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The Moments of the Number of Crossings of a Level

by a Stationary Normal Process

by
Harald Cramér and M. R. Leadbetter

Summary. In this report we consider the number N of upcrossings of a level u by a
stationary normal process E(t) in 0 < t < T. A formula is obtained for the factorial
moment Mk = £({N(N-1)...(N-k+1) )} of any desired order k. The main condition assumed
in the derivation is that £ (t) have, with probability one, a continuous sample deri-
vative t'(t) in the inte:vel[0,T]. This condition involves no real restriction since
an example shows that even a slight relaxation of it causes all moments of order
greater than one to become infin‘te. The moments of the number of down crossings or

total number of crossings can be obtained analogously.

1. Introduction. The problem of obtaining the mean number of crossings, (or equi-
valently upcrossings) of a given level, by a stationary normal process in a given time,
has received a good deal of attention in the literature. In fact, a complete solution
to this problem has now been given by Ylvisaker (8]). However, moments of order greater
than cne of the number of crossings of a level have received less attention. The
variance was obtained by Steinberg et al [6], using somewhat héuristic arguments.
Rozanov and Volkonski [7] point out in a footnote that the formula given in [6] for
the variance is valid under certain precise conditions, of which the main one is
that the covariance function of the process have a finite sixth derivative at the
origin. Finally in this connection, the variance has been obtained by Leadbetter and
Cryer [4] under conditions which assume just a little more than the existence of a
second derivative of the covariance function.

There is virtually no literature available in connection with moments of the
number of crossings of a level, of higher order than the second. ( A partial

result is indicated by Ivanov at the end of his paper [3] ). It will be our



purpose here to obtain explicit expressions for such moments. This will be done for
upcrossings, in terms of factorial moments of arbitrary orders and under conditions
which zre very close to the necessary ones. Corresponding formulae for moments of all

orders for the down crossings, or total number of crossings, follow similarly.

2. Moments of the number of upcrossings. We shall, throughout, consider a real

valued stationary normal process {E(t): O < t < T) having (for convenience) zero

mean, spectrum F()) possessing an absolutely continuous component, and covariance
function r(1) = f~ cideF(k). We shall further assume that E(t) has, with probability
one, a Continuou;nsample derivative E'(t) on the interval [0,T]. Sufficient conditions
for this latter property in terms of the behaviour of the covariance function, are

well known. Write N for the number of upcrossings of the level u by E(t) in

0< t<T; that is N is the number of points t in that interval for which

tE(t) = u, £'(t) > 0. Then the following result holds.

Theorem.
If {£(t): O0< t < T)is a normal stationary process, as described, possessing,

with probability one, a continuous sample derivative, and k is any positive integer,

then
Mk = S{N(N-1)...(N-k+1) ]}
T L]
(1) = f'é'f dtl...dtk f'é.f Yo Yy pE(U,x) dyl...dyk

in which pt(u,x) = pt(u,...u,yl,...yk), pt(xl,...xk,yl...yk) denoting the joint

density for the random variables E(tl)...g(tk), §'(t1)...5'(tk). We note here that

it follows from the appendix that, when all t, are different, this is the density

i

corresponding to a non singular joint distribution since F(A) is assumed to have an

absolutely continuous component.



Before proceeding to the proof we note that the theorem can easily be modified
to refer to "downcrossings" or the total number of crossings of the level u in time
T. The discussion will be given here in terms of upcrossiugs, however.

The following proof is divided into two parts A and B. In Part A it is shown
that Mk does not exceed the expression on the right hand side of (1), whereas in
Part B the reverse inequality is proved. The techniques are straightforward but
quite different in each part. It is a perhaps somewhat surprising feature, however,
that in both parts use can be made of Fatou's Lemma to give the essential inversions
of limiting operations with integrations, in order that inequalities in the desired

(oppositc) directions may be obtained.

Proof of the Theorem, Part A.

Write E(t) = t(t,w) to exhibit explicit dependence on the "sample point” w € Q.
Lot S denote the set of all w such that the equation E(t) = u has at most a finite
number of roots t in the interval I = [0,T], while further ¢(0) # u # §(T) and

t'(t) # O whenever F(t) = u. According to Bulinskaya [2], Theorem 1 we then have

(2) P(S) =1
Write now N(k) = N(N-1)...(N-ktl) for k = 1,2... and define the functions
LX), a(x) by
‘n(x) =n Ix| < 1/(2n)
=0 otherwise
and
o(x) = x x>0
=0 otherwise
Let D(¢) denote the domain in the k-dimensional space Rk with coordinates
tl...tk defined by the incqualities



O-t, -~ T for i = 1...%

}ti-tjl > ¢ for i # j.

Define also the random variable Jk(n,c,m) by the relation

k
(3) J (n,e,w)y = [...[ 7 {r_[#Ce,)-u) o[e"(t,) ) de....dt
k bte) 121 P 1 i 1 k

We shall now proceed to prove that

(k)

%) “{N } < lim lim “[Jk(n,€,w)]

€ ™> 0 n—> =
In order to prove the validity of (4) we define a subset S(h) of S consisting
of all w ¢ S for which the following two conditions are satisfied
(a) The distance between any *wo upcrossings of =(t) with the level u in I
is g eater than 2h,

(b) For any zero t = to of the derivative ='(t) in I, we have ,‘(to) - u[ > n.

According to the definition of S every w ¢ S must also belong to S(h) for some
h > 0. For it is obvious that property (a) is satisfied for :(t,w) if h is
sufficiently small and if (b) were not satisfied we could find a sequence of points

ti c I for which

IN

£'(t) =0 le(e) - u] 2 14

.

But such a sequence [ti] must have a limit point t, € I and the continuity of * and
t' show that ='(to) =0, =(to) = u contradicting the fact that » ¢ S, Hence we

thus sece that

(5) S(h) T 5 as h l 0



Take now any fixed © ¢ S(h), and let t = Ty Ty be all the upcrossings of
the corresponding :(t) = *(t,w) in I. Consider the k-dimensional interval Ik in

the space Rk, and let Aj J.denotc the point in Ik with coordinates
EXEER

where each ji may assume the values 1,2...N. Clearly there are Nk different points

(k)

A, and among these there are exactly N points A' such that no two of the ji are
equal. Since w € S(h), these points A' will all be situated in the domain D(2h),
while the remaining Nk - N(k) points A will fall outside D(2h), and even outside
D(¢), for any € > 0,

Considering, still the same fixed w ¢ S(1) we now take n and ¢ such that

0 < n-1 Ze<h

and consider the integral Jk(n,e,x) defined by (3). The contribution to Jk(n,c,k)
arising from small disjoint k dimensional blocks about each point A' is easilv

seen to be just N(k) for all sufficiently large n (i.e. a unit contribution from
cach such block). The contribution from the remaining region is zero for all
sufficiently large n. (This can be seen clearly from a picture by taking k=2

and writing down the integrals involved). Hence for any fixed ¢ < h, we can always

find n, so large that, for all n > n, we have

Jk(n,r,J) = N(k)

and hence also

N(k) = lim Jk(n,e,u)

n —nm»
Since this holds for any ¢ -~ h, while the first member is indepeundent of ¢, it follows

that




(6) N(k) = lim lim J, (n,e,w)

€ —> 0 n—> = K
for any fixed w € S(h). But h can be chosed aivitrarily small and since
S(h) T'S aslll 0 it follows that (5) holds for any w € S, i.e. with probability

one. Finally an application of Fatou's Lemma to the ¢ and n-limits yields the

result (4). Thus from (4) we obtain

)y =ty

1
k e =
,
lim lim f...,dtl...dtk[n f...fdxl...dxkf...fyl...yk pt(xl...xk,yl...yk)dyl...dyk]
€ —>0 n == D(¢) 3 0 =
" on

The entire expression in square brackets on the right hand side of (7) clearly

[ ]
converges to f...fyl...yk pt(u,x) dyl...dyk. Further, it can be readily shown that
° L
this expression is bounded for all tl...tk in the region D(¢) (using the fact that
the determinant of the covariance matrix of E(tl)...E(tk) E'(tl).. g'(:k) is bounded

away from zero). Hence by dominated convergence

(k)

o

(8) N < Um [l f dt,...de, f...fyl...yk p£(u,y_)dy1...dyk
Finally by monotone convergence it follows that

T ]

(9) P{N(k)] < f...fdtl...dtk f...fyl...yk P (u,y)dy,...dy,
o 0 s

Part E;

In order to prove the reverse inequality to (9) we adopt a different procedure
(due to Ylvisaker [8]) for counting the number of upcrossings by £(t) in

0 < t< T. First, however, we note that if X i=1,2... are each either zero

1!



m
or one, and M= T Xi’ then, for any integer k < m,
i=1

(10) MU L MM-1). L (MektD) = TTX, L LLX
11 ik

where &' denotes summation over all possible ordered sets of distinct integers
il...ik. For M is just the number of non zero Xi’ and the right hand side of (10)
therefore represents the number of ordered sets of distinct integers il"'ik

such that each corresponding X1 is non zero, taken out of a total of M possible

integers i {or which X1 # 0. Burt this number is simply M(M-1)...(M-k+l) as required.

Write now £, = £(Ti/2™), i=0, 1...2", n=1,2... . Let X =1 if
i 2n i
Ei < u< Ei+1’ and Xi = 0 otherwise. Then if Nn = 1;1 X1 we have Nn‘r N a.s.

(A detailed proof of this latter statement is given by Ylvisaker [8]). Hence by

monotone convergence,

(k) (k)
(11) E{N }] —> £{N } as n —> =

(17) EN )= I pY, =X ==X =1]

We note that no terms for which Iir-is| = 1 for any r,s appear since we cannot have

n
X1 = X1 +1 = 1, Write ni = 2 (‘i+1-‘i)/T.Then
r r
P(X, =X, ...= X = 1)=Pu-2 T <t <u, r=1l..k)
{ i i i {
1 2 k T r
L u u
= f...fdyl...dyk S = / B (xl...xk,yl...yk)dxl...dxk,

n,1
° R A

where p 18 the joint density for the distribution of &  ...E. , 7, ...n, .
n,ij 11 1k 11 1k




(That this distribution is non singular follows from the Appendix.) By a change

of the x-variables in this expression we thus obtain from (12)

) o o
K \'k) - 'kn k._' -n -n
(13) A{Nn }J=2 T f...fdyl...dyk [...] P, (ut2 Txl,...u+2 Txk'yl""yk)

o -yl 'yk ’ij
dxl...dxk
v -
Write now ¥ E(xl...xk,yl...yk) pn,ij(xl"'xk’yl"'yk)
for all t,...t, such that t_ lies in the interval (irT/Zn. (1r+1)'1‘/2n) for each r.
Then (13) may be rewritten as
.~ o o .
f [ ; ' r
(14) )é..fdtl...dtk f.c.).,dyl...dyk -f..;f Yng(u+“ Tx) ) - - U2 nTxk,yl...yk)dxl...dxk
0 Y1 Yk
where R0 is the subset of Ik for which no two of tl...tk are contained in the same

or adjacent intervals of the form (r T/Zn,(r+1) T/Zn). (See the remark following
Equation (12)).

Let now (tl...tk) be a fixed point in Ro. Then ynt is a 2k-dimensional normal
density function. Suppose that irT/2n Lt < (ir+l)T/2n, r=1...k. Then correspuiding
to the point t we have the random variables §(irT/2n), q(irf/Zn), yielding the

following typical members of the covariance mat-ix for wnt for example

var (Ei )y = r(0), writing Fi for §(iT/2n)
1
£ = 7 3 n - -
cov (Fil, 12) rp, writing v, for r(iT/27), »p il 12
¢, .0, ) = 2" (L-r)/T
cov iy rp
1 1
n
cov (‘11, I ) = 2 (rp+1 - rp)/T
2
var 1, = 22n+1(1-r )/T2
il 1

2n 2
’ = -2 r -2r_+r T
cov (ﬂil ﬂiz) [ ool 5 p_1]/



For the fixed tl,tz considered 11,12,p depend on n. It is an easy exercise to show

that if 71 = t2 - tl the above elements converge (in the order given), as n —> & to

r(0), r(1), 0, r'(t), -r"(0), -r"(1), respectively. Similar conclusions hold

for the elements corresponding to any pair t tj. But this means that the integrand

i’

in (14) must converge to Py (u,y) as n —> e and hence, by Fatou's Lemma

(k) T
(15) EN ) > f...fdtl...dtk ol pt(u,x)dyl...dyk
o L

Combining (9) and (15) we obtain the desired equality and hence the truth of the

theorem follows.

3. A case when Mk = 4+ o Formula 1 was obtained under the condition that t(t) have

a continuous sample derivative, with probability one. However, this assumption was
used in Part A of the proof, but not at all in Fart B. Hence if the right hand side
of (1) is infinite, the equation is true with both sides infinite. We now give an
example of a case where the integral on the right of (1) is infinite, and hence the
corresponding moment is infinite.

For this example we take a covariance function of the form

(16) r(t) =1 - kz 12/2 - T2/10g|T| + 0(12/10g|1|).
That this can be done follows from a result of Pitmarn [5]. 1n fact if

H(A) = 1-F(}) + F(-)) for A > 0 we can choose H()) so that

HOD ~ K/ (02 1og?d)  as A —> =
to givz the desired form (16).
Consider now the case k = 2, and u = 0. Then one can show by some calculation
that

. 1

I]'y,y, p (0,3) dy,dy, ~ K|/ (1-r2(x))
5 t



where K again denotes some constant and A is the covariance matrix for

E(tl), E(tz), E'(tl), E'(tz), T=¢t, - t,. But straightforward calculation shows

2 1
that
2 2
|A|~)\21/10g || as 1 —> 0
and hence
-
i 1Y, Pt(o,x) dyldyz ~ K/(]t] log |7y as 1 —= 0.
. t

It follows from this that the right hand side of (1) is infinite, in this case.
Finally we note a sufficient condition for E(t) to possess a continuous sample

derivative, with probability one, is that

r(t) = 1 - x212/2 + 0{12/|10g’THa]

for some a > 1. This follows from the work of Belaev [1). In our case r(t) given
by (16) just fails to satisfy this requirement. Hence it appears that the require-
ments that ¢ have a continuous derivative and that the right hand side of (1) be
finite, which are suffi:ient for Mk to be finite and given by (1), are also very

close to being necessary for this to be the case.

10



Appendix.

It was stated, in writing down certain density tunctions that if tl...tk are
distinct time points, then

(i) the joint distribution of g(tl)...F(tk) F'(tl)...ﬁ'(tk) is non singular, and

(i1) the joint distribution of F(tl)...g(tk) is non singular,
We shall now prove (i), and hence (ii) will also follow.

Let (as assumed throughout) F(A) have an absolutely continuous component and
write A = [Aij] for the covariance matrix of ‘(tl)...=(tk), "(tl)..."(tk). Let

A= [Aij] denote the covariance matrix of E(tl)...=(tk) B = [Bij] that for

='(tl)...F'(tk), and C the matrix of "cross" covariances, Cij = cov(‘(ti), ='(tj)).
Then
A C
A =
ok B
Let €' denote the vector [Hl...Uk, 01...®k], where Gi' ®i are complex numbers

which are not all zero. Then we l.ave

1(tj-t*)x
A, = "~ dF ()
i [ e ()
i(e -t ,)A
- - RS
ch [ ixe dF ()
i(e, -t,)A
42 §4
Bj& [\ e dF())
From this we see that
it x 2 it,\ 2 NG -ixt -ixt irt
0100 = [[|7re 1 |+ lexo e 1| - 1D Jre"e Ly iamete Jmee lldF()),
= ] 3 i j I 3 2 L ; j 1 4

in which a * denotes complex conjugate. Thus

k TR k it A 2
018 = [| = 0, e Yoran ne e ] ar)
jsl j:l ]

11



Now since the tj are distinct and “j’ ®j not all zero it follows that

k it k it A

ol Uj e and -ix ” ©j ¢ J are different regular functions of the complex
j=1 j=1
variable }, and hence cannot be equal for more than a countable number of values of

\. Hence we must have ¢('A 2 > 0 since F()) has an absolutely continuous component
and the measure it defines is not concentrated on a countable set. Thus A is a
strictly positive definite matrix and the distribution thus defined is non singular.
Finally we note here that the above argument can be easily generalized to
include an arbitrary number of derivatives. That is if F(X) has an absolutely

)

centinuous component and is such that £(t) has n sample derivatives E(t) E'(t)...i(n

(&0

then for any distinct t the joint distribution of

PPty

. (n)

‘(tl)..i(t ) (tl)...=(n)(tk) is non singular.

12
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