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Consultant to The RAND Corporation, Santa Monica, California 

Some years ago, the authors studied the problem of the expansion 

into vacuum of a finite mass of gas initially at rest and in a uniform 

state, under the assumptions that the gas is perfect and inviscid. 

The results for the case of plane flow appear in Ref. 1, while those 

for cylindrical and spherical flow are unpublished.  From time to 

time we have, upon request, privately communicated some of the results, 

together with assurances of the eventual publication of the results in 

their entirety.  However, the continued passage of time has tended to 

diminish the conviction of these assurances.  It therefore seems 

advisable, at this time, at least to summarize the contents of Ref. 1, 

and to provide perhaps the most useful result of our unpublished 

calculations. 

We considered the three cases of plane, cylindrical, and spherical 
(2) 

symmetry.  The flow in the plane case can be described^  as the inter- 

action of two expansion fans, or simple waves, centered about the 

edges (+ x ) of the initial mass of gas. The (x,t)-plane, or the 

flow at any time t, is thus divided into two essential regimes, a 

simple wave and an interaction region.  In the cylindrical and 

spherical cases, the regions of the (r,t)-plane are essentially the 

same, although pure simple waves no longer exist.  In all cases, the 

flow at any point consists first of the outward motion caused by the 

expansion fan from the nearest boundary, and then a weakening of this 

process by the arrival of the expansion fan from the other boundary 

(plane case) or a reflection from the center (cylindrical and 

spherical cases) . 

* 
Any views expressed in this paper are those of the authors.  They 

should not be interpreted as reflecting the view of The RAND Corporation 
or the official opinion or policy of any of its governmental or private 
research sponsors.  Papers are reproduced by The RAND Corporation as a 
courtesy to members of its staff. 
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(2) 
In the case of plane flow, we constructed, by standard methods, 

an exact analytic solution valid for all t. The cylindrical and 

spherical cases, however, are not amenable to such a treatment.  How- 

ever, since all of the gas eventually enters the interaction region, 

a solution, asymptotic for large t, in the interaction region pro- 

vides useful information about the flow.  It is precisely such a 

solution which we constructed by similarity methods. 

The principal results of the analysis are: 

1) the flow velocity u(r,t) is, in all three cases, 

u(r,t)~J, (1) 

where r is the distance from the origin, and 

f    t-\ r m 
2) ^r'C'  = C (Y) (—*) (2) 

Ko o 

tn = 1 plane case 

= 2 cylindrical case 

= 3 spherical case 

where p is the density, a the sound speed, and r the radius of 

the initially uniform gas. The constant in Eq. (2) depends only on 

m and on the gas constant Y. This solution is asymptotically valid 

in the region of the (r,t)-plane not too close to the expansion front. 

As we mentioned previously, in the case of plane flow an exact 

analytic solution of the problem can be obtained.  By examining this 

solution in the limit of large t, we were able not only to verify 

that the assumed similarity solution is in fact the asymptotic flow, 

but we obtained at the same time an analytic expression for the 

constant C. (Y), viz., 

Y) . 2x-i ,[r(2y-i)]^ (3) 

[r<v)]2X 

where X =*  y      and v = X  /— A'  •     In Eq. (3), T  denotes the usual 

Gamma-function.  la the cylindrical and spherical cases, the 
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asymptotlc validity of the similarity solution was established by a 

numerical integration of the equations of motion.  Integration of the 

equations for different values of y served to determine the constants 

C_ and C, as functions of i. The dependence of C on v for the 
2     3 r m   ' 

various cases is shown in the figure. 

The results of this study have practical application as an 

approximation to the expansion of a finite mass of gas into a gas at 

much lower pressure and density.  In this case, a shock wave pre- 

cedes the expanding gas, but in the limit of ambient vacuum the 

effect of the shock wave disappears from the problem. Another 

application follows from the use of the unsteady analogy-of hyper- 

sonic small-deflection theory, whereby the cylindrical unsteady flow 

becomes analogous to the flow of a high Mach number jet to vacuum. 

6Ut«^ 4JU0 ; 

Cs? A*& 

c,(r)= af'~^ 
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