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ABSTRACT

The problem of the approximation of a given random signal with
modulated pure tone signals is studied from the standpoint of approximation
of the power spectrum. The equal energy and moment matching techniques are
developed for the selections of the modulation parameters of the pure tone
sources. Techniques are developed for the selection of parameters of a
switched pure tone source. The power spectrum is also approximated by a
rational polynomial scheme, which uses a minimax procedure, developed in the
appendices, for selection of pure tone operating parameters. Several
examples of each of these techniques are given.
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In a previous report [9] the theoretical problems associated
vith the approxItng of randam acoustical sigmil with pure
tone sirens has been treated. This report dalas with the more
practical aspects of the engineering apo of randca
signals. A number of techniques are developed and appled to
aL particular signal to illastrate the methods.

Hunmeript released by author, October 4. 1964, for publication as
an RM Technical Documentary Ropert.
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I. POWER SPW29AL EMTrI KMTIQff

Given a continvous record of finite length, it is not
possible to estimate the autocovariance function C(r) for
arbitrary ir. ?bus In place of

C(r) " ./x(t)x(t + r)dt (1.1)

Ve may calculate

C a1(-II)/2
o0f x(t.r- ) .(t + j)dt (1.2)(T 4-:(-1D72

vhere C is known as the apparent autocovarlance function.
Here T is the length of the record which is restricted by
Iji I< -?< T , T being the -xim= lag time to be consid-
ered. e Li lith the problem of the relation of T to
T in section InI.

n

Let D(v) be a function defined by

(,) -z [ <

and alse that C (rj is defined e for IvI aT, even though
C (T) ms not d:fined in this region.

If ve assue that the random process is ergodic then
the average of a large nmober of finite records Is equiva-
lent to a single averege taken over a single record of
infinite length. Thus ve can vrite:

ave(C (T)) - D(v)C(T)

It follows then that this relation wil have a well def ned
Fourier integral of the form

2
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ave (P (f)) - Q(f) * P(f) -. Q(J) P(A-f)d

wheoe Q(f ) is the FOUtiUr transform of D(-r) and P(f ) is
the Fourier transform of C(T) . termed the power spectral
density. Mw 97abol * denotes the convolution. 1 The
Fourier transform G(f) of a function g(J) is defined, as
usual, by

G(f) 4IW~A)edA

Where f a 2ww ftwus.

wre (P(f)) -jQ(f-)P(J)dJ.

We then identify the averaW of P() as a smoothing
(average over frequency) of the tgue power spectral denit
with a vei&h function Q(f-J).

We nov turn our attention to the problem of non-continuous
records of finite length. Suppwe that ve bae a function x(t)
recorded on a record of finite length vith the function x(t)
specified only at a nwOer of equally spaced points on the
time axis t . Ist us aSo us that x(t) Is given only over
equally spaced intervals of difference at, i.e.

t - O,tp 2At,...e t

then C(r) can only be estimated for

I - = 0, Atp2tj a * ondt

1(f) is the Fourier transfora of h(t) and G(f) Is the

Fourier transform of g(t), then the Fourier transform of
h(t)g(t) IS give M

G(f)*N(f) mfo( ) f(o9S-f)dS -IeJ-f)( A)d

see (l'1 p. 183 for afrther discussion.
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The integral equation

C(T) "o2A(f) coo (2wN)df

if soluble at a, mst be s*tisfied by a function P ()
which vanishes for f > f - ' eve thouo the o
power spectral density ekteads beyond If.1I . Mxis intro-
duces a now problem, tbat vas not encountered in the case
of continuous spectra, namely that of aliaslag. 2 Consider
the two s lgJ shovn in Figure 1.

Fig. 1. - Smling of two sinusodal waves

We note that in tuns of the d1screte smple x(t), t .2q,
q m 0,1,2,..., the two ves of different frequency both give
the sm result. Thus we see that eqwa21y spaced tims semples of
one sine wave could have cme from sany of mnay other sine waves.
SVWcia1 care must therefore be exercised in reard to statistical
properties of a continuous fmnction x(t). In particular, the
relation of the actual power spectral density P(f) and the one

2 [21, p. 3

e |,, , ,e , e |,it



which we are capable of measuring, P (f) , represent a critical
problem. A

To prevent such a difficulty, we will asme that our samp-
ling time is so chosen that the maximum freqency component of
x(t) Is less than .1/2t i.e.,

IfI :S

This then forces:

f P(f If I (2t)
P(f) 0 IfI > (26t)"-

It should be remarked that this Is selom the case in actual
practice.

One would now ask - "Is thers a better sampling scem than
that of equally spaced samples?" If one Indeed exist , it appears
that it has escaped attention. When the problem of allasing
becomes important, it is usual to follow so method of filtering
and/or smoothin the data to make appropriate modifications in
the computations. We make no attempt to do this In the present
work. References [2], [3] and [4] are of Interest in approaching
this problem.

11. NMMM~AT- WU LION M POWER BflZCM

Let us denote the values of the smple function determined

at times t =%&t, q = Ol,2,...n as x, tfat Is we define

z q M (qt) , q - O l .
Ia

It is eally seen that the expression analogums to (1.2) is m

n-r

Cr Ucnit.-r - Xq Or ~ (2.1)
qF0

where Alr - rM and rms,1,2s...a < n

To determine the power spectrum then we take the approprite
analogue to the relation (1.4i) and find that

*-l,

-2Ar (C +2 C co + C cos rir) (2

q"l

5



r - pp2*o

Mwe factor of 2 appears In eVn. (2.2) due to the fact that we
wish to consider only those powr spectra symetric about w n 0o
Thus, given a particular record, ve have a numrical mthod to
compute the oovariance function and the power spectral density.

If there are several distinct records to be vaed, as In
usmuly the ase, Ve then define

U- ave (C)r r

~r raep

where the average is taken for each r over each disUmect record.
By the property of orgodIcity, which Is tacilay assumd, ve are
assuired that In the limit of increasingay large nu*ms of
records that U vill almost 10f converge to C(vr) at pointsrof definition of Lw. For simplicity from here on, ve drop the

r r

It Is also quite frequently desirable to know the probabilit~y
density for a given random function. Mae probability deity
function P(y) is defined as

P(y)dy a Prob(y S x < y + dyVJ

Its determination for omr discrete sampling then turns out to
be merely a conatbg process.

III. PIAMI FOR MM MUSUBU

Blackmon and 2Wwiy (2] baeeraoe the problemt Of the
smount of data required about a particular process in order to
mke statements concerning the reliability of estimates of pover
spectra and covarlauce fiActions B ecue of the astrommil,
nmber of cacltosInvolved in estimtIng a power epeetu
for a desired precision, It Is Important tbat ve compromise
between resolaU$on and stability. We sh@LU only reproduce
certain parts of their results. 2bTe reader wll find the
details of arriving at these results In section A. 23 -# A. 28,
N. 23 -#3. 241 of [2].

6



We define T, as sed In section I, a
a

(resolution in co.p..)* L (3.1)
T

where T is m usurod in secomdsq "AolutIon" is a mmuze
of the concentration of a spectral estmate in fr*quecy units,
i.e. a masure of the vidth of a frequency band In which no
attApt Is made to further discriminate. We am express the
stability assoclated with a particular estimate in term of a
spread in db, db . 20 l-og P /P, of an Interval containing,
with proscribed probabill. , Ui tio of true pover to esti-
mated power. To this end ve 490M

k-l ( RsnW In db)

( 90% Pan& In 0b)
k 25(3.2)k -l, (( .

k81lo (96% maweIndi)

BY 90 per cent range, it =mut be empbasied that we have
9 out of 10 chances of finding each Individaml estimate

ithla the prescribed 0 range of Its avervp value.
Th muber of rocords, P, of length T required to yield
the particular stability and reolutn chosen is then
expressible as i

P - 2i (3.3)
RT - 3

We find that we need

soIfnfmax

lags for the computation of the covarlance and at a 1/3f
-ax

as the size of the t1i Intervals. f is the xiaum
frequency coqmoet present in x(t) .'Maig this, ve cam
comPute the regaired nmber of data points to be:

n m (l.. k + P)T f

We now give several illustrative examples.

7



ImanI 1 .

Suppose that we are giv records of lengt 1 second bayng
frequency components up to 104 c.p.s. end desire a resolution of
50 c.p.s. We wish to know hom ny saWles of this record nmst
be =de to have a confidence level of 90 per cent at + 2 db.
Thu we calculate:

T - 2.x-2a 50

k = 101

P-1

an 600

a 3 x 10

we then need only 1 record.

Suppose we are given records of length 2 seconds. We
wish to find out how IN pieces -ie wil need to have a 98
per cent confider at + 1 db, with ni±u frequency
components of 10 c.p.s. and with 50 c.p.s. resolution.

T -2x10
2

k - 841

P - 4I.2 )4

It, records are then required.

IV. AMPLITMI AND F=W=ff NDOLJIATED SIMWI

We have at our disposal ic( <2.5) low frequency and 1(< 9)
high frequency single tone generators (sirens) with which we
wish to approximate a given numerical power spectral density.
The siren ma be either amplitude or frequency modulated
wLthin certsin restrictive ranges.

Let us find the power spectral densities for each of the
three modes of ueration of a sing e siren:

8



aPure toMe: Xk5(t) V4IK Cos Wkt

than Pk(,M).. , A -k "W

wis the centr freqwancy of the sirenp and Ak Its Power and
5(w-wk ) Is the sml Dirac delta function defined a

8(,-hm). 0 ,, *

6(-wk) - "1 w
such that

1 (wwk )do - 1

b) Amplitude YidAWation

x(t) M rK (1 * co,, kt) cos, wk (4.2)

then

Pk(w.) -- (8€,,w., k + )+ 6(w,,-a.k))

+ A k(w..)

4 is calle d the modulation factor and rVI the
ion frequency.

c) Frequency Mbdtlm

Xk(t) - cos(wt, + sin Qkt) (-3)

then

Pk(w C" k(L JS (b(wwk-jCV + 5(-k + *0
0 (bk) 8(wwk))

5 is termed the deviation ratio, and Q/Ythe modulation
requency. J (5) is the Bessel functio-n of order n and

argument 6.

Figures 2 and 3 give representative pictures of power speq%ra
of the pure tone and amplitude modulated sig l.

9



P(Wo)

A k

Fig. 2 - Pwr spectrum of a pure towrn a

P(w) Ak

4 'kA4k

WOk- i'lk  Wk W.k 41- k

Fig. 3 - Pover spectrum of an amplitude modlated signal

The power spectrum of the frequency modulated spectrum is not

as simply illustrated. In FIgure 4 we illustrate several cases

of frequency modulation. A table giving the absolute gnitudes

of each frequency component is presented in appendix C.

Suppose we am given a particular pover spectral density,

8, that is specified numerically at each of the points w -na.

Let

S - S(n.) ; n - 0y ,...

10



Our objective Is to ajproxiat 8 bY the use of X low
frequency sires, i.e. operating in a frequency range of 0
to J/2ir L and L high frequency airens, operating in a rang.
/2r to I ,ach operating In am of the 3 modes given above
by a), b), or c). Each of the three types of softlation
above depend upon the specification of a center frequency
w . To dote"' " we ake the requirement that each of the
kP and s1ilarl tie L, sirens have the same total power
output. This asumption is made In order to assure that
any criteria used for the selection of parameters will lead
to realizable powr distributions among the several sirens.
The total power to be distributed among the K low frequency
sirens Is given by

P m ; tr s r Y B
PL St ) m3q

V a-Lt

and similarly for the L high frequency sirens

I t

Pe (*d - a S

t r "
2Y

We have assumed that 8(W) is essentially zero for w > "
Suppose that %adQare respectively the operating
powers of ths %o=andhgh frequency sirens. Then

PLL

3.1
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8 - .1 8-3.5

so, il ll .

. I,I .mll, ,,,,1 ., ll,

8-1.5 8.8.

.,I, 1,, ,.1 ,. . I fi I.1 . ,I ..1 1

b"2. b -10.

8-3. 8-20.

.. , l l , , , l a . . ., , , ,, . .,.,1 , .. .I. l , l l1 1 , ..L
b- 2. --I-,

Fig. I - Powr spectrum of a frequency modulated signal for various
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If Q is above the all0wable phyical oUt of 4, high
frequency sixen, then it is eessary to scale 3 in such
a:manethat Qu is reduced to this limiting value. *We

simiarl scl- f4,I outside the allowable operating
rang. of the low frequen2cy sirens. Th Interval (O,1) now
needs to be broken up into K equal enwW Intervals. Jet

(k, + 1) be the frequency interval in which thekt
sirens operates. Then 9,Is determined by:

VU-1

%L -f S(M)w; I a 1,2,&**, K

subject to the conditions that

'VK+l M

Silar2y ve section the high frequency range by requiring

~H .$ l1(w)dwd ; i - K+1,...,. L

ftere

9K+l 1

Mmiu we bave partitioned the power spectrft Into pkrts
(see Figure5)

3



fi. II 0II I I

Fig.S - faergy partitioning

Let us nov *UtInOnm frequMnCy band., as illustrated
in Figure 6.

S-c0

Fig. 6 - A single frquency band

14



We now make the restriction that only one siren is allowed

to operate in each bend.

We quote a powerful theorem of Fourier aalysis:

Theorem: 2 If (T ) is a coplt set of ortbonom functions

on the Intervall[a,bJ, th the sequence of functions, X

C T tends uniformnly to X(w) as n -.- at each poin w e [bDk]

of continuity of X. C Is the Fourier coefficient defined

nn

The Tachabyscheff polynmials form such a system of functions.
ftn nth Tobabyacbeff polynomial is a polynomial. of degree a
in the free variable,. that Is

n

Using this fact we then can claim, by the properties of uniform
convergence,. that if ve force all, the momnta r nof a function

8B to be the sm am all the noments of another function S then

B and 8S are the sam functions. Guided by this we i;;Oui to

use the Fsment match-n between the actual power spectrum and
the assumed power spectrum as the criteria for selecting all
the parameters that need to be determined. Generally we will

not have enough free pqnmeterm in order to force all of the

moments to be equivalent. In this case, we vill. arbitrarily
choose the lowest moments needed to specify the parameters.

lAt us apply this scheme to the amplitude modulated signal
given by eqp. (4.2). ft- pure tone a'=&'nJ will. then be the
same except A I is set Identically zero. Writing the balance
of the zeroth, first, secondy, and fourth magents gives us:

2See any book on advancedetmatc such em [1]. It turns
out that we must restrict x( t) such that tex(t) is square
integrable for each a. However, we need not worry about this,9
since our x(t) will be bounded and continuous on a finite
interval.

15



'01+1 (/ <fS(W)dw.mA + PLA I-
1 2 P1 PLI> K

91+1

1 2 1

22
Yi

f ( - )d S(W)dw. 2

(W--) 3s(W)du A= jQ
1 2

IQwe am timn WrIte the paammter. AIR A.- QL.-a

A

1:I - " )
x
=212 ('.5)

AI k~Q
Ql

2
where: B - 2 A + W 2 Q,

D - C + 6w23

40-~. 1 6 2 j IB :LA 1* q,

A n-

1
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O"2
1

N - m) 21n4 S

ad NM2 m ae

tus we have deteruLned the parameters of the Ith siren given
that we wish to appzinte the power spectrum with an amplitude
modulated sigual.

In the cae of frequency modulation, the situation is not quite
as stralghtna *. We again have four parameters to select,
namel., Ai.. 4#:L Ai. , 8. First notice that the only place that 8
occurs is in the argument of the Bemel function J - It Is fairly

n
obvious that there vill be no spie method of choosing 5 by the
solution of the moment atching equations. M m e must ooe
8, sonewhat arbitrarily. First notice that equation (4.5) forWi does not change when referred to the freqwncy rather t;namplitude modulation cases. Thvs w is readily calculated. By

kIng reference to Figure 4 we try to choos the which will
most close1y give the sam kind of gross chracterlitics as the
actuftl power spectral density exhibits over the (! pil , nevl
Now that bhas been selected we proceed In as'" mnnr to the
method used in the derivation of relations (4.5). MM we get

A
I 1

A 1 (-.7)

A

where we have used the notation of equations (4.6) and,

17



JOb j2 (b + J2 (

- ~(k.8)

2b 2 n 2.T2
z ni

By use of the relation

j( ) n(z 1)jn( 2 ) , nO

2 2 2
"1 + +2 2

we can show that

J9(8) 2

Omi thrOUgh equations (Ii.7) ve Con determine the Paraimeters
ssociated with a frequency modulated igal to appr te
given power spectrm on an Interval (p, 91+1).

As can be seen by comparing Figure 4 vith Figure 3, the use
of frequency modulation is capable of giving uan ider distributions
of the power over tne Interval.

V. RNDOKZ SW C SZL

Consider the form of the power spectro of a pure ton. siren,
i°e.

Xk(t) ' rK coo wkt

If this signal is turned on and off in a randca fashion we will
have

xk(t) -2--1 + Qk(t))cos wkt(.)

where (t) is a random function assuming values +1 or -1, as
illustrbated in Figure 7.

18
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Fig. 7 - Rando on/off amplitude modulation function

We denote the mean switehing time. i.e., the expected time

between cbanges in value, of Qk(t) by T.Ifwasuett
the period between sritchings, i.e. v in Figure 7, is a Poisson

distrubuted random variable, then by 
~ 

a calcu-

lation, we find that the power spectral density of the signal

(.) is given an

Pk(") tk[Sk(w-wk) + Sk(wowk)) (5.2)

where

kW) T

Note that this is the first time that we have been lead to a

non-discrete power spectral density. 2is non-discrete form

is reali ed due to the rando nature of k(t). In previous

methods we hbave alvvqs been concerned witE deterministic forms

(see section IV) which necessarily lead to discrete spectra.

Since we are only concerned with power spectra that are symtric

about w = 0 , we write P(W) as

P(w) sk(w) -21 (1 +

2

19



Uis amounts to a folding about w - 0 of the spectrum. Figure 8
shows a typical form for P(w) as given by (5-3)

4 rW

Fig. 8 - Power spectrum of a randomly switched pure tone signal

The half height width of the curve, as shown in Figure 8, is
given as

4r -
Tk

This shows that the width of the spectrum increases and the
height decreases as the mean switching time decreases.

One could now set up a least sq=are method for the
approximation of a given spectru by a system of on-off
modulated sirens. This, however, would be a lather Invol*ed
scheme, since such siren involves 3 parameters (IIhk, TkC _and we are lead to a system of nonlinear equations for their
determination. When we eva-ine a particular spectrum, there
will quite probably exist certain resonances that are similar
in appearance to the one illustrated In Fig. 9. Suppose Fig.
9a represents the spectrum we are interested in approximating.
We wish to remove the resonance by approximting this portion
of the power spectrum by an on-off modulated signal. We go
through the following steps to find the values of the parameterst

(1) DMrav a straight line, A, approximating the background
under the peak.

(2) Determine the maximum, b , value obtained and 81, the
value of P at the point J. B is ro= y half va under
the peak on the line A.

20



P(,)

82

(a) - A typical spectrum shoing a resomnce

PC)

(b) - Moified spectrum showing the reoval, of the resonance
by means of an on/off modulated siren

Fig. 9

(3) Draw & line, D, through the point C, parallel to the
line A. The point C is determined by P - (b +6)/
and placed half way between the sides of the 1 .

() Msasure the width, r, of the peek on the line C, and
redetermin the point C. to be in the center of the peak.

(5) Determine the praneterm of the sireA an

kIk " of the po int C 1( 5.4)

2yr (02-b)1

21



By asigning the parameters as given in En. (5.4) to one of
the sirens we are left with a spectrum as illustrated in
Figure 9b. This reduced spectrum is then more likely to be
easily approximated by some other method.

The sam procedure with a little more freedom of choice
can also be used for two overlapping peaks where the maxima
are distinct; but close together.

VI. GEKML WIPUNfTM!ON OF MEl PANIM3 SIG&4jL 3M APPOXMITI(n
OF THE POW SPECM Er ATIMAL PON(IAIS

In a report by SameIs [9] the problem of representing a
random signal by a series of orthogonal functions with ortho-
gonal random variables as coefficients has been studied. Here
w shall be concerned vith the solution presented there when
the power spectral density, S(w), has been approximated by
a ratio of polynomials as follo:

=(W) -= - 2 (6.1)

The first computational problem associated with finding
a solution is the approximation of the actual power spectral
density by a form similar to equation (6.1). We have two
major alternative methods by which we can attack this problem:

1) we can use a least square procedure in which we determine
the constant skj b kby minimizing the integral

4(, ) -f s(w) Z ( iw' ] 2 w(w)d.
0 sak(w)21:

vith respect to each of the a, and b_ . W(w) is the veighting
function and 8(w) is the actual power spectral density.
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2) We can use a minimax procedure in which the coefficients
ak and bk are determined by minimizing the diffe"nee between

the actual function and its approximation.

The least squares method is presented in detail in Appendix 1,
while the Ninimax procedure is presented In Appendix 2. While the
least squares method gives an over all measure of the fit of the
approximating function, one is not assured that very large errors
will not be present in localized areas. The Minimax procedure
remedies the objectionable character of the least squares method,
in that we are assured that it will not miss local structure by
large amounts. However, we loose the possibility of approximating
the function in a "best" sense over the total region with the
particular solution generated. Thus a decision must be made as
to which characteristic must be more faithfully reproduced:
a) local characteristics while possibly lAsi3g overall fitting;
or b) gross characteristics while possibly Jaing local effects.

Once the form of equation (6.1) has been determined, i.e. k

and bk are known, we can determine the orthogonal functions for
the approximation of the random signal. The computational scheme
that is used to determine the paraeter of this representation is
given by the following six steps:

a) Solve the polynomial

q/2 p/2

k1 b ka 2k - IN n1 2 k 2k

for the roots a . Note that there will be exactly p roots of
which p/2 of th7se will be the negatives of the other p/2 roots.
Denote these independent roots as a , k = 1,2,...p/2 . It must
also be recognized that we can not 1or the present determine nk

except as a function of ' nn

b) Determine the roots of

p/2
%( ) - 0

These roots will come in pairs (one the negative of the other).
Let us denote the roots for which the imaginary part is positive
by "Wk, k = 1,... p/2 . The values of w will not be dependent

on Wn, thus they are readily compated.

c) Find the quantities



N((U,k)')- 0k 12se/

k " d,2,...p/2ZD((,M)2) ',,-k

d) Solve the nonlIear XY8teM

1 1 - -1

ani -JL 1l 1n 1 n

1 .... (6.3)

=0
eoeo

~a ul _Wp2

(% ,iw )T e n i.w+i )T 
(-a ,+iw,)T

nl' z  %.% -1 ni 1.

for Xn, where we have substituted the expressIOns obtained for

ak in section a). Tis is the equation 30 of [9]. Nunber the

nsolutions according to the index n. Since (6.3) winl be a non-

linear equation, there y possibly be an infinity of solutions.

e) Solve the system of linea equations.

p/2 + -

S + A- k - - 1,...p/2

k nk-:'wuk

p/2 + %+%T(-n+w)

BSQ+siw iajW n m

S

for each A and A given each of the W determined in section

d). Note Itat on o the unknowns is not detemuined. Let this

one be A/ Thn each of the A /+1A , k - ,..p/2 - 1

and A-./A / 2 k-l, .p/2 is known for each X
nxAP/2 n
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f) Given all the foregoing ve then have

p/2

*(t) ( A eankt + A:e- kt) (6.4)
k.1

By forcing *n to be Unitary, i.e..

T4 n(t) 4n(t)dt - 1

ve deterulne A
np/2

Thus (6.4) represents the sys of orthonormal functions
necessary to approximate the given random s'nl x(t) as

x(t) "7 e

where 0 are orthogonal random variables.n

It takes little exmination to see that thin will require
a very lengthy computation for reasonably sized p and q.

To illustrate the application of the method of rational
polyno ial approximstion in obtaining the orthogonal function,
we consider the simplest case possible. nmely: p s 1 and q - 0
Thus S(w) is approxiated by

s(w) -
22

S(W))

W> o

Fig. 10 - Power spectrum of a signal with a Markoff auto-
correlation function

25



This is the power spectral denity of a process with a Markoff
autocorrelation function illustrated in Fig. 10. After some
manipulation (see (9] p. 17-20) we find that

w. cosn(5L)+ issin (-"4) -

(6.5)

Thus the X are determined and ve can write n

nn 21&
W [W cosV0t + sin wt)

nrt 13+ (inn n

where a is determined as
n

2 _ 1t + I sin W to2dt) -1-

In 2 n in Id

VII. APPLICATION TO A PARTICUIAR SIGNAL

As an illustration of the methods presented in the previous
sections, we now give several applications to a particular signal.

Figure 11 illustrates the representative trace of the random
signal that has been digitalized and used In this analysis. Frou
this signal we have calculated its amplitude probability function,
see Fig. 12, its covariance, see Fig. 13 and its power spectral
density, see Fig. 14, according to the methods of section II.
It is to be noted that the power spectral density Is quite
Ill-behaved. This is due to the nature of the random noise
generator used. In practice one would expect a less harsh
curve. For same of the analysis we have used a "Smoothed"
power spectrum which would probably be closer to the types of
spectra pbysically measured. This is exhibited in Figure 15.
Note that there exist marked resonances, however, they are not
as pronounced. Also the rapid low level background has been
filtered out. When this power spectrum is used it will be
clearly noted.
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A. Frequency and Amplitude Modulation

As in our first illustrationo let us suppose that we wish
to approxiate the power spectral density with the pure tone
sirens only. Then according to the equal energ partitioning
and the moment matching technique of section IYwe can easily
compute the operating frequencies and powers of each siren.
Again we vish to point out that the equal energy method of
assiming these parameters to each unit leads to realizable
power assignments to each unit and in addition offers an
intuitively rational method of selection. It Is rational in
that one of the foremost considerations of approximating a
random signal is that the energies associated with particular
frequency regions be as faithfully reproduced as possible. This
assures that the response characteristics of any system vhich
uses the approximate signal as an input is as close to its
response when subjected to the pWsically occurring signal.

One of the questions raised Is: how many pure tons sirens
are necessary to simulate the signal. As an illustration, a
nmber of cases have been carried out am the pover spectrum of
Figure 14. The following list gives the number of pure tone
sources, the table on which the parameters are exhibited, and
the appropriate figure on vhich a comparison is made between
the approximation, the actual or smootbd power spectra.

Case No. No. of sirens Table Figure

High LoW
1 25 9 1 16
2 20 6 2 17
3 15 6 3 18

10 6 4 19
5 5 5 20

*See Appendix D.

Along the ,abisu6 of the Figures 16 through 20 the vertical
lines represent the center frequencies at vhich the sirens
function. The straight line segasats represent the pover of
the siren smoothed over its interval of operation, and the
irregular line indicates the real power spectrum. It is clear
from Figures 16 and 17, that cases 1 and 2 approximate the
actual spectrum quite closely. Cases 3 and 4 although not
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appro ting the actual power spectrum, do represent the
smooth power spectrum rather wel. The last cae fails to
give anything other than an indication of the gross power
distribution and is ecmpletely devoid of any local structure.
As another asure of the meaningfullnes of thee approximations,
the amplitude probability density bas been computed for ease 1,
see Figure 22. When compared to that of the original signal,
we find that the fit is quite good except for the very high
amplitudes. tables associated with case 1 through 5 also
give the appropriate frequency and amplitude modulation parameters
for the intervals. We can use these parimeters to distribute the
energy over the interval in a mnner that will more closely yield
the approximate structure given by the figures. It should be clear
through these exmples that the number of sirens necessary is
directly a function of the power spectrum and that no general rule
can be stated.

B. Switched Pure Ton S a

For the present consider the smoothed power spectrum of
Figure 15. Note that there are five marked resonances indicated
by the arrows. Each of these has structure similar to that of
Figure 9a. We vish to remove these resonances by use of randoamly
switched pure tone sirens.

After following the procedure outlined in section V, we
arrive at the following parameter, for the five sirens required
to remove these resonances:

Resonance
No.k k Ak Tk

1 289.0 1.000
2 18 31.1 .5oo

26.5 351.8 .571
4 48 326.7 .500
5 59.5 395.8 .222

When the parts of the spectrum are removed which are contributed
by these sirens, we have left the spectrum represented in Figure 22
by the lower line, termed the resolved spectrum. The resolved
spectrum, Figure 23, is much smoother and will be far easier to
approximate with other methods than the spectrum we started with.
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C. P Ational roynm Fiti and Use of the Markoff Correlation.

By remving the resonances In the smoothest power spectrum by
the methods of the previous subsection, we have arrived at the
resolved spectrum, Figmure 23. This has the samet eneral shape as
that of Figure 10 and thus suggests that it be m;proulnnted by
the use of an o-t6ogmu expansion In the sens, of section VI.
We find that a curve given by

P(W) - 48600 (7.1)

falls just below the resolved speetm (see Figure 23). We choose
such a curve so that the portion left after subtraction will be

ever7w1ere positive. Me left-over can then be @aprxi:m&ted by
other means. Using the length of record mnaljmad.. 10 ee, we
find that eiganfrequency equation (6 .5) is in the form

2v W+tn(1ftn)0 (7.2)

where w nis now in cycles per second. It is clear that the
roos nof this equation are bounded as

<T 70TW< n2
2n 2

or

- <, <n+
20 n 20 -10

Mmu the frequencies will be spaced at 20 per cycle. M)Thi points
out the basic problem with the approxiation of the actual aim&'
by the orthogonal function schme of section VI. lamely,
that it leads to unwieldy numbers of sirens operating within the
frequency regions of Interest.

This same power spectrum, namely that of equation (7.1) can
be approximated by the use of only one siren which Is switched
on and off in the manner of section V, if the pargaterg are
chosen an
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T 30

A -81OOr

Remembering that the signal of the randomly switched siren is
of the form

x(t) - + [(+Q(t)] coo wt,

then the approximting siren has the modulation

x(t) _- [1+Q(t)]2

For physical operation, w Miy haVe to be chosen to be smalls
but not zero. If this amplitude is outside the pbysical
operating limits of one siren, then several sirens m be
used to generate the amplitude, while all are similarly
modu3sted with (1 + Q(t)). This type of operation also has
its dravbacks in that It is doubtful that the very smll nen
svitching time can be physically realized.
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Appendix A

Imast Sqae Determination of Rational Pol.ynual.s Coefficients

The problem which ve vish to consider is that of approximating
a given tabulated function f(x) in terms of a ratio of two poly-
nomials in x, i.e., we construct &-function, f (x), of the form

pN

f X) 17"

such that f Nx) is the "best" (in sme specified sense) approximtion
of f(x).

In this appesdix ve wish to examine the problm of the determin-
ation of the coefficients a , p , under the so-called "least squares"
criterion. As usually formLated, the least squares method calls
for the minimization of the function

q(cc,p) -i 1(t) - fN(t))2 w(t)dt

with respect to the parmeters Z k , where W(t) is some non-negative
weighting function which many authors set arbitrarily to unity. FOrm-
Ing Q(gjp) using our supposed f i(t) we have

txt

I
Q(1)UJ (x., - ____ ] 2 Wxd (A.1)

0 X X.o

For Q(Z.) to be minimized with respect to the parameters a1 , PIP
it is necessary that

- 0 1 O,l,...p

0Jk.2)

-0 i-Ojl.....q



Of course the solution for (A.2) ust be further emaLtned to
ascertain which solution actualy gives the mininm. Perform-
ing the indicated differentiation on Q(g&) as given In (A.1)
It I seen that It is desirable to choose a welghting function
W(x) such that we can Reove the =iknows 0 frm the dtor.
By this consideration ve are led to make t choice of W(x) as

q

W(x) - [ 0 %x)] 2 e "Al (A.3)

where K is an arbitrary positive predeteziaed constant. We
propose to call this choice the dnmtor vhted least
squares. The reason for including the term e will be
apparent later. Clearly, W(x) as given in (A.3) is non-
negative. Q(Q) can then be written as:

We first observe that if f(x) Is bounded as x -o ., then we
must require that p < q for 4A.4) to be bounded. Aleo w
note that the systm of parMeters (QOe can be determined
ony within an arbtary multiple. Thus without loss in
anerality we set

a al
0

We have

)Qa q p
m2f T f(z) Z x1p, OZix'f~ %

0 0 0
or p

f;2x 4J -Mtij x
f ) e dx ,.,f,z 0edx

o (A .5)

Of4r(x)z40eLIf

for3-



and

q -K
24 xia)) x)e "Udx

or / t f(x)z e ax a: X L+e

for a -12pep

Now define

'nlm, (X) nX kdx

(A.7)

0

and recall that

fne K=d x - -a-
o el

It is nov clear vby ve chose the term e in the veighting

function (A.3). Using the notation of (A.7), (A.6) and (A.5)
can be rewritten in the form:

q p

Oili+i+i I 
a "

p (A.8)

j + l  - Ll J' j = lp2p,..Pi



By defining

(i+J-),...p; J ,...p

Ki

Xj+l i+j p  I P.,...4. ; - l,...p

T -
"4 1 +-p.l . =1, ... p ; j =-+,.. +

%i+J-2p i - p+l, ... I ; 3 = p+l,...p+q+l

j [Ij-):- Pl,...PI

OJ-P+- - p+l,...P+q+l

we can then write (A.8) in mtrix notation as the set of
linear equations:

Tj#j i -Ai i - 1,...p+q+l (A.9)

Note that if we had not chosen the veighting function as
we did, then we would not have been led to a linear system of
equations for the unknowns , but to a nonlinear system. For
numerical ork ve prefer a 'near system to a nonlinear one.



Appendix B

Developeent of the Minimax Procedure

Before development of the actual procedure for -Inimax
approximation of arbitrary functions with rational po,ynomials,
we first give several theoream and results to place the procedure
on a firm mathematical basis. 1

Let it be required to approximate a given function g, where
the real values y1 v g(ti) at the N distinct points t i for
i - O, ... N-1 constitute the only information given concerning

g.

Lot the set T consist of the N point. ti, i -O, ... N-l,
where t i < ti+ 1 . The index set S with M elements Si will be
used to indicate a subset of T consisting of the distinct
point. ta where i - 0, ... M-1 and

0 <s1 <Si+l <N-1

thus

to -< ti < tsi1 <t -1

The class F of approximating functioz f consists of the
functions: P a i  .

f(t) - -Q(t)

where the numerator degree, p, and the dencminator deee, q.,
ar fixed with ap j 0 and bq 0.

A function f from class F vhich gives the best weighted
minimax approximation to g over the set T is one for vhich

max If(t) - g(t)IW(t)

teT
is minimized. The weight function W(t) is assumed positive for
all tj In T.

'we follow Kenyon [6] and Golomb [8]
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Mhe mini value vill be called X . That Is,

=d mi m ItJ) - 9(t)tIWMT

The deviation at ay point t i is defined as

8. (f(t 1 ) - g(ti)]W(t,)

vhere f my be any member of the class F, not necessarily one
giving a best awp tion to g.

Theorem: (xtence and Uniqueness) For given g(t.) and W(t)> 0
with I = 0,1,.. .N-I and fixed p and q, there exists a function f
belonging to F such that the man deviation

-max If(ti) - g(ti) W(t1 )
i

assumes its -inimsl value ' A The function f is unique provided
two functions are considered identical whenever they can be
reduced to the sme function after cancelling comaon factors in
the numerator and denominator.

Theorem: (Tehebyebeff') Let M - p~2:91 and let f be the best
minimax approximation to g on the set T. Then there are at
least M points to among the N points t of T such that

b - be+1 - W and g , a si+

wherevere • tsi < t,,+l and i = O,**. .,M-2

The signum of a real number a is defined as sgn(&) - if
a> o, sagn (a) - 0 if a - 0, and sgn (a) - -1 if a < 0.

%Mrem: (de la Vallee Poussin) Let M - pW2r2< N, with p, q.,
g(t ) and W(t1 ) given for i - 0, ... M-I. If f is any member
of class F (not necessarily the one yielding the best minimax
approximation to C(t))where

to <t*i< ti+1: N-1

then ", the absolute value of the maximum weighted deviation
for the best approximation, is bounded by the relation
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min J1s.,J <YA<mx 15.,J
i i

With this backp , we nmy enumrate the steps involved
in determining the best approximation function f.

1. Frv the set T of N distinct point tv, i o 0 ...
N-i, select a subset of N - p q + 2 points ti where
M < N and tIi < ti+l *

2. Find a rational function f(t) - P(t)/Q(t) such that

Wsj[f(t) - yi] - (-')i ' is satisfied for Inin

I . This is equivalent to solving the systen of
equations

b a ) awgi L aij"Wj wIiL 0%i " (-l aoii

or in matrix terms,

Ax - h

TThe colmin vector x is [a,... a b ... b trices
A-.d B are both M)X with elements p  0r

WSIS3

±3 I 
3-p-<i,ij p+1 < ,< M-1.

LWsisi<in 1* 3<-

b iO +j -P-b( _ 3P o<_ <Xp1

3. Using the rational function f found in step 2,
determine a point % eT where the weighted deviation

(ti) - wi[f(ti) - g(ti)]

"sogIts Mamxim- mamitude I8(t, ) .

A denotes the transpose of themaix A. T if A - [a3
then AT - (a A 1.
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~.if 14(t I)I :S A., then the veighted best approimtion

to y - g(t) on the set T he been formed.

. If Ib(t I )I> 'A, tbea ew subset is selected and the

processes ze repeted, starting with step 2. The new
subset is chosen according to the following rules:

a. If possible, delete that point ta, of the old subset
which is adjacent to t for
5(tsQ Ihc si).( 5  -sg

b. Otherwise amely if t < ts or if t > tG, and

delate t;e point of the ubsetat the
opposite end from t P i*e*, tMO te respectively.
In either case the Kintt Isasdtthsueto
take the place of the deleed point.

Step 2 involves the solution of nonlinear algebraic
equation of the form

Ax = MIx (B.1)

where A and B are given XxX matrices. We ish to find the
eigenvalue A , and the esigenvector x.

In general ve will find M eiguvecton mA esigenvalues, not
necessarily distinct. The elgmavetor, x , can be determined
only within a =1ltiplicative constant; therefore let us choose
zk = 1 a a particular no&on.

The atrix B which arises in the niniax approuimtion
problem has ita first p * 1 coluins all zero. For this reason
from this point on, the matrix B will be treated as an X by
q + 1 matrix where q + 1 - X - (p + 1). We now use the vell
known power method [7] to solve our reduced system.

Suppose first that the matrix A Is singl3a. Matrix A is
siagwlar if and only if A = 0 is an eigenvalue. 2he correspond-
ing esigenvector is then a solution of the system

Ax -0



If X - 0 is an sigenvalue, then th rational function approximates
the given function vith zero error on the set of X points. We then have
the usual rational function interpolation problem.

Let us consider nov the most prevalent case; namely where A is
the non-singula so that X - 0 is not an eignvalue. Letting

1

and multiplying both sides of equation (B.I) by A-, then we have

Cx - I (B.2)

where C - A. .

Thus we have transformed our problem into solving the stem of
equations(B.2) for x such that p is the maximl eigenvalue. The
application of the poer method can be described easily. A sequence
of colmn vectors v) starting with x(Wix coputed together vith a
sequence of scalars K . May are defined recursively by

v

Cx(V) = Y)

( =*l) y(v) /K

th(v

The scalr K ill be taken as the kt h component Woftecoun V (v) (v)

vector y where k is such that none of theYi
are identically zero. The stmrting vector x( 0 ) can be chosen as
any (non-zero) M-dimensional column vector which is not orthogonal
to the x, i.e., (x(O))TxO. Usually om asummet that all the
*EuponentB of X(O) are unity.

If the eigenvalue M of largest mag nitde is real, it can
be shown that

limi K
V

Tbs then completes the method of finding the minimax
approximation to a given function.
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Appendix C

n Mod4ation Power Distribution

In section IV, we were lead to a power spectrm of the
form

Pkkw) k A~ k~B~ [8(wli-wk- 8(w-Wk + Ak

+ Jo2 (8k) 5(w ))

Me following table gives the values of J2 (b) for various
. n



8,0.10 - 2.50

n 2
u a

0 9.950OX.001 0 2.3091003

1 2 4I937xl 03 1 27O1 0
2 1.5598zo 2 .qwx3L .01

3 k~.690%1o-

8 0.50 
.01i

,, 6 1.78k7x.on

0 8.9129xo-01

1 5.9398i02 b - 3.00 2
2 9.A784xoxok
3 6.652zlxo " 6 2

0 6.7(62r(xo ..

b - 1.00 1 1.k96xo01

2 2.3628zl* .01n ° ,
n-013 9.5519xm 0M

0 5. 8 5,-2xM00  k .k3l
1 1.93"xlO -n 5 l.&5xO 0
2 1.202h-o02 6 1.288exzo,

. xO 7 6.887xo
4 6.1337x3.0-0

8 - .50
a- 1.50

n J.2 -01

2.6196xo1 1  1 1.8 8 72x._
2 3.1129x10 M 2 2. 103 xl, -01

2 . 38"kxi0 0  3 1J.959xl0 0
3 .7166xo- 4-17SIX2003

.384o8x10o 6.479xo
5 3.2379x10 "ju 6 6 .63x0o

8 2.00 
7 4.568mo05

n 2  8- b 4.00n 
0

0 5.0127X1002 n
1 3.3261n1001 n

2 1.244.9x ,,01  0 1.4772x0 1

3 1L.6&*Axl1002 1 4,.3617x3.0_03
1.1557xlo -03 a 1.23810U

5 4.9556xo "1 *
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S a 4.o (cant.) 8 - 8.00 (eat.)

n ?

7 02 10
6 249xO12 9.2617xl0
7 2.303lO- 6 ,10.00
8 1.6210.00

- 6.00 n
2 0 6.0484xi0

- 1 1.888zD_03
0 2.2693u10-M 2 6.4i86iom
1 7-6553X1' 3 3.4i081lO03
2 5.8987X10.02 4.IxI O0
3 1 .317L10 -02 5 .5.478kxlOu102

1.2790X1O01 6 2.09M'x3.0
5 13110z107-01 -633a
6 6.ok"xio - 8 1-0103x.O 0
7 1.6792u 9.86
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Appendix D

Vftquecyand Amplitude Modulation Parameters

The folloving tables 1 through 5 give the parmeters
deteruined for section VII, part B.
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