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The Moments  of the Number of Crossings  of a  Level 

by a Stationary Normal  Process 

by 

Harald Cramer and M.   R.   Leadbetter 

Summary.    In this  report we  consider the number N of upcrossings of a  level u by a 

stationary normal process  |(t)  in 0 <^ t ^ T.     A formula is obtained  for the   factorial 

moment M.   ■ ri{N(N-l)...(N-k+l) ) of any desired  order  k.     The main condition assumed 

in  the derivation is  that  Mt) have, with probability one,  a continuous  sample deri- 

vative  |'(t)   in the  interval [0,T1.     This  condition  involves no real  restriction since 

an  example  shows   that   even a  slight  relaxation  of  it   causes  all moments  of  order 

greater than  one  to become  infin'te.     The moments  of  the number  of down crossings  or 

total  number  of crossings  can be obtained analogously. 

1.     Introduction.     The  problem of obtaining the mean number of crossings,   (or equi- 

valently upcrossings)   of a  given level,   by a  stationary normal  process   in a  given tinu , 

has   received a good deal  of  attention  in  the   literature.     In  fact,   a  complete  solution 

to  this problem has now been given by Ylvisaker   [8].     However,  moments  of  order greater 

than  rne of  the  number  of  crossings  of a  level  have  received  less attention.     The 

variance was  obtained  by Steinberg et  al   [6],   using  somewhat heuristic  arguments. 

Rozanov and Volkonski   [7]   point out  in a  footnote  that  the  formula given in   [6]  for 

the  variance  is  valid  under  certain precise  conditions,  of which  the main  one  is 

that  the covariance   function  of the  process have a   finite  sixth  derivative  at  the 

origin.     Finally in this  connection,   the variance has been obtained by  Leadbetter and 

Cryer   [4] under  conditions which assume  just  a  little more  than the  existence  of a 

second derivative of   the  covariance  function. 

There is virtually no literature available  in connection with moments of the 

number of crossings  of a  level,  of higher order than the second.       ( A partial 

result is indicated by Ivanov at the end of his paper   [3]   ). It will  be our 



purpose here  to  obtain  explicit  expressions   for  such moments.     This will  be done  for 

upcrossings,   in  terms   of  factorial  moments  of arbitrary orders  and under conditions 

which c.re very  close   to  the necessary ones.     Corresponding  formulae   for moments  of all 

orders  for the down crossings,  or total number of crossings,   follow similarly. 

2.    Moments  of  the  nurrber of upcrossings.     We  shall,   throughout,   consider a real 

valued stationary normal process   [^(t):     0 ^ t < T) having  (for  convenience) zero 

mean,   spectrum F(X)   possessing an absolutely  continuous  component,   and  covariance 

function  r(T)  =  /    e       dF(X).     We  shall   further assume  that  |(t)  has,  with probability 

one,  a  continuous   sample  derivative  ^'(t)  on  the  interval   [0,T],     Sufficient  conditions 

for this   latter  property  in terms  of  the  behaviour of  the  covariance   function,  are 

well  known.     Write  N  for the number of upcrossings of the  level  u by  |(t)  in 

0 < t < T;   that   is N is  the number of points  t in that  interval   for which 

|(t) « u,   P'(t) >  0.     Then the   following  result holds. 

Theorem. 

If [P(t): 0 < t < T] is a normal stationary process, as described, possessing, 

with probability one, a continuous sample derivative, and k is any positive integer, 

then 

VL   =   ^{N(N-l)...(N-lcfl)) 

T "• 
(1) = /.../ dt1...dtk /.../ y1..-yk p^u.i) dy1...dyk 

o o - 

in which Pt(u,x) - Pt (u ,. . .u^ , . . .yk) , p (Xj,. . .x^.y^ . .yk) denoting the joint 

density for the random variables |(t.)...|(t.), I' (t.)...^'(t. ).  We note here that 

it follows from the appendix that, when all t, are different, this is the density 

corresponding to a non singular joint distribution since F(X) is assumed to have an 

absolutely continuous component. 



Before proceeding to the proof we note that the theorem can eanily be modified 

to refer to downcrossings or the total number of crossings of the level u in time 

T.    The discussion will  be given here  in  terms  of upcrossiugs,  however. 

The  following proof is divided into two parts A and B.     In Part  A it  is  shown 

that M.   does not  exceed  the expression  on  the  right hand  side  of  (1),  whereas  in 

Part  B the  reverse  inequality  is  proved.     The  techniques  are  straightforward  but 

quite  different   in  each part.     It  is  a  perhaps  somewhat  surprising   feature,  however, 

that  in both parts  use  can be made of Fatou's  Lemma to give  the essential  inversions 

of  limiting operations with  integrations,   in  order that  inequalities   in the desired 

(opposite)  directions  may be  obtained. 

Proof  of  the Theorem.     Part A. 

Write  |{t)  =  ?(t,cD)  to exhibit  explicit   dependence  on the   "sample  point" cu G  ß. 

Let  S denote  the  set   of all oo such  that  the  equation  |(t)  = u has  at  most a  finite 

number of  roots  t  in  the interval  I •   (O.T],  while  further i(0) j u j  |(T) and 

^'(t)  ^  0 whenever   f(t) = u.     According  to  Bulinskaya   [2],  Theorem  1  we  then have 

(2) P(S)  =   1 

Write now Nv   '  =  N(N-l)...(N-kfl)   for  k =  1,2...   and define  the   functions 

b  (x),  J(X) by 
n 

■   (x)  = n |x| <  l/(2n) n ~ 

= 0 otherwise 

a(x) = x x > 0 

=  0 otherwise 

Let  D(G)   denote   the domain  in the  k-dimensional  space R    with  coordinates 

and 

t,...t,   defined  by  the  inequalities 



0 <   t, <  T for  i  =   1. . .k 
i 

jtj-t,    >  c for i  4 j 
1     j 

Define  also  the random variable J. (n,c,ü))  by  the  relation 

k 
(3) J.(n,G,aO = /••./    H     (   ..f'(t.)-u]  o[^(t   )) dt dt . 

k D(r)   i=l       " 1 ilk 

We shall wow proceed to prove that 

(4) !-![N(k))<   lim     lim  S(Jk(n,e ,0)) )  . 
e —> o  n —"^ * 

In  order  to prove  the  validity of   (4) we define a  subset  S(h)  of S consisting 

of all a) c   S   for which  the   following  two conditions  are  satisfied 

(a) The   distance  between any  «-wo   upcrossings  of   :(t)   with     the   level   u  in   I 

is   g   eater  than     2h, 

(b) For  any zero  t  =   t     of   the  derivative   :'(t)   in  I,  we have   |"(t   )   -  u| > h. 

According   to the definition  of  S  every UJ c   S must  also  belong  to S(h)   for  some 

h >  0.     For  it   is  obvious  that  property   (a)  is  satisfied   for  :(t,to)  if h  is 

sufficiently   small   and   if   (b)  were  not   satisfied  we  could   find  a  sequence  of  points 

t     •    I   for  which 

"(t^  =  0 1'^)   -  u| <  1/i   . 

But   such  a   sequence   (t. ] must  have  a   limit  point   t     €   I   and   the   continuity  of   :   and n i o 

e'   show  that   :l(t  ) =  0,     '(t  )   =  u contradicting  the   fact   that   o e  S.     Hence we 
o o 

thus   see   that 

(5) S(h) f  S as h i 0 



Take  now any  fixed  x r   S(h),   and  let   t =  r^ ••rN 
bt>  all   the  upcrosslngs   of 

the  corresponding   :(t)  =   £(t,.:)   in  I.     Consider  the  k-dimensional   interval   1     in 

the  space  R   ,   and  let A. .denote  the  point  in  I    with   coordinates 
Ji,.--Jk 

where each j  may assume the values 1,2...N. Clearly there are N different points 

(k) 
A, and among these there are exactly Nv   points A' such that no two of the j. are 

equal.  Since CD e S(h), these points A1 will all be situated in the domain D(2h), 

while the remaining Nk - N( ^ points A will fall outside D(2h), and even outside 

D(c), for any e > 0. 

Considering, still the same fixed co e S(!i) we now take n and r such that 

0 < n  < e < h 

and consider the integral Jk(n,€,f-) defined by (3).  The contribution to Jk(n,c,.-) 

arising from small disjoint k dimensional blocks about each point A' is easilv 

seen to be just N   for all sufficiently large n (i.e. a unit contribution from 

each such block).  The contribution from the remaining region is zero for all 

sufficiently large n.  (This can be seen clearly from a picture by taking k=2 

and writing down the integrals involved).  Hence for any fixed e < h, we can always 

find n  so large that, for all n > n we have 

and hence also 

Jk(n,e)ai) = N 

N(k) =       lim      J  (n.e.cjü) 
n —K»" 

Since  this  holds   for any c •: h,   while   the  first  member  Is   independent  of e,   it   follows 

that 



(6) IT1^ =   lim     lim   Jk(n,e,cD) 
e —> o n —•> «• 

for any fixed co e S(h).  But h can be chosed auitrarily small and since 

S(h) 'f S as h ^ 0 U follows that (5) holds for any cu e S, i.e. with probability 

one.  Finally an application of Fatou's Lemma to the e and n-limits yields the 

result (4).  Thus from (4) we obtain 

(7) e{N(k)}< 

k 
lim   lim  /.../dt1...dtk[n  /. . ./dx1...dxk/.../y1...yk pt(x1...xk,y1...yk)dy1...dyk] 

c  —>o n —>- D(G) l o       " - u-a— 
;"TI 

The  entire expression  in square brackets  on the  right hand side of  (7)  clearly 
a* 

converges  to    /.../y....y,    p  (u,^)  dy....dy, .     Further,   it  can be  readily  shown  that 
0       '- _ 

this  expression is  bounded   for  ail   t-.-.t.    in  the   region  D(e)  (using  the  fact   that 

the  determinant of the covariance matrix of  |(t.)...|(t.)   I' (t.).. . I'(t. )  is  bounded 

away  frora zero).     Hence by dominated convergence 

(8) ^N(k))    <     lim       /.../ dt1...dtk /.../y1...yk  pt(u,1)dy1...dyk 

c—■>o      D(e) o       ' - 

Finally by monotone convergence it follows that 

J m 

(9) S{N(k)) < /.../dt1...dtk /.../y1,..yk pt(Ufir)dy1...dyk  . 
o o  *      — 

Part B. 

In  order to prove  the   reverse  inequality  to  (9)  we  adopt a different  procedure 

(due  to Ylvisaker   [8])   for  counting the number of  upcrossings by    t(t)   in 

0 < t < T.     First, however,  we note that if X      i -   1,2...   are each either  zero 



m 
or one, and M - S X , then, for any integer k < m, 

t-1 

(10) M(k) = M(M-l)...(M-lcfl) - F/X  ...X 
n       lk 

where E' denotes summation over all possible ordered sets of distinct integers 

i ,..i .  For M is just the number of non zero X  and the right hand side of (10) 

therefore represents the number of ordered sets of distinct integers 1^..,!^ 

such that each corresponding X  is non zero, taken out of a total of M possible 

integers i for which X 4  0.  Brt this number is simply M(M-l)...(M-k+1) as required 

Write now ^ = '(Ti/:11),  i = 0, 1...2n, n - 1,2^.. .  Let X1 - 1  if 

|  < u < ? , , , and X = 0 otherwise.  Then if Nn " "■    xi we have Nn^ N a.s. . 

(A detailed proof of this latter statement is given by Ylvisaker [8]).  Hence by 

monotone convergence, 

(k)        (k) 
(U) e{N  ]  > e{N  ) as n  > - . v n 

Now from (10) we have with m =  2   , 

(k) 
(!•>) e{N    ) -     £•     p(y.   - x   ..... x   - i) 

1 k 

We note that no terms for which |i -i | = 1  for any r,s appear since we cannot have 
r    s 

X      -  X      ,  -  1.     Write     T]    -  2n('     .-f   )/T. Then 
i i +1 i i+1     i 
r r 

where 

P(X      - X .- X      -   1) - P{u-2'nrT]i <  %.    < u,   r -  l...k) 
ll 2 k r r 

- /.../dyi...d:k /    ... /        Pnti (xr-xk,y1...yk)dx1...dxk) 

u.2'^        u-2"X        j 

p    J     Is  the  Joint  density  for  the distribution of     |.   ...\.   ,   T,   • ■ .r\.   • 
n.ij ll        lk      n k 

i " 



(That this distribution is non singular follows from the Appendix.)  By a change 

of the x-variables in this expression we thus obtain from (12) 

o  o 
(13) Wk)) - 2"knTk.':'/.../dy1...dyk /.../ p   (u+2'nTx    u+2"

nTv .y1... .yk) 

-yl  -yk  ^j 

dxl...dxk 

Write now^ni(x1...xk,y1...yk) - P,,^^.. .x^y^ . .yk) 

Tor all t.-.-t, such that t  lies in the interval (1 1/2°, (i +l)T/2n) for each r. 
Ik r r      r 

Then (13) may be rewritten as 

(14)   /.../dt1...dtk /.../dyl...dyk  /.../ Fnt:(u+:"
n'ftt1,...u+2"

nTbck,y1...yk)dx1...dxv 

■yl -yk 

where R  is the subset of I% for which no two of t,...t, are contained in the same 
o Ik 

or adjacent intervals of the form (r T/2 ,(r+l) T/2 ).  (See the remark following 

Equation (12)). 

Let now (t,...t, ) be a fixed point in R .  Then ¥   is a 2k-dimensional normal 
Ik o        nt^ 

density function.  Suppose that i T/2n < t < (i +l)T/2n, r»l...k.  Then correspoiding 

to the point t we have the random variables |(i T/2 ), ^(i f/2'), yielding the 

following typical members of the covariance matrix for ¥   for example 

var (I, ) - r(Ü), 
1 

cov (P 

cov (P 

cov (f 

var n 

C OV ( V| 

e  ) = r 

.^ ) - 2,(l-r1)/T 

writing li  for |(iT/2 ) 

writing ti  for r(iT/2 ),  p - 1^12 

1   1 

„20+1..   ./T2 - 2   (l-r^/T 

^V^'vi-^^P-i"11 



For the fixed t ,t considered i ,i ,p depend on n.  It is an easy exercise to show 

that if T = t. - t. the above elements converge (in the order given), as n —> •», to 

r(0), r(i),  0, r'Cx), -r"(0), -r"(T), respectively.  Similar conclusions hold 

for the elements corresponding to any pair t , t..  But this means that the integrand 

in (14) must converge to p  (u,^) as n —■> "• and hence, by Fatou s Lemma 

T 
(15) e(N(k)}> /.../dt1...dtk /.../ Pt;(u,1)dy1...dyk 

o        ■"      — 

Combining (9) and (15) we obtain the desired equality and hence the truth of the 

theorem follows. 

3.  A case when !!.■ + *•.  Formula 1 was obtained under the condition that t(t)  have 

a continuous sample derivative, with probability one.  However, this assumption was 

used in Part A of the proof, but not at all in Fart B.  Hence if the right hand side 

of (1) is infinite, the equation is true with both sides infinite.  We now give an 

example of a case where the integral on the right of (1) is infinite, and hence the 

corresponding moment is infinite. 

For this example we take a covariance function of the form 

(16) r(T) - 1 - X2 T
2
/2 - T2/logM + o(T2/logM). 

That this can be done follows from a result of Pitman [5].  In fact if 

H(X) » l-F(X) + F(-X) for X > 0 we can choose H(X) so that 

H(X) ~ K/(X2 log2X)   as X —> " 

to give the desired form (16). 

Consider now the case k = 2, and u = 0.  Then one can show by some calculation 

that 

1 

// y1y2 P^o.l) dy1dy2 ~ K|A| /(l-r
Z(T)) 



where K again denotes some constant and A is the covariance matrix for 

Kt.), ICO, ^'(t.), F'Ct-), T « t. - L .  But straightforward calculation shows 

that 

and hence 

|A| ~ X t /log |T I    as T  •>  0 

// y1y2 Pt;(o,x) dy1dy2 ~ K/( |T| log |T I) as T  >  0. 
o       — 

It follows from this that the right hand side of (1) is infinite, in this case. 

Finally we note a sufficient condition for f, (t) to possess a continuous sample 

derivative, with probability one, is that 

r(T) = 1 - X2T
2
/2 + 0(T2/|log|TMa) 

for some a> !..  This follows from the work of Belaev [1].  In our case r(T) given 

by (16) just fails to satisfy this requirement.  Hence it appears that the require- 

ments that F have a continuous derivative and that the right hand side of (1) be 

finite, which are suffi:ient for II to be finite and given by (1), are also very 

close to being necessary for this to be the case. 

10 



Appendix. 

It was stated, in writing down certain density functions that if t ...t, are 

distinct time points, then 

(i) the joint distribution of £(0 . . . f (t ) e ' (t. ) . . . f ' (t ) is non singular, and 

(il) the joint distribution of |(t,)...5(t.) is non singular. 

We shall now prove (i), and hence (ii) will also follow. 

Let (as assumed throughout) F(X) have an absolutely continuous component and 

write A= fA.■] for the covariance matrix of :(t.)...:(t ) , :'(t )...£'(t ). Let 

A- [A,.] denote the covariance matrix of ' (t.) . . . : (t. ) B = [B ,] that for 

e'(t. ). . .F'(t ), and C the matrix of "cross" covariances, C . = cov(p(t.), :'(t.)). 
IK 1J 1 ] 

Then 

A = 

C     B 

Let  G1 denote the vector [^,...0, , ♦, 
— 1   k  I 

which are not all zero.  Then we Lave 

> ], where f). , ♦. are complex numbers 

i(t -t.)X 
A  - / e  J  ^ dF(X) 

il 

i(t.-t.)X 
-f iX e   J  ^ dF(X) 

9 i(t.-t,)X 
^il' !  \e       J ^ dF(X) 

From this we see that 
it.X 2   „    it.\ 2       iXt. ... -iXt iXt,   iXt 

O'Aß - /flZPe j I + X IS«» e ^ I  - iXE0.e  h^.e *  + iX."i.*e  ^^„e  ^IdFO), 
" "     j J J j i   i ll j J    ^ 

in which a * denotes complex conjugate.  Thus 

k    it.X      k    it X 2 
B'Aß  ■ /| S 6 e J + iX E « e J I dF(X) 

j-1 J j-1 J 

11 



Now since  the  t.   arc  distinct  and 0,.   *.   not  all   zero  it   follows  that 
J J       J 

k it  X k it.X 
0    c and  -iX *    e are  different  regular   functions  of  the  complex 

j-1 j J-l  J 

variable ), and hence cannot be equal for more than a countable number of values of 

X. Hence we must have  O'A 0 > 0 since F(X) has an absolutely continuous component 

and the measure it defines is not concentrated on a countable set.  Thus A is a 

strictly positive definite matrix and the distribution thus defined is non singular. 

Finally we note here that the above argument can be easily generalized to 

include an arbitrary number of derivatives.  That is if F(A) has an absolutely 

continuous component and is such that '.(t) has n sample derivatives ^(t) ^'(t)...'   (t), 

then for any distinct t1,t„,...t1, the joint distribution of 12    k 

PJ(t1)..|(tk) '(n)(t1)... = 
(n)(tk) is non singular. 

12 
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"Reatricted Data" la included.   Marking la to be in accord- 
ance with appropriate aecurlty ragutationa. 

2b.   GROUP:   Automatic downgrading la apeclfied in DoD Di- 
rective 5200.10 and Armed Forcea Induatrlal Manual.   Enter 
the group number.   Alao, when applicable, ahow that optional 
markings have been uaed for Group 3 and Group 4 aa author- 
ised. 

3. REPORT TITLE:   Enter the complete report title In all 
capital letters.   Titlea In all caaea ahould be unclaaalfled. 
If a meaningful title cannot be aelected without claaaifica- 
tion, ahow title claaaification in all capitala in parentheaia 
immediately following the title. 

4. DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progreaa, aummary, annual, or final. 
Give the inclusive datea when a specific reporting period la 
covered. 
5. AUTHOR(S):   Enter the name(s) of authoKa) aa ahown on 
or in the report.   Enter laat name, flrat name, middle Initial. 
If xllitary, ahow rank and branch of aervice.   The name of 
the principal author ia an abaolute minimum requirement. 

6. REPORT DATE;    Enter the date of the report aa day, 
month, year, or month, year.   If more than one date appeara 
on the report, uae date of publication. 

7a.   TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, urn., enter the 
number of pagea containing information. 
7b.   NUMBER OF REFERENCES   Enter the total number of 
references cited in the report. 

8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report waa written. 

Sb, 8c, 8i id PROJECT NUMBER: Enter the appropriate 
military department identification, auch aa project number, 
subproject nunber, ayatem numbers, taak number, etc. 
9a.   ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the orlginatli« activity.   Thla number muat 
be unique to thla report. 
9b. OTHER REPORT NUMBER(S): If the report haa been 
aaslgned any other report numbers (either by the originator 
or by the aponaor), also enter this numbers). 

10.   AVAILABILITY/LIMITATION NOTICES:    Enter any lim- 
itations on further diaaemination of the report, other than thoae 

Impoaed by aecurlty claaaification, using standard atatementa 
auch aa: 

(1) 

(2) 

(3) 

"Qualified requeatera may obtain coplea of thla 
report from DDC" 

"Foreign announcement and diaaemination of thla 
report by DDC la not authorised." 

"U. S. Government agencies may obtain coplea of 
thia report directly from DDC.   Other qualified DDC 
ueera ahall requeat through 

(4)    "U. S. military agenciea may obtain copies of thia 
report directly from DDC   Other qualified uaera 
ahall requeat through 

(S)    "All distribution of thia report la controlled.   Qual- 
ified DDC uaera ahall requeat through 

If the report haa been furnished to the Office of Technical 
Servlcea, Department of Commerce, for aale to the public, indi- 
cate thla fact and enter the price, if known. 

1L SUPPLEMENTARY NOTES: Uae for additional explana- 
tory notes. 

11 SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory aponaoring (pay- 
ing lor) the research and development   Include addreaa. 

13 ABSTRACT:   Enter an abatrsct giving a brief and factual 
summary of the document indicative of the report, even though 
it may alao appear elsewhere in the body of the technical re- 
port.   If additional space la required, a continuation aheet ahall 
be attached. 

It ia highly deairable that the abatract of claaaified reports 
be unclassified.   Each paragraph of the abatract ahall end with 
an indication of the military aecurlty claaaification of the in- 
formation in the paragraph, represented as frs;. (S). (C). or (V) 

There ia no limitation on the length of the abatract.   How- 
ever, the suggested length is from ISO to 22S woida. 

14 KEY WORDS:   Key words are technically meaningful tema 
or short phraaea that characterise a report and may be uaed aa 
indes entries for cataloging the report.   Key worda muat be 
selected so that no security claaaification ia required.   Identi- 
fiers, such aa equipment model detignation, trade name, military 
project code name, geographic location, may be uaed aa key 
worda but will be foi: »wed by an indication of technical con- 
test.   The assignment of links, rates, and weighta ia optional. 
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