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ABSTRACT

The problem of the approximation of a given random signal with
modulated pure tone signals is studied from the standpoint of approximation
of the power spectrum. The equal energy and moment matching techniques are
developed for the selections of the modulation parameters of the pure tone
sources. Techniques are developed for the selection of parameters of a
switched pure tone source. The power spectrum is also approximated by a
rational polynomial scheme, which uses a minimax procedure, developed in the

appendices, for selection of pure tone operating parameters. Several
examples of each of these techniques are given.
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INTRODUCTION

In a previous report [9] the theoretical problems associated
with the approximating of random acoustical signals with pure
tone sirens has been treated. This report deals with the more
practical aspects of the engineering spproximsation of random
signals. A number of techniques are developed and applied to
a particular signal to illustrate the methods.

Manuscript released by author, October 4, 1964, for publication as
an RTD Technical Documentary Repert.



I. POWER SPECTRAL DENSITY DETERMINATION

Given a continuous record of finite length, it is not
possible to estimate the autocovariance function C(t) for
arbitrary vr. Thus in place of

/2
o(x) = 2 %[/ x(t)x(t + 1)at
-T/2

ve may calculate

T, -l7l)/2
Colt) = —rrf z(t-,) x(t + g)dt
2

-(z_-I+])

vhere c~ is known as the apparent autocovariance function.
Here T 1is the length of the record which is restricted by
|*]< < T , T being the maximum lag time to be consid-
ered. With the problem of the relation of T o
'1‘ in section III.

Let D(s) be & function defined by

x) _{1 || 3
o x| >rT
= 'm

Now define

¢ (v) = D(1) ¢ (7)

It 18 clear that C (1) is calculable for a given recerd,
and also that C (r?isa.rmaror %] > 7., even thougn
C (¥) vas not défined in this region.

If we assume that the random process is ergodic then
the average of a large number of finite records is equiva-
lent to a single average taken over a single record of
infinite length. Thus we can write:

aveico(r)] = D(t)C(7)

It follows then that this relation will have a well defined
Fourier integral of the form

2

(1.1)

(1.2)



v (7,(£)) = &) * 2() = ['Q(4) Ps-t)s

vhere Q(f) is the Fourier transform of D(t) and P(f) is
the Fourier transform of C(t) , termed the power spectral
density. The symbol "*" denotes the convolution.l The
Fourier transform G(f) of a function g(£) is defined, as
usual, by

a(2) = 15 alt) 8™ 5

vhere f = 27w . Thus,
ave (P (1)) = I Q(£-2)B(8)as. (1.3)

We then identify the average of P (£) as a smoothing
(average over frequency) of the true power spectral density
with a weight function Q(f-£).

We now turn our attention to the problem of non-continuous
records of finite length. Suppose that we have a function x(t)
recorded on & record of finite length with the function x(t)
specified only at a number of equally spaced points on the
time axis t . ILet us also assume that x(t) is given only over
equally spaced intervals of difference At, i.e.

t - O,At’ mt’ooomt
then C(t) can only be estimated for

lT' - 0’ At,%t,ocomt

112 H(f) is the Fourier transform of h(t) and G(f) is the
Fourier transform of g(t), then the Fourier transform of
h(t)g(t) is given as

G(£)*H(L) = I G(2)E(S-2)at = I a(4-2)H(2)as

See [1] p. 183 for & further discussion.




The integral equation

o(7) -L/"agh(r) cos (2mfr)ar

(1.%)
Ifl = gAt, ¢ = 0,1,...n,

if soluble at all, must be sgtisfied by a fumnction P, (f)
which vanishes forf>fn'25t ’ mnﬂ:oughthzor&x:l.m
pover spectral density extends beyond |f | . This intro-
duces & nev problem, that was not encountered in the case
of continuous spectrs, namely that of aliasing.2 Consider
the two sigmals shown in Figure 1.

e At=.2 —ed

Fig. 1. - Sampling of two sinusodal waves

We note that in texms of the discrete sample x(t), t = .2q,
q=20,1,2,..., the two waves of different frequency both give

the same result. Thus we see that equally spaced time samples of
one sine wave could have come from any of many other sine waves.
Special care must therefore be exercised in regard to statistical
properties of a continucus function x(t). In particular, the
relation of the actual power spectral density P(f) and the one

2 [21, p. 33




which we are capable of measuring, PA(f) , represent a critical
problem.

To prevent such a difficulty, we will assume that our samp-
ling time is so chosen that the maximm fregquency component of
x(t) is less than 1/2At i.e.,

1
2| < TamT
This then forces:

P(£) |z| < (2.'.\.1-.)'1
R{) '{ 0 2] > (2at)™

It should be remarked that this is seldom the case in actual
practice.

One would now ask - "Is there a better sampling scheme than
that of equally spaced samples?” If one indeed exists, it appears
that it has escaped attention. When the problem of aliasing
becomes important, it is usual to follow some method of filtering
and/or smoothing the data to make appropriate modifications in
the computations. We make no attempt to do this in the present
wvork. References [2], [3] and [4] are of interest in approaching
this problem.

II. NUMERICAL DETERMINATION OF POWER SPECTRA

Let us denote the values of the sample function determined
at times t =gAt, q = 0,1,2,...n as xq, that is we define

xq - x(¢t) ’ q = 0,1,..-!1

It is easily seen that the expression analogous to (1.2) is now
n-r
1
Y
q=0
mn M = I‘At md M,1,2,..-l -<_ n.

X X
e e (2.1)

To determine the power spectrum then we take the appropriate
analogue to the relation (1.%) and find that
m-1

P = 2nr (c°+2z c, cos ?+ C, cos rm) (2.2)
gml
5



r
Pr £ P(amt

r's= 0,1,2,.0.,‘

The factor of 2 appears in egn. (2.2) due to the fact that we
vish to consider only those power spectra symmetric sabout w = 0,
Thus, glven a particular record, we have a numerical method to
compute the covariance function and the power spectral density.

Irtharemlmralmtinctmcordstobcmd,uh
usually the case, we then define

Er = ave [Cr]
(9.3)

Pr = ave (Pr]

mntbmrmut-hntoruchrmrmhduﬁnctmcom.
By the property of ergodicity, which is tacitly assumed, we are
ulmdthntinthlhitofincnuin;].yhmnﬂmof
records that Ur vill almost ewrtdly converge to C(t) at points
of definition of T . For simplicity from here om, we drop the
bars on C anda ¥ .7
r r
It is also quite frequently desirable to know the probability

density for a given random function. The probebility density
function P(y) is defined as

P(y)dy = Prob(y < x < y + ay}.

Its determination for our discrete sempling then turns out to
be merely a counttig process.

III. PIANNING FOR THE MEASUREMENTS

Blacikman and Tukey [2] have spproached the problem of the
nountofdahnqundsbontumucﬂupml in order to
Make statements concerning the reliability of estimates of power
spectra and covariance functions. Because of the astronomical
number of calculations imvolved in estimating a power spectrum
for a desired precision, it is important that we compromise
between resolugion and stability. We shall only reproduce

certain parts of their results. The reader will find the
details of arriving at these results in sectiom A. 23 -+ A. 28,
B. 23 -+ B. 2k of [2].

6



We define l'., as used in section I, as
.
(resolution in c.p.s.) = y = R (3.1)
m

where 1' is measured in seconds, "Resolution" is a megsure

of the eoncontntion of a spectral estimate in frequency units,
i.e. a measure of the width of a frequency band in which no
attempt is made to further discriminate. We ean express the
stability associated uth a pl.rticuh.r estimate in terms of a
spread in db, db = 0’ of an interval containing,
with prescribed pmb.b rltio of true power to esti-
mated power. To this end w definé

250
(80% Range In ab)
400
( 90% Bange In ab)
(96% Range In ab)
840
(99% Range In ab)

k=14

ksl4

k=wle

k=14«

By 90 per cent range, it must be emphasized that we have
9 out of 10 chances of finding each individual estimate
within the prescribed db range of its average value.
The number of records, P, of length rn required to yield
the particular stability and resolution chosen is then
expressible ui

= (1+x)

Pa= (5-5)

1
Mn-g

We find that we need
n"’nfm

lags for the computation of the covariance and At = 1/51’”

as the size of the time intervals. f is the maximmum
frequency component present in x(t) ."‘E.mg this, we can
compute the required mumber of data points to be:

n=(15k+ P)anmx (3.4)

We nowv give several illustrative examples.
T



Exanple 1.

Suppose that we are given records of length 1 second having
frequency components up to 10" c.p.s. and desire a resolution of
50 c.p.s. We wish to know how many samples of this record must
be made to have a confidence level of 90 per cent at + 2 .
Thus we calculate:

T = 553 T T

k = 101
Pml
m = 600
n=3x 10h
we then need only 1 record.
Exauple 2.

Suppose we are given records of length 2 seconds. We
mhtofindauthowmnypieceomvillneedtohsns%
per cent confi at + 1 db, vith maximum frequency
components of 10 c.p.s. and with 50 c.p.s. resolution.

T =2x 10-2
m
k = 841
P= h.2 ~ h
4 records are then required.
IV. AMPLTTUDE AND FREQUENCY MODUIATED SIGNALS

We have at our disposal K( < 25) low frequency and L(< %)
high frequency single tone generators (sirens) with which we
wish to approximate a given numerical power spectral density.
The siren may be either amplitude or frequency modulated
within certain restrictive ranges.

Let us find the power spectral densities for each of the
three modes of aperation of a single siren:

8



a) Pure tome: X (t) =vA_cos “t
(&.1)
then Pk(u) = Lk b(a—uk)
ukis the center frequency of the sirenm, mdﬁ its power and
b(u-uk) is the usual Dirac delta function defined as

6(u-uk)- 0 ;ufuk

such that

I 8(u-s ) = 1

b) Amplitude Modudstion

x () -JIk' (1 4 cos 0 t) cos u ¢ (4.2)

then
Pk(u) v A—%‘]-‘- [5(3—«5‘ + Qk) + b(u-uk-ak))
+ “k b(«-nk)

N, is called the modulation factor and “k/" the
wlation frequency.

c) Frequency Modwiation

X, (t) -JIK cos (wt+ B sinat) ; (4.3)

then

Pk(u) = Ak(; Jf [b(u-uk-ﬂ&) + 8(4»-«)k + lnk)]

+ 35 (8,) 8o ))

8 1is termed the deviation ratio, and /2’11’ the modulation
éequency. Jn(B) is the Bessel function of order n and
argument 8.

Figures 2 and 3 give representative pictures of power spectra
of the pure tone and amplitude modulated signals.

9



P(w)

£

Fig. 2 - Power spectrum of a pure tone signal

P(w) A,
)
Ay AgAy
4 4

Wr- Ny Wy WY

Fig. 3 - Power spectrum of an amplitude modulated signal

The power spectrum of the frequency modulated spectrum is not
as simply illustrated. In Figure 4 we illustrate several cases
of frequency modulation. A table giving the absolute magnitudes
of each frequency component is presented in appendix C.

Suppose we are given a particular power spectral density,
S, that is specified numerically at each of the points w = n/w.
Let

Sn = S(W) H n= 0,1’2,...

10



Our objective is to approximate S py the use of K low
frequency sirens, i.e. operating in a frequency range of 0
to §/2v , and L high frequency sirens, operating in a range
/2% to § , each operating in one of the 3 modes given above
by &), b), or ¢). Each of the three types of modulation
above depend upon the specification of a center frequency

® . To determine w we make the requirement that each of the
xk, and similarly tgu L, sirens have the same total power
output. This assumption is made in order to assure that
any criteria used for the selection of parameters will lead
to realizable power distributions among the several sirens.
The total power to be distributed among the K low frequency
sirens is given by

P = o[s(“’“ - MZA s,
q
L

re

av

and similarly for the L high frequency sirens
t

P .[ S(w)dw = mz 8,
g=x

t-fz‘&'

We have sssumed that 5(w) is essentially zero for w > ¢ .
Suppose that and are respectively the operating
powers of the and frequency sirens. Then

P

L

oK
P

G

(4.%)



| m
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5 = 25. ] .n..k

Fig. 4 - Power spectrum of a frequency modulated signal for various &
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Hqﬂuabmthcmmlepmmclontputorshigh
frequency siren, then it is necessary to scale S in such
tnnncrth:tqnhredncodtothislmungm. We
lini];rlylcmsuqx'uouuidatheallonbhopentng
range of the low frequency sirens. The interval (0,: ) now
needs to be broken up into K equal energy intervals. Jet
(Qk,9k+l)bethemquency1ntervtlinvhichthckth

sirens operates. Then ’1 is determined by:

%41
Q -f S(w)aw ; 1 = 1,2,..., K

*

subject to the conditions that

v, =0
1 = ¢

Similarly we section the high frequency range by requiring
®
qﬂ-[ Whe)aw ; 1eml,..., L
i

vhere

ko1 = 8

ke = ¢

Thus we have partitioned the power spectrum into parts
(see Figure 5).



Sw)

Fig. 5 - Energy partitioning

let us now examine one frequency band, as illustrated
in Figure 6.

Sw)

w
(P" CPH'I

Fig. 6 - A single frequency band



We nov make the restriction that only one siren is allowed
to operate in each band.

We quote a powerful theorem of Fourier analysis:

Theorem: I [rn) is & complete set of orthonormal functions

gg_ the interval [a,b], then the sequence of functions x- -

chrnummnogugx(-)y_n-- at each point w € [8,b]

of continuity of X. (.!n is the Fourier coefficient defined by

b
c = J Tn(t)x(t)dt

The Tschebyscheff polynomials form such a system of functions.
Then n'® Tchebyscheff polynomial is a polynomial of degree n
in the free variable, that is

n

‘.l‘n(z) = ; d..z‘

Using this fact we then can claim, by the properties of uniform
convergence, that if we force all the moments I‘ of a function
satobethclmumth.mmentl ofanothermnctions then
82 and S. are the same functions. Guided by this we intend to
uSe the moment matching between the actual power spectrum and
the assumed power spectrum as the criteria for selecting all

the parameters that need to be determined. Generally we will
not have enough free parameters in order to force all of the
moments to be equivalent. In this case, we will arbitrarily

choose the lowest moments needed to specify the parameters.

Let us apply this scheme to the amplitude modulated signal
given by egn. (4.2). The pure tone signal will then be the
same except A, is set identically zero. Writing the balance
of the zeroth, first, second, and fourth moments gives us

2
See any book on advanced mathematics such as [1]. It turns

out that we must restrict x(t) such that ¢ x(t) is square
integrable for each m. However, we need not worry about this,
since our x(t) will be bounded and continuous on a finite
interval.

15



®i41

P/K 1<K
F s s o o0 LS
8(w)dw = A + - Q {PB/L e
*

P41

f w(o)w = (a, + 2140 o

*

®+1 2

((...«1)2 3(w)aw = é-igi‘.'i
*

P41

3 4
(w~w,)” 5(w)aw = ‘-‘i‘—:ﬂi

*

We can then write the parameters A A’Q:l’ uiu

G|

(4.5)

. o
l+2

where: 2
T-B-asiA+ui .
Y=D- o +6¢2‘B-—hu3A+uhQ
b ] i i b g |
!z (4.6)

A= (M) nsn

Q



-
C= (m)hl '38::
1

N>
L | 4
D= (am) : msn
)
- - ; - B4l
e T ; R ™

Thus we have determined the parameters of the 1th siren given

that we wish to approximate the power spectrum with an amplitude
modulated signal.

In the case of frequency modulation, the situation is not quite
as straightforward. We again have four parameters to select,

namely, Ai’ “:l’ Ai’ 61 . First notice that the only place that bi

occurs is in the argument of the Bessel function Jn. It is fairly
obvious that there will be no simple method of choosing & by the
solution of the moment matching equations. Thus we must choose

8 4 Bomevhat arbitrarily. First notice that equation (4.5). for

ui does not change when referred to the frequency rather t%n.n
amplitude modulation cases. Thus “1 is readily calculated. By
nkingretemcetoriguehvewytochoonthcbimwnu
most closely give the same kind of gross characteristics as the
actusl power spectral density exhibits over the (91, Qi*l) interval.
Now that aihu been selected we proceed in a similar manner to the

method used in the derivation of relations (4.5). Thus we get

W = —
i P:I.

(2]
e X J(34)

P, (+.7)

¥ s
i Jo(bi)

where we have used the notation of equations (4.6) and

17



(4]
P, = Fes) +2,Zx ~ ()

- (4.8)

Fs,) = aZ 2P,

==

By use of the relation

7 (2) -Z 3 (2,03 (z,) o'

-0

2 2 2
[ .'1 +;.2 -alzacooa

we can show that

) =1

2
P(e) =2

Thus through equations (4.7) we can determine the parameters
associated with a frequency modulated signal to approximate
given power spectrum on an interval (’1’ ’14-1)'

As can be seen by comparing Figure U4 with Figure 3, the use
of frequency modulation is capable of giving mucn wider distributions
of the power over tne interval.
V. RANDOMLY SWITCHED SIGNAL

Consider the form of the power spectrum of a pure tone sirenm,
i.e.

ﬁ(t) -JA_k cos wkt

If this signal is turned on and off in a random fashion we will
have

:5{(1-.) -J—gz(l + Qk(t))coc ukt {5.1)

where Q (t) is a random function assuming values +1 or -1, as
illustrated in Figure 7.

18



Q)

ep—— [ ——=

Fig. 7 - Random on/off amplitude modulation function

We denote the mean switching time, i.e., the expected time
between changes in value, of Q.k(t) by T, . If ve assume that
the period between switchings, i.e. T in Figure 7, is a Poisson
distrubuted random variable, then by a st&iﬂiw calcu-
lation, we f£ind that the power spectral density of the signal
(5.1) is given as

P, (w) = 1X(5 (w) + 5, (b)) (5.2)

where

nrll

1
8 (w) = —{ =}
k T ). (_?_)2
Note that this is the first time that we have been lead to a
non-discrete power spectral density. This non-discrete form
is realized due to the random nature of Q (t). In previous
methods we have always been concerned with deterministic forms
(see section IV) which necessarily lead to discrete spectra.
Since we are only concerned with power spectra that are symmetric
about w = 0 , we write P(w) as

1 "
P(w) = 3 8,(0) = 2 (T TR ) (5.3)
e

19



This amounts to a folding sbout w = 0 of the spectrum. Figure 8
shows a typical form for P(w) as given by (5.3)

Pw)
A e s
ey
{7 C— r
4 /
R
Wy

Fig. 8 - Power spectrum of a randomly switched pure tone signal

The half height width of the curve, as shown in Figure 8, is
given as

4

' = =

This shows that the width of the spectrum increases and the
bheight decreases as the mean switching time decreases.

One could now set up a least square method for the
approximation of a given spectrum by & system of on-off
modulated sirens. This, however, would be & rather involved
scheme, since each siren involves 3 parameters (w , T , A )
and we are lead to a system of nonlinear equations for their
determination. When we examine a particular spectrum, there
will quite probably exist certain resonances that are similar
in appearance to the one illustrated in Fig. 9. Suppose Fig.
9a represents the spectrum we are interested in approximating.
We wish to remove the resonance by approximeting this portion
of the power spectrum by an on-off modulated signal. We go
through the following steps to find the values of the parameters;

(1) Draw a straight line, A, approximating the background
under the peak.

(2) Determine the maximnm, 8_, value obtained and 8_, the
valueorPatthepointﬁ. B is roughly half way under
the peak on the line A.

20



(a) - A typical spectrum showing a resonance

P(w)

(b) - Modified spectrum showing the removal of the resonance
by means of an on/off modulated siren

Fig. 9

(3) Draw a line, D, through the point C, parallel to the
line A. The point C is determined by P = (3_ 45 _)/2
and placed half way between the sides ormn&.

(4) Measure the width, I', of the peak on the line C, and
redetermine the point C.to be in the center of the peak.

(5) Determine the parsmeters of the siren as
= 4
X"
w = w of the point C (5.4)
ar (52-51)
L = =

21



By assigning the parameters as given in Eqn. (5.4) to one of
the sirens we are left with a spectrum as illustrated in
Figure 9b. This reduced spectrum is then more likely to be
easily approximated by scme other method.

The same procedure with a little more freedom of choice
can also be used for two overlapping peaks where the maxima
are distinct; but close together.

VI. GENERAL REPRESENTATION OF THE RANDOM SIGNAL BY APPROXIMATION
OF THE POWER SPECTRUM BY RATIONAL POLYNOMIALS

In a report by Samuels [9] the problem of representing a
random signal by a series of orthogonal functions with ortho-
gonal random variables as coefficients has been studied. Here
wé shall be concerned with the solution presented there when
the power spectral density, S(w), has been approximated by
& ratio of polynomials as follm:

2h
2 b, (iw)
N{(iw ; h
Blw) n((‘m‘;)?l) = (6.1)

p/2

;Zo a (1)

The first computational problem associated with finding
& solution is the approximation of the actual power spectral
density by a form similar to equation (6.1). We have two
major alternative methods by which we can attack this problem:

1) We can use a least square procedure in which we determine
the constant a.k, bk by minimizing the integral

2K
Zbk(iu) "
] wW(w)dw

Zlk(iu)ax

with respect to each of the a and 'bk . W(w) is the weighting
function and S(w) is the actual power spectral density.

Q(2,k) = f [ s(w) -
(o]



2) We can use a minimax procedure in which the coefficients

.k and bk are determined by minimizing the difference between

the actual function and its approximation.

The least squares method is presented in detail in Appendix 1,
vhile the Minimax procedure is presented in Appendix 2. While the
least squares method gives an over all measure of the fit of the
approximating function, one is not assured that very large errors
vill not be present in localized areas. The Minimax procedure
remedies the objectionable character of the least squares method,
in that we are assured that it will not miss local structure by
large amounts. However, we loose the possibility of approximating
the function in a "best" sense over the total region with the
particular solution generated. Thus a decision must be made as
to vhich characteristic must be more faithfully reproduced:

a) local characteristics while possibly leeing overall fitting;
or b) gross characteristics while possibly losing local effects.

Once the form of equation (6.1) has been determined, i.e.
and 'bk are known, we can determine the orthogonal functions for
the approximation of the random signal. The computational scheme
that is used to determine the parameter of this representation is
given by the following six gtepl:

a) Solve the polynomial
9/2 p/2

2k 2 2k
b Q -lxlé Q
kan nk a'ls;n

for the roots @ . Note that there will be exactly p roots of
which p/2 of thgne will be the negatives of the other p/2 roots.
Denote these independent roots as Q  , k = 1,2,...p/2 . It must
also be recognized that we can not %r the present determine Q ak
except as a function of )‘n'

b) Determine the roots of
p/2

Zb‘k(m)& -
3

These roots will come in pairs (one the negative of the other).

Iet us denote the roots for which the imaginary part is positive
by w, k=1,... p/2 . The values of w will not be dependent

on )‘n’ thus they are readily computed.

¢) Find the quantities
23



w((10)%)

’ k.l,a,ooop/a
a 2
5 N(1) )| 1

Bk-

d) Solve the nonlinear system

A i -1 -1

Q nl-iul Q -101 Q n‘-l':lwl Q nl+iul

1

= e 00 6.
a -, ' (6.3)

1 -8

e(n nl+1wl)r e(n nl+1wo)r e(-s'z nl+1ul)'r
Q nl-i-iul Q nl-l-iul -Q nl+ml

for 7\n, where we have substituted the expressions obtained for
Q@ 1in section a). This is the equation 30 of [9]. KRumber the
s2¥utions according to the index n. Since (6.3) will be a non-
linear equation, there may possibly be an infinity of solutions.

e) Solve the system of linear equations.
p/2

+ -
By (?znkm * Agk-m]'o 8 =1,...p/2
k™ nk Yk

k=

p/2 (Qgic+iwg)T - (-Opetieg)T
Ve e

+
Zns[?z“uu + 7.0 4w om0
k= nk n nk n

S =1,...,p/2

for each A+ and A_ given each of the A determined in section
d). Note %Ent one of the unknowns is not detemined. Let this

+ .+
one be Anp/2 . Then each of the Ank/Anr/2’ k=1,...p/2 -1

- .+
and Ank/Anp/a’ k=l,...p/2 1is known for each A .

2k



f) Given all the foregoing we then have
p/2
+  ant . .- -gnt
(0 =)l by e (6.4)
k=l

By forcing vn to be unitary, i.e..

T *
f vn(t) ¥ (t)at = 1

°
we determine A+
np/2 .

Thus (6.4) represents the system of orthonormal functions
hecessary to approximate the given random signal X(t) as

x(t) -ZO 0¥ (t)
where en are orthogonal random variables.

It takes little examination to see that this will require
& very lengthy computation for reasonably sized p and q.

To illustrate the application of the method of rational
pPolynomial approximstion in obtaining the orthogonal function,
we consider the simplest case possible, namely: p# 1l and q = O .
Thus S(w) is approximated by

Lol
B +w
S(w)
w >0

|
/’ l+w"

w

Fig. 10 - Power spectrum of a signal with a Markoff suto-
correlation function

25



This is the power spectral density of a process with a Markoff
autocorrelation function illustrated in Fig. 10. After some
manipulation (see [9] p. 17-20) we find that

o co.(hé!) + B sin (‘%LT) -

W --l-*/ -2

‘nmsthe)\naredeterminedandvo canvritcvnu

(6.5)

mn
ﬁ-i-iun
where an is determined as

*n(fo) = {un cos Qnt + B sin unt]

T
2 _ |BHm2 2,411
Ia.nl - | = | E[lun cos w t + B sin untl at)

VII. APPLICATION TO A PARTICULAR SIGNAL

As an illustration of the methods presented in the previous
sections, we now give several applications to a particular signal.

Figure 11 illustrates the representative trace of the random
signal that has been digitalized and used in this analysis. From
this signal we have calculated its amplitude probability functionm,
see Fig. 12, its covariance, see Fig. 13 and its power spectral
density, see Fig. 14, according to the methods of section II.

It 18 to be noted that the power spectral density is quite
ill-behaved. This is due to the nature of the random noise
generator used. In practice one would expect a less harsh
curve. For some of the analysis we have used a "Smoothed"
pover spectrum which would probably be closer to the types of
spectra physically measured. This is exhibited in Figure 15.
Note that there exist marked resonances, however, they are not
as pronounced. Also the rapid low level background has been
filtered out. When this power spectrum is used it will be
clearly noted.
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A. Frequency and Amplitude Modulation

As in our first illustration, let us suppose that we wish
to approximate the power spectral density with the pure tone
sirens only. Then according to the equal energy partitioning
and the moment matching technique of section IVwe can easily
compute the operating frequencies and powers of each siren.
Again we wish to point out that the equal energy method of
assigning these parameters to each unit leads to realizable
power assignments to each unit and in addition offers an
intuitively rational method of selection. It is rational in
that one of the foremost considerations of approximating a
random signal is that the energies associated with particular
frequency regions be as faithfully reproduced as possible. This
assures that the response characteristics of any system which
uses the approximate signal as an input is as close to its

response when subjected to the physically occurring signal.

One of the questions raised is: how many pure tons sirens
are necessary to simulate the signal. As an illustration, a
number of cases have been carried out on the power spectrum of
Figure 14. The following list gives the number of pure tone
sources, the table on which the parameters are exhibited, and
the appropriate figure on which a comparison is made between
the approximation, the actual or smoothed power spectra.

*

Case No. No. of sirens Table Figure
High
25 16

20
15
10

5

17
18
19
20

N FOV N
#’O\O’\O\\Og
U EFW N

*See Appendix D.

Along the «Pscissa of the Figures 16 through 20 the vertical
lines represent the center frequencies at which the sirens
function. The straight line segments represent the power of
the siren smoothed over its interval of operation, and the
irregular line indicates the real power spectrum. It is clear
from Figures 16 and 17, that cases 1 and 2 approximate the
actual spectrum quite closely. Cases 3 and 4 although not
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approximating the actual power spectrum, do represent the

smooth power spectrum rather well. The last case fails to

give anything other than an indication of the gross power
distribution and is completely devoid of any local structure.

As another measure of the meaningfullness of these approximations,
the amplitude probability density has been computed for case 1,
see Figure 22. When compared to that of the original signal,

we find that the fit is quite good except for the very high
amplitudes. The tables associated with case 1 through 5 also

give the appropriate frequency and amplitude modulation parameters
for the intervals. We can use these parameters to distribute the
energy over the interval in a manner that will more closely yield
the approximate structure given by the figures. It should be clear
through these examples that the number of sirens necessary is
directly a function of the power spectrum and that no general rule
can be stated.

B. RnndeISvitchedPureTonegi_._E‘l

For the present consider the smoothed power spectrum of
Figure 15. Note that there are five marked resonances indicated
by the arrows. Each of these has structure similar to that of
Figure Sa. We wish to remove these resonances by use of randomly
switched pure tone sirens.

After following the procedure outlined in section V, we
arrive at the following parameters for the five sirens required
to remove these resonances:

Resonance -
No. k “k ﬁ( '.l:k
1 3 289.0 1.000
2 ].8 51“.1 .500
3 26.5 351.8 ST
4 48 326.7 500
5

59.5 395.8 222

When the parts of the spectrum are removed which are contributed
by these sirens, we have left the spectrum represented in Figure 22
by the lower line, termed the resolved spectrum. The resolved
spectrum, Figure 23, is much smoother and will be far easier to
approximate with other methods than the spectrum we started with.
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C. Rational Polynomial Fitting and Use of the Markoff Correlation.

By removing the resonances in the smoothest power spectrum by
the methods of the previous subsection, we have arrived at the
resolved spectrum, Figure 23. This has the same general shape as
that of Figure 10 and thus suggests that it be approximated by
the use of an orthogonal expeansion in the sense of section VI.

We find that a curve given by

P(w) = (7.1)

60-0-1»2

falls just below the resolved spectrum (see Figure 23). We choose
such a curve so that the portion left after subtraction will be
everyvhere positive. The left-over can then be approximated by
other means. Using the length of record analyzed, 10 sec, we
find that eigenfrequency equation (6.5) is in the form

60" +tt.n(101m)-0 (7.2)

where u is now in cycles per second. It is clear that the
roots u of this equation are bounded as

%«mrru < -(n+2)
or
20 20 ¥ 10

Thus the frequencies will be spaced at 20 per cycle. This points
out the basic problem with the approximation of the actual signal
by the orthogonal function scheme of section VI. Ranely,

that it leads to unwieldy numbers of sirens operating within the

frequency regions of interest.

This same power spectrum, namely that of equation (7.1) can
be approximated by the use of only one siren which is switched

on and off in the manner of section V, if the Parameters are
chosen ag
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U~0
T" 30
A = 81007

Remembering that the signal of the randomly switched siren is
of the form

Jz

x(t) = "2 [14Q(t)] cos wt,
then the approximating siren has the modulation
x(t) -i—z [14Q(t)]

For physical operation, w may have to be chosen to be small,
but not zero. If this amplitude is outside the physical
operating limits of one siren, then several sirens may be
used to generate the amplitude, while all are similarly
modulated with (1 + Q(t)). This type of operation also has
its drawbacks in that it is doubtful that the very small mean
swvitching time can be physically realized.
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AMPLITUDE PROBABILITY FUNCTION

'l A v}

0 5 10 I5 20 25 30 35
AMPLITUDE

Fig. 12 Amplitude probability density for the sampled
signal
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Fig. 21 Comparison of the amplitude probability density
functions of the actual and approximating signals
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Appendix A

least Squares Determination gi_’ Rational Pgmmim Coefficients

The problem which we wish to consider is that of approximating
a given tabulated function f(x) in terms of a ratio of two poly-
nomials in x, i.e., we construct a functionm, f'(x), of the form
P
i
ait
fl(!) =

611
1

such that fn(x) is the "best” (in some specified sense) approximation
of £(x).

In this appendix we wish to examine the problem of the determin-
ation of the coefficients a,, 8., under the so-called "least squares”
criterion. As usually formulated, the least squares method calls

for the minimigzation of the function

ala;p) = J [2(+) - £,())° W(t)as

with respect to the parameters Q, § , vwhere W(t) is some non-negative
weighting function which many suthors set arbitrarily to unity. Form-
ing Q(Q,8) using our supposed tl((t) we have

Lo
© Sk

a@e) = [ [#(x) - Y IP(x)ex (a.1)
g.x
i

o

For Q(g,8) %0 be minimized with respect to the parameters o , B,
» il ¢
it is necessary that

xR

aai-o i=20,1,...p

% a.2)
= 0 i=0,1,...q

B, ¢

W



Of course the solution for (A.2) must be further examined to
ascertain which solution actually gives the minimum. Perform-
ing the indicated differentistion on Q{g8) as given in (A.1)

it 1s seen that it is desirable to choose & weighting function
W(x) such that we can remove the unknowns f_ from the demcminator.
By this consideration we are led to make t&a choice of W(x) as

q9
W(x) = [2:o Bixj']a ‘-k (a.3)

vhere K is an arbitrary positive predetermined constant. We
propose to call this choice the denominator wejighted least
squares. The reason for including the term e = will be
apparent later. Clearly, W(x) as given in (A.3) is non-
negative. Q(Q,8) can then be written as:

Azp) = J (#(x) ) b 2 -) a1 e (A.4)

We first observe that if f(x) is bounded as x -+ = , then we
must require that p < g for (A.4) to be bounded. Also we
note that the system of paremeters (g,8) can be determined
only within an arbitrary multiple. Thus without loss in
generality we set

Clo =]
We have
- q P
% - %[{r(x)inﬁi -Zaixil r(x)x"d-ndx
3 o () °
or
q - P -
#) -Kx 1+ -KX
Z) 81[1‘2(:)8 e dx -; a‘[f(x)x e dax (A.5)
-[f(x)xjo{xdx
for Jd = 0,1,...q

L



. 9 P
%J - 2[[!(:)2&13:1 -inail S

q . P
or Zb B J f(x)xiﬂe-ndx -Z aJ xiﬂe-ndx -
o (A.6)

o

fxae-ndx
°
tor J " l,2,ooop
Now define
nml-[f(x) e Xy
. (A.7)
n
. - [ 1@
o
and recall that
n -KX ﬂ'
f . R
(] k
-KXx

It is now clear why we chose the term e in the weighting
function (A.3). Using the notation of (A.7), (A.6) and (A.5)
can be rewritten in the form:

q P
; AR "; LU T R L
q p (a.8)

1 i)t .,
7 ;Bi‘wﬂ'&’i el § 6 2B 59D



By defining

i+j-1)*%
‘_i_—L- 1'l,ooop H J. l,ooop
K
. i=p+l l;J=1
e PHL . copbl 5 § = 1,000
TiJ = i
1+J-M1 i-l,ooop H J -Hl'oﬂtwl
Niere 1w ptl,...phatl 5 § = pbL,...phql
(J-l)" J - l,ooop
AJ =
- J = pHl,...prgHd
% J=1,..p
0 =
A g
J-p-l J = p.'l,nnop"q’l

we can then write (A.8) in matrix notation as the set of
linear equations:
ptarl
; T 0 = A ; 1im1,...phgHl (A.9)

Note that if we had not chosen the weighting function as
we did, then we would not have been 1led to & linear system of
equations for the unknowns 6 _, but to a nonlinear system. For
numerical work we prefer a lineu- system to a nonlinear one.
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Appendix B
Development of the Minimax Procedure

Before development of the actual procedure for minimax
approximation of arbitrary functions with rational polynomials,
we first give seversl theorems and results to place the procedure
on & firm mathematical besis.l

ILet it be required to approximate a given function g, where
the real values y,; » g(ty) at the N distinct points t; for
i=0, ... N~1 constitute the only information given concerning

8.

Let the set T consist of the N points ty, 1 =0, ... N-1,
vhere t; < t;,, . The index set S with M elements S4 will be
used to indicate a subset of T consisting of the distinct
points t.‘ vhere i = 0, ... M-1 and

< < N-
0<s, <8, <N

< <
to = 1"‘1 t'1-0-1 - 1:lcl

The class F of approximating functions f consists of the

functions:
P4
a 11'.

£(t) = - Ht)
)

b .t
i

vhere the numerator degree, p, and the denominator degree, q,
arefixedwithap;‘Omdbq,‘O.

A function f from class F which gives the best weighted
minimax approximation to g over the set T is one for which

max [£(t) - g(t)|W(t)

teT
is minimized. The weight function W(t) is assumed positive for
all ty in T.

lwe follow Kenyon [6] and Golomb [8]
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The minimal value will be called A . That is,

A =min max {£(t) - g(t)|w(t)
feF teT
The deviation at any point ti is8 defined as

8, = [£(t,) - &(t,)IN(¢,)

vhere f may be any member of the class F, not necessarily one
giving a best approximation to g.

Theorem: (Existence and Uniqueness) For given g(ti) and W(t)> 0
vith 1 = 0,1,...N-1 and fixed p and q, there exists a function f
belonging to F such that the maximum deviation

- l2(t,) - a(t,)|w(t,)
assumes its minimal value A . The function f is unique provided
two functions are considered identical whenever they can be
reduced to the same function after cancelling common factors in
the numerator and denominator.

Theorem: (Tchebycheff) Let M = pag+2<N and let f be the best
minimax approximation to g on the set T. Then there are at
least M points t'i among the N points t' of T such that

la,il = |5'1+1| = A and sgn B, # sgn L

where
ts1< t'i+l wd i = 0,0-.,“‘2

The signum of & real number & is defined as sgn(a) = 1 if
&a>0,8¢ (a8) =0if a = 0, and sgn (a) = -1 if a < O.

Theorem: (de la Vallee Poussin) ILet M = piq#2< N, with p, q,
g(t,) and W(t,) given for 1 = 0, ... M=1. If f is any member
of class F (not necessarily the one yielding the best minimax
approximation to g.(t)) vhere

< <
t0 = t'i tsi-tl = tN-l

then A, the absolute value of the maximum weighted deviation
for the best approximation, is bounded by the relation

k9



min [8g, | <A < max |3, |
i i

With this background, we now enumerate the steps involved
in determining the best approximation function f.

l. From the set T of N distinct points ti’ i=0...
N-1, select a subset of M = p ¢+ q + 2 points t. wvhere
M <N and tg < t.1+1

2. Find a rational function f(t) = P(t)/Q(t) such that
w.i[t(t) - yj_] = (-l)iﬂ?\ is satisfied for minimm

|A]. This is equivalent to solving the system of
equations

q
(-] o i+l (4
w'iZ n ey w'iy'ioi bytey = (-1) x; b8y
or in matrix terms,
Ax = ABx

The colunm vector x 131 [a.o,..., R bo...b ] Matrices
A.and B are both MxM with elements

3
x wlitli Y .<. J S p
13 J-p-1
5 A Pl < § < M-1
b = Y 05. J <P
B (™Mt mcicma

3. Using the rational function f found in step 2,
determine a point tg €T where the weighted deviation

8(t,) = W, [£(t,) - &(t,)]

assumes its maximum megnitude |5(t )|.
H

lAT dcnotel the transpose of the matrix A. Thus if A = [a

ﬂunA .[&l]

13]
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b, I lQ(t‘)I < A, then the weighted best approximation
to y = g(t) on the set T bhas been formed.

e Irla(t;)lgx, then a nev subset is selected and the

processes are repeated, starting with step 2. The new
subset is chosen according to the following rules:

&. If possible, delete that point t of the old subset
which is adjacent to t! for vh1ch sign 8(t, ) = sign

b(tﬂ

b. or.herv:ue,melyift <t‘ or if ¢ >t and
sgn 5(t, ) or sgn b(t.u ) # sgn 5(t i mpec%ively,
delate point of the oubset nppe‘.smg at the
opposite end from t , i.e., t.“ rapect:lvely.
In either case the Point dtothelubutto
take the place of the dele d point.

Step 2 involves the solution of nonlinear algebraic
equation of the form

Ax = ABx (B.1)

where A and B are given MxM matrices. We wish to find the
eigenvalue A , and the eigenvector x.

In general we will find M eigenvectoms and M eigenvalues, not
necessarily distinct. The eigenvector, x , can be determined
only within a multiplicative constant; therefore let us choose
xk = 1 as a particular normalization.

The matrix B which arises in the minimax approximation
problem has its first p 4 1 colums all zero. For this reason
from this point on, the matrix B will be treated as an M by
Q+ lmatrix vhere g+ 1 = M - (p + 1). We now use the well
known power method [7] to solve our reduced system.

Suppose first that the matrix A is singluar. Matrix A is
singular if and only if A = O is an eigenvalue. The correspond-
ing eigenvector is then a solution of the system

Ax = 0

o 3 §



If A = 0 is an eigenvalue, then the rational functionm approximates
the given function with zero error on the set of M points. We then have
the usual rational function interpolation problem,

Let us consider now the most prevalent case; namely where A is
the non-singular so that A = 0 is not an eigenvalue. Letting

1
sl

and multiplying both sides of equation (B.l) by A'l, then we have

Cx = ux (B.2)
vhere C = A™lB.

Thus we have transformed our problem into solving the system of
equations(B.2) for x such that p is the maximal eigenvalue. The
application of the r method can be described easily. A seguence
of colum vectors xiV) starting with x(®)is computed together with a
sequence of scalars Kv - They are defined recursively by

ext¥) w5V

x{\ﬁl'l) = y( v) /KV
th (v)
'melcala.rwiillbe taken as the k componentyk
v) where k is such that none of the yl(‘v)

are identically zero. The starting vector x(o) can be chosen as
any (non-zero) M-dimensional column vector which is not orthogonal
to the x, 1.e., (x(%))Tlo. Usually ome sssumes that all the
samponents of »(0) are unity.

of the column vector y

If the eigenvalue p of largest magnitude is real, it can
be shown that

lim K
M= v
V= o

'misthencanple'benthemethodotﬁndingthcminim
approximation to a given function.



Appendix C

Frequency Modulation Power Distribution

In section IV, we were lead to a power spectrum of the
form

Pkﬁﬂ) = A (Zi J‘f(bk) [B(u-ak- l%) * B(H-uk - Jnk]
+ 32 (5,) 8(u-a))

The following table gives the values of Jﬁ (3) for various
5.
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Appendix D
Frequency and Amplitude Modulation Parameters

The following tables 1 through 5 give the parameters
determined for section VII, part B.
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