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CHAPTER I 

MULTIDIMENSIONAL  INCENTIVE CONTRACTS  IN 

DEVELOPMENT PROJECTS 

Introduction 

An Air Force spokesman succinctly characterized the complexities of 

government  procurement when he  stated: 

".   .   .we are supposed to buy at the lowest sound price, on a com- 
petitive basis,  but still make sure we support the operational 
force as required, and on time, with quality parts,  at the same 
time giving consideration to small business and labor distressed 
areas and without introducing too many nonstandard parts into the 
inventory-"  [l] 

One of the tools employed in the effort to achieve efficient development 

of advanced systems IF, the multiple incentive contract.    Although the 

Department of Defense (DOD) and the National Aeronautics and Space 

Administration (' ASA) are not the sole users of contractual incentives, 

the bulk of government procurement by dollar volume  is performed by DOD 

and NASA,  and these agencies have pioneered in the use of new contractual 

forms designed to increase the effectiveness of the procurement dollar. 

Consequentxy the examples and analysis in this paper will be most perti- 

nent to the problems and practices of the defense and aerospace 

industries. 

The contract types that we will be concerned with are Cost-Plus- 

Fixed-Fee (CPFF),  Cost-Plus-Incentive-Fee (CPIF),  Fixed-Price-Incentive 

(FPI),  Firm-Fixed-Price (FFP),  and Cost-Plus-Award-Fee  (CPAF).    We 
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briefly define the distinguishing features of each contract type.    In a 

CPFF contract the government and contractor negotiate a fixed contractor 

fee and a target  cost.    The go/ernment  is obligated to reimburse the 

contractor for all allowable costs  incurred in executing the  contract, 

whatever the cost outcome.    An FFP contract defines *he task to be 

accomplished by the contractor and the total price to be paid by the 

government for this effort.    Any cost variation from this negotiated 

price is the sole responsibility of the  contractor.     In both CPIF and 

FPI contracts a target cost,  target  fee,  and sharing arrangement are 

negotiated.    At the completion of the project,  contractor and government 

together share cost variation according to the negotiated formula.    For 

example,   if the sharing formula is 8o/20 and the actual cost outcome is 

$1 million less that target cost,  the  contractor would receive an addi- 

tional $200,000,   and the government would retain the remaining $800,000. 

In the CPIF contract the government  benefits from all cost underruns 

below some floor,  and is fully responsible for all overruns beyond some 

ceiling.    The FPI contract contains a ceiling beyond which the sharing 

formula becomes O/lOO, and therefore the contractor assumes more rish 

with an FPI contract than under a CPIF contract.    This distinction is 

more apparent than real since cost outcomes rarely penetrate FPI ceilings 

In recent FPI contracts the cost  ceilings have been as low as 112-115^ 

of target cost,     [k]    Almost all contracts with multiple (performance and 

development schedule)  incentives have been CPIF contracts,  and DOD policy 

For a more detailed discussion of these contract types  see 
Scherer.     [3,  pp.   132-1U2] 
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has not  permitted performance or schedule incentives to be written without 

2 
cost   incentives operating simultaneously. 

CPAF contracts are cost reimbursement contracts negotiated with a 

basic minimum fee considerably lover than CPFF fees.     Based on the 

customer's evaluation of contractor performance an additional award fee 

of up to 10% can be earned. 

Table 1 shows the trend of DOD procurement by contract type from 

fiscal year 1952 through fiscal year 1964.   [5]    The  increased use of 

CPFF contracts in the mid-1950^ coincided with the accelerated 

Table 1 

Fiscal Year cm1 
CPIF/FFI 

^ 17.9^ 12.0% 
55 18.0* 26.2% 
5U 27.C* 27.7^ 
55 22.7^ 2k. & 
56 28.1i> 21.1% 
57 51.2% 19.0% 
58 56.Mt 22.4% 
59 37.7^ 18.5* 
60 59.^ 16.8% 
61 38.9^ 14.4% 
62 35.1^ 16.1% 
63 2l.kt 27.5^ 
64 12.0% 32.6% 

We know of one  instance  in which a completed contrco had included 
the schedule incentive in an initial letter contract.     (A letter contract 
is  issued to provide temporary contractual coverage so that urgent work 
can proceed while a definitive contract is being negotiated.)    The 
urgency of the requirement had Justified the use of a letter contract and 
the buying activity provided the contractor with early motivation neces- 
sary to meet emergency programmed requirements.      The letter contract 
provided for both penalty and bonus points applied to target periods. 
The contractor earned 90% of the incentive reward and the buying activity 
secured a delivery schedule that had been refused by two other bidders 
and eight other potential sources.  [14] 



development of advanced weapons systems and the  Initiation of major 

space projects.    Between 1955 and 1961 expenditures for development  and 

procurement of strategic aircraft,  missiles,  and air defense systems 

averaged approximately $15 billion dollars annually,  anu during this 

period the proportion of CPFF awards  increased  from 22% to Jö^.     Peck 

has reported that  1? major CPFF projects completed during this period 

had an average cost overr' n of 520^ and an average schedule slippage of 

36^.     [7,  p. 22]    Procurement personnel in DOD state that CPFF contracts 

at best tended to run funds out  to the targeted amount,  and the term 

"horror cases" entered the  lexicon of df '^nse procurement  in reference 

to some of the CPFF outcomes-   [6] 

By the end of 196l the rate of expenditure for the development of 

new strategic systems stabilized at about $U billion annually.    DOD 

attention shifted to improving the capabilities of conventional forces, 

which required less technological developmento    This allowed the insti- 

tution of a "Cost Reduction Program" empnasizing both management tech- 

niques and contractual innovations.   [8]    The cost reduction program aimed 

at  conducting development and procurement in an incentive environment, 

one major element of which was the use of contractual  incentives rather 

than cost  reimbursement contracts      Unfcrtunately,   in the effort to 

explain and Justify the evolution in contracting,  CPFF contracts were 

blamed for wasting resources,   sapping industrial efficiency, dragging out 

project  schedules, and providing no incentive for outstanding performance 

by the contractor.     In fact,   it  is doubtful whether any contractor could 

have been induced to accept management responsibility for uncertain, 

expensive,  and technologically advanced systems such as the Atlas missile 
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without government assuming the financial risk.    Large cost overruns were 

in many cases due to customer uncertainty regarding requirements,   rather 

than poor initial cost estimates.   [9]    The much criticized time lag caused 

by the lack of prior planning and system definition has now been remedied 

oy explicitly defining the project objectives in a separate contractual 

effort that may take up to six months.  [lO1    The flexibility inherent in 

the CPFF contract was temporarily ignored in the rush to the incentive 

contract. 

A revision to the Armed Services Procurement Regulations in 1962 

stated the preferential order of contract types to be FTP,  FPI,  CPIF,  and 

CPFF.   [11]    Table 1 indicates the resulting shift to incentives.    This 

has been explained as an attempt to provide the motivation normally 

engendered by a commercial environment,   in which competition rather than 

i cost outcome determines prices, and competition rather than cost 

analyses insures that profit remains fair.      As the complexity and expense 

of weapons and space systems have increased,  their useful life has 

decreased.    There  is now little opportunity to retrofit or modify an 

operational system.    Consequently,  early design attention in the areas 

of maintainability,   reliability, and standardization can achieve large 

"downstream" savings.    Systems are also now procured in smaller quantities, 

and development funds constitute a larger fraction of total lifetime 

costs.    Thus while superior operational performance is desirable,   it must 

be balanced against development cost. 

Under conditions of price competition the government may award FFP 
contracts to the lowest bidder without regard for profit.   [12] 



The use of cost  incentives was relatively straightforward,  but 

multiple  incentives raised a host o^ questions regarding the definition 

and measurement of performance elements,  the determination of the relative 

value of alternative outcomes,  and the formulation of fee patterns to 

motivate  contractor decisions  ronsistent with gove.Tjnent objectives. 

In the past year techniques have been proposed that  lead to fee structures 

more compatible with estimated government values,   [15.   16]    However,  an 

inherent weakness of contractual  incentives is that  the ranges and weights 

assigned to performance variables,  costs,  and profits are negotiated early 

in the development program, while the contractor capability and potential 

operational value vary throughout the development effort. 

Cost-Plus-Award-Fee contracts have obvious merit  in advanced develop- 

ment and have been used most  extensively by NASA and the Navy.    Tne> 

retain the flexibility of CPFF contracts while providing even more 

k 
One of the first multiple  incentive contracts went to TRW Space 

Technology Laboratories.    Ten nuclear detection satellites were to be 
constructed at a basic cost of $lU million,  and a basic fee of $1 million 
A successful launch required  that two satellites be orbited simultaneously 
Incentives were paid depending on the number of attempts required to 
achieve a successful launch. 

First Success Award 
at Launch Number Fee 

1 $125,000 
2 $ 98,000 
3 $ 0 
k -I 98,0^0 
5 -$125,000 

The expected lifetime in orbit was 2-k months.     Foi   every day short of two 
months in orbit 3TL was penalized $1600, while for every day in orbit from 
four to six months,  STL received an additional $1600      It would be diffi- 
cult to objectively explain why these fees were chosen,  except to note 
that the $250,000 launch fee swing is 25% of the basic fee, and that  the 
maximum fee based on operational lifetime is approximately $100,000 per 
launch,  or 10^ of the basic fee.   [13] 
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incentive than the possibility of increased profit.    The very fact that 

profit is based on evaluation of contractor performance causes the con- 

tractor to perceive a relation between the current and potential future 

contracts.    This appeal to the incentive for organizational survival may 

far outweigh any incremental profit. 

An additional consideration in attempting to increase the effective- 

ness of procurement policy is the increasing scope of mathematical 

programming models.    Zschau [l?] has demonstrated that under reasonable 

conditions a large development project can be decomposed into sub- 

projects,  and this decomposition used to obtain minimum cost surfaces 

for every feasible schedule and performance outcome of the total project. 

This suggests that a similar approach be used to periodically evaluate 

the worth of alternative system performance as development progresses. 

Before developing this idea further we will discuss the behavioral 

assumptions and information required to use contractual incentives. 

Contractor Motivation 

Contractual incentives are based on the assumptions that the con- 

tractor can exert  a known degree of control over the product or system, 

and that he will act to improve his perceived corporate position. 

Economists completely characterize contractor behavior by stating that 

program decisions are made to maximize utility, but this  's not an oper- 

ationally useful statement in structuring an incentive fee. 

Classical models of the firm assume that production and pricing 

decisions are made to maximize some form of monetary profit, which may 

be current profit,  discounted future profit,  or expected profit per 

period.    In a cost  incentive development situation the firm "produces" 
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incentive than the possibility of increased profit. The very fact that 

profit is based on evaluation of contractor performance causes the con- 

tractor to perceive a relation between the current ard potential future 

contracts. This appeal to the incentive for organizational survival may 

far outweigh any incremental profit. 

An additional consideration in attempting to increase the effective- 

ness of procurement policy is the increasing scope of mathematical 

programming models. Zschau [17] has demonstrated that under reasonable 

conditions a large development project can be decomposed into sub- 

projects, and this decomposition used to obtain minimum cost surfaces 

for every feasible schedule and pirformance outcome of the total project, 

This suggests that a similar approach be used to periodically evaluate 

the worth of alternative system performance as development progresses. 

Before developing this idea further we will discuss the behavioral 

assumptions and information required to use contractual incentives. 

Contractor Motivation 

Contractual incentives are based or the assumptions that the con- 

tractor can exert a known degree of control over the product or system, 

and that he will act to improve his perceived corporate position. 

Economists completely characterize contractor behavior by stating that 

program decisions are made to maximize utility, but this is not an oper- 

ationally useful statement in structuring an incentive fee. 

Classical models of the firm assume that production and pricing 

decisions are made to maximize some form of monetary profit, which may 

be current profit, discounted future profit, or expected profit per 

period.  In a cost incentive development situation the firm "produces" 



final cost. The fee is usually a constant plus some fraction of the 

difference between initial target cost and final cost. If final COFI is 

controllable by the contractor, and he maximizes current fee, he will 

choose the minimum possible final cost, regardless of the sharing pro- 

portion. The fact that cost targets: are rarely underrun by large factors 

suggests that cost reduction actions cause disutility.  Scherer has 

explained this with a user cost model which we describe briefly. 

[3, p. ^07] 

User cost is defined to be the future profit loss resulting from 

current cost reduction actions. A contractor may initially effect cost 

reductions by increasing efficiency and reducing unnecessary waste, but 

beyond some point further cost reductions can be achieved only by such 

actions as laying off personnel, breaking up design teams, or curtailing 

effort in development. The contractor perceives this as producing a less 

attractive system in the long run, thereby adversely affecting his likeli- 

hood of receiving future contracts. Assume that the user cost can be 

represented as a quadratic function of the cost underrrun. 

Let C ■ Target Cost 

C = Actual Cost Outcome 

X = C^ - C , Amount of Cost Underrun. 
t   a 

o 
Then U(x) - a + bX -*■ cX > and we see that depending on the coefficients, 

a, b, c, cost underruns may lead to high user costs. Assume that the 

contractor maximizes the difference between accounting fee and user cost 

through his choice of X. 
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Let     n    = Accounting Fee 
8. 

n     = Target Fee 

Q = Sharing Proportion 

n     = jt,.  + C0(,  and the condition that    X*    maximize    n    - U(X)     is at' a 

A[n    . uix)] = o, or   x* ^^Li1 

du    a crc 

Then 

[n_ - U(X)]  0, or X* ■■-- —rf-—. Given a, and the user cost function, 

an underrun will not always be optimal. The contractor's problem in 

negotiation is to choose the Ot that maximizes the final net profit, 

« + OfX* - U(X*). Scherer sbowö that except in special cases, the 

optimal Ct polarizes to 0 or 1, that is either CPFF or FFP coverage. 

Since the average value of Ot observed in Scherer's case studies was 0.7, 

he tested the hypothesis that contractors maximize profit subject to a 

constraint on maximum profit. This behavior would be explained by the 

attempt to avoid unfavorable publicity and interest on the part of the 

Renegotiation Board and the General Accounting Office  The following 

case described by the president of Giannini Controls Corporation is an 

instance of the operation of these factors. 

Chart, No. 2 (not shown) shows the cumulative margin earned in one 
of our divisions on a series of contracts for heavy electronics 
equipment.  We started at a heavy loss in I960 because all startup 
costs and some developmental engineering applied against that first 
contract, but aa production increased we showed a satisfactory 
trend.  Obviously we made profit on every contract after the first 
one, since the cumulative margin rises, bu that startup hole was 
pretty deep and we didn't break even until early 1962.  During this 
time prices were reduced substantially, our quality record was 
excellent, and we were shipping equipment ahead of schedule.  In 
every way we were rated an exemplary supplier.  Looks pretty typical, 
doesn't it? We invested heavily in an attractive program, covered 
our first costs, brought the cumulative profits up to industry 
average, and satisfied our customer completely. And then we ran 
into the buzz saw. The prime agency audited a late 1962 contract 
that had somehow earned an unusual profit: over 2C^.  We had never 
made close to that on any prior or subsequent contract, and the 
order at issue was only 1200,000 out of ^,000,000 total business. 
Our margin before that windfall was Just over U$t  and with the 



"excessive profits" incl dea. we bare ly r a hed 6. 4~ , bu he contract 
st ood alone a nd no e of hi s ba ckgro nd ar r ied any we i ght . The 
result vas exac y 1 mo hs of rans con i en a l deba e vi h the 
agency demanding a profi rebat e . We woul 1 t agree o refunding 
a pri or year ' s earnings, but ve id accept a downward rede ermination 
of the curren produc ion price . Tha ' s why yo see he margin 
s lipping off a. q ar er poin in 1 --we ' re pay.ing a penal y now for 
conserva ive es ima ing on a singl e on rae in 1962! [19] 

If such occurrences vere frequen h v igh a ssigne o profi as a 

mot ivat or of con rae or behavior woul d be low. r ck concluded , however, 

t hat risk avers ion r a her han oncern ov~r renego i ation mo i va es the 

l ow shari ng proper ions observed, and Scherer a l so st ated: 

Much more freque y, ont rac .or resen a tiv s me tioned ri sk 
aversion a s he ri c pal _ason hei ef o s o nego i a e l ow 
values of a. Thef s a ed explici y tha in many ins ances , given 

he uncerta in ie w ~. ch pervaded a vanced weapons sys em and sub
sys em prod c ion programs , hey vere vi l ing and eager o sacrifice 
the highe-:- averag pro i ex c a i ons as socia ed wi h firm fixed 
pr ice con r a e ua l coverage for he gr a er securi y a ains an 
occasional short run l oss afforded by PFF and incen ive con rae s . 
[18, p. 275] 

Baumol sugges s · ha many l a rge commercia f i rms make pr icing , 

adve rtis ing, and marke ir.g e isions wi h o j c ive of maximizing 

o al aales revenue , e bjec o a cons r a in on minimum pr ofit ha 

vill sa is y s ock old rs . [20] Tnis ypo hesi s is only part i ally 

appl icabl e o he l a rge d.e nse con r a e ors, v ose sa l es 1are mea sured by 

the dol lar volume of resea rc , developmen , and produc ion con r a ct s 

held . Too ra id an expansio . of hi s ype effort resul s in a di u ion 

of produc quality, l ead ing o a poor corpora te epu a i on. Consequen ly, 

defense contra c or s prefer o expand gradually , keeping key r esearch and 

des i gn earns in ac and productively em l oyed . 

There are l ess q an ifiable mo i vators per tinen in predicting 

corporat e behavior . These include organi zat ional survival , secur ity of 

employment , sal es, a nd pr ofi , f r eedom from harassmen , he des i r e for 
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public approbation, the desire to enhance national security, and the 

desire to advance science and technology. [5> P« 7] The research oriented 

contractor is especially interested in retaining his key scientists and 

maintaining the continuity of his research effort. Thus while contractor 

negotiators may act as if they intend to maximize current accounting 

profit, there is evidence that program decisions are based on the longer 

range factors. [5, p. 159]  In some cases the advantages accruing from 

pioneering in a new technical area may be sufficiently strong to motivate 

a cost-plus-no-fee contract, and in all cases the profit motivation must 

be related to both the project uncertainties and the intangible contractor 

rewards.  In the current atmosphere of limited and selective development, 

sharing proportions are more often O.k  or 0.5 than 0.2, and the revised 

profit policy of DQD emphasizes profit as a stimulant to contractor 

effort.  Fewer projects are being carried into engineering development, 

and projects in research, exploratory, and advanced development are 

sutject to immediate cancellation if more promising concepts appear. 

[25» 2k]    Under these conditions concern for organizational survival is 

very real, and there is less of a requirement for extensive contractual 

safeguards and stimulants. 

Scherer's user cost model is descriptive in explaining contractor 

behavior in cost reimbursement and cost incentive contracts. We would 

proceed one level deeper in an effort to understand the cost-time- 

performance choices made by the contractor. We hypothesize that the 

defense contractor acts to maximize the probability of program continu- 

ation subject to a minimum profit constraint. A single very large loss, 

or a succession of unprofitable projects will drive down the market 
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price of the firm's securities, adversely affect the firm's image among 

the agencies awarding contracts, and raise doubt as to the capability of 

the firm's management. Hence the program manager is constrained in the 

short run against outright loss, and in the long run to some minimum 

profit.  Turing any ^iven development contract, we feel that the program 

manager and other corporate personnel have a perception of the customer 

5 
valuation of the different parameters of the system.  Adjustments to 

these perceived values are obtained from the in-plant agency representa- 

tives, visiting service personnel, liaison personnel In Wa&hington and 

other headquarters, and from knowledge of the progress of potentially 

competitive projects. The program manager can therefore judge the rela- 

tive desirability of alternative schedule, performance, and cost outcomes 

from the buyer's point of view.  His initial system choices are deter- 

mined by the acceptable time-performance outcomes defined by the 

development contract, modified by the current view of the buying agency, 

and constrained by the cost-time-performance surface.  If the cost 

resulting from a desirable outcome is less than targe', cost, the manager 

decides whether to take the cost underrun as a saving for the buyer, or 

Our survey of aerospace contractors revealed one development project 
incorporating an incentive for the successful firing of a missile by a 
certain date. Failure to successfully fire by that target date would 
result in successively reduced incentive payments, until at the end of 
six months a substantial penalty would be levied against the contractor. 
The buying agency was aware that pressure existed to halt program funds 
and realized that an early successful firing was necessary. The con- 
tractor also recognized that failure to demonstrate the system saccess- 
fully would increase the likelihood of program cancellation, and there- 
fore put forth a "crash" effort.  It is our opinion that the pressure 
for program continuation was more important than the contractual reward 
at stake. 
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to utilize  it to increase performance  in profitable areas.    The  latter 

decision enhances system attractiveness relative to potential competitors. 

If,  however,  the characteristics considered essential by the  customer 

are only attainable at a cost above target,  the program manager must 

decide whether performance or monetary considerations are more  important 

in  influencing progra..! continuation. 

At any program decision point the contractor behavior is then 

conceptually described by a nonlinear programming problem in which the 

firm chooses performance variables,   schedule outcomes,  and development 

cost to maximize the probability of program continuation subject to a 

constraint on minimum profit and contractual constraints on the values 

of performance,  schedule,  and development  cost. 

Tjet    c = cost outcome aimed at by the contractor, 

t  = schedule outcome aimed at  by the  contractor, 

p = vector of performance outcomes aimed at by the  contractor, 

P =   (P-L*   • • •   »  Pn)> 

c =  current  cost  ceiling desired by the buyer,  as perceived by 

the  contractor, 

t =  current development  schedule desired by the buyer,   as 

perceived by the contractor, 

p = vector of performance outcomes desired by the buyer,   as 

perceived  by the contractor,     p =  (p.,   ...   ,   p ). 

Let    ♦(c,p,t)   = 0    represent the minimum cost attainable at every 

time and performance outcome, and let    cp(c,p,t)    denote the contractor 

fee at any outcome.     Assume that  the probability of program continuation 

approaches one as the  projected project outcome    approaches the outcome 

15 



desired by the customer. Assume further that the program manager esti- 

mates the weights ß , and that minimizing 

^ VvV * Vi(c->+ W*-*) 

approximates meocimizing the probability of program continuation. The 

contractor problem is then 

Minimize T^^P^Vy)  + ßn+1(c-c) 
+ 3n+2(t-t) 

c,p,t 

such that 

♦(c,p,t) < 0 

and 

<p(c,p,t) - t(c,p,t) > 0 

In view of the inform4:ion and decision variables entering the contractor 

decisions under this hypothesis, we conclude that expected fee alone is 

a weak and uncertain motivator.  Even if the cost-time-performance 

tradeoff surface were stationary and available to the buying agency, and 

if a set of multiple Incentives could be structured consistent with true 

government values at every outcome and assuring maximum contractor fee 

at that outcome desired by the government, there is no assurance .hat 

Ik 



this outcome would be chosen by the contractor.    Contractual  incentives 

can be analyzed for consistency,  but  not  for motivation. 

We conclude that  in research and exploratory and advanced develop- 

ment,  the primary contractor motivation  is to mail kain the firm's capa- 

bility to compete  for and retain projects.     There  is increasing 

realization that  only a few systems will proceed into engineering 

development,  and fewer still into production.    A greater amount of effort 

will be directed into research and exploratory development,  and profit 

will be based on the cost of the research effort as well as results. 

These conditions create  incentives for efficiency,  and the margii al valu«. 

yielded by the superposition of contractual incentives may not  be worth 

the effort required cf the contractor and procurement personnel. 

Government Objectives  in Development 

Regardless of the source of the requirement for a new weapons or 

space system,  a preliminary study of projected system utilization is 

necessary to specify initial performance  characteristics and operating 

conditions.     In structuring an incentive  contract the government must 

have a ranking of the possible development outcomes,  and even  in a CPFF 

contract where decisions on specific details may be made later in the 

program,   recommendations should be based on some  consistent evaluation of 

This model of contractor behavior is consistent with Peck's 
observation that  firms are more prone to take risks if their projects 
depend on it.  [7,   p.  5^0]    For example,   if the purchasing agency is 
debating program continuation and has suspended funds,  the contractor 
may supply corporation funds to continue  critical development  of pro- 
duction until a final decision is reached.    Not to do so might affect 
the final decision unfavorably, while  in the event of program termi- 
nation some of the expended funds may be  recovered. 
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system worth.    Yet this task of determining operational value is extremely 

difficult and controversial.    The Holifield Report  criticizing Defense 

management of satellite communications is quoted as stating: 

"The unfortunate experience (of DOD analysis of alternative satellite 
communications systems^  suggests to us," the report continues,   "that 
considerations of economy from a Defense Departmeü*"- budget  stand- 
point are not  sufficient criteria for making decisions in fields 
which involve government-wide policy,   politics,  and international 
diplomacy."  [25] 

Sidestepping the question of whether a particular system should have 

been brought to the development stage,  the buyer may select various 

objectives  in the development effort.    The more obviour are 

(i)    maximizing some measure of effectiveness subject to a cost 

constraint,  and 

(ii)    minimizing the lifetime cost of the system subject to the 

attainment of some fixed level of effectiveness. 

Th^re may be other valid objectives such as minimizing the number of 

military personnel required to achieve a given level of effectiveness, 

or obtaining a system flexible enough to operate in a number of possible 

environments.     In any event development objectives and government  negoti- 

ation objectives are not  identical.    The former are determined by evalu- 

ation boards,  cost-effectiveness analysts,  and military personnel,  while 

the contract negotiations are performed by procurement specialists beset 

by a welter of regulations,  guidelines, and hindsight.    Hence the Director 

for Procurement Policy,  OSD,  testified: 

A requirement (for a weapons system)  having been established,  and 
feasibility determined, what is our objective?    It is to procure 
the development,   production,  and delivery of the weapons system 
into inventory in the shortest possible time and at the minimum 
cost.    [27,  p.  106] 
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But Scherer's case studies indicated that actual government procurement 

practice has been a compromise between maximizing the incentive for 

contractor efficiency,  minimizing contract outlay,  and minimizing the 

risk that unnecessary and excessive  profits will be paid.     [3>   P»   1^7J 

There is an effort  in current procurement policy to consider total 

system costs and not be hesitant about  spending funds in development to 

achieve operational savings, but at the  initiation of development the 

potential value of a new system is extremely uncertain.    The cost- 

effectiveness analyst assumes that development will be successful and 

trier to foresee the  implications of the successful system in the relevant 

time frame.    The essentiality of specific characteristics will vary with 

developments in associated systems,   in opposing systems,  and in the 

operational environment.      Preliminary models of the system attempt to 

determine the key parameters, and the variation in performance as a 

function of these parameters.    After preliminary studies have shown a 

concept to have merit, the Project Definition Phase (PDP)  may begin. 

PDP is a formal step  in which the cost-effectiveness model  is refined 

7 
Minimizing contract outlay is especially shortsighted in view of 

the operating and maintenance expenses of modern weapon system«.     In an 
expository example Hitch and McKean point out that a hypothetical air 
transport fleet obtained under the minimum contract outlay would cost 
over ll billion more than the least cost fleet on a lifetime basis. 
[26,  p.  IhO] 

An appropriate approach in this situation woult' seem to be a 
sequential decision process, with specification derails supplied to the 
contractor as late as possible to take advantage of available information. 
According to one theory Defense programs may not be managed in this 
manner because the members of development staffs recognize the transitory 
nature of their assignments and hesitate to leave vital decisions to 
their unknown successors. Hence the system is "cast in concrete" at an 
early point. [28] 
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further, and the total system costs and development schedule estimates 

are determined.  It would be desirable to have goverrjnent personnel 

determine the relative value of the possible outcomes, bvt normally two 

or more contractors will conduct PDP, competing for the follow-on work. 

During PDP these contractors will determine the "optimum balance between 

total cost, schedule and operational effectiveness for the system." [29] 

Following PDP a development contract may be awarded on an FFP or FPI 

basis, using the tradeoffs generated in PDP as a basis for the incentive 

structure. 

Consistent incentives require the capability to compare performance 

increments to cost increments. Therefore the analyst must find some 

method of ultimately comparing different aspects of performance in dollar 

terms. This may be straightfo.'ward in some cases. For example the value 

of early delivery of a military satellite communications system might be 

indexed by the current dollar usage rate of commercial facilities. The 

problem is more usually akin to determining the worth of additional "rate 

of climb" in an anti-submarine aircraft. Quantitative statements about 

the worth of accelerated development undoubtedly include consideration 

of possible system obsolesence due to oncoming competitive systems, or 

the need of the agency to demonstrate a successful prototype to obtain 

further development funds. Development programs are basically either 

urgent, and rapid development receives priority, or else the purchasing 

agency is interested ^n showing cost efficiencies, and only enough is 

spent to keep the schedule from making uneconomic use of resources. 

Scherer concludes that the fee allotted to schedule incentive would be 

better saved for cost reduction incentive, and in fact OSD procurement 
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personnel state that the early emphasis on schedule incentives appears 

to be diminishing, [ik] 

Several approaches have been used in quantifying the worth of 

additional reliability and maintainability. Van Tijn developed a model 

which measures variation in support costs as a function of subsystem 

reliability and maintainability. [51] The model accumulates support 

costs based on the maintenance effort predicted by reliability models of 

the system. Douglas Missiles and Space Systems Division performed a 

reliability sensitivity analysis prior to suggesting a reliability 

incentive for a missile system. [32] Data derived /rom their study is 

shown in Table 2. 

Table 2 

.8U .97 .99 .999 

.6? .78 .80 .80 

250 275 311 555 

148 128 125 125 

55.2 55-2 59.0 44.3 

57.0 55.2 38.8 hk.l 

Missile Reliability 

Operational Reliability 

Cost/Missile (lO5) 

Number Required 

Total Missile Cost (10 ) 

Total Operational Cost (xO ) 

This allowed Douglas to determine the optimal reliability around which 

the incentive would apply. A report by the Management Systems 

Corporation contains an example in which incentives were desired for both 

accuracy and reliability in a tactical ground-to-ground missile. 

[l6, p. 22]  In this case the overall effectiveness criterion was the 

ability to inflict a specified amount of damage on a given target with a 

specified level of confidence. Thus the number of missiles procured 

would depend on the nuviber required to achieve the fixed level of damage, 
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and accuracy and reliability could b<. directly related to the damage 

expected per missile launched. Variations in accuracy and reliability 

could then be evaluated by the cost savings in missile procurement, and 

the incentive fee related to the cost saving incurred.  When it is not 

possible to relate the performance variation directly to a cost saving, 

the Management Systems Corporation study advises. 

... it is necessary to estimate the relative dollar worth of 
effectiveness over the range of project outcomes.  This Judgement 
might be expressed as follows: 

A  r 
A Value ($) 

A Effectiveness 

The dollar valu': of effectiveness defines a tradeoff between total 
cost and effectiveness which the government wishes the contractor 
to use when making decisions wnlch could affect both quantities. 
[16, p. 77] 

Fven comprehensive analysis prior to development contract negotiation 

leaves many unanswerable questions.  In the next section we will consider 

how the ability to decompose a large project into smaller activities 

can aid in obtaining an accurate cost-time-performance tradeoff surface, 

but this capability does not aid appreciably in resolving the basic 

uncertainties that exist in estimating system effecti\ .ness. To decide 

between all potentially important alternatives at the very initiation of 

a program is at best a guided guess, and at worst the cause of an inade- 

quate system or costly development redirection. 

Cost, Time, Performance Tradeoffs 

The Incentive Contract Guide confidently states: 

. . . one method for making this determination (of tradeoff functions) 
is to request the contractor to provide forecast performances for 
several combinations of cost and schedule, (with analysis by the 
government as to reasonableness). This of course will be standard 
practice under Project Definition Phase, [h,  Ch. VIII, p. 7] 
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The difficulty  in obtaining such a performance forecast   is  that there 

are many equal  cost methods of achieving very different  final sets of 

specifications.     A sp.cified missile  range may be attainable with alter- 

native thrust  capability,   fuel   capacity,  and vehicle weight.    Given only 

the cost and schedule the  contractor usually will have wide  latitude  in 

the systems he  can produce.    However,   the derivation of a  realistic cost- 

time-performance  surface  is desirable  in any development  project.     It  is 

especially necessary to formulate a consistent  incentive contract.    And 

it may make possible submission of several FFP development bids with 

different  specifications by the  same  contractor. 

There are quantitative tools available and under development which 

yield estimates of the cost-time and  coyt-time-performance  surfaces.    A 

PERT network,   for example,   is established by defining a set  of activities, 

an order or precedence relation,   and a spread of activity completion 

times for some fixed funding.    Methods have been available for some time 

to derive the expected completion time  for the total  project.    The 

distribution of project completion time can be computed,  analytically if 

the activity completion times are exponentially distributed,   and by 

simulation  in the case of more complex distributions.   [JO]     If cost  is a 

convex function of completion time for every activity,   the minimum cost 

required to complete the project  Jn a specified time may be derived.     [?5] 

Q 
'Roderick W. Clark points out that time-cost data is not readily 

available because management accounting systems are not structured to 
provide ex ante estimates of costs as functions of completion times for 
various activities. This is due to the fact that accounting systems 
are designed to facilitate rapid reimbursement for incurred costs with 
only secondary emphasis on internal control. [5^] 
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Thus, theoretically, the PERT network coula be reformulated for several 

representative sets of performance specifications, and the general nature 

of the tradeoff surface approximated. However, even a system with a 

relatively small number of performance characteristics may have thousands 

of separate activities. Each time the key variables are assigned new 

values, the contractor must find the subsystems and sub-sub-systsms that 

achieve the required performance levels with minimum cost for some fixed 

schedule. The requirement to reformulate in detail the entire PERT net- 

work would requ.'.re an inordinate amount of administrative time, and would 

interfere with the normal work of the development personnel. 

There are thus two separate problems.  First the minimum cost sub- 

systems that achieve desired performance in fixed time must be determined. 

Then the minimum cost schedule to develop specified subsystems must be 

found. Edward Zschau has formulated a procedure called "Project 

Modelling" which considers technical interrelationships among design 

specifications, precedence relationships among development activities, 

and determines the minimum cost of developing within an allotted time a 

system with specified performance characteristics. [1?] The model assumes 

that cost in each activity can be expressed as a convex function of 

improving performance or decreasing development time, and that the total 

project cost can be expressed as the sum of the activity costs.  Rather 

than attempting to solve the entire problem simultaneously, the procedure 

uses the tradeoff surfaces generated at activity levels as inputs to 

higher level optimization models and iteratively determines the minimum 

cost activity specifications for fixed time.  For this set of activity 

specifications the minimum cost schedule is derived, and the specification 
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model   is then re-entered with the  new schedule.     Zschau has shown that 

this  iterative  procedure converges  to a solution optimal   in the following 

sense. 

When the  project demands  (e.g.,   the desired project  duration and 
system performance characteristics)  together with the activity cost 
functions are fed  into the project model,   it  outputs  the minimum 
project   cost,  the optimal engineering specifications,   and the optima] 
project   schedule  for these demands and cost functions.     By comparing 
the optimal project costs with the alternative  sets of project 
demands  that give rise to them,   the optimal tradeoff functions 
relating time,  cost,  and performance can be generated.   [17*  p. 23] 

Decentralized project management offers further advantages.     Less 

information flow is required,  decisions are made closer to sources of 

data,   and  it  may be possible  for the buying agency to decompose a large 

development  project  into subprojects  for several contractors.    This wouxd 

allow each contractor to compete for each subsystem,   and yet allow the 

buyer to  insure the proper meshing between subsystems.     Furthermore the 

contractor could furnish tradeoff surfaces without divulging either 

activity costs or proprietary process  information. 

The feasibility of project modelling depends on the accuracy with 

which development personnel will predict  costs.    Some  incentive for 

accurate estimation rather than protective estimation may be required. 

The project modelling approach should be tested in a tractable develop- 

ment  program to determine  its  further applicability. 

One additional consideration  in besing decisions on cost-time- 

performance surfaces is the uncertain nature of contractor control.    For 

example,   top level program management may  intend that a limited number 

of development  hours be devoted to  reliability considerations,  but 

engineers at  the working level may be motivated by professional or personal 

interest  to spend more thai   the allotted number of hours on this area. 
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The time may be  charged to an appropriate task,   but  the   individual may 

still be thinking about ways to  impro/e  reliability.     Overall project 

tradeoffs should be viewed as estimates to be systematically improved. 

Profit 

If system value f;nd development  cost were known as functions of 

availability date anu performance  characteristics,  a consistent  fee 

f  iction could  be defined by applying a profit  rate to the difference 

between value and  cost at any outcome.     We have  indicated that  this would 

in general not  motivate the contractor to aim at the outcome which 

maximizes monetary profit.    However,   the actual profit  attainable at any 

outcome can bt  a strong ieterminant  of contractor behavior if profit 

rapidly decreases as characteristics drop below those desired by the 

buyer.     Our hypotheses about  contractor behavior imply that  contractors 

will be motivated away from areas of potential monetary loss,   but are 

relatively indifferent between small  positive profit   Increments.     In 

August,  1963 the Weighted Guidelines  revision to ASPR 3-808 was  issued 

to aid contracting officers  in determining appropriate profit   rates,   fll] 

Prior to this,   contracting personnel were provided with a wealth of 

suggested factors and considerations,   but  were required ultimately to 

base their profit   proposals on experience and Judgement.     Jn a report on 

actual contracting practices,  Sumner Marcus states: 

Many contracting officers choose  the expedient  solution  to their 
quandry (of conflicting and diverse decision elements).     Througn 
experience they arrive at a profit  or fee rate that   is well below 
the maximum permitted,   but  high enough so that  the contractor will 
accept   it,  and they use these  few rates over a long period  for all 
contracts they negotiate,   regardless of contractor situation.    As 
time goes on they tend to lower the  rate slightly to establish 
themselves as good bargainers.   [35] 
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The Weighted Guidelines  procedure establishes  categories such as Con- 

tractor's  Input  to Total Performance,  Contract  Cost  Risk,   Past Perform- 

ance,       and Special Profit  Considerations.     Contracting officers use 

available  information to assign ei.lowable weights to appropriate cate- 

gories,   and then rely on Judgement  in assigning weights to risk and 

special factors. 

Based on interviews  conducted prior to September,   196U,  the most 

frequent  criticism of Weighted Guidelines was that most government 

activities used the technique to establish a rationale for the final 

negotiated profit  ^ate,   rather than establishing an  initial profit 

objective.    Table 3 shows eleven FFP procurement  actions negotiated at 

one buying activity using weighted guidelines. 

Table 5 

Weighted 
Guideline 
Objective 

Profit 
Proposed 

11.7 

Historical 
Rate 

Profit 
Negotiated 

12.37 10.5 11.7 

11.45 11.11 11.11 11.11 

11.U5 11.11 11.0 11.11 

11.87 6.0 6.0 6.0 

11.98 il.l il.l il.l 

lU.O il.l 11.1 il.l 

12.02 6.0 10.0 6.0 

12.1 10.0 10.0 10.0 

14.0 Il.l 11.1 11.1 

15.0 21.0   15.0 

15.2 '.1.0 11.0 11.0 

Collection and  retention of contractor performance data is formally 
required by the Contractor Performance Evaluation program.    Contractor 
success  in meeting cost,   performance,  and schedule  requirements will be 
recorded,  and source  selection boards will be  required to review this 
informatio*! prior to making contract awards.   [36] 
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This particular set of data confirms that contracting officers use high 

initial  profit  objectives to avoid  later explanation of failure to 

negotiate at  a point  below or near a valid  initial  objective. 

The contractor cannot   press  for too high a profit   rate or target 

cost  for fear of later unfavorable attention or the  label  of "profiteering." 

Or - goverrunert  procurement  officer discussed the environment  in vhlch the 

contractor's negotiator must  operate. 

It   is quite evident  that  the  lead negotiator's  performance  it staged 
in a "fis}bowl" visible alike  to corporate and division,  but   the 
end  product of his negotiation  is also subject  to much scrutiny. 
In a government negotiation he  can't  afford to extract a profit too 
high even  if the opportunity arises.    Two of the  interviewed 
companies  recently had  instances where they felt the  profit was too 
high and the contract was not  executed.     In the only corporation 
interviewed that hired negotiators from outside the Government/ 
Aerospace complex,   it was stated that the most difficult point to 
ins*ill  in their thinking was  not   to always seek the maximum profit 
as   is  customary  in normal  commercial bartering.   [57] 

Vftien target  costs are negotiated a good deal higher than  projected cost 

outcomes,   the  contractor rarely risks taking a windfall  profit,   but 

instead voluntarily rebates profit,   or commits additional  funds for 

performance  improvement,   schedule  acceleration,   or  related  research. 

This behavior  is explained not only by the existence of the GAO and 

Renegotiation Board,  but by the  low  incremental cost  of supporting addi- 
11 

tional  research in this way. 

The Renegotiation Board annually reviews profits of contractors 
with more  than *1 million  in  sales   in order to recover excessive profits. 
The Board attempts to take the   individual contract  types   into considera- 
tion,   but   it   is difficult to determine those contracts  in which profits 
are due to contractor efficiency as opposed to skill during negotiation, 
and the  board's Judgement    has been questioned.   [5,   P-  26l] 

26 



Recent DOD profit  policy has aimed at  negotiating higher profit 

rates  in return for the  contractor assuming more of the cost  risk.     The 

number of cost  incentives negotiated in the 50/50 to 70/3O range has 

increased substantially,   and there are currently very fev low risk sharing 

arrangements conclude!,   [k,  6]    This  indicates the awareness at  procure- 

ment  policy levels that  a number of factors motivate the contractor,   and 

that  by using higher profit at the desired outcome,  and lower profit at 

less desirable outcores,  the government can motivate contractor behavior 

that   is more consistent with government values. 

Formulation of Contractual  Incentives 

A well structured  incentive arrangement has two objectives.     It will 

create a financial motive  for the contractor to achieve superior per- 

formance  in all variables.     If this is Impossible,  the fee attainable 

at  every possible outcome will reflect the government's ranking of that 

outcome,   thereby guiding the coitractor's  choices. 

The  initial use of  incentives was restricted to cost  incentives, 

and the fees were almost  always linear in the development  cost.     Justifi- 

cation for linear fees  in such contracts  is their simplicity of negoti- 

ation and ease of  interpretation.    The previously referred to Management 

Systems Corporation study Justifies linear fees  in terms of their 

flexibility.    A con^ra.-x   r can always be motivated to aim at a certain 

outcome (if he is a fee maximizer) by meanr of a linear fee.    But the 

example they present  is misleading. 

Let    Cy. = Development  Cost, 

C    = Operating cost during lifetime, 

C_ = Total Cost = C,. + C   • T Do 
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Assume that    C is    dependent on    Cn    in the  following way; 

^Co =  ^CD]   =  CDe    D 

Then    E[C   ]  =  ^-/^n»   where     E    denotes the expectation operator.     Hence 

EfCL,]   =  Cn +  l/cn.    Now assume that  the buying agency desires to find 
ctC CLT that    Cn    which minimizes    C_.    Then   -rr- = 0,   which  implies that u l ocD 

Let     f    denote the  contract      r3e as a function of development  cost, 

arJ. assume that the contractor maximizes expected fee.     In order to 

motivate the contractor to set  the development  cost,     Cn,  at  1,  we must 

have    ^TT- = 0    for    C_  =  1.     If the fee  is  linear  in the total  cost, 

CT,   we have    f = a - ßP,   for some   a,    ß,  and    E[f]   = a - ßEfCTl     or 

E[f]   = a - 0[CD +  l/Cjj].     This  is maximized at    C-^  1    for any choice 

of    Ct,     ß.     If however,   the  fee  is  linear in the development cost,     C   , 

(e.g.,     f = Q - ßCn),  then the development  cost  chosen by the contractor 

12 is   indeterminate without  further assumptions. Using  linear fees,  we 

must  be  careful about  the  variable the fee  is  based on,   for the  fee   in 

the above example  is certainly nonlinear  in development cost. 

When CPIF contracts were extended to  include multiple  incentives, 

the  fees were generally  independent,   linear,   and additive.    For example, 

development cost might  be weighted UC^,   schedule 20^,   and performance Uo^. 

Individual performance elements  such as thrust,   or range,  were then 

assigned portions of the UO^ performance weight.     This approach had 

Recall that we were required to postulate the existence of a user 
cost function or disutility resulting from cost reduction to explain the 
contractor's behavior  in this  case. 
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several defects.     It  required the subjective rankirig of the separate 

performance,   schedule, and cost elements.     Any set of weights valid in 

expressing government value at one point were not in general representa- 

tive of value over the  possible performance spectrum of the  system.    And 

in such a fee arrangement  it was possible for the contractor to earn 

target fee while  sutmitting poor performance  in several variables.    Con- 

sider the following example which illustrates this fault of compart- 

mentalized  incentives. 
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If the contractor delivered an 1150-mph aircraft three months after 
target at a cost of $150 million he would receive target fee, and 
if he delivered the same high performance aircraft six months late 
at a cost of $l60 million he would still earn target fee. [2, p. kj] 

The linearity of the fee structure oversimplifies the guidance to the 

contractor. When the performance level of some element is close to 

minimum acceptable, the value of an increment in that variable's per- 

formance is worth much more than an increment in performance in some 

variable already close to the maximum desired.  Linear incentives do not 

reflect this. One partial solution to compartmentalization is to extend 

the range of the cost incentive to retain some control over cost overrun 

This is termed "overlap." And the partial solution to the independence 

of the fees is to define the acceptable outcomes in terms of several 

variables. For example, acceptable minimum range might be U000 miles, 

and acceptable minimum speed 1600-mph, but no more than minimum fee would 

be paid unless range plus speed exceeded 6000. This is simply taking 

care to bound the region within which a linear fee will be acceptable to 

the government. 
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Two methods have been proposed to define a fee surface which more 

accurately reflects government values than do linear fees.  The Logistic 

Management Institute proposed a "Tabular Model" which uses a set of 

multipliers to alter the fee structure in regions of contractor nerform- 

ance defined as "outstanding" or "poor." [15] After the government and 

contractor negotiate the regions deservi.ig special attention, fees are 

structured independent!^ for epch variable, And total ''ee is the sum of 

the individual fees. The fee for the outcomes in the specially designated 

regions are multiplied by suitable constants, greater than one for 

superior performance, and less than one for below standard pe-'formance. 

This corresponds to modifying a planar fee surface by steeper planes in 

these designated regions as shown in Figure 1. 

Performance 

Fee 

Performance 

Cost Cost 

Figure 1 

The name "Tabular" arises since the buying agency must define grades of 

performance (tables) for the designated variables, and then must deter- 

mine appropriate multipliers for each grade. Fo-" example, assume the 

basic fee for control of development cost is linear, and the buyer desires 
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to reward exceptionally low development cost and penalize a combination 

of high development cost and low performance. The buyer therefore might 

divide the range of expected development cost outcomes into ten grades. 

The lowest two of these grades could be assigned the multipliers l.U, 

and 1.2, while the combination of high development cost and low perform- 

ance could be assigned the multiplier 0.5. The use of multipliers is an 

explicit method of requiring the procuring agency to determine its own 

utility function, and then introduce any significant nonlinearities into 

the incentive fee. Using multipliers for combinations of variables 

requires a method of ranking the relative desirability of outcomes. 

Without a model of system effectiveness, determining the relative value 

of the outcome of three parameters, each having ten grades, could be 

tedious. 

We have seen that a basic problem in incentive fee formulation is 

that tho effectiveness of a system is not additive, but is a complex 

function of the variables characterizing the system. The Management 

Systems Corporation study recognizes this and suggests that effectiveness 

be measured by a cost-effectiveness model, and that the incentive fee be 

a monotonically increasing function of government value. The fee struc- 

ture they propose is: 

f = f + a(AV-^c) , 
v 

where  f ■ final fee, 

f = target or initial fee, 

Q = sharing proportion, 
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AV = incremental increase in effectiveness value over target 

effectiveness value, 

Ac = incremental increase in cost over target cost. 

We discussed the problem of translating system effectiveness into dollar 

terms. Even when it is difficult to make such comparisons they will be 

implicitly used in any case, and the use o^ cost-effectiveness techniques 

requires that they be made formally. One of the criticisms heard against 

government contract management is that the buying agency is vague about 

its requirements and choices among performance capabilities. This 

objection could be met by furnishing the contractor with the cost- 

effectiveness model, or data derived from it. The contractor would then 

have a more objective basis for tradeoff decisions, and the government 

would have a more objective method of deciding whether the contractor 

did, in fact, act in the government's best interest. 

A combination of Zschau's approach to decentralized project manage- 

ment, the periodic updating and use of system effectiveness models, and 

use of an award fee appear to offer substantial efficiencies in develop- 

ment contracting. An initial cost-effectiveness model may allow an 

incentive structure that reflects government desires. But as development 

progresses and both the cost-time-performance surface and the external 

environment change, the most desirable system will also change. By using 

project models and system models capable of being updated, the contractor 

and buying agency could respond to the operating environment adaptively. 

If tradeoffs are to be evaluated in detail, decentralization would be as 

desirable in th.1 user's cost-effectiveness model as in the development 

pioject model. Decentralization allows more detailed and accurate 
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estimates of effectiveness value but requires a higher level model to 

avoid suboptimization. Use of an award fee is a step closer to the 

"After-The-Fact-Evaluation" contracting method proposed by Scherer. 

The award fee allows the baying agency to take account of outstanding 

innovation or management, and to compensate for unforeseen requirement 

changes or technical problems that mav have precluded the contractor 1'rom 

earning a fair profit in an otherwise satisfactory program. 

Implementation of such changes would have to be gradual. The defense 

and aerospace contractors are Just becoming familiar with the multiple 

incentive contracts initiated in 1962,    After an initially lukewarm 

reception, industry reaction now appears favorable. [13] A Douglas 

Missiles and Space System Division report states: 

An incentive program usually stimulates the development of efficient 
techniques resulting in higher reliability and more contract 
dollars. [32] 

Contracting officials at two aerospace corporations commented that the 

magnitude of the incentive ^ees did not seem to be very important. The 

knowledge that the project was "on incentive" was sufficient to induce 

higher performance and better planning. Some corporate executives fe]t 

that performance incentives were superfluous. Other writers argue that 

reliability and maintainability incentives are required with cost 

incentives to prevent corner cutting in quality. W. C. Frederick states: 

15 Under Scherer's proposal the government would maintain data 
describing contractor efficiency in cost control, reliability, oper- 
ational per^orinance> and adherence to schedule, which would be used in 
determining profit rates, and awarding contracts. In addition, Scherer 
proposes that the growth, long term profits, and direction of activity 
of the contractor be planned by a Performance Evaluation Board. This 
would place emphasis on the long range incentives of survival and 
growth. [3, p. 527] 
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The risk to the purchaser (in a firm-fixed-price contract) is a bit 
more subtle, but no less real  Under the FFP type of contract the 
contractor's profit varies inversely with the cost of the system; 
therefore he has a tremendous incentive to cut costs, perhaps to the 
point where the quality of the system is degraded. Thus unless the 
specification or work statement is extraordinarily precise and 
complete, the purchaser may be forced to accept a product of a 
quality lower than he had expected. [39, p. 7] 

And again in arguing against single dimensional (cost) incentive 

„Oiitracts, 

The provisions of one incentive contract of which the author is 
aware were such that the contractor's fee would be greatest if his 
cost were exr.ctly $1,000,000. It was the stated intent of the 
program manager to accumulate costs of $1,000,000, and since costs 
were in danger of exceeding that amount, the planned reliability 
program was curtailed accordingly--desp^te the fact that the relia- 
bility objective was conceded to be extr mely important to the 
customer and difficult to meet. [39f   P« Ö] 

Scherer, however, repeatedly claims that weapons system contractors have 

an extremely high aversion to cutting quality or reliability to gain 

short run profit. The incentives toward high quality--corporate repu- 

tation, the reluctance of the purchasing agency to authorize design 

changes that impair quality, and the possible effect of low quality on 

future awards—do not appear applicable to commercial firms, while 

Frederick's comments, directed at defense contractors, do appear to be 

more applicable to non-defense firms with severa^ markets. The utility 

of current profit is nigher for these firms, and the renegotiation 

constraint is not present. 

Crovernment procurement personnel are pleased with the results of 

contractual incentives. The Incentive Contract Guide states: 

The success of the program (expanded use of performance incentives) 
seems clearly revealed in performance levels achieved at target 
or high than target in the majority of cases and cost being 
controlled in almost every instance within 10^ of negotiated target 
costs, [k,  Ch. VIII, p. 2] 

/ 
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It is not clear whether these result, have been obtained because of the 

existence o*' incentive fees, or because of the detailed system analysis 

and capability estimation that precedes contract negotiation. A set of 

experiments in which contractors submit proposals for FFP, CPIF, and 

CPAF awards would illuminate the preferences for risk and contract type 

within individual firms, and between firms. 

Summary 

We have indicated the important trends in contracting for the 

development and procurement of complex weapons and space systems. The 

first is the greater selectivity and limited production instituted by 

Secretary of Defense McNamara, which creates a competitive atmosphere 

among cc-. ractors, and places the government in a more powerful 

bargaining position. Thus the government is able to institute management 

controls and practices which it considers conducive to the more efficient 

use of procurement resources and development personnel.  The second 

operative factor is the growing bank of data recording contractor per- 

formance. Over a period of time chance performance variations will be 

averaged out, and the long term management competence which a given 

contractor brings to his projects will be quantitatively demonstrable in 

terms of development costs versus estimates, and field performance versus 

projected performance. The final factor is the growing arsenal of 

management techniques and tools for control and analysis of alternatives 

in project definition and development. Adaptive project modelling by 

the contractor and a similar government effort could operate together 

to allow sequential decision making during the development process. This 
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would be more efficient  than fixing the ranges of system performance 

far  in advance of any firm information regarding desirability,   feasi- 

bility,  and cost. 

These three factors  interact to allow government  initiation of the 

project modelling technique,  by creating general  system models and pro- 

ject models of various  space and weapons  systems.     Contractor performance 

data would provide  initial model data which could be continually updated 

by completed projects.     Similarly the system models could be refined by 

operational testing.     As government and  industry gain familiarity with 

the formulation,  use,   and properties of system models,  the government 

could ask for development  program    bids which would have tradeoff deci- 

sions made by the government,   sequentially,  with the profit award being 

negotiated after project completion with final  cost,  performance,   risks, 

and special factors available for consideration.    We feel that this 

approach to program management promises a more  responsive contractor 

effort  in research and development than do the more rigid contractual 

incentives. 
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CHAPTER  II 

UNCONSTRAINED CONTINGENT PRICING  MODELS 

Introduction 

In reviewing the use of incentives  in development we observed that 

performance  incentives were intended to motivate superior technological 

progress  in the design and development  of new products.     Once high per- 

formance features are designed  into equipment,   production  inefficiencies 

can degrade operation,   but even outstanding production practices cannot 

improve uninspired design.    We also noted that  the difficult  problems 

in designing contra tual  incentives were encountered in the  advanced 

system area.     It  is useful to point out  that  relatively few contractors 

are  involved in large advanced system development.    The majority of pro- 

ducers supply standard or slightly modified equipment,  and generally do 

not  sell on an incentive basis.    Government  practice  is to procure 

noncomplex products  (shoes,  medical supplies,   hand tools,   ammunition)   in 

large  lots and to  specify the Acceptable Quality Level  (AQL),   or percent 

defective allowable  in the  lot.      The acceptability of complex  items  such 

as communicatic .. equipment or vehicles   is determined by defects-per-unit. 

Sampling of  incoming lots  is conducted  in accordance with approved 
sampling ürocedures.    A fixed price  is  paid for accepted lots.     Items 
which cannot be designated defective or nondefective (such as capacitors 
with a range of capacitance,  or ammunition propellants with variable 
muzzle energy)  are classified by conformance to specification,  and lot 
disposition is determined by the percent of the  lot estimated to fall 
outside tolerance limits,   [kl] 
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demerits-per-unit, or reliability tests such ar the AGREE procedures. 

[22] 

In production, as opposed to development, there is less cost un- 

certainty and little cause for changes in product specifications. Con- 

formance to these specifications can be more accurately determined than 

in development, and it appears that fixed-price-quality-incentives, or 

"contingent pricing contracts" are applicable to these production situ- 

ations. A contingent pricing contract would provide for variable payment 

based on the degree of product coniormance to design specification as 

measured by an agreed on testing or sampling method. Such adherence to 

specifications is commonly termed "quality" and contingent pricing is 

therefore mpre of a quality related concept than are performance incen- 

tives in general. Note that in discussing performance incentiveb we 

implicitly assumed that at the completion of product development the 

performance parameters were precisely known.  In fact these parameters 

(MTBF, range) can only be estimated or predicted from the observation of 

other variables. Hence there is sampling uncertainty in uhe payment 

received by the contractor or producer. Contingent pricing policies are 

designed to handle this sampling uncertainty directly. The concepts 

involved in analyzing the quality situations are also applicable to 

structuring performance incentives based on measured performance 

variables. 

When the buying agency samples an incoming lot or tests an incoming 

equipment and finds that it does not conform to specification, it may 

either waive the nonconformance or reject the lot or item. When items 

cannot be rejected due to delivery or urgency considerations a single 
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unit rrice is not an effective tool to motivate superior production 

performance. The item marginally acceptable may be irapioved later by 

supplier effort, but the extra time and possible government expense 

involved should detract from the unit price in fome way. Contingent 

pricing provides a method of rewarding contractor excellence in production 

and penalizing oocr contractor quality control. 

There have only been three models thttt explain contractor response 

to performance incentives, and of these only two attempt to design 

incentive policies optimal in some sense.  In this chapter we briefly 

discuss these models, state the assumptions in them which we feel prevent 

the derivation of realistic policies, and then in the next chapter 

develop a method for generating more realistic incentive pricing 

policies. 

Hill Model 

The forerunner of the contingent pricing models is the effort by 

Hill [k2]   in I960 to explain the incentive effect of both payment and 

acceptance sampling plans. Hill suggested that the primary purpose of 

acceptance sampling was to motivate higher production quality rather than 

simply detect and reject deficient batches. He assumed as axioms: 

(i) the distribution of the batch percent defective submitted to 

the purchaser is entirely dependent upon the actions of 1 ne 

manufacturer; and 

(ii) the manufacturer will take those actions which maximize 

expected profit. 

From these axioms we see that if the lot quality (percent defective) 

submitted is to improve, the manufacturer must take action, and that he 
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will do so only if it is economically advantageous to him. A further 

implication is that it should be to the manufacturer's economic advantage 

to offer good quality and to his disadvantage to offer poor quality. 

The sampling and payment schedules to which Hill restricts his discussion 

provide for a fixed payment if the lot is accepted and no payment other- 

wise.  In situations of this type, higher quality should be rewarded by 

greater frequency of lot acceptance. While all operating characteristics 

produce this result, it is standard practice to shift sampling plans as 

the sampling results provide information on the average percent defective 

submitted in incoming lots. Consider the following case which illus- 

trates how certain features of the Dodge-Romig sampling tables operate 

against good quality. [Uj] 

Let LTPD * k,c6 

Consumer's Risk = 0.10 

Batch Size = 500. 

OC curves for four different plans are shown in Figure 1, and each 

curve is to be used for a particular rang', of process average.  Tn Hill's 

example producer A submits lots with an average 0.4^ defective, B sub- 

mits 0.5%  defective, and C submits 1.3^ defective. Yet A will have QO.2% 

of his lots accepted, B will have 9^*5^ accepted, and C 86.7$ accepted. 

The lack of incentive to good production is obvious. 
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Hill outlined a basic eccnoinic theory of sampling inspection to account 

for the incentive features. He assumed 

1. the distribution of defectives in submitted lots is binomial 

with parameter p, and 

2. the unit cost of manufacture as a function of outgoing quality, 

h(p), can be represented by K/vp. 

Let  x = number of defectives observed in the rample, 

N = batch or lot size, 

LN = price paid per accepted batch, 

T = average profit to the producer per batch, 

n = sample size, 

a = acceptance number, 

P = proportion of accepted batches. 
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a 
Since x is binomial, P = X I I P (^'P)  • Under the assumption 

x=0 **' 

that a rejected batch is a total loss to the manufacturer, 

T = NLP - Nh(p), or 

[i-ti- T = KN 

Given K, L, and a, the manufacturer aims to adjust p to maximize T. 

We can derive the relationsnip the optimal p must satisfy. First 

a 
dP  d  r» Inl X/,  xn-x    -nl    a/., »n-a-l  _, 
T" » T" L   \-\  V  (1-P)    = ~T7 7T7 P (I'P)     • Then dp  dp ^ lx/ ^   r/     a:(n-a-l)l r   ^' 

dT  V^FL dP   1 |  n2 .  L T   nl    a,, xn-a-ll   1 

Figure 2 indicates the variations in producer profit, T, with submitted 

quality under a sampling plan in which n = 150, and.    a - 11.  The plan 

is a MIL-STD-105A plan for an AQL of kt. 

Hill notes that the variation of the optimal p is relatively 

insensitive to changes in the price-cost ratio. Furthermore the sampling 

plan used causes the producer's optimal choice of p to be in the 

neighborhood of 4$, the quality the plan is designed for. Hill did not 

extend his remarks beyond this example, but his essential points are 

clear for the purchasing agency. If the producer attempts to maximize 

expected profit through choice of quality level, both the sampling plan 

used and the price paid per lot will determine this choice. 

2 
To insure that T is actually maximized the producer would in fact 

have to test the end points and all interior points at which dT/dp = 0. 
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Johns-Lieberman Model 

In 196l Vernon M. Johns and Gerald J. Lieberman of Stanford 

University formulated the contingent pricing problem in a more general 

setting. [UU] They described a situation in which the buyer agrees to 

purchase batches of items, for a price to be determined in a prescribed 

way according to the results of a sample of items from the lot. The 

basic assumptions in the Johns-Liebennan model were that 

1. the producer is capable of controlling the quality of his 

product to a known extent and at a cost known to both producer 

and purchaser, and 

2. given any sampling plan and pricing policy the producer will 

choose the quality to maximize expected profit. 
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They further assumed that the cost of sampling is charged to the buyer 

and that the buyer chooses the sample size in advance. Johns and 

Lieberman note, 

The situation is then formally that or  a two person non-zero-sum 
game in which the strategy of one player (i.e., the pricing policy 
of the consumer) is revealed to the other player (the producer) in 
advance of his choice of a strategy. This type of game has a well 
defined notion of a soxution.  The consumer knows the producer will 
adopt a strategy (quality level) which will net him ^the producer) 
the maximum expected return under the pricing policy chosen by the 
consumer.  The consumer must therefore select the pricing policy 
which will net him the greatest return under the producer's 
corresponding optimal strategy. 

The following example illustrates the model and certain problems that 

arise in this formulation. 

Let     N = number of items in a batch, 

p = probability each item produced is defective, 

h(p) = unit cost of producing items at an average quality 

level p, where h(p)  includes a normal loading for 

unit profit, 

n = sample size, 

x = number of defectives observed in the sample, 

c = sampling cost per item, 

N (x) = price paid for the lot when x defectives are 

observed, 

T = expected consumer profit, 

T = expected producer profit, 

g(p) = expected value of (p(x), given n and p.  (if x is 

a binomial random variable 

g(p) ^Z>(x)(^) pX(l-p)n"X.) 
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For simplicity in exposition let the value to the consumer be one per 

non-defective  item,   and zero per defective  item.     Denote the expected 

unit value by    V(p).     In this case    V(p)   =  (l-p)-     The expected net 

returns to consumer and producer are then 

(2.1) T    = N(l-p)   - Ng(p)  -  nc  ,     and 

(2.2) Tp = Ng(p)   -  Nh(p)   . 

Since a unit profit is included in the h(p) function, ve assume that 

the producer will agree to a contract if T > 0 for some p.  For fixed 

n  T  will be maximized when Ng(p)  is minimized, and from this we 

see that in an optimal policy we ^ould like 

(2.3) Ng(p) = Nh(p)  for some p. 

At that p, 

(2.10 T = N(l-p) - Nh(p) - nc . 

For any n, (2.U) will be maximized by the p# for which 'l-p) - h(p) 

is a maximum.  In this case p* satisfies h'(p#) = -1, The situation 

is shown in figure 3» Consumer profit, T , will be maximized by using 

the smallest sample size, n, at which the producer can be motivated to 

produce at p*. 
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Consider the case n = 1. To motivate production at p* T  must 

attain its maximum at p*, or 

(2.5) ^ [Ng(p) - Nh(p)] = 0 , p = p* . 

If    x    is a binomial random variable,  we have from the definition of 

g(p), 

(2.6) g(p) = q>(o)*(i-p> + qKi)*? , 

and from (2.5) -9(0) + qp(l) - h^p»), while from (2.5) 

qp(0)(l-p*) + qp(l) p* = h(p*). Solving for qp(o) and 9(1) we obtain 

the pricing schedule, 

(2.7) 

(2.8) 

<p(0) = h(p*) + p* , and 

(p(l) = h(p*) + p* - 1 . 
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A sample of one produces an optimal policyl Consider the following 

numerical example based on the preceding development and illustrated in 

Figure k.     Let the value to the customer, V(p), be (l-p)  as before. 

Let    h(p)   = .022 +  .U  ,  unit  production cost,   and 

c =   .05 ,  sampling cost, 

N =  100 ,  lot size. 

We determine optimal quality,     p* *   .Qk9,  and    h(p*)  = 0.495'    Therefore 

qp(0)   = O.^hk  ,    and 

q)(l)  =  -.U56 

^ 
•51 

a    .50 a, 

0) 

ä 
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Proportion Defective,     p 

Figure k 

This policy yields an expected consumer gain,    T ,  of ^9.55 and no 

producer gain beyond the unit profit  included in the    h(p)     function. 

That  is,    g(p«)  = h(p*). 

Note that  if the sample of size one is defective the producer incurs 

an actual net loss of (.U95) X 100 +  ( .U56) X 100 = 95.1,  while if the 

sample is non-del«.ctive his actual gain is only 4.9.    This  is based on 

an investment of close to ^9.5»  and while tne expected profit and actual 
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profit are acceptab.'13 at p*, we feel that it is unlikely that a producer 

would agree to this type of policy. 

One el the elements we feel is iutuitively unsatisfying is the 

magnitude of the penalty levied against the producer when a defective is 

discovered. We will discuss the implications of bounding the minimum 

payment in a later section, but to illustrate that lower bounds do not 

provide the solution, consider the producer to have no fixed costs, so 

022 
thet his unit production cost, h(p), is ~ • , and restrict the pay- 

i/J 
ments, qp(x), to be non-negative. The optimal p* is still 0.0^9, but 

h( .014.9) = .1. Let a sample of nine items be drawn and the price schedule 

be as follows: 

q)(x) = 0.1?5 ; x = 0 

qp(x) =0.0  , x > 0 . 

The producer is still motivated to produce at p*,  (T  is maximized 

at p*), and expected producer profit at p* is 1.10. One defective 

observation in this case is not as disastrous for the producer as in the 

previous case since he loses only his investment and is not penalized 

additionally. However Figure 5 indicates that g(p) is very close to 

h(p)  in the vicinity of p*, and therefore the producer is not severely 

^enalized for quality poorer than p*. For example, if the producer 

choose*, to produce at p = 0.10 rather than p = 0.0^9 his expected 

net loss is only .175. He will obtain an actual gain of 10.5 39^ of the 

time, and will lose 7.0 6l%  of the time. 

* 
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A producer prone to corner cutting or gambling might find this policy 

attractive, and we suspect that a buyer would want tighter discriminatory 

ability. 

Flehinger-Mlller Model 

The last numerical example used a sample size of nine and a single 

payment of 0.175 if no defectives were observed. This was not arbitrary, 

but was an optimal policy in a way that will now be described. In 1964 

Betty J. Flehinger and James Miller reported a "product improvement" model 

very similar to the Johns-Lieberman model. [U5] 

They assume that a producer is already manufacturing at some verified 

quality level and is presumably receiving an acceptable fee. The pro- 

ducer can spend additional funds to improve the product quality. If this 

improvement benefits the consumer more than it costs the producer, such 

improvement will be advantageous to both parties. An acceptance test 
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will be performed to verify that the product Improvement has been 

achieved.  The fact that product improvement is advantageous to both 

parties promnts Flehinger and Miller to seelc only admissible policiee-- 

those that maximize Joint profit. 

The important assumptions in this formulation not included in the 

previous moaels are: 

1. If the producer makes no attempt to improve his quality it will 

be cnaracterized by the basic quality at which he ir currently 

producing,  p . 

2. A strategy or policy,  (n, <P0, q)., ... , ty^)  ,  or (n, cp)     is 

defined to be admissible if it yields a positive expected profit 

to both consumer and producer, and if no other policy yields a 

greater expected profit to both sides. 

Assume the expected value to the consumer is V(p) = 1 - p/p-« 

The expected profits can then be written as in (2.1), (2.2) as functions 

of p, qp and the sample size, n: 

(2.9) Tc(p,(p,n) = NV(p) - Ng(p) - nc , and 

Flehinger and Miller feel that this test  is motivational rather 
than informative,  since the test is the mechanism by which the producer 
is motivated to a particular quality.    Actually the test is informative 
to the consumer.    While the producer is assumed to have perfect  control 
and can set the quality precisely where he chooses to, the consumer has 
no protection other than the assumed rationality (i.e.,  profit maximiza- 
tion behavior) of the producer.    Hence the acceptance test both motivates 
the producer,  and gives the consumer some  indication of the quality 
actually attained. 

We will denote the unit prices both by    9(x)     and    «p . 



(2.10) Tp(p,(p,n) = Ng(p) - Nh(p) . 

Given any policy (n,qp) the producer will choose p to maximize 

(2.10). Denote this p by p*. We may express p* as p*(9;n), and 

express the consumer and producer profits at p* as 

T» = T (p^n) ,  and 
c   c 

T* = Tp(p*,9,n) . 

Each (n,qp) is thus mapped into a point (T*,T*) and by Assumption 2 

a policy is admissible if it maps into a point (T*,T*) such that 

T* > 0, T» > 0 and no other policy maps into a point (T',!") that 

dominates (T*,T*). This implies that an admissible strategy maps Jnto 

a point (T*,T*) sur^h that T* *■  T* is maximum over all policies 
^      c' p c   p ^ 

leading to the same value of T*. 

Since T* + T* = N[V(p) - h(p)] - nc, we see that by seeking 
c   p 

i 
I 
1 

0 

0 

] 
admissible strategies, we arrive formally at the relation (2.U) which 

says simply that if a quantity is to be divided with a fixed amount going 

to one party, the other party maximizes gain by finding the point at 

which the initial quantity is greatest. 

Flehinger and Miller derive the following procedure to find the set 

of all admissible strategies: 

a. Find the p* which maximizes V(p) - h(p), 

b. Out of the class of all policies, (n,q)), select those for 

which T  is maximum at p*. 
P ^ 

c. Of these policies select those for which T* > 0, and T* > 0. 
^ c - '     p - 

0 

0 
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d. Claesify the policies, selected by the value of  T*, and out 

of all policies yielding the same value of T*, choose those 

for which the sampling cost is minimum. These remaining 

policies are admissible. 

We present an example to illustrate the method. 

Let     p = the probability that each item produced is defective, 

(P<P0) 

N = lot size, 

n = sample size, 

Ir(x) = price paid for the batch, 

NV(p) = N[l - p/p ], expected batch value, 

h(p) = h,ln(p /p) the unit cost of improving quality to p, 

c = unit cost of sampling, 

q = 1 - p. 

To obtain the p that maximizes V(p) - h(p)  in this example we set 

d                     1  '^1 
T" [v(p) - h(p)] = 0 or = —r and hence, dp Po   p* 

(2.11) p« = p^ . 

To find the policies (n,q)) which maximize T  at p*, set 

4; [Ng(p) - Nh(p)] = 0 for p = p*, which is 

I 9X ^ (£) P*(l-P)n"x + ^ = 0 for p = p*, or 

(2.12) I   a (") p^V^^x - np] = ^-i for p = p* . 
x=0 X X p 
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This is a condition that    (p(x)    must satisfy for every   n    in order that 

T     will be maximum at    p*€(0,l). 

Consider all policies of the form   9(0) = L,  a constant to be 

determined, and   (p(x) = 0,  x > 0.    (2.12) then reduces to 
hl 

qp(0)  =    *   I^l ' 0r 8inCe    P# = Pohl' p*nq* 

(2.13) L = 
p nq* ^o 

n-1    ' 

and g(p) is then given by —■*-. We thus obtain 
npo 

(2.14) T* = NV(p#) - Nq*/np - nc ,  and 

(2.15) T* = NqVnp - Nh(p*) . 

For this special class of policies we now choose sample sizes, n, that 

yield  T* > 0, and  T* > 0. Since L is a function of n, we first 
c - '      p - ' 

determine the minimum n such that  T# > 0.  Denote this by nn . This 
c - "1 

is given by 

(2.16) > mil . 1 JMv*)\' 
1 - 2c    2 V I  c  / 

1+Nq* 

V 

We remark again that every policy, (n,qp), must be tested at the 
endpoints, p = 0, p = 1, and at every interior point for which the 
derivative = 0. If any policy yields more than one point at which the 
derivative = 0, an additional constraint can be used to find a policy 
which does maximize T  at p*. 

P 
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Denot ing by   n'    the largest    n    such that      T* > 0, we obtain 

(2.17) nP < WP h(p*)   . 

The requirement that for a fixed value of    T*     we choose those policies 

(n, L)    such that    n*c    Is minimum implies that the forward difference 

of   T*     with respect to    n   must be non-negative.    Therefore    n-    may 

not be given by (2.1?) but rather by   ^n[NV(p*)  - Nq*/np    - nc]  > 0, or 

(2.18) n^ + l) <NqVcp0 . 

Hence n^ is given by min(n',n"). This is shown in Figure 6. 

Ü 

n. n'   n.. 

Sample Size 

Figure 6 

To summarize, all admissible policies of the special form (p(0) = L, 

(p(x) = 0 (x > 0) are given by 

(2.15) L = l/ponq* 
n-1 
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for n in an interval (n.^n-) where n. is given by (2.16), and n» 

satisfies both (2.1?) and (2.18). This special class of policies will be 

proven admissible, and except for one special case exhausts the class of 

admissible policies I 

The special case arises in the following way. The assumption 1 and 

the cost function, h(p), imply that even 5f no improvement effort is 

made by the producer, quality will remain at level p , and at that level 

there is a positive probability,  (l-p ) , that zero defectives will be 

observed in a sample of size n. We have observed that T (p*,L,n) 

decreases in n, and eventually becomes negative. However, T (p ,L,n) 

never becomes negative, which indicates that in some cases there may 

exist a sample size, say n, at which the producer will choose to forego 

product improvement. This situation is illustrated in Figure 7 and 

Figure 8. 

I 
& 

0) 
■p o 

T (p*) > T (p ) px^     p^o' 

1-H- 

Proportion Defective, p 

Figure 7 
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n > n 

T (p*) < T (p ) 

Proportion Defective,    p 

Figure 8 

Flehinger and Miller constrain this situation from occurring by having 

the upper bound on sample sizes for the policies    (n,L)    also satisfy 

the condition that    T (p*,9,n) > T (p ,<p,n),  and if necessary,  add an 

extra payment    <p(l)    at sample sizes above    n, that "remotivate" the 

producer to    p*. 

The following numerical example illustrates the results Just derived. 

Let N = 100 

p    = 0.1 ^o 

h(p) = .1 In .l/p 

c = O.h 

From (2.11) the optimal quality, p*, is 0.01, and the unit production 

cost, h(0.0l) = 0.25. From (2.15) L = 10/n( .99)n'1. (2.16) yields the 

minimum sample size, n , of 11. (2.1?) yields n2 = Uj, and (2.l8) 

yields np = ^9» Several of the admissible policies are listed in 

Table 1, and the situation is displayed in Figure 9« 
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Table 1 

n L 

1.099 

T» X 100 T* X 100 
c 

T* + T* 
c       p 
x 100 

10 76 -4.00 72.00 

11 1.005 67 4.60 71.60 

15 .766 43 27.00 70.00 

20 .602 26.50 41.50 68.00 

25 .508 16.50 49.50 66.00 

30 .444 10.00 54.00 64.00 

35 .404 5.30 56.70 62.00 

ko .368 1.80 58.20 60.00 

^3 • 354 0.00 58.80 58.80 

kk • 351 -0.50 58.90 58.40 

Probability of 
Producer 

receiving payment 

.904 

.895 

.86 

.82 

.78 

.73 

.70 

.67 

.65 

.64 

Figure 9 

We now prove that the special class of policies given by   9(0) = L, 

9(x) = 0, x > 0,  is admissible.    By the definition of admissibility any 

admissible policy,    (n,q>), must maximize    T     at   p*.    Therefore consider 
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any policy, (n1,^), not of the type given by (2.13), (2.16), (2.1?), 

(2.l8) that maximizes T  at p*, and assume that (n1,^1) maps into 

(r,r)  such that Tc(p*,(p',n') + Tp(p»,q)',n') > Tc(p*,L,n) + Tp(p*,L,n) 

This is V(p*) - h(p*) - en' >V(p*) - h(p*) - en and hence, n1 < n. 

Since n^. was chosen such that T* increases in n for n, < n < n^, 
2 c 1 —  — 2' 

we have T (p*,!,^) < T (p*,L,n).  By definition 

n' 
Tc(p*,L,(p1,...,qPn,n') = NV(p*) - c-n' - q)(0)q*n, - j 9(x)(JJ,)p*Vn,'X , 

x=l 

n' 
and since the last term, ]£ <p(x) prfxfn^p*], is positive, 

x=l 

Tc(p^L,(pl,q)2,...,qpn,,n
,) < Tc(p»,L,n

r) 

Therefore 

^(p*,!^,...,^,,^) < Tc(p*,L,n) 

which proves that (n,q)) satisfying (2.15), (2.l6)-(2.l8) is 

admissible. 

Are there admissible strategies other than this class of policies 

that might yield a larger T ? To answer this denote the special class 

by (n*,(p*) and assume first that n«, the maximum sample size, is given 

by T* = 0, as in the numerical example. Then if there existed em 

admissible policy (n1,^) suchthat T' > 0 and T' >T* we would ' ' p - cc 

have   T'  + T'  > T* + T*   contradicting the admissibility of    (n»,(p»). 
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Alternatively assume that ru is given by AnT > 0. Then if there 

were an admissible policy (n'.CP1) such that T' > T* and T' > T*, we 

would have T' +1' > T* + T* implying T" < T* which again is a 
p   c   p   c   r "^ ^  c   c 

contradiction. 

Since n is a discrete variable, n  may be given by (2.1?) with 

T* > 0. In this case an additional positive payment, <p(l), at the 

sample size n* + 1,  might motivate the producer to p*, yet increase 

the consumer's profit. This would depend on the cost of sampling. The 

paper reporting the Flehinger-Miller model uses an example in which the 

"sample size" is really a test length. Hence the test length may be 

varied continuously to drive the T* exactly to zero. 

We are left with two somewhat unsatisfying results. The Johns- 

Lieberman formulation implies that the consumer can both maximize his own 

profit and satisfy the producer with a sample size of one, and the 

Flehinger-Miller model derives optimal policies which are sampling plans 

with an acceptance number of one, except in special cases. 

To understand these results consider the magnitudes of the actual 

prices and the confidence with which the results of these plans would be 

viewed. Consider first the implications of a lower bound on the prices 

in the Johns-Lieberman formulation. Let 9(x) > m for all x, and let 

n = 1. From the conditions that both T  and T  be maximized at p*, 
c      p 

or (l-p*) <p + p*9, = h(p*), and -qp + 9 = h^p*) we derived the 

solutions 9 = h(p*) + p*, and «p. = h(p*) ■♦■ p* - 1. If 

h(p*) + p* - 1 < m, we must choose qp. = m, and hence 
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q*qpo + p*^ = q*(po + p*K 

> q*[h(p*) + p*] + p*[h(p*) + p* - 1] 

= h(p*) . 

Thus the existence of a lower bound on the prices shows that in general 

n = 1 is not optimal, and the greater the lower bound, the greater will 

be the sample size necessary to allow the equations 

g(p*) = h(p*) , 

g'(p*) = Wp*) 

to be satisfied simultaneously. The numerical results on page 58 are 

an instance in which m = 0, and n = Uj is the first sample size at 

which both {.99)\    = .23 and -n( .99)n'1«P = -10 can be satisfied. 

Now bound the prices above by M, and again let n = 1. Then since we 

must have -cp + qp = h^p*), and (p,  is bounded below by m, the 

minimum qp  is cp = m - V(p*). For large m or large negative 

h'Cp*)  it may occur that m - h'Cp*) > M. Again a larger sample size 

may be required so that cp < M. 

Let n = ( ) ü (l-p)    and dx = d/dp(n ). Then since 
xx x 

n n 
J] dx = 0, d = - J] dx. Now for n > 1, and (p(x) = m, (x > O), 
x=0        0    x-] 

g^p*) = h^p*) becomes -n(p q*   + m[nq* " ] = h'(p*), or 

qp = m - hl(p*)/nq*  . For p* < l/n+1, ^n[nq*  ] > 0, and since 

h'(p*) < 0, qp  decreases in n. 
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Therefore the unbounded prices in the Johns-Lieberman model account 
i 

for the optimality of small sample sizes. However the numerical results 

in Table 1 were certainly obtained with prices reasonably bounded relative 

I 
to costs and values. Yet the sample size of 45 implies that the pro- 

ducer will receive a payment approximately twice in every three submitted 

batches, even if submitted quality is constant at 1^ defective. In the 

terminology of acceptance sampling the producer is accepting a producer's 

risk of 35^i Also apparent is the fact that the consumer cannot specify 

an arbitrary degree of protection against quality poorer than p*. A 

less arbitrary objection is that the sample size in the Flehinger-Miller 

model is determined only by the selected profit division. If, for 

Instance, the producer were content to accept a 50^ share of 

V(p*) - h(p*) there would exist a unique n yielding an expected pro- 

ducer profit closest to this agreed on share. 

The heart of the difficulty is that by using a policy with only a 

single payment when no defectives are observed in a sample of n, the 

7 sample size is a lever to force producer profit down, rather than an 

instrument to assure both parties that the payment received and quality 

claimed by the producer are in fact correct. We feel that a contingent 

pricing policy should include both flexibility in the determination of 

bounded prices, and controllable protection for producer and consumer, 

and we develop and explore the implications and applications of such a 

mode].. 

7 
It is in this sense that Flehinger and Miller state that their 

sampling is non-informative but rather motivational. 
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CHAPTER III 

CONSTRAINED CONTINGENT PRICING MODELS 

Introduction I   

In Chapter II we noted that existing contingent pricing models 

yield unrealistic policies due to the lack of bounds on the prices and 

the lack of protection against sampling variation. We observed in 

Chapter I that maximum expected profit and minimum total product cost 

are not the sole concerns of producer and purchaser. Both consider risk, 

and we distinguish here between two types of risk. When the firm accepts 

a quality-contingent or fixed price contract it gambles on its cost 

estimates. This is risk based on uncertainty in the production environ- 

ment and is the risk generally discussed in economic theory. Risk of 

this type is balanced by the minimum profit the producer considers 

appropriate for the product. In a contingent pricing contract the pro- 

ducer may actually achieve a specified quality but not receive the proper 

payment due to variation in the number of defectives in randomly drawn 

samples. This is statistical risk analgous to "producer's risk" in 

acceptance sampling. The possibility of overpayment for poor lots 

corresponds to "consumer's risk" in acceptance sampling. The existence 

of statistical risk might cause the producer to negotiate for more profit, 

but risk of this type is usually treated by designing plans that reduce 

consumer and producer risk below acceptable limits. 
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Guthrie and Johns [U6] developed an elegant model to determine 

the optimal sample size and acceptance number in single sampling plans 

without explicit consideration of consumer or producer risk, but they 

assumed the existence and knowledge of an underlying distribution of the 

random variable p. While the assumption that users can readily state 

their AQL, producer's risk, LTPD, and consumer's risk is an over- 

simplification, it would also be unusual to find a consumer confident in 

his estimate of the underlying prior distribution of the quality of an 

incoming product—especially a new product. The prior distribution is 

likely to be nonstationary, and the sampling plan ought to adapt as the 

distribution changes. But we have noted that the producer's attempts to 

change the distribution are themselver a function of the sampling plan. 

We will formulate a model using th« concept of consumer and producer 

risk. 

General Assumptions 

We postulate the existence of a production and procurement situation 

with the following characteristics. 

1. A single type of item is produced. Each item has a constant 

probability, p, of being defective. Batches of N are formed 

in such a way that the number of defectives, X, in each batch 

is a binomial random variable. Thus p is also the expected 

fraction defective per batch. 

2. The production process is controlled by the producer who 

chooses p at a unit production cost, h(p), which we assume 

6k 



strictly convex and decreasing for p in some interval of 

Interest. 

5. After delivery of the items the consumer draws a sample of 

n (n < N)  in such a way that the number of defecti . t  in the 

sample, x,   is a binomial random variable. The consumer pays 

N(p(x)  for the batch of N. 

k.    Sampling costs are pa-1 by the consumer at c per unit 

inspected. 

5. The consumer can tolerate some defective items in incoming lots 

and can state the expected value, NV(p), of batches of N 

items containing X defectives where X is a random variable 

whose distribution is given by the binomial probability law with 

parameters N and p. We assume V(p) concave. 

6. The consumer desires to maximize expected net gain by concluding 

a contract promising quality which maximizes the difference 

between expected product worth and expected total procurement 

cost. 

?. The consumer desires protection against overpayment when 

quality is poor. He can state the quality, p., he considers 

poor, and the maximum amount, Nv, he is willing to pay for 

quality as poor as p . Since any batch may yield a sample with 

The basic unit production cost, say h(p), is known to the pro- 
ducer. During negotation the producer adds a unit profit, say zh(p), 
and thus the existence of an h(p) = (l+z) h(p) becomes known to the 
consumer. The strict convexity is used in obtaining sufficient conditions 
for the existence of solutions. 
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very few defectives, the consumer can state the relative 

frequency, ß, with which overpayment will be permissible. 

8. The consumer will not agree to pay more than some amount, M. 

9. Given a sample size, n, and payment schedule, q)(x), the / 

producer chooses p to maximize expected profit. Denote this 

P hy p1. 

10. The producer requires that the minimum price paid (or maximum 

penalty levied) be bounded below by m. 

11. The producer requires that prices be monotonically decreasing 

in the number of defectives observed. 

12. Since h(p)  includes unit profit, the producer will agree to a 

contract only if at p' the expected payment is at least equal 

to hCp'). 

13. The producer desires protection against underpayment. He can 

state a minimum price, Nw, which the contiagent pricing policy 

should assure him of receiving when quality is no worse than 

p'. Given that p < p1, payment less than Nw is permissible 

2 
with frequency less than 0. 

Notation 

N = batch or lot size 

X = number of directives in the batch 

n = sample size 

x = number of defectives in the sample 

We later relax these assumptions to discuss cases in which    h(p) 
contains a random component, the producer's control over    p    is not 
precise, and the producer must replace all defectives discovered during 
inspection with nondefective items. 
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c = unit sampling cost 

p = probability each item produced is defective 

q = (1-p) 

NV(p) = expected value of a batch of N items vhen batches are 

formed according to Assumption 1 

N(p(x) = price paid for the batch of N when x defectives are 

observed 

h(p) = unit production cost to attain quality level p, including 

unit profit 

p, = quality level considered poor 

Nv = maximum payment desirable when p > p, 

ß = permissible frequency that N<p(x) may be greater than Nv 

when P > Ph 

p' = quality at which expected producer profit is maximized given 

n and qp(x) 

Nw = minimum payment desirable when p < p' 

Of = permissible frequency that N(p(x) may be less than Nw 

when p < p1 

g(p) = expected value of (p(x) given p for fixed n 

m = lower bound on possible payments, ip(x) 

M = upper bound on possible payments, (p(x) 

T = consumer expected profit 

T = producer expected profit 

p = quality which maximizes V(p) - h(p) 
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\ = (x)  P (1-P) 

d    = d/dp n x        '   ^    x 

Basic Model 

The consumer and producer expected net gains are respectively 

(5.1) 

(3.2) 

T    = NV(p)  - Ng(p)  - nc ,    and 

Tp = Ng(p)  - Nh(p)   . 

Asstunptions 1-13 imply that no contract  is acceptable to both parties 

unless (3.3)-(3.6)  ere satisfied. 

(3.3) pr[Ncp(x) > Nw(p < p1]  > 1 - a 

(3.U) 

(3.5) 

pr[N<p(x) < Nv|p > Ph]  > 1 - ß 

M > (p(0)  > '••  > <p(n)  > m 

(3.t) Ng(p')  - Nh(r') >0 

The consumer seeks to maximize (3.1) by choosing n,(p(0), ... , (p(n) 

which satisfy (3.3)-(3.6) knowing that the producer will choose p to 

maximize (3.2). 

If it is necessary to stipulate the (n,p) at which n  and d 
are defined we write n (n,p) and d (n,p). 

We also refer to <p(o), ... , <p(n) as ^P , ... » <p„ and to 
n, (P0, ... , <Pn as (n,qp). 

n 

In contrast to the Flehinger-Miller model, with this formulation 
of the problem, admissible policies are optimal for the consumer only if 
(3.6) holds with equality at p = p0 for some n, and there is no 
smaller n yielding a higher consumer profit. 
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> I 

T.ieorem 1 

For fixed    n    and    p,   say    (n,p )    where    0 < p    < 1,  it is neces- 

sary that a set of prices,     tp , maximizing (j-l) while simultaneously 

maximizing (3.2) at    p      and satisfying (5.5)-(3-6)  be solutions to the 

6 following linear programming program. 

(5.1') Minimize T     fl  (n.p )  qp '-ox    '^o'    x 
9 

(5.2') £ n d (n,p ) q)   = h^p ) *- o    xN   '^o    Tx ^o 

(3.3') <p.     >w 

(3A,) ^   <v 

(3.5') M>(p    > ... > 9   >m — To -        - rn - 

(5-6') I%x(n,po)9x>h(p0) 

Proof: 

By (5.1) maximizing    T      at    (n,p )    is equivalent to minimizing 

g(P0)    by choosing    qp ,   ...   ,  (p , and hence (3.l)   is written as 

(j.l').    A condition necessary for    T      to be maximized at    p €(0,  l) 

i 6 
i 1 k^, kg are described in the proof. 
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d n 

is    dp [g^p^ * h^p^ = 0   at    p = po,  or     X   dx^n'P0) ^x = h,(P0)' 
X_Q 

7 
which is (3.2')•      The constraints (5.5) and (5.6) are already linear 

in   cp . 

The constraint (3.3) requires specifically 

(3.7) pr[N(p(x) > Nw|p = P0] > 1 - a , 

which is equivalent to 

n 
(3.8) £   pr[<p(k) > w]  pr[x = k|p = p ) > 1 - a . 

k=0 

Let k" be the large^u integer for which (p(k) > w. From (5.8) 

k" 
we must have  £ n (n,p ) > 1 - Of. Let k^ denote the smallest integer 

k=0 

\' 

such that  £ n (n*P ) > 1 - a. In order for (3.8) to be satisfied, 
k=0 X   0 " 

it is necessary that k" > k^, and by the monotonicity of q/x), we see 

that ^(k-y) cannot be less than w. 

Thus (3-3) implies (3.3'). By similar reasoning (3*^) implies 

(3.^'). Note also that (3.3') with ka defined above implies (3.7). 

We now show that (3-7) implies (3.5)* and that (3.V) implies (5.^). 

•7 
'That (j)(x) satisfies (5.2') is not sufficient to insure that 

(p(x) satisfies (5.2). However, as will be seen from the remainder of 
the proof, if a test of the points 0, 1, and all points for which 
g'fp) = h^p) shows that T  is maximized at p , then an optimal 

solution to (5.1,)-(3.6') is also an optimal solution to (5.l)-(5.6). 
If T  is maximized at p^, / p , we can add the constraint 

p «? r ^o' 
T (p ) > T (p2) and determine a new set of prices. 
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^W^ra^v^.;"rjvjriir~/r-<^^^^ 

For J<n, AX^x(n,p) =-jTT^i-ITTpV-
J-1<0. Hence p < po 

Implies X  n
v(
n>p) >Z  n (n>P )• Thu8 if (5.7) is satisfied, then o  x 

(5.3) is satisfied. 

Let kg be the largest integer for which 

(3.9) 1^ «x^'Pb5 >! - ß ' 

and require qp  < v. We then have 

pr[N(p(x) < Nv(p = pt)] = X^ pr[(pk < v] pr[x = k^] 

>IJ prfq^ < v] pr[x = k^] >1 - ß . 

By reasoning as in the previous case we verify that (3»V) holding for 

k« determined by (3.9) satisfies (3*^) for p > p, . This completes the 

proof that solutions to (3.l)-(3.6) for fixed (n,p) are solutions to 

(3.1,)-(3.6'). 

Variable Transformation 

Before demonstrating a computational simplification in (3el'^O'^') 

we indicate the tifect that (3.3)^ (3'^) have on the final prices and 

sample size. Let a = .10, ß = .15, p = .05, p. = .30, w = .50, 

v = .20, and n = 9. Then J1 n (9|.05) = -928 > .9, and o x 

Z^ «x(9,.5) = -96 > .85.    Thus   1^ = 1,    kp = 1    and (3.3'),  (3^') 

require    9-,   > •!?    and    qp.  < .2,  a contradiction.    Therefore    n = 9 per- 

mits no feasible prices for    p    =  .05.    At    n = 10,    k^ = 1,    iu  = 2, 
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and there may exist a feasible set of prices.  If so, they will be 

constrained by cp >.5«  qu <.2,   indicating that both the minimum sample 

size and the form of the pricing policy are affected by (3'3) and (5.k) . 

The transformation 
J = 0, 1, ... , n-1 

(3.10) 

y = cp - m 
•'n  Yn 

yields a linear programming problem equivalent to (j.l')-(3.6') and 
n 

containing only 5 constraints. By (3.10),  tp = m + Y   y , and choosing 
J      i=J 

qp  to minimize (3.1') is equivalent to choosing y. to minimize 

n  i 

1=0 x=0 
1 x 

Let P = T     « (n.p ). and D = T"  d (n,p ). The transformed 
0    w O  X 

problem follows. 

o x 

(3.1") Minimize 
n   A 

I P y ^ o^i i=0 

(3.2") 
n \ 
Z DV = h'(p ) 
i=0 

(3.3") 
n 
Z y^ > w 
i=ka 

m 

(3.V') 
n 

I y. < v m 
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-a 

(5.5") 
n 

i=0 
y < M - m 

(5.6") f   P y. > h(p ) 
1=0 0 ^  0 

m 

Since this problem need have y. ^ 0 for at most five y., there 

need be at most six distinct price levels, cp , one of which may be m. 

If any of the constraints (5«5")-(5.5") are redundant the number of 

different price levels will be correspondingly reduced.  If, for example, 

Ct = 1, ß = 1, M = L, and m = -L, where L is positive and very large, 

we obtain the price schedules characterized in Chapter II, since the 

constraint (3.5") will not be active if M - m is very large, and the 

constraints (5.5") and (5.^") can be satisfied by considering only y 

and y . We can select y , y  to satisfy (5.2")-(5.V'), and (5.6"), 

setting all other y, = 0. The price schedule is then 

fp = m + y + y 
o     rf o  ^ n 

tp = m + y , 
x      n 

(x = 1, ... , n) . 

The number of active constraints, and thus the number of distinct price 

levels, (p  , depend on the parameters, Ot, ß, M, m, w, and v. 

Policies Optimal at p 

Evury point (^p')  is either infeasible for (5.2'^O^') or 

yields a value of ^.l') and a set of «p  with the property that (n,(p) 

Induces the manufacturer to select p'. Let R denote the set of 

(n,p) for which qp  exist satisfying (5.1'^O.ö'), and let G(n,p) 
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denote the value of (5.1') for (n,p)€R. We consider conditions on 

M, m, w, and v under which there exists a policy (n,<p) maximizing 

T  at p , and yielding G(n,p ) = h(p ). Assume V(p), h(p), a, ß; 

and p,  fixed. There are twelve possible cases, determined by the 

relations w  v, and the order relations among [np], k , and kg. 

The most restrictive cases are those for which w > v. We will consider 

one case with w > v and one with w < v. 

Proposition 1 

Let  Db = Zb d (n,p ) a  ^ a xv ^o7 

p
D = I Q « (n,pJ , and a  "a x   o 

s = [np] . 

Case I: 

Assume w < v and k^ < s < ko .  If \x % 

(5.11) 
hI(po) 

(M-m) > 2_ and 

(3.12) 
h'Cp ) 

m = [h(po) - w] +  2—  [w - (M-m) pJM 
0       (M-m) DS 0 

then G(n,po) = h(po). 

Proof: 

Note first that w < v implies that <p. satisfying (3-3) and 

Ha 
(5.U) can be found for all n > 1. For £  n (n,p ) > 1 - CT can always 
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be satisfied by k = n and J]   « (n,p, ) > 1 - 3 can be satisfied 

with KQ = 0.  In this event ve have v > (p > (p > w which does not 

violate (3.5). 

Zn        v^ n 
d.9. = w A  d. = 0 for o Vi ^ o    i 

cpi satisfying (3.3)-(5.5). Also, min J" d^ = MD^ + mDg+1 = (M-m) D^. 
qp 

By (5.11)  (M-m) > h^p )/DS, hence (M-m) DS < h^p ), and we obtain 

(3.13) min Xd^ < h,(pü) < max Xd^i • 
cp (p 

Therefore there exist cp  satisfying (3.2)-(3.5). Assume that 

min Z di^i < h'(P )• 'rhen  for 0 < X < 1, 
cp    JL 1  . 

h^p ) = X(M-m) DS + (l-\) wDn = X(M-m) DS ,  and 
^o o        o        o 

(3.14) X = 
(M-m) D8 

o 

We now show that    qp = XM + (l-X) w , 0 < x < s 

qp = Xn + (l-X) w , s < x < n 

yield equality in (3-6). By (3-12) 

h'b ) 
m = h(p ) - w +  2— [w . (M.m) ps] t  or by (3.1^) 

0      (M-m) DS 0 

m = h(p ) - w + X[w - (M-m) PS], which yields 

h(p0)  =  (XM +  (l-X) w)  ?S
o + (Xm +  (l-X) w)  P^ = G(n,po). 

 5  
The strict  inequality holds by the original assumption that    h(p) 

is strictly convex and decreasing. 
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Case II: 

Assume    w>v,    k^<s    < Kit  and assume that for some    n    < N, 

ka(po,n) <kß(pb,n).    Then if 

(3.15) w -  v < 
h'(p0) 

kg-1 

O 0      0 

(3.16) M -  m > 
h'(po) 

—     r>S DB(n ,p ) o    o' o 

(3.17) 
h(po)  - m -  (M-m)   ?l h^p )  -  (M-m)  D v^o/ '    o 

K-1 kR-:L 

(w-v)  PP      + (v-m)   -  (M-m)  PS      (w-v)  DP       -   (M-m)  D8 

Then    G(n ,p )  = h(p ). x   o    o o 

kg-1 n kg-1 
Proof:    At    n = n ,    max T d,(p.  = wD + vD,     =  (w-v) D 

o'      m I*- 0 ko o "ß 

h By (3.15)     (w-v)  D > h^p ),  and hence    max £ d qp    > h^p ).    At 
•P 

n = n , min V d.q?, = MDS + mü" , = (M-m) DS. By (3-16) (M-m) Ds < h^p), o     0 i i    o    s+1       o   * »"       'Q_ 
qp 

and hence min Z d^^ .5 ^'(P )• Thus there exist cp  satisfying (5«2)- 
qp 

(3.5). In the most general case 

h'(po) = xr(w-v) Dj3  ] + (l-X)[(M-m) D8] 

yielding X = 
h'(po) - (M-m) D8 

Vi I 
(w-v) D p  - (M-m) D 

' o o 
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By (5.17) 

h(p )  - m -   (M-m)  PS h'Cp )  -  (M-m) D8 
0 0 vrO N o _   . 
kg-1 kg-l 

(w-v)  P P       +  (v-m)   -   (M-m)  F       (w-v)   D P       -  (M-m)  D 
O 0 0 o 

From which 

or 

h(po)  = xfwP^       + v(l-P^  1)1   +  (l-X)^ + M(l-P»)l 

h(po) = x^pj"1 + VPJ + (I-X)[KP^ <+1] , 

and  (5'6)  holds with equality. 

When either of these  sets of conditions  is  satisfied,  we  need only 

compute    p ,     n  ,   and generate the optimal prices,    <p(x),  by solving 

O-i'M}.6'). 

Admissible Policies 

Recall that in Chapter II we required of an admissible policy that 

it maximize Joirt profit, i(n,p) = NV(p) - Nh(p) - nc Under our 

assumptions i|r(n,p)  is concave in n and p, and hence if the set R 

is convex in n for fixed p and convex in p for fixed n, we may 

determine (n ,p ) by any one of several algorithms or search methods. 

We will later describe the Fibonacci search generalized to two variables 

and under the above assumptions this method will determine (n ,p ). 

To see this, assume as proven that the Fibonacci search procedure will 

determine p (n) to maximize 4f(n,p) for fixed n. We will show that 
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i|f(n,p (n))    is concave  in    n.    By the concavity of    ^(n,p)    and the 

definition of    p (n), 

X^(n1,Po(n1))  + (l-X)  t(n2,po(n2)) 

< tCX^ + (l-X)  n2,  Xpo(n1)  + (l-X)  P0(n2)) 

< ^(X^ + (l-X)  n2,   P0(^n1 +  (l-X)  n2))   . 

Thus the convexity of R allows efficient determination of the unique 

Let n = minimum n for which p = 0 satisfies (5«3)> (^.M- 

n = minimum n for which p = p  satisfies (3«3)> O«^)- 

If R is convex in p for fixed n but not in n for fixed p, we 

must evaluate t(n,p (n)) for every ne[n, n] to determine (n ,p ). 

There is no feasible n < n, and for n > n /(n,p ) > ^(n,p ) > iif(nfp (n)) 

We state as a proposition the conditions under which R is convex 

in p for fixed n. The proof is similar to the proof of proposition 1. 

Proposition 2 

Let p(n) = the greatest p for which £   n (n,p) > 1 - a where 

k«  is the greatest integer for which X i, n (n»Ph^ > 1 - ^' Let p 

be that p at which h^p) = L, where L is a specified constant. 

Let p. be the mininum p at which V(p) = h(p). Let JD = max (p^p ). 

Let the maximum Z ^i^i  satisfying (^.3')-(J+'5 ') be minimized at p', 

and the minimum X^-f^i ^e maximized at p", where p1, p" are in 

the interval [JD, p(n)]. 
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Assume £ < p(n),  w > v, and [np] < ^ < ^ • Then if 

(3.18) (w-m)< ^M       , 

(3.19) (M-m) > 
1 

- ^ß D»(p") 
h'(£) 

h'(p(n)) D^tp") 
and 

(3.20)      h(p) < X wP ^ - [   o 
n 

(P') + vP" (p') 1 
+ (i-x^p-V WP^CP-O^ ^^(P")] 

are satisfied where    X    is given by (5.2l)  then    R    is convex in    p    for 

fixed    n,  for all    pe[jD,p(n)]. 

Proof: 

Abbreviate p(n) by p. By definition of jj), p, (5.3) and (3.4) 

hold for pe^^p]. 

Since h"(p) > 0, max h'Cp) = h'G), and min h^p) = h'C^). 
P P 

kg-l Ir 
Max Jd^ = (w-v) Do

P (p), and min I d^ = (M-m) D^(p) + (w-m)Ds+1(p). 

Therefore by (3-18) max I d <p > (w-v) D p (p,)>h,(p). By (3.19) 
<P '    -      o 

h'(p) D^ (p") 
D*(p")(M.m) +   ^  < h'^), and by (3.l8) 
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Do(p")(M-m) + (w-m)  D +1(p") < h'^),  or    min ^ d^ < h'(_£) •    Hence for 

for all    ?€[_£,  p]    there exist    qp      satisfying (5.2)-(5.5).    For some 

?€[,£,  p]    let 

L-v)  D^'1! h'h)  = X  (w-v)   Dp     (PO (1-X) (M-m)  D^(p")+  (w-m)   D^ ,(p") s+l1 

yielding 

h'(p)  -  (M-m) D^(p")^ (w-m)  D^Jp") 
(3.21) X=  — 2 tJL-     . 

(w-v)  D^     (P') -  (M-m)  D^p")- (w-m)  D^^p") 

By (3.20),  (3»6)  iT satisfied,  and therefore    R    is convex in    p    for 

fixed    n    for    p€[j3,  p]. 

Conditions (3.l8)-(3.20) are not restrictive and frequently equality 

holds in (3.20).    When this is so we may determine    p (n)    by a search 

procedure.    Convexity in    n    for fixed    p    is obtained only in small 

intervals    [n,,  np].    Heuristically this is due to the changes  in    k 

and    kg    as    n    increases.    For fixed    (n ,p ),    k^    can be less than 

k«, while at    n^ + 1    k^    may increase while    kg    remains constant, 

producing infeasibility at    (n^+^p).    At    n    + 2    kg    may increase, 

again creating a feasible point,    (n +2,p).    Thus (3-3) and (3*^)  can 

cause nonconvexity in    n    for fixed    p. 

R    will be convex in    n    for fixed    p    and    ne[n,, n ]    when either 

w < v,  or    F (kg(n)  -l)  > 1 - Of,    We have shown in proposition 1 that 

for    w < v    any    (n,p)     satisfies (3.3')  and O«^') with    ^ = n    and 

kg = 0.    For   w > v,    F (kg(n) - 1) > 1 - a    is easily satisfied for 
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large Ot or large p, . For if ir some interval [n , n ] Ho(n)  is 

constant then as n increases F (lO decreases, but for large a 

F (k ) > 1 - a can hold, and for large p , F (hg-l) > 1 - a can hold. 

Of course, if as n increases, kßC11)  increases, then 

F (kg(n) - l) > 1 - a can hold. 

In the constrained maximization of t(n,p) it will generally be 

possible to use a search or progranuning algorithm to determine P0(
n)* 

but a search method will not always determine n . In the latter case 
o 

\|f(n,p (n)) must be evaluated at every n€[n, n]. 

Maximization of T (n,p) ———————  c 

Assume that by search or iteration we have determined \|f(n ,p ). 

This is an upper bound on T (n,p)  since g(p) > h(p)  implies 

G(n,p) > h(p), or 

T (n,p) = NV(p) - NG(n,p) - nc < NV(p) - Nh(p) - nc = \k(n,p) . 

The upper bound can be attained when equality holds in (3»20) at (n ,p ). 

In maximizing T (n,p) any (n,p) yielding ♦(n ,p ) is a global 

optimum. The conditions stated in Proposition 2 and the aßsumption that 

the interval of interest is convex in n insure only that G(n,p) is 

defined on some regular region. Without further restrictions on G(n,p) 

we cannot insure that T (n*,p*) determined by any search or nonlinear 

programming method is globally optimal. We briefly summarize the struc- 

ture of R and then investigate the behavior of G(n,p)  in n and p. 

Assume that the conditions of Proposition 2 aie satisfied and that 

we need only remark on constraints (5«5) and (j*^)« There is a minimum 
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n, _n, in R, such that for n >n p = 0 satisfies (5'3) and i^.k),  and 

for each neR there is a maximum p, p(n)  satisfying (JO)» (3^). 

Although this p(n)  is not generally monotonically increasing in n, 

there may be intervals [n , n-]  in which R is convex in n and p. 

Proposition 3 states conditions under which G(n,p) decreases in n on 

such intervals. 

Lemma 1 

ka 
If   1^ > [np]    and    k^n+l) = k^n),    AnJ o    dx < 0 

Proof: 

k -(n+l-k^) (n-O 
AnX       d    =  — n,   (n-H,p) +  =- n    (n,p) 

^o      x q ^a q        ^a 

V (n,p) 

= -~  [(np-kj  + (p-l)] 

«^(n^p) 

=  (-1)  [(k^-np)  +  (1-p)] < 0 . 

Proposition 3 

Let  P, = Z  « (n,p) D. = V  d (n,p) 1 ^ o      x 1      ^ o     x 'r 

k^ k^ 
Po = Z  « (n+l>p) Do = I  d (n+l,p) 2 *- a  x   ,r/ 2  ^ o  x   '*' 

Assume that for (n,p), (n+l,p), we have 

(3.22)   0(n,p) = ^ Z J" " «x(n,P) * ^ I ^^(n.P) 
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I 

1 

1 

lV-(n+l) + 

(5.25) G(n+l,p) - L2 Xo     nx(n+l,p) + J2 1. (n-H)+l «x^*
1»?) ' 

!i  !i j Let kyinj  =  ka(n+l), 1^ > [np]; and € = h'fp) 

I Then if J < J + e, G(n+l,p) < G(n,p). 

Proof: 

By (5.2') L1D1 + J1(-D1) = h'(p) or (L^) = ^^ , and 

. 1 similarly i^2'J2) = ■^^- Therefore by Lemma 1 (L2-J2) < (L1'
J1^ 

| Since 0 < P2 < P1 we have (L2-J2) P0 < (L^) ^    or 

TP   P ' fp   P I 
| h,(p)F"F-0, ^ hyvotheeiBf    J2 < ^ + h'(p) ~ - ^ and ve 

obtain J2 + (l^"^
5 P2 5 

Ji + (VJ1^ Pl, Which by (5-22^ ^•25) i8 

G(n+l,p) < G(n,p). 

Behavior of G(nJp) in p 

The behavior of G(n,p)  in p depends on the changes in 

I 0 
n
x(
n*P) h(p) 

relative to changes in  jv* as p varies. If at some 

p , G(n,p ) = h(p ) and for p < p  h'^p) > > 0, then as p decreases 10       o      o o 

h^p) becomes negative rapidly. If in the same interval £  d (n,p) 

becomes more negative less rapidly so that qp (x<j) Increases in order 

that X di^-j -  h,(p)» then   £«.(?. will increase and may yield 

I ^"i^l > h^ for P ^^ P • In Proposition k  we indicate conditions for 

which G(n,p) - h(p) increases as p decreases. 
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Lemma 2 

d^ Zo
a dx(n,p) < 0    for    pel. 

If    KQ > [np],  and    ^(p)     is constant  in some interval    1,  then 

V 
dp 

Proof: 

Let    p1,   p2€l,     i1 < p?,  and    ^(p^   = ^{p^.    Then 

^o    dx(n'P^ = (ka)!(n-ka-l): P    ^ ="T~\(n'p)   * 

Since dx(n,p)>0 for x > [np], nk (n,p2) > Jtk (n,p1). Therefore 

V"'^  V^     -(n-ka) .(n-ka) 
-^— >-^r— and __„ka(n.p2)<—j-n^n,^) or 

^o^x^^ilo^x^P!)- 

Proposition k 

Let    I    be an interval in which the conclusions of Lemma 2 are veil id 

and   ■j- Z       d (n,p) < 0.    For    p    < p      let    G(n,p)    be given by 

(5.2U) G(n,p1)  = I^I^n^n^) + ^ 

(3-25) G(n,P2) = L25;o
a«x(n,p2) + J2 

^  Pi^o^^^Pi) Di = 5:oadx(n^i) 

P2 = I*a*x(n,P2) *2-l}^>*2) 
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h(p1) P1 

h,:p1) D1 

G(n,p1) - h(p1) >G(n,p2) - h(p2). 

Then if J
1 > Jp    and > 

h(p2)  P2 

h,(p2) D2 

Proof: 

By hypothesis D2h(p2) - P2h
,(p2) < D^p^ - P1h

,(p1), and by 

Lemma 2 D < D  or -D > -D . Therefore 

r2h(p2) - P2h'(p2)  D1h(p1) - P1h'(p1) 

D!      
>      5" 

r r 
or ,h(p2) - h'(p2) ^ >h(p1) - h'{p1) r~. 

By (3.^) 

P 

h'(p0) 
= L2 ' J2,   and 

h'(p1) 
= L - J . Thus 

2 1 

(L2-J2) P2 - h(p2) < (L^) P^^ - h(p1). By hypothesis ^ > J2 and 

therefore G(n,p ) - h(p ) < GCn^,) - h(p ) completing the proof. 

Renegotiating Parameters 

We have been concerned vith stating the conditions under which 

(n,p) can be found to maximize the consumer profit, T (n,p). Beyond 

stating conditions that yield G(n,p) = h(p) in some region, there is 

little we can say aboui GCn^p) that aids in negotiation of the param- 

eters M, m, w, v, a,    ß. Of course as the constraints (3.3)-(3.6) 

are relaxed the set of points on which G(n,p) = h(p) increases, but 

conversely as the constraints become increasingly restrictive the 

resultant G(n,p) may become defined on a collection of unconnected 
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sets.  In this event we could resort to a random search procedure to 

determine (n*,p#), but it seers artificial in light of the original 

procurement situation to stop with such a solution. 

The existence of a solution (n*,p*) / (n ,p )  and such that 

T (n*,p*) < t(n ,p ) can occur in two ways. The discrimination required 

between p  and p,  may be so fine that it is more profitable for the 

consumer to insist on higher quality to allow discrimination at a smaller 

sample size.  Or the bounds w and m may be so high that in order to 

motivate production at p , the expected payment is greater than h(p ). 

Even if (n*,p*)  is correct for fixed parameters, the consumer might 

ask how far he would have to relax M, v, or ß, to obtain a policy 

closer to (n ,p ). Whether such relaxation were worth the incremental 

profit would depend on the consumer's risk preferences. The consumer 

might also find it necessary and profitable to offer the producer a higher 

unit profit in return for agreement on decreased ra, oc,  and w. 

In the following example a minimum price of 60 per batch yielded a 

consumer profit of 350.60, and a minimum price of -51«75 per batch 

In Brooks' random search method we would choose, say, 50 points 
(n,p) at random in the region R, and evaluate T (n,p) at each point. 

Assume we are interested in the event that the greatest T  thus obtained 

actually ranks among the top 10^ of all points (n,p) in R. The proba- 
bility of this event is 1 - (l-.l)50 or .958. This method makes no 
assumptions about the concavity of T (n,p) or the convexity of R. 

Further refinement could be obtained by choosing points about the maxima 
obtained, or initiating a gradient procedure at the highest points 
obtained by random search. [U?] 
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yielded a profit of 551.65. The consumer might offer the producer 

additional profit up to 1.05 per batch in return for the decreased lover 

bound. 

Let N = 500, a = .1,  w = h(p),  M = 1,  c = .2,  pb = .2, 

ß = .J+, v - .5986, m = .12, V(p) = (1-p), and 

h(p) = .154 -.22p + .Oööe*02^ 

The solution with m = .12 is found at n* = l8 and p* = .0528. 

^ = 

^1 = 

«Po = 

V*. = 

.2913 

.2171 

.2171 

.12 

q)l8 = .12 

H C 
cd a; 

$%> 
o a < cu 1 11 11 

0 12 3^ 

Number of Defectives 
Observed 

18 

Figure 1 

The solution with m = -.1035 iß found at n* = 15 and p* = .0528, 

cp = .2788 Yo 

cp1 - .2178 

(P2 =  .2178 

qp3 = -.1035 

(p15 = -.1035 

H C 
a) QJ H 
V  c6 
< (U 

T T 
1 2 3 U 13 

TT 
Number of Defectives 

Observed 

Figure 2 
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While the original intent in developing this basic model was the 

introduction of bounds on prices and assignable protection against 
1 

sampling variation, we do not insist that parameter values be stated only 

once, but suggest that during negotiation the parameters of the model 

will be successively adjusted and the unit profit varied, until when the 

contract is concluded,  (n*,p*) = (n ,p ). 

I Computational Procedure 
If 

In order to successively adjust parameters, we must know the value 
i 

of T (n*,p*) and ^(n ,p ).  In experimenting with representative data 

I 
we found the conditions of Proposition 2 (convexity of R in p for 

fixed n, with G(n,p) = h(p)) satisfied for a wide range of parameters. 

We found R convex in n for fixed p less often, and concluded that 

while the T (n,p)  surface had too much structure to justify a random 

search, it did not have enough for a gradient method. We therefore used 

a generalization of the Fibonacci search technique. 

The Fibonacci search in a single variable is fully developed by 

Wilde [hQ],  and computational experience with the extension to more than 

one variable is treated by Krolak and Cooper.  [U9I The generalization 

A Fibonacci search in a single variable using n search points 
can be described as follows. The Fibonacci sequence is f = 1, f, = 1, 

f = f , + f m2,    (n > 2). For unimodal \|f(p) defined on a < p < b , 

let 1. = b - a. and define A0 to be (f ^/f ) I,. Let 
111 2 n~2 n  1 

Pl = A2 + V  P2 = bl " V  Then if ^V - ^p2^  a2 ^ V b2 ^ P2' 
and p5 = a2 + A^ where A^ = (^.3/^^) ^  If ^(P2) > t(P1) then 

a2 ^= p,, b„ «r>= b , and P» ^ bp - &*>    This continues until the maxi- 

mum lies in an interval of length I = I,(f /f ). 
^    n   1 o n 
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to two variables requires that when searching in the variable    n, 

T (n,p)     is evaluated at    p*(n),  where    p*(n)    maximizes    T  (n,p)    1   i 

fixed    n.     In order to avoid determining the region    R,  we modify 

constraints  (j-?1)-(5«5')  by introducing artificial variables as follows. 

(5.3°) %    + ei-v 

(l.k0) cp.    +6
2<v 

\ 

(5.5°) 

qp    + 0, < M 
o        5 - 

cp    +0,   > m rn        4 - 

The 0. are unrestricted in sign, and we change (j.l1) to 

(5.1°) Minimize  J" «^ + Q T.^6^ 

where Q is a very large positive number. This problem will be feasible 

at all points of some conveniently defined region^ and points feasible 

for the original problem (5.1'^O.ö') will be feasible for the modified 

problem with all 0. =0. 

The generalized Fibonacci search is computationally efficient. 

Furthermore it provides a grid of the points evaluated which serves as a 

The procedure was programmed in Fortran II for the IEM 7090 at 
Stanford University. The number of points evaluated is optional, and no 
attempt was made to optimize the program. Using a ten point search over 
the sample sizes and a ten point search over the interval (0,p. ) the 

procedure may be viewed as 100 sequential evaluations to determine the 
maximum of a function on a 1^5 X 89 lattice. Solutions almost always 
require less than 50 seconds. 
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check both for multimodality and for an irregular search region.  If 

examination of the points evaluated suggests that the search did not 

terminate with an optimal solution, a more detailed evaluation may be 

necessary, and is possible by redefining the search region. The compu- 

tational procedure can be succintly written as 

Max Max 1 NV{p) - nc - Min Jn.(n,p) cp r 
n  p  ^ qp J 

We actually increase efficiency by proceeding as follows: 

1. Find p  to maximize V(p) - h(p). 

2. After specifying a lower bound and an arbitrary number of search 

points, begin Fibonacci search in the variable n. 

3. At each n proceed directly to p  and evaluate G(n,p ) by 

solving the linear programming problem (3.].")-(3.6"), as modified 

in (3.1°) and (3.30)-(3.50) • 

a. If G(n,po) = h(po), p»(n) = PO. 

b. If G(n,p ) > h(p ), begin a Fibonacci search in the variable 

p to determine p*(n). 

For cases in which G(n,p) is unimodal in p and decreasing in n, 

or in which G(n,p )= h(p )  for some interval [n , n0], this procedure 
0      0 L        c 

terminates with an optimal (n,p). This will be the case when the 

conditions of Proposition 1 are satisfied on [n,, n ]. Otherwise the 

procedure provides no assurance that the global maximum will be attained, 

but due to the possible nonconvexity of R and nonconcevity of T (n,p), 

no procedure short of evaluating every sample size in [n, n]  can 

promise a global maximum with certainty. 
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The following example illustrates points discussed during develop- 

ment of the basic model. 

Example 1 

Let  V(p) = 1 - 3P,  P < Pb 

= 0 P > Px 

.05/p , h(p) =  .k -   .2p - .Ole' 

c = .172,    N - 200,  M = I, m = .15 , 

pb = .175, v = .U5V(p) , ß = .10 , 

w = .75h(p), a = .05 

The optimal contingent pricing policy is found at n* = 59, with 

p* = .0525, and is shown in Figure 3« 

^ = 

V„ = 

^ = 

<?>„ = 

.5243    x = 0,  1 

.5580    x = 2,   5 

.2137    x = k,   ... , 7 

.15        x = 8,   ... ,  59 

p c 

I a 

■♦-> 11I1...II 
0123^56789    ...        59 

Number of Defectives Observed 

Figure 5 

In Figure h and Table 1,  the expected payment and profit resulting from 

the policy    (n,qp)    is displayed. 
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^v    ^~ "~~- — «_  
• 3 ^S^ 

.2 ^""^^  

.1 - 

1         1                1 X 
.1 .2 .3 

Proportion Defective,     p 

Figure k 

Table 1 

p 
Value Cost Expected Producer Consumer 
at    p at    p Payment at    p Profit at    p Profit at    p 

.OIJ .921 2.1+758 0.514 -I.96I 0.4069 

.015 .906 0.7894 0.504 -O.285 0.4019 

.020 .891 O.5666 0.492 -O.O74 0.3988 

.025 .876 0.1+981+ 0.479 -0.019 0.3969 

.030 .861 0.1+681 0.465 -0.002 0.3957 

.0325 .849 0.1+51+1+ 0.454 0.000 0.3951 

.035 .846 0.1+51U 0.451 -0.000 0.3950 

.01+0 .831 0.1+1+09 O.436 -0.004 0.5944 

.01+5 .816 0.1+335 0.422 -0.011 0.3957 

.050 .801 O.1+28.1 0.408 -0.019 O.3928 

In Figure 5 a grid of Tc(n,p) in the region surrounding 

(n^p*) is shown, we denote infeasibility by *. 
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Ul 

59 

58 

♦ .5125 .3859 .3906 .3925 # « 

♦ .507^ .38011 .3919 .3938 « * 

* .5022 .3767 .5931 .3950 .39^8 ♦ 

♦ ♦ * ♦ ♦ * ♦ 

,0225     .0250     .0275     .0300    .0325     .0350    .0375 

Proportion Defective,     p 

Figure 5 

Figure 6 indicates the increase in T (n#,p*) with increasing CC, 

EH 

M 

M   - 

.U2 

.1+1   - 

.1+0 

• 39 
10 

J L 1 X 1 
.20 .30 .1+0 

Producer's Risk,    CX 

• 50 

Figure 6 

Piecevise Linear Price Schedules 

Existing incentive price schedules are usually piecevise linear. 

In the simplest and most usual case incentive payments are determined by 

negotiating a sample size,  maximum and minimum payments,  and the number 

of defectives at which the maximum and minimum payment occur.    The linear 

pricing policy shown in Figure 7 can be written as follows. 
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x   o 

\ - 'O[F^1 
+ '„[FH] 

cp = cp 

■p 
H C 

o cd 
< cu 

9, 

«p. 
n 

0 < x < a 

a < x < b 

b < x < n 

Number of Defectives Observed 

Figure 7 

We will modify the basic model to derive linear policies maximizing con- 

sumer net gain subject to the general assumptions 1-15.  Assume that the 

consumer chooses the sample size,  n, and the pricing policy, 

(a, b, <p(x)) to maximize (3.1) subject to (3.5)i (3.J+)> (3.6), and 

(3,26),  knowing that the producer will choose p1 to maximize (5'2). 

/ qp   < M 
o - 

**= »o 

(3.26) { 

^x^n 

\ cp    > m Yn - 

x = 0,   1, a 

\ - ^[fn]+ ^[^i * =  a ■♦■  1,   ...   ,  b 

x = b,   ...   ,  n 

For fixed    n,    p ,     (0 < p    < l),  a set of prices,     qp ,  maximizing 

(3.1) while simultaneously maximizing (3'2) at    p      and satisfying (3.3) > 

(5«^)>   (5«6),  and (3.26)  are solutions to the linear programming problem 

^.l^-O.ö') with (3.5')  replaced by (3-26).    The Justification for 
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this statement Is identical to the proof of Theorem 1 and is not 

repeated. 

The transformation  (5«10)  reduces the linear programming problem to 

one  containing only 6 constraints. 

(5.2?) Minimize J ^ ^V. 
v     a   o 1 
yi 

(5.28)       xr^^v 

(3.29) ^rak.i yi^w- m 

(3.30) lu1^ ^i^v- m 
maxla|KßJ i 

b-1 Z a"1 Yi < M - m 

(3.31) 
b - a' yb-l 
b - x ^ x 

r b-1 
yi = ^a  yi 

b-1 „i 
(3.32) zrpoyi^h(Po)-m 

We use the following notation in discussing linear pricing policies. 
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(5-36) D =!> +Ib:!l^]d .12 

Let p  maximize V(p) - >i(p). For fixed a and b, there do not 

in general exist (p      and cp  that maximize T  at p . Relations To      n c     o 

(5«l) and (3.2)   can be written 

(5.37) P <p -t- P (p > h(p )   and ' oYo   nYn -  ro' 

(7..38) D cp + D «p = h'Cp ) . 7 oo   n n     o 

Assume that with equality in both equations, the solution is    cp , 

(p .  If cp < m, the solution is not feasible by (3.26), and hence 
n      n 

Z^-f*^ > ^(P )• Therefore the possibility again exists of an optimal 

solution at p* / p , and as in the basic case we search for p#(n) and 

n* with a generalized Fibonacci search procedure. For fixed (n,p) we 

find a*(n,p), and b*(a,n,p) by iteration after first restricting the 

number of points to be evaluated. We will develop the reduction procedure 

after presenting an example of a linear pricing policy derived by this 

method. 

Example 2 

Let  V(p) = 1 - 1.5p , p < .17 

=0        p > .17 

h(p) = .25 - Al5p - .06 In p 

c = .12, N = 500, M = M,    m = .10, 

pb = .17, v = .1+V(p), ß = .25, 

w = h(p), a = .25. 

12 If b = a + 1 the second summation is deleted. 
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The optimal linear pricing policy is found at n* = kS,    p* = .052, with 

a = 5,. h = 7> «P = .4209, and qp. g = .11. This is shown in Figure 8. 

H C 
a) at 

I I. 
v aJ 

Ü ü 
Ol23'56T8 ... ^6 

Number of Defectives Observed 

Figure 8 

In Figure 9 and Table 2 we indicate the expected payments, costs and 

profits resulting from this policy. 

v   Of 

W 0« 

.05 .1 

Proportion Defective,    p 

Figure 9 
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Table 2 

Value Cost Expected Producer Consumer 
.£. at    p at    p Paiinent at    p Profit at    p Profit at    p 

.010 .97^0 .5037 .4208 -.0830 • 5532 

.020 .9590 .1+608 .4196 -.0411 .5393 

.030 .9^0 A339 .4159 -.0l80 .5280 

.oko .9290 .kill .4085 -.0052 .5205 

.050 .91^0 • 3970 • 3968 -.0002 .5171 

.052 .9110 .39^0 .3940 .0000 • 5170 

.060 .8990 • 3027 .3810 -.0016 .5179 

.070 .8840 .3699 .3617 -.0082 .5223 

.080 .8690 .3582 .3397 -.0186 .5293 

.090 .8540 • 3^75 .3160 -.0315 .5380 

.100 .8390 .337^ .2916 -.01+58 • 5473 

Determining Feasible (a^b) 

For fixed n and p a may lie in the interval [0, n-l], and b 

in the interval [a+1, n], yielding n(n+l)/2 points. We use constraints 

(3»3) and (3'4) to initially reduce the number of points. Assume that 

w > v, and that n is sufficiently large so that p = 0 satisfies 

(3«3) and (3»4), and let p(n) be the greatest p satisfying (3.3)^ 

(3,4). Therefore for all pcfO, p(n)], KQVP) < *Q'    
NOW

 
if a > K* 

we would have v > qp, - %    > w, a contradiction. Thus we need never 

consider a > kg - 1. Similarly if a < Ic^ then if b < k^ we would 

have w<(p  =<Ph = <'i:ik -v wit^ a contradiction as before. Therefore 

for a < k-. we need only consider b > k^. 

For fixed a we obtain bounds on feasible b. For a < k^ when 

M - w qp = M, we must have <p.     > w. Let s =  . Then b .  is given 
s ^TV *"* & w «Yv       nun 
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by the smallest integer greater than or equal to 

in Figure 10. If 

v 
+ le,, as shown 

\ - -' 
b cannot exceed some b   which would 

max 

0 a    ^ b     kp 

Number of Defectives Observed 

Figure 10 

yield cp  > v as shown in Figure 11. Therefore b    is given by the 
Ko lucLX 

greatest  integer less than    kg + —-—, where    s = .   * .    . 

H   ß 

II 
ü cd < a. 

0 a       ^       ^        bmax 

Number of Defectives Observed 

Figure 11 

If b   < b .  there exist no prices for the current a' that 
max   min 

satisfy (3.S'M^'), (3.26), and^.ö')- Furthermore all a < a*  are 

infeasible since b    is constant in a but b .  Increases as a max min 

decreases.    For   le^^ajCkg-l    we see    b        = a + 1.    Because    9    > w 

m - w 
and    9     5 v*    °        is ^e greatest integer less than    a + f where 

s = v ~ v .    see Figure 12. 
a - kß 
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H   C 
d a» 

< ft. 

max 

Number of Defectives Observed 

Figure 12 

Thus rather than n(n+l)/2 points we consider only ae[0, kg - l], 

b€[b . ,b  ], and if b   < b .  evaluation terminates in b. We 
min max '       max   min 

further reduce the number of points evaluated by terminating iteration in 

b when T (b) first decreases in b, and terminate iterating in a 

when T (a) first decreases in a. This procedure is appropriate when 

T (a,b) is unimodal in a and b.  If T (a,b) is not unimodal in 

either variable this terminating rule is certain of attaining only a 

local maximum.  If the value of T (a,b) at the local maximum is equal 

to t(n,p), then this maximum is global over (a,b), regardless of the 

unimodality of T (a,b). 

The relatively few (a,b) remaining after the reduction process 

makes numerical determination of linear pricing policies practicable. 

Computation time is longer than in the basic model due to the search 

for a* and b* for each (n,p). Solutions for a "typical" problem 

involving 50 search points require about kO  seconds on the IBM 7090. 

The most efficient procedure is to solve the problem with the basic model 
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and use the resulting sample size as a lower bound in the linear model, 

reducing the number of sample sizes to be searched. 

Unimodality of T (a^b) 

We state the conditions in Proposition 5 under which 

G(n,p,a,b) = h(p) for fixed parameters M,  m,  w, v. Alternatively 

these are the conditions on the parameters so that G(n,p,a,b) = h(p) 

for fixed a, b. The proof is simply a restatement of (3.11 ^O^') and 

will be omitted. 

Propositio ±1 
P 

0 
P 

n 
h(p) P n 

P 
0 h(p) 

Let     #- = 
>    *o- '      n 

D 
0 

D 
n 

h'(p) D n 
D 
0 h'(p) 

Then G(n,p,a,b) = h(p)  if and only if (3.39)-(3.i+2) hold. 

(5.39) 

(5^0) 

(3.U1) ^[b - 1^] + V^ -  a] > wfftb-a) 

(3A2) & [b - kp] + /^[kß - a] < v«(b-a) 

Whenever G(n,p) -  h(p) for (a,b) in some A X B, and the 

problem is infeasible outside that region, the iterative 

procedure will always select the smallest a and largest b. It is 

possible for T (a,b) to be unimodal in a and b, and in the next two 
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propositions we indicate conditions sufficient for    T (a,b)    to be 

unimodal in    a.    Analgous conditions can be derived for    b. 

Lemma 3 

Let    A      represent the  first difference  in    a    and let    P ,     P  , a       ^ cr      n' 

D ,     D      be as defined  in  (3.35)-(3.56).    Then    A P    > 0,    AaP    < 0, 
Q,       n \^ ^^/   \s s , a o n 

and if    a + l>np   AD    >0    and   AD    < 0.     This  statement  is also 
a o an 

true if A  is replaced by A . 

Proof: 

dx = (xl PX'1(1-P)n'X'1(x-nP)'    Therefore  if    a + 1 > np    then 

a+1 — 

AaDo = da+l [b^s] + ^ a+2 dx[(a-b)(a-b+l)]      ' 

Both terms are positive.    Therefore   AD    > 0.    The remaining statements 

of the lemma follow in the same manner by writing out the definitions 

of the quantities. 

Proposition 6 

Denote the dependence of    cp ,    P ,    D ,    cp ,     P ,    D     on    a    as r o'  o   o   n   n'  n 

qp , P , etc., and abbreviate A  by A. If for some a' > np + 1, 

a' 
qr = w, and if for np + 1 < a < a' the solution, <?', to (3.37), (3.38) 

is increasing in a, then G(a-l) > G(a) for np + 1 < a < a'. 

Proof: 

a' By hypothesis    q)      = w.     Either the solution to the equations 

a1 

(5.37),   (3.3Ö) yields    w,  or the solution yields    qp'  < w   and    (p      = w 

toy OO') and (3.26).     In either case since the solution,    qp',   is 
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a' -i increasing  in    a,     <p = w.    Therefore,   for every    a    in the  interval 

of interest,     qp    = w. 
'       o 

,a ,  a^a 
At a we have h'(p) = wD -" qp D , and an analgous expression at 

a - 1. Therefore 

^ 

wZ^D + qpaDa 
•1     o   n n 

n 

and 

G(a-l) = wP8"1 + -2-r [w^D + (pVI , 
o    Da-1    o   n n I ' 

n 

from which 

G(a-l) - G(a) = P' 
,a-l 
n 

w 
AP 

o 
pa-l 
L n 

AD 
o 

n . 
*" I ^ 

L n 

n 

n . 

We will show the quantity in brackets is positive, proving the proposi- 

tion. By (5.^') 9   < w, and it suffices therefore to show 

,a ■,a 
AP   AD 

   -   : < -—r +   ., . This is equivalent to 
Da-1  pa-l - pa-l  Da.l 
n    n    n    n 

AD - Da  -AP - Pa 

rl     - 
n 

Da - Da"1 - Da 
0   n , which is -2 2-- 2 > -i, or AD > A D . « i    -  '    a o — a n 3a-l 
n f1 

n 

But by Lemma 3 A D > 0 and AD < 0. a o an 

Proposition 7 

Assume    p ^ 0 or 1,    and   for some    a" > np ■♦■ 1,    qp     = m.    Assume 
n 

also that for a > a" the solution, qp', to the equations (5»57)* (3»38) n 

decreases in a. Then G(a) < G(a+l) for a > a". 
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Proof: 

Case I:    m < 0.     By (3.2) a a a+l_a+l   !     _a+l 
+ mD    = cp      D        + mD and oo n        o      o n 

<!>    = 

a+l^a+1 (D      D 
0        0 From which 

fVa+l     „a+r 

(5.U3) ^a = ^ 
.a+l 

»-    o o J 

m 
AD        AP 

n n 

i-   o 
3
a 

o J 

pa+1 

By Lemma 3,    A P    > 0,   and thus   -2— > 1.    AD    > 0    and    Da+1 < 0 a o        ' a a o o 

.a+1 

imply 
Na < 1.    Therefore the quantity in the  first bracket  is positive, 

By Lemma 3    AD    < 0,   and    AP    < 0.     Since    Da < 0,  and    Pa > 0,   the rf n n o ' o ' 

quantity 
r^        AP  1 

LDa       Pa J 
is positive.     Therefore    A}(a)     is  positive, 

Case II:    ra > 0.    From (5«^3)  since    qp    > m    in any case of interest, 
o 

Pa+1  Da+1  ADn  APn 
it suffices to show   - — >  -   . This statement is 

Pa    Da " Da   Pa 
o     o   o   o 

pa+1 + AP   Da+1 + AD 
o n > _o n 

c 

Po  Do 
which is — >— , proving Case II. 

Pa" Da 
o   o 

If the conditions of Propositions 6 and 7 are satisfied, and if 

a' < a" with T (a)  constant in a when a' < a < a", then T (a)  is 
- c '      c 

unimodal In a. 
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Once    a*    and    b*    are determined for fixed    n    and    p,  the problem 

of determining    n*    and    p*    is identical to that  in the basic case, 

except that the linear model is more restrictive.    With the contingent 

pricing problem formulated in this manner, there is no advantage in 

restricting attention to linear policies.    The same parameters must be 

negotiated in both cases, and the linear model must always require more 

computational effort and can never result in a higher consumer profit 

than the basic model. 

For the data in Example 2 the basic model yielded the following 

pricing policy at    n* = 36    and    p* =   .0522. 

<PX = .J+599 , x 

<PX = .5933 , x 

qpx = .2285 , x 

9 = .1100 , x 

0, 1 

2, 3 

k, ...  , 8 

9* ...   »  jo 

This policy is displayed in Figure 13,  and the linear policy is displayed 

in Figure ih. 

■♦-> 

cd oi 

a  a < cu 

11... 11 
8 9 10   . . .       36 0  1 2  3 ^   5   6 

Number of Defectives Observed 

Figure 13 
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H   C 

o a 

11...11 
0125^5670...       K6 

Number of Defectives Observed 

Figure Ik- 

The expected payments are displayed in Figure 15 for both policies, and 

Table 5 contains the expected cost and profits for the nonlinear policy. 

•5    - 

•0 
a> -P 

■p c 

X CO 

.3 - 

"linear"    g(p) 

.05 

Proportion Defective,    p 

.10 

Figure 15 
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Table 5 

7"* 
Cost Expected Producer Consumer 

P at p Payment at p Profit at p Profit at p 

.010 .5057 .4574 -O.0665 .5589 

.020 .4608 .4512 -O.O295 .5301 

.050 .4559 .4222 -0.0117 .5242 

.01+0 .^157 .4106 -O.OO5I .5208 

.050 .5970 •5969 -0.0001 .5194 

.052 .5956 • 5956 .0000 .519^ 

.055 .5896 .5894 -0.0001 .5194 

.060 .5827 .3817 -O.OOO9 .5196 

.070 .5699 .5656 -0.0042 .5207 

.080 .5582 .5493 -O.OO89 .5220 

.090 .5475 .3533 -0.0142 .5231 

.100 • 3574 .3178 -O.OI96 • 5235 

.170 .2787 .2328 -0.0459 .5036 

Consumer unit expected profit using the linear policy is -5170, and 

using the less restricted price schedule derived by the basic model the 

expected unit profit is .5194. From Figure 15 it can be noted that the 

policy at sample size 36 does not provide the same discrimination in 

expected payment that the policy at n = 46 does, but both policies 

satisfy the conditions (5.3) and (5.4). In situations where the pro- 

ducer prefers a linear price schedule due to ease of interpretation, the 

consumer must decide whether to offer increased expected profit in return 

for producer acceptance of the non-linear price schedule. 

107 



"■•«.Wmc-j.-i,— ,„ 

Extensions and Applications 

We Indicate situations In which the basic assumptions 1-13 can be 

weakened and a more general class of production and procurement situations 

considered. 

Replacement of Discovered Defectives 

In most Instances In which Inspection or testing is non-destructive, 

a producer must replace all defectives discovered during the Inspection 

process at no additional cost to the consumer. We will modify the basic 

model to treat this situation and exhibit a pricing policy derived frorr 

the data used in Example 1. 

Assume 1 hat the cost to the producer of replacing discovered defec- 

tives is the production cost, h(p), plus a fixed charge, r, reflecting 

additional transportation, testing, and special handling costs. The 

expected net gains are 

i3M) Tc(n,p) = (N-n) V(p) + n[V(0) - c] - Ng(p) , 

(3.^5) T (n,p) = Ng(p) - Nh(p) - npr . 

We will make the constraint (3«3) more realistic by providing the pro- 

ducer some assurance of regaining a portion of expected cost. Therefore 

the consumer chooses (n,9) to maximize (3»^0 knowing that the pro- 

ducer will choose p' to maximize {3.k3),  and such that (n,(p) satisfy 

(3.U6) pr[Nq)(x) > NwWp') + rx) |p < p' ] > 1 - a 

(3A7) Ng^') > N^p') + np'r 

in addition to (l.k)  and ^3.5). 

108 



Solutions,  (p , are obtained by solving the following problem for fixed 

n and p. 

(3.^8) Minimize /  « cp 

subject to 

(3.^9) 

(3.50) 

^ o x^x    v ^/  N 

^>w[h(P')+^] 

(3.51) Znn (p >h(P') +^22' 
^ o x^x - v ^ '   N 

and subject also to (5«^1) and (3•5,)• 

Using the data of Example 1 with r = .3» the following price 

schedule was obtained at n* = 39> P* = .0350. 

<?> = 

^ = 

^ = 

I* = 

.51^6 x = 0,  1 

.3869 x = 2,  3 

.2137 X    =    *r p      • • • , 7 

.15 x = 8,  ... 1 39 

This policy is shown in Figure 16. 
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Figure l6 

In Figure 1? and Table k  the expected payment and profit resulting from 

this pricing policy are shown. 

.6 

0 0.5 .1 

Proportion Defective, p 

Figure 17 

The consumer expected profit in this situation, .hll3,  is greater 

than the expected profit in the basic model, .3951| which certainly 

agrees with the procurement situation, which is more advantageous to the 

consumer. 

J 
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Table 4 

Value Cost Expected Producer Consumer 
^E» at    p at    p Payment at    p Profit at    p Profit at    p 

.01 .9271 2.4821 .5070 -I.975I .4201 

.02 .9029 .5694 .4897 -   .0791 .4133 

.03 .8788 .4717 .4675 -   .0042 .4113 

.035 .8667 .4554 .4554 .0000 .4113 

.OU .8546 .4453 .4429 -   .0025 .4118 

.05 .8505 .4335 .4172 -   .0162 .4113 

.06 .8063 .4266 .5916 -   .0350 .4147 

.0? .7822 .4220 .3669 -   .0551 .4153 

.08 .7580 .4185 .3435 -   .0750 .4146 

.09 .7339 .4157 .3218 -   .0939 .4121 

.10 .7097 .4133 .3)20 -   .1115 .4C?8 

Uncertainty in Process Control 

Assume that the producer does not choose p precisely, but Instead 

chooses a mean quality, ^ at a known cost, h(^). The distribution 

of the random variable p is known to be f(p|ki, 0.., ... , Ö ) where 

the 0. are known, uncontrollable parameters. We suppose that in this 

situation the consumer selects (n,<p) to maximize (3.52) subject to 

(3.54)-(3.57) knowing that the producer will select n to maximize 

(3.53). 

(3.52) T (^,(p,n) = NV(|i) - Ng(^) - nc 

(3.53) T (n,<P,n) = Ng(n) - Nh(^) 

(3.54) pr[N9(x) > Nw|p < u« ] > 1 - a 
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(3.55) prfN(p(x) < Nv|p > P^j] > 1 - ß 

(3.56) M>(i) >*,,>cp >m 

(3.57) Ng(n') > NhCki') 

For fixed n, M, the qp  are solutions to the linear programming 

problem (5.1')-(3.6') with h(p), h'Cp) replaced by hiv),    h'{[i), 

and with 

«x(n,^) = /  pr[x|n,p] f(p|^) dp , 

dx(n^) = ^J      pr[x|n, p] f(p|u) dp , 

1^ satisfying  I (j)nJ(l-n)n"J, and kp satisfying t   (j) P^l-I^) 

Assume that from Jobs previously attempted by the producer of the 

items in Example 1 we »stimate that the random variable p has a beta 

distribution, and that while the producer can select the mean, ^, the 

variance is uncontrollable and is estimated at 36 X 10" . From this 

model we obtain an optimal policy at n* = 39, and i-i* = .0539. The 

policy is shown in Figure 18. 

n-J 

«P« = 

<»> = 

<*> = 

<*> = 

A692 x = 0,  1 

.1*608 x = 2,   3 

.2138 x = U,   ...   ,  21 

.1500 x = 22,   ...   ,   39 
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39 

Figure 18 

In Figure 19 and Table 5 the expected payment and profit resulting from 

this policy and the basic policy is shown. 

\ 

■P   Ö 

X  eö w a. 

g(p) with uncertainty 

Mean Proportion Defective, [i 

Figure 19 

A price schedule based on uncertainty in process control does not provide 

discrimination as fine as that in the basic case. 
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Table 5 

' 1 Value Cost Expected Producer Consumer 
H1 

at    |i 

.9212 

at    n 

2.4758 

Payment at    MI 

.4691 

Profit at    n 

-2.OO67 

Profit at    \i 

.0100 .4521 

.0200 .8912 .5666 .4652 -   .1014 .4260 

.0500 .8612 .4681 .4574 -   .0107 .4058 

.0559 .8495 .U544 .4544 .0000 • 5951 

.0^00 .8512 .4409 .4402 -   .0007 .5910 

.0500 .8012 .4281 .4229 -   .0052 .5785 

.0600 .7712 .4202 .4051 -   .0171 .5681 

.0700 .7U2 .4146 .5851 -   .0295 .5561 

.0800 .7112 .4102 .5617 -  .0485 .5^95 

.0900 .6812 .4064 .5409 -  .0655 .5405 

.1000 .6512 .4051 .5259 -  .0772 .3255 

Uncertainty in the Cost Function 

We next assume that the cost of selecting the mean quality,    ^,   is 

not known precisely, but is   h(^) + n, where    T]    is a random variable 

with   E(TI) = 0, and known distribution.    This situation differs from 

the previous case only in constraint (5.57) which we now write as 

(3.58) pr[g(^')  > h(^')  + TJ jn < ^ • ]  > 1 - y 

which it simply g^') ^h^') + F' (1-7) , where F'^l-y), is the 

minimum u such that F (u) > 1 - 7, given ^ = M'. 

Using the data of Example 1, with the assumption that r)  is 

normally distributed with E(TI) = 0 and o = .0535 h(u), and that p 

is beta dlstrlbuteu as in the previous example, we obtain the following 

policy for 7 = .10. The optimal sample size is 59, and \x* =  .0539• 

The policy is shown in Figure 20. 

114 



v..., 

qp    =   .U869 x = 0,  1 

9    =   .i+862 x = 2,  5 

9X =  .2137 x = 4,   ... ,  21 

q>   = .1500 x = 22,   .. •   ,   59 

o a; 

& LL...11 
• • » 0123^5 ...  2122 

Number of Defectives Observed 

59 

Figure 20 

In Figure 21 the expected payment : ^suiting from this policy is shown, 

and Table 6 contains the expected profits. 

OJ -P 
•p c 
Ü OJ 

cd Ö 

.10 

Mean Proportion Defective, n 

Figure 21 
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Table 6 

11 Value Cost Expected Producer Consumer 
I-1 

at    M 

.921 

at    [i 

2.k73 

Payment at    M 

.487 

Profit at    hi 

-I.988O 

Profit at   [i 

.01 .454 

.02 .891 .566 .487 -   .079 .406 

.05 .861 .468 .479 .011 .582 

.0339 .849 .454 .474 .020 •575 

.Oil .831 .kko .460 .020 • 571 

.05 .801 .428 .448 .020 • 553 

.06 •YYl .420 .425 .005 .546 

.07 .7^1 .415 .401 -  .014 .540 

.08 .711 .4io .581 - .029 • 550 

.09 .681 .406 .560 - .ch6 .521 

.10 .651 .405 • 557 - .066 .314 

The producer expected profit is positive due to the constraint (3.58), 

as was expected since the price schedule must provide protection against 

cost overruns. 

Applications to Lifetesting 

It is apparent that incentive price schedules can be derived from 

the models developed here in any situation in which items can be 

classified as defective or non-defective. We will note one such appli- 

cation to the situation where the mean life of an item is of interest. 

Assume that the lifetimes, t, of items produced are random vari- 

ables with known distribution f(t(^), and that the producer controls n 

at a known cost h^). Assume also that the value to the consumer of a 

unit with an expected life of u can be expressed as V(u). Several 

existing reliability incentive plans place a sample of n on test, 
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record the times until failure, and base the incentive payment on the 

average time to failure. An alternative approach is to fix the length 

of time, T, for which units will be tested, consider survival to r 

success, failure prior to T, failure, and base payment on the number 

of failures, x. The problem is identical to '"he ones we have already 

treated with the consumer choosing n, n, and qp  to maximize 

NV(n) - nc - NG(n,n), and / f(t|^)dt  taking the place of p. Alter- 
J o 

natively the sample size, n, might be predetermined and T selected, 

where the unit testing cost,  C(T), depends on the test length selected. 

A more interesting situation is possible in the operation called 

"running in." Assume, as before, that the producer controls mean life, 

ki, at a cost of h{\i),  and that the expected value, V(|i), is known. 

In the "running in" operation the producer must operate items success- 

fully for a period T before declaring them satisfactory and delivering 

batches of N. The consumer can base the incentive payments on the total 

number, N + x, "run in" to achieve N satisfactory items.   Let the 

producer's expected cost be the initial production cost of the N + x 

items, h(^)[N + E(x)], plus the running in cost of each item, 

c[N + E(x)l. Let the consumer's problem be that of selecting T, pi, 

and qp(x) to maximize expected net gain. The only changes in the basic 

set of equations (5.l)-(5.6), occur in (5'2) which becomes 

■^e ignore the possibility of x becoming larger than some pre- 
assigned number. 
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(5.59) Tp(.,*.n) . NgW - y) * ^    ." 
/    fCtju) dt 

and in (5«6) which becomes 

(3.60) 

J   f(t|u') dt 

where M' maximizes (5.59) for fixed T. For arbitrary life distribu- 

tions, the prices, qp , can be obtained as the solution to a linear 

programming problem analgous to those in previous sections. 

Summary 

In this chapter we have developed a model of the contingent pricing 

situation which is more realistic than those previously reported.    For 

fixed sample size and quality level we have derived a linear programmirg 

problem which yields as  its solution an optimal pricing policy,    9 . 

We have indicated conditions sufficient to insure the existence of a 

point    (n,p)    yielding such a set of prices,    and  described a procedure 

for seeking an optimal point    (n*,p*).    We modified the basic contingent 

pricing model by requiring that price schedules be piecewise linear,   and 

lh. 
'Since x is a random variable with a negative binomial distri- 

bution, E(x) = ^, and since p - / f(t|^) dt. 

N ♦ E(x) = -^ = 
q 

N 

/"f(t|u) dt 
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next changed the objective function to reflect e more realistic procure- 

ment situation. Finally uncertainty was permitted in both the cost of 

attaining an average quality and in the control of the production process, 

and a brief illustration was included indicating how this contingent 

pricing model can be applied to any item classifiable as defective or 

non-defective. 
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CHAPTER IV 

CONTINGENT PRICING POLICIES FOR CONTINUOUS VARIABLES 

Introduction 

In Chapter III we demonstrated that the model developed for the 

binomial case could be used to derive contingent pricing policies when 

the characteristic of interest varied continuously. In this chapter we 

develop the basic model for the continuous case, and while mathematical 

programming may be used to approximate the optimal contingent pricing 

policier, control theory provides interesting insights into the structure 

of the optimal pricing policies. 

Let M be some characteristic of interest and let t be a con- 

tinuous variable that estimates n. Assume the consumer desires the 

producer to produce at ^ . Recall that h(*) is defined to include 

a unit profit, and let excess profit denote the difference between (p(t) 

and h(^ ). By means of the maximum principle of L.S. Pontryagin [50] 

we show that subject to weak conditions on the distribution of t, the 

form of the pricing policy that both maximizes producer expected profit 

at \x ,  and minimizes the mean square excess profit at \i      is piecewlse 

linear in t. 

The production and procurement situation we now consider differs 

from that described in assumptions 1-13» Chapter III, only in the following 

particulars. 

f 1 
1 

I 

1 1 

1 

. 1 

; 
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1. Each -tern produced has a characteristic of interest, |i, which 

varies continuously in some interval [^^ ^p] • This charac- 

teristic may be true reliability, actual propellant energy, etc. 

2. Batches of N items are delivered to a consumer. From each 

batch n items are selected at random and tested. The result 

of testing the i   item is x., and a statistic t{T , ... , T ) 

is determined by the testing, where t lies in [t,, tp]. 

3« The payment schedule is (p(t), a function of the statistic t. 

k.    The distribution of T. given M is known and consequently 

f(t|M) is known where f^) denotes a probability density 

function. When f(t) depends on parameters other than n we 

assume them known and uncontrollable. 

5. We assume V(n)  increasing and concave, and h(^) increasing 

and strictly convex. 

6. The consumer desires protection against overpayment when 

\i <  n, , that value of M considered poor. 

In most acceptance plans and incentive arrangements, ^ is esti- 

mated by t, and the problem considered is that of selecting the minimum 

sample size providing discrimination at an appropriate level of con- 

fidence between desirable and poor performance. Frequently test costs 

are high, tests are lengthy or destructive, and it is not feasible to use 

lar^re sample sizes. This has led to the use of sequential sampling, 

accelerated life tests, and.  Bayesian acceptance sampling. The usual 

payment is either a fixed constant if the test is for the purpose of 

acceptance, or is generally linearly related to t in incentive 

contracts. 
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We assume the consumer seeks a sample size and pricing policy to 

maximize consumer expected net gain, knowing that given n and c,(t) 

the producer will select u'  to maximize his own expected profit. 

Considering assumptions l-15i Chapter III, and assumptions 1-6, Chap- 

ter IV, we have the continuous analogue of (3.l)-(5.6) in 

(^.2) 

T = NV(u) - Ng(^) - nc , 

Tp = Ng(n) - Nh(^) , 

pr[N(p(t) > w|n ^u"] > 1 - a , 

pr[N(p(t) < v|^ < n ] > 1 - ß , 

{h.5) 

rtt^  > m , 

<p{t2) < M , 

Mtl-i(t)>o, 

(U.6) g(n') > hC^-) . 

Proposition 1 

Let    r(t|t-i,n) = ^- f(t|^,n).    If for fixed   n,    \it  say    (n,n ) 

there exists    (p(t)    maximizing (U.l) and (U.2) at    \i     and for which 
o 

(U.3)-(J*.6) hold, then (p(t) minimizes (h.V)  and (U^'M^.ö') hold. 

ik-V) g(no)»j   qp(t)f(t|no,n) dt 
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%2 
(U^1) /   (p(t) r(t|no,n) dt = h'(no) 

*! 

r%2 
{k.y) cP(ta)-w' J   f(t|^oln) dt > 1 - a 

tß 

(U.lf1) 9(tp) < v ,  /   f(t|Mb,n) dt > 1 - ß 
tl 

qpC^) < m 

(^.5') qp(t2)>M 

(p(t) > 0 

^ 
(^.6') /   qKt) f(t|no,n) dt >h(u0) 

tl 

The proof is identical to that of Theorem 1, Chapter III, and is 

omitted. 

Note that approximations to (p(t) are readily obtained by par- 

titioning [t,, tp] into a finite number of intervals, and using (5« 10) 

to derive an equivalent linear programming problem containing only five 

constraints. The approximation can be made extremely precise with little 

loss in computational efficiency since the computing time required to 

derive solutions to linear programming problems increases much more 

rapidly with the number of constraints than the number of variables. 

Due to the number of constraints the discrete approximation obtained 
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through linear programming need have at most six distinct price levels. 

In the next section we will show that the maximum principle also yields 

the policy, qp(t), but linear programming procedures are more readily 

available in industrial and government computing centers than are the 

numerical analysis routines required to determine the exact <p(t) by 

the maximum principle. Consequently from the point of view of imple- 

menting contingent pricing policies, the use of mathematical programming 

is preferable. 

Maximum Principle 

Let x, p, denote n-dimensional vectors, and x., p. their 

components. Let X,. be unknown constants, b , x. known constants, 

$(t), *(t) known functions of t, and R, q, known functions of their 

arguments, continuously differentiable with respect to each variable. 

We seek 9(t), $(t) < (p(t) ^«(t), which minimizes (U.?) and satisfies 

(U.10). We will call such a minimizing q)(t) optimal. 

i=l     * 

1 
I 

II 
I 

dx.Ct)  # 

(^.9) xi^ti^ • xj * i ■ 1* ••• » » 

(k.io) ^^(tg), ... , xn(t2)) = o 

ih.ll) p.(t) = - X p -Jl , i = l, ... , n 
J=l J xi 
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(U.12)    ^(tp . - [bl + x1 ^J , 1 = 1, • •. , n 

n 
(^•13) H(x,p,<p,t) = X   p.q. 

1=1 1 1 

The maximum principle states that in order for (p(t) to be optimal It 

IB necessary that there exist p,(t), ... , p (t) not all zero, such 

that H(x,p,<p,t) is maximized at (p(t) for every t, ^i 5 ^ < ^p* 

When every x.(t) is linear in x(t) and contains only an additive 

function of (p(t) as in (U.lU) the stated conditions are also sufficient. 

i^-rt) ^(t) = I   a^t) +a)[9(t)] 

Application of the Maximum Principle 

The maximum principle is not directly applicable to {k.l')-ik.6,) 

due to the constraint (p(t) > 0,  but by a transformation similar to 

(5.10) we seek y{t), the derivative of (p(t). Define y(t) and ^(t) 

by (U.15)-(1*.17) where the Integrals are Stieltjes integrals. 

'2 
(^•15) /  y(t) dt = [ d9(t) 

"t 

(^.16) q)(t2) = M - y(t2) 

^2 
(^.17) (p(t) = (p(tj - /   y(t) dt 

"  Jt 

! 
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Define F(t), D(t),xi(t), i = 1, ... , 5, by 

(4.18) F(t) = /  f(t|u ,B) dt 
Jtl 

(^.19) D(t) = /  r(t|u ,n) dt 
,7tl 

(U.20) x.(t) = - /  y(t) F(t) dt 

(U.21) xJt)  = - /  y(t) D(t) dt 
Jtl 

(4.22) x3(t) = - j      y(t) J1(t) dt , where J^t) - 0, ^ < t < ta , 

(4.23) xu(t) = - j  y(t) J2(t) dt , where J2(t) - 0, ^ < t < tp , 
t1 

{k.2k)    x5(t) = - j  y(t) J3(t) dt , where ^(t)  - 1# ^ < t < tg . 

We seek y(t) > 0 which maximizes x (t ) and satisfies 

(U.25) x^tg) >h(no) , 
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(U.26) x2(t2) = h'(no) - (p(t2)  , 

(U.27) x (t )  >v - cp(t0)   , T 2 

(U.28) VV - v " ^^^  ' 

(^.29) x-Ctg) >m - (p(t2)   . 

From (4.7),    b    = 1,  b ,   ...   ,  tv = 0.    The    x (t)    defined by 

ik.20)-ik.2h)  are not functions of    x{t).    Therefore from (U.ll) 

p (t)  =0,   i = 1,   ...   ,   5,  and fron (U.12)     pAt) a vA^n) •    Thus 

W  " '  t1 + Xi^    ^^2^  = " ^^   i = 2,   ...   ,  5.    Denoting    pi(t) 

by constants    t» we obtain    H    from (U.15),  and {k.20)-{k.2k). 

(V.50) H = yt^F ♦ ^2D + tj^ + ^J2 ♦ Mf5J5] 

The maximum principle states t lat H as a function of y must be 

maximized at every t, "t-i < ^ < t •  Abbreviate H by H = yK(t). 

For K(t) < 0, y(t) = 0, and for K(t) > 0, y(t) = + «. If an optimal 

(p(t) exists there must be ^,, ... , \|f_ such that K(t) is never 

positive and is  zero at only a finite number of points, t.. At these 

points y(t) dt = qp(t ) - (p(t ), the jump in (p(t) at t . 
w J J 

'J 

The exact number of such impulse points depends on f(t). For 

unimodal f(t), -D(t)  is unimodal, and since F(t) increases in t, 

For the remainder of the chapter t will be understood to be in 
[t., t2] without additional specification. 
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there can be at roost five points of tangency with K(t) = 0. If there 

are exactly five, one must occur at t = t  due to J,(t), one at 

t = t   due to J^Ct), and one at t = tg due to J0(t). The location 

of the remaining two depends on f(t). Thus the maximum principle indi- 

cates that qp(t) is piecewise constant with no more than six distinct 

price levels, and yields additional infornwtion as to where the price 

levels may change. 

Discontinuous price schedules are unattractive to a producer, which 

partially accounts for the use of piecewise linear policies in practice. 

With the problem formulated as in (U.15)-(U.29) we need only add the 

constraint y(t) < Y where Y is positive, to replace the Jumps in 

(p(t) by linear subarcs. This also reduces the set of points (n,^) on 

which solutions will exist. This may be thought of as "forcing" the 

selection of a piecewise linear policy. 

From the following theorem we can infer that by seeking agreement 

to a piecewise linear pricing policy, the consumer is seeking that policy 

which both minimizes the producer's mean square excess profit at n , 

and maximizes producer expected profit at r . We define the following 

problem which is equivalent to the original contingent pricing problem 

(U.l)-(U.6) except that for clarity we delete the constraints (4.3)^ 

(U.U), and the monotonicity requirement, (p(t) > 0. 

•r jt. 
(^51)       xo(t) = /  [(p(t) - h(no)]

2 f(t|no,n) dt 

(^.32) x-Ct) = /  (p(t) r(t|u ,n) dt 
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(U.33) x2(t) mj    ^(t)  f(t|^o,n) dt 
ti 

(k.^k) m < (pit) < M 

(^.35) x1(t2) - h'(uo) 

(U.36) x2(t2) >h(no) 

We seek that (p(t) satisfying ih.Jh)  which minimizes x (t ) and yields 

x1(t2); x2(t2) satisfying (4.35), (4.36). We call such a (p(t) 

optimal for (l+.5l)-(1+.56). 

Theorem 1 

If (pit)     is optimal for (U.3l)-(i+.56) and if 

■T- In f(t|ki ) = /L^H ) + A?(^ ) t then it is necessary and sufficient 

that (pit)    be a piecewise linear policy of the form (4,37)« 

(p(t)  = m t, < t < t 
1 —    m 

(4.37) <p(t) = s(t) t < t < t^ m "~    M 

<p(t) = M ^ < t < ^ 

Proof: 

By (U.7)-(l|.13) H(x,p,(p,t) for this problem is 

(4.38)  H = - [T(t) - h(no)]
2 f(t) + ^(t) r(t) ♦ t2(p(t) f(t) 

The tj are undetermined constants. The maximum principle states that 

if (pit)    is optimal for (U.3l)-(U.56) it is necessary and sufficient 
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that H as a function of qp be maximized at every t. If (p(t) is 

not m or M, a necessary and sufficient condition for H to be 

maximized by cp is 

(^.39) v(t) = |^| £^ + ^ + h(,o) 

d2H 
since it is easily verified that —= < 0. 

öcp2 

By definition r(t) = ^ f(t|^), and jfö = 4j In f(t|^) which 

is linear in t by hypothesis. Denote the right hand side of (U.39) 

by    B(t). 

If    s(t) •: m    or    8(t) >M    for every    t,   (U.35) cannot be satisfied 

for    h^H ) > 0.    Therefore if an optimal policy exists there  is at  least o 

one    t    for wj.ich    m < s(t) < M.    Let    t      satisfy    8(t  ) = m    and let 
m m 

tM satisfy s(tM) = M. (^.57) follows. 

Remarks on Theorem 1 

The statement £. in f(t||i) = ^(n) + AJu) t implies that f(t|hi) 

is a member of the exponential family of distributions, 

f(t|u) = J(u) exp [Q(u) U(t)] h(t), but we require additionally tha4; 

U(t) be linear in t. The normal, gamma, binomial, poisson, and geo- 

metric distributions satisfy this linearity requirement. 

By including the constraint g(n ) > h(n ) we introduced the 
♦g       , t      0-0 

constant term ~ into qp(t) but this does not affect the form of the 

price schedule. There is also no nee-1 to reintroduce the constraint 

(p(t) > 0 since by Theorem 1 if an optimal (pit)    exists and 

h'(|i ) > 0, s(t) must be positive. 
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The i'fect of introducing (U.j), (k.k)   is to change the constraint 

set fo:  <p(t). Jump discontinuities may occur at t = t  and t = tg. 

Since Jump discontinuities are not seen In practice we infer that either 

the consumer and producer do not explicitly specify prices w and v, 

or that n and (M - m) are sufficiently large so that (4.5') and 

(U.U') are not active constraints. 

There is an interesting connection with estimation which we cannot 

pursue here.  If f(t)  is a member of the exponential family and U(t) 

is linear in t, it can be shown that t is a sufficient statistic for 

the T., and that t is the minimum variance estimator of M among all 

estimates with the same bias. Therefore if we define the quadratic loss 

function {k.ko),  and the risk function (U.Ul), 

(U.UO) L = (u -t)2 

{k.kl) R(u,t) = K(M) E(M-t)2 

t is the estimate which minimizes risk. 

Existence of Piecewise Constant Pricing Policies 

In order for a price schedule satisfying (U.2')-(U.6') to exist at 

some (n,u )  the sample size must be sufficiently large to permit dis- 

crimination between \x      and u. , and the price levels M, m, w, and 
O D 

v must be related to h(u )  in a manner that permits 9(t) to satisfy 

(U.2')-(U.6')• Proposition 2 states these conditions. The proof is 

similar to that of Proposition 1, Chapter III and is sketched briefly. 

2See Lindgren, [51, p. 220]. 
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Proposition 2 

Let    n    and    \x      be fixed and assume    tQ < t    < n      where    t_,,    tQ o ß       a        o a'      p 

b   rb 
are given by (U.J1),   (U.U*).     Let    D    = /       r(t|u,n)  dt    and 

a      'a 

b   rb 
P = /  f(t|M,n) dt. Then there exists a (p(t) satisfying (U.21)- 
a Ja 

(4.6') at (n,tio) if 

tp t M 
(U.U2)      (w-v) D  < h'Cu ) < (m-M) D  +(w-M)D 

^ "   0       ti      za 

and 

(^.^3) h(no) < XUm-M) Pt
a + (w-M) P^0 + M[ + (l-X)^^) P^ + wj 

hold where X is given by (U.U6). 

Proof: 

Let    g'Cki ),    fl'Cu )    denote the maximum and minimum values of 

g'(u  )    for any policy,    <p(t),  satisfying {k,y)'{k»3,)$ and let    g(^0), 

g(^ )    denote the expected payment corresponding to these policies. 
0 

Since t < u , g^^ ) is at most mD  + wD  -♦■ MD   or, 
i   ot    o 

t      n 
ik.kk) i'(u ) = (m-M) D° ♦ (w-M) D ° 

0      ^i      ^a 

By (i|.U2)  this is not less than    h'Cu  ).    Similarly 

(U.45) i5'(uo) - (w-v) D^ , 
ß 
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and by ik.k2)  this is not greater than h'Cn ). Therefore for some X, 

0 < X < 1, h,(no) - xi'(no) + (1-X) £'i^Q)        and thus (4.2') is 

satisfied. From this we obtain 

(U.U6) X = 

i'(^0) -s'^o) 

By ik.k})    h(no) < X (m-M) P^ + (v-M) Pt
0 + M + (l-X) (v-w) P^ ■»■ v 

L     i      a  J     L    i  J 
After rearrangement 

(^7) h(n0) < xi(no) ♦ (i-x) g{ao) 

which satisfies (^..6'), and completes the proof. 

With the specification that t = 
11 

n and the assumption that t 

is normally distributed, we state conditions sufficient for the convexity 

of R, the set of points (n,u) feasible for (k^^-ik.S').    The 

importance of having a convex constraint region is that we can be certain 

of determining (n ,u ) maximizing \|f(n,u) = NV(^) - Nh(u) - nc. 

Propositijn 3 

1 r^ n 
Let t = - 2. -, T.  and assume that t is normally distributed with 

1 2 
mean u  and known variance — o . Let t_, < M . tQ > u,  and let n    T ct        o      p        b 

n{v )    be the minimum    n    such that    u < t^    for    u = U  .    Then -•    o p        cz o 

tg < t      for every    n > n(u ). 

i 

1 
I 
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Proof: 

It suffices to show that ta    decreases and t-, increases as n 
P o 

increases.    Let    f,T-(*)    denote the standardized normal density function N* 

and    FN#(*)    denote the cumulative function.    Let    IU    satisfy 

rN»'-p)  » 1 - ß    and    i^    öütiBiy   ^IUQJ  = «. 

Since    tß ■   + ML     and    uu  > 0    by hypothesis,    tg    decreases 
vn 

in    n.    Similarly    ta =   + |i      and since    ^ ^^ 0    ^Y hypothesis 
i/n 

t      increases in    n. 

Proposition '4 states conditions under which    R    is convex in    M 

for fixed    n , and in    n    for fixed    \x  .    The p~oof is identical to that 

of Proposition 2,  Chapter III,  and is omitted. 

Proposition k 

Let    ^(n )    be the minimum    ti    for which both 

^        0 

/   f(t|^(n ), n ) dt > 1 - Ot and t > V • ljet    V    be chosen 

arbitrarily in [t., t^] so that h'(u) < " and n(n ) < n. Let 
It; ""  O 

g'Cn) be minimized at M' and ^'(i-i) be maximized at n", where 

u', n" €[^(n ), H]. Then (^.2'M^.o') can be satisfied at every 

(n .^), ü(n ) < M < M, if 

t -        _ 
(U.U8) (m-M) D/V) ♦ (w-M) D^ (M') >h'(^) , 

^1 ^a 

(^9) (w-v) D^Cn") < h'(li(no)) , 
ß 

i 
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> 1,111 

(U.50) h(no) Lxi(ji') + (l-X) g(n") , 

hold where 

(4.51) X = 

For n. > n  and fixed (^  let g'C^ ) be minimized at n1, 

n < n' < n  and £* M    be maximized at n", n < n" < n^.     If (U.US)- 

(4.50) hold after replacing n' by n' and n" by n" then R is 

convex in n, n < n < n_ for fixed n . o —     —    2 o 

While under these conditions we can compute    (n ,  n )    maximizing 

♦(n,n),    there is still little tha% can be said about the concavity of 

G(n,n). However the generalized Fibonacci search procedure describea in 

Chapter III will y.sld better results for the conditions existing in 

Chapter IV.    This is due to the fact that    R    is convex over a larger 

region than in the cases described in Chapter III, allowing us to search 

G(n,ki)    without  introducing artificial variables, as in (3.1 ). 

Payment Functions of Several Variables 

In many cases incentives apply to several characteristics simul- 

taneously.    An example *if this is an incentive on production schedule, 

equipment reliability, and maintainability.    Let   ^    and    t    denote 

vectors,    ^i ,    t      components, and   u        fixed values.    We assume the 

desired values of    k    performance or quality characteristics, 
n 

1     k 
V ••' ' ^o are known, that ^  is estimated by t = — £ T., and 

n J-l J 

that f(t|u) is known. 
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M# 

A procedure frequently observed is the assignment of constant 

k 
weights,    b    > 0,    E   ^4  =! !>  ^0 ^e performance characteristics,  and 

i=l 1 

k    i 
definition of the random variable, Z = X b t . A single policy <p(Z) 

1-1 

■'s then formulated.    Assume the distribution of    t    to be raultivariate 

normal with known parameters.    Then   Z    is normally distributed with 

known mean and variance and the situation is similar to the single 

variable cases discussed in an earlier section of Chapter IV.    For 

example we seek   qp(Z)    to minimize 

(^.52) J [<p(Z)   -  h{Mo)f f(Z|uo)  dZ  , 
Zl 

subject to 

(^.53) 
r
Z2              öf(Z|n   )              dh(Ho) 

(P(z) 5-2. dZ . o 
J%1               ^                hx1 

(*.5»0 r*2 
J         9(Z)   f(Z||io)  dZ >h(no) 

Zl 

(M5) m < <p{Z) < M . 

1   —   x ^    •••    ^K| 

if k    ^ 
Let    8(Z)  = h(no) + -^i +    £  -^ -2- In f(Z|^o).    By Theorem 1, 

1=1       ou 

Chapter IV, the optimal policy is given by 
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qp(Z) = m B(Z) < m , 

(4.56) (p(Z) = ß(Z) m < 8(Z) < M , 

9(Z) = M M < s(Z) . 

Since Z is normally distributed s(Z) is linear in Z. Constraints 

equivalent to (k.j), (k.k) can be introduced with no essential changes 

in the formulation, and as an alternative to (4.52) we could introduce 

a linear objective function to allow computation by means of the linear 

programming methods of Chapter III. The key simplification is the com- 

1       k bination of t , ... , t  into the single variable Z,  by consumer 

specification of the weights, b . 

It is possible to also include production schedule in cp(Z) by 

defining a variable n  related to schedule in such a way that 

increases in \i      are desirable. We then assume that if the producer 

aims at \i      he attains t  where t , ... , t  have a multiveriate o '    ' 

normal distribution with E(t) = \x    and known covariance matrix. Thus 

the situation is identical to that Ju-  described. However, pricing 

functions are usually formulated separately for performance variables 

and production schedule. That is (p(t0,Z) - qp,(t0) + <pAz).    Since 

r [ q)(to,z) f(to,ziuo,..., tik) dtv = r (pjt0) fjt0) dto 

+ / (Po(z) fo(z) dZ  we now seek tvo pricing policies, cp, (t ) and 

(p?(Z) to minimize 

(4.57) J       ^(t0) ^(t0!^) dt + I ' (p2(Z) f2(Z|uo) dZ , 
h  ' " Zl 
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subject to 

(^.58) -^T [gJ»)  -  h(u )] - 0 ,    1 - 1, ... , k , 
ÖU1   Z 0      0 

(^.59) -^ [g 0(u ) - h(u )] - 0 , 
^i0 t0 0    0 

(^.60) 6Z(^) +g>ft) >h(^) , 
v 

(4.61) n^ < qp2(Z) 5^ , 

(4.62) m  < <p,(t0) < M  . 
to - 1   - to 

Note that in this formulation we are not required to choose the weights 

to be applied to overall performance, Z,  and schedule, t . Arbitrarily 

precise approximations to (?,(•) and <P2(*) can be obtained by the 

methods of Chapter III. 

In many situations payment based on a constant weighting of the ^ 

does not reflect the consumer desires outside a small region about u , o 

and there may be considerable uncertainty concerning the correct weights 

within that region. We require a price schedule which is a Joint func- 

1       k tion of the variables t , ... , t . Specifically, consider the deter- 

12 12 mination of a price function 9(t ,t ) where t , t  estimate 

different performance or quality characteristics, and the Joint distri- 

12 12 bution of t  and t  is known. We seek (p(t ,t ) minimizing 

(4.63)       / J    «tftV) fftV2!^*) dt^t2 , 
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subject to 

(U.6U) 
M.y0) M.y0) 

an' on' 
i = 1, 2, 

(U.65) m < ^(t1^2) < M , 

(4.66) ,1 .2 1 ..2, 
*K'^ -> h^o'^) ' 

(4.67) 
1 .2. 

at1    -    ' 
i = 1, 2. 

By  partitioning the interval [t ,t ] into v.  sublntervals and the 

2 2 
interval [t ,t ] into Vp subirtervals, we have the following approxi- 

mating linear programming problem where t = ^^ + ifap " S)/Vi< 

t2 = t2 + ^(t2 - t2)/v2. Minimize 

(4.68) 

v  v 
1  2 
I  I <P^f^(^?) , 
i=0 J=0 ij ij^o'^o' 

subject to 

(4.69) 
bf Vl  V2 

i=o j=o 1J an1 a.1 1 - 1, 2, 

(4.70) 
^o'# -> h^o^o) ' 

(4.71) »f^o^^, < ••• <<PV j <M , J-0, ... ,v2, Koj - nj 
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(4.72) ^'"lO^ll^-SV^M, 1.0, ....v^ 

This problem can be solved by standard linear programming methods, 

but the computation required has increased considerably. Even a rela- 

11        2 2 
tively coarse partition of [t , t ] and [t ,t ]  into 20 subintervals 

results in a problem containing Uj constraints and hkl  variables, indi- 

cating extension to more than two variables is impractical. However the 

important two variable problem is that of determining an optimal Joint 

price function of schedule performance, t , and the overall measure of 

Performance and quality, Z. This Joint price function can be derived 

by the method Just outlined. 

A realistic and tractable alternative to seeking an optimal 

1       k. 
(p(t , ... , t ) from the class of all bounded, monotonic, functions is 

1      k 
to seek that ^(t , ... , t ) yielding an  expected payment satisfying 

specified constraints. One natural and desirable expected payment is 

ik.73) gW = VOO - [v(uo) - h(uo)] . 

1       k 
If the actual outcome (t , ... , t ) is expected to be close to ^ , 

or If V(r0 is not changing rapidly, g(k0 can  be approximated ade- 

quately by the first three terms of a Taylor series as 

ih.lk) g(n) - h(u ) f I I —r2- (H1-^) 
o    1 ^i     o 

.  k   , . ^(n )  .  . 
2 i,j-i      0 &W       0 

: 
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Under the assumption that the distribution of t is multlvariate normal, 

and that the covariance matrix G - [g..]  is known, yit)    need only 

be a quadratic function of the variables t  to yield E[qp(t)] = g(l-0. 

For the g(u) above, 

k k 
(V.75) q>(t) = a + X b t1 4-  X  c tV , 

1-1      i,J=l 1J 

where 

k c3V(u )  .  1 k    . . ^(n ) 
(4.76)  a - h(u ) - I  —r?- ^ + i I     (nV-g..) —r-f- , 

0     i-i ^    0   2 i,j=i   0 0 iJ a^1^1 

(4.77) bi - —f- -   I 
dv(n )  k  , ^(u ) 

n J  '^o^ 
du1  " 1=1 0 htW 

and 

(4.78) 
1 ^o) 

Plecewise Linear Price Schedules 

We refer to a plecewise linear pricing policy of the form (4.79) 

as a "linear" policy, and to a plecewise constant pricing policy 

satisfying (4.2')-(4.6') as a "basic" policy. 

q>(t) = m > m t < a '   o - - 

q)(t) = m + (t-a) s a < t < b 

(lK79) <p(t) = Mo < M t > I 

M - m o   o B ■ -r  
b - a 
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In Chapter III we described a procedure for deriving linear policies, 

and in Chapter IV indicated the criterion that leads naturally to such 

policies. The attractive features of linear policies are continuity and 

ease of interpretation, however linear policies can never be more 

profitable for the consumer than basic policies, and in this section we 

investigate the extra cost incurred by the consumer resulting from the 

use of an optima'' linear policy. 

Let qp(t) denote a basic pricing policy, and q>. (t) a linear 

and pricing policy. Let g(u), gf(u) denote the expected payments, 

g't^)» ßf(^)    denote the derivatives of the expected payments. The 

lesser profitability of the linear policies occurs in three ways. 

If at fixed (n,u) optimal linear and basic policies exist, it may 

be that g#(^) > g(u), and the loss to the consumer is g-(^) - g(^). 

Neglect in (^.,5')*(^»ii')» it is possible that at some vn,u) a 

linear policy cannot simultaneously satisfy (4.2') and (^5') while a 

basic policy can. This Is brought out by Proposition 5» One measure 

of the extra cost to the consumer in this event is the additional 

sampling required to increase (n,|i) to (n^u), a point at which 

(k,2')  and (4.5') can be simultaneously satisfied. 

It is also apparent that even if a linear policy does satisfy 

(4.2') and (U.51) at (n,^), constraints (4.5'), (4.i*,) may be active, 

and may prevent the existence of a linear policy. An increase in sample 

size also measures the loss in this case. In the remainder of this 

section we derive statements indicating the amount of extra sampling 

required for the existence of optimal linear policies as a function of 

the negotiated parameters. 
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Proposition 5 

Recall that by   %{'),    g(*)    we denote minimum and maximum expected 

payments.    Let    ta < M    and    t« < ta.     If    a < t      and    b > a    then 

fi'Cn) <   Ä|(^)*    i'C^) >   g'(n), and by definition of    g'(n)    if more 

than one    «P-Ct)     is feasible then   gliv) < gl(^). 

Proof: 

The maximum value of    g'Cn)     is 

na pn p   2 
(k.Qo)    g'(n) = m /        r(t(^) dt + w /      r(t|n) dt + M /        r(t|n) 

At that (a,b)    which maximizes    g'(^) 
X 

(U.81) g^(n) s  g'(^) +j        8(t-a)  r(t|u) dt 

+ j      [<p(ta)  - w + s(t-ta)]  r(t(n) dt 

rb 
/      [M - q)(n)  + B (t-n)][- r(tlu)]  dt  . 

i 11 

b 

Since    s > 0    and    r(t) < 0    for    t < u    the first  integral is non- 

positive.    By {k,}*)    (p(tJ
N  >w    and the second Integral is non-positive. 

By (^.5')    <p(^) < M    and the third integral is non-positive,  yielding 

(^.82) ij(n) <i'(u)   . 
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Ä1'! 

Similarly 

(^.83) 
r ß r 2 

ß'iv)  = v /   r(t||i) dt + w /   r(t|n) dt . 

If a = b = tg, fij(^) ■ B'M'    If a is constrained to be less than 

b, let s = T—^—'-    and consider the case in which b < |i and qp(b) = w. b - a _       ^^ ' 

For that    a 5 % at which gl(^)  is minimized we have 

r0 
(k.Bk)       £j(n) = ^'(n) + /   [m - v + 8(t-a)] r(t|n) dt 

+ /  [<P(tß) - w + iCt-tp)] r(t|n) dt 

-ß 

By (U.^1) qpCtg) < v and m + 8{tß-a) = (p(tg). Thus the first integral 

is "^on-negative. Also <p(tß) + s(b-tQ) ■ <p(b) ■ w and the second 

integral is non-negative, yielding 

(U.85) g'M   > g'^) 

and completing the proof. 

We will now assume that   jgi(l^) < h'd^),  that    m    = m    and    M    = M 

in {h.79),  that    t = - X-i  T^  ^n^ that    t    is normally distributed with 

1    2 mean   ^    and variance   — a. •      Under these assumptions we derive the n    T r 

minimum sample size,     n*  *^ which a linear policy satisfying (U.V)- 

(U.51) can yield equality in (4.2').    We then compare    n    with the mini- 

mum sample size required by an optimal basic policy.    From (U.79) 
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(U.86) gi(u) = /      mf(t|u)  dt + j      (m+8(t-a))  f(t|^) dt 
-00 ft 

r\00 

+ /      Mf(t||i)  dt  , 

or 

(U.87)    gA{v)  = M + s(a^)  F(a)  -  8(b-n) F(b) -  so^fCb)  - f(a)] 

Differentiating with respect to    \i    we have 

(U.88) g'(n)  = s[F(b) - F(a)] 

We seek (a*,b*) to maximize (4.88). While it appears as if both 

s and either a or b are independent, a moment's reflection shows 

that if two policies have identical s, and both satisfy <P(0 > w, 

that policy with the greater a will have the greater gl(iO< Therefore 

q)(t ) = w and thus 

(U.89) a = t + 
m - w 

a       s ' 

(4.90) b = tcr + M_p, 

demonstrating that (U.88) is a function of only one variable. If s* 

maximizes (4.88) we note that at the minimum sample size, n, for 

which gUu) ■ h'^), we must have gj(kO = gl(^), and from (4.88) we 

have 

(4.91) s»[F(b) - F(a)] = h'(uo) 
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a - u b - u a ' ^ 
Let    u    =  ,    \L   =  ,  and    ix^ ~    .    After rearrange- 

t t t 
ment (4.9l) becomes 

(U.92) 
a L 

—^ 

^ 
r2Ua) h^J 

h'Cn)  a 

w -  m 

M    —     IT 
where    r,   ■ —-—•',    r0 = r,   - 1.  and the subscript    N*    denotes the 

x      w - m        d        i 

standardized normal distribution.    With only a table of the cumulative 

normal density function we can solve  (U.92) for both the minimum    n,    n, 

and that    a    which yield equality in {k.Z') for a policy satisfying 

{k.y) and (4.5'). 

We derive approximations to    n    in terms of the parameters.    By 

letting    a = b = ta    in (U.86) we obtain 

(M3) g'^)  = ~ (M-m)  f^C^)   , 

and since we sesk the minimum n for which gL(^) > h'(u), (U,93) yields 

(4.9^) £l^ 

oTh'(u) 

an upper bound to n. The bound approaches n as w approaches M. 

We now obtain an approximation to n that is more accurate as w 

approaches m. By setting b = n in (4.88), 

(4.95) 
./ \  I M - w 

a 
- - F  liu. 2   N* T« 

M-m 
M - w 
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From this we derive 

(U.96) n2^ 
VTh,(M) 

^[i-vK[f^])]_ 
The n determined by (4.92) is constrained by (htk'),    ^Cto) < v, 

^hus at both n and n  (4.2')-(J+«5') hold, and ve modify n' so that 

the linear policy obtained by setting b = M also satisfies (4.4')• 

The statement (p(tA) < v implies m + (tfl-a)( » " ^ | < v, from T3' - "0 v* 
which 

ik.srr) n2^ 

J^ 

^o-b)' 
% 

Let np = max (nA^ np)' This is an upper bound on n, and therefore for 

given parameters we choose min(n1,n ) as the upper bound on n. 

One lower bound for n is given by n,, the minimum sample size 

required for the existence of a basic policy satisfying (4.2'^C^^') • 

From (4.80) g^u) = ~  [(M-w) fN#(0) *■  (w-m) f,
N#(^)J» and since we 

_ T 
seek g1^) = h^M), 

(4.9b; n5^ 

^h'M T2 

(M-w) fN#(0) + (w-m) f^C^) 

Finally the minimum sample  size for which    tg < t       is given by 

(4.99) %>** 
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The maximum of n.., n.  furnishes a lower bound on n. 

n n. -1  "2  "2 
For convenience we collect the ratios —, —, — below. The 

nj n3  "5  "U 
ratio — is an approximate measure of the extra sampling required by 

\ 
a linear policy to satisfy the price discrimination required by (U,3) 

and {k.k). 

(4.100) 

(4.101) 

n5 " [ (k^l) f^iu^) 

n^  ["^[^,(0) ♦ f 

^)]J 

k = 
M 
w - m 

k = 
M - w 
w - m 

(If.102) 
^ " W 

%      l^'^ r = 
M 
M - w ' 

n]  n^ 
Figure 1 displays the minimum of —, — as a function of 

5        5 
M - w 

k ■     and   Ct.    This indicates approximately the degree of extra 

sampling required for linear policies  co provide the same motivation as 

do basic policies.    The figure overstates the amount of extra sampling 

required In all cases. 

Thus under the assumptions that    t    is a sample mean,  normally 

distributed with known variance,  and that ohe linear policy is obtained 

by negotiating the maximum and minimum payments and the points    a,    b, 

at which these payments occur, we can calculate from (4.92) the minimum 

sample size required for the existence of em optimal linear pricing 

policy.    Comparing this to the sample size required for the existence 
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of an optimal basic pricing policy provides one measure of the cost to 

the consumer of using optimal linear policies.    P'igure 1 indicates that 

we will not be very inaccurate by stating that linear policies will 

generally require from 1.1 to  1.6 times the sample size required by an 

optimal basic policy. 

If linear policies are negotiated without consumer knowledge of the 

sampling distribution and production cost function,  the expected pro- 

ducer profit will not  in general be maximized at the desired performance 

level,    n  .    Let    a,    b,     be selected symmetrically about    ^  ,  and let 
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M, m, be selected symmetrically about h{[x  ), If the sampling distri- 

bution is symmetric about \x ,  then g(ki ) = h(ti ). If the probability 

of t falling outside [a, b] is negligible then L'C^) * m + —   ^, 
D-a 

and by se'.ecting  T—- = h'Cn ), motivation at \x      is possible. But 

if the probability of t falling outside the incentive region is not 

negligible, then g(n) < m + h'iv  )  n for n > (i  and 

g(^) > m + h,(^0) ^ 
for V- < V ,  leading to a much weaker profit moti- 

vation in the case of convex production costs than the linearity of (p(t) 

suggests. If the consumer intends to use a piecewise linear pricing 

policy, he must negotiate to keep (b-a) large to compensate for lack 

of information describing the sampling distribution, and can reduce the 

sample size required to maximize expected producer profit at M  by 

keeping M - m ' irge relative to c h'Cii ). 
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CHAPTER V 

CONCLUSIONS 

We briefly review the factors leading to the contingent pricing 

model developed in this paper, summarize the results obtained, and comment 

on the implications of the results in negotiating or formulating contin- 

gent pricing contracts.  Ii. discussing the use of contractual incentives 

we noted that in addition to expected profit, a contractor or producer 

considers the risk of financial loss, the maintenance of corporate 

reputation, and the desire for both program continvation and future 

contracts in making program decisions. We concluded that expected profit 

alone is an uncertain motivator and that while the overall effect of 

contractual incentives on industrial efficiency has been beneficial, the 

government as consumer cannot predict the program decisions of the con- 

tractor on the basis of contractual profit alone. Thus incentive arrange- 

ments can be analyzed for consistency with government objectives, but 

not for motivation,  Of course as sharing proportions increase, the 

relative weight of profit in program decisions will increase. 

Following these qualitative considerations we concentrated on the 

specific and idealized problem of formulating consistent incentive pay- 

ment plans, or contingent pricing policies, when the payment is based 

on th1 result of testing or inspecting a sample of the items contracted 

for. We reviewed two models which deal specifically with situations of 

this type, but which do not yield sufficiently realistic pricing policies. 
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We suggested that more realistic policies could be derived by assuming 

that while the consumer and producer each attempt to negotiate a contin- 

gent pricing contract which maximizes their individual expected net 

gains, both require that the contract include acceptable protection 

against possible overpayment or underpayment due to sampling variation. 

We postuJate a model in which p, the fraction of defective items in 

submitted batches, is controllable by the producer at known cost,  h(p), 

and in which payments are based on the number of defectives observed in 

a sample drawn from each batch. We defined an optimal pricing function 

as one which motivates the producer to select that p  desired by the 

consumer, yields e producer expected profit at p  no less than that 

agreed on, and satisfies restrictions against the risk of incorrect 

payment. If an optimal price schedule exists at a fixed sample size, 

n, and quality level, p, it can be determined by linear programming. 

The linear programming formulation indicates that a price schedule 

optimal by our definition is a piecewise constant function with the 

number of distinct price levels related to the number of restrictions 

the producer and consumer include to control the risk of incorrect pay- 

ment. We present several examples of such policies in Chapter III, and 

refer to these pi'cewise constant pricing policies as "basic" policies. 

We next restricted pricing policies to be linear in the number of 

defectives observed within some interval [a, b] and constant outside 

that interval. We refer to such piecewise linear policies as "linear," 

and illustrated with an example that optimal linear policies  n be 

derived by solving a sequence of linear programming problems. We indi- 

cated briefly how the basic model could be extended to situations in 
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which production control and production cost are not precise, but can 

be described in terms of known probability distri ut:'ons. When considering 

several variables, additive, independent, incentive payment schedules 

do not adequately reflect the consumer's valuation of alternative out- 

comes outside a small region. A Joint pricing function of all of the 

relevant variables is required rather than a linear combination of 

independent payments.  In Chapter IV we demonstrated that if the Joint 

density function of the sample outcomes is known. Joint pricing functions 

can be determined by linear programming, but that this seemed computation- 

ally impractical for more than two variables. A more realistic and 

tractable approach is to define the desired expected payment function 

in terms of the performance parameters of interest, and seek a pricing 

function of known form such that the expected val le of th'.s pricing 

function approximates the desired expected value function. 

We modified the basic model to deal with test outcomes which are 

continuous variables.  In such cases approximations to optimal price 

schedules can be computed by linear programming, but the maximum prin- 

ciple of control theory yields the information that the form of the 

optimal price function, (p(t), is piecewise constant, and indicates the 

points at which the price levels in <p(t) can shift. More important, 

the maximum principle enables us to explain the widespread use of linear 

pricing functions in terms of a natural criterion.  Assume that the 

consumer desires the producer to produce at some quality or performance 

level, M , and that t estimates u.  Let "excess" profit denote the 

difference between actual profit received by the producer and the 

negotiated target profit at u . Subject to very weak conditions on the 
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' 
distribution of t, that pricing policy which both maximizes producer 

expected profit at n  and minimizes mean square excess profit at n 

is piecewise linear in t. If the risk of incorrect payment due to 

sampling variation is not explicitly considered, this result implies 

that the piecewise linear policies in current use are in fact optimal 

under a very natural criterion. 

If the consumer uses linear policies that explicitly take account 

of the risk of overpayment, he may incur ex^ra costs. At some ( i,n ) 

a linear policy capable of motivating production at the desired n , 

satisfying a profit non-negativity constraint at n , and remaining 
0 

within specified bounds, may not drive expected excess producer profit 

as low as an optimal basic policy. Letting ggi^)    and g(u) denote 

the expected payments of the linear and basic policies, and h(u) + z 

denote the production cost at \x    plus the agreed on profit at u, the 

situation Just described yields a resultant extra cost to the consumer 

of 8#(^ ) - g(^ )• The occurrence of this situation is related to 
* o     o 

the magnitude of (M-m), the difference between the maximum and minimum 

bounds within which the actual payment schedule is negotiated. As this 

difference increases, the loss given by g.iv  )  - giv)    decreases. 
t.     o 

Extra cost may arise if at some fixed sample size, expected pro- 

ducer profit cannot be maximized at ^  by a linear policy. Proposi- 

tion 5> Chapter TV, states that a basic policy can always motivate pro- 

duction at a specified point, u , with a smaller sample size than can 

a linear policy. The exact minimum sample size required for the linear 

policy can be computed by (^.92) for specified parameters. Figure 1, 

Chapter IV presents an approximate ratio of the sample sizes required 
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for optimal linear and basic policies to motivate production at some 

u . We have defined w to be that payment which the producer is  assured 

of receiving with probability 1 - Of if his quality or performance is 

2 
at least as good as M .  Let o  be the variance of a single test or 

inspection outcome. The sample size required for motivation at u  is 

related to the derivative of the production cost function at u-  ,    h'^ ). 

We can say approximately that when T.  is an observation and t is a 

sample mean, the sample size required for the existence of an optimal 

policy linear as a function of t is directly proportional to o h'(^ ), 

and inversely proportioral to both (M-w) and (M-m).  Therefore it 

behooves the consumer to negotiate for lar^e (M-mj and the lowest 

price level w to which the producer will agree. 

If the consumer insists that he will pay no more than v with 

probability 1 - ß whan true quality is no better than v-,,  a quality 

level designated as poor, and the producer insists on a high degree of 

assurance that he will receive at least w for appropriate performance, 

the linear policy will not provide the required price discrimination at 

as small a sample öize as the basic policy. An approximate ratio of the 

sample sizes required for the linear and basic policies due to the need 

for price discrimination is 

(c.  i) sample size required for linear 
sample size required for basic 

| M-v l 

^ " "a 

where Ug and IL  are the 1 - ß and Ot percentage points of the 

cumulative standardized normal density function. From (5«l) we see that 

the sample size required for the existence of an optimal linear policy 
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increases as the degree of price discrimination required in the incentive 

payment schedule increases. When price discrimination is not explicitly 

considered, the sample size depends only on (M-m), a , h'^ ), and 

the confidence with which the consumer desires to distinguish between 

alternative performance levels. 

Recall that a and b are the endpoints of the linear section of 

the policy !p(t). Assume the sampling distribution is symmetric about 

its mean, and that a, b are selected symmetrically about the sample 

outcome estimating the desired performance level u . If (b-a) is 

small relative to n      the linear portion of the policy does not apply 

over much of the region in which the sample outcomes are expected. The 

result is much weaker producer profit motivation toward high performance, 

and less financial deterrence from low performance than the linearity 

of (p(t) suggests. When sampling distributions are not known precisely 

the consumer must attempt to retain linearity over a wide region, by 

keeping (b-a) large, in order to have any estimate of the profit 

motivation acting on the producer. 

We conclude that piecewise linear pricing policies can yield an 

expected producer profit which is maximized at the performance level 

desired by the contumer, and in fact are optimal policies under one 

criterion. While linear policies are readily interpreted by the pro- 

ducer and have the desirable practical property of continuity, their 

use may require larger sample sizes and consequent extra cost. More- 

over, at a fixed sample size producer expected profit resulting from a 

piecewise linear policy does not decrease as sharply for performance 

below u  as does the expected profit resulting from a basic policy. 
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Therefore if a basic policy is unacceptable to a producer, we recommend 

that the linear policy negotiated include more than one linear section, 

with the slopes of successive linear sections decreasing. The object, 

of course, is to create a concave expected payment function in the 

neighborhood of the desired production point, thereby decreasing the 

financial attractiveness of performance uelow that desired by the 

consumer. 

Throughout the paper we have assumed the consumer can state product 

value as a function of the relevant product characteristics and produc- 

tion or development schedule. Such knowledge does not customarily exis 

in functional form, and the derivation of optimal contingent pricing 

policies does not depend on this assumption. The essential requirements 

for the derivation of contingent pricing policies are knowledge of the 

sampling distribution and knowledge of the production cost function In 

the neighborhood of the performance or quality level desired. The 

consumer may of course derive contingent pricing policies at a variety 

of sample sizes and performance levels, and then select the preferred 

policy on economic and other grounds. 

Contingent pricing policies can be implemented with little problem 

since producers have long been familiar with acceptance sampling, and 

are becoming increasingly familiar with incentive contracts. Where 

existing procurement contracts call for acceptance sampling, the AQL, 

producer's risk, LTPD, and consumer's risk can be inferred from the 

sampling plan in use.  Starting with the requirement that the "w" of 

this paper be the price currently paid when batches are accepted, the 

contingent pricing policy can readily be computed by the methods of 
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Chapter III.  In new procurement actions where no acceptance sampling 

arrangements exist, the problems ir.volved in negotiating the parameters 

of a contingent pricing policy do not appear more intractable than those 

required to determine the proper payment and acceptance sampling plan. 

The only additional essential ^tem of information required is the pro- 

duction cost function in the neighborhood of the desired AQL, and this 

does not seem to be a sufficiently damaging disclosure to preclude 

negotiation of such contracts. 

Furthermore there may be no a priori reaton to prefer one price 

level w or v to another. Therefore while M and m are to be 

negotiated, the sample size n can be determined by the specification 

of u , u. , and the probabilities of erroneous statements about the 

parameters. The prices w and v are then determined by cp(t). This 

has the effect of creating a more symmetric policy about \x  . 

As we remarked in Chapter II, contingent pricing policies provide 

attractions to both consumer and producer. When the consumer cannot 

reject items due to urgent operational need or planned production require- 

ments, a single acceptance price does not provide a sufficiently powerful 

tool to motivate superior producer effort. If the producer purchases 

the same item from several producers, all nay submit acceptable items, 

but contingent pricing policies allow t'« conscientious producer to be 

rewarded with an immediate increase in dollar payments rather than a 

slightly greater percentage of accepted lots in the long run. Lots 

previously rejected by the consumer and scrapped may in some instances 

be accepted at reduced cost, thereby averting a total loss for the 

producer. 
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The approach developed in this paper can be used to test existing 

or proposed incentives for consistency with consumer objectives,  and to 

formulate optimal contingent pricing policies  in situations where true 

performance must  be  inferred from sample data. 
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