci¬ 
procity holds. 

We observe that 

(Dir*Ar) = 

Hence 

E(r,r*) = (D^)8 eQ(-r*, -r) 

One can now verify, by writing out a typical differential operator 
explicitly, that the effect of the minus signs in the arguments of 

eQ will be to produce an alternating pattern of signs: 

E(r,r*) = P[(DrAr*)S eo(r*,r)]P 

and our desired result is proved. 
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5.3.2.3 Cross-Symmetry Property of an Obstacle 

Matrix B 

It is clear from the form of M given in 

Section 5.1.1 that 

M8 = M 

and 

M"1 = P M P , 

so that 

M = P (M-1) SP 

Then from the form for B(a) given at the beginning of 5.3.1, we 

find 

B"1 = M(r*-s)E“1(r*,r)M(s-r) 

= PCm“1 (r*-s))SP PESP P(M"1(s-r))SP 

= P(M“1(s-r)E M^Çríf-s))8? 

= P BSP 

5.3.2.4 Determinant of B 

Taking determinants of both sides, and noting 

that det P = 1, we find det B = (det B)that is, det B = +1 or -1. 

A continuity argument can be used to show that the plus sign must 

always be taken. This choice is certainly correct for a rod with¬ 

out any obstacle. Given a physical obstacle, such as a step of 

height aQh, there is a family of obstacles (in this case, steps 

with values of a less than a„) which form a continuous transition 

to the homogeneous rod. Clearly det B will not have a discontinuity 

for such a series. But it can only take on one of the values +1 or 

-1. Thus we have in general 

det B = 1. 

5.3.3 Symmetric Obstacles 

If an obstacle has right-left symmetry, there is 

an additional relation 

P B P 
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This can be seen by considering the effect of changing the sign 

of the length coordinate along the rod. This will not effect the 

displacement q and its second derivative, but will change the signs 

of first and third derivative. 

Combining with the relation of 5.3.2.3, we obtain 

BS = B 

Thus a symmetric obstacle has a matrix which is symmetric about its 

minor diagonal. 

This shows that at most 10 of the elements of B are dis¬ 

tinct. There is furthermore the relation det B = 1, so that at 

most 9 of the 16 (real) elements of B can be specified independently. 

5.4 The Wave Basis for Transfer Matrices 

We can also define a different type of transfer matrix 

i .iat relates the magnitudes of the incoming and outgoing waves at 

one end of a rod to similar quantities at the other end. In mathe¬ 

matical terminology, the new matrix will be the result of applying 

a similarity transformation to the transfer matrix as originally 

defined in Section 5.1. 

5.4.1 Waves on a Rod 

We introduce the standard complex representation 

for waves on a rod. The four linearly independent solutions of the 

equation of motion of a homogeneous rod will be taken as (when the 

time dependence e""1'“1' is included) : 

ni = eiO“-“*) 

n2 = e-kx-io* 

nj = el(“kX““C) 

kx-icot n4 = e 

The collection of functions (q^, r\2> ^3» called the wave 

basis for describing the motion. 
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Suppose that in a neighborhood of the point x, the rod 

displacement r) is given by 

ti = ai ni + a2 n2 + a3 n3 + a4 

Then r\ is of course specified near x by the vector A = (a^,a2,a3,a^) 

We have previously introduced the vector Y of derivatives of rj at x: 

Y(x) = (n(x), na)(x)i n(2)(x), n(3)(x)) . 

Clearly there will be a 4 x 4 matrix C that produces Y when applied 

to A: 

Y(x) = C A(x) , 

and C will be independent of x for a homogeneous rod, finite or 

infinite. 

From the definition of the the form of C can be 

written down immediately: 

Clearly, this use of the letter S can always be distinguished from 

the earlier use as a superscript. It is easy to verify that 

S 
-1 

13 

where S is the Hermitian transpose of S, i.e., the transpose after 

replacing each element by its complex conjugate. Thus 
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A transfer matrix E as previously defined for a rod with 

inhomogeneities will now be said to be appropriate to the derivative 

(ti» Tl(1) , » r/3^) • To find the transfer matrix E*apprO“ 

priate to the new or wave basis, we write 

yl = cal 

yr 0 car 

YR= 

from which follows 

Ar = C":lE CAl 

Therefore E* = (f-4:0. 

The special use of M(L) to denote the transfer matrix (in 

the derivative basis) for a rod of length L'will be extended by 

writing M*(L) for the corresponding matrix in the wave basis. It 

is clear that M* is diagonal : 

M*(L) = 

ikL 

-kL 

-ikL 

kL 

which is considerably simpler than the form for M given in Section 

5.1*1. On the other hand, the ti’ansfer matrix for a very short seg¬ 

ment bearing an axial or a transverse resonator is simple in the 

derivative basis, but more complicated in the wave basis. 

If one wishes to talk about the transfer properties of 

a rod, without specifying a particular basis, then properly one 

should adopt the terminology of other branches of physics, and speak 

of a transfer tensor. 
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5.4.2 Sources in Derivative and Wave Bases 

It will be convenient to carry over some termin¬ 

ology from electric circuit theory, and say that an obstacle or 

inhomogeneity is a passive element. There are then two physical 

kinds of active elements - very short segments to which either a 

driving force Is applied, or else a driving moment. 

A source is represented in the derivative basis by a 

vector with four components which give the increases in the dis¬ 

placement and its first three derivatives across the point of appli¬ 

cation. For an oscillating force of strength F, this vector is 

(0, 0, 0, F/D), where D is the flexural rigidity. For an applied 

moment of strength G, the source vector is (0, 0, G/D, 0). 

The vectors for these sources in the wave basis have non¬ 

zero elements in all four positions, and it may be more convenient 

to think of two kinds of ideal sources, which are linear combinations 

with complex coefficients of the two types of physical sources. Thus 

one can Introduce a source that produces pure outgoing oscillatory 

motion on the left and standing waves decaying with distance on the 

right. This can. be realized by superimposing physical force and 

moment sources with the appropriate phase relation. A second source 

type arises from the reversal of right and left in the above descrip¬ 

tion. 

It is clear why there are only two types of physical sources 

and not four. The missing two would be sinks of incoming waves, and 

"sources" of standing waves that increase exponentially with the 

distance. Such behavior is excluded by the boundary conditions. 

5• 4• 3 Transmission and Reflection Matrices 

Introduction of the wave basis allows the defini¬ 

tion of certain 2x2 matrices that characterize the transmission 

and reflection properties of finite segments of rods bearing reso¬ 

nators or other obstacles. As the exponentially decaying or growing 

waves r)2 ant* ^4 present a minor difficulty, we shall first consider 

a simpler problem, a uniform string under tension. Then only the 

oscillatory solutions, corresponding to and 03» exist. In 

this case, the 2x2 matrices reduce to numbers. 
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Consider a wave on an infinite string coining in from the 

left. We fix our attention on a very small portion of the string, 

on which a weight or another "obstacle" is attached. (These behave 

analogously to resonators on a rod.) The obstacle will act as 

a source of outgoing waves, but there is another way of describing 

the situation. Part of the incoming wave will be reflected at the 

obstacle, and part transmitted across the obstacle. There will also 

be phase changes. If the obstacle is symmetrical between right and 

left (as is true for a weight) then the transmission and reflection 

properties will not depend on whether the wave is incoming from the 

right or left. Thus the effect of the obstacle is completely speci¬ 

fied by a transmission coefficient T and a reflection coefficient R. 

These are usually complex numbers (to take account of the phase shift) . 

If the obstacle is unsymmetric, then there are different coefficients 

for waves coming in from the right and the left. 

We now return to the problem of an infinite rod bearing 

an obstacle concentrated at a point. We must allow as "waves" 

incoming from the left not only np a true oscillatory motion, but 

also ri2> *hich increases exponentially to the left. n2 would be 

produced by a source to the left of the obstacle. On the other hand, 

is not allowed, since it could be produced only by a source to 

the right. Similarly, we allow n3 and as "waves" incoming from 

the right. The obstacle or resonator will act as a source of out¬ 

going waves only. To the left of the obstacle, these are given by 

n3 and r)^. Thus transmission or reflection by the obstacle can be 

specified by a 2 x 2 matrix T or R with complex elements. T indicates 

how the two kinds of "incoming waves" on the left of the obstacle are 

transmuted into the two kinds of "outgoing waves" to the right of 

the obstacle. If the obstacle Is not symmetric between right and 

left, then there will be a different transmission matrix T* for 

waves incoming from the right. Similarly for R and R'. 

Suppose the rod can be described immediately to the right 

and to the left of the obstacle by the vectors AR and where 

AR “ ^Rl» aR2> aR3 ' aR4) 
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and Aj. is analogous Then the precise definitions of T and R are: 

o ■ - (:) 
Similarly for waves coming in from the right, we have: 

It can be shown (see Addendum 4 ) that the 4x4 transfer 
matrix B in the wave basis can be expressed in terms of T, T1, R, 

and R1 as a partitioned matrix: 

The inverse of B* is then 

-T*"1RI \ 

T’-RT"1Rr / 

For a symmetric obstacle, there are many relations connecting the 
8 complex elements of T and R, since it was shown that 9 real 
quantities are sufficient to specify B in this case. 

5.4.4 Source and Obstacles on an Infinite Rod 

Knowledge of the transfer matrix for a resonator 
and the jump-vector for & source are not sufficient in themselves to 

determine the displacement of a point on an infinite rod to which 

these are applied. The boundary conditions of finite displacement 
everywhere, and no incoming disturbance at either end., must be used 

to pick out the physically allowed solution of the equations of mo¬ 

tion. These conditions are easy to express in the wave basis, but 

complicated in the derivative basis. 
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Let E* be the transfer matrix for a segment that has only 

passive elements. If homogeneous segments of length L are attached 

both at the left and right, then the transfer matrix for the com¬ 

bination is of course M*(L)E* M*(L). Now imagine that L goes to 

infinity, and apply the boundary conditions. In the absence of a 

source anywhere along the infinite length, the displacement must 

be zero everywhere. (Free standing waves of an infinite homogen¬ 

eous rod are excluded because in terms of the wave basis they must 

be considered as the sum of right- and left-going waves of equal 

ançlitudes, and the traveling waves are incoming either on the 

right or the left.) 

To obtain a non-zero displacement, an active element must 

be inserted somewhere along the rod. Consider that a source (say 

a force) is applied at the left end r* of the original rod segment 

(see Fig. 5-7). Let ^(r*) , AR(r*) be the vectors of wave-coefficients 

appropriate to the left and the right sides of the point r*. Since 

there are no incoming waves immediately to the left of the source, 

^(r*) must have the form (0,0,w,x) where w and x are not known. 

Immediately to the right of the segment’s right end, at p, there 

are again no incoming waves. Hence the wave-coefficient vector A(p) 

has the form (s,t,0,0) where s and t are unknown. But by the defin¬ 

ition of transfer matrix. 

A(p) = E* AR(r*) 

Now the vector difference AR - Aj^ is the jump-vector for the source; 

it follows that 

For a moment source, the right-hand is chañad suitably. 

- —.• 
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If we introduce the diagonal matrices I0 and Io, with 

diagonal elements 1, 1, 0, 0 and 0, 0, 1, 1 respectively, then 

the last equation can be written 

and s, t, w, x can be found by solving a system of four linear 

equations. Once these are known, the displacement of the rod can 

be determined at each point outside the original segment. The dis¬ 

placement will of course be proportional to the applied force F. 

5.4.5 Explicit Computation 

If there is only one resonator on an infinite 

homogeneous rod, explicit formulas can easily be found using the 

transmission and reflection matrices defined in Section 5.4.3. 

r* s r 

_i I_1_ 

Let there be a source at r*, and a resonator at s, to 

the right of r*. We shall determine the displacement at a point r 

to the right of s. Consider a wave from r* incident on s from the 

left. The reflected wave produced at s will never undergo another 

reflection as it travels back to the left, because the source at r* 

does not reflect. Therefore, to determine what is transmitted to 

a point immediately to the right of s, we need only know the trans¬ 

mission matrix for the segment between r* and s, and the transmis¬ 

sion matrix T across s. Thus the transmission matrix between r* o 
and r is 

T(r*,r) = T(s-r)T0 T(s-r*) , 
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Ta will now be computed by making ukä of the form given 
at the end of 5.4.3. This shows that the transmission matrix for 

a symmetric obstacle can be found from the 4x4 wave-transfer matrix 

B* by extracting the lower right 2x2 matrix and inverting. The 
transfer matrix for an axial resonator in the derivative basis was 
given explicitly as M_„ in Section 5.1.1. In the wave basis, it 
becomes (see Section 5.4.1) 

«îx - =-1 V = î sH K"1 ««K s 

If 0 and I represent the zero and unit matrics of order 2x2, 

then the extraction of the lower right quarter can be represented 
as 

¿(0 I)SHK-lHaItKs(° 

We find that this is a 2 x 2 matrix of the form 

I - F X , 

where X is a 2 x 2 matrix not depending on F. To is then found 

by taking the inverse: 

T0 = (I - FX)"1 = I - XdF"1 + X)“1 

and then we find 



i 

ik(r-r*) 

T(r*,r) = 
-k(r-r*) 

ik(r-s) Q ik(s-r*) 0 

k(r-a) X(F"" x+X) 
O -k(s-r*) 

In Sections 3 and 4, we were concerned with a Green's- 

function, that is, the displacement at r due to a force applied 

at r*, in the presence of a resonator at a. Ihe matrix T(r*,r) 

gives more information, inasmuch as the coefficient at r of the 

propagating wave appears separately from the coefficient of the 

decaying or evanescent "wave," and these are given for Independent 

excitation of the two types at r*. (The resonator at a responds to 

both kinds, and produces new propagating and evanescent waves, so 

that the total displacement at r can be visualized as a sum of four 

terms.) Thus the Green's function originally found in Section 3 

can be recovered by adding together the elements of T(r*,r)using 

appropriate coefficients. 

It is possible to extend the confutation just given to a 

rod with several resonators between r* and r, but the algebra be¬ 

comes very tedious. 

5.5 Thickenings On a Rod 

5.5.1 Methods for Treating Thickened Portions 

Finite-length thickenings can be handled by at 

least three different methods. In Section 5.5.4, transfer matrices 

are used. In Section 6.2.1, a new kind of non-physical resonator 

will be introduced, which does not satisfy the reciprocity relation. 

By also introducing a change of length-scale, comparatively simple 

formulas for thickenings are obtained in 6.2.2, A third method 

considers the thickening as the result of superimposing infinitely 

miWMiniMMVBIMBMMMi m-wt 
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many resonators with orthogonal weight-functions. It can be used 

for thickenings on a plate bounding a semi-infinite ocean of water, 

for which problem the first two methods fail. It Is unneccessarily 

complicated in the absence of water, and so the presentation will 

be delayed until Section 9. 

5,5,2 Junction Between Dissimilar Segments 

Consider two segments of different D and k joined 

together as In Fig. 5-8. A precise treatment of conditions near 

the junction would involve the exact theory of elasticity. However, 

we shall only need the accuracy that is consistent with the use 

of thin-rod theory away away from the junction. 

The conditions that displacement and slope are unchanged 

across the junction can be written 

From elementary physical arguments, the total transverse shear 

force and the total moment must match across s, whether or not the 

simplifications of thin-rod theory can be made. An argument from 

equality of the total moments to a relation between the second 

derivatives on opposite sides of s must be given, since thin-rod 

theory does not hold near a change in cross-section. Thus thin-rod 

theory could not predict any difference between a symmetrical junction 

(Fig. 5-8), and an unsymmetrical junction (Fig. 5-9), for equal 

thicknesses in the two figures. 

The general nature of such a justification can be under¬ 

stood by going over to the higher dimensional analog. A semi-infinite 

rod then becomes an elastic layer that is semi-infinite in its own 

plane. Now consider two of these having different thicknesses, 

attached to each other along their edges. When the junction is 

examined microscopically, the forces on opposite sides must be equal 
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at each point, although the magnitude varies with distance from 
the median plane. Lamb waves of all modes can be excited in each 
semi-infinite layer by shear force and moment transmitted across 

the junction, but all except two modes in each half-layer decay 

with distance very rapidly - these two being the "outgoing waves" 
discussed in Section 5.4. Now we return to the lower dimensional 

analog. There will be a point p to the left of the junction s 
such that the distance Ip - s j is very small conçared to a free 

v3 
wavelength, and D £-4 evaluated at p is nearly equal to the shear 

òx-3 
force across the junction. There is a similar point p’ on the other 

side of sj and the same properties hold for the moments at p and p'. 

5.5.3 Transfer Matrix Across a Junction 
If two points rj, and rg are on the same side of 

the junction point s, then transfer matrices can be defined as 

earlier in either derivative or wave basis (but now the wave basis 
on the left involves the appropriate wavenumber and on the 
right kR is involved). If r^ and ^ are on opposite sides of the 

junction, it will clearly be simpler to use the derivative basis, 
in view of the change in wavenumber. Thus we return to the formu¬ 

lation of Section 5.2.1. If the ratio 

7 = VDr 

is introduced, and the transfer matrix r for the junction is defined 

by 

YR = r YL > 

then on equating force and moment on opposite sides, we have 

r = 
7 
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5.5.4 Source and Finite Thickening Handled by Transfer 

Matrices 

Consider a source at r* on a bar thickened from s^ 

to S2 (Fig. 5-10). The finite section can actually be thinner than 

the rest of the rod. Then one speaks of a neck in the rod. The 

subscript b will be used for quantities pertaining to the finite 

section and a for the rest of the rod. Let r be an observation 

point on the other side of the thickening from r*. The transfer 

matrix E(r*,r) between r* and r can be written (in the derivative 

basis) 

E(r*,r) = Ma(s2-r)r"1 Mb(L)r Ma(r*-Sl) 

where L = 182-8^! . We now set 

Bo =r"1 v • 
Bq behaves as the transfer matrix for an obstacle on an infinite 

homogeneous rod. Therefore it must satisfy all the conditions 

derived for such an obstacle. In particular, = B0, since the 

"obstacle" is symmetric. Bo must also be related to 2 x 2 transmis¬ 
sion and reflection matrices. 

Invoking the same argument as was used in Section 5.4.5, 

the transmission matrix from r* to r is the product of the trans¬ 

mission matrices for the two segments and the obstacle. 

T(r*,r) = T(r-s)To T(s~r*) . 

The outer factors were evaluated earlier; they are given by the 

formula 

T(x) = Ta(x) = 
exp ikax 

exp -kax 
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The transmission matrix Tq for the obstacle is found by converting 
Bq to the wave basis (wavenumber ka) extracting the lower right 
2x2 matrix, and inverting. Using * to indicate the wave basis, 

one obtains 

B* = C"1 Brt C o o 

= c"1 r^c C1 MbCDC c"1 r c 

= s-1 k¡x r-1 Kas Hgws-1 k;1 r Kas 

M*(L) was given Section 5.4.1. 

K and F are both diagQnal, hence they commute with each fll 
other. Therefore 

B* = G“1 Mg(L) G 

where 

g(7) = S“1 F(7) S = ¿ SH f(7) S . 

Note that G is Hermitian, and that 

g~1(7) = S“1 r“1(7) S = 0(7-1) . 

Adding and subtracting 1 from the third and fourth elements on the 
diagonal of G, we find, in terms of 2 x 2 blocks, 

I 0 

0 I + SH 
0 0 
0 I s 

Extraction of the lower right quarter of B* corresponds to forming 

(0 !) B* I) G'1 
. 

Setting for the moment 
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U = 1 + i 
-1 - i 

and U is the transpose of U. Furthermore 

U 

tr 
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I 

S 

s II 
n i.f i 

>0 
i] 
0 

(0 I) G"1 = (0 I) + kj-JL (u u?) . 

can be written in terms of 2 x 2 blocks as 

where 

Then 

= 

Mi = 

M4 = 

Mx 0 

0 Mi 

exp ik^L 

0 

exp -ik^L 

0 

exp -k^L 

exp k^L 

i1 = u «i “ 

+ TF? (2 (1+7) ï + (l-7)UT)M^(2(l-Py)I - (1-7)UT) 
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-1 
Then we find the following explicit forms for the elements 

of 87To , after dropping the subscript b on k: 

(1,1) element 

-(l-7)2e_kL + 2(I+7)2e"*^kL- (l-7)2ekL 

(1,2) element: 

(-1-1)(1-72)^^ - e~ikL) 

(2,1) element: 

(+l-i)(1-72)(ekL - e"ikL) 

(2,2) element 

-(1-7) 2eikL + 2(1+7) 2ekL - (I-7) VikL 
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6. BOUNDARY CONDITIONS ON A ROD OR PLATE HANDLED BY KEANS 

OF RESONATORS 

6.1 Standard Boundary Conditions for a Rod 

There are four standard boundary-value conditions that 

can be imposed at a point of a rod: 

(1) Simple support at an internal point. 

(2) Simple support at an end. 

(3) Clamping at an end. 

(4) A free end. 

We shall show that each of these conditions can be pro¬ 

duced by attaching one or two resonators - not necessarily of the 

types that have been already discussed - to a two-way infinite rod, 

and then letting the strength of the resonators go to infinity. 

Thus a problem involving boundary conditioiis at several points of 

a rod, with any number of axial or transverse resonators between 

them, can be handled by a uniform technique which treats the boundary 

conditions as simply due to the effects of additional resonators. 

Problem (2), end support, has a well-known elementary 

solution, obtained by introducing a negative mirror-image source 

for each physical source on the rod. It is important to observe 

that (2) is not the same problem as (1), internal support. This 

arises because the slope must be continuous at a support at an 

internal point of a rod. Then two points on the same side of the 

support point can not only influence each other directly, but also 

by a route that, so to speak, crosses to the other side and returns. 

In the problems with clamped and free ends we artificially 

introduce another half-rod on the other side of the end. Clearly 

two half-infinite bars with abutting free ends will not influence 

each other. A source applied to one will produce zero displacement 

for the other rod. Similarly, a two-way infinite bar clamped at a 

point behaves effectively as two independent clamped semi-infinite 

bars since a force applied on one half has no effect on the other. 

1 
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6.1.1 Internal Simple Support 

It is clear that if one attaches an axial resonator 

of Infinite strength at the point s on an infinite rod, then the 

displacement is constrained to be zero. The Green's function 

(displacement at r due to a source at r*) is obtained by letting 

1/F go to zero in our earlier formulas: 

G(r*,r) - Q(r* - r) - 

Clearly G(r*,s) = 0 . 

6.1.2 Infinite Rod Clamped at a Point 

Consider an infinite clamped at the point s. Then 

we must have 

n(s) = 0 . 

The condition o = 0 can be realized by attaching an axial 

resonator of infinite strength at s. Similarly, the condition 

dq/dx = 0 is realized by attaching an infinitely strong transverse 

resonator. The interaction matrix V is then 
pq 

Q(0) o 

0 -q(2)(0) + ^ 

The off-diagonal terms are zero because the two types do not inter¬ 

act if they are attached at the same point; the axial resonator has 

a Green's function that is an even function of the distance, and 

the other, an odd function. Therefore, the Green's function for the 

rod clamped at s is: 

lim 
F “> 00 

G -> 00 
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G(r*,r) - Q(r*-r) - 2.¾¾^). 

One can easily verify that n = 0 and dq/dx = 0 as x 

approaches s on either side, and that G = 0 if s lies between 

r* and r. 

If an infinite rod is clamped at s, then the two halves 

behave independently of each other; a source on one side produces 

no displacement on the other side. Therefore the treatment can be 

considered as applying to a semi-infinite rod clamped at its end. 

6.1-3 A Rod Clamped at Two Points; Free Vibrations 

The treatment for two clamped points is obvious, 

the interaction matrix V is now 4 x A and not diagonal. 

V Q(0) 0 

A 0 

where 

A 

and A* differs from A by interchange of the signs of the off-diagonal 

elements. 
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Then 

G(r*,r) = Q(r*,r) - RV^C, 

where R is the row vector 

R = Q(r* - sp, -Q(1)(r* - s^, Q(r* - s2), -Q(1) (r* - s2)J 

and C is the column vector with elements Q(s^ - r), Q ^ (s^ - r) , 

Q(s2 - r), (s2 - r). Note that two elements of R have negative 

signs, because all quantities for a moment resonator are derived 

from those for a force resonator by applying the operator d/ds^. 

It is now convenient to reintroduce the diagonal matrix P with 

elements -1, 1, -1, 1. Then 

RV"1 C = - RP(-VP)-1C 

and -VP has the following form, when partitioned into quarters: 

X Y 

Y X 
-VP = 

with 

X = 

Q(0) o 

0 Q(2) (0) 

, Y = 

Q(s2 - Sl) Q(1)(s2 - sp 

(s2 - s1)Q^2^(s2 - sp 

Then (VP)"'1' can be conveniently determined from the 

relation, valid for any square matrices A and B, with A non¬ 

singular: 

A B 

B A 
I -(A_1B)2 

-A"1BA"1 

-A“1BA"1 A 
-1 

where I is the unit matrix of the same size as A or B. This 

relation can be verified by direct multiplication. 
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These formulas can be used to determine the conditions 

for free vibrations of the rod. It will be recalled that a 

mechanical structure may have frequencies such that an arbitrarily 

small applied force will produce finite displacements. Of course, 

the energy for these displacements is the result of the summation 

of the very small increments put into the system during each of 

the infinitely many earlier cycles of the force. 

If the structure is idealized by assuming that the dis¬ 

placement is always exactly proportional to the applied force, 

then the condition for the existence of free vibrations is that 

there is an infinite displacement in response to a finite force. 

This linearization assumption has been made for our thin rod. 

Then from the form of G(r ,r), it is clear that a free vibration 

can take place only if V is a singular matrix, that is, if det V = 0, 

or equivalently det(VP) = 0. 

In view of the last equation, this implies 

det jl - (X~1Y)2J = det (I - X"1Y) det (I + X-1Y) = 0 

Thus one of the factors on the right must be zero. Then mul¬ 

tiplying by det X"^, it is clear that either 

det (Y - X) = 0 

or 

det (Y + X) = 0 

On substituting the values of X and Y, and setting d 

we obtain 

/Q(d) + Q(0) 

detl I = 0 

\ Q(1)(d) Q(2)(d) + Q(0) 

ss - sl’ 

Q(1)(d) 

or 

Q(d) Q(2)(d) -|Q(1)(d)12 

± Q(0) Q(d) + Q' ' (d) (2) + Q(0) = 0 
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The equations for the two choices of signs correspond 

to modes of vibration that are symmetrical and antisymmetrical 

about the midpoint of the segment. 

6.1.4 A Break in an Infinite Rod; Non-Physical 

Resonators 

r* s r 

conditions for a break at s are: 

= 0 

on both sides of s. Of course, q and dq/dx need not be continuous 

across s. 

6.1.4.1 Transfer Matrix Across s 

By analogy with the results for clanping at s, 

it would be expected that the transfer matrix across the break is 

realizable only as a limit after certain elements are allowed to 

become infinite. Now the transfer matrix for clamping at s could 

be visualized as 

lim 
F -> 
G -> 

0 

1 

G 

0 

0 

0 

1 

0 

o 
o 
o 
1 

\ 

/ 

This suggests that the transfer matrix for a break should be taken 

as : 
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lim Tb 

H •* » 
J -> 00 

where 

It will now be verified that the conditions at s will be satisfied 

using Tg. We recall that the vector of derivatives on the right 

is related to that for the left by 

The upper row of this relation yields 

f 3") 
nL + Jr|L 

Now all this solutions of the wave equation have finite displace¬ 

ment at finite points. Hence if J -> », it must be that -> 0. 

Similarly, from 

a (1) - o (1) nR nL + «ni25 

we deduce that (2) 0 when H 
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Further, can be expressed in terms of 

yl = yr . 

where 

,-1 
B 

0 

■H 

1 

0 

It follows that 

43) -> o 

(2) 
-> 0 

as J -> oo 

as H -> oo 

6.1.4.2 New Kinds of Resonators 

One can interprete Tg as the transfer matrix 

that results frcT. superimposing two unusual kinds of resonators, 

one of which contributes the element H and the other.element J. 

Neither corresponds to a physical object. H would be the strength 

of a resonator which responds to a non-zero second derivative of 

H by producing a finite discontinuity in the slope. It can be 

visualized as the result of allowing two transverse resonators of 

the same strength but opposite orientations to approach each other, 

at the same time as the common strength goes to infinity in such a 

way that the produce of distance and strength remains constant. If 

one thinks of a moment applied to the rod at a point as a dipole of 

force, then one can speak of a transverse resonator as a dipole reso¬ 

nator. Hie new kind of object that produces the H term is then a 

guadrupole resonator. In the same way, the entity that produces the 

J element responds to a non-zero third derivative by producing a 

finite discontinuity in the displacement, and can be called an octupo1p 

resonator. 
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Attaching a quadrupole resonator of infinite strength 

at s corresponds to breaking the bar at s and reconnecting the 

ends with a hinge. There is no simple interpretation for an in¬ 

finite octupole resonator. 

6.1.4.3 Green's Functions and Interaction Constants 

Once one accepts these ideal resonators, it be¬ 

comes possible to define Green's functions for each of them. It is 

clear that for a quadrupole resonator, this must be Q^(x), where 

X is the distance between source and object, and for an octupole re¬ 

sonator, it is Q^(x). The interaction integrals can be evaluated 

in the general form: 

vpq - / (s2-x)dx 

- . 

There is an ambiguity of sign in this formula if the resonators are 

attached at the same point (s^ = S2) and p+q is odd. But if p+q = 1 

or 5, then = 0. The case p+q = 3 presents real difficulties 

of physical interpretation (see the discussion in 6.1.7). 

The Green's function for a break at s is then 

G(r*,r) = Q(r*-r) - 

Of course, we have 

Q(4)(0) = k4Q(0) 

q(2)(r*-?)Q(2>(s-r) 
Q(4)(0) 

QC3) (r*-s)Q<3) (s-r) 

. 

Q(6)(0) - k4q(2)(0) 
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6.1.5 A Rod of Finite Length 

We conceive of a finite rod as arising from an 

infinite rod by breaks at the points s^ and S2, where j Sj¡-S2 | equals 

the rod length L. Let a force be applied at r*, which as a matter 

of fact need not lie between s^ and 82- Then the Green's function 

is 

G(r*,r) = Q(r*-r) 

- (Q^^-s^-Q^Cr*-^) Q(2)(r*-S2)-Q(3)<r*-s2)) 

where 

V = 

q<4> 

0 

Q^) 
-q(5) 

(0) 

(L) 

(L) 

0 Q(4)(L) -Q(5)(L) 

-Q(6)(0) Q(5)(l) -Q(6)(l) 

q(5)(D q(4)(o) 0 

-Q(6)(L) 0 -Q(6)(0) 

A 
It is clear that V = k times the interaction matrix for 

a rod clamped at s^ and 82- Therefore the condition det V = 0 pro¬ 

duces the same equation as the similar condition fcr the clamped 

finite rod, which indeed is obvious fiom first principles. A free 

vibration for the finite rod satisfies the conditions 
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v4n - = o 
d^n/dx^ = o 

d3n/dx3 = o 

therefore the second derivative of n will satisfy the conditions for 

a clamped rod. 

6.1.6 Simple Support at the End of a Semi-Infinite Rod 

An axial resonator of infinite strength attached 

at s leads to the conditions 

n = o 

= o 

We now attach a quadrupole resonator of finite strength H at the 

same point. Assume a source at r* to the left of s. Then as earlier 

we have: 

(21 
Now as H goes to infinity, we may have Hry ' going to a finite limit; 

L ni 
thus there can be a finite change in the slope nv at s. That is, a 

transfer matrix of the form 

( 1 0 0 0 \ 

0 1 H 0 
0 0 10 

F 0 0 1 j 

where F and H are indefinitely large, produces discontinuities in 

and at s, as well as constraining q and to be zero. 
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Thus if we think of an infinite rod with axial and 

quadrupole resonators at s, then as their strengths go to infinity, 

the two halves become decoupled from each other, while the conditions 
(2) 

H = 0 and rp ' = 0 are realized more and more exactly. Thus either 

half can be viewed as a semi-infinite rod with a simply supported 

end. 

Of course, a finite rod simple supported at both ends 

can be handled by applying the above treatment at each end. 

6.1.7 Summary of Boundary Conditions 

We summarize the physical effects of attaching 

one or two resonators of infinite strength at a point. 

1) A single resonator attached a^ s. 

Two kinds lead to physically interesting situations: 

a) Axial-simple support at an internal point 

b) Quadrupole-An internal hinge in the rod. 

2) Two resonators attached at a. 

Of the six combinations of two types, only three are 

of physical interest: 

a) Axial and Transverse-a clamped end 

b) Axial and Quadrupole-a supported end 

c) Quadrupole and Octupole-a free end 

For a symmetrical resonator or obstacle attached to an 

homogeneous rod, it is known that the determinant of the transfer 

matrix must equal unity: 

det MreE « ! . 

The three combinations above satisfy this condition, at least before 

one goes to the limit of infinite strength for the resonators. Of 

the three remaining pairs, two do not satisfy the condition above, 

namely a transverse combined with a quadrupole resonator, and an 

axial combined with an octupole resonator. The corresponding trans¬ 

fer matrices are: 
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The determinant of the first has a term GH, and the second a term 

FJ. The remaining combination has the matrix 

(1 0 0 j\ 
0 10 0] 

0 G 1 0 / 

0 0 0 1 / 

It is not excluded by the argument above, but it is difficult to 

see a physical realization for it. 

It is noteworthy that one cannot assign a definite meaning 

to attaching a transverse and quadrupole resonator at exactly the 

same point - one must be to the right of the other. In other words, 

if there is an internal hinge at s, the condition of zero deriva¬ 

tive at s is ambiguous; one must specify either the derivative on 

the right or the left. 

6.2 Thickenings on a Rod 

A junction between two rod segments having different 

rigidities D = El and free wavenumbers k can be regarded as pro¬ 

ducing a special form of boundary value problem. We shall show 

that this can be handled by introducing new kinds of resonators, 

which do not satisfy the reciprocity relation -- that is, the weight 

function for sensitivity is not the same as that for response. 

6.2.1 Non-Reciprocal Resonators 

We will use a resonator considered as centered at 

s which has the sensitivity function w*(r-s), but responds by exerting 



89. 

a force distributed as w(s-r). That is, the equation of motion of 

a rod bearing such a resonator of strength F, is: 

k^) q(r) = P(r) + F [/dx w*(x~s) ti(x)J w(s-r) , 

where P(r) is the applied force per unit length. If the rod is 

divided up into segments with different values of D, this equation 

does not apply at the junction points. 

When there are many resonators on a rod, we assume that 

the attachment domain of the i-th resonator lies entirely within 

a segment for which the rigidity has the constant value D^. We 

further restrict the applied force to a single segment of rigidity 

Dq. Then the equation of motion.becomesj after dividing by D: 

(V4 - k4)n(r) = P(r)/Do 

+ ~ Si [/dx w£(x-s) q(x)] w^/s-r) 

where 

Si = Fi/Di * 

Now we make the assumption that w* is related to w^: 

w* = Ci(wi) 

where is a linear differential or integral operator. Let Qj, 

be the Green's response-function for vi, defined by 

OCQiCx)) = w^x) , 

where 0 is the operator V4 - k4. Then there is an associated Green's 

sensitivity function (ChiQ^x)) , the result of applying to Qi> 
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Because 0 is a differential operator, it commutes with C^., and so 

we have 

0(Ci(Qi(X))) = c1(w(x)) . 

Note that Qi differs by the factor 1/D^^ from the form that would 

be expected if the procedure of section 3 had been followed exactly. 

This of course arises because the equation of motion was divided 

by D. 

For the moment, we specialize to the case of a junction 

at s between two segments having equal wave-numbers, but unequal 

rigidities. We shall define pseudoresonators of two new types 

R3 arid R^, such that the effects of the junction are equivalent 

to the attachment at s of an and an R^-type resonator. An R^ 

type of strength S has the transfer matrix 

1 
1 

1+S 
1 

and an R^ type of strength S has the matrix 

"l 

1 
1 

1+S 

To produce agreement with the T matrix defined in Section 5.5.3, we 

must set 

1 + F = 7 

or 

s = V'W • 

where and are the rigidities on the right and left of s. 
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An resonator responds to the third derivative of the 

displacement by exerting a force, while an ordinary axial resonator 

responds with a force to the displacement itself. Thus the C-opera 

tor for an resonator consists of three differentiations: 

P “ET U r.. 

By a similar argument involving a transverse resonator, the C- 

operator for an R^ resonator corresponds to a single differentia 

tion: 

C 
„ d 

3 " Hx 

The restriction that the wavenumbers are equal on opposite 

sides of the junction will now be relaxed. In order to do this, we 

agree to measure all lengths along the rod in terms of the local 

wavenumber. The measurement of lengths transverse to the rod is 

not affected. Thus the distance between two arbitrary points will 

be expressed as so many wavelengths (better, as so many radians). 

The transfer matrix across a junction will now have the 

form 

r = p 2 
P 7 p3. 

where p is the ratio of the wavenumbers on two sides. This form makes 

clear the need to introduce still another kind, the R2 resonator. 

The transfer matrix for an R2 matrix of strength S will be 
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To determine the corresponding C-operator, we observe that a quadru- 

pole resonator responds to the second derivative of displacement 

by exerting a force quadrupole. An resonator responds similarly 

to the first derivative of displacement. Thus C2 consists of a 

single integration: 

C2 = /dx 

6.2.2 Interaction Between R^-resonators 

Addendum 2 shows that the displacement of a rod 

bearing several not-necessarily-reciprocal resonators is given by a 

formula analogous to that for the simpler case of reciprocity, but 

the distinction between a Green's response-function 0 and sensiti¬ 

vity-function observed: 

G(r*,r) = Q(r*-r) 

where Q(x) is the Green's function for an axial resonator, that is, 

0(Q(x)) = 5(x) 

and 

V. 
mn 

We now indicate how the interaction integrals V can be 
0 mn 

evaluated in some typical cases. The factor 1/D will be omitted. 

Consider an resonator at s and an axial resonator at 

t. Then the interaction integral (from axial to R^ resonator) is 
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/ dx ^r&(x-s)] Q(t-x) 

= ~ ^ dx ïïs 5(x_s) QCt-x) 

= - Ig- Q(t-s) 

= MM 
ày 

y =t-s 

Next, consider two R3 resonators at s and t. Using primes 

to indicate differentiation we find the interaction integral is 

“ 'Js / dx 51 (x"s) Q' (t-x) = Q' ' 1 (t-s) 

If s approaches t, there is an ambiguity of sign, which is apparently 

real, and results from the need to specify which resonator is regarded 

as affecting the other. 

More generally, the interaction between an IL-type at s 

and an R^-type at t is found to be the (j-i+3)-th derivative of 

Q(x) evaluated at x = t-s, for i,j = 2,3,4. Note again that the 

order is significant. 

6.2.3 Computational Usefulness 

Although the introduction of R^-resonators is not 

very useful for hand calculations, it has considerable advantages 

in programming for computing machines, espcially when clamped or 

free ends, or supports are also handled by the method of section 

6.1. (The main problem is often not to reduce the number of arithmetic 

operations to a minimum, but rather to arrange the calculation as 

systematically as possible.) All the interactions between the in¬ 

homogeneities are handled in the same way, and the only functions 

of distance L that appear are Q(L) and its first three derivatives. 

iMICBmiSetiWtlb !r.*iaMUW«w ». 
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The higher derivatives can be replaced by using the ^od equation. 

There is a saving, as compared to the use of transfer 

matrices, or transmission matrices, in that it is not necessary 

to keep separate track of true waves and evanescent waves at each 

step. 

As an example of how these non-physical resonators might 

be used, consider the situation of Fig. 6-1. 

This can be handled by 10 resonators and pseudoresonators 

as in Fig. 6-2. The resulting 10 x 10 matrix is easily inverted on 

a present-day computing machine. Furthermore, many of its elements 

are equal to each other. The only quantities that must be computed 

are 7 and p at each junction, and Q and its first three derivatives 
for six combinations of non-dimensionalized distances; namely 

k.L., i = 1,2,3, 

klLl + k2L2 

k9L2 Ic^Lß 

klLl + k2L2+ k3L3 ‘ 

Of course, ordinary axial or transverse resonators can 

be attached to any of the three segments. 

6.3 Infinite Plate with Boundary Conditions Along a Line 

The four standard boundary conditions of Section 6.1 can 

also be imposed at the points of a plate that lie on a given straight 

line or curve. If the curve is a circle, then the techniques used 

for the case of a rod can be modified very easily. Thus to produce 

internal support, one attaches an infinite feries of rim force reso¬ 

nators, with every possible azimuthal dependence, i.e., weight func¬ 

tions cos n0 for n = 0,1,2,..., and sin n0 for n = 1,2,3,... . 
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Each resonator has infinite strength. To produce the clamped 

condition, it is also necessary to attach rim moment resonators 

of infinite strength on the same circle. Resonators having dif¬ 

ferent azimuthal dependence will not interact with each other 

(that is, the corresponding element of the interaction matrix V 

will be zero). However, a rim force type and a rim moment type 

with the same angular dependence do have a non-zero interaction. 

For external support or a free edge, there is a minor modification 

of the procedures of Sections 6.1.6 and 6.1.4, because of the effect 

of Poisson's ratio. The explicit formulas for a free edge are given 

in Section 9, in connection with the study of circular pistons. 

An infinite plate can also be supported or clamped at a 

point. Conditions at a point can be easily handled by axial and 

transverse point resonators of infinite strength. 

The only other problem which is at all amenable to treat¬ 

ment arises when conditions are imposed along a straight line. 

Even for this apparently simple situation, it seems to be impossible 

to evaluate all the pertinent integrals that arise. In the present 

Section 6.3, integral forms for various Green's functions are de¬ 

rived. These integrals are then discussed in 6.4. 

6.3.1 Simple Support Along an Infinite Straight Line 

6.3.1.1 Point Resonators Along The Line 

We first conceive of a regularly-spaced infinite 

array of axial resonators along the line z = 0. They have strength 

F and are separated by the distance s. Simple support along the line 

results when F goes to infinity and s goes to zero. 

The interaction matrix V becomes in the limit the kernel 

of an integral operator, and the summations on i and j become inte¬ 

grations. Thus the displacement G(r*,r) at r = (x,z) due to a unit 

point force at r* = (x*,z*) is 

G(r* ,r) = Q( I r*-r J ) 

-u)¿+ z* 
00 00 

- / du / dv Q(v( 2)K(u-v)Q0/(x-v)2+ 2\ 

z ) 
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where K(u-v) is the kernel that corresponds to the inverse of the 

limiting form of V. The double integral obviously has the form of 

a convolution; thus it is appropriate to use the Fourier cosine 

transform. 

We introduce a cap a over a function of x to indicate 

taking the Fourier cosine transform with respect to x. Thus 

§(p,z) is the one-dimensional cosine transform of Q with respect 

to x: 

Q(p,z) = —L: / Q(^?+z^)cos px dx 
V2rr -co 

"Q is evaluated in Section 6.4.1. 

The cosine transform of K will be the reciprocal of the 

transform of Q for the special value z = 0: 

K(p) = 1/Q(p,0) . 

We now use the following standard result for convolutions: 

/ F(x-y)G(y)dy = / F(p)@(p) cos px dp . 
-00 - CO 

Then we can write down an algebraic equation for G(p,z*,z) by 

applying the transform to the equation for G: 

'G(p>z*,z) ='Q(pjZ*-2) - ^(pJz*)^"1(p,0)'Q(p,z) 

The resemblance to the Green's function for a rod internally sup¬ 

ported at z = 0 is apparent. The reason for this will be clear: 

Since the boundary condition along the line z = 0 is independent 

of x, the various Fourier components, which have the form cos px 

multiplying a function of z* and z, do not interact and so are 

decoupled from each other. Thus the original point excitation of 

z* is analyzed into Fourier components, and each is affected in a 

different way by the support at z = 0. Then the displacement at 

z is found by an integration. 
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6.3.1.2 Resonators with Sinusoidal Weight-Function 

The mathematical process of taking the Fourier 

cosine transform can be replaced by an argument that has more physical 

content. 

Instead of using point resonators, we work with a new 

class of resonators that exert their forces along the whole line 

2=0. For every positive wavenumber p, we introduce an axial 

resonator that exerts force proportional to cos px at each point 

(x,0) of the edge. We would like to say that this resonator responds 

to the integral 

/ r,(x,0)cos px dx 

taken over the edge. However, this integral may not converge. 

Therefore we refine our definition as follows. An axial resonator 

of wavenumber p and strength F(p) responds to the average weighted 

displacement (p) , 

’igCp) = / e € ^ Ti(x,0) cos px dx, 
-00 

where ^ 

N(€) = / e el*lcos px dx 
— 00 

by exerting the force F(p)r¡e(p) cos px at each point (x,0). Now 

we let e go to zero, and allow the strength of each resonator *-o 

go to infinity, without specifying precisely how rapidly each 

strength increases. 

The great advantage in introducing these resonators is 

that they do not interact with each other. It will be realized 

that this is just a physical way of expressing the earlier mathe¬ 

matical derivation. To avoid having to use resonators responding 

as sin px, the source must be placed on the line x = 0. 

6»3.1.3 Effect of Sinusoidal Resonators 

A force varying as cos px applied along x = 0 

can be expected to produce a displacement at (x,z) that is propor¬ 

tional to the sum of terms of the form 
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-uz r) = e cos px 

where u is to be determined. Substituting this form into the plate 

equation (valid away from z = 0) : 

D(74-k4) q = 0 

we find that 

u =~\Jp2~k2 , u = \Jp2+k2 

Thus if p > k, two exponentially decaying motions are allowed; 
for 0 < p < k, decaying and propagating modes appear. When p goes 
to zero, these have the form expected for a problem with n indepen¬ 

dent of X. The relative amplitudes with which the two modes are 
excited can be determined by an analysis similar to Addendum 1. 

However, another evaluation is given in 6.4.1. 

One can think of the problem as being decomposed into an 
infinite number of one-dimensional problems. For each fixed number 

p, one has the analog of a rod, if the dependence on x is neglected. 

The Green's function depends on p. A unit force at a point on a 
rod is now replaced by a force applied along a line z = c. 

6.3.1.4 Rod Welded to Plate 
It is clear that the condition of simple support 

can be generalized by considering an infinite elastic rod welded to 
the plate along the line z = 0. The critical idea is that the dif¬ 
ferent Fourier components will remain decoupled. The net effect 

on the formula for $(p,z*,z) in 6.3.1.1 will be to add a term to 
$(p,0), before the inverse is taken. 

6.3.2 Zero Normal Derivative 
The analogy with point resonators on a rod enables 

us to write down the Green's function for other types of resonators 

immediately. 
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Thus, suppose that on the line z = 0 the plate satisfies 

the condition of zero normal derivative: 

M&.5? = o 
dz 

Then the cosine transform of the Green's function is 

6(p,z*,z) =‘Q(p,z*-z) 

Of course we can think of the boundary condition as being achieved 

by the attachment of very many transverse resonators along the line, 

and letting the total strength per unit length go to infinity. 

Similarly to the discussion for axial resonators, we can 

introduce a transverse resonator of wavenumber p and strength G(p) 

that responds to the "average normal derivative" , 

by exerting the moment G(p)—^^cos px at each point (x,0) . 

It is clear that if all the G(p) are allowed to go to 

infinity (the rate possible depending on p) then the normal deriva¬ 

tive of the plate will be constrained to be zero at each point (x,0). 

6.3.3 Clamped Edge 

The condition of a clamped straight edge can be 

achieved by superimposing axial and transverse resonators. Since 

these do not interact, the two resonator terms simply add together. 



Free Edge 

Hie boundary conditions for a free edge are 

6.3.4 

where a is Poisson’s ratio. 

We first consider a plate satisfying the first condition 
only. Let G(x*-x,z*,z) be the Green's function. Then from the repre¬ 

sentation as a Fourier integral 

G(x*-x,z*,z) 
-i /N 

= -=r / G(p,z*,z) cos p(x*-x)dp 
\2vr -co ' 

à2 à2 We see that the operator —-tj- + 0 
dz^ dx 

corresponds to 

Dn = i?'05 

2 

in the transform domain. We can then write down the cosine trans- 
A 

form G for a plate satisfying the first condition only; 

G(p,z*,z) = Q(p jZ*-z) 

d2 2] 
7 “ °P Q(p ,z*) 

is 2 I 

^ J ^(p,z) 

r d2 2] —y “ Op 
. ÒZ 

Q(p,o) 

This maybe readily verified by applying the operator 

and then letting z go to zero. 

A 
to G, 

■ .. 
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The second boundary condition is handled in an entirely 

analogous way. The corresponding differential operator is 

—7 - (2-o)p 
òzJ 

2 Ò 

Because D2 is an even operator in z, and is odd, they 

do not interact, and the Green's function for a free edge is found by 

simply summing the separate terms for D2 and D.j. 

In the analogous problem for a rod, we considered a free 

edge as resulting from the superposition of "quadrupole" and "octu- 

pole" resonators, both of infinite strength. We can also adopt 

this manner of speaking for a plate, but now these non-physical 

objects have more complicated properties, since they depend on 

Poisson's ratio. That is, a quadrupole resonator is sensitive to 

the value of 

V2r) + (l-a) 

at a point on the edge, and an octupole resonator to 

ò /i _\ 

^v ■ a'c) 

Now if we were to think of attaching one of these at an internal 

point on the plate, the terms in (l-o) would have to be dropped. 

This paradox however does not interfere with any physical applica¬ 

tion of the non-physical resonators, and we can say that a free 

edge results from the superposition of a set of quadrupole resonators 

and a set of octupole resonators, each member of both sets having 

infinite strength. 
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6.3.5 Conditions Along Several Parallel Straight Lines 

6.3.5.1 Simple Support Alona Any Finite Number of 

Parallel Straight Lines 

Suppose there are N lines of support, with co¬ 

ordinates Then decomposing into the non-interacting 

Fourier components, we can use familiar arguments to write down the 

cosine transform'G of the Green’s function in terms of the inter¬ 

action matrix M for the supports. The (i,j)-th element of M is 

actually an integral operator on an x-coordinate difference, and 

involves and Zj as parameters. After taking the cosine trans¬ 

form Ô of M, each element of M is a function of the transform vari¬ 

able p, and not an operator. 

G(p,2*,z) = Q(p .z*-z) 

- I QCpjzfc-z^M^ §(p,Zj-z) 

(M“1) = ?(p,zi-Zj) 

where 

N“ 

6.3.5.2 Two Parallel Free Edges 

An infinitely long bar of finite width 2w, with 

both edges free, yields a problem of sufficient interest to justify 

the explicit presentation of the formulas. Then N is the same as 

the interaction matrix V, and is now 4x4: 

DjQCP’O) 

0 

D^Q (p , 2w) 

-D2D3§(P»2w) 

-d^Cp.o) 

D2P3§(p>2w) 

-D^(p,2w) 

D2Q(p,2w) 

D2D3Q(p,2w) 

D^(P,0) 

-D^(p,2w) 

0 

-D^(p,0) 
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M, the inverse of N, is multiplied by the following column vector 

on the right: 

D2§(P »w_z) 

(p jW"Z) 

D2^(p,-w-z) 

D3^(p,-w-z) 

and on the left by the row vector: 

z*+w) d3Q (p > z*+w) D^Q(p jZ*-w) d3Q (p »z*-w) 

where D* and D* indicate the differential operators in which z* 

replaces z. 

If z* î z, then G(p,z*,z) can also be written in terms 
of the inverse of a 6 x 6 matrix N** tnat results from bordering 

N with two rows and two columns (see Section 4.2.3). 

6.4 Evaluation of Green's Functions 

6.4.1 Evaluation of ^tp.z). 

The fundamental Green's function for a plate de¬ 

pends of course on whether the plate is in a vacuum or bounds a 

fluid medium on one side, but it is given by the formula 

Q(r) =-27/ f_1(t)J (tr)t dt 
o 

where f(t) = D(t4-k4) in the absence of water. The general form of 

f(t) will be discussed in Section 8. Q(p,z), the cosine transform 

of Q(x,z) is given by: 

Q(p,z) = —--3Y2 /dx /dt f_1(t)J (tVx2+z2)t cos xp 
I J TT 1 ' _ /Vi /-N ^ 

The integration over x can be performed (see Erdelyi e_t al. , Tables 

of Integral Transforms, Vol. 1, p. 55) : 
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00 ¿Vt2-D2 
^(p.z) = ——T?? /de f-:L(t)t -^7==.:P- 

7 P 

Let 
V'2- p2 • 

Then 

§(p,z) = -T77 / f“1 (\/q2+p2)eos zq dq 
(27t)j/ o 

If we now specialize to f(x) = DCx^-k^), this becomes 

“QÍP^z) = 

00 

I 
7^? q 2 +p 2+k2 

eos zq dq 

25/2~l/2Dk2 

e-|z|v e"|z|u 

V " u 

where the abbreviations 

u =Vp2+k2 

V = Vp2_k2 

have been introduced. The absolute value signs on z will often be 

omitted. We observe that 

l/§(p,0) • 25/2ir1/2Dk2 [v - ¿] 1 

[¿ + k] 
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6.4.2 G for a Supported Plate 

We can now write out explicitly the integral for 

G(x*,z*,x,z) for an infinite plate in a vacuum, supported along 

the line z = 0. 

G(x*,z*;x,z) = Q(V(x*-x)2 + (z*-z)2) 

-z*v -z*u’ £_ _ e_ 
V “ u 

-T--T / dp (cos (x*-x)p) 
2 TrDk -oo 

X (p4-k4) 1 
u 

e~zv 
V 

The three brackets can be multiplied out to produce eight terms, 

of which two lead to forms that can be integrated explicitly, namely 
the two terms 

u-3e-(Z*+Z)u and v.3e-U*+Z)v 

Thus 
/ dp(cos(x*-x)p)(p4-k4)(p2+k2)~3/2 e"(z*+z)'/p2+k2 
-00 

= / dp cos(x*-x)p J^p2+k2-2k2 e 
- (z*+z) Vp^+k2 

Vp2 + k2 

2k‘ 
00 

/ dp cos(x*-x)p 
(z*+z)v p2+k2 

-00 

aA7 '2 
p^ + k- 

The integral turns out to be a multiple of K0(k7 (x*-x) 2+(| z*|+| z I)2) . 

Since z and z* appear here with absolute value signs around them, 

this term is related to an image source on the other side of the sup¬ 

port line. The term v 3e Cz*l'z)v £n the analogous way produces the 

contribution 
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However, the constants in front of KQ and HQ do not have the ratio 

aPProPriafce to an ordinary source, and the second derivative terms 

are not expected in any simple picture in terms of mirror images. 

The other six terms that arise from expanding the brackets 

cannot be evaluated simply. In a numerical evaluation of integral 

it would apparently be better not to separate out the two terms 

mentioned above. 

It may be noted that the integral for G will converge if 

either a* or z is different from zero. The integral is not well 

defined until branch cuts for the radicals u and v have been speci¬ 

fied. 

6.4.3 Green1s Functions for Other Types of Boundary 

Conditions 

For the boundary condition of zero normal deriva¬ 

tive, we need the functions: 

¿^(p-z) , 

Therefore 

1/-¾¾ .0? , . 23/2,,1/2 D r 1 

ÒZ2 1 J 

The Green's function for zero normal derivative along the line 

z = 0 is then 

G(x*,z*,x,z) = Q'-/ (x*-x)2+(z*-z)2) 
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For a free edge, we need the expressions 

D<$(P»Z) = 
¡7“ 015 

§(p»z) 

“ 7727'^Dk2 {(v “ ^ )e>"ZV“<U 

op Nrt-zu 
mmmjLmmmrnmJ Q> 

U 

and 

D3Q(p>z) = 
ô_ / o 2 ò 
¡¡T - <2-°)P ^(p.z) 

572^/2Ek2 [(v2-(2-0)p2)a-« - (^-(Z-^p^e-211 

The more complicated câses involving several supports, 

or two free edges, etc. are handled in the same way. 

6.5 Free Edge Waves: Bar of Finite Width 

An infinitely long free edge of a plate can sustain vi¬ 

brations that are analogous to Rayleigh waves propagated along the 

surface of an elastic medium. In addition, there are motions that 

decay exponentially with distance along the edge from a source. We 

shall show that the wavenumber for the propagating edge wave is not 

the free wavenumber of the plate, because of Poisson's ratio effects. 

6•5•1 Semi-Infinite Plate with a Free Edge 

In view of the discussion of 6.3.4, the wavenumbers 

for free edge vibrations are the values of p for which d|q(p,0) 

or D3Q(p,0) are equal to zero, since these expressions appear in the 

denominators of the terms of 6(p,z*,z). They can now be calculated: 

d2 . XV2V) 2 . Xu2V)2 
2 V u 

D2 = v(v2-(2-o)p2)2 - u(u2-(2-o)p2)2 
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We readily aee that 

(u2 - (2-0)p2)2 = (V2 - op2)2 

so that 

^QCPiO) = •• uv D^Q (p ,0) 

2 9 
and the zeros of are the same as those of D^, plus possibly the 
points p = ±k and p = ±ik. 

We now write out the condition = 0 explicitly: 

Vp2“k2 (P2(l-a) + k2)2 = Vp2+k2 (p2(l-c) - k2)2 

Squaring each side, we obtain an equation for p which is apparently 

of fifth degree in p2, but the terms in p10 will cancel after expan¬ 

sion. Further, only terms of order odd in k2 will survive cancel¬ 

lation. Thus the equation becomes, after division by k10, 

(p/k)8[-(l-c)4+ 4(l-o) 3]+ (p/k)4 [4(1-0) - 6(l-o) 2J- 1 = 0 

This is a quadratic equation in (p/k)4, with roots 

r> = k *Aa/1"3o 12^} 1-2 o +2o2 
p 'VT7 V-3-T-5- 

All four possibilities for the fourth root are allowable, 

as well as the arbitrary choice of sign in front of the inner radical. 

The ambiguity inVT-o" is absorbed into that for the fourth root. Thus 

there are eight possible values that satisfy the algebraic equation 

for p. 

It is easy to verify that: 

C. l-2o + 2o2 <1 if 0 < o < 1. 
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Therefore the inner radical is always real* Furthermore, 

1 - 3a ¿2 V1-2a + 2a2 is negative for 0 o < 1 if the minus 

sign is taken, but is positive if the plus sign is taken. There¬ 

fore four of the values of p have equal moduli and angles 0, tt/2, 
tt, 3tt/2. The other four have equal moduli (different from the first 

set) and have angles (2n + l)7r/4, for n = 0,1,2,3. 

Thus when a = 0, the possible values of p are 

It is not entirely clear that all the eight values of p 

given explicitly for general a are roots of the equation = 0, 

because some roots may have been introduced by the squaring step. 

However, the value of p close to k must certainly correspond to a 

physical wave. For this particular p, an expansion of p/k in powers 

of c shows that the coefficients of the first three powers of o are 
zero: 

P = k(l+(a4/16) + ...) . 

6'5*2 Bar of Finite Width with Free Edges 

Hie v;aves propagated along the two edges of an 

infinite bar of finite width will interact with each other if the 

width is less than several wavelengths. This is analogous to the 

interaction between Rayleigh waves on the two faces of an elastic 

layer. In both problems, one obtains modes of vioration which are 

either symmetrical or anti-symmetrical about the median line (or 

plane). One symmetric mode becomes the ordinary flexural vibra¬ 

tion of a rod, in the limit as the width w goes to zero. 

For an infinite bar of width 2w, the free vibrations will 

occur for values of the wavenumber p such that 

det N(p) = 0 , 

where N(p) is the 4 x 4 matrix of Section 6.3.5.2. A similar alge¬ 

braic problem was discussed in Section 6.1.3. 



no. 1 

I 
ï 
1 

I 
I 
1 

I 
I 
I 
l 

If P is the diagonal matrix with elements -1, I, -I, 1, 

then -NP can be written as a partitioned matrix with the form 

-NP = 
A B 

B A 

where now 

A = 
rD2 § (P ' °) 

0 D3 Q(P,o). 
D¡ 3(p,o) 

I 0 

0 -uv 

B - 

?2d3 

D2D3 

D 
3 J 

§ (P , 2w) 

B Is found from the expressions of 6.4.3. The equation det NP = 0 

can be factored into two equations, corresponding to symmetric 

and antisymmetric modes : 

det (A - B) = 0 

or 

det (A + B) = 0 

1 

I 

I 
[ 

i 
Î 

If we introduce tne abbreviations 

s = P2(l - 0) + k2 

d = p2(1 - 0) - k2, 

then after changing signs in the lower rows, det (+ A + B) = 0 

can be written as 

det < 
1 0 

0 uv 

+ e 
-2wv 

dr 
V 

sd 

-sd 

-vs 

- e 
-2wu 

fS_ 
u 

sd 
Ü 
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or explicitly: 

(ud2-vs2)2 ±(u2d4-v2s2) (e-2wv - e“2wu) 

+ (ud2-vs2)2 e“2w(u+v) + 2d2s2uv(e"4wv + e = 0 

Even in the special case o = 0, this equation is very 

difficult to work with, comparable to the difficulty in determining 

the wavenumbers of Lamb waves in an elastic layer of finite thickness. 

6.6 Boundary Conditions Along a Semi-Infinite Line 

6.6.1 Infinite Plate Internally Supported Along the 
Half-Line z = 0, x ¿.0. 

We shall investigate the Green's function G(r*,r) 
only for points r*,r which are both on the other half of the line 
z = 0. G cannot be obtained explicitly, but a one-dimensional 
integral equation for it will be derived. The corresponding inte¬ 
gral equation for the case of an infinite membrane held down along 

a half-line is a standard problem for the Wiener-Hopf technique. 

We make use of che transformation of Section 4.2.3 genera¬ 
lized to apply to infinitely many observation points on the half-line 

z = 0, x> 0. G(r*,r) can be computed, for r* and r restricted to 
the half-line, from a knowledge of Q(|r*-r|), where r* and r are 

here allowed to range over the whole line z = 0. The standard 

Green's function Q is of course known from 3.1.3. The prescription 

given in Section 4.2.3 requires us to first determine the inverse 

of Q, considered as a linear integral operator on functions of 

x*-x. In order to do this, we take the cosine transform of Q, and 
obtain what has bean called 3(p,0) iu Section 6.4. The transform of 

the inverse of Q will be the reciprocal of QÇpjO), provided of course 
that no divergences arise. Thus we have (see the end of 6.4.1): 

V^P.O) = C^-k4) [(p2-k2r1/2 + (p2+k2)“1/2 

where is a constant. The Fourier inversion integral to obtain 

Q”^(x*,x), the inverse of Q, from this expression does not converge, 
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but proceeding formally, we see that the factor under the inte¬ 

gral sign is equivalent to a differentiation outside. Thus we 

can write 

CT^.x) = C2 37 k'j/ cos p(x*~x) |(p2-k2) “1//2+(p2+k2)-1^2 dp 

iH0(k|x*-x|) + (2/ir)K0(k|x*-x|) 

-1 
Note that Q (x*,x) is the inverse of Q with respect to 

the lj.ne z = 0; if we were considering a plate simply supported 

along a finite or infinite portion of an arbitrary curve z = f(x), 

then we would have to consider a different inverse of Q, depending 

on the function f. 

The second part of the prescription is now invoked: The 

Green's function G(x*,x) results from restricting the variables of 

Q (x*,x) to correspond to points of the unsupported portion of the 

line z = 0, and then inverting the resulting linear integral oper¬ 

ator. Thus we obtain the following integral equation, which holds 

for x,x* 2. 0 • 

dy [iHo(k|x-y|) + (2/tt) KQ(k |x-y |)] G(x,x*) = C4 . 

If the plate is supported at each point along the line 

except for a number of segments from ai to bj., i = 1,2,...1, then 

the integral from 0 to <» is replaced by a sum of integrals over 

the segments. 

6*6.2 Internal Support Along Two Parallel Half-Lines 

In this case, we must consider two source points, 

r* on the line z •■= -w, and r* on the line z - w. Similarly for 

observation points r^ and r2. Now a 2 x 2 matrix of four functions 

is involved: 
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QdxJ-XjJ) 

Q^x^-xp2 + (2w) 2 

Q-\/(x2-x*)2 + (2w)2 

Q(|x*-x2|) 

After taking the cosine transform of each element, the 
resulting matrix must be inverted. It does not seem possible to 
obtain a tractable system of integral equations. 
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7. TRAVELING PRESSURE WAVES ON INFINITE RODS AND PLATES 

In the problems discussed so far, the applied force was 

concentrated at a point. We will now consider traveling pressure 

waves on a rod or plate bearing resonators. The rod problem is 

not of direct physical application, but it is mathematically equi¬ 

valent to the higher dimensional analog, namely, a plate with at¬ 

tached beams or stiffeners on one side, all infinitely long and 

parallel to each other. The traveling pressure wave can be ex¬ 

plained by assuming that the side without resonators is in contact 

with an ocean in which acoustic waves are propagating. However, 

the treatment in this section will not take account of the reaction 

of the plate back on the water. Inclusion of this effect is post¬ 

poned until Section 8. 

7.1 An Infinite Regular Array of Axial Resonators on a Rod 

Consider a rod with axial resonators of strength F attached 

at uniform intervals along its length. A sinusoidal traveling pres¬ 

sure wave is applied along the rod. This will be written in com¬ 

plex form as 

p i(vx-cut) 
ro 

where v = wavenumber of the incident pressure wave 

cu = frequency 

The resonator spacing will be denoted by s, and we also write 

u = 2tt/s 

This makes u analogous to a wavenumber, if one thinks of the reso¬ 

nator spacing as analogous to a wavelength. The equation for vi¬ 

bration of the rod is, after taking out the time-dependence e 

- k4n = (P /El) eivx + (F/EI) n 2 ö(x-ns) 
òx4 0 

where 

k4 = o>2 pS /El 

....MllliJil ... 
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7.1.1 Displacement at an Arbitrary Point 

We now give a prescription for writing down solu¬ 

tions of equations of this general form; of course such prescrip¬ 

tions are not obvious until after solutions to typical problems 

have been obtained by some more laborious process. 

7.1.1.1 Ho Resonators 

One first looks for a solution that holds in 

the absence of any resonators. The corresponding mode of vibration 

of the bar may be called sympathetic. It is given by: 

^sym = (P0/EI)eÍVX (v^V1 - 

Of course, the general solution of 

¿J - k4n = (P /EI)eivx 

has four arbitrary constants; it is 

H = ae + be + ce + de + r^ym . 

The first and second terms produce infinite displacement at infinity, 

and so are excluded by the boundary conditions. The third and fourth 

terms correspond to permitted free modes of vibration of the bar, 

which would not be excited by the applied pressure wave, unless it 

happens that k = v. 

7.1.1.2 Function With Uniformly-Space Discontinuities 

The effects of the regular array of resonators 

can be handled by looking for a function M(x), which also depends 

on u and v as parameters, such that 

Ei (ÉL . k4)M(x)eivx = £ 5 (x-ns) eivx . 

That is, when M(x)eivx is acted upon by the rod differential operator, 

one obtains a 5-function singularity at each attachment point. It 

is easily verified that M is given by: 
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00 

M(x) = ¿r 2 
ipux 

p = -CO El ̂ (pu+v)4-V. J 

Eici-, . kV elvx - è ï elp^el^ = ï ö (x-ns) e^vx 
P=-00 p=-co 

Note that M has the period s as a function of x, since replacing x 

by x+s merely changes a term in the sum for M into the next term. 

7.1.1.3 Explicit Form of Displacement 
The solution to the full equation for the plate 

displacement is now taken as the sum of the sympathetic vibration 
and the discontinuity-producing term with an unknown coefficient: 

T1 = P, eÍ^-5- - AM(x) e1™ 
El(v-k) 

On substitution in the equation of motion, we find 

eivx + A 2 6 (X-ns) eivx 

eivx + F 
El 

-4—r + AM(x) Í eivx 2 5 (x-ns) 
(v^-k4) \ 

As this must hold for every x, the coefficients of the ö-functions 

must be equal. Since M(ns) = M(0) for integral n, we obtain 

A = 
EKv'M?) mîôFWfT 

and so 
p eivx 

1 --TTJt. FI (v^-o 
1 M(X) 
1 " M(0) - 1/F 

Po eivx 

El(v4-k4) 
1 - 1 ^ 

T -(l/F) 2 O' O p =- - 00 

ipux 

EI([pu+v|4-k4) 

umiu—giiii *'a (M.lliltHIMWIiaH.llÄfiateäJW 
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where 
00 

1 

EI((Pu+v)4-k4) 

and 
Fo = uF/2ir = F/s 

Note that FQ Is the resonator strength per unit length of rod. 

The infinite sum that defines M(x) can be expressed in 
finite terms, but there is a different explicit form for each seg¬ 

ment between resonators. For each segment considered by itself, 
the equation of motion is just that given in 7.1.1.1 for the sym¬ 

pathetic vibration. The general solution was written down there, 
in terms of four arbitrary coefficients a,b,c,':l. These will differ 
for each rod segment, but the values are such that the displacement 

and its first two derivatives are continuous across the attachment 
points. 

7.1.1.4 Plate Bounding an Ocean on One Side 

The displacement can be written in the general 

where f(v) = EIv4 - œ2pS 

00 
1 

7(^IJ 

It will be seen later than the same general formula holds for a 
plate with attached stiffeners when the reaction of the plate back 

on the water is taken into account, provided that f(v) is replaced 
by the form: 

where k* is the wavenumber for sound waves in the water. 
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7.1.2 Displacement of the Rod at the Midpoints Between 

Resonators 

We have seen that the displacement for a rod covered 

with a regular array of axial resonators has the form 

n 
ivx 

e 

El (v4-k4) 
X ) 

where X has period s in x. X was expressed above as a Fourier series, 

which did not exhibit the discontinuities in X^ directly. It will 

be of interest to have explicit forms for X evaluated at special 

points, for instance at the resonator attachment points and half-way 

between them. One can then fit the first few terms of a trigono¬ 

metric series through these points, but of course these terms are 

not the first terms of the Fourier expansion of X, which give a fit 

to Y, that is moderately good everywhere, but is not exact anywhere, 

except accidentally. 

We first evaluate T . It is convenient to introduce o 

V1 = v/u 

k' = k/u 

and to write 

T(v' ,k') = u4 El To(v,k,u) 

We now observe that T(v',k') is periodic in v' with period 1, and 

has no essential singularities in the v'-plane. It has poles at 

v = n ±k' or v = n ilk' 

for n = 0, ±1, ±2,... It Is therefore clear that T(v',k') is the 

sum of terras of the form 

a 
b - cos 2Trv' ’ 

where a and b are independent of v'. Define c by b = cos 2irc. 

Then T(v',k') will have a pole when v = c or v = -c. Thus all the 

poles are included in the sum S of two terms: 

mu 
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o _ al a2 
cos iirk' " - cos 2.TTV1 + cos 2Trik' - cos 27rv’ 

To determine the residue of S ai: v* = k1 is evaluated and 
compared to that of T. The residue of S is 

al 
2ir sin 2^1 

The residue of 

T(v',k') at v* = k' is -i-, 
4k'-3 

Therefore 

al = 
2ir sin 2Trk' 

4k ,3 

Similarly for a2 . Therefore 

T(v',k') = —- 
01, I «3 

v sin 2Trk' 

2k' (cos 2Trk' - cos 27™') 

Tr sinh 2^^k, 
2k' (cosh 27rkl - cos 2Trv') 

and so 

T ( v, k, u) = —|— 
° 4k'JEI 

sin ks__sinh ks 
cos ks - cos vs " cosh ks - cos vs 

In order to compute the displacement at the midpoints be 
tween the resonators, we must evaluate: 

T . = 2 exp i p u(s/2) 
mi<^ p=-oo EI^pu+v)^ - k^) 

00 

= 2 (-1) 
p=-oo EI((pu+v) - k ) 
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We separate the terras with odd and even p: 

CO 

Tmid “ 2 q=-oo El ( (q (2u) + v) ^ - k^) 

q=-“ EI((q(2u) + v + u) ^ - k^) 

A - B o o 

where 

Ao = To^v'k>2u^ 

Bo = T0(v+u,k,2u) 

Note that T (v,k,u) = A + B . O ' * * ' o o 

Thus an approx.imate expression for X that is exact at 
the resonator attachment points and also half-way between them is 

where 

X = 1 ' r^0r -"citv (Ao+ Bocos u x) 

s sin (ks/2) 
cos (ks/2) - cos(vs/27 

sinh (ks/2) 
cosh(ks/2) - cos(vs/2) 

and Bq differs from Aq only by having plus signs in both denominators. 

7.2 A Rod with Combined Axial-Transverse Resonators 

As in Section 7.1, identical resonators are attached at 

points with spacing s. Their axial strength at frequency cu will 
be F(o>) , and their transverse strength G(us) . The equation of mo¬ 

tion, in response to a traveling pressure wave of unit peak magni¬ 
tude is : 

* 
«rpqjut* a<tflf«:wiwwr»imiiniiii hihimm 
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+ Fq 2 8(x-ns) 

+ G 2 ^ 8 (x-ns) 

If one attençts to carry out the general method of Section 7.1 by 

finding a function with suitable discontinuities at the attachment 

points, there is a difficulty, as terms such as T(x) appear, 

where T is not sufficiently continuous at x = 0. It thus becomes 

inpossible to interpret such terms. There is reason to believe 

that the trouble arises because of the idealisations used in Section 

4.1 to derive the equation of motio:.. The original arguments assumed 

a continuous distribution of transverse resonators, but now a 5- 

function distribution is taken. ' 

In order to avoid the problem of discontinuities, it is 

necessary to introduce a Fourier series expansion for the 6-function 

density, and also for the displacement rj. 

The algebra will be found in Addendum 5 . The final re¬ 

sult is: 

where f(w) = EI(w4-k4) 

Fq = r/s 

Gq = G/s 

Ti = p f"1(Pu+v)p1 i = 0,1,2 

A = 1 - FT + 
1 " FoTo + Go(u2t2 + 2uvTl + v2T0) 

+ FoG0(Tl2 - ToT2>u2 

and all suras run from p = -co to p = -Ho. 
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If the time dependence is included, then n has the form 

n = r^vje^^-^zcx), 

where Z(x) is independent of the time, and is periodic with period 

s. Thus the displacement of the rod with axial and transverse 

resonators is the product of a traveling wave factor with wave¬ 

length the same as that of the applied pressure, multiplying a 

function of space alone that has the same periodicity as the reso¬ 
nators. 

.Several Sets of Axial Resonators on a Rod 

It is clear that the inclusion of the transverse mode 

results in a very significant increase in the complexity of the 

derivations and ultimate formulas. As the frequencies at which 

transverse vibrations are significant are apparently not important 

for our purposes, further calculations will be limited to the 
simpler axial mode. 

Consider an infinite rod bearing J different kinds of 

resonators. The resonators of the j-th kind, for j = 1,2 .. J 

have strength Fj and are spaced uniformly at Xj ±ns, where 

n = 0, ±1, +2, ... . ikus the resonator spacing s is the same 

for each kind of resonator (see Fig. 7-1). If there is an incident 
pressure wave «) _ then the equatlon of ^ 

A4n EI(Ö k4n) = Poeivx + 
00 

H 2 F, Z 6(x-x. - ns) 
j=l J n=~oo J 

In analogy with the procedure of Section 7.1, we assume the form 

H = P0f“1(v)eivx - 2 A. M(x-x.)eivx 
j=l J J 

where M(x-Xj) is defined as in Section 7.1.1.2 and the A, are to be 
determined. J 

J 
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After substitution, the terms not containing a 6-function 

cancel. Then we can equate the corresponding coefficients of the 

6-functions for the different attachment points. We thus obtain 

" Aj “ Po 1 Fj " Aj> M(xjf "xj)Fj 
W 

or 

2f(M(Xj - Xjl) - = P0f"1(v) 
j 

j = 1,2,...,J 

N, where 

Thus the coefficient A^i is found by inverting the matrix 

N ij M(xi"xj) ” (^j/Fp , 

then finding the sum of the elements in the j'-th row of the inverse, 

and finally multiplying by PQf ^(v). If one defines a matrix M by 

M = N -1 

I 
1 
i: 

r 
i 
i 

then 
Poe 

ivx 

Ei(v4-ir) 1 - z M(x-x ) 
P,q Pq P 

This result is reminiscent of the form found in Section 4.2 for a 

finite number of axial resonators on a rod. However, the N and M 

matrices are now Hermitian and not complex symmetric. A justifi¬ 

cation for the resemblance is provided by the following argument: 

Suppose that v is an integral multiple of u, that is, 

an exact number of pressure waves can fit between the attachment 

points of two consecutive members of one set of resonators. Then 

one can conceive of the rod with its several kinds of resonators 

as bent into a helix, and then all the turns of the helix cun be 

thought of as identical, so that the rod becomes a ring, whose 

circumference equals the spacing s. It is meaningful to speak of 

the impressed pressure at a point on the ring, because of the 

assumption that v/u is an integer, (See Fig. 7-2.) 
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It thus becomes plausible that the interactions between 

the different infinite classes of resonators are given by formulas 

that are similar to those for a finite number of resonators on an 

infinite rod. The function M(x^-Xj) plays the same role as did the 

Green's function Q(s^-s^) in Section 4.2. However, M(-x) is the 

complex conjugate of M(x), whereas Q(x) is an even function of x. 

We give the explicit form of rj for the case of two sets 

of resonators with attachment points x-^ + ns and X2 + ns. 

where 

M = coop lex conjugate of M 

d = x2 - Xf 

7.4 Resonators Between Equally-Spaced Supports 

A configuration having some practical interett is the 

following: There are M infinite sets of axial resonators, the 

sets being uniformly interspersed among each other. Thus the 

spacing between a resonator of the m-th set and the nearest one 

of the (m + l)-th set is s/M. All the resonators, except for one 

set, have the same strength E. Those of the remaining set have the 

strength E + F. In the limit as F becomes infinite, one obtains an 

infinite rod simply supported at points spaced s units apart, which 

also bears M - 1 resonators of strength E between any two neighboring 

supports. In the higher dimensional analog, there is a plate to 

which are attached a series of parallel beams that act as supports. 

Smaller beams are attached parallel to the supports and act as reso¬ 

nators. (See Fig. 7-3.) 
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The derivation of the displacement n is given in Addendum 
6. It is found that 

n(x) = r^v-)eivx 

+ f"1(v)Eo(l-EoT(0))"1 ^ f"1(Mru+v)e^Mru-v)ix 
r 

. f"1WF05]Cl-E„T(i))"1 ,.f ,) 

1 - FoZldKl-E^i))^ 

E f-1 < ( j +Mr) u+v) e(( j +Mr^u+v) ix 

where 

Eq = m/s 

Fo = F/s 

u = 2ît/s 

T(j) = f _ f 1((j+Mn)u+v) j = 0,1,...,14-1 
n- “*oo 

The summation on j goes from 0 to M-l; those on r, from -™ to *». 

The terms in the expression for r¡ can be interpreted ss follows; 

The first term f ■l'(v)eivx is the response of the rod without any 

resonators. The second term gives the response of a regular array 

of resonators of strength E and spacing s/M. The third term shows 

the effect of the extra strength of the widely-spaced resonators. 

Note that Eo is the strength per unit length of the closely-spaced 

resonators, and Fq gives the extra strength per unit length of the 
widely spaced ones. 
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7.5 A Plate With a Finite Number of Resonators 

Consider a plate to which N axial resonators, with strengths 

Fli-'*>FN> are attached at 8^,...,8^. There is a traveling pressure 

wave of unit strength and wavenumber v moving parallel to the x-axis. 

Tile equation of motion is then, after setting s^Cx^z^), 

D(V^-k^) n(x,z) = exvx + S F. B (x-x^ 5 (z-z^ ti(x,z) 
i= 1 

whe^e D is the plate rigidity. It can be verified by the same 

techniques as used earlier that the displacement rj is given by: 

ivx , 

n(x,z) = elvx 

D(v4-k4) 
- Z 

ij 

_e 

D(v 
JTJTT My Qdsj-Cx.z))) 

Here Q(r) is the displacement of a plate without resonators due to 

a unit force at distance r from the observation point (see Section 

3.1.3), and M is the matrix of interaction terms which has been 

encountered earlier: 

(M-1) = Q(|s -s I) - (6 /F ) . v 'mn nl' ^ mn7 m*' 

The formula for q also holds for problems with lower-dimensional 

geometry (i.e., each resonator exerts its force along a line parallel 

to the wave front) by using the appropriate Green's function Q. 

7.6 A Lattice of Axial Point Resonators 

A plate covered with a rectangular gridwork of identical 

axial resonators presents no significant new problem of treatment, 

but several additional parameters are necessary to specify a con¬ 
figuration. 

7.6.1 Description of the Problem 

The resonators, all of strength F(o>) , are attached 
at the points 

I X ms z = nt y m,n = 0, il, Í2... 
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A small modification of the treatment that follows would allow for 

a grid with axes oblique to each other* but this will not be dis¬ 

cussed explicitly. The impressed pressure wave travels at angle 

0 with respect to the x axis. Therefore the equation of motion is 

D(V4-k4)n = P eiv(z sin0+x cos0) 

+ rj F 2 2 6 (x-ms) 6 (z-nt) 
m n 

where Po is the peak pressure. 

7.6.2 Generalization of the Solution for a Rod 

As in Section 7.1.1 one can define a sympathetic 

mode of the plate 

n = P f^vwM55 sinS+x c°s9) 
‘sym o 

where 

Therefore 

f(v) = D(v4-k4) . 

The discontinuity function M is now required to satisfy 

D(v4-k4)MC*,z)eiv(z sllie+x cos0> 

= Z 6(x-ms)6(2-nt)elv(>sin9+x oos9> 
m,n 

«ipux iqwz 
vr/„ _ uw V e r n 
MQXjZ) — w 2, r ? .... ™ y -)V-2T 

4tt D p,q I (v cos0+pu) + (v sinG+qw) I -k4 

where 

u = 2v/s, w = 2v/t 

l 
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As earlier, we assume 

H = nsym + A M(x,z) eiv<2 sin0 + x cos0) 

and substitute to determine A. We obtain in the end: 

n = 
P eiv(z sinG+x CO80) 

D(v4 - k4) M(0 m 

where M(0,0) = 2 _ 1 

D p,q [(v cosG+pu)2 + (v sinG+qw)2]2 - k4 

7.6.3 A Crystallographic Analogy 

Consider that only half of the plate (z > 0) is 

covered with a gridwork of axial resonators. Instead of a traveling 

pressure wave, we assume an oscillating point-source of pressure 

indefinitely far to the left. As noted earlier, every resonator 

acts as a new center for a flexural wave in the plate. Each reso¬ 

nator may be considered to be surrounded by other resonators in a 

way that is the same for all of them (except for a few layers near 

the boundary z = 0 of the lattice). Thus all the induced waves 

starting at the resonator attachment points have the same strength. 

The situation can be viewed as analogous to diffraction of X-rays 

by crystals, and one can apply the construction which is ordinarily 

used to find the diffracted X-rays in order to determine diffracted 

flexural waves that propagate into the resonator-free region z > 0 

at an angle to the x-axis (see Fig. 7-4). 

There is one feature which is unlike the crystallographic 

analog. In the X-ray treatment, the scattering strength is con¬ 

sidered sufficiently small that multiple interactions can be ignored. 

For the plate with resonators, however, the displacement involves 

M, which has the form 

M = (Q + F'1!)"1 
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tthere Q is understood as the matrix whose (i,j)-th element is 

Q(!si-Sj!). Now if the strength F of each resonator is small, 

M can be expanded as a power series in F: 

M = -F(l - FQ)“1 = -F(l + FQ + F2Q2 + ...) . 

Here each term represents an order of scattering. Thus the strength 

of the wave that originates at a resonator attachment point depends 

not only on the intrinsic strength F of an individual resonator, but 

also on the dimensions of the gridwork. If only one order of scat¬ 

tering were considered, this would not be so. 

7.6.4 Several Interspersed Lattices of Resonators 

If there are several superimposed grids, each 

consisting of one kind of resonator, and if the grids all have the 

same wave numbers u and w, then the technique of Section 7.3 yields 

the displacement. 
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8. PLATES ACODSTICALLT COUPLED TO AW INFIMITE OCEAW 

A plate with attached reaonatora, bounding and 

acoustically coupled to an ocean that fills a half-space, can 

be handled by first studying the plate without resonators but 

coupled to the ocean. Then the effects of atcacftlng resonators 

to the coupled plate-water system can be determined by the 

techniques already given. 

As earlier q(x,z) will represent the displacement of 

the plate, and D-Eh3/12(1-02) its flexural rigidity. We also 

define 

u(x,y,z) » y - component of displacement of fluid from 

equilibrium 

p(x,y,z) - pressure in the fluid 

fKx,y,z) - velocity potential in the fluid 

p* - density of the fluid 

p - density of the plate 

k* - wavenumber for sound waves in the water 

(k* - co/c). 

k « wavenumber for free flexural waves of the plate 
J /TVS* 

The time dependence e” has been suppressed in u, p and 0. These 

are related by the equations 

p(x,y,z) - imp* 0 (x,y,z) 

u(x,y,x) - ^ 

8.1 Plane Acoustic Wave in an Ocean Bounded by a Plate 

8.1.1 Expressions for Pressure and Displacement 

The force driving the plate is taken to be a plane 

acoustic wave coming up obliquely from below. This causes a de¬ 

formation of the plate which then acts as a source of secondary 

sound waves. 
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The planar wave front« will be assumed parallel to 

the «»axis. ^ will be the angle between the plate and the 

normal to the wave fronts, and P0 the peak pressure that would 

be exerted by the acoustic wave in the absence of the plate. 

The velocity potential for the incoming wave can be 

written as 

-iP 
^in“ «pW5 exP J-C* k* cos £ +,y k* sin^jj -o>t) 

The wave number for the resulting pressure wave on the plate will 

be denoted by 

V « k* cos <£ 

The reflected wave will be influenced by the plate motion. There¬ 

fore its velocity potential will be represented in the form 

-iPB T 
*r« " exp i (x k* cos I - y k* «in J -o>t) 

where B is a complex number to be determined. Thus the total 

velocity potential (without time dependence) is 

0 - ^ O* •*■>!+„. Í] 
and therefore the net pressure on the plate is 

[l + ï] . 

The displacement at 

Po 
“TT— CO p* 

- B exp 

an arbitrary point is 

(exp ixv) ik* sin ^ [exp (iyk* sin |) 

(-iyk* sin î)| 

u 



and since t)-u at the interface, we have 
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rj «■ —£— (exp ixv) ik* (1-B) sin 0 , 
<D4p* X 

Now applying the equation of motion of the plate, we find that 

n _ Dv^ - h + ico^p*/k* sin 4 
¡J 1 'e—■■■ —■SI* ».. ■■ ymiàm-ul i. —!■ 

Dvh - to¿p h - i<x> p*/k*t sin J 

After replacing k* sin ^ by its equivalent in terais 
of k* and v, the displacement of the plate can be written as 

q - 2P0 e1™/ f(v) 

where 

f (v) - Dv4-œ2 [p h + p*(v2-k*2) _1/2] , 

- D jv4- k4 - e(v2 - k*2)“1/2] 

Here e ■ ü>2p*/D. 

The net pressure at a point of the interface is 

P - 2 P0 eixv D(v4 - k4) /f(v). 

8.1.2 Interpretation of the Denominator f(v) 

The expression for f(v) is of great interest in 
that each term has an immediate interpretation as a force (or 
rather, a pressure) on a small atrip of the plate. Thus Dv4 gives 
the net strength of the shear forces transmitted across the 

boundaries of the small strip by its neighboring strips. This 
can be called the elastic term. Furthermore, -a>2p h or -Dk4 is 



the force on the atrip due to ita own mesa. This will be called 

the inertial term. Finally, -De(v^ - is the pressure 

of the water on the strip. 

Many of the approximations that are often introduced 

in vibration problems can be understood as simplifications of the 

form of f(v). Thus, if the plate is considered as locally reacting, 

the term Dv^ is dropped. That is, the elastic forces are disregarded 

in comparison with the Inertial forces. Again, retardation is 

sometimes neglected. This corresponds to making the spaed of sound 

infinite. Then the pressure term simplifies to -De/v. A rigid 

plate is obtained by going to the limit p**», while the other 

quantities are allowed to remain finite. Finally^, by letting p* 

go to zero while P0 remains finite (which means that 0 and u must 
become Infinite) one obtains the system studied in Section 7, 

that is, a rod in a vacuum subject to impressed traveling waves. 

8.2 Oscillating Line Source on Underside of Plate 

One can think of the preceding problem as involving a 

driving pressure in the form of a traveling wave of strength 

2P0e^xv‘‘<ci:) that arises in some unknown manner on the underside 

of the plate. 

In a problem where the driving pressure at the interface 

is not a simple harmonic function of distance, a Fourier analysis 

can be performed. Thus, suppose the pressure can be represented as; 

P(x,£) - / dv $(v) ei(xv“tct) 

and assume the resulting displacement can be represented similarly: 

Tj(x,t) * / dv rj(v) 
~00 

Then we will have: 

ij(v) - P(v) /f(v). 
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Although it ia not necessary to specify how the driving force on 

the plate is produced, it is certainly necessary to distinguish 

carefully between the driving pressure and the net pressure, to 

which the induced plate motion contributes. 

Now consider an oscillating line source of pressure on 

the underside. Then 

P(x,t) - 6<x) e“1“* 

A y 
and hence P(v) » TF" » independent of v. 

Therefore the displacement is 

1(-.1:) - /* r^v) -“><14. 
¿7T 

It appears that this Integral cannot be evaluated in finite fora^ 

because of the radical. If retardation is neglected, however, the 

path of integration can be deformed to infinity, and one is left 

with the residues at the zeros of f(v). Computation of the zeros 

is discussed in Section 10.2. 

8.3 Oscillating Ring Source on Underside of Plate 

Problems with cylindrical symmetry can be handled by 

using the Hankel transform of order zero, which will be denoted 

by a tilde. The precise forms that we use were indicated in 

Section 3.1.2. In analogy with the result for two-dimensional 

symmetry, we have 

n(v) - F(v) /f(v) 

Consider an oscillating source exerting force uniformly 

over a ring of radius S. Let the total force be unity. We use 

the Hankel transform of &(r-R)/R (see Section 3.1.2), in order 

to write the pressure as: 

P(r) - a/2w) / dv v J (Sv) J (rv) 
O ou 
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Therefore 

^ring (r) “ (l/Zir) / dv f“1 (v) J0(Sv)v J0(v,r) 

For the spécial case of an oscillatina bubble at the interface. 

S - 0. and so 

W. « - (IW I Ov fVv) v Jo(vr) 
8.4 Traveling Pressure Wave on tipper Face of Plate 

It will be essential to keep in mind the distinction 

between a pressure or force on the upper side of the plate and 

one on the lower, and between a driving pressure and a secondary 

pressure. As an example, we consider a problem similar to that 

of Section 8.1: An infinite flexible plate floats on an ocean of 
i(vx-o>t) 

water. But new, a traveling presstare wave of the form T ■ Poe 

is applied to the upper side. We shall compute the pressure on the 

lower side of the plate, that is, at the interface. 

The equation of motion of the plate is now 

D(V4 - k4) q - P(x,*) + T, 

where P(x,z), the pressure at the interface, is unknown. As 
-i®t 0 must earlier, one introduces the velocity potential 0e 

satisfy the Helmholtz equation + k*^0 •» 0, and so 0 will have 

the form 

0(x,y.z) « A exp íi(vx-o>t) + y Oc*^ - v^) 

Then the displacement u at the interface is given by 

u . (k*2 . v2)-1/2 ei(vx-<M) 
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and the pressure at the interface is 

ï - imp* A e U«-“«) 

Substitution in the equation of notion determines A. We then find 

the pressure on the underside is 

The displacement q is Riven br the same formula as in Section 8.1.1 

except for the absence of the factor 2. 

In the Section 8.1 the condition 

k* > V 

was always satisfied, since v was there defined by v - k* cos £ . 

In the present problem, the magnitudes of k* and v are independent, 

and so the radical can be Imaginary. When v > k* an acoustic 

wave will be propagated into the fluid. If one now compares the 

pressure term in f(v) , namely, -®2p* (v2 - k2)-1^2, with the 
2 

inertial term -œ p h, one sees that the effect of the water can 

be thought of as adding the mass p*(v2 -k*2)”1^2 per unit area 

to the plate. However, this mass depends on the wavelength, and 

for v <k* becomes pure imaginary, so that the water term becomes 

dissipative. 

8,5 Attachment of Resonators to the Water-Coupled Plate 

8.5.1 Oscillating Line and Rina Sources on the Upper 

Side of the Plate 

One can easily derive the effects of stationary 

sources on the upper side in complete analogy with the treatment 
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of Sections 8.2 (for line sources at the interface) and 8.3 (for 
ring sources). That is,one decomposes a stationary line source 
into traveling waves by means of a Fourier transform, and the 
Hankel transform is used for the ring source. The displacements 
will be given by the formulas of Sections 8.2 and 8.3, but the 
pressures are determined from integrals which differ from those 
given earlier, since they contain the additional factor 
itD^p*(k*f2-v2)“1^2¡ Thus: 

- 
iœ2p* 

09 

J 
•00 

eixv dv 
TT (k*Z - v¿)^ f(v) 

Pring (r) ia>2p* I 
o 

J0(Rv) J0(rv) V dv 

■ (*** - vV'5 £(v) 

8.5.2 A Resonator as a Secondary Source 
The displacement in a problem involving a traveling 

pressure wave, or a stationary oscillating force, on the upper side 
of a plate coupled to water will differ from the displacement for 
a plate in free space only in that D(v2 - k^) will be replaced by 
f(v), after the appropriate transform has been taken. In other 
words, it is sufficient to add the pressure term -De (v - k* ) 

to each denominator. 

The force produced by a resonator is simply a special 
type of impressed force. Thus all the earlier results on Green s 
functions for a resonator on a plate can be carried over, for any 
type of resonator attached at a point, on a circle, or on a line. 

8.5.3 Interaction of Several Resonators 
Consider M axial point resonators, with strengths 

Fp..., Fm, attached at Sp..., sM to a water-coupled plate. The 
Green's function G(r*, r) for a source at r* is defined by the 
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equation of motion 

D(V4-k4) G 
M 

6(r* - r) + Y Fn 6 (r - 8 ) + P*(G) 

where P*(G) i» the pressure due to the flexure of the plate. P* 

is a functional of G, that is, its value depends on the values of 

G(r*, r) at all points r. This term is taken to the left side of 

the equation, and we then define a linear operator 0, which when 

applied to a function of position on the plate produces a new 

function of position: 

0(t|) - D(V4 -k4)îi - P*(q). 

0 is linear, and is homogeneous and isotropic in the space 

variable. In other words, in order to compute 0(q) when q is 

known it is not necessary to specify a particular point or a 

particular direction. Addendum 2 can now be applied once more, 

and Indicates that the displacement in the presence of the 

resonators is: 

G(r*,r) - Q(r* -r) QCrfr-ap Q(Yr) • 

where Q(r* - r) is the displacement at r, in the absence of 

resonators, due to a source at r*, and is the same as bubble(r*”r) 

given at the end of Section 8.3. The matrix M is the inverse of 

a matrix N: 

<hvV • (WV- 
In the absence of the water, f(v) reduces to D(v4 - k4), and the 

above formulas reduce to those of Section 4.2. 

1. 



For an axial rim resonator of radius R, the Q function 

is (compare the result without water in Section 3,2.1), 

Qr (x) - qR ( I X I ) - / J0(vR) JQ (v | x | ) v dv 

The elements of the N matrix involve interaction integrals, which 

) in Section A.4: were denoted by Q(Rp Rj, | “i ” sj 

Hy - I J0(vR1)J0(vRj)J0(v I ,l-Bj I )v dv - (6 y/^) 

It is thus reasonably clear that all the results obtained 

earlier in the absence of water are valid when the plate is acousti¬ 

cally coupled to an ocean on one aide, if the denominator is modi¬ 

fied in each case by adding the pressure term -De(k*¿ - v)“1' . 

8.6 Pressure on a Plate Bearing Resonators 

The pressure at a point on the underside of a plate can 

be found from the formula for the displacement by determining 

which terms are due to forces on the upper side of the plate, and 

which to driving pressures in the water. The need for this 

distinction was explained in Section 8.5. 

8.6.1 Point Force, and one Axial Point Resonator 

We assume that the force is impressed on the upper 

aide of the plate. A displacement expressed in the wave-number 

domain is converted to a pressure by multiplying by ie(k* -v ) 

Thus we define 

Pu(r*-r) 
vJQ(v I r* -r I ) dv 

f(v) 

P will be the pressure at r on the plate without resonators due 

to a point source at r* on the upper side of the plate. 



Then the total pressure due directly to a source at 

r* and to a resonator at s is 

Pu(r*-r) - Q(r*-s) ' pu(a“-r) 

In some applications one wants the integrated force on 

a small area of the plate, thought of a a piston. Thus the total 

force P^nt; on a circle of radius R with center at t due to a source 

at the origin is 

Pint “ / p<r> wr (t-r) dr 

where 
WR (X) - 1 

- 0 

if ¡X |< R 

if I X |> R 

By using the result of Addendum 3 on two-dimensional convolutions, 

this becomes 

Pint “ 2tt / P (v) WR (v) V jQ (v| t| ) dv 

But 

and so 

WR (v) - R J1(vR)/v, 

i eR 
J!(vR)J0 (v|t|) dv 

f(v) 

Pint is t^e total force on the underside of the plate; the 

driving force at the origin is not included. 

The integrated pressure on a circle centered at t 

when a unit force is applied at r* and a resonator is attached 
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at s is then 

" Q(r*-s) Q^öy-r-iTTFl Pint 

Generalizations to many point resonators, or to combinations of 

rim and point resonators, are obvious. 

8.6.2 Acoustic Wave, and an Infinite Array of Axial 

Resonators 

There is a acoustic wave in the water, striking 

the plate obliquely at such an angle that the driving pressure 

on the plate is 2Poeivx. The resonators are infinitely long 

stiffeners, all parallel to the wave fronts. The same geometry 

was considered in Section 6.1, but the reaction of the plate back 

on the water was neglected. In view of the preceding discussion, 

the displacement taking account of the reaction can be written 

down immediately: 

n elv* . eiv* 1 . e1!"“ 
■ TtvT + ttvt tsttfç I nwimT 

where s is the spacing, and u«2ir/s. The first terra is the dis¬ 

placement in the absence of resonators, and the second gives their 

effect. The pressure resulting from the first term can be written 

as (see Section 8.1) 

- 2Po eixv D(v4~k4)/f(v) 

The second terra in n/^P^ analyzes the effect of the resonators 
O i. f v4*du^ X 

into an infinite series of traveling waves e ^ v . The dis¬ 

placement due to such a term must be multiplied by the factor 

io)^p*(k*^ -(vT-pu)^)”^^ to obtain the pressure. Thus the total 



pressure due to all such waves ia 

2 vlïX i.2»* , 
f (v) (s/f; -t 2 

ipux 

O P (k* - (v+pu)¿) 1/zf(v+pu) 

The expression for can be transformed by writing 

D(v4-k4) - f(v) - 

Then the total pressure becomes 

2 P„e o 
ivx 

1 - .1 . X 
(k*^„v2)-i/Zf(v> TTv; c«/f;-t0 

2 
eipux 

(k*^- (v+pu) ^^f (v+pu) _ 

This formula has been programmed for computation on the IBM 

7090. In the intended application, the ratio u/v is large, and 

so only a few terms of the infinite sum on p need be taken. 



8'7 Analogy for a Plate Immersed in Water 

To prepare for the work of Section 8.8 on Green’s 

functions for submerged acoustic sources, we will construct a 

mathematical analogy for a plate in an infinite ocean filling 

all space. As usual, ti(x,z) will be the departure of the median 

surface of the plate from the equilibrium plane, which is taken 

as y * c. There are sources in the water at finite distances, 

but no source applying force directly to the plate. 

8.7.1 Conditions for 0. 

The equation of motion of the plate is 

- k^) T)(x,z) - P(x,z) 

where P is the difference between the pressures on the upper and 

lower sides of the plate. These are due to the sources and the 

resultant flexure of the plate. The Green's function for the 

same plate in free space satisfies the equation 

D(V4- k4) Q(r*-r) - 6(r*-r) 

together with boundary conditions at infinity (no incoming waves, 

and Q(r*-r)->0 as r-> »). The displacement q(r) « q(x,z) can be 

written in terms of Q as 

T)(r) - /dr' Q(r'-r) P(r') 

where / dr' indicates a two-dimensional integral extending over 

the plane y « c. In much of what follows, no properties of Q 

are used except the above relation, so that the plate could be 

replaced by an infinite membrane under uniform tension, or any 

other two-dimensional system. 

We introduce the notation A to indicate the difference 

between the values of a function of x,y,and z at the upper and 
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instance 

- 0(x,y - €,2) 

We have apparently assumed that the thickness of the plate is 

infinitesimal, but as a matter of fact this assumption is not 

essential, as one can consider that the y-coordinate does not 

measure a true distance perpendicular to the plate, but only 

the portions of the perpendicular that are in the water. 

In view of our sign conventions, we have 

P - *> Ap 

On introducing the connections between p and 0, we obtain 

^(r) ■ - i (DeAd) r dr' Q(r'-r)A 0(r') 

lower faces of the plate. Thus, for 

A 0(x,z) « lira 0(x,y + e,z) 
t+oL 

where 

0)2p*/D 

Note that we write A p(r’) for à pfr^z'), where r' - (x^y1). 

Since the plate is assumed to maintain a constant thickness while 

it executes flexural oscillations, the vertical displacement of 

the fluid at both upper and lower interfaces must equal q. But 

u 9 

and so ò0/òy must have the same value on both sides of the plate: 

* - De / dr" Q^'-r’) a 0(r") 
y1 “c 

Thus 0(x,y,z) is determined by the following conditions: 

1) 0 is defined, is continuous and has a continuous 

derivative at each point in the water. 

ôy- 

i&w UMMu k It !i 



2) (V2+ k*2) 0(x,y,z) - 0 (Helmholtz equation for sound 

waves) at each point in the water not occupied by a source. 

3) 0 satisfies boundary conditions at infinity (0 -► 0 if x,y, 

or z goes to plus or minus infinity ; no incoming waves). 

4) ô0/òy is continuous at y >« c across the plate, but 0 

itself has a discontinuity, and the two are related by 

the equation above, 

8.7.2 Application of Hankel Transform 

It will now be assumed thrt all sources are on 

the line x - z - 0, so that there is cylindrical symmetry. Then 

the results of Addendum 3 on two-dimensional convolutions can be 

applied to the last equation above. As earlier, a tilde over a 

function symbol will indicate the Hankel transform of order zero 

with respect to the radial variable. The corresponding transform 

variable will be v. The wavenumbers are decoupled in the trans¬ 

formed equation: 

ai» <v.y') 
ay' 

or 

AJL&I « - 2tt De Q (v) 
00/äy' 

« - 2ir De Q (v) A % (v) 
y' * c 

This suggests, by comparison with much of our earlier work, that 

the plate behaves for each v as some kind of fictitious resonator 

in a process such that ^(v,y) is the analog of a Green's function 

and 2tt De Q(v) is the analog of a resonator strength. 

8.7.3 Change to u as Analog Quantity 

It turns out that a more transparent analogy is 

produced if we use u rather than 0. Clearly 

-1 ô0(v,y) 
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The conditions (1) - (4) of Section 8.7.1 are carried 

ever to u in the following way: Clearly (1), the condition of 

continuity within the water, is not modified. But (2) becomes, 

for each y not corresponding to a point of the plate, 

u (v,y) ■= 0. 

It is thus clear that the analog problem that generates u(v,y) 

for k*> V, is just that of waves on a uniform string along the 

y-axis. The free wavenumber is (k*2- v2)1^2. For k*<v, a pure 
imaginary wavenumber must be allowed. Condition (3) becomes: 

u (v,y) *»■ 0 if y -*•+ o* , together with a condition in the y-variable 

of no incoming waves. The discontinuity conditions for u are, 

however, not the same as those of ¢, which were given by (4). 

Thus u(v,y) is continuous at y « c. However, its derivative is 

discontinuous there. To see this we observe that 

Thus 

(k*2- v21 S 

2ir De Q(v) 

or 
2 2 

U 2ir De Q(v) 
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8.7.4 Analog for the Plate 

We new determine the nature of the structure on 

the string that will correspond to the plate. 

If a concentrated force of magnitude M is applied to 

a string at s, there is a discontinuity at s in the derivative 

of the displacement, of magnitude - M/T, where T is the tension 

of the string. A point axial resonator, of the type first intro¬ 

duced in Section 2, can be attached to a string just as to a rod. 

An ordinary mass is the simplest example. Consider now that the 

resonator has strength F. This means, by definition, that in 

response to the displacement u, it exerts the concentrated force 

Fif. Thus 

Thus for each v the analog of the plate is a resonator on the 

string of strength F(v), where F(v)/T(v) v^)/27t ^p*Q(v). 

If the plate is rigid, then D « », and hence F/T - » . 

Thus an infinite mass is attached to the string, corresponding to 

a boundary condition of zero displacement. 

It is to some extent arbitrary how to break up the 

expression for F/T into a strength factor and a tension factor. 

However, the strength should depend only on properties of the 

plate, and the tension only on the water. Thus we set 

F - -1/27T Q^v) 

i - oj2p*/(k*2- v2) 

8.8 Green1s Function for a Submerged Source in the Presence 

of Several Plates 

Consider now a single acoustic source of unit strength 

at R*« (0,y*,0), and J parallel plates at the heights y^,...,yj. 
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The j-th plate has rigidity D,, free wavenumber k., and the 

Green's function Qj. ^ 

8*8*1 Ocean Filling All Space 

By taking the Hanke1 transform, the following 

analog problem is obtained for each v: 

There is an infinite string stretched along the y-direction, 

with tension T(v) and free wavenumber (k*2- v2)1^2. A resonator of 

strength Fj (v) is attached at yy for j - 1,...J. 

Let Sv(y*-y) be the Green's function for a homogenous 

infinite string, that is, the displacement at y due to a unit 

force at y*. Then 

T + k*2" v2) VT*-?) “ 6(y*-y). 

Let W(R*,R) be the Green's function for an acoustic source in an 

infinite three-dimensional medium mm that is, the pressure at 

R “ (x»y»2) due to a source of unit strength at R* « (x*,y*,x*). 

We will also use the notation 

W(R*,R) » W(r*-r , y*-y), 

where r* and r are two dimensional vectors. w(v,y*-y) will be 

the Hankel transform of W. A three-dimensional source at R* 

produces, on application of the Hankel transform, a one-dimensional 

source at y* for each value of the transform variable v. The 

strength in the analog problem is W(v,0) multiplied by a factor c 

independent of v that arises from the possibly different normaliza¬ 

tions for water, plate and string. 

In analogy with the treatment of Section 4, the Hankel 

transform u(v,y) of the displacement at the height y can be 
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written as: 

u(v,y) • c W(v,0) [Sv(y*-y) - 2 Z Sv(y*-yi)Mij (v) S^- y)] 

where M(v) is the inverse of a matrix N(v): 

j (v) - Sv(yi’ yj5 + 6ij 2t Vv> 

8,8.2 Ocean Bounded by a Plate 

If the ocean fills only the lower half of space, 

the string analog must be modified correspondingly. 

Consider first that there is a layer of water on top 

of the uppermost plate, and vacuum above the layer. Then the 

pressure at the surface is zero, which implies that òu/òy - 0 

there. If this layer is made arbitrarily thin, there will be a 

negligible difference on the motion of this system, as compared 

to a system with no water at all above the plate. The condition 

of zero normal derivative must still be satisfied. 

To realize the corresponding condition òu/ôy « 0 for 

the analog problem, we employ a standard technique and introduce 

mirror image sources and mirror image resonators (all with positive 

sign) on an infinite homogeneous string. Note that the reflection 

is with respect to the water surface, even if the layer is infini¬ 

tesimally thin. Thus the uppermost resonator in this case must be 

doubled. This does not correspond to a plate of twice the thick¬ 

ness; slippage is permitted in the infinitesimal water layer. 

8.8.3 Layer of Water Between Two Plates 

If the fluid medium is bounded from above and below 

by plates, it is necessary to introduce mirror images with respect 

to both plates, and then there will be secondayry mirror images of 

these, and so on. In order to avoid the infinite regression, we 

proceed in analogy with Section 6.1, and define a dipole resonator 

for a string. 
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Since a homogeneous string is governed by a second-order 

differential equation, it is sufficient to specify the displace¬ 

ment and its first derivative at a point in order to know the 

same quantities at any other point. Thus a transfer matrix will 

be 2 X 2, The matrix across a concentrated inhomogeneity such as 

a weight will be 

' 1 o' 
F/T 1 ! 

where F is the strength of the inhomogeneity as an axial resonator, 

A dipole resonator on a string can be defined in terms 

of a pair of axial resonators of equal and opposite strengths that 

approach each other while the strengths go to infinity. The trans¬ 

fer matrix across this system becomes, in the limit, of the form 

1 g/t] 

;0 1 / 

A similar limiting process for a rod produces a trans¬ 

verse resonator, which is an allowable mode of a physical resonator, 

once the idealization of a point attachment is accepted. However, 

a dipole resonator on a string is not physical, any more than an 

octupole resonator on a rod. Attachment of a dipole resonator of 

infinite strength has the effect of breaking the string, and imposing 

the condition of zero normal derivative on each side of the break. 

A plate which serves as an upper bound for a layer of 

water can be represented in the string analog by a dipole resonator 

of infinite strength immediately above the ordinary or monopole 

resonator which is the analog to a plate in an infinite medium. 

Similarly, a plate bounding the fluid from below is analogous to 

a dipole resonator just underneath a monopole resonator. 



Setting equal to zero the interaction matrix between four 

resonators in these positions, one obtains the condition for free 

waves in a water layer bounded by two flexible plates. The ex¬ 

plicit algebraic form is exhibited in Section 8,9.2. 

In the prescription above, we could not allow a monopole 

and dipole resonator to be attached at the same pointj the inter¬ 

action constant V for such a pair is not zero, as would be ex¬ 

pected from synanetry considerations, but nonzero and ambiguous in 

sign. It will be rt'.ailed (see Section 6.1.7) that an axial and 

an octupole resonator could not be attached at the same point of 

a rod, since this would violate the condition that a transfer matrix 

has unit determinant. Similarly, a monopole and a dipole resonator 

attached at the same point on a string would produce the transfer 

matrix 

/ 1 G/T j 
( f/t i y 

whose determinant is not unity. 

The physical interpretation of this difficulty is perfectly 

^1®®^* 1^ the water extends almost up to, but does not quite reach 

a plate above it, then the plate has no effect on the water. The 

plate is coupled to the water as soon as the water height is Infini¬ 

tesimally greater than the plate height. 

8.8.4 Plate Separating Different Fluid Hedia 

Different fluid media will correspond to strings 

with different tensions and free wavenumbers. Then the pseudo¬ 

resonators used in Section 5.5 to handle thickenings on rods can 

be introduced in the string analog problem. Since displacement is 

always continuous across a plate, there will be only one type, with 

a transfer matrix of the form 
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8.9 Evaluation of Relevant Transforms 

8,9.1 Green*s Function for the String 

Sv is ready found to be 

Sv(y*- y) - “i(K/2a>2p*) exp IK |y*-y| 

where 

K - jOc*2- v2)1/2 if k*> V 

t_i(v2- k*)1/2 if k*< V 

The positive sign for k*<v satisfies the finiteness condition as 

y goes to infinity. 

Kirom this iresultf ¿ind the form for G in one cun 

already draw a consequence that is not entirely obvious. If there 

is a single plate in an ocean filling all space, and the observa¬ 

tion point (x,y,z) is on the opposite side of the plate from the 

source at (x*,y*tz*), then u(x,y,z) depends only on y* - y| and 

not on y and y* separately. To see this, it is sufficient to 

write out the term in u(v,y) that is due to the plate. This is 

proportional to 

sv(y*-c) sv(c-y) 

Sv(0) - (1/F) 

where c is the plate height. But clearly Sv(y*-c)Sv(c-y) is 

independent of c, if y* and y are on opposite sides of c. 

®*9*2 Green's Function for a Plate 

It is known from Section 3.1.3 that 

-1 
2ir D(v4- k4) 

A/ 

Q(v) 
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A typical diagonal term of N can now be computed as 

Sv(0) - It Q(v)--s— [ V4- k4 + 21e/K 1 , 
v 2to*p(v - k4) Í i ' 

Note that the quantity in brackets is not f(v)/D, where f(v) was 

introduced in Section 8.1, because of the presence of the extra 

factor 2 in front of term involving e - u>^p*/D. But it is clear 

why this arises. There is water on both sides of the plate, and 

so the "added mass" due to the water will be twice what it is for 

a plate with water on only one side. 

In the image methods used in Section 8.8.2 for a semi¬ 

infinite ocean, the need to insert a duplicate of the bounding 

plate will have the effect of reducing the factor 2 to 1. In 

other words, the plate and its image become, in the dynamical 

analogy, two resonators very close together. These are equivalent 

to a single rasonator of twice the strength. The strength F 

appears in the diagonal element in the form Sv(0) - (1/F). Thus 

the term involving e will be halved, as compared to a plate with 

water on both sides. 

We return to the problem considered in 8* 8» 3 of a layer 

of water between two plates separated by a distance L between 

their inner faces. Primes will be used for quantities pertaining 

to the lower plate. The attachment points of the resonators will 

be indicated as follows: 

b - upper dipole resonator 

a - upper monopole 

a' - lower monopole 

b' - lower dipole resonator 

To fulfill the analogy, we must have b>a and a'>b. In the limit, 

these will become equalities. The four rows and columns of N will 

be arranged according to the order of the resonators given above. 
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Then N has the fo1lowing form (where the subscript v on S has 

been dropped): 

-S<2> (0) 

ÒS(a-b)/òb 

ÒS(a'-b)/òb 

ò2S(b'-b)/òbòb* 

òS (b-a) /òb 

S(0) - (l/F) 

S(a' - a) 

âS(b' -a)/ôb' 

ÔS(b-a’)/ôb 

S(a-a') 

S(0) - (l/F1) 

àS(b'-a')/àb' 

ò2S (b-b1 ) /òbàb* 

ÔS(a-b’)/òb1 

S(a'-b')/ôb' 

-S i2) (0) 

We allow a and b to coalesce, as well as a* and b’, and 

introduce the abbreviations 

E = exp iKL 

H - ie/K(v4 - k4) 

Let Q be the permutation matrix that interchanges 

columns 3 and 4; then interchanges rows 3 and 4. Further¬ 

more, let X be the diagonal matrix with elements 1, -1, 1, 1. 

Then 

XQTNQX 
-IK 

2Ta>2p* 

K 

-iK 

2 
K E 

iKE 

-iK 

1+2H 

iKE 

-E 

k2e 

iKE 

K2 

-iK 

iKE 

-E 

-iK 

1+2H' 

which can be written in partitioned form 

where 

A B 

B A' 

-iK 

1+2H iKE 

iKE 

iE 
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and A1 differs from A in that H' replaces H. Assume now that 

H' = H, which implies that the two plates have the same values 

of D and k - that is, they have the same elastic constants. 

Then, the condition det N = 0 implies by the arguments of Section 

6.1.3 that either det(A - B) = 0 or det(A + B) = 0. These be¬ 

come after taking out K2 factors: 

r •>. 

iE 

-E 

0, 

and after simplification, 

1 + H = + E (1 - H) 

Then using the definitions of E and H, 

(vA - k4 + ie/K) = + (exp i KL) (v4 - k4 - ie/K) . 

If k has a small positive imaginary part so that there is 

dissipation in the water, and L goes to infinity, then exp i KL 

goes to zero and this condition becomes f(v)/D = 0. Thus we 

recover our earlier result for free waves of a plate floating on 

an infinite ocean. 

In the general case in which the two plates are not 

similar, the condition for free waves must be derived from the 

more general relation that 

det j^I - A"1BA' '1 B = 0 

In this case, no simple factorization is possible. 

8.9.3 Green's Function for Water 

For our purposes, a source within the fluid 

must be normalized so that the total normal force exerted on 

a plane passing very close to the source is unity. 

It is well known that the Green's function W for a 

three-dimensional acoustic source is, except for dimensional 
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factors A, 

W(R*,R) W(r*-r,y*-y)« A exp ik* |R*-Rl 
-i&rvïï]- 

Then from Erdelyi et al. Table of Integral Transforms, vol.II, 

p.9, no, 26, we have 

W(v,y*..y) « ■‘M exp^lK ly*:X| 

where K is as in 8.9.1, 

We can now exhibit explicitly the results of the image 

technique of 8.8.2; we will give the displacement at R* <■ (x*,y*,z) 

due to a source at R » (x,y,z), in the presence of a flexible 

plate at y « 0 bounding the semi-infinite ocean. (y*»y<0), R' 

will be the position (x*, -y*,z*) of the image source. We observe 

that 

Direct term from R* to R 

+ Direct term from R* to R 

+ Term from R* mediated through the plate 

+ Term from R' mediated through the plate 

The last two terms are equal, because the source and its image 

affect the plate in the same way. In the analog, this simply 

means that Sv(y*) = Sv(-y*>. Thus we have 

1 
"~2— ¢0 p* 

dW(R*-R) 
oy 

+ MCR'.-R). 
oy 

2cA 7 
~Y~~ f 
a> p* o 

W(v,0) Sv(y*) sv(y) v J0(v r) dv 

P(v))- 

u(R) - 
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The reason for taking the strength as 2F(v) was explained in 

8.9.2. On substituting all the relevant expressions, the last 

tern becomes 

« (v4- k4) (exp i K ( !y* I + lyl)) v JA(vr)dv 

O (v4- k4 + ie/K) 
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9. Resonators Attached Ovei an Area: Pistons 
«mi mm tm m iiii mm mmm 

The concept of an axial resonator sensitive to the 

displacement over an area was first introduced in Section 2. 

Several special cases of this type of resonator will be studied 

in detail in the present section. 

Let nCr,0) be the displacement of the plate, where r 

and 9 are polar coordinates. Then a resonator of strength F is 

defined to respond to the weighted integral of the displacement 

over the attachment domain: 

/ / w(r,0) T (r,0)r dr d0 

by exerting the force Fw(r,0)at each point (r,0). Note that w 

applies for both sensitivity and for response. 

The weight function w need not be a real quantity. Then 

the force exerted by the resonator will vary in phase over the 

domain. This general case will not be considered here. In any 

event, the normalization condition for w can be taken as 

/ / |w(r,0)| 2 r dr d0 

where the integral is taken over the domain. 

In Addendum 2, it is shown that the interaction constant 

for two resonators with weight functions w^r.O) and w2(r,0} when 

their origins are at the points given by the vectors s^ and s^, is 

V12 = / dx Wj^x-sp Q2 (s2-x) 

=■ / dx Ql(x-s]L) w2 (s2-x) 

where x represents a vector variable, and the integration is taken 
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over the domain. Q^f for i *• 1 or 2, is Che unique solution of 

OCQ-^Ck)) * WjCx) 

that satisfies the usual conditions of finiteness and no incoming 

waves at infinity, (Here 0 is the plate operator, which for a 

plate in a vacuum is »(V4 - k4)). 

9’ Physical Resonators Analyzed Into Many 

Ideal Resonators 

Many physical systems attached to plates over an 

area,for instance, solid cylinders of plastic-like material, or 

thickenxng discs welded to a plate, can be considered as resulting 

from the superposition of the ideal resonators just mentioned. All 

of the component resonators will have the attachment area as their 

domain of sensitivity and response. 

In the special case of a physical resonator having 

circular symmetry, it is immediately clear that there will be a 

two-fold infinity of ideal resonators, since an arbitrary displace¬ 

ment of the circular base can be represented in the form 

q(r,0) - S 2 b,(r) cos j 0, 

i j 

where the b^(r), for i « 0, 1, 2,... are a set of functions suitable 

for expanding an arbitrary function of one variable. We thus ex¬ 

pect that in the absence of symmetry it will be necessary to use a 

two-fold inf'-1 tty of component resonators. 

All of these will be considered as having a common "origin" 

at the point s. The Green's function giving the displacement at a 

typical point caused by a concentrated force will involve the in¬ 

verse of a matrix N, whose elements are the interaction constants 

between all possible pairs of component ideal resonators ( minus 
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diagonal terms containing the strength* or the resonators). It 

would obviously be convenient if N were a diagonal matrix, that 

is, if two distinct component resonators has zero interaction. 

If this is the case, we say that the component resonators are 

orthogonal to each other. 

It is clear from symmetry considerations that two 

resonators with common origin will not effect each other if their 

weight«functions have the factors cos n 0 and cos m 9, with m ¿ n. 

In the discussion of rim resonators in Sections 3 and 4, this 

condition was automatically fulfilled. For physical resonators 

on an area, the orthogonality problem must be studied explicitly. 

Thus even for the case of circular symmetry, there are an infinite 

number of modes with different radial dependence, for each fixed 

azimuthal dependence cos n 0 or sin n 0. 

The orthogonality condition / dx w^Qj “ 0 makes 

reference to the properties of the plate alone. Suppose a set 

of w^ satisfying this relation has been found. If the base of 

a physical resonator is given the displacement t](r,0) « w^(r,0)f 

there is no guarantee that the physical resonator will respond 

with a force varying proportionally to w^. That is, the de¬ 

composition of the vibrations of a resonator into normal modes 

is in general not related to the orthogonality condition for 

weight functions on the plate. 

We shall see, however, that in the absence of the water 

there are fortunate cases where the two methods of decomposition 

agree, namely when the physical resonator is a solid cylinder of 

plastic material, or a column of water in a tube with rigid side 

walls, or a thickening of the plate. 
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9-2 Cylinders of Plastic and Columns of Water 

9.2.1 Plastic-Cylinder Resonator 

The resonator is a solid cylinder of plastic, of 

length L and radius R. The material is assumed to be compressible, 

but unable to support shear waves. The boundary condition of zero 

pressure on the curved surface is taken. Introduce a cylindrical 

coordinate system based on the axis of the resonator. (See Fig. 9-1). 

Then the pressure at the base of the cylinder can be expanded in 

Bessel functions: 

p(r.e) - s s cnl jt (knlr)eln9 

where each satisfies: 

Jl(kniR) - 0 

This condition is of course motivated by the boundary 

condition on the curved surface above the plate, but it has the 

effect that at the intersection of the curved surface and the 

plate, p(R,9) “ 0 for each 9. This is exactly so for the pressui'î 

inside the cylinder very close to the plate, but not the force 

that the plate would exert on a non-yielding material. Thus 

there will be a singularity in the displacement of the plastic at 

the lower rim of the cylinder. However, this is a common feature 

of similar problems, and means simply that many terms must be 

taken to obtain accurate values of pressure near the circular edge 

of the cylinder. 

Each term of the expansion above generates a traveling 

pressure wave that moves up the cylinder. The complete expression 
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for a pressure wave in the plastic is 

in9 Vkni " k'2 1 
PniCr»ö,*) " const. e , 

where k' is the wavenumber for a plastic-filled infinite space. 

This pressure wave is reflected from the upper face of the 

cylinder. The boundary condition of zero pressure will produce 

a free upper face. The alternative condition of zero normal 

derivative of pressure can also be used. 

On the passage outward, the wave is attenuated by 

-V’s.i2 - 
the factor e , and by the same factor on the 

passage back. Thus the physical cylinder has been represented 

as a sum of a doubly infinite set of Bessel function resonators, 

of which the (n,i)-th has the weight function 

wni(r) « const, x Jn(knir), r < R 

and the strength _ 

-rVkni " k'2 ^ 
Fni “ const, x e i » 1,2,3,... 

n * 0, + 1, + 2,... 

In some cases of interest R is considerably smaller than the 

free wave length in the plastic, and L is large. Then all the 

waves will be strongly attenuated by the passage out and back, 

but the one with the smallest value of kn^ will be least attenuated. 

The least value occurs for n*0 and i»l. If only Fq^ is signifi¬ 

cantly different from zero, we see that the plastic cylinder can 

be approximated by a single ideal resonator whose weight-function 

is a truncated Bessel function. 

. 
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9.2.2 Column of Water 

A very similar problem arises when the solid 

cylinder is encased in a rigid cylindrical wall that produces the 

condition of zero normal displacement. Slippage is allowed at 

the inner surface of the wall. Thus the material is effectively 

a liquid. The wall is assumed weightless, and does not affect the 

plate directly. In an idealization closer to a physical system, 

the wall would be replaced by a rim axial resonator, such as has 

been studied in Sections 3 and 4. 

The pressure at the base can once more be expanded in 

Bessel functions, but this time the boundary condition is 

d Ji (kniR)/dR - 0. 

The other details of the treatment are the same. 

9.2.3 Verification of the Plate 

Orthogonality Condition in Absence of Water 

In each of the problems above, the displacement 

of the attachment area was expanded in the set of orthogonal 

solutions of the membrane equation 

¢72 + k'2) p - 0 

for the appropriate boundary conditions. We generalize now to 

consider cylinders standing on an arbitrary area A, and introduce 

expansions in terms of the solutions Ui of the membrane equation 

that satisfy the general linear homogeneous condition 

al^ + b (àUj/òn) - 0, 

where a and b are quantities that may depend on the boundary point, 

and ò/bn indicates differentiation with respect to the outward 

I 
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normal. Let be the eigenvalue corresponding to U^. We observe 

that 

0(U.) = D(V4 - k4) U. = D(k4 - k4) U., 

and therefore 

/ dx U,0(UJ = Dfk4 - k4) / dx U. U. . 
A J 1 A J 

But is is well known, any two distinct solutions of the membrane 

equation that satisfy the boundary conditions above are orthogonal. 

That is, the integral on the right is zero. Thus we see: if w^ 

is taken as a normalization factor times U^, then will equal 

NiUi/D(k4 - k4), and the plate orthogonality condition will be 

satisfied. 

9•3 Uniform Thickening Handled by Analysis into Resonators 

Consider an infinite plate that has thickness h except 

over a finite area A, where the thickness is h'. The corresponding 

flexural rigidity will be denoted by D', and the free wavenumber 

by k'. Suppose further that there is a unit source at (r*, 9*), 

which is not in A. Then the displacement is of course given by : 

D(V4 - k4)q(x,z) = 5(x* - x)5(z* - x), (x,z) not in A 

D'(V4 - k'4)r|(x,z) = 0, (x,z) in A 

together with junction conditions on the boundary of A. Let X^(x,z) 

be the function that is 1 if (x,z) is in A, and zero otherwise. 

Then we can combine the equations above as 

D(V4 - k4)t](x,z) = 5(x* - x)6(z* - z) + 

+ XA(x,z) [ (D - D')V4 - (Dk4 - D'k1 4) ]t|(x,z) 

for (x,z) not on the boundary of A. The junction conditions are 
2 

that t) and àq/ân are continuous across the boundary, but V q and 
2 

(ò/ôn)V q are multiplied by a common factor y (see section 5.5.1). 

If A is circular, then the discontinuities on the 

boundary can be produced by attaching devices which are generaliza¬ 

tions of the pseudoresonators of types and introduced in 

section 6.2. These new forms will exert their effects on rims 

rather than points. The displacement due to such resonators need 

not be discussed in detail, since the Green's functions can be 

obtained by differentiations from Q^(r) f°r a rim axial resonator; 

similarly for the interaction integrals (including those with types 

whose domain is an area). 

... ' 



We shall therefore simplify our problem by assuming that 

T] satisfies the above equation at all points, including the boundary 

of A. 

The second term on the right of the last equation will 

now be transformed so that it has the form appropriate to an infinite 

collection of axial resonators,each of which has the domain A. 

Consider the plate equation for an arbitrary wavenumber 

A, in the absence of forces : 

(V4 - A4) u (x,z) = 0, 
and impose any of the standard conditions (free edge, simple support, 

clamping) on the boundary of A. Let the be the set of eigen¬ 

functions, that is, normal modes, and the the set of corresponding 

eigenvalues. (Properly speaking, there should be two subscripts on 

U and X, but this is inconsequential.) As is well known, the IK 

are orthogonal to each other, and form a complete set for the 

expansion of any function over A. They may be normalized to unity: 

// U? dx dz = 1 
A 1 

Now expand r|(x,z) in the U^x.z) , for (x,z) in A: 

T](x,z) = 2 c . U(x,z) , 
i x 

where the expansion coefficients are given by 

c-¡ = // U.(x,z) t~| (x,z) dx dz . 
1 A 1 

It follows that 

[(D - D')74 - (Dk4 - D'k'4) 

= 2 [ (D-D1 ) X4-(Dk4-D' k' 4) ] [//U . (x1 , z' )rl(xl ,z' )dx' dz' 'U . (x,z) 
i 1 A 1 1 

Then the equation of motion has the form appropriate to an infinite 

plate bearing an inf nite collection of resonators with weight- 

functions LK(x,y) and strengths 

F. = (D-D')X4 - (Dk4-D'k’4). 

The choice of the boundary conditions remains open. 

Clearly they should be chosen so that the F^ form a rapidly conver¬ 

gent series. Another criterion is that the expansion q = 2 

must converge quickly. Thus the should approximate as well as 
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possible the motion of the thickened portion when it is part of 

the plate. If h'/h is very large, then the use of free edge condi¬ 

tions will ensure this. If hf/h is very small, then clamping 

conditions are appropriate. More general boundary conditions would 

be desirable for less extreme situations. 

9.4 Green1 s Functions for Special Types of Ideal Area Resonators 

9-4--1 Disc Resonators 

A disc resonator is defined as having a weight- 

function that is constant within a circle of radius R, and zero 

outside the circle. Thus it responds to the average displacement 

on its attachment area by exerting a uniformly-distributed pressure. 

Since the total pressure is normalized to unity, 

ÍI/tt R2 if r < R 

w(r) = J 

1 0 if r > R . 

The equation O(Q^) = w for the corresponding Green's 

function can be solved by the familiar technique of taking the 

Hanke 1 transforms of both sides. Then we have 

QrO) = f’1(v) w(v) , 

where the tilde indicates the transform as usual. The function 

f(v) was defined in section 8.1, for the case of water on one side 

of the plate, but we do not exclude the case of a plate in vacuum. 

A standard formula for Bessel functions shows that 
R 

w(v) = / r J0(vr)dr -- R J (vR)/v. 
o 

Then the Green's function might be obtained by inverting the Q^, 

but it can also be obtained from the Green's function for a 

force uniformly distributed over a rim (see section 3.2.1) by 

integrating R'Qo' from R' = 0 to R' - R. Note that by reciprocity, 
D ^ 

Qj^(r) equals the displacement of the plate, averaged over a disc 

of radius R, when a point force is applied at distance r from the 

center. 

The interaction integral between two disc resonators can 

be evaluated by a double integration of the corresponding result 

for a pair of rim axial resonators. 

Ji!; 
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9.4.2 Truncated Bessel Function Resonators 

The problem of the plastic cylinder leads naturally 

to the truncated Bessel resonators, defined by 

”n(r> 

Jn cos n6 > r < R 

r > R 

where n is zero or a positive integer, 1/Nn is a normalization 

factor, and V is f°r moment, an unspecified constant. There 

will of course be another series with sines instead of cosines 

(except that no sine resonator exists for n = 0). The Green's 

function Q for the n-th cosine resonator can be expected to have 

the form 

Qn(r) cos nG . 

Applying the Hankel transform of order n to the defining equation 

0(Q) = wn , 

we see once more that 

fQn(v) = f"1^) wn(v) , 

where the tilde now indicates the transform of order n 

A standard argument based on the differential equation for 

Besselrs functions now shows that 

R 

/ Jn(>R) Jn(vr)r dr 
o 

d J (>R) 

,2 Z 
> - V 

n 

•3ÏT 
Jn(vR) + 

d J (vR) 
n 

dR •V'R> 
In the special case where ^ is determined by the condition 

Jn(XR) = 0 (see Section 9.3.1), one terra disappears, and then Q^v) 

has a comparatively simple form: 
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Wr> 
J (vR)J (vr)v dv 

(dJn(XR)/dR)/-n n 
f(v)(X2-v2) 

A ,.4. When there is no water, that is to say f(v) = D(v -k ), then 

1/D(v^-k4) can be expanded in partial fractions, and then 

the resulting integrals are forms that have already been encountered. 

(They are special cases of the integral of 10.1, for i = n, j = -n, 

k = 0, T = 0). 

The integral that appears when A satisfies the condition 

dJn(AR)/dR = 0 is found from the form for Jn(AR) = 0 by differentiating 

with respect to R. 

The interaction integral V between two truncated Bessel 

resonators can be written down easily by reference to Addendum 3 

and the form for wn(r) given above. In the absence of water a par¬ 

tial fraction expansion is again possible. The algebra becomes 

lengthy however. Thus for two resonators with circular symmetry 

(n^, r\2 = 0) having radii , R2, centers s^, S2, constants A^, A2, 

and satisfying 

VW = o> 1 

we have 

Jo (vRi) J0 0¾) Jo (v I sl~s2^ ) vdv 
N1N2V12 = X1J1^>v1R^2J1^>'2R2^ 

But in view of Section 9.2.3, be zero if s^ = S2 

Rj^ = R2, and / >2- 

9.4.3 Resonators Corresponding to Normal Modes of a 

Circular Plate 

The decomposition of a circular thickening according 

to the procedure of Section 9.3 produces ideal resonators whose weight 

functions have the form 

r < R b 
w(r) ={ 

a J0(Ar) + b Io(Ar) 

r > R 

■"'"■““"•«♦•MiuKijaaiBî» » 



as well as types with an azimuthal factor cos n0 or sin©. These 

can be treated in the same way as the truncated Bessel resonators, 

but of course there are twice as many terms in the Green's func¬ 

tions and four times as many in the interaction integrals. 

9.5 Piston Cut Out of a Flexible Baffle 

We consider an infinite flexible plate bounding on ocean 

on one side. In the two-dimensional configuration to be discussed 

in Section 9.5.1, an infinite strip is severed from the rest of the 

plate by two parallel, infinitely long, cuts and an oscillating force 

is applied to the strip. In the three-dimensional problem of Sec¬ 

tion 9.5.2 a circular disc is severed from the rest of the plate, 

and a circularly Symmetric force distribution is applied on the 

disc. Then more general force distributions are considered. 

9.5.1 An Infinite-Strip Piston 

A line source applies an oscillating force along 

the midline of an infinite strip cut out of a plate. Let s^ and s2 

be the ends of a typical cross-section of the piston (see Fig. 9-2). 

Consider first that there are no breaks at s^ and s,. By attaching 

quadrupole and octupole resonators of infinite strength at those 

points, the portion between them can then be detached from the rest 

of the cross-section. Thus the formula for the Green's function 

G(r*,r) In terms of the point-to-point function Q(x) will be ex¬ 

actly the same as for a rod of length Is^-s^ in air (Section 6.1.5), 

except of course that the meaning of Q is now different. That is, 

Q(x) has the form 

r” cos xp dp I —W 
which cannot be evaluated in finite terms. The interaction matrix 

will have exactly the form given in 6.1.5. 

It must be verified that the boundary conditions for a 

break in the plate are not modified by the presence of the water. 

To see this, we imagine that the water extends just up to the upper 

surface of the plate. Now ò^rj/òx^ is proportional to the shear 

force delivered across the boundary of a strip of the plate. How¬ 

ever, the water cannot support a shear force, since vie assume it 
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to be perfectly non-viscous. Therefore â3r)/òx3 = 0 at a break. 

The same reasoning applied to the moment shows that ò2n/Sx2 = 0. 

The crack betxieen strip and baifle can be considered 

as the limit of a gap of finite width. An arbitrary boundary 

condition might be imposed on the water surface in such a gap, in 

particular, either zero pressure or zero displacement. At the 

edge of the plate, ô^/èx2 = 0 and ò3q/òx3 = 0 would still hold. 

A piston is obtained in the limit only if the boundary condition 

is taken as zero displacement, that is, only if there is no pres¬ 

sure release at the crack. The horizontal component of the water 

velocity should become infinite there, but not the vertical com¬ 

ponent. Now the construction of quadrupole and octupole resonators 

from a rim axial resonator requires only differentiations normal 

to the crack. It is thus reasonably clear that the vertical com¬ 

ponent of velocity will be finite in the presence of these types. 

However, the repeated differentiations will cause singularities 

in the horizontal component of velocity, since the Green's func¬ 

tion for a rim axial resonator has a discontinuous third deriva¬ 

tive. 

9.5.2 Problems with Circular Symmetry 

We first treat a simpler problem which does not 

involve a piston. 

9.5.2 Flexible Plate Clamped Along a Circumference 

We consider a force applied along a 

circle of radius R . The displacement can be constrained to be 

zero along jx-sj =S by attaching a rim axial resonator of infinite 

strength. Let t^le displacement at radius R2 due to 
a unit force applied on a concentric circle of radius R,. Then 

the Green's function G(R ,R) when the resonator is attached is 

G ( R*, R) = Q0(R*,R) 
Q0(R*,s)qo(s,r) 

— 

To constrain the slope to be zero on |x-s| = S, we must 

attach a rim moment resonator of infinite strength. The Green's 

function in the presence of this alone is 
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ôQ0(R*,S) ÒQ0(S,R) 

G (R*, R) Q0(R*,R) 
ÒS 

lim 
S*->S 

Ò2Qo(S*,S) 

.¿S*~SS- 

Thia may be verified by differentiating with respect to R*, and then 

setting R* equal to R. 

When both force and moment resonators are attached at 

the same radius, there is a non-zero interaction between them, 

and the Green’s function involves the inverse of a 2 x 2 interaction 

matrix: 

o(h*,k) - qn(R*Pw - Q0(R*,S) 
» (R* 

SB -] 
Q0(M) 

âQ0(S*»S) 
lim i , 
S*-*S 05 

ÖQo(S*,S) 

“Î5- lim 
S***S 

32Q0 

liZs1*™ 

-i 

Q0(S,R) 

aQ0(B.W 
oT 

The results hold of course whether or not there is water 

on one side of the plate, However, an explicit expression for Q0 in 

terms of Bessel functions is available only in the absence of water. 

9.5.2.2 Piston of Radius S with Force Applied 

Uniformly Over a Circumference of Radius R. 

The Poisson's ratio effects cause the treatment 

to more conçlicated than for a clamped edge. 

The force at the edge, in the case of circular symmetry, 

ia proportional to c^n/dS**,, Thus the force can be made zero by 

attaching a resonator which behaves as an octupole resonator at 

each print along the rim. The Green’s function for displacement is 

unen 
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Ô3Qo(R*,S) ò3qo(s,r) 

G (R*, R) = Q0(R*,R) 
ÒS ÒS 

lim 
0¾ (3^,5) 

S*->S ò3S*ò3S 

The moment at a free edge is proportional to 

vS + ä_il + | ^ . a di 

If we use (ri) to indicate this expression, in the form of an oper 

ator applied to a function r| of r, then the condition of zero 

force and zero moment on the edge are satisfied by: 

G(R*,R) = Q0(R*,R) 

(2) n * VR*’S> 
DS )Qo(R*'S) ' ÔS 

M 

D^Q0(S,R) 

àJQ0(S,R) 

where 

M"1 = lim 
S*->S 

42) 42) 

^ d(2) 
^ us às* 

d(2) -X 
s* 5? 

ò3S*à3S 

Q0(s*,s) 

In the absence of^water this gives the Green1s function 

for a circular disc with a free edge of radius S, when a force is 
"ÍC 

applied uniformly over a circle of radius R. 
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9.5.3 Circular Piston Cut Out of Flexible Baffle: 

Azimuthally-Varying Force 

Problems with azimuthal variation can be handled by 

the standard procedure of composition into Fourier series. Thus 

consider a circular piston of radius S. An oscillating force is 

applied at each point at distance R* from the center, the magnitude 

varying as cos n9. 

If there were actually no circular cut, so that we had in¬ 

stead an infinite homogeneous plate, then the displacement at the 

point with polar coordinates (R,9) , due to the azimuthally-varying 

force on the circle of radius R* would be 

where 

Qn(R*,R) cos n9 , 

CO 

Qn(R*,P) = / f"1(p)Jn(R*p)Jn(Rp)p dp . 

This differs from the quantity QR* n(R) of Section 3.2.2 only in a 

normalization factor. To siraulate’the effect of the cut, we add 

two fictitious rim resonators that vary azimuthally; neither is a 

pure quadrupole or pure octupole resonator because of the Poisson's 

ratio effect, but one results in zero moment at each point of the 

rim, and the other produces zero shear force. 

To do this systematically, we introduce a differential 
r(n) operator M^1 ^ , the moment operator of index n 

MÍn) (Z(r)) -f<2 ■37 
1 d , o-l 
F HF + — 

■ 0 
d _ n^'_ 
3F “ r’ 

1 
Z(r) 

and , the force operator of index n: 

^n)(Z(r)) ^ d* u 1 d 
"h 5 

J 

Z(r) 

If the displacement of the piston is of the form 

T] = Z(r) cos n9 
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Then the conditions of zero moment and force can be written as 

M¿n) Z(r) = 0 

F¿n) Z(r) = 0, for r = S 

Then by generalizing the argument of 9.4.2,the displacement at a 

typical point (R,G), either on the piston or the surrounding baf¬ 
fle is given by: 

0(11,9,0) = Gn(R*,R) cos n0 . 

Here 

0,^ (R* ,R) = Qn(R*,R) 

M^n)Qn(R*,S) F^QhCR^Jm 
^n)Qn(S,R) 

F^n)Qn(S,R) 

where 

M"1 = lira 
S*->S 

If we write 

«s? »410 4$ 
■p (n) y (1^) 
^S* £s 

w = 

I 0 
1 5? 

ò à2 
ÏÏ5* 

Qn(s*,s) 
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and 

O 

1 

then we have also 

lim (C I) 
S*->S 
r ->S 

W 

v¡*w 

vsw 
2 2 

^s*vsw 

= lira CWC + C W + Vg*WC + VgVg* 

9.6 Piston Not of The Same Material as the Surrounding Plate. 

The method of 9.5 can be generalized to handle a flexible 

circular disc acting as a piston in a flexible baffle of another 

material. As before, and resonators will represent the 

break. Area resonators of the types introduced in Section 9,3 are 

needed to give the effect of the change in D and k. The pseudo¬ 

resonators of types Rg and , which were mentioned in that section, 

are now unnecessary. 

Tue weight functions for the area resonators should clearly 

be taken as proportional to the normal modes of the circular disc 

in a vacuum, with free edge conditions. These component resonators 

will now interact with each other through the water. The integrals 

that give the interactions can be written do™ from the discussions 

of 9.4.2 and 9.4.3. One can expect that the water effects will be 

small, and thus the interaction matrix is nearly diagonal. 
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10. EVALUATIONS OF INTEGRALS ENCOUNTERED EARLIEK 

Most of the integrals that have appeared in previous sec¬ 

tions can be subsumed under two general forms: The integrals for 

displacement are special cases of 

I = f £ 1(p)Ji(Rp)Jj(Sp)J^(Tp)p dp 

where i, j and k are non-zero integers, and R.S.T. are ^ 0. By 

taking i = 0 and R = 0 one of the Bessel functions disappears. 

On setting i = 1 and going to the limit R ^ 0, one obtains a form 

involving p rather than p. On the other hand, the integrals for 

pressure are similar except for an extra factor (p^ - 

10.1 Absence of Water 

We recall that 

f(p) = D(p4- k^- e(p2- k*2)-1/2) . 

Now if e = 0 (that is, the effect of the water can be neglected) then 

the I integral can be evaluated for the values of i,j,k,R,S, and T 

that have appeared in our work. In this case 

^P7 21?D 
1 

T, 2 
1 
rrz p -k p +k 

We define 

I* = / (pW)"1 Ji(Rp)Jj(Sp)Jk(Tp)p dp 

and I** as the analog with p2-k2 in place of p2+k2. Now we apply 

formula 9 on p. 430 of Watson, Bessel Functions, in a special case: 

Jdx-J^r J (Rx) J, (Sx) 
o x+k^ 1 

cos j (2+i+j -k) Tr Jk(Tx) 

+ sin j (2+i+j-k)-r Yk(Tx)J 

= - Ii(Rk) Ij-(Sk) Kk(Tk) 



This is valid for non-integral i,j,k provided T > R + S and 

2 + i + j > k. Tlae following special case will be sufficient for 

us : 

If i + j - k 

is even 

and i+j -k^-2 

and 
T > R + S 

then 

I* = (-1) (i+j_k)/2 Ii(Rk)Ij(Sk)Kk(T10 . 

I* is an analytic function of the wavenumber k, except 

at k - 0, and so the form for I* can be deduced from that for I** 

by replacing k by -ik and using the formulas 

In(z) = exp(mri/2) Jn(iz) 

Kn(z) = (ttí/2) exp(mri/2)H^'* (iz) 

Therefore 

I** = (-1) <i+j‘k)/2(ui/2) (exp(i+j+k)Tr/2)Ji(Rk)Jj(Sk)H]^1) (Tk) 

The choice of the first, rather than the second, Hankel function is 

of course due to our convention that the time dependence is exp(-i' t). 

Since 

exp (i+j ^)^/2 = (-i)<i+j+k>/2 

we have if e = 0, 

1 
I = -n— 

2k D 
■Ii(Rk) I. (Sk)Kk(Tk) 

+ (7ri/2)(-l)(i+j+k)/2 Ji(Rk) Jj (Sk)(t:.)] 



10.2 Rational Contribution In the Presence of Water 

It appears that the integral I cannot be evaluated ex¬ 

actly in the presence of the water, and this is true of the pres¬ 

sure integral even without water. However, they can be broken up 

into terms that can be interpreted physically in the various spe¬ 

cial cases of interest. Certain of these terms can be evaluated. 

We shall derive approximations for the others. 

10.2.1 Rationalization of Denominators 

10.2.1.1 Displacement Integral 

We write: 

= (p4-k4)(k*2-p2) - e(p2-k*V/2 

P(PZ) 

(P4-k4Hk*2-P2) 

P(P ) 
TT-XT7Z 

where 

2 2 P(p ) is a fifth-order polynomial in p , Let the roots be 
n 2 « 2 
P^ j •••» P5 • 

Dien we can write 

5 ’ A. e B. 
2 -n-^-rr-„-t 

where and Bi are evaluated by comparing residues at the poles: 
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i 

10.2.1.2 Pressure Integrals 

Computation of pressure involves integrals of 

the form 

P = 
CO ^¿(pR) Jri (pS) Jk(pT)p dp 

- 

where g(p) 

alized: 

, r~2 2~ 
\J-p -k* f(p) . The denominator is again ration- 

D 

g(p) 
Vp2-k*2 (p4-k4) - e 

lv'p2-k*2 (p4-k4) + e 

P(p ) 

+ IeÍiH4) (p2-k*2) 

p(p2)V^*2 

Now expanding in partial fractions, we have: 

D g<sy = 2 

i=l 

eCi 

“2-? 
P -Pi 

D 

(P2-Pi2)V^ 

(Pi4-k4) (pi2-k*2)ci = 

where 



180. 

10-2.2 Recursive Computation of The Roots of P(p^ 

2 2 2 If I = 0, then the ro°ts of Pip*) are k* , k2, 

k i “k , -k . When e increases from zero, each pair of roots will 

separate. Writing the equation P(p2) = 0 in the form 

p2 - k*2 = 

(W7 

suggests a recursive procedure for p' 

2 
P(i+1) 

2 
This will converge if e is small enough and one starts with 

P(0) = k - We find 

p(D -k*+ 
e _ v*2 
—2—2 - k* 

k*2(k*2-k2)2 

On the other hand, the form 

p4 - k* = —=■ . 

Vp2-**2 

yields the recursion relation 

p(j+i) - ¿Vk4ip<P(j) - k*2)'1/2 . 

where the ± signs are independent of each other, but the choices 

of signs must not be changed from one step of the recursion to 

the next. Thus four different series p2^ are possible. 

If one starts with p^ = k then the two procedures ob¬ 

tained by the positive choice of the left ± sign will yield real 

values at all stages, provided that e is sufficiently small and 

k > k*. In particular 

»it »««.i, 
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In a typical situation of practical Interest, k/k* is about 4. 

If the left ± sign is taken as negative, and one starts 

10.2.3 "Rational" and "Irrational" Parts of the Green's 

Funtion 

It is convenient to refer the sum of the terms 

having the factor 1/Vp^-k*^ in the expression given in 10.2.1 for 

D/f as the "irrational" part of D/f, and the remaining terms as the 

"rational" part. Similarly for D/g. This terminology can also be 

extended to the integral I for the displacement and the corresponding 

integral for the pressure. When e is small, the rational part of 

the displacement will be larger then the irrational part. The situ¬ 

ation is reversed for the pressure. 

Tiie common approximation of a "locally reactive" plate leads 

to a Green's function that is the sum of "rational" and "irrational" 

terms having the same forms as given above, but with a different 

root p¿ and different coefficients. We recall that the assumption 

of "local reactivity" means that the elastic part of the plate re¬ 

sponse can be neglected, but the inertial term in f(p) is changed 

to allow a more general dependence on cd. Then we have 

D 1 

where c is a function of cd. 
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Now rationalizing, we have: 

= c4(p2-k*2) _ e(p2-k*2) 

Pll‘p } Pj^Cp2)-^?2-^*2 

where 

P1(P2) = c8(p20k*2) + e2 

D 

KPT 

Thus D/f is the sum of a rational and an irrational term of the 

kind encountered in 10.2.1. The root of is obviously 

10.2.4 Interpretation of the Roots of P (p2) = 0. 

A root p^ contributes the following term to the 

rational part of integral I• 

I 
Ai 

i “ TT ( 
,00 Jj^Rp) J. (Sp) Jk(Tp)p dp 

P - Pi 

2 
If pt is real and positive, this has the same form as I**, dis¬ 

cussed in Section 10.1. 

It is interesting to examine the special case j = k = 0, 

S = T = 0, in which case the integral I is proportional the Green's 

function Q(R) for a plate without resonators (see Section 3.1.3). 

The term 1^ then corresponds to 

J0(rP)p dp 

" P 
7Í5 Vpir) 

Such fi term corresponds to an outgoing wave, 

small, there will be three real roots p^2 of P(p2), of 

is extremely close to k*2; the corresponding term must 

an acoustic wave in the water, as modified slightly by 

When e is 

which one 

represent 

the presence 
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** O 

of the plate. The other two real roots are close to k . Thus 

the water coupling apparently produces two distinct but close 

wavenumbers in the plate. 

The remaining roots Pj^ are complex conjugates and have 

small imaginary parts and real parts near -k2. If the imaginary 

parts were zero, these would correspond to standing waves on the 

plate. The small imaginary parts, however, indicate that there is 

also a small propagation effect associated with each root, one 

having incoming characteristics, the other outgoing. However, 

these effects of the two conjugate roots largely cancel, and pro¬ 

duce a standing disturbance. An approximation for the resultant 

behavior is given in Addendum 7. 

10.2.5 Comparison with Treatment of Morse and Ingard 

Morse and Ingard (in Encyclopedia of Physics, 

vol. JŒ/1, pages 108-116) consider the integral I for the special 

case S = T = 0, as well as the corresponding integral for the 

pressure. They do not rational;ze the denominator of the inte¬ 

grand, as was done in 10.2.1. Then a zero of P(p2) will con¬ 

tribute a residue term only if it lies on the sheet of the Riemann 

surface containing the integration path. Or in simpler terms: 

Certain of the zeroes of P(p2) correspond to the wrong choice of 

sign in front of the square root that appears in f(p). Physically, 

there will be no outgoing wave for such a wavenumber. Morse and 
O 

Ingard speak of three contributing values of p. , which are near 
*2 2 2 i 

k , k , and -k . This does not seem to be correct, as it is 
*p 

easy to show that the value near k is non-contributing. We 

first observe that D(p^-k^) is an increasing function of p, if 
2 *2 -1/2 

p > 0, while De(p -k ) ' is a decreasing function of p for 

p > k . The equation f(p) = 0 is the same as 

D(p4-k4) = De(p2-k*2)~1/2, 

and so there is only one positive real root of f(p) = 0. It is 

always greater than k, and for very small tu, it is given by p = e1^. 



184. 

There is a second root of f(p) (i.e., a zero of P(p ) on the 

physical sheet) near p = ik . It has a small positive real part. 

There is also a non-physical root nearby, with negative real 

part. 

In the range of irequencies and material parameters of 

interest to us, for which k* < k,there are two further non-physi- 

They are roots 
if ? 

cal roots of PCp^) between p4, = k and p4 = k‘ 

of the equation 

D(p4-k4) = - De(p^-k*2)“1/2 

As the frequency increases, they approach each other, coalesce, 

and then become complex. 

There seems to be another, unrelated,difficulty in Morse 

and Ingard's discussion of the related membrane problem, because 

they speak on p. 110 of the point near k as being a branchpoint, 

whereas it is a pole, and the branch point is exactly at k . One 

must expect that a large error will be introduced by such an 

approximation. 

Nevertheless, one must reconcile the two roots that 
2 

actually contribute with the five roots of P(p ) that appear in 

the formulas of 10.2.1. It is clear that after rationalization, 

the fraction D/f(p) has the form Df(p)/f(p)f(p), where the bar on 

f indicates taking the opposite sign of the square root. At a 

non-contributing root, f(p) = 0 but f(p) f 0. Thus our form of 

the integrand is 0/0 at such a root. But we then break up f(p) 

into "rational" and "irrational" parts, which are each non-zero 

at the root. The value of the rational part is entirely due to 

the pole and thus is an outgoing wave, as indicated in 10.2.4. 

Furthermore, each of the five irrational integrals behaves asymp¬ 

totically like an outgoing wave as T goes to infinity. For a 

root that actually is non-contributing, this asymptotic wave 

cancels with the true wave produced by the rational part. This 

is shown explicitly in section 10.3.9. All the irrational integrals 

remain finite as T goes to zero, and the displacement is also 

Ei
Sf

iS
W.

-*
 



185. 

finite at T = 0. Since each rational integral produces a logarith¬ 

mically infinite term proportional to Y0(pr), it follows that these 

must cancel, and therefore, 

5 

I A1 = 0- 
1 

The same cancellation already occurs in the simple problem of the 
flexible plate in free space (Section 3.1.3). 

The value of our treatment is that the original integral 

is rewritten as a sum of five integrals of relatively simple form, 
2 

each a function of only one root p^ . The same form also appears 
in the problems of a locally-reactive boundary, or a membrane 

bounding a semi-infinite ocean. In our formulation, three extra¬ 
neous waves appear in the intermediate steps of the calculation 
but these cancel in the final result;. 

10.3 "Irrational Part11 of the Point-to-Point Green’s Function 
2 2 We use A instead of p^ ’ to represent a root of P = 0, 

and introduce the notation 

h(p) = “\/p2-k*2 (p2-A2) 

Gijk = ” Ji(PR) Jj(Ps) Jk(pT) P dp 

G0(T) = / tr^p) J (pT) p dp 
o 

10.3.1 Differential Equation for G 

One can easily show that considered as a 

function of T, satisfies what may be called an inhomogeneous 
Bessel equation, that is Bessel's equation with a non-zero right- 

2 hand side. We first define by 

1 Ò 
T 3Ï 



186. 

Then on applying to taking the operator under the integral 

sign, and using Bessel's equation for J^CpT), we have 

(V, 

1.2 

X 
rijk 

“ Jj^CpR) Ji (pS) Jk(pT) p dp 

0 

®ijk rec^uces t0 Go(T) in the special case i = j = k = 0, R = S = 0, 

and the integral on the right can then be evaluated. Thus G0(T) 

satisfies the equation 

+ *2) G0(I) = . 

This equation can be further transformed into a homo¬ 

geneous equation of fourth order by applying the operator (related 

to the 3-dimensional Laplacian) that annihilates the right-hand 

side. Thus 

<■^2 + f 3T + k*2) (^2 + T It + ^2) Go(T) = °- 

However, we shall not make any use of this form. 

It can be seen from Addendum 3 that GQ is a multiple 

of the two-dimensional convolution of the functions (exp ik* z)/z 

and Ho^(Az). Thus G0 is directly related to the Green's function 

for a process in which there is exactly one interchange of energy 

between a membrane and water. However, the wavenumber for such a 

membrane is not k or ik, but is A. The wavenumber of the water 

is not modified. 
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10.3.2 Solution by Formal Expansion 

10.3.2,1 A Bessel Function Identity 

The following formula is valid for any real v: 

37- + 1)/ Cv(y) - 2V y'"1 cv_1(y) 

where C indicates a Bessel Function of the first or second kind 

To show this, we write the parentheses on the left as: 

'ÿ áy y !y + 1 

On applying this to yv Cv (y), we obtain 

C" + 
v y ci + cv + 2r cv 

Now subtract and add 

c' + ^ y v 7 

within the bracket, and combine terms to obtain 

C" + 
V y 

1 c; +(i- z¡) cv + |h (c; + ï cv) 

But the sxan of the first three terms of the bracket is zero, since 

C is a Bessel function. The desired formula then follows from 
V 
the recurrence relation 

cv-i <y> - cl <y> + * cv<y> 
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10.3.2.2 Formal Inversion of Differential Operator 

We now obaerve that 

g^iigr . V^TFk* (k*T)"1/2x 

ij_1/2 (k*T) + i Y.1/2 (k*T) 

and further that 

V2 + k*2 + ?>2 - k*2 « k*2 (Vy + 1 + t2) 
T y 

where y » k*T, and we have introduced the important abbreviation 

- y>? -1=*: /k*. 

Thus the equation for G in Section 10.3.1 can be written 

(v; + 1 + t2) G0 - i V^72 k*-1 y"1/2 [j_1/2(y) + i Y_ 1/2 (y) 

We can formally invert the operator in a power series, as follows: 

2 2-1 1 
(Vy + 1 + t ) 1 - -„2 . - — , ^,r ï 

(V2 + 1) [l + tV(vy^ + 1]J 

to z 
n«0 

<-t2)n 

(V2 + l)1*1 V y 

Thus 

6series ^ “ iVwTk*-1 X! ^ ^ (Jn+(l/2) <k*T) 
n-0 

+ 1 ^+(1/2)^ 

where (2n+l) iI means the product of the odd integers from 2n+l 

down to 1. 
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The J terms of the series converge for all t and y. The Y terms 

converge if |t|< 1, but diverge if|t|> 1 (see Section 10.3.2.J). 

Note that we have obtained a particular solution of the 

differential equation of 10.3.1, and this apparently may differ 

from Go(T), which was defined as an integral, by aJQ(?vT) + bY0(?vT). 

But the terms of the series above are outgoing waves, and on 

physical grounds G0(T) can have no incoming component. Thus b 

must equal ia. We shall sne in Section 10.3-2.5 that a is actually 

zero. 

10.3.2.3 Another Identity 

One can also show that 

$P 
¡/v.l 

(v£ + 1) y“' C„(y) = 2v y"'-1 Cv+l 

Because of the relations 

(n+(l/2)) 
n 

= (-1)“ J n+(l/2) 

J-(n+(l/2)) = - (-Dn Yn+(1/2), 

this is equivalent to the result of Section 10.3.2.1, when v is 

a half-integer. 

10.3.2.4 A Second Expansion 

If we make the formal expansion in another way 

(V2 f 1 + t2)"1 = -!7- 
y ^(1 + (Vy + 1)70 

00 

- I 
n=0 

(Vy + l)" 



then in view of the result 

we obtain 

'series 

M , iV27Í Z-!/* (Jl/2 , i Y1/2,, 

VïïTÏ k*ml V ¢ -1) (2n-l) . . Jn+^/2) 1/2) 

4-1 2n+2 n+(1/2) 
n=0 

after using the relations between positive and negative half' 

integer orders. 

10.3.2.5 Convergence of the Expansions 

We shall use the following asymptotic evaluations, 

which are valid for fixed argument z and order p increasing in¬ 

definitely: 

Jp<z) -> zP/2p r (p+1) 

Yp(z) -> -2p r(p)/TT zp 

The form given for Jp is,as a matter of fact, the 

leading term of the expansion in powers of z. If p is non-integral, 

then the expression for Yp(z) results similarly from the first term 

of the expansion for J _(z) in the formula 
Jr 

Yp = (Jp cos p TT - J_p) /sin p ir 

after using the identity 

F(p) r(l-p) sin p ir = ir . 

When these evaluations substituted in the expansion of 

10.3.2.2, it is clear that the J terms in Gser^eg converge for 

all t, but the Y terms diverge if |t¡> 1, 



To determine the coefficient a in 

Go<T> = Gseries + atV*T> + 1 Yo^>* 

we let T go to zero. Then it is easy to see that the integral 

defining GQ goes to a finite limit. But Gseries also goes to a 

finite limit. This can be seen by substituting the leading terms 

(given above) of the expansions of Jn+çx/2) and Yn+(l/2)* In 

particular, each J term goes to zero. Each term involving Y goes 

to a finite limit as T goes to zero, and the sum of the limits, 

namely 

i 2n+(1/2) r(n+(l/2)) , J\n 
?-(IrT+lJlT- ^ } » 

converges if |t| <1. But Y0(?vT) becomes infinite as T goes to 

zero. It follows that a = 0 and so G0(T) = Series’ M < 

In regard to the expansion of 10.3.2.4, we see that the 

terms involving converge if |t| > 1, but diverge 

otherwise. The terms involving never converge. 

10.3.3 Another Integral Satisfying the Differential 

Equation 

Now consider the function 

Then 

(V2 + X2)W 

exp ik*T 
IT 

iTu 

k* 

.. -,.., /, .,, 
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Thus W(T) is a particular solution of the second order equation 

for G0(T). The difference W(T) - GQ(T) must be a solution of 

the homogeneous equation 

Cv£ + *2) y(T) = o, 

and so is of the form a J0(M) + b Yq(*T). Now W(T) is defined 

as an integral over outgoing waves e^Tu. Thus by the same argu¬ 

ment as earlier, 

W(T) - Go(T) = a(Jo(XT) + i Yo(AT)). 

We again determine the coefficient a by letting T go to zero in 

the integral defining W. Then 

W(T) -> -arccos as T ^ 0. 

Since Gq(T) is finite as T -> 0, the coefficient of Yo(AT) must be 

zero, and so W = Go> 

When k goes to zero, W(T) goes to 

Ä [JD <«> + 1 Ho ^T>] ■ 

where H0(>vT) is the Struve function of order zero. (See Section 

10.3.4) 

Assuming that X is real and X > k , we also have 

i arccos (k /X) 
W(T) = —-.—™*~~- / exp (iTX cos 0) d0 

'.y? - k*2 ° 

where 0 = arccos u/X. Therefore 

V^2-k*2 W(T) -> (J (XT) + iY (XT)) 
2V2X ° 0 

j 
i 

\ 
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10.3.4 Elementary Properties of Struve Functions 

The Struve function of order p, can be defined 
for p > -1/2 by the integral representation 

=ÿf fTpj(l‘/2)) ^ sin (z cos x) sin2px dx 

The asymptotic relation 

u _ V /„N , 1 V r(r4-(l/2)) /211 + 2r_p 
Hp(z) - Yp(2) + - rJpTl'I/Iy-r) [z] 

■n/2 

valid for |arg zj <ir, shows that gp(z) differs from Yp(z) for large 
z by terms that increase as z"1+p, if p > 1. If p = -1/2, -3/2,**>, 

then Hp(z) = Yp(2)‘ The Struve function for positive half-integral 
order can also be expressed in terms of sines and cosines, e.g., 

$1/2 (iO = ySTira (1-cos z). 

It will be useful to introduce a notation for the 
complex combination of J and Ji that is analogous to a Hankel func¬ 

tion of the first kind. No notation for this has been standardized 
in the literature. For arbitrary real p, we set 

Xp(z) = Jp(z) + i Hp(z) 

A well-known integral representation for J can be 
combined with the repre/sentation given above for Hp: 

X (Z) - -2- ,(2/2)P. f 
PU; “ r(P ; U/2)) ¿ 

TT /2 iz cos X „. 2p j sin r X dx. 

We recall that Jp(z) + i Yp(z) goes to zero exponentially 
as z moves to infinity along the positive imaginary axis. Thus XQ(z) 
goes to zero along this axis as 1/z. 
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We have seen in Section 10.3.3 that in the limiting case 
of an incompressible fluid (that is, k = 0), G0(T) is a multiple 

of X (AT). The asymptotic form of X (AT) shows that it can be 
written as the sum of an outgoing wave part Jq(AT) + iYo(AT) and 
a pure imaginary part which can be thought of as a standing wave, 
or else as a disturbance propagated with infinite velocity. XQ 

can be thought of as a pseudowave, which behaves nearly like a 
true wave JQ + iYQ for large T, since Jo + iYQ decreases as T’^^ 
while the remainder (the standing wave) decreases as T-'*'. 

10.3.5 Expansion for G0(T) in Struve Functions 

We rewrite the function W(T) introduced in 
Section 10.3.3 as 

-1 
- 'yr?~* <w2> - D), 

where : 

D = / 
k oiT” d» 

° ^^2 - »2 

10.3.5.1 Expansion of D 
Vf 

By setting xí = k x, we can_trar.sform D into 
/ 9 ^9 Vf 

a power series in inverse pox^ers of t = v A - k /k : 

d - d/t) ; 
o 

dik*TiI dx 

■\.i + U-x2)/t2 

= (i/t) ï Ira^iILL f1 (i.x2)je^ dx, 
ji A J=o J 
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where 

(-1)!! = 0. 

The expansion of the radical will converge absolutely if 
9 21 

(1-x )/t |< 1 for all values of x in the range of integration. 

Then the integration can be performed term by term. Thus the 

series above converges absolutely if|t|> 1. 

By making u = cos x the integration variable in the 

integral representation given in 10.3.4, we find that 

-j-U/2) x 
j+(l/2) ^ ""vC 2j J7 J1 el2u(l-u2)J du 

We then obtain directly 

Tr X (AT) 
G_(T) = W(T) = - ° 

2 Vx2_k*2 

-, 07 1 s (-1)j(2j-l)!: X, + a/2)(k T) 

V2k T k*t2 j=o (Ä*T)J 

10.3.5.2 Convergence of the Expansion 

To investigate the convergence of the H-terms, 

we need the following asymptotic evaluation: 

Hp(z) —> Zp+1/\4T 2P r(p+(3/2)). 

This is the first term in the series expansion for H (2). After 

substitution of this form into the infinite summation, the ratio 

test shows that both the J and H terms converge as fast as a 

geometric series with ratio t2 if |t| >1, but diverge if 'tj < 1. 
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The asynptotic evaluation for Jn(z) is a gross over¬ 

estimate if z is large (say z > 20), and n < 3z/4. Thus in many 

cases fewer J terms are significant than in the corresponding 

geometric series. On the other hand, the evaluation for H (z) is 

reasonably close, for the same range of z and n. Thus for £25(50), 

it is in excess by less than a factor of 2. Therefore, the ex¬ 

pansion will not be useful if |tj is very close to 1. 

10.3.6 Comparison and Physical Interpretation of the 

Power Series in t and in fc~2 

We have now obtained two different convergent 

expansions for Go(T), one in ascending powers of t2, (Section 

10.3.3.2), the other in descending powers (10.3.5), as well as one 

for which the Y terms never converge (Section 10.3.2.4). 

10.3.6.1 The Convergent Series 

The two convergent expansions for G0(T) both 

contain an infinite summation over half-order terms and are other¬ 

wise very similar. 

The X0(iT) term of Section 1U.3.5 decreases as T-^2. 

This indicates that it represents a disturbance that is not pr-'na- 

gated into the fluid, but spreads along the interface between 

water and plate. Thus it is the analog of a surface wave. The 

discontinuity between plate and water acts in effect as a waveguide 

or channel for the propagation of Rayleigh waves. 

Each term ir the infinite series of 10.3.5.1 decreases 

with increasing T as fast as T The series represents volume 

waves propagated into the water. Presumably the expansion in 

ascending powers of t2 also decreases as T"*'. 

The existence of separate expansions for different ranges 

of t is in hindsight not surprising. 
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'fc 
One can think of Vk as being in a rough sense the 

ratio of the "hardness" of the water to that of the plate vibra¬ 

ting with wavenumber A. We have seen, however, that the quan¬ 

tity t is actually a better measure of the relation between water 

and plate. The "hardness" of the water arises from its near-in- 

compressibility; the "softness" of the plate arises from the fact 

that it can sustain flexural waves. The plate is relatively soft 

for a wavenumber A near its free wavenumber k, while the water 

is relatively soft for A close to its free wavenumber k . (In 

our application, k is considerably greater than k for all fre¬ 

quencies of interest.) 

If t|> 1, then the water is sufficiently harder than 

the plate in its A mode so that an approximation method for the 

irrational integral can start from incompressibility. This 

yields the surface disturbance termXo(AT). There is also a 

series of correction terms proceeding in descending powers of t , 

namely, the volume disturbances with wavenumber k . The rational 

integral represents a true outgoing Rayleigh wave with wavenumber 

A. 

When [t| becomes greater than one, the expansion based 

on an incompressible medium no longer converges. It is not 

possible to give a simple physical interpretation for the terms of 

the convergent expansion that proceeds in ascending powers of t , 

because they are unbounded as T goes to infinity. Nevertheless, 

there is convergence for every fixed T. The rational integral 

still gives a surface wave with wavenumber A. 

10.3.6.2 Relation Between Neumann and Struve Function 

Terms 

The real part of the summation in Section 10.3.5 

is the same as the real part (that is the terms involving J) of 

the sum in 10.3.2.4. The imaginary part of the latter, involving 

Y, diverges as has been noticed. At first sight, it is remarkable 

that the convergent series derived in 10.3.5 differs from the series 

that was derived in 10.3.2.4 by formal expansion,only in that the 
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Neumann function Y is replaced by the Struve function H. We now 

make this plausible by using the concept of Hilbert transform, 

which will be denoted by X . As is necessary in using this trans- 
•Jç 

form, the transformed variable k will range from minus to plus 

infinity. 

We first observe from Erdelyi et al, Tables of Integral 

Transforms, vol. 2, page 252: 

A-Csir, k*T/k*T) - . 

and on page 255, valid for p > -3/2: 

(|k*T|)-p Jp ( I k*T I ) = - sgn y y|i -pB (|y|T) 

On the assumption that k and A are real, we write 

Gr(T) = Re Go(T)/k‘ 

Then from 10.3.1, 

(v£ + X2) Gr(T) = sin k*T/k*T, 

and taking the Hilbert transform 

<VT + k2> ^<gr> - • 

Therefore, by renaming the transform variable, 

(V2 + A2) (Gr - i?f(GR)) = e 

It follows that 

ik*T 
*-l / 2 .2 k " (V + A ) G (T) + 

ik*T k' T ° k T 

G0(T) = k 
* 

Gr - i *(Gd) R' - g(T) 

where g |t] is a solution of 

<v£ + A2) g (T) = iT"1 

This equation has the general solution 

g(T) = aJo(AT) + bY0(AT) - (tir/2A) (AT) . 
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It follows from the usual argument involving small T that b must 

be zero. But then the J and H terms must combine to behave o -io 
asymptotically like an outgoing wave for large T. 

Therefore, 

g(T) = - ( ¥/2A) Xo(AT) . 

In the differential equation for GR(T) given above, the 

inverse of the operator on the left can be expanded by the method 

of 10.3.2.4. One then obtains the «Jn+^/2) tertns expansion 

given in that section. This series converges forftJ> 1, even 

though the tertn,;> diverge. Then an expansion for ?f(GR) is 

obtained by applying the transform term-by-term to the series. 

This produces terms involving g. Then GR - i^(GR), and therefore 

G0(T),will be expressed as a sum of terms of the form 

(k*T)-(tt+(1/2)) Xn+(1/2) (k*T) . 

10.3.7 The Convergence Criterion [tj = 1 

In general A will be complex, and so the condi¬ 

tion |t| = 1 that separates the regions of convergence for the 

two expansions must be studied in the complex A plane. It can be 

written as 

From this form, we see that the equation |t| = 1 defines a lemnis- 

cate (see Fig. 10-2) , which has the property that the product of 

the distances from a point on the curve to the two points -k , k 
*2 

is the constant k . 

2 2 
Of the five roots A of the equation P(A ) = 0 of sec¬ 

tion 10.2, the four near k^ or -k^ satisfy the condition |t| > 1, 

at least for the physical dimensions and range of frequencies of 

interest to us. The remaining root, which is very close to k , 

does not satisfy the condition. 
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We recall that the free plate wavenumber k is a function 
of frequency of the form 

k 

and the water wavenumber is 

Bo) 

where A depends on the material and geometrical properties of the 

plate, and B is the reciprocal of the speed of sound in water. 

Suppose that A is one of the two real roots near k^, 

and further that A^ - is small enough to be ignored. Then the 

condition [tj >1 becomes 

w < A2/2B2 

Thus, for any given plate the expansion in powers of t-2 will be 

divergent for sufficiently high frequencies. 

For the two roots A2 near -k2, the condition |t| > 1 is 

always satisfied, provided that the difference between A2 and -k2 

can be ignored. 

For a more exact investigation of these questions, we 

return to the polynomial P(p2) of 10.2.1, and express p2 in terms 

of t2: 

P2 = k*2 (t2 + 1) 

Then P(p2) = 0 becomes 

k*2t2((t2 I)2 k*4-k4)2 

For a real root, the condition |t 

two regions of convergence is, of course, t 

= 1 separating the 

= 1. Then if we set 

P(P2) 0 becomes 

9 

Bcju(4B4cju2-A4) = C 
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A recursion relation of the form 

r— -— -- 

œ(i-(-l) = ¿"Va4 + 

O r\ 
is thus suggested. On substituting = A /23^, we obtain, to 

first order in C: 

œ (D "i? A + -Ç 
2A n 

Tils is a more accurate evaluation of the critical frequency for 

the real root that is less than k2, but not very close to k*2. 

10.3.8 Derivatives of G 

It will be useful for several purposes to have 

explicit expansions for 

y-37 
ni 

G„(y): 

10.3.8.1 Case 1. j11 < 1. 

The series of 10.3.2.2 can be differentiated 

term-by-term, making use of the identity 

^ (k*T)P C (k*T) = k^kV-1 C x(k*T) j 

where C is J or Y. Thus 

m 

TciT Go = iV¡72 k*2"1“1 X 

f-t2^nfk*T^n“m+(1/2^ Í * * ’ 
nf0 - [Jn-m+(l/2)(kT) + :Vm.(l/2)(kT) 
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It is easily checked that this expansion converges if 

M <l- 
10.3.8.2 Case 2. It|> 1. 

If |t|> 1, then the correspon ling series, given 

in Section 10.3.5.1, involves the forms (k T) F X (k*T). Now for 
* 

the Struve function, there is an algebraic term in the differential 

formula : 

z"p H (z) z'*'1 ap+i(“) 
_1_ 

2PYT F(p+3/2) z 

Thus, when is applied to the series for G0(T), each term will 

produce a Struve function term and also an algebraic term propor¬ 

tional to 1/T. Applying the operator a second time will result 

in terms in 1/T^ and 1/T. Let Sn be the sum of the algebraic contri 

butions of all the terms. 

Sn can be found directly by the following argument: 

is nearly proportional to zph^ when p is small. Therefore 

(z) approaches zero as z goes to zero, and further, 

J 

z"p Vz> 
behaves as const./z for small z. Thus the Struve function terms 

that arise after differentiation do not affect the behavior as 

z-H), wftich is determined entirely by the algebraic terms. 

The part of GQ(T) corresponding to all the Struve 

function terms (both the zero-order and half-order terms) is 

given by the following modification of the W(T) integral of 10.3.5: 

A 
I 
k* 

sin Tu du 
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T3T gH(t) = ^ I 
u cos Tu du 

V^?5 k* V7^2 

- -iT"1 + R^, 

where R^ is a remainder term that goes to zero as T goes to zero, 
mi o jm-1^ ££ ]_¿ra¿t notation is used in an extended Thus S1 = -iT 

sense, we can write for the higher Sn: 

S2 = lim ¡THT 

= iT 

V>2^2 k 

-3 

Gh(T) 

lim / [T~^ u cos Tu + T-^ u^sin Tu] du 

and 

S3 = -3iT“5+ iT'3 (2A2 + k*2)/3 

In general 

Sn = (-l)n (20-3)11 T"2n+1 

-2n+2r+l -t 2 C T 
r=l nr 

where the summation includes all integers r for which r < n/2. 

10.3.8 ^ Differential Equation for Derivatives 

It can be shown by mathematical induction that 

the derivatives of Gq(T) satisfy the following equation: 

v2 9 d + x2\ / d ln r m / d |n exp ik*T 
VT 2n t3T x I I TcPr j Go^ - [t3T iT 
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In analogy with the treatment of 10.3.2, one can now expand the 

differential operator on the left. This leads to the same series 

as was obtained in 10.3.8.1, for |ftj< 1. 

Using the second mode of expansion (Section 10.3.2,4), 

which is appropriate for jtj > 1, one obtains a series having 

Jn+(i/2) terms that coincide with those of 10.3.8.2. However, it 

also has Yn+(i/2) terms that diverge, as might be expected. 

10.3.9 Asymptotic Evaluation of Go(T) 

When T is very large, the only significant 

contributions to G0(T will come from the regions near the singu¬ 

larities at p = k* and p = >. in the integral that defines Gq(T). 

By taking slowing varying factors out of the integrand, Go(T) can 

be approximated as a sum: 

™ J0(PT) P dP 

° 

oo 

/ 
J0(PT) p dp 

■Î lrVtrr 2 *2 
The first term equals -e /t k TT, and thus represents a volume 

wave with wavenumber exactly k , that is propagated into the water. 

This has not appeared explicitly in our earlier expansions. 

The second term can be evaluated (see Section 3.1.2) as 

ifr 

2^*2 
J0('T) + i Yo(!T) 

We now recall that A is just another name for pm. Then from 

Section 10.2.1.1 we see that the asymptotic evaluation of the sum 

of the rational and irrational integrals corresponding to pm is 

(J, f iYo> 
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On substitution of the explicit expressions for Am and given 

there, the bracket above becomes proportional to 

- (p4-k4) - 

If the sign in front of the radical were changed, this 

would be -f(p That is: the expression above is 
2 2 

pm is a zero of P(p ) but Ffois not a root of f(p) (see 

10.2.5). This means physically that the true wave due 

rational integral cancels with the asymptotic wave due 

irrational integral, unless p^ is a contributing root. 

10.4 Expansion of the "Irrational Part" of the General 

Interaction Integral 

We set 

" -1 
Gi) m f h <P) Ji(PR) Jj(pS) Ji+j(|Æ) pdp 

We shall assume that i and j are integers, and i+j 0, although 

i or j can be negative or zero. 

10.4.1 Reduction of the Integral to a Form Involving Go. 

The product of the three Bessel functions will be 

rewritten as 

L(p) p1+j J^^PT) 

(k*T)i+j 

expression 

zero when 

Section 

to the 

to the 

J^(PR) (Ps) 

in which 
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Since 

d 
T3T 

m 

) J0(PT) = (-V™ P“1"111 Jm(PT) 

for positive integral m, we can write 

G,. = Ti+j 

where 

far 

i+j 

G* = / h"1(p) L(p) J0(pT) pdp 
o 

2 *2 *2 
We now expand L(p) in a power series in (p -k )/k : 

L(p) = 2 bn l(p2-k*2)/k*2 
n » 

The discussion that follows will apply to more general forms of 

L(p) than the product of Bessel functions. All that is needed 

is the possibility of the above expansion, together with appro¬ 

priate convergence conditions. 

When the series for L(p) is substituted in the integrand 

of G*, the individual terms result in divergent integrals, if 
n > 1. To avoid this, a convergence factor exp (-cp) will be 

*■» 
inserted in the integrand of G . Thus we define 

G* (c) = I exp (-cp) h’1(p) L(p) J0 (pT) pdp 
o 

we now recall that 

V$ J0 (pT) = - p2 J0(pT) 

Therefore 

.00 00 1 

G (c) = 2 (-l)n bn / exp (-cp) h"i(p)X 
n=o o 

(v; k*2)/k*2 
n 

Jo(pT) pdp 

ItiKi-ir.i. 
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i I 
We have assumed that the infinite summation converges. 

This is not assured by the convergence of the original expansion 

for L(p). 

The differentiation operator can be taken out from 

under the integration sign. After setting 

T* = k*T, 

we observe that 

(v£ + k*2)/^*2“ v£* + 1 

and obtain 

G*(c) = 2 (-l)n b 04* + l)n G (c) 
n=o x u 

where 

00 -1 
G0(c) = / exp (-cp) h (p) J0(pT) pdp 

Now let c go to zero. Then G (c) becomes G in the 

limit. We now use the differential equation of 10.3.1 in the 
form 

(V2* + 1) G (T) = -t2 G (T) + -¾ -e-^ I .T- 
0 ik T 

= -t2 Go(T) + VI T*"1/2 H1/2(T*) 

and the identity of 10.3.2.3, to obtain 

(V2*+ l)n G0(T) = (-l)n t2n Go(T) 

+ 4 ^/1 "i1 (.„q ¢2(n-q-l) T*-(q+(l/2)) „ •fr. 

k " q=0 q+(l/2)(T ) 

1 
1 
.¡s 

saill< H* ’ «NiMiMnUUlill't ■ - -i-isMaaiwian 
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Here H indicates the Hankel function. Then 

G* = (2 bn t2rt) G0(T) 
n 

+ k* ^ ni ('1)n bn qîo X 

ij>*"(q+(-/2) ) V(1/2)(t*) 

The summation in the first term is equal to L(A), The order of 

integration of the double sum is now interchanged to produce 

G = LO) G0(T) 

('1)q l! aq » V(1/2)<T*> ’ 

where 
00 
V / i\n , *.2n a = 2 (-1) b t 

q n=q+l n 

10.4.2 Evaluation of the a. 

10.4.2.1 Recursive Relation 

The a^ can be computed conveniently from the 

bq by descending on the index q: 

Vi * aq + (-l)q bq t2q- 

One must start with a q so large that a can be taken as zero 

without introducing any significant error. 

10.4.2.2 Evaluation of the b n 

The expansion coefficients bn, defined at the 

beginning of 10.4.1, can be evaluated by using the Lommel series 

(see Watson, Bessel Functions, p. 140) for the two factors in 
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L(p) = k*<1+j) 
Ji(ps) 

~ZT~ 

Thus from the Lommel expansion 

JitpIlJ/P = k 
*_! » (-l)m (k*R)1,1 J1+m (k*R) 

2 
m=oa om i 

¿i m. 

and the similar one for J.(pS)/pJ, it follows that 

. (-1)5 k*s I 
s 2s m,0 m: (s-m): 

10.4.3 Convergence of the Series for G 

The infinite sum for G at the end of 10.4.1 

is closely related to the sum in Section 10.3.2.4. It was noted 

in Section 10.3.2.5 that the YnH.(i/2) terms did not converge for 

any t. The form for G derived above contains an extra factor a^ 

in each term. For many forms of L(p), this decreases very rapidly 

with increasing n, and thus produces convergence. 

10.4.3.1 A Special Case 

In the special case i = j = 0 and S = 0, we 

have 

= 1^11 (k*R)S Js(k*R) 

s'. 

The Jn+ i/2) tGrras *-n th*2 series for G will clearly converge if 

the Yn+^2) terms converge. Thus it is sufficient to look at 

the Y terms. Using the asymptotic evaluations given in Section 

10.3.2.5, and taking absolute values, we find that the Y part of 

the sum over q is less than 
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00 / 00 

2 2 
q^O \n=q+l 

(tk^R)2n 
(2n)I!^ 

t"2q (2q-1)'.: T*(-l-2q) 

where 

Cq = 2^/2) T (q+1) /Tr 

Cq can be approximated very closely as c(2q-l)!¡, where c is a 

constant. On making u = n - q the inner summation variable, the 

double sum becomes 

U=1 (2q+2u): :¿ 

R2q 
(tk*R)2u 

From the obvious relation 

1 

(A+B)::2 

the double sum is seen to be less than the product of two single 

summations 

V (2q-l)::2 R2q 
00 

y (tk*w 2u 

_q-0 (2q+2) ! !2 T2q_ fel TT 

The second series is the convergent expansion of (tk*R)2X 

exp(tk R/2). The first series converges if R < T,faster than 

a geometric series with ratio (R/T)2. It also converges, but 

slowly, if R - T. 

10.4.3.2 S Different From Zero 

To handle the more general case i = j = 0, 

but S ^ 0, we will use the following inequality for positive 

integral n: 

"««I» ill il 111II—nni«m i>uiwnm»tiiiHK 

Jn(x) < xn/2n n! , X > 0. 
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That is, the first term of the power series expansion of J (x) is 

always greater than Jn(x) , for real positive x. This can be 

proved from the standard representation 

= 

.n 

n n-l 
2“ r (n+1/2) o 

//2 ?n 
/ cos(x cos 0) sin 0d0 

by replacing the integral by the following approximation in ex¬ 

cess : 

Jn/2 sin2n 0d0 = î 1-3-5 (2n-l) 

o ? 2n n! 

When the above inequality is used in the expression for 

bg given in 10.4.2.2, we obtain, assuming as usual that k* is 

real, 

N * 
.*2s 

2s' ,2 

i 2j^2m g2 (s —m) 

2tos! * m=0 m!^" (s-m)! 77 

.*2 s 
2 s!Rm SS~m 

m=0 

i2 

m (s -mTî 

/ p . q\ 2s 

Then the discussion can be thrown back onto the special case 

treated in 10.4.3.1, if the former R is now replaced by R -i- S. 

* In summary: if i = j = 0, and T > R +- S, the series 

for G converges. Presumably this result can be extended to 

non-zero i and j. 

10.4.3.3 Speed of Convergence ; Special Summation Methods 

When T = R and S ^ 0. 

Since the convergence proof involved a rearrange¬ 

ment of the terms of a double summation, we cannot draw any conclu- 
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1 
i 
1 
I 
I 
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s> 

sions about the speed of convergence for the original form of G . 

Clearly the summation (Section 10.4.2) that gives the a„ from 
'k ^ 

the b converges very rapidly. It appears that the G series 
4 ? ? 

converges faster than a geometric series with ratio (R + S) /T . 

The special case R = T, S = 0 is very important, and 

it is desirable to have some method of accelerating convergence. 

Assume that q is large enough so that the leading term in the 

power series expansion of the first term of a^ is a good approxi¬ 

mation to a^. This can be true only if q > k*R. Then the double 

sum reduces to a single sum 

¡J £, tk*R ï 1¾ - 
T q=0 (2q + l)'.'/ 

II 
IS 
II 

The terms of the summation decreases approximately as 1/q^. This 

indicates that after a certain qQ is reached, the sum of the 

remaining terms can be estimated by finding constants A and B 

such that the last few computed terms can be fitted closely in 

the form 

q-th term = A(q + B)~^ 

Then the remainder can be evaluated as 

A (q + B)'3. 

ï 

10.4.4 Relation to the Work of Pritchard 

Pritchard (J. Acoustical Society America, vol. 

23, p. 591 (1951)) has derived expansions for integrals not con¬ 

taining the factor (p^ - X^)"'1': 

1' 
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» Ju(xp) Jv(yp) pdp 

i* "pU+V W ■ 

irk* 1 rw ’k^ (u+v) 
2 

r=0 r! r (1/2) 
..Q/g),), 

Ju+r ^ y)Tv-r-(l/2)(k ^ 

valid for Re (u+v) > 0, and x > y. The formula is also valid in 

the limiting case u = v = 0. 

This special case u = v = 0 was also derived by Pachner, 

p. 187-8 of the same volume. Pritchard^ derivation can be simpli¬ 

fied when u = -v = i, where i is an integer, by an argument very 

similar to the treatment of Section 10.4.1. 

As earlier, we introduce a convergence factor exp(-cp) 

in the integrand, with the intention of ultimately letting c go 

to zero. Now write 

CO 
P(c) = / exp (-cp) 

JiCxp) P^iiyp) pdp 

p2 - k*2 

Jj/xp)/?1 is now expanded in a Lonunel series in p2 - k*2, and the 

summation is interchanged with the integration. The integrals 

have the general form 

» exp (-cp) (p2-lc*2)hpiJi(yp) pdp 

k* -\p- - k*2 

i » exp(. cp) (p2-k*2)hJ0Cyp) pdp 

■ y ^ L — 
/P2 - K*2 

.,i ., ,.. e*p(-pp) J0(yp) pip 
y (-D (p2 + k*2)h / -.,... 

y y y k* -, £5 '2 p - k* 
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Now c can be set equal to zero, and the last integral becomes 

equal to (cos k y)/y, which equals 

Vîrk*/2 y"1/2 > 

and the differentiations can be expressed explicitly using the 

identity of 10.3.2.1. 

10.3 Transformations of the Irrational Part of the 

Green1s Function 

Relations will now be derived between integrals 

over the two ranges 0 to k and k to It will be assumed 

that X has a positive imaginary part, possibly infinitesimal, 

in order to avoid any discussion of the path to be taken around 

the pole at p=A. 

& 
10.5.1 Restriction to the Range 0 to k . 

10.5.1.1 Introduction of the U Integral 

We define 

U = 7 h"1(p) Ji(pR) J (pS) Hk(pT)p dp 
-3» J 

where indicates the Hankel function of the first kind. 

To specify the path C of integration in the complex 

plane, we first introduce a branch cut from -k to k , and 

distort it slightly upward as shown in Figure 10-1, so that it 

The point p - 0 is a logarithmic branch point of the Hankel func¬ 

tion. To make the integrand single valued, we introduce another 

cut extending from p = 0 downward along the negative imaginary 

axis, as shown. Then the path C of integration is taken as going 

does not pass through the point p = 0. We choose the branch of 

— /" ? n f~2 *2 
\/p - k which is positive for p > k . Tnen \/p - k is 

positive imaginary for -k <,p <k ', and negative real for p <-k 
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below p -k* and p=k*, but above p=0. Our intention is to distort 

the path of integration upward to infinity. This will leave the 

value unchanged only for a path C* that goes above the branch cut. 

Let U' be the integral for such a path. Then we have 

k* ! 
U « U' + 2 / h 1 Jj Jj H. p dp 

-k* 1 2 K 

where the integral is taken along the lower side of the cut. 

When p has a large imaginary part ipo and zero real 

part, Jj^CpR) equals Ii(poR) , which behaves asymptotically like 

e^o^ (multiplied by an algebraic factor, which will be neglected). 

J. (pS) behaves asymptotically like e^o^, while H, (pT) becomes 
J n T1 ^ 

K. (p T) , behaving asymptotically like e^o . It follows that a 

couitour that goes above the cut can be distorted upward to in¬ 

finity, if T > R + S. Therefore, U' is given by the residue at 

the pole p = 

10.5.1.2 Folding of Integration Path 

We now rewrite U as an integral from 0 to °o. 

The branch cut from the origin downward has unambigu¬ 

ously fixed the phase angle of z. Then one can apply the general 

formula in Watson, Bessel Functions, p. 75: 

Hk(ïe"rl) e-mk,rlHk(z> - 2e 
'krri sin mkrr 

sin ktr Jk<*> 

where m is an integer. 
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Case 1: i + j even and k even. 

Then from the above equation 

_/Jk(UI) +lYk(UI) l£i>0 

(jk(|z|) + 1 Yk( |x|) If x< 0 

Now observing that U has the form 

U - / F(p) dp - / [F(p) + F(-p) ] dp, 
-O# —00 

we find, since i + j is assumed even, 

k* , 
U - 2y h ^p) Ji(pR) JjCpS) i Yk (pT) p dp 

+ 2 / h"1^) Ji(pR) JjipS) Jk (pT)p dp 

The integral from 0 to k is along the lower side of the cut. 

Case 2 : i + j odd and k odd 

Then 

jjk(\zi) + i Yk(|z|) if z> 0 

Hk(z) * 
k (jk( |z J) - i Yk(|z|) if z< 0 

Using the hypothesis that i + j is odd also leads to the ex¬ 

pression given above for U. 

Thus the formula for U holds if i + j + k is even, 

which is satisfied in the cases of interest to us (k=i + j). 



217. 

10.5.1.3 New Integral for 

Combining the expressions for U and U' we find 

in abbreviated form 

2ri 
J, (MO J,(XS) H-^T) k* 

+ / JJH 
-k* 

U* 
« 2i / JJY + 2 / JJJ 

o k* 

where the integrals are taken along the lower side of the cut. 

The path for the integral on the left-hand side can be folded 

and then the real parts will cancel: 

k* k* 
2 / JJH - 4i / JJY. 

-k* o 

¢0 

Now add and subtract / JJJ from the equation above, and rearrange, 

to obtfain K* 

7TÍ Jj^CAR) Jj (XS)Hk(M) 

2 “ k*2 

k* 

+ / h^Cp) Ji(pR) Jj (pS) Hk(pT) p dp 

o 

where the integration path is under the cut. 



If the imaginary part of ^ goes to zero, then the first 

terra on the right is an outgoing wave in the distance T. The second 

term is an integral over outgoing waves H^CpT) with wavenumber 

equal to k* or less. If we reintroduce the time dependence e , 

we see that these all travel faster than œ/k*, the speed of sound 

in water. There is no upper limit to the speed. Thus one cannot 

say that the waves are propagated primarily through the plate. 

This apparent paradox can presumably be resolved by 

considering the cancellations between the waves, or else by dis¬ 

tinguishing between phase velocity and group velocity. 

10.5.2 Restriction to the Range k to Infinity 

The integral defining G at the beginning of 
~ O 

10.3 can also be modified so that the integration runs from k to 

oo. The new integrand involves the Struve function of order zero, 

in the combination XQ(z) = J0(z) + iJJoCz)* 

if 
Consider the integral U 

U* = f h*1(p)Xo(pT)p dp 
-00 

path of integration is again C (see Fig. 10-1). (Since 

singularity, the vertical cut is not needed.) There is 

in the sign of Re XQ(z) as z changes from positive to 

but Im XQ(z) changes sign. Then in analogy with the 

of 10.5.1, we obtain 

X ( AT) k* , 
2ttí - ° — - + 4 / h i(p) J (pT)p dp 

2 V>2 . k*2 

k* 
= ■>. / h-1(p) J (pT)p dp + 2 / h_1(p)iH (pT)p dp 

o k* 

where the 

00 has no 

no change 

negative, 

arguments 



219. 

Now adding and subtracting 2 / J , we obtain after rearrangement: 

k* 

7ri X ( AT) oo 

G°(T) = + h (p) xo(pT)p dp* 
2 » A -k ^ k* 

If we choose to interpret the factor p in the argument 

of XQ(pT) as related to the "speed'* of the pseudowave by the usual 

relation, then we can say that Gq has been analyzed into a residue 

term proportional to Xq(äT) and a sum over pseudowaves all traveling 

slower than c = cu/k . 

10.6 Related Integrals 

10.6.1 Another Treatment of the Differential 

Equation for Gq(T) 

The second-order equation for Go in Section 

10.3.1 can also be solved by introducing a Green's function F(T,T*) 

for it. F is defined by: 

F(T*,T) 

fj0<*T*) Y0(XT), if T* > T 

Jom YoaT*), if T > T* 

Then F is continuous, but has a discontinuous derivative at T*=T. 

Gq is expressible as 

G0(T> - -i / F(T*,T) T*"iexp i k T* dT* 
-00 

The literature on related integrals is summarized by Luke , Y. L., 

in Integrals of Bessel Functions (McGraw-Hill, 1962), There are 

several tabulations (for references, see Luke, p. 251) of the 

Schwarz functions J , Y : 
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Je(*2> « /Z eit J0<*t:)dt 
o 0 

Y_(>>2) - JZ eit: Yrt(At)dt 
* o ° 

Je and Ye were first encountered in panel flutter problems. 

10-6-2 Integrals Arising in Two-Dimensional Problems 

The integrals that arise in considering water- 

coupled plates with a stiffening beam attached along an infinite 

line, or else with boundary conditions applied along a straight 

line, are all related to the general form tsee Section 6.4 and 

9.5.1). 

/ coa ZP dE~~. . _Í_ y* _cos zp dp __ 

f( Vp+q ) ° (p2+q2)2 _ k4 + ieip2-^2-!^2)*1/2 

Following the techniques of Section 10.2, this can be reduced to 

the sum of five integrals of the form 

R(z) - /00 
o 

cos zp dp_ 

R(z) differs from Go(z) in having a cosine factor, instead of 

pJo(zp), and in that the k*2 of the radical in G is replaced by 

,*2 2 Tr 2 , *2 , ° 
K " q . If q > k , there will be a qualitative difference in 

the nature of the solutions. 

By applying the operator 

differential equation for R(z): 

A , one obtains a 
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(^ + X2) R(z) 
ÒZ 

00 i eos zp dp 

yp2-k*2+q2 

- ttH 
o <z V k-*2 - q2) 

and so R(z) satisfies a fourth-order homogeneous equation 

2 
(v2z ,. k*2 . q2) (l-j + >>2) R(z) . 0. 

ÒZ 

To soXve by the Green's function technique, we define 
the function 

S(z*,z) 

cos X z* sin X z 

sin X z* cos X z 

if z* > z 

if z > z* 

Then 

R(z) - const / S(z*,z) - q2)dz* 

and thus R(z) can be expressed in terms of four integrals which are 

the real and imaginary parts of J and Y . 

2 applying V3 4 X2 to the fourth order equation 

(^3 *-^e 3-dimensional Laplacian) , we see that 

a2 ? 
(7-7 + * ) R(z) 
oz 

is a solution of the equation for G . 
o 

Integrals Involving a Depth Factor 

A treatment was given in Sections 8.7 - 8.9 for 
a point source immersed in an infinite ocean covered by a flexible 

plate. Tnis led to an integral of the following general form: 
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Wif... 

G(T3y) = / e V?-k*2 y h"1(p) L (p) J0(Tp) p dp 

In the problem actually considered, L(p) = 1. It is plausible 

that if a rim resonator were attached to the plate, with the 

center of its attachment circle directly over the source, the 

analysis would lead to integrals in which L(p) = Jo(pR). More 

complicated forms would result from submerged ring sources, and 

off-center configurations. 

The above integral cannot be evaluated as a special 

case of the form treated in Section 10.4, by combining 

- -\fv2-k*2 e VP y into a new L, because the square root does 
O O ^ 

not allow an expansion in powers of (p -k )/k . 

10.6.3.1 L(p) Equal to Unity; G = 

The approach of Section 10.3.1 can be easily 

modified to take advantage of the special form of the exponential 

factor. We first set 

* 
= k* Vï2+y 

and observe that 

V2* = -* -¾ T*2 d 
T T dT* T* dT 

\ A Cv*2-k*2y2) \ A 
V dV V dV 

= V2* - (k*y)2 757 
The differential equation derived for G0 by the method 

of Section 10.3.1, namely 

(V2 + X2) G0(T,y) = 
exp i k* AV 

i ‘V't2 t y2 
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theii becomes 

2 2 
Vy* + 1 + t¿ ^]21 

V dv / k* i V* 

The inverse of the operator on the left can now be expanded just 

as in 10.3.2.2, but with the term t2 now replaced by the operator 

t2- k yd 

'series (T,y) = í^/7/2 k*-1X 

i-l)n 
n=0 (2n+l)! ! '2 ’ Td^j V "+ '1 /2> |Jn+ ( 1 /2)iv1+ 1Y„+ ( ! /2)(víl! 

The binomial power can now be expanded, and the differential 
operator can be applied. 

series (T,y) = iV^2 k*"1 X 

Z S -111)" n! (k%)rt2(n~r> ^n+r+M/2^ 
n-0 r=0 (2n+l) ! [ r!(n-r)! 

r 
|Jn+r+(l/2)(V > + iYn+r+(l/2) 

One expects tnat this converges if |t| < 1. The double sum can 

be rearranged in several ways. Thus let m = n + r. Then 

V1» = Gseries = 1 ^ k*"^ 

<» m/2 
2 Z 

m=0 r=0 
(-l)tn~r(m-r)!(k%)rt2rn-Ar 
(2(m-r)+1)! ;r!(m-2r)! 

V,vm-f (!/2)h 

where H = J + iY. 
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The second type of expansion, which was given in 

10.3.2.4, cannot be carried out in a useful way, because the 

inverse powers of the binomial operator that appear cannot 

be easily evaluated. 

10.6.3.2 General L(p) 

The general integral G is made to depend 

on ttu necial integral G0 for L = 1 by the same procedure as 

in Section 10.4. Set 

Up) = zbn ((p2-k*W2)n 

Then 

00 9 
G(T,y) = Z (-l)n b (Vjf + l)n G (T,y) 

n=0 n 1 ° 

But 

(VT^ + l)n Go(T,y) = (-l)nt2n G0(T,y) 

(-l)’ t2'1'-'!-« (vJ + 1)1 
q=0 1 iV 

and 

1) 
exp iV' 

iV* 
1- 

'k*yd 

,V*dV* 

-1/2X 

(V*) + iY1/2 

The two operators Vy* and 7Ï7 
to an expression of the form 

do not commute. When applied 

yv*>+1 * 

K 
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the first increases the index p by 1 and multiplies by 2p; the 

second simply increases the index p by 2. Thus the non-commu¬ 

tativity does not affect the index, but only the constant factor 

in front of the expression. Therefore, we can write 

q 
Z 

r=0 
cq,r<k*l')2rV*‘(q+r+(1/2))x 

|Jq+r+(l/2) ) ' lYq+r+(l/2) (V ^ * 

where the c^ r are numerical constants depending only on q and 

r. Thus c q = (2q-l)!l and c^^ = 1. When these forms are sub¬ 

stituted into the expression for G(T,y), the sum 2 bnt2n appears, 

just as in Section 10.4.1. This can be replaced by L(7v). A 

triple sum also appears, which can be rearranged in several ways. 

The most convenient is apparently 

G(T,y) = L(X) G0(T,y) 

1 V1 V JT 
77 m=0 

m/2 

:0 ^-1>r W,r(kV)2r am. 

where is the infinite sum defined at the end of Section 10.4.1. 

If k*yt is small, only one term of the summation on r 

is significant, and the formula above reduces to the result ob¬ 

tained in 10.4.1. 
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ADDENDUM 1 

GREEN'S FUNCTION FOR AN INFINITE ROD 

The defining equation for Q(x*,x) is 

A 

El(-—t- - k4)Q(x*,x) = B(x*-x) . 
òx 

We assume a Fourier integral expansion for Q: 

Q(x*,x) = (2Tr)-1/2 ¡° a (p) e"iPx dp , 
— 00 

and use the result 

00 

6(y) = (aTr)"1 / e ipy dp 
00 

to obtain 

a(p) = 
ipx* 

VS" EI(p4-k4 ■ 

Thus 

Q(x*,x) I 
-CO 

eip(x*-x)dg 

2~EI (p4-k^*) 

There are singularities of the integrand on the real p-axis at 

p = k and p = -k. The path will be distorted in the complex plane 

over or under these two poles, in such a way as to ensure no in¬ 

coming waves. Th approprate choices depend on the convention 

adopted for the time dependence, which will be taken as e-lat. 

Case 1. X* > X. Then the contour is completed by a 

semicircle above the real p-axis. At p = -k, the path is taken 

above the pole; and at p = k, below (see the figure). The value 

of the integral over the semicircle will be zero, in the limit 

of very large radius. Thus Q(x*,x) will be given by 2"i X the sum 

of the residues at the poles within the contour. 
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real p 

The contribution from p = ik is 

ei(ik) (x*-x) e-k(x*-x) 

2tí ÏÎÆÏXik-k) (ik+k) (ik+ik) = _4EIk3 

The contribution from p = k is 

eik(x*-x) ieik(x*-x) 

2Tri 2TTEI (k+k) ^ikyck+iky = 

Thus Q(x*,x) = -~i-~ (ieik(x*-x> - e-k(x*-x)), 
4EIkJ 

If the contour had been closed by a semicircle below the 

real p-axis, the integral over this portion would not go to zero. 

If the indentation had been taken under the pole at p = -k. a term 
-ik(x*-x) - 

with e v 'as factor would have appeared in Q. Since the source 

X* is to the right of x, and the time dependence is e"1“*, this would 

be a wave coming in on the left from infinity. If the identation 

at p= k had been taken above the real axis, so as to exclude the 

pole, there would not be any traveling wave term in Q(x*,x). 
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Case 2. x> x*. In this case, the contour is completed 

y a semicircle in the lower half-plane, and indentations are made 
below p = -k and above p = k. 

The results obtained in the two cases can be combined as 

Q(x*-x) = (4EIk3)"1 (ieiklx*"xL e-k|x*-xJ^ 

In terms of y = x*-x, the power series expansion is: 

Q = (AEIk3) “1[i - i . (i+i)kV/2 -f k3ly|3/3 

+ (i-l)k4y4/4i - (i+l)k6y6/6! + ...] 

Thus the first and second derivatives of Q are continuous 
at y = y*, but the third is discontinuous. 
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ADDENDUM 2 

SEVERAL GENERALIZED AXIAL 

RESONATORS ON A PLATE 

There are N resonators of different kinds on a homo¬ 

geneous plate. They are considered as centered at the points 

s1,..., Sjj. The i-th resonator has the weight-function w^Or-Sj), 

where w^ is an arbitrary function of the polar angle 6 about 

and the distance | r-sj fro® * typical point r to s^ For the 

moment, we assume reciprocity, so that w^ is appropriate for both 

sensitivity and response. 

At a point r, the i-th resonator exerts the force 

Fiwi(si-r)’ wiiere Fi is when the resonator is 

excited by a unit weighted displacement. The weighted displacement 

is defined as: 

; dr"wi(r"-s1) ri(rM), 

where the integration extends over the whole plane. Of course, 

if w^(z) * 0 for z> R, then the domain of integration reduces to 

a circular disc. No normalization condition will be imposed on 

wi* 

If there is no water on one side of the plate, the 

differential operator for plate vibration is D(^ - k^). (cf. 

Section 3.1.3). In the presence of water there is an additional 

integral term. In order to include both cases, we shall write 

the operator simply as 0r. The subscript indicates that it acts 

only on functions of r. 

The Green's function G(r*,r) for the plate with resonators 

is by definition the displacement at r due to a concentrated unit 

force at r*. Thus it satisfies the following defining equation 

of motion: 
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N 
Or(G(r*,r))«6(r*-r) + S Fn(/ dx wn(x-sn) G(r*,x))wn(sn-r) 

n-1 

We shall show that G(r*,r) can be expressed in terms of the 

functions Qn(x), which satisfy the equations: 

°x(Qn00) - wn(x) n-l,...,N 

It is clear that Qm00 is the response of a plate to which only 

the m-th resonator is attached, when the excitation of this 

resonator has unit strength. It will be convenient to set 

s - r* 
o 

Wo(x) - 6(x), 

and to define Qo by 

o* <Q0(*)) - w0W • 

An integral representation for Qo (in the presence of water) is 

given in Section 8. 

Before preceding to the evaluation of G, we first demon¬ 

strate a reciprocity relation between resonators: 

^dx V*“8®) VV30 “ /dx Qm(x-8m)wn(Vx)’ 

which says that the induced excitation of the m-th resonator due 

to unit excitation of the n-th, is equal to the induced excitation 

of the n-th due to unit excitation of the m-th. To show this, we 

observe that the operator 0 is defined in a way that makes no 



reference to any point of space, and that 

Ox(H(x-y)) - Oy(H(x-y)) 

for any function H of the difference between two vector» r ,„d 

Thus in the absence of the water, we have 

- k4) H(x-y) . do/ . vu) H(x-y). 

Thi. is a consequence of the fact that 0 ia an even operator - 

particular, it acts on an even function of distance to produce 

new even function. The reciprocity relation can now be proved 

! <”■ V*-»> 
■ ! 411 

- 1 dX 

■ ^ 

- X a dy Qm(y) Qn (Sn-am-y)) 

- / dy QroCy) 0^(0,, (on-om-y)) 

- / dy Qm(y) «n(«n-tm-y) 

- / dx Qm(x-sm) wn(sn-x). 

Note how the linearity of the operator 0S has been used twice 

and how the variable of integration is changed from x to y - x 
and back again. 
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The special case n « 0 (the point source at r*) yields 

; dx vm(x-sm) Q0(s0-x) - / dx Qm(x-8m) w0 (so-x) 

- / dx Q^x-s^ 6(r*-x) 

- % 

We now assume that the Green's function for the plate 

with N resonators has the general form 

c(r*,r) - Q0(r*-r) - Z ï Qp(r*-.p) MpqQq(S<!.r) _ 

where the are independent of r* and r, and shall see that there 

la only one matrix which leads to satisfaction of the defining 

equation for G(r*,r). The linearity of 0 implies 

0r(G) - 6(r*-r) - 2 z Qp(r*-Sp) Mpq wq (sq-r) 

The defining equation will be satisfied if and only if the 

coefficients of w^(s^-r) match, that is: 

FnW d:t wn^x-sn^ G<r*>’') - Qp Mp„ 

n « 1,2,...,N 

Substitute for G(r*,x), after dividing by Fn: 

/ dx wn(x-sn) Q0(r*-x) 

- 2 2 / dx wn(x-sn) Qi(r*-si) Qj (s^-x) 

-(1/Fn) X Qp(r*-sp) Mpn 
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The first integral is transformed by reciprocity to Q (r*-s ) , 
as noted above. Then we have n n 

This will be satisfied if and only if the total coefficient of 
each function is zero: 

6®n " j MmJ VJn + (Mmn/Fn> " 0 

where vj„ - / d* "„(*-»„) Qj (sj-*) 

This can be written 

2 V. - (6. /F )) - 6 j “J .In v jn' n'' nm 

Therefore: if a matrix N is defined by: 

"pq - ' d* "q (*-■,) Qp <»p-x) - (6pq/Fp) 

then 

M - N'1 

Vpq wüi called the interaction or overlap integral 
for the p-th and q-th resonators. It is clear that V depends 
on the vector difference y “ sp - sq, and not on s ami a 

separately. An equation for Vpq (y) is easily derived by^pplying 
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the operator Oy to a form of the integral that gives V: 

m °y f dx wq (*) Qp (y-x) 

- / dx Wq (x) 0y (Qp(y-x)) 

- / dx wq (x) wp(y-x) 

The Integral on the right is to be regarded as a known function, 

since the are given. In particular, suppose that w^(x) ■ 0 

ifJ x|> R^, where may be called the radius of the i-th 

resonator. Then 

VVpq <y)) ’ ° l£ I W > Rp + Rq 

We now make the assumption of centrosymmetry. which 

is fulfilled in all our applications: 

Wi(r-»i) - + ^ (si-r) 

It is convenient to say that the positive sign holds for even i 

and the negative for odd i, 

Wj^C-x) - (-1)1 w^x), 

but of course this is purely a notational device. It follows that 

Qt(-*) - (-D1 QtW 

The reciprocity relation then takes the form 
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- / dx wq (x-aq) Qp (8p-x) 

- / dx Qp (x-sq) wp (8p-x) 

“ (-1)^ / dx Wp (x-Sp) Qq (sq-x) 

Suppose now that the weight-function for a resonator is 

w(|x-s|) cos n 9 

where G is the angle between the prime direction and the vector 

x-s. We take the Hankel transform of order n of both sides of 

0 (Q) “ w. Then application of the operator 0 to Q corresponda 

to multiplying the transform of Q by f (p) , which was defined in 

Section 8.1. We thus obtain 

Q(n)(P> * i'1 (P) w(n) (P) 

where (P) is the Hankel transform of w of order n, and 

similarly for Q(ny Then inverting the transform, 

oo , 
Q(x) - cos n 0 / f” (p) w(n)(p) pJn(p|x-sf) dp. 

The overlap integral for two resonators centered at s and s', 

with weight functions w cos n 9 and w* cos n' 0, can now be 

evaluated using Addendum 3: 
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oo i 
V^I - T (-l)nco8[(n4fl')n]; f“ (P)W(n)(P)w(n«)(P) P Jn+n« CpI s-s'l )dP 

+ TrC-l^'cosfCn-n')«]/0 f_1(P)W(n) (P)w(n') (p) P Jn-n'(pl8“s'l )dp 

where fl is the angle from the prime direction to the vector s-s'. 

If the two resonators are really the same, that is, V 

is the self-interaction or self-overlap integral, and n is different 

from zero, then the formula simplifies to 

00 -1 2 
Vli" ^ { f w(n)(p) p dp 

The reciprocity restriction will now be removed. The 

n-th resonator will exert the force 

rnVVr> 

at r, in response to "unit weighted displacement'.' The weighting 

function w*(x-s) for sensitivity is not the same as wR, but will 

be written in the form of an operator Cn applied to wn: 

w* (x-s) - Cn(wn(x-s)) 

We shall assume that each Cn commutes with the plate operator 0, 

as will be true if Cn is a linear differential or integral operator 

(since 0 has such a form). Furthermore, Cn does not depend on a 

preferred direction in the plane or on a preferred position. If 

C is regarded as operating on functions of x only, 

Cn(w(x-s)> « + Cn(w(s-x)). 

We define the Green's response function Qn00 for the 

n-th resonator by 

0(Qn(x)) - wn(x) 
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Applying C to Q , we obtain what may be called the Green's 
XI Xk 

sensitivity function Cn(Qn(x)). Because of the commutation 

assumption, this satisfies: 

°^Cn(Qn(x)^ “ Cn(wn(x)) 

We can prove a pseudo-reciprocity relation: 

; dx C1(»n(x-a))QmCVx) - ! dx QnO-VWv*)) 

by the same devices used earlier. 

The equation of motion, which gives the displacement 

G(r*,r) at r due to a unit force at r*, in the presence of N non¬ 

reciprocal resonators, is now: 

Or(G(r*,r)) « 6(r*-r) 

+ S Fn[/dx Cn(wn(x-sn))G(r*,x) ] wn(sn-r) . 

Our earlier work suggests a solution in the form 

G(r*»r) - Q0(r*-r) ’ p^p(Qp(r*-sp))MpqQq(sq-r) 

where 

0(Qo (x)) « 5 (x) 

and M is a matrix of constants, to be determined. 

We apply 0r to this form for G(r*,r), equate coefficients 

of each w^(s^-r), and substitute for G(r*,x) within the integral. 

We then use the pseudo-reciprocity relation in the special case 

m 
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m«0 and Co equal to the identity, that is 

/ dx wn(x-s.n)Qo(r*-x) - Qn(**-sn) 

The equation of motion will now be satisfied provided that 

Fn 6nn ‘ F„ 2 V__ - M - 0 n np n q pq qn pn 

is satisfied for all n, p ■ 1, 2,...N. Here V is the interaction 

integral 

V °n("n (-*n» 

-fix Qn(*-sn> Cn(»m(V*)). 

The equation for the can be written conveniently in matrix 

notation, as earlier: 

M - t V - (VVr1 



ADDENDUM 3 

EVALUATION OF GENERALIZED TWO-DIMENSIONAL CONVOLUTION 

The preceding analysis has often led to integrals of the 

following general nature: 

I =|dx F*(x-u) G*(x-v) 

where^the vector variable x ranges over the entire plane, and F* 

and G have the forms 

F = (a cos m A + b sin m A) F(|x-u|) 

G = (c cos n B + d sin n B) G( |x-v|) 

Here m and n are positive integers or zero, A is the angle 

between the prime direction and the vector x-u, and B is the 

angle between the prime direction and x-v. The special case in 

which F and G are independent of A and B (that is, m = n = 0) 

has appeared several times. 

For convenience in handling the algebra, we will first 

consider the forms 

F* = (exp im A) F(|x-u|) 

G = (exp in B) G(|x-v|), 

where m and n can be positive, negative or zero. It will be 

assumed that F and G can be represented as Hankel transforms, 

of order m for F and n for G: 
00 

F(r) = J F j(p)p Jm(pr)dp 

o 

Then 

where 

oo 

G(r^ = j G(n)(q)q Jn(qr)dq * 

I = 

K = 

dp dci p cv^\(q)K (m)vl"M "(n) 

dx exp i(mA+nB) Jm(p|x-u|) Jn(q|x-vi). 
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We now use an addition theorem for Bessel functions to expand 

Jm(p|x-u|) around v as center. Let D be the angle between u-v 

and x-u, and E be angle between x-v and u-v. Both angles are 

taken as positive and lnss than tt. Then 

Let n be the angle between the prime direction and u-v. 

It can lie between 0 and 2ir. Then from the diagram 

A = fi + D-tt 

B = fi - E. 

Therefore K becomes 

K = dx exp i(m(:i+D-r) + n(í¿-E)) Jm(p| x-u| ) Jn(q/x-v/). 

= exp i(mf2 - mTT + nfí)L 

wh >re 

L = i dx exp i (mD - nE) ^(pjx-u,1) Jn(q |x-vi) 
J oo 

= X dx exp i(hE - nE) Jh(p|x-vi) J+h(p/u-v/) J (q/x-v/) 
h=-oo 11111 11 

= £Jm+h(pIu"v/)Jdx exP i(h-n)E Jh(pJx-vJ) Jn(qjx-v/) . 

If we set r = (x-v I , the integral ov?r the plane becomes 

2tt qd 

j1 exp i(h-n) E dE f Jh(pr) Jn(qr)r dr 

= 2TT Rhn p"1 5(p-q), 

by a well-known property of Bessel functions. Therefore 
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L = 2tt p 16(p-q) Jm+n(p|u-v|) 

and so 

I = 2tt exp i(miî - nnr + nf¿) x 

J'dpjdq pP(m)(p) qG(n)(q) p'Vp-q) Jm+n(p|u-vO 

= (-l)m 2tt exp i(m+n)fi Jdp P(ln)(p) G(n)(p)p Jn+n(p/u-v/). 

This formula is apparently unsymmetrical between u and v, because 

of the factor (-1) , However, this is a consequence of the need 

to assign a definite sign to u-v in the definition of fl. 

Results when F and G are real can be easily obtained 

by writing sines and cosines as sums of imaginary exponentials, 

and using the following result for Hankel transforms: 

FC-,) = (-^(n) 

G(-n) = (-l)nG(n) 

which are derived from 

J.iCx) = (-l^J.tx) . 

Using the abbreviation 
oo 

S(i) =J F(m)(p) G(n^(p) ^iCp/u-v/) p dp 
o 

it is found that 

J* dx cos mA cos nB F(jx-u|) G(/x-v/) 

= (-1)11^ S(m+n)cos (m+n)r' + (-1)111^ S(m-n) cos (r,»-n)ÎÎ 
fl 
J dx cos mA sin nB F(/x-u/) G(jx-v/) 

= (-D^ir S(m+n) sin(m+n)n - (-l)m+nTr S(m-n) sin(m-n)fi 

J dx sin mA cos nB F(|x-u|) G(|x-v/) 

= S(m+n) sin(m+n)n + (-l)m+n7r S(m-n) sin(m-n)fi 
/• 
J dx sin mA sin nB F(/x-u|) G(/x-vJ) 
= - (-1)111^ S(m+n) cos(m+n)n + (-l)m+nr S(m-n) cos(m-n)i7. 
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ADDENDUM 4 

TRANSFER MATRIX EXPRESSED IN TERMS 

OF TRANSMISSION AND REFLECTION 

MATRICES 

A4-1. 

T 
«P* 

Let and i//^ represent the incoming and outgoing (right- 

directed and left-directed) disturbances on a rod to the left of an 

obstacle or resonator, and 02 and w tlie outgoing and incoming 

(again right-directed and left-directed) disturbances on the right. 

It is clear that 

I 
I 
I 

02 = T01 + R*^2 

^ = R01 + T*^2 , 

where 

T = transmission operator for disturbance incident from 

left 

T* = transmission operator for disturbance incident from 

right 

R = reflection operator for disturbance incident from left 

R* = reflection operator for disturbance incident from right. 

It is convenient to define also j = T ^ and U* = T* 
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We can solve the first equation for ^: 

-1 = T* J‘(^1-R01) = - U*R01 + U*^1 

Substituting this into the second equation, we have also 

02 = T0X + R*(-U*R01 + U*^) = (T-R*U*R)01 + R*U*^X 

In terms of the vectors and these can be collected in 

the single vector equation 

0. 

ip, 

T-R*U*R 

-U*R 

R*U* 

U* / 
/ 

/ 

If the disturbances have been expressed in the wave basis, then 

the matrix that appears here is clearly the transfer matrix, in 

the same basis, from a point that is immediately to the left of 

the obstacle to a point just to the right. 
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ADDENDUM 5 

REGULAR ARRAY OF AXIAL-TRANSVERSE 
_RESONATORS ON A ROD 

An infinite series of identical resonators, with axial 

strength F and transverse strength G, are attached with the spacing 

s. There is an applied pressure After suppressing 

the factor e the equation of motion is 

EI(^—t; - k^Jr) = e^vx + Fr, (x-ns) 
òx 

+ G ¿ £ö(x-ns)|£ 

where the sums run from n = -» to n = *h»# We now introduce the 

Fourier expansion for a regular array of 5-functions: 

H 6 (x-ns) = (u/2tt) Heinux 

where u = 2tt/s 

and we assume an expansion for q: 

n = E aD elpUX + iVX 
P F 

(All sums on p will also run from 

function 

-CO tO -Ho) , 

f (w) = EI(w4-k4), 

and set: 

Fq = uF/27t = F/s 

Go = uG/2.íí = G / s . 

Then the equation of motion becomes: 

We also define the 

a f(pu + v)e^Pu + v) 
P P 

= eivx + F Y a L e^r,u + Pu + v) ix 
0^- D p p n 

- G0 E a (pu + v)2 ■' e (nu + Pu + V) ix 
P p n 

- G0 E a (pu + v) I nue(nu + Pu + 
P F n 
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The factor eiv>‘ can be divided out. In the su: 3 on the right, 

we make m = n + p a new summation variable, in place of n, and 

change the order of summation. T..en we rename the summation 

variable on the left as Now the coefficients of correspond¬ 

ing terms eiraux can be equated: 

amf (mu+v) == 6mo + Fo'Z a - G0H a (pu+v)z - G0 Z a (pu+v)(m-p)u 
P H P K P ^ 

m 

= 5 +FZIa - G2üa (mu+v) (pu+v) mo o p o pv ' 
m = -oo, . • +°o. 

Now setting 

A = 
¿~ a. 

p = £ aD(pu+v) , 
p H 

we have 

atn " f 1^6mo + f"1 (mu+v) (F A - G (mu+v)P) 

ni = “OO, 4-00 

To determine A, we sum this expression for am over m; to determine 

P, we sum after multiplying by mu + v. Then we obtain 

A = f (v) + UoFoA - G0U1P 

P = vf"L(v) + U,FA - G U9P 
lo o ¿ 
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where we have set 

ui = I f-1(mu+v)(mu+v)1 i = 0. 1, 2. 
m 

Thus we have obtained a system of two simultaneous equations for 
A and P: 

(1 - F0U0)A * G0UlP - f-^v) 

- FoU1A +(1 + GoU2)P = vf“1(v) 

If we define 

T. = f“1(mu+v)m1, 
m 

then the determinant L of this system can be written in the alter¬ 

native forms 

= 1 - FoUo + GoU2 + FoGo<Ul - UoU2> 

' 1 - Fo To + Go<u2l2 * 2uvTl + “2lo) 

+ f0gou2(t12 - t0t2) 

We then have 

A = f ~1 (v) A-1 (1 + G0(u2T2 + uvT^) 

P = f“1(v)A"1(v + F0uT1) 

Thus the a can be found, and then the displacement can be written m 7 r 
down. It is exhibited explicitly at the end of Section 7.2. 
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ADDENDUM 6 

SMALL RESONATORS UNIFORMLY INTERSPERSED 
AMONG REGULAR ARRAY OF LARGE RESONATORS 

The large resonators having space s. Between any two 

of these, there are M - 1 uniformly placed small resonators, of 

axial strength E. The large resonators have strength E + F in 

the axial mode. 

The equation of motion is 

>4 , 

EI(—£ - k )n = elvx + Fr|£5(y-ns) + Eql&(y-(ns/M)) 
ox 

where the summations on n go from -m to ». We assume the expansion 

q = £ a e(uP+v>ix 
P P 

where u ■ 2ir/s 
and use the expansion for the regular array of 5-functions. Then 

after introducing the abbreviations 

FQ = u¥/2v 

Eo = NuE/2rr 

f(w) = EI(w4-k4) 

the equation of motion becomes 

I apf(pu+v)e(Pu+v>ix 

= eivx + F Z a I e(nu+pu+v)ix 
°p Pn 

+ EoS a Z e(^u+pu+v)ix > 

P P n 
ivx 

The e factor can be dropped. 

In the second term on the right we set m = n+p as new 

variable, then change the order of summation. Then the term becomes 

FAZ emuix 
m 

where 
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A=Eap 
P H 

We now rewrite p, wherever it appears, as p = j+Mr, where j goes 
from 0 to M-l and r goes from -co to +^. Similarly we set 

m = j + Mr. 
Then we have 

£ Ç 3j+Mr + Mr>u + v)e(j+Mr)uix 
W 

= e^vx + F AV T e(j +Mr)uix 

r J 

*%L Ea 5:e(Mn + j + Mr)uix 
r J n 

In the last term, we make t - n + r a new summation variable, in 

place of n, and take t as the outer summation variable. Then the 
term can be written 

Eo?2: 
^ J 

A. e 
J 

i(j+Mt)uix 

where 

Aj = Z aj+Mr , j = 0,1,...M - 1 

It is now possible to rename t as r, and then the coefficients of 
each term e^J+Mr^uix can be equated: 

aj+„r£((:+M.:)u+v) = + FQ A +■ EoA. 

We now obtain an equation for each A^ by dividing this equation by 
f and summing over all r. 
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Setting 

T(j) = Z f-1((j+Mn)u+v), 
n=-03 

we find 

Aj = 6jo f’Vv) + F0T(j)A + EcT(j)Aj 

61o {■'•(v) + F0T(j)A 

Aj = 1 - E0"Tur 

But of course 

A = L A, 
j * 

and so an equation for A is obtained by summation: 

A = Z"1f■1(v)L (1 - E T(j))"1 
j ° 

where Z = 1 - F0Z T(j) (1 - E^Q))"1 

We now retrace the algebra to evaluate A^, ap, and finally n- 
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The final form for n is given in Section 7.4. 

aawMbwteiwmwwiiHiH mi m*nwmt' V* mmriuntrat 
fÇftBiff t ^ ^ ^ im Btnn wtH^rn: miws n ^ WMfoUiM. 

. t. 

r.. » r • . aí 
•‘ > 1* j't ^il.T^vt !■! 



ADDENDUM 7 

A7-1. 

APPROXIMATION FOR THE COMBINED EFFECT OF THE COMPLEX PAIR 

OF ROOTS OF P(pZ) 

W« «hall write one of the complex pair of roots at and 

uae a bar to Indicate complex conjugate. Then the contribution 

C of the two roots to the rational part of f(p) has the form 

C S A2 + A X2 + p2 (A -f r> 

p - (A +?i)p + A J 

Using two steps of recursive relation in Section 10.2.2, 

we obtain the formula: 

A2 - -k2~\/ 1 + ie* [1 ♦ ite*] '1/2 

where 

t - k2/ (k2 + k*2) 

e* » e/(k^(k2 + k*2)1^2) 

Note that 

2— 
n (k 

1 
7 —_ 

k*Z) 
9 

where h is the plate thickness. For many situations of practical 

interest, e*2 is in the range .04 - .08. 

2 2 
The expression for A is correct to terms in e* . In 

explicit power-series form, we then find 
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X2 + J2 „ - 2k2 [ 1 + e*2(2t + 1)/4 1 

X2 X2 - k4 [ 1 + e*2(2t + 2)/4 J 

2 
Thu* C can be written correct to teru ln e* 

« M p2 + N 
C ■ —r-T--f- 11 ■ 1 T .. 11 -11 

p + 2kz p (1 + u) + K (1 + v) 

2 
where u end v ere multiples of e* . We now attempt to approximate 

C In the form 

mmmmmmmmmmmmmmmmmmaammmmmtrnmmmmaimmmmm'* 

(1 + a u + b v) (1 + a'u + b'v)) 

where terms higher than linear In u and v can be discarded. We 

find that It Is necessary to take 

c - H, c* - M k2 + N 

2 
Then, In the approximation where terms In e* are retained, the 

error C* - C has the form 

C* - C ■ Ju + Kv, 
where 

j - (M P2 + N) 2p2 - H(p2 + k2) « - (H - M kh 2p2.' 

(PZ + kZ)4 

(M p2 -f IQ k2 - M(p2 + k2)b -(H - M k2) 2p2b' 

(P2 + kZ)a 
K 
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One can enaure that K - 0 b7 taking 

2 
b m P— 

M(p + 
b I (M p2 4- N) k2 

(H - M kZ) 2pZ 

J cannot be made equal to zero, but by adjusting a and a’ one 
can make 

max I J j 
p > 0 

aa small as possible. Set P* - 
constants, the problem has this 
minimize 

2 /«2 
P /k 
form: 

Then after taking out 
Determine c and d so as to 

m» 
P* > 0 

l(F* - c) (P* - <1)1 
(P* + I)4 

The values c ■ . 055 and d * . 6 produce the maximum 
value of .034 at P* » 1.8, and it is not likely that this differs 
from the minimum over c and d by more than 5 percent. 

Clearly, the first term in C* leads to Integrals of the 
same form as I* in Section 10.1. The second term produces terms 
that can be represented in the general form 

nm >*- - ■ * 

r-tt't#' H.«.w. HU-.u : :p\ ‘ 

L ! . • 
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PIQURE l-l. A STANDARD TR6 RESONATOR 
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FIGURE 1-2, AXIAL AND TRANSVERSE MODES OF VIBRATION 
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FIGURE 2-1. NOTATION FOR AN n-SEGMENT AXIAL RESONATOR 

FIGURE 2-2. MORE COMPLICATED TYPE OF RESONATOR 

; 
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FIGURE 2-3. BREATHING MODE OF A PIPE 
(CROSS-SECTION) 



FIGURE 8-1. COMPOUND TRANSVERSE RESONATOR 

! 

FIGURE 5-2. A STEP IN A ROD 

FIGURE 5-3. A PINCH IN A ROD 
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FiôURE 5-4. TWO STEPS CLOSE TOGETHER 

FIGURE 5-5. HINGE EFFECT AT A STEP 

m 

J 

FIGURE 5-6. THICKENING ON A ROO 

FIGURE 5-7. FORCE AT LEFT END OF ORIGINAL ROO SEGMENT 
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FIGURE 5-8. SYMMETRICAL JUNCTION BETWEEN 
DISSIMILAR SEGMENTS 

FIGURE 5-9. UNSYMMETRICAL JUNCTION 

FIGURE 5-10. NOTATION FOR A THICKENING OR 
THINNING OF A ROD 



CLAMPING 

FIGURE 6-1. INHOMOGENEOUS ROD SUPPORTED AT ONE END 
AND CLAMPED AT THE OTHER 

FIGURE 6-2. EQUIVALENT STRUCTURE IN TERMS OF RESONATORS 
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PRESSURE WAVE 

FIGURE 7-1. SEVERAL KINDS OF RESONATORS 
IN A REPEATING ARRANGEMENT 

ON A ROD 

FIGURE 7-3 SMALL RESONATORS EVENLY INTERSPERSED BETWEEN LARGE ONES 

FIGURE 7-4. DIFFRACTION OF A FLEXURAL WAVE STRIKING 
A REGULAR ARRAY OF RESONATORS 



FIGURE 9-1. PLASTIC CYLINDER RESONATOR 

WATER 

FIGURE 9-2. CROSS -SECT! ON OF STRIP PISTON 



FIGURE lO-l. INTEGRATION PATH C 

FIGURE 10-2. AREA IN WHICH t >1 (SHADED) 
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