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I. INTRODUCTION

This report summerizes the vresent status o a continuing investigation
into the mysteries of the smsll-scale atmospheric vortex, usually known as
the "qust devil" or "vhirlwind." Many of the basic concepts of vortex flov
prescnted balov apply to the larger-scals tornrdo as wvell. The reference
Jiterature on the theory of small-gcale vortices in meteorological journals
i{s relatively syrarse; however, there is &n extensive literature on besic
vortex motions available in journals on fluid machanics.

Tha first application cf the lavier-Stokes equations of fluid motion
to a viscous vortex problem seems to have been tha investigations of
Tavlor (1918) and Terazawa (1922), surmarized in Dryden (1996), on the
decay of a vortex consisting only of tangential velocities. Burgers (195h0-
1948), Rott (1958-1959), Sullivan (1959), Donaldson and Sullivan (1960),
Long (1958-1961), Levellen (1962) and Webb (1962) have investigated steady-
state vortex flows that are exisymretric. Cf these, levellen's treatment
is the most comrrehencive, Gutman (1557) and Kuo (19€k) have workzd out
solutions vhich incorporate the effects of thermal energy input on the {low.

Boundary layer effects heve been discussed dy Rott {1962)., Metsorological

apolicetion has been made by Vauchn (1928), Fumphreys (1040), Williams (19h5),

ttan (1958), as well as Kuo snd Webb. Sinclair (196h) has made scme
maasurements of termerature and velocity vrofiles in dust devils using e
portable instrument probe.
The instability of rotating flows has deen investigated by a number
of people, including Harrisonm (1921), Tarlor {1923), Svare (1938), Lin (39-5)
end Chandrasekhar (1962); but their striles have dealt primarily vith

»
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Coustte flov. 80 far as the suthors knov, no comprehensive investicatiocn
of vortex stability {udependen: of boundinz walls has been carried out.

in this roport, some significant results of these »rior investige-
tions are briefly presen’ed and Aiscussed, and vhere appropriate reneralise-
tions of these results wne offersd. A partisl analysis of the stebility
of vortex flov is also ir~lucded. Finellyr, & program ¢f future investipge-

tions is outlined.

II. STEADY=STATE VCRTEX FLOW
The starting point for all discuisicns of lardnar riscous vortsax
flov 10 the set of equations of fluil rotion (Navier-ftoFes) expressed

in cylicdricel ceordinates, e.g. Hinze (179)7) po 22-23:

fu \ow - X M, R e 2 ¥y (
| TRl ""%‘E?“’;va“'rz’ra 36 2.1)
- 2
v uv l o 2 v € du
E-+DV¢;—--°—:_-?5-¢V [V'-;—*;-é-ﬁ] (2.2)
A}
°:+m__-,—;=31=’--g+vv2v (2.3)

Here r, 6 and =z are the readial, sngaler and axial coordinates .-
reszactively; t is the time; u, v and v are the components of velocity in
the r, @ and s directions respectively; ard p is the vressure, g tue “an:ity,
v the kinematic moleculer viicosity and g tae acceleration due to ;= vi.y,

“he operators D ard ?2 are defined as

s 3 ) )
D‘“ar‘ 1.—°-04-5z

L L]
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N 2 - .2 .c
2 _2 139 ) [
v F ovoumn ¢ = wum — ——— —-;
ap? T OT 307 332 .

ir the following dircunsions, e=cent for tha #tudy of swmall peituwibe~
tinns, the =cticn {s assumd %o be axisyrmatr.c, 80 that the derivatives
vith resvec’ to 6 vaaish in the ahcve squations, resulting in considerable
simplificction. Furtlerrore, “n e first aoproach to uaderstanding the
mo*ions ‘n a "dust-devil,” it is convenient to sisuse Shet the horisontel
velocity compouentis, u and v, 4c not vary ir the vertical. This neriects
te prcdlem cf flov ir tlie curface boundar’ layer, but should te eppro-
priate for the flow nattern a* aome distence abcve the surface. ZEKouations

(2.1), (2.2) aud {2.3), using tt» sbove easurmiions, become

- 2 -
Tu v PR o) ) u 2
BerTr .-p r+v!r Ir ("ar)‘ra.? (2.4)
Wo,av i (R Y
Yt "V T ¥ ’f' ) 2 (2.5)
-a-.v-+v§£.. -1—2'2 + Vv ;L,v?i‘ Qﬁ:.z {26)
Uy 52 o sz & ix 2 " 3r) 2 \E

viere u = u(r), v = v(r), v = wir,z), p = p/r,2j, v = constant ané o =p(2)
constant. Tt is assured thet the earth's rotation las 1iltle effect on
the size of disturvance Leiar consicered, hence the Coriolis terms hxv: vean
neglected. It ic further asrumed tha* the viscosity V is constant: .his
esevimtion will be adsquate for molecular viscosity, but is in doul.: vheu
¢4y viscosity is ceonsidared,

The equation of nmass continuity, assuming that tue density is sprrori-

matelv ccastant, may dbe written es

4
%g—r(m)- —‘(r):-%’oru--%oj rt(r)d!‘ (207)
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vhere x (£) 1s the horizontal convergence, a function of radjus anly. With
the introduction of this convergence term, i)e flov may be considered tvo-
dizensicnel in the r,8 plenc. ’x(r) then plays the role of a distriduted
velocity simk.
The vertical component of vorticity, the only cowporent presant in

this tvo-dimensional setup, !s, in cyliniri~al coordina‘ese,

. .:.,:? (rv) (2.8)
Substitution of (2.8) 1n (2.5) rives

uc =vi (2.9)
as roted Ly Lamb (1932, p. 579). Integration yleids

Y R
L = §o oxp ofr 1-(\'5'- 4r, %o ® central vorticity (2.10)

and e second in‘egration yi=ids
e oo rep [,[" 3\5’- dr] dr (2.11)

FPor various special choicos of uir), equatioca (2.11) msy be solved

araiytical)y for rv and v. One su-h cese is when

ue "‘fg-'— (2.12)

Then (2.7) gives x (r) = ko = constant, stating that horizontel convarreuce
is uniform for this case. Such an assunption may hold Qquits well over a
iarze region near the central axis of the vorter. Tae resulting +::4cptial
velocity profile is

-
2

enr

vhere I = 5:-—:5-‘ is the circulation at r » =, This is essentially the

solution of Burgers (1940) and Rott (1558). 1If v, I8 defined as the
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naximum tangential welocity and Ta the correspording radius at vhich the
neximim oceurs, then Aifferentietion of (2.13) yields
x r-2
e 8 -=-= 2,5 (2.1L)
v
as a characteristic nunber for a vortex vith this particular velocity

profile, as implicitly stated by Rott. ivrihermore,

r
m a - .
F: “ae+1" T2 Mo 2™ (2.35)

indlcating the Jdeviatior of tris wvelocity profile from the sianle con-
servetion of angular momentum, ' = constant, one. If molecular viscosity

-1

of air, 0.1k <:m2 sec , 18 used in (2.1%), than, for a typical dust-

devil dimension of . 100 er, the corvergence ko is found to te
Tx 10'5 sec '1. If the converging air starts ot a radius of r, and
moves inwvard o a radiue r. in ¢ime t, this radial inflow, obtained by

inteprating (2.12) from r, to r,, is given bv

1

- ‘Qt ,'2
*

x-_(._,/x-l ue or t = -?::lu (rllra) (2.16)

For r1/r2 =2, t=2x 101' sec or about 5 hours, wiich is unrealistic.
If the mcleculer viscosity is revlaced ty an effective eddy viscosity of,
Qs 102 er® sec'l. Ko = 5 x 107 sec sor r, ™ 100 cm, and for
?1/r2 = 2, ¢t = 28 sec, ~ recsonaole weriod.

The eddy viscosity s.culd be taken st leest in the outer portion of
the dust devil but probadly not in the center part where solid rotation is
sprroximated, Pott argues sinilarly for the application to a toruado.

The vorticity for the above cese assumes a Gaussian distributior:

2
E = go e o fiv (

b
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Another case of interest is that for which the convergence is zero oute
side of a "sink" region of radius ry. For this case w =-b/r for r 2 Ty and
the resulting anguler momentum distribution is

. b
Con 2 =2
rv ® v, + ;l:l-"l -(-:;l-)v (2.18)

2 a2
v.

which is the solution obtained by Webd {1962) for the same sink assumption.

- Yor rv to be s bounded function for large r, it is required that d/v 2 2,

For b/v = 2, the inviscid solution rv = rlvl resalts. The ratio of the cir-

culations l"_ and I‘l = 2vrr1v1 is

b
r - - 2 g
.‘,‘l-: (2.19)
» ;-l

The behavior cf the flow within the sirk region murt be specified by
oome other condition, such &s uniform convergence, =2tc,

A third analytic case of same interest is one in vwhich u is a constant.
This unrealistically implies infinite convergzence ar d vertical acceleration
alonez the central axis, but may serve as a limiting case for vortices where
the convergence and updreft are highly concentrated near the center, in
contrast to the uniform convergence case, With u = constant, the resulting

velocity profile is

- - 2
)y - v R 2 3
vs E'E;Ll -/ L+ 5B wnersr, = J-igi- (2.20)

eand vhere, in the same manner as in tLe first solutica (¢.2!) end (2.15),

ur r 2
g=—=~1,8, ==——L
o« g +8+1

® 0,54 {2.21)

The velocity profiles given by (2.13) and (2.20) have very similsr shapes

despite the great contrast in the respective convergence patterns, see figure | .

\
/e
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Of course, these velocity profiles may be pieced together; for example,

u."ﬁg.’lforo :r<a,u-'5-g£forr_:l‘.. then

2 B ey -
rvse _2_32_3 {1 -e koR /hv) ‘ 49235.‘% [° xoR™ /2v (1 . x;Rz -e xORr/2v(1 . rzg\!:r)]
Ko L v

(2.22)

for r 2 R, whereas equation (2.13) spplies for r < R. Ultimately, the only
Justification for constructing such rrofilss is that they are readily
obtainable in eanalytic form, vhich does not imply that they are very
good approximations to reality.

A flow pattern which is scmevhat more generzl than the above, and
vhich presumably has greater corresvondence with reality, is one in which

the horizontel convergence is assumed to be a ™ill-ghaped” function,

lzlt
& + 7

vhere a is the redius at which x falls to xo/2. The corresponding function

for radial velocity is then

2
-2 Kg r.
us= 5o 1n 1+ 23 (2.24)

a

The maximum radial velocity is readily sh.owvn to occur at r = 1.956 a and has
the value L 0.402 xoa. The “angential velocity cannot be obtained in
analytical form for this case, but it cen reedily be computed numerically
using finite-difference integration methods. Tor purposes of corper.son,

the folloving dimensionless guantities are defined.:

R T TR 3

g
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, Kor 2
x & ri;-‘, y: v!v‘. 6 = a/rm. a s —-2-;— (2.25)

vhere \/ is the maximunm tengeutial velocity and T, the corresponding radius.
The parancter § gives a measure of the concentretion of convergence near the
central axis; for very small § the convergence is highly concentrated along
the axis, for § + » the convergence profile approaches uniformity. Results
of the numerical calculations for «/x, and y as functions of x are plotted
in figure (2). The relation between a and & is plotted in figure (3),
showing that @ + 2,51 as § + =, It is noteworthy that for valuea of

¢ > 1, the devietion of the tangential velocity from the uniform conversence
solution (2,13) 1s very small.

More generally, the convergence can be expressed in the form of a series

K(r) = z ) 2 (2-26)

vhere the '1 and o " are indivicdually different values of halv-width and

central convergence., For n = 2, & < &, Yol <0 and oo > 0, a concentric

two-cell vortex results, with divergence dominant in a central “eye" region
and convergence elsevhere. Such a profile is possibly characteristic of the
tornado. Gutran (1957), Sullivan (1959), Donaldson and Sulliven (1960) and
Kuo (1964) have obtained solutions for concentric two-cell vortices. For all

the foregoing solutions, the prescura profile is rciven very closely by

r 2
p=ro+of (Flar (2.27)
vhere po is the central pressure, ¢ the density for the heicht of intevemst

and v(r) the tangential velocity profile for the particular vortex. The other
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terms of equation (2.k) upon integration give a armll correction that results
in reducing the pressure gradient given by (2.27) slightly.

The ci{msipation of energy in the vortex due to viscous forces has been
discussed by Burgers (1948) and Rott (1959). TIott gives the energy equation

for axisymmetric flov in the following form:i

a8 1¢

.. aT-
T o= = pve + = == (er i) (2.28)

vhere S is entrophy, T terverature, k thermel conductivity, and ¢ the viscous

dissipation function given by (Lamb, op. cit., p. 580)

2 2 2 2 - 2 2
¢ = a(%“;) + 2(%] ” 2[%;) + (%) + (-;% + -:%) + (r %; %]) (2.29)

For Burgers' uniform converpgence solution, the resulting values are

2
¢ (Z-T) e 6x? (2.31)
pxor.a
Ds T (2.32)

as given by Burgers. The approximate equality sign indicates here that the
6:02 term is negligible in the integration of ¢ cut to a radiuvs smuch larger than
Ty Thus the dissipetion functiom is primarily a function of the tangrntial
shear (dv/dr = v/r) and the resulting dissipation devends on the ™basic
eirculation,” IF_, a8 vell as the convergence. It can be shoun that the dominast
diszipation term is elways the tangential shear, and that (2.32) is s good
approximation for the othur vortices discuesed agbove as well,

Equation (2,28) can nov be used to calculate the dynamicelly irdured
terpereture difference betwveen the ceater of the vortex and the envirw-
Jent,; as 1s done by Rott for a perfect gas with various thermal coadu-tivit'-s,

for the limiting case of no conductivity, he finds
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ar 2

l L
T- e To ® = (2.33)
cp 1612:-

vhere To is the central temperature and T  is the tempersture as r = =,
Hence the motion results in cooling as the air approaches the vortix center;
the viscous dissipation that scts as & heat source is more than offset by
the adiadatic expension ard cooling that results from the reduced central

1

pressure. Using a value of v_ = 103 cm sec” , hence

!'_/21;-. = (a ¢ 1) v-/c s 1.bh x 103.

one finds that T - To = 0.12 degrees C. Rott shovs that for the conductivity

of air, a temperature deficit of roughly 1/2 this magnitude is correct.
Sinclair's (1964) measurements show a temperature rise of from 3 to 9

degrees near the center of dust devils at a height of aprroximetely 2 meters.

It thus appesrs that the dynamic reduction of temperzture is negligibdble

compared to the effects of the heated surface boundary leyer of air, vhich

is presumedbly advected into the core of the vortex.
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III., ROF-STEADY BTATES OF THE VISCOUS VORTEX

Yortex Vith Uciform Convergence

The decoy of the voriex with unifoim corvergence aprcars to heve first

been cbtained by Tarszawa (1922 1923) together trith that for a molel with

v independert of r and a combination "vortex" with v independent of r in

the core and v provortionsl to 1/r outside the core.

The following treatmen: @iffers orly slightly from that of Terazawva,

vho worked in terms of vorticity rather than tangential velocities,

By settirg the convergence squal to ze=o and retaining ¥v/3t, the

tangential equation of motiosn (2.2) becomes

2
] 1 3y

or 3:2 x <

<

after transforming to the ronedizensioral variables

x = r(t)/rn(o), y= v(‘t)/vm(o). T = vt/r:(o)

Integration by separation of varisbles gives
»
5 |
ys/f ¢, 9y (xl/ax) e - TaA
o

vhere L7 remains to be determined.

From the initial conditions

(¥)tuo ®

and with the use of the Hankel integral transform

2
G;l(l_e"QXIa)

- 2
o5/ 3,0M2%) (1 - & /2) &

X

(3.1)

(3.2)

(3.3)

(3.4)
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e

y=o3d l_;: ( __;:al(xl’%)n . 2y 3,(0/%) Mar (3.5)

¥

The indicated integration may de carried out by means of oconfluent hypergeo- 1

metric functions to give

i e

a + ' uxz ' :
yettlho e |- (igl] (3.6)

Thio result haz been plotted for various values of v in figure (4).

The limiting form of the solutiou for the decay of the vourtex giver by
(3.6) as v becomes very large may be obtained easily from similarity
consilerations.® If the decey time is tekep o0 be great encurh that %the
toluticn Las become independent of the initial conditionr, Aimensional
analysis leads to a solution cf the form.

v = wf(n)/r vhere n = r2/w (3.7)
This allows the rartial differentiai equation (3.1) to be expressed as an

ordinary differentisl equation

be''(n) + £(n) = 0 (3.8)
vhich has thz solution
2 N
r =r /vt
vs -5'0;_- (1 -0 ) (3.9)

cr in diuwensionless fora Ez
a+l g \
yrog= (-0 ) (3.90)
This equation is seen to be the same as the limit of equstion (3.6) for v + =
The location of the radius of maximum tanpential velocity as a function
of the decsy tirms may be obtained by differentiating (3.9a) with respact

to x giving

Wnis appears to have been done first by Taylor (1918).
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80, since g- s 0 at Yyt it follows that

2 xalh
-l- )l =g

This has the soluticn } » 2.51 which ic identical to a from equation (2,1u).

Thus

2
ylue—?—-]&(],-.-&/t") .%lu-.-e“)
Replacing c°/2 vy (1 + @) and mltiplying by Xy gives

v,'-—"llu-rh)-l (3.11)

Mecelling, for the constant convergence model, frow (3.6)

a+l (1 - .-Qta/?(l + QT))

y-—-ﬂ

It is noted taat this equation has the sams form ss (3.9a) vith a change

of variadble given by

= ;-; .t (3.12)

80 that tbe locus of the maxira for (3.6) is also giver by (3.11).

Yortex With "Nill Puneticn® Convergence

The decay of the vortex reanerated by the "hill function" aistridution of
convergence is obtained by numerical methods from (3.1) usiar as initial condi-

tions the numerical solution of




e —— et

all=

“-i‘ o L (as?1a (1 4 £216?) 4 2) T oew?n (1+226%-2) 7m0 (3.13)
dax
vhere 2
Xe¥ Ko v
§=a/r, ar —“sz - -‘—-2“2 xer/r, Y= A

Revriting (3.1) as a finite difference equation

Yeger V10 ¥ Faa g " Fa et Va9 2 (’h&%"’l-;,g‘;_ T4,
.g: ;T h e .3 x /i x
o b 4 ’ 1.
(3.1b)
and takirg for boundary conditions

Yy =0atx =0 for all ¢, endy,,, ¥y, atx = h.9S

permits the punmerical solution to be carried out until t becores large enough
that the similaricy szlutisz becores vaiid., Stadbillty of the finite differsnce
solution requires, according to fHiliebrand (1952), .p. 222, thet

2 _¢2
hx rm {O) (3015)

h, & M2 2

Pigure (5) indicates the results for an example vith moéerately high concentra-

tions of convergence near the center, o:.rresponding to the point & = 0.2k,

Here the "hill function” velocity has been normalized to give the same value of
sngulor mcmentum at infinity as the non-dimcasional "Burgers' model." Tt §s
noted that tha locta of tho maxirmm tengential welocity rapidly approaches thet

for the similarity solution as t tecoumes large.

Pwse's Model
Rouse (1963) has presented a vortex model produced by A rotating
cylinder in & viscous fluid, dy considering the cylirder to shtink to an

iy

T

b cukhd e ek

- 3” e - g oA
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infinitsly smell radius, vhile simulteneously increcsing in rotational speed,
to maintain a constant peripheral circulation I < After acaelereting the sure
roundiag f.uid dy the transmission of shear for a finite generation time, ts’
the genersting cylinder {s adruply brought to rest, and the surrounding fluid
alloved to decelerata. After a decny time of ¢ a the 2istridution of tangential

velocit, is given by

Y e axp (Thg) - 0 D) (3.2)
vhere
Xerifv, yeomv/T, Tetyt (3.17)

Here a differmt product XmY, nay be shown to approach the limit l/e as
T * », g0 thst here the vaiue of the maximm circulation becowes, in the limit,
icversely proportional to the square of the radius.®

gince the solution of (3.17) sntisfies the partial differential ecuation
(3.1), the similarity solution (3.9) should be approached es & limit, Rewriting
it in terms o7 X, Y 2and T, the sixilarity solutica becames

Yel-oem (P trezt, (3.18)
s

In this case the sinilarity solution is approrched only for T << ], that is for

a generating time tc very large in relation to the Gecay time td.

Yertex Opowth
Rott (1958) har discussed the growth of & vortex to show hov the staaly

state solution may be approached from any initial dirtribution.

Fiote taat in Turgers' model, equatioa (2.13), the meximum value of clivulat!on
remains at iufinite redius.
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For the viscous vortex

e
ol «r O ar 181
® TF'“I;‘?‘:J
=

assumes & solution of the forr
r =r {o) vhere o = rP(t)

then (3.19) becomes

T’ - %r!’l“ - vE’zl'“ - %ﬂ‘j

vhare

ar » o ar
i and = I

Rearranging (3.21) to give

(l-" - E— P)ol’ = v?3[“

QlH

"]

anid chocaing
P-fre-£v

(3.19)

{3.20

(3.21)

(3.22)

(3.23)

where C is some constant, (3.22, assumes the form of the steady state equation

vhich has been shown to have the solution

-wallw

FTel _(l-o )

Integrating (3.23) gives

-1/2
Fs (:—:- + Aa-‘t]

vhere A is the constant of iptegration,

‘Rubstituting r2!2 for 02 ( .2lt) becomes

I‘-I‘El-exp L—- ;——:—‘-—:—-}
T*°

ss t + » the steady state aolution.®

“¥For x= 0, F2 = Ot,(3.24) becomes the similarity-soluticn (2.9).

(3.24)

(3.25)

(3.25)
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For t = 0 the initisl circulation is

r,=r (—5-—"'"2'_..1_. (3.27)
1 - - eYp v I + B L3

vhere B s A/C,

Since eny initial 4istribution of T may ba synthesized by the summation of
sclutions (3.27) with varying values of B, all initiel distributions of I must
tend to the steady state form, provided X is constant.

If ¢ 48 not constant bBut is a functiorn of time, then (3.23) beconmes

aF
. r+-¥3-o

Lettirg ¥ = G, then

40 2
o x{t)G + CG

Now letting G = PQ

%g%+ {%-3- g(t)f +CPQ=0
Cuocosing P so that %--:—s-- k{t) = 0

p n /x(t)OE
axd

L4 fe(t)at

QE%’ Qe =0
80

X4 cre Ie(t)et,, o,

Q

then

)
Q.c!‘xtdt
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eft(tidt (3.28)
3.2

F2 aGs=

It 1s of interest to look st x(t) when it has the form of Decosat indicetine
alteruate convergence and divergence. ‘low .

sinat

siaat
e

ES dt
where F is a constant,
sinat __ , -l
It iz readily secn that e melllates between ¢ © and ¢, 80 that

E!&sinutdt ircreases monotonic2lly with ¢, and 12 oscillates betveen decreesing

linits tut approaches zero as t + «, so that {4 follows from (3.24) that
I' + 0 also.

IV, STABILITY OF VORIEX FICW

Tre classical amproach of linearized eauations for small perturtations
in the mean flow, as discussed by J. L. Synge (1938), C. C. Lin (1955) and
cthers, may be used to deterrmine criteria for hydrodynamic stability of the
vortex motion. In the general case, the superimposed perturbation is assumed to
be free to travel in any direction whatever and to have its amplitude vector
oriented et random, requiring & complicated mathematical formulation. More
glroly, the perturbted motion may ve considered to consist of several component
treveling wavese-nine in ell--of which tkhree are compression waves and the others
trozsverse waves, Tihe methematical snalysis, tentative as yet oving to lack cf
cheervational confirmation, is ocutlined belox for one of the perturdation moicoe
that of a sinusiodal wave traveling circularly and having its amplituds vactor
in the r,8 plare.

The motion is assumed to consist of a mean component dlus a perturbatiom

component, so thst

Upg " U+u, Ve"VeV, p,epep (5.1)
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Where u, is the total radiel velocity, u the msen value, and u the perturbe-
tion component. (A notation rore conslstent with whal has goas bs

be u = u + u', vhere u' is the perturdstion quantity,dut is not edopted here
in order to avoid haviug primed quantitiss in the following aquations.) Refer
to equatione (2.1) acd (2.2), where u is nov rep’aced with u, = u + u, etc.
The mean veluns, E. v and 'f)'. are seen to satisfy the ecquations seperately;
and so these terms may be removed from ths equations, leaving eguations of
motion for the perturdatior. As it is assumed that u«;. etc., tha non-iinear

tesms moy be neglected. The resulting equations for the wotifon of small

hoerizontal pesturbations are then

-— - 2 2

u yau 2y 123 t.a u,1l2%u_ 1 3u _u 2 h]

e § o= - e B o - + v -—;‘+-'f—'+_ - o S ("02)

ot r 8 r 7 5% lorf T T 2 ”5 ? i aed

3 udv . vadv_  u _ ) 3 2y 13w 1 v v .2 M

wt TRt T arw vty 3L E T (3

ol r 2 3 o L?T r » 39‘ r l" g

The perturbed motion must satisfy the continuity corditior
103 ai‘ .
z ‘—;; (ru) + 33} = 0 (L&)

e 4

Eauatisn (4.4) permits & stream Zunction w¥(r,8,t) to be defined such that

u!%-%t-' vi--gzw: (k.5)

I~ equation (t.2) is operated an by (%; %e-) and equation {L4.3) by (= '::- %;

)s

and the equations then added, the pressure is eliminated from the res ii'np

equation, which, by use of (4.5), may be written



, - - v
2v v v v r
) roe - | Yoeo = T V%hr~ T %" o %' 3% | * 2" 3%

vhere the suffixee indicete partial derivetives.

Assuming a solution for a travelinpg, circular vave,

z v = g(r)einl® = ot) (L.7)

vhere the smplitude f{v) and the angular velocity »(r) may be coeplex, but the

wvave number n is e real intezer, equation (4.6) treasforms into

r "‘%r. _5______1142&. r 1"'—)"3?“ f"*—‘-—,;—-l" n=l) e
r

T r

v

(4.8)

vhich is strictly avproprinte only for tine t = 0,

Mt 4 aX Rt 12 S

For purposes of calculetion, it is derirable to introduce the following
dimensionless quantities in terms of ;;, the maximin msan tangential velocity,

anc L the correspoading radius:

x® ;— (dimensionless redius)
m
ye %— (2imensionless mean tangertiel velocity)
™
¢(x) 8. 1_' r(r) (dimensionless verturbation amplitude)
Ta'n
G E—men E (dimensionless angular velocity of mesn flow)
m
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(Aimensionless anguler velocity of perturbations)

(characteristic Reyaolds Wumber for vortex)

Using these definitions, equetion (8.8) may be expressed in dimensionless form as

,ross as

» 2 e ? 22
¢ ¢§¢ _SI‘rgnz. *$1+?nz.,*nn-h.
3
x x x

2 - _ )
" E;-UN“"%"%*"%*f'Y“?”‘ (4.5)
X X

vhere the primes nov indicete differentiation with respect to x.
Returning to & considermtion of the streamfunction for horisontal vortex
flow; since for mean motions u << v, a total streamfunction for v Ray be

approximately expressed as

=Vt
= T(r) + &¥(r)einl® = ut)

- ;(!‘) + _g:g 6r°1n(0 - U‘)

= U(r) + vé red® - wt) (%.10)
Cocperison of (4.7) and (4.10) indicates that £(r) = v(r)ér, and since ér may be
regerded ss an arbitrarily small displacement, it followe that f(r) = v(r) or,

in dimensionless notetion,

¢(x) = ¥(x) = xa(x) (k.121)
Raplacing ¢(x) by ¥ in equetion (4.9) and expressing the pertwrbation angulsr
velocity as the sum of real and imeginary components, ¢ = °r + 101, leads to

the following expressions



o=

&,o‘ -~ -
Jle 523_ X 'J'a_ (4.12)
o ¥yt ewyt -0y 2 2,2 .
b P IS ?_-uo‘ 1l R.—L-,, '1 * P_ni - 0l - S, =
y < x y - L‘T_ y L L) —Lr y
Ro, ® L S, X X

(k.13)
vhere °r is the anguler phasz speed of the perturtations and 9 is the amplifi-~
cation factor, positive for initiclly unatchle perturbations.

Burgers' solution for the vortex with uniform horizsntal convergence,

eq:ation (2.13), can be written in dimensionless nctation cs

2 ~
- a+l (1 - .~ax /L] (hqlb)

YT

vhere a 2 n-:/zv ® 2,51, Curves for Rai Zor various wave numbers n, using this
expression for ;'r', are plotted in figure (6). These indicate creat stadility
for n » 1 in the central core region, viere the mean fiov approaches solid
rotation. The analysis also indicates that perturtstions of wave numbers 1 and
2 are initially unstable for sufficiently lerge rcdii; quelitatively, wvave
nurber 1 pesrtuwrtations 4o appear to zrow in the outer parts of vortices, but
Quantitetive cata {s at present lacking.

To summarize, the abcve analvcis pertains to a rather special cess cf
perturted motion, where the ouly perturbed moction pernitted is one with
reiial amplitude and engular movement. Cf course, a truly "eeneral”™ perturbe-
tion vhich is free t0 move in any Airection end vhose ewplituds function
is three-dimensional may have an entirely different s*ability criter’on,
rrobebly highly dependent upon direction of propogation. Thues, the vverall

question of stability is only vartially enswered by the treatment above;
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hoverer, datermination of stability criteria for the remaining zmodes of
perturbation will result in a 3 x 5 watriy of stadildity criteris that should .

also descride the garerel perturhation.

V., PLAig8 FPOR MIITHER STUDIES

Three rein avgnues of study ere indicated:
1. BExtension of the theory to three-iimensional flow, iacorperating
the eoffects of convectiom resulting from various disuributions
of surface heating eni including the effects of friction in the

surface dboundary layer.

2. Coatinuation of the analysis of instability for other perturbation
modes, attempting to ccnstruct a complete picture of Jynamic inste-

b 'y asaociated with various vortex models,

3. Development of apparatus for the purvose of coaducting studies of
®mo*  representative of tke emaller acale intense vortices, in

particular dust devils and fire-induced vhiriwinds,

A e e eriiie v, o -t
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