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This rep smmrs the present status o4 a continuing investigation

into the mysteries of the small-scale atmospheric vortex, usuall knows as

the *dust devil" or "whirlyind." Hwy of the basic concepts of vortex flaw

presented below applV to the larger-scae,1 tornado as well. The reference

literature on the theory of small-scale vortices in meteorological jouxuals

is relatively a-,aroe; bovever, there is an extenail" literature o0 basic

vortex notion* available in journals on fluid mckanics.

Th, first application of the ravier-Stokes equations of fluid motion

to a viscous vortex problem seem to have been the investigations of

Tavlor (1918) and Terazawa (1922), surmarized in Dryden (1956). os the

decay of a vortex eonsisting only of tangential velocitiee. Surgers (1940-

1948), Ratt (1958-1959), Sullivan (1959), Donaldson and Sullivan (1960),

Long (1958-1961). iLevellen (U962) and Webb (1962) have investigated ateaaly

state vortex flovs that are axisys-etric. Of these, Javellen's treatment

: is the most comrrehensive. OGutan (1957) end Iuo (196h) have wortod out

solutions vhich incorporate the effects of therral energy input on the flow.

Boundary layer effects have been discussed by Pott (1962). lateorologlcal

appli•Iction has been made Irf Vauptm (1928),, Emphreys (1940), Villism (195),

Batten (1958), as well as Kuo and Webb. Sinclair (1964) has mwaf som

measureomts of temerature end velocity profile$ in dust devils usinu. a

portable instrment probe.

The instability of rotatine flows has boen investigated by a number

of people, Including Harrison (1921). Taylor (1923), Svenre (1938), ina (09ý-i)

end Chamdrasekhar (1962); but their st,'des have dealt primarily vithI
¶



Cowtte flow. So tar as the sathors know, no comprehensive investiCatioa

ot vortex stabi•lty tbdepetden'. o• bounmding valls has been carried out.

:n this report, some significant results of these prior investiga-

tions are briefl.y presented and idiscassed, and where appropriate neaerall&a-

time of these results are offered. A pWrtial analysis of the stabilit:,

of vortex flov in also iriluded. Pinelly,, P progras of future investiga-

tion$ is out.lined.

II. STEADY-STATE VCIrEX FLOI

The starting point for all discuthions of l.minar riscous vortsx

flow to the set of eq*Aticus of fluil rotion (iWavier--Vto.ea) expressed

in cyledicdzal coordinates, e.g. Hinze (W59) pp 22-23:

--1 t ýOn! f2.1)L r r'

÷ -r "" TI IV " r r 2e •2

r + ~ DwOz + 2 v (2.3

uere r, e and z are the raAial, amntrier and axial coozdinates

reepctively; t is the time; u, v and v are the components of veloc.it"? in

the r. S and a directions res;ectively; and p it the pressure, a tLe ,;onJtty,

v the kinezatic molecular vi3cosity and g t.ae acceleration due to E7- -.vi.;.

The operators D a V2 are defined as

D a -*1a4 -D U r rtT~



-3-
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ir the fo]ovring dircurnions, eotcent For tha st•tdy of *-all rt-turbep-

I tinns, the "Vct4cn is asnm•.d to be axisymutrlc, so thit the derivatives

vith res c' to 9 vanish in the above 9quationh, resulting in casalrable

mimplifi cation. Purthernore, in a fl.rst a-)pr~ch to undetartLdinr the

moti•ns !n a "4ust-devil," it is comvenl.ent to awsu.e t'hat the horisontal

veiocity comTw ents, u and v, dc not vary in the vertical. This nelects

the prcblem cf .lo". ir. the curface bounftr layer, but should I- eppro-

pr!ate for the flow pattern at come d6il-ence abo-ie the surface. EInuations

(2.1). (2.Z) said '%2.3), us.Lnr th, above aasevriot ions, be~one

4 "r r r ra2

u v +. vi r v(25ar-+-r r c r - (2.5)

L- r

-I'i- a + A-÷ 12.6)
dZ ; z r I r r r) 3z2J

Were ua u(r), v a v(r), v = v(r,), p p pr,z), v * conlstant ando 0 0(s)

constant. Tt is assr.ed th'At tle earth's rotatian 1as little effect on

the size of dasturfjance "oeiar consi~ered, hence the Coriolie terms h!a l'oc "n

neglected. It ic further asrumed that the vistosity V is constant: 'his

P-u.uc*tion vll be adequate fcr rolecular viscosity, but is in dmu. ; VheL

eddy viscosity is considared.

The enuation of mass continuity, asuuming that the density is aprro.•-

matelv ccastant, may be vritten as

K )(



where K ( Is) 1 tbe horizontal convergence, a function of radius only. With

the introduction of. this convergence term, the floe may be considered two-

dimnsional in the r.6 plane. K(r) then plays the role of a dirtributed

Velocity sink.

The vertical ccmponent of vorticity, the only corpotent present in

this two-dimensional setup, i.se in cy3tinirioal coordinat es,

1 --W (r' (2.8)

Substitution of (2.8) in (2.5) rives

uc a VAi (2.9)

as roted by Lamb (19329 p. 579). Integration yields

C Co exp *fr U3-1 dr, Co i central vorticity (2.10)V

nd a second in'tegration yield3

rV fr r*:- [,f r2Lr dr dr(2.21)

For various special choices of u(r), equatioa (2.11) amW be solved

waelytica2y for rv and v. One sueb case is vhen

ur SLE (2. r.

Then (2.7) gIves K (r) W *U cofnStart, stating that horizontal conPer4',* ce

is uniformu for this case. 9uch an assumption may hold quite well ever a

large region near the central axis of the vorte.'. TAe resulting +'--zi• t

vvlocity profile is

4 r 2 v

where r * is the circulation at r - -. This is esaentially the

solution of Burgers (1940) and 1Rott (1958). It v Is defined as the



maximum tangential velocity and rm the corresponding radius at vhich the

maximum occurs* then differentiation of ,2.13) yields

r2

. 3 2 - , 2 . 5 1 ( 2. ,J1 )

as a characteristic number for a vortex %ith this particular velocity

pro-•ilo, an implicitly stated by Rott. Arhermore,

r

indicat.in the leviatioc of tOis velocity profile from the sio'le con-

servrtion of anoalar mosentun. r a constant. one. If molocjlar viscosity

of air, 0.14 cmi2 sec -1 .. usel in (2.14), then, for a typical d4st-

Sdevai 0.imension ot r M 100 or, the corvergence KO is found to to
5 -2. m

7 x 10 see . If the coerging air starts at a radius of r. and

moves inward to a radi-o r. in time t, this radial Inflov, obtsned by

inteprating (2.12) from r 1 to r., Is given by

r-!ri - o"ot,2 or t - R--i- (r /r-) (2.16)

For r /r 2 - 2, t a 2 x 10 sec or about 5 hours, vhich is unrealistic.

If the wlecu~lrr viscositj is reulaced by an effective eddy viscosity of,

e.g., 102 cm2 sec"1, ca 5 x 10- 2 sec"1 for rm - 100 cu, and for

t r 2, t - 25 sec. P. rercsonsole reriod.

The eddy viscosity 9..oul4 be taken at leest in the outer portion of

the dust devil but probably not in the center part wvt-e solid rotation Is

avrroximated. P•ott argues e silarly for the appl*cation to a to:-"ado.

The vorticity for the above case assumes a Gaussian distributior:

C Co •"%r 2 /4v
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Another caue of Interest is that for thich the converyence is zero out-

side of a "sink" region of rad.us r 1 . For this case u a-b/r for r crl, and

the resulting angular momsntum distribution is

rv srv +÷ r.(2.18)
V.

vhich is tie solution obtained by Webb (196) for the same sink assumption.

Vor rv to be a bounded function for large r, it is required that b/v > 2.

For b/v a 2, the inviucid, solution rv - riv 1 results. The ratio of the cir-

ulations r. and 1 r 2Wr v1 is

rb

The behavior of the flow within the sink region must be specified by

cam other condition, such as uniform convergence. -9tc.

A third analytic case of some interest is one in which u is a constant.

This unrealistically Implies infinite convergence &-~d vertical acceleration

alcap the central axis, but may serve as a limiting case for vortices where

the convergence and updraft are highly concentrated near the center, in

contrast to the uniform convergence case, With u a constant,, the resulting

velocity profile is

VV

2wr Uý-
and w bere h in th o te manner as in the first solution (u.t be and (2.15)b

fa M .80 m 0 i5 (.1

sc te coud z8on, s-c as-ioi cnve gene it.o.

V F: 02 77 i +1

The velocity profiles an ven by (2.13) and (2.20) have very ocetre er, shains

despite the great contrast in the respective onvergence cotterna, see figuretn.
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Of course, theme velocity precfies my be pieced topether; for example,

u "tgt for 0 r < P9 u for r._2 r, then

(2.22)

for r n I, whereas equation (2.13) applies for r < R. Ultimately, the only

justification for constructing such profiles is that they are readily

obtainable in analytic form, which does not imply that they are very

g0od approximationm to reality.

A flow pattern vhich is scaw.•hat more general than the above, and

which presumably has greater correspondence with reality, is one in which

the horisontal convergence is assumed to be a "hill-shaped" function,

1) - 2 I 2(2.23)
+ *r

where a is the radius at vhich K falls to co/2. The correspondinF Function

for radial velocity is then

2r S2

The maximmw radial velocity is readily shown to occur at r - 1.986 a mad has

the value u = 0.402 Koa. The tangential velocity cannot be obtained in

analytical form for this case, but it can readily be computed numericemly

uiing finite-difference integration methods. ror purposes of con•e:-'on,

the folloving dimensionless quantities are defined.:
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SI rirar, Y ! - (2.25)
x~Is3  al v V 2v-

where va ia the mziino tangeutial veloctty and rm the corresponding radius.

The parameter 6 gives a manure of the concentration of convergence near the

central axis; for very seam1 6 the convergence is highly concentrated along

the axis. for 6 -+n the convergence profile approaches uniformity. Results

of the numrical ealculations for I/'ro and y as functions Of x are plotted

in figure (2). The relation betveen a and 6 is plotted in figure (3).

shoving that a * 2.51 as 8 **. It is noteworthy that for value3 of

6 > 1, the devir-tion of the tangential velocity from the uniform convereence

solution (2.13) is very small.

More generally, the convergence can be expressed in the form of a series

n aK

,c(r) - I I(2.26)
1.1 a4 * r

where the a1 and K9i are individually different values of hbA-vidth and

central convergence. For n a 29 a1 < a 2 , Ko1 < 0 and so2 > 0, a concentric

tvo-cell vortex results, vith divergence dominant in a central "eye" region

and convergence elsewhere. Such a profile In possibly characteristic of the

tornado. Outran (1957), 8sallivmn (1959), Donaldson and Sullivan (1960) and

Kuo (1964) have obtained solutions for concentric tno-cell vortices. For all

the foregoing solutions, the presvur3 profile is viven very closely by

P " Po (2.27)

where p. is the central pressure, p the density for the bhIeht of Interest

and v(r) the tangential velocity pwofile for the particular vortex, The other



I trm of *at*iatn (2.4) upon integration give 9 s 31 corr-wetion that results

in redueiig the pressure gradient given by (2.2T) ellbtly.

The dissipation of energy in the vortex due to viscous forces haa been

di3cussed by Burgers (1948) and Rott (1959). rott gives the energy equation

for axisyucme+ric flow in the folloving forn:

PUT - Pvt 1. T (2 h 28)
dr r dr dr'(228

where S is entrophy, T terperature, k thermal conductivity, and * the viscous

dissipats.on functi.on given by (Lamb, a. cit., p. 580)

u(N ) v2,2 • 2 _ + 2  ( 2

For Burgers' uniform convergence solution, the resultine values are

D p 8 (2.32)

as given by Burg*e-s* The approximate equality sian indicates here that the

6Ko2 term is negligible in the integration of 4 out to a radius much larger than

r a Thus the dissipation function is primarily a function of the tangrntial

shear (dv/dr - v/r) and the res'latinr dissipation depends on the "basic

c•-culations" r., as well as the convergence. It can be shovn that the dominant

dissipation term is eavay. the tangential shear, and that (2.32) is a good

approximation for the othtr vortices discursed above as vyll.

Equation (2.28) can nov be used to calculate the dynamice3.ly irdue-ed

temperature difference betveen the center of the vortex and the envirw-

zent, as is done by Rott for a perfect gas with various thermal condu.tiviti.-.

Yor the limiting case of no conductivity, be finds
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Ta - TO ., (2.33)
ep 16W2 r2

vbere To is the central teMerature and T. is the temperature as r -

Nonee the motion results in cooling as the air approaches the vortix center;

the viscous dissipation that acts as a heat source is more than offset by

the adiabatic expansion and cooling that results from the reduced central

pye5sure. Using a value of v a 103 cm s9c 3 t hence

r/e•re, as ( 1) va/a a 1.4 xo

one finds that T - To 0.12 degees C. Rott shove that for the conductivity

of air# a temperature deficit of roughly 1/2 this imagatude is correct.

Sinclair's (196)) measurements show a temperature rise of from 3 to 9

depoees near the center of dust devils at a height of approxiuately 2 meters.

It thus appeers that the dynamic reduction of tem-er~ture is negligible

compared to the effects of the heated surface boundary layer of air, which

is preuaibly advected into the core of the vortex.
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III. NOY,-STEADY STATES OF THE V8SC00 VORTEX

Vortex .Ith 'Utiform Converience

The decay of the voe.ex vith aniform convergence appears to have first

been obtaine4 Iy TerazaVa (1922,1923) together vith that for a m~el with

v indepeudent of r and a combination "vortex" with v independent of r in

th# core and v proportional to 1/r outside the core.

The folloving treatment differs orly slightly from that of Terazava,

vho worked in terms of vorticity rather than tangential velocities.

By settiLg the convergence equal to se-ro and retaining av/Dt, the

tangential ejuatio- of motion (2.?) becomes

1x x
ar ax 2  1

after transforming to the non-dizene ional variables

z = r(c)/rl(o). y - vf,)/vM(o), . - vt/r, (o)

Integation by separation of variablem gives

y i n (A l2 x) *'AXdA (3.2)
0

where Aremains to be determined.

From the initial conditions

(y),= M a + 1 (1 - e"xl)(3,3)

n t th ue of the l/22) (1 t *rans /2)o00(.•
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The Indicated Intoeation my be carried out by mans of ocafluent "rpeigo-

mntric functions to give

+I
as. 4 (. (3.6)

Tbio result haa been plotted for various values of r In figure (I).

The limiting form of the solution for the decay of the vortex given bi

(3.6) as T becomes very large may be obtained easily from similarity

considerations.e If the decay tim Is taken to be great enoudl that the

roution has becom Independent of the Initial conditiona, dimnsaioaul

analysis Lea4 -to a solution of the form.

2v Urve'n)Iu rw/h (3.7) a

This allows the partiAl diferentia. equ&ation (3.1) to be expressed as an

ordinary differential equation

"f (n) W +'(vi) W 0 (3.8)

which ha tho solution

'I :A (1 .'r)4t (3.9)2wvr

or in dimensionless Tom
ax e (3.9a)

This equation is seen to be the eown as the linit of equation (3.6) for r 4t

The location of the radius of mauimnm tsneential velocity as a funetion

of the decoy tiv. my be obtained by difftrentiating (3.9a) with respect

to x giving

Kwn appears to have been done first by Taylor (1918).
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so sine AL 0 at yM, it follows that

21
S$ I,.

This has the solution a 2.51 wvbic It identical to a from equation (2.14).

Thus

a % AT) a

a URelapcing •a/2 by (1,I÷ ) rand m.a~tipt~ytnv by x. gives

a8 LLI + (i.. 4)au .i (3.11.)

Rec•llIng, for the constant con-rergmnce model, from (3.6)

y aa. 41 (1 - e-=2x/2(l + aT))
ax

It is noted that this equation has the sme tore as (3.9a) vith a change

of variable given by

T A -I + (3.12)
24

so that the locus of the maxdma for (3.6) is also given by (3.11).

vMex wth "111 Function" C._nerm•se.

The decay of the vortex Menerated by the *hill function" distribution of

convergence in obtained by souirical mthod frow (3.1) uuinp as initial condi-

tioms the nmunrical solution of



16 , [6214 (1 X2,/82) 1 1 W201 (:L + ,2/62)-. •1 . o .13.)

vhere e 2 2
6. 9 Z"-o x-a r/ ,. ,/I

Is ~ 2 2*

Renrit-ng (3.1) as a finite difference equttion

h 2I 1  x '~j2h xl"-- - h2 1' .34' •,

and taklrng .or bo-mdruy conditions

y 0 u at x a 0 for all. to nm Y1, 1 I Y.L at xuk.95

permits the Dunerical solution to be carried out until t becoes large enoutb

that tho similarity mcluti'= beenras v:id. Stabillty of the finite difference

solution requires, ao-ordina to .illeb-and (19Ow2),.p. 232s that

1/2 -A-,, ) (3 5

Fieur (5) !ndtcates the results for an exeanle with moderately high eoweentra-

tions of convergence near the center, o,.rresponding to the point 6 I 0.24..

Here the "bill function" velocity has been normalized to tive the same value of

angular sent~u at Infinity as the no-dimcnsional "Burgers* models" It ti

noted that tb3 locu3 of thO maxfr-Z tenCsntisl v*loeit7 r-pidly approaches thet

for the similarity solution as t tecoess large.

?.-,use" I, Model

aouse (1963) has presented a vortex model produced by a rott-.•.,

cylinder In a vimsoos fluid, by eonsidering the cylinder to shbtnk to an



Ianfinitsly sml radius, while s*ualteneouly Increasing in rotational speed,

to maintain a constact por'pheral circulation r . After ac*elsreting the w'r-

rosmdine C.uld by the transmission of sI.ear for P finite generation time, t

the generting cylinder to abruply broth~t to rest. and the surrounding fluid

aloved to decelerato. After a dwcy time of td t.s, distribution of tangentisa

velocity Is given by

-ee (j+- )-exp(Y4) (3.16)
V~.TTSvWhere

Xur/hvt , y *2iwrzy/r T td/tA (3.17)

Hero a d&iffertt product XY, m y be shown to appromeh the limit 1e as

T **9 so that here the Yslue of the wmxiaum eirculatic becomes, it the limit,

izvwersely proportional to the saua"e of the radius .

Sines the solut!-n of (3.17) sr8tisfies the parti1 differential equation

(3.1)1 the silnrlty solution (3.9) should be approached as a limit. PlwitinS

it in torso of X, Y and To the saularity solutioh becttes

aI- exp(V( if t-t 4  (3.18)

In this vase the siullarity solution is approrched on,, for T <c X9 that is for

a gonerating tim t very large in relation to the decay tim t 4

lott (1958) has discussed the growth of a vortex to show hao the steady

state solution may' be approached from any initial dirtribution.

oote that in' gr l model equation (2.13), the maximnm value of clrculatln
r-meins at infinite radius.
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For the viseous vortex

r [1r r 03J9)
~r rs

assume a solution of the foru,

r - r (a) where o - rF(t) (3.20)

then (3.19) bcecoms

riTr - rrr v [ - (3. r1)

vbqre

dF an r dr

Ptoarranging (3.21) to give

(" -. P) or, - vi3j - I- r] (3.22)

and chocatng

F jF r3~F (3.23)

ftere C to sow ozstant, (3.22, asseues the form of the steady state equation

whieh hsa been shc'm to have the solution

2
r (: - e•2/•V) (3.24)

In.eg•at-ne (3.23) isives

F a (p.• A"Kt)"I/p (3.25)

where A is the constant *f 1nteeretior,.

• ubqtrtuting rA" for 02, (3.214) beccoes

r r. "" ,1

as t - the steady state solution.*

*For K- 0. 1: W d3.20 becoras the siilarity-solution(
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For t = 0 the initial circulation Is

r r - exp . ] (3.27)

Vhere B a A/C.

Since any initial distribution of r my be synthesized by the sumation of

solutions (3.27) with varyL values of B, afll initial distributions of F mut

tend to the st.eW state form, provided K is constant.

It w to not constant but Is a function of time, then (3.23) becomes

_d,... !L ., + a V3 -0

S- •(t)G FC 3 - 0
2

d2

Now letting 0 a Pi

" 1d + (I !E .(t, + CQ -0

Cboo ing P so that F 7- K(t) a 0
dt

P is e/t)

1 !a,• + CQeOIl(t)dt .0

so
I + CfefK(t)dtdt 0 0

tben

fIK(-)dt



S-'.8-.

landJ 2 G fatf (3.28)
CfeK (t)dtdt

It is of interest to look at r(t) when it has the form of Deosot n04•cstitni

alteruate convergaence and divergence. nTow

SF-esinat
12 a

Efe Siantdt

where E is a constant.
I *nazt -1
It is readily seen thea. o -,cllates between and e, so that

vE~e intdt increases monotonica•lly with t, and 2 oscillates between decreesing

liits but epproaches zero as t * ., so that it follows from (3.24) that

r -o o also.

IV. SWT.ILTTY OF VWr FLCW

Ite classical approach of linearized equations for small perturbations

• in the mean flow, as discussei b•, J. L..,.e e (193P), C. C. Ln (1955) and

etherso maW be used to deterrPine criteria for bYdrodynanic stability or the

vortex motion. In the general case, the superimposed perturbation is assumed to

be free to travel in any direction &ihatever and to have its amplitude vector

oriented e t random, requiring a complicated mathematical formulation. More

r h1w , the perturbed motion m=y b•e considered to consist of several component

trt:eeling waves-nine in all--of vhich three are compression waves and the oth.-!tr

trr-zsverse wavee. The mathemattical enalysis, tentative as yet owing to lack cf

cb~ervational confirnation, is outlined below for one of the perturbation moieo.-

that of a sinusiodal wave trm-eling circularly and havinp its amplitude vector

in the re plane.

'he motion is assured to consist of a mean compnent plus a perturbatiom

cpzponent, so thvt

U* +'u, v.- + v, p- •+p (4.1)
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Vere u. Is the total radial velocity, u the man value, ad u the perturbs-

tion component. (A totation rvor* co-s-istent wiath -What' has gowns before0 WO.*..*

be u a ; 4 u', vhere u' is the perturbation quantitybut is not adopted here

in order to avoid haviug prizvad quantities In the folloving equations.) Refer

to equations (2.1) acd (2.2), where u is now re.',meed vith u,, a u lu etc.

The roan values,, u, 7,and ;, are seen to satisfy the equations separately;

and so these terms xmy be removed from the equations, leaving equations of

motion for tho perturbation. As It is assumed that u-<u, etc., the non-linemr

terms may be neglected. The resulting equations for the .oton of small

h•'taoutal peeturbattions are then

;W 2 U 1 u Ia
+u lu .2,.v an Fa-;a l (4.2)

a -__. , _ , l a

Ov + __ D 2 v Ia 1a2 v 2)u

The pert.urbed xotion mut satisfy, the continuity conditilo.
1-• (v~ F +• -0 (V.•

SL. (4-3)

r W 2 a

L--. e.1•.,. V,( • -

ard the equatuons then usded, tie pressure is eliminated froir the resC:t4 .zq

e'quation, (2ch) by use of (p.rae an byan be eritten
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(4.6)

where the suffixes indicate part'a1 derivatives.

Assuming a solution for a traveltir, circular vale.

*rl ein(e - wtO ()-7)

where the anplitiue f(r) and the angular velocity w(r) may be complex, but the

vave number n Is a real integer, equation (4.6) trinsform into

2 1It2 2 2+- 2r f (I- + 2L-U "" (1 + ?n2 f • Ln 4
r* 2 r3
r . r

(14.8)

which Is strictly appropriate only for ti.ne t * 0.

For purposes of calculstion, it Is desirable to introduce the follovinq

dimensionless quantitie.I in term. of , the nus z=n mSan tanMeUtial velocity,

asn r , the correspading radlus:

Mr (dimensionless radius)
I-

(divmnsionless neoa taifecttl velocity)
V

rv
aM-

2 *- (dimensionless angular velocity of man flow)
-:; 

x



rw
___ o (dimensionless angular velocity of perturbatio)

V

I (ckiaracter-stic e .ynolds Number for vortex)

Using these definitions, equation (.8) n@ be expressed in dimonsionl.ss form as

2 2 2X x 2 X 3 " 4x-

Vere the primes nov indicate differentiation vith respect to x.

Returninp to a consideration of the streamfunction for horisontal vortex

flov; since for mean motions u << a total streamfunction for v •dy be

approximately expressed as

= •(r) + 6ý(r)elz(e -wt)

* j(r) + 6r.n(0 - wt);rir

= u(r) + v6 re•G - wt) (4.10)

Covparison of (4.T) and (4.10) Indicates that f(r) a :(r)6r, and since Sr may be

regarded as an arbitrarily smal displacement, it followe that f(r) a ;(r) or,

in dimensionless notation,

(x) W- F(x) a x;(x) (.*li)

a!lacing #(x) by 7 in equstion (4.9) and expressing the pertinbation anu.lr

velocity an the sum of real an Imaxinary coxmpents, a w a +o l leads to

the following expressions
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1- + (4.12)o 2-.v

"°,Y .. .n . ... m-h" 2 2,- 2, -2
I 1 2

2K

(4-13)

where or Is the mgu8er phase speed of the perturtations and a Is the miplifi-

cation ffactor, positive for nitia.lly unutcble perturbations.

Buraers' sol-xtion for the vortex with uniform horizontal convergence,

ectation (2.13), can be written in dimensionless n•tation to

ax

vhere a I r 2 /2v a 2.51. Curves for R1i for various vays nwsbers n, uuing this

expression for F, are plotted in figure (6). Tsese !ndicate great stability

for n > 1 In the central core region, Where the mean flow approaches solid

rotation. The analysis also Wn!icates that ,ert'jrbations of waye numbers 1 and

2 are initially unstable for sufficiently lerqe rcdii; qualitatively, wave

nuwber 1 perturtations do appear to grov In the outer parts of vortices, but

quanntttetive data is at present lacking.

To rumsar1r., the above analytic pertains to a rather special case of

perturbed motion, where the only perturbed motion pernitted is one with

relial sWlitude and angular movement. C±" course, a truly "Reneral" perturba-

tion whYich is free to move in any7 direction and whoes amplitude function

is three-dimensional ays have an entirely different stability criterf.•n,

pr3bably highly dependent upon direction of propo.ation. 'PMus, the tmera)

question of stability is only -artialy answered by the treatment above;
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boevwr, datermInatiop of stability criteria for the remaiWnin =o@e of

perturbation "11, re"sut it a 3 x 3 mtriz of stability criteris that should

also describe the gaeierw' p j.urtation.

V. MZ•- FOR FJ1,"¶R =DIES

Three !iz& a.-euts of study are indicated:

1. Ratbe,•nsala of the tho-ry to three-limensionil flov, tcorporatine

the effects of convection resulting from variocia dist•ributions

of sur-'ace beating on1 including the effecto of friction in the

surface boundary la~rr.

2. Continuatoion of the analysis of instability for other perturbation

molost attempting to censtruct a complete picture of lynauic inuta-

b, "Yy u83o2cated with varius vortex m~odels.

3. Develomient of appa•-atux for the puraose of conducting studies of

n:PA representative of the smller scale intense vortices, in

particular dust devils eud f-ire-inluced whirlvinds,

-
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