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ABSTRACT 

Part I Is devoted to the general theory of digital filters. 

The filtering theories for both continuous-time and discrete-time sig- 

nals are formulated in terms of abstract Hllbert space, with the notion 

of a stable filter defined as a bounded linear operator. This abstract 

setting allows the z-transform to be defined with the same generality as 

the Fourier transform. A specific isomorphism is then constructed which 

connects the filtering theories for continuous-time and dibcrete-time 

signals, and in the linear time-invariant case the two theories are shown 

to be essentially identical. This means that many optimization problems 

can be solved simultaneously for continuous-time and digital systems. 

In the second part, the isomorphism developed in Part I is vised 

to reduce the approximation problem for digital filters to that for 

continuous-time filters. This allows the designer of digital filtering 

conrputer programs to use many of the concepts which have proven important 

to the communications engineer. 

In the last part, the problem of estimating the power-spectral- 

density of a signal from equally spaced samples is discussed. It is 

shown that bandpass digital filters generate a class of spectral windows 

which produce always positive estimates of the power-spectral-denslty. 

The optimum bandwidth and shape of such a filter are then derived. 

Finally, a method for identifying unlmown parameters in the power-spectral- 

denslty of a digital signal is presented. 



Iv 

TABLE OF COMTEirrS 

Page 

PREFACE 1 

PART I:      THE GENERAL THEORY OF DIGITAL FILTERS 2 

1. Introduction 2 

2. A Review of HUbert Space Theory h 

3« Axlooatlzatlon of Deterministic Signal Theory 9 

h.      The Transform Domains 11 

5. A Specific Isomorphism, ii. 1^ 

6. The Orthonormal Expansion Attached to ^i 16 

7. Stable Filters as Bounded Linear Operators 19 

8. The Mapping p. for Filters and the Transforms 
of Filters 25 

9. Some Familiar Classes of Filters 25 

10. A General Matrix Representation for Filters 50 

11. Relationship to the Vfeighting Function in the 
Analog Case 35 

12. Optimization Problems for Systems with 
Deterministic Signals ^2 

15.  Random Signals and Statistical Optimization Problems 47 

Ik.      Data Reduction Filters 55 

PART II: THE APHKÄIMATION FROBUEM FOR DIGITAL FILTERS 57 

1, Introduction 57 

2. Equivalence to the Approximation Problem for 
Analog Filters 56 



Page 

5. Conparlson with Fourier Series Techniques 62 

k, Conparlson with z-Transforms of Analog Filters 66 

5. Building Analog Filters with Digital Computers 67 

PART III: APPLICATIONS TO SPECTRAL ANALYSIS 70 

1. Introduction 70 

2. A Class of Windows Generated by Digital Filters 75 

3. The Mean-Sqviare-Error of These Estimates 76 

4. The Optimum Digital Filter 80 

5. PTewhltenlng Techniques 84 

6. The Identification of Power Spectrum Parameters 85 

7. Statement of the Problem 88 

8. The Most Likely Estimates 89 

9. Variability of the Estimates 91 

10. Ejctension to Spectra with Zeros 93 

11. An Example 95 

12. Applications of the Identification Method 96 

SUMMARY 98 

REFERENCES 100 

LIST OF ILLUSTRATIONS 103 



PREFACE 

Historically, nethods for processing signals that ire functions 

of continuous time were developed long before the advent of high speed 

digital computers. When high speed computing facilities did beccoe 

available, the communications and control engineers were not the people 

who developed computing techniques. As a result, the filtering theory 

that had been highly developed for continuous-time signals was not applied 

in full force for the processing of digital signals. 

The main purpose of this thesis is to tie together the theories 

of filtering digital and analog information. This will enable the data 

analyst to carry over effectively to his domain many of the concepts which 

have been Important to network designers. In particular, all the approxi- 

mation techniques developed for continuous-time filters become available 

for digital applications. 

The strong link that is developed between the digital and con- 

tinuous domains will also be of theoretical value. It will present to us 

a unified picture of signal and filtering theory, a picture chat is 

equally applicable to digital and continuous signals. 



PART L; THE G2WERAL THEORY OF DIGITAL FILTKR3 

1. Introduction 

It Is easy to observe a parallel between signal theory for 

signals with a continuous time parameter and signal theory for discrete- 

time signals. In fact, it is common practice to develop in detail a 

filtering theory for continuous-time signals and to pay less attention 

to the discrete theory, with the assumption that the derivation in the 

discrete case follows the one for continuous-time signals without much 

change. Ilius, without going into details, ''^ the Wiener filter for 

a noise-corrupted continuous-time signal is 

^nrCs) F°<8> - ^ftfrHar >     " = ^(s)  ' 

and the optimum filter in the discrete case is 

F
°
(Z)
- YC'J'%!" Wi' *-*™M

 ■' 

where r is the uncorrupted signal and T^  is the corrupted signal.  On 

the other hand, the two cases are always considered as distinct and - 

essentially different situations. 

This correspondence between continuous and discrete phenomena 

is far from accidental, howe^ ar. In fact, when both theories are 

axiomatized in terms of Hilbert space theory (Lp and 1^ theory), they 

are isomorph!':. This simple fact is quite illuminating and leado to a 

more unified theory of filtering and prediction. 



Usually, It Is assumed that the signals of Interest are of 

exponential order as t becomes Infinite. This leads to two-sided 

Laplace transforms which converge in a strip in the s-plane, or double 

ended z-transforms which converge in an annulus of the z-plane.  Ihis 

is replaced in Hilbert space theory by mean convergence on the Jco-axis 

and unit circle, respectively. In one sense the signal spaces I*, and 

18 are more restrictive, because they do not include signals of posi- 

tive exponential order. On the other hand, assuming that we are 

dealing with physically real signals, the spaces 1^ and Lj are more 

general and intuitively satisfying; roughly, they Include all signals 

whose total energy content !■:  finite. 

Our main purpose in this first part, then, will be to imbed 

the theory of continuous-time signals in L, theory and the theory of 

discrete-time signals in lg theory; and to show that the filtering 

theories for these two classes of signals are essentially the same. 

We will thus arrive at a definition of digital filter that is as 

general as the definition of continuous-wave filter, and we will show 

that many problems in the design of discrete-time systems need not be 

re-solved. As a by-product, we will see how well Hilbert space theory 

is suited to describe linear filtering theory for both continuous and 

discrete time. 

While Youla, Castrlota and Carlin, ^ and other network theo- 

rists have applied Lg theory to continuous-time network theory, to 

the author's knowledge 18 theory has not been applied to the z-transform 



and the isomorphism betveen Lg  and lg  has not been exploited by- 

electrical engineers. 

We begin with a review of the elements of Hilbert space 

theory. 5A7 

2. A Review of Hilbert Space Theory 

We will adopt the widely accepted definition of abstract 

Hilbert space. That is: a set H of arbitrary elements f,g,... (some- 

times called functions or vectors) is termed a Hilbert space if: 

I. H is a linear space. 

II. An inner product is defined in H as follows: to every 

pair of elements f,g there is associated a complex number 

(f,2) such that 

1) (f,g) = TiTfT 

2) (Ctf,g) = a(f,g) 

3) (fi+f8,g) =» (fxig) + (f,,g) 

k)    (fff)  = 0 if and only if f = 0. 

III. The space H is complete in the metric (|f-g|| = 

(f-s^f-g)'. 

IV.    H is infinite dimensional; that is, for any integer n 

there are n linearly independent elements in H. 

V.    H is separable; that is, H contains a countable and dense 

set.    ('Hiis condition is often omitted, allowing spaces 

of dimension higher than 9\0). 



Thus, a Hllbert space Is a complete, separable, infinite-dimensional 

Euclidean space. 

Historically, two concrete realizations of Hilbert space play- 

central roles. The first is the space I^^b), which is defined to be 

the set of all complex-valued Lebesgue measurable functions on (a,b) 

such that 
b 

|f(t)|2 dt < oo 
w 
a 

The  inner product in this space is defined by 

b 

(f,g) = f(t)6(t) dt  . 

Two functions in L, are considered equal if they differ only on a set 

of measure zero.    Since the metric in this space is  (f-S,f-g)S the 

sequence fn will approach f if 

r 
Urn     1    |fn-f |2 dt = 0      . 

n - ooj 
a 

This will be called mean convergence and will be written 

f = l.i.m. f 
n -♦ oo 

n 

The other Hilbert space is called lg.    It is defined to be the 

set of all sequences of complex numbers 



X a  {.X} jXg J • • • jXftj • • • ] 

Ratisfying the condition 

oo 

n=l 

Here, the inner product is defined by 

oo 

(x,y) = ^ xn y^  . 

n=l 

(Sometimes it vill be convenient to think of 1^ as containing double 

ended sequences: f...x_i, x0, Xi,xe,...]. The theory is really the 

same.) 

For us, the space I^(-QO, •'■oo ) will play the role of the space 

of continuous time signals, ar*  lg vill represent the space of discrete- 

time signals. 

An isomorphism from one Ellbert space Hj to another Kilbert 

space Hg is a one-to-one linear transformation U from Hj onto Hg such 

that (Ux,Uy) = (x,y) for every pair of vectors x.y in H1. An isomorphism 

preserves all the structure embodied in tho definition of Hiltert space 

and isomorphic Hilbert spaces are geometrically indistinguishable and 

for our purposes can be considered as identical. 

The following theorem is central for our purposes: 

Theorem 1- All Hilbert spaces are isomorphic. 



The proof of this theorem is interestlnß and useful.    We now review its 

main points. 

1. Since H is separable, we can choose in H a countable dense set. 

From this set we can construct an orthonoraal set {h^h-^,... ] that is 

complete in H.    That is. 

,.     ..      JO is i/j 
(hi,hj) = ^ if ^      , 

and linear combinations of the h^ are dense in H. 

2.    This implies that any element of H can be approximated with 

arbitrary accuracy by linear combinations of the hi.    If we define the 

partial sum of a generalized Fourier series by 

n 

Sn =   ^   clthk      > 
k=l 

then the distance between Sn and f in the metric of H is smallest when 

ck = (f^hk) 

In that case, we have in fact 

n 

jlf-Sjl2  =  (f,f)  -    ^    IcJ2       . 
k=l 

Now let n approach infinity. Since 3n is the best n-th order approxi- 

mation to f, and since the orthononnal set [hi,ha,...} is complete, we 

must have 



e 

lim      I |f-Sn| |3 = 0     , 
n -• oo 

and hence 
oo 

k=l 

3.    Conversely, let CuC^,,..  be a sequence of numbers such that 

00 

^    W2 < oo       , 
k=l 

and construct the sequence of partial sums 

n 

fn = 2. Ckhk 

k=l 

It then follovs that 

n+p 

IIVp-fnl|a=     I     l=kl2      • 
k=n+l 

As n approaches infinity the rißht side goes to zero. The left side 

must go to zero, and this implies that the sequence fn is fundamental. 

The fact that H is complete in its metric then implies that there is a 

limit function f e H such that 

llf-fjl-o 

as n - 00. It then follows easily that 

ck = (f,hk) 



and that 
ao 

(V)   -    I    Ick|2      . 
A 

k.    We now assign to each element in H the sequence [ci ,c9,...] of 

its Fourier coefficients.    By step 2 above this is an element in L,. 

Furthermore, by step 3, for each element {c1,c2,...} in L,  there is an 

f in H vhich has Fourier coefficients  {c^c.,,...}.    This correspondence 

is linear,  one-to-one, onto, and preserves norm.    It is therefore an 

isomorphism,  and we have therefore shown that any Hilbert space is iso- 

morphic to L;,, and hence to any other Hilbert space.     In the case 

H = Lg^b)  this procedure corresponds to mapping a function to the 

sequence of its coefficients in some orthogonal expansion on the inter- 

val (a,b);  such as an ordinary Fourier series on (0,2;;) or a Laguerre 

series on (0,oo), for example. 

Uith this review we go on to apply tLese ideas to more familiar 

situations. 

3.    Axiomatization of Deterministic Signal Theory 

In most deterministic situations encountered by engineers, the 

signals are either functions of a continuous time variable or a discrete 

time variable.     In either case,  the total energy contained in a signal 

is really finite,  even though we make up models which deny this.    For 

example, we say that a step input is applied to some system at t - 0 and 

we write 
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f(t) = 1° -00 < t < 0 
^t;       11        0 < t < oo 

This Is clearly not realistic.    The definition 

0    -oo < t < 0 
'(t) = |l        0 < t < T 

0        T < t < oo 

vhere T is very large; or the definition 

,0    -oo < t < 0 
'(t)  = {      . 

'at 0 < t < oo 

where a is very small, describe the situation Just as well.    Thus, 

without serious limitation, we can assume that any wave will have a 

finite total energy.    With this assumption,  Hilbert space LJC-C^OO), 

with its  convenient completeness and with its continuous Fourier trans- 

form,  provides a neat setting for our discussion of deterministic 

signals which are functions of the continuous time parameter t. 

Similarly, when a signal is a function of discrete times,  the 

Hilbert space L,  is a realistic model with many convenient mathematical 

properties.    From now on, a function in Ln(-co,oo) will be called an 

analog signal,  and a function in 1^ will be called a digital signal. 

It is now rather startling and counterintuitive to the engineer 

that Lg(-00,00) and L, are isomorphic.    After all, any signal in L, 

could have been obtained by sampling at discrete times any one of an 

infinite number of analog signals.    The problem here is that the mapping 
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Lg(-oo,oo) -* 1p defined by sampling: 

f(t) - [...,f(-2T)lf(-T),f(0)lf(T),...) 

is not an isomorphism, since it is not one-to-one. Nevertheless, L, 

can be made isomorphic to L, by an appropriate choice of mapping; in 

the same way, for example, that the Abelian group of integers can be 

made isomorphic to the Abelian group of even integers. 

k.    The Transform Domains 

Our next goal will be to construct a specific isomorphism 

which can serve as a concrete link between the analog and digital sig- 

nal spaces. Naturally, we would like the mapping to have some intuitive 

significance. The very natural correspondence provided by sampling 

analog signals lias been ruled out because it is not an isomorphism. It 

would still be desirable, however, to have the left half s-plane correr 

spond to the interior of the unit circle in the z-plane, because these 

regions seem to play analogous roles, even when no signels have been 

sampled. To make these ideas precise, we must add the Laplace transform 

and the z-transform to our Hilbert space theory. 

The key theorem for the construction of a transform domain for 

Lp(-00,00) is called Plancherel's Theorem: *" 

Theorem 2.  (Plancherel)  If f(t) e Lr,(-oo,oo), then 
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A 

F(s) = l.i.ra. 
/. - oo   , 

f(t)e"Et dt 

exists  for s = Jw,  and F(jco)   e L,(-oo,oo;. 

Furthermore, 

+00 
n 

(f,f) = |f(t)|2 dt 

• oo 

^Tij 

and 

4 
f(t)  = l.i.m. 

A -• oo   J 
-JA 

A 

A00 

|F(s)|2 ds 

•joo 

F(s)est dt 

(1-1) 

(1-2) 

(1-3) 

Analytic extension of F(jto)  to the rest of the s-plane (via  (l-l) when 

it exists, for exampleJ will give us the Laplace transform. 

\ic will also use Parseval's Theorem: 

Theorem 3»    (Parseval)      If f,g e L,(-00,00),  then 

00 joo 

(f,g) =    I     f(t)g(t) dt = —i 
2nj 

F(s)G(-s) ds 

•00 -Joo (i-'O 

Tiie theory required for the cnalogous  construction of a 2- 

transfona for digital signals  is really no more than the theory of 

Fourier scries.    Think of the original periodic function as the z- 

transform evaluated on the unit circle in the z-plane; and think of 

the Fourier coefficients as the values of our digital signal.    The 

Riesz-Fischer Ihoorem '       then reads: 
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Theorem k.    (F. Riesz-Flacher)  If (fj^0  G 1-, then a^ 

H 
Hz) = l.i.m.  7 fns"

a (1-5) 
N - oo n=-N 

exists for z = e^-T , and F(eJ^T) e Lg(0;2n/T), vhere a) is the independ- 

ent variable of L,(0,2n/T), and this u is unrelated to the Cü used in the 

s-plane. 

Furtheraore, 
+oo p 

(UnUfJ) =  I  l^nl2 - -^~ 0 |F(2)|3 -^-  .   (1-6) 
n=-cD 

x|=l 

and 

fn = 2nj 
^ F(z)zn -^_ 

z 

2=1 

(1-7) 

As in the analog case, the analytic extension of F(e0- ) to the rest of 

the z-plane will coincide with the ordinary z-transform; which is 

usually defined only for digital signals of exponential order. 

Parseval's relation also holds: 

Theorcn 5»  (Parscval)  If {fnMGn] e In, then 

+00 

([fJ^Cnl) =  T  fnCn ^ -^ 
n=-oo 

2r.j 
vb F(z)G(z-1) -^L 

z 
■    (1-8) 



1h 

To sununarize, we have defined an analos signal space L^-oOjOo); 

together with its transform domain, which, when s = JOJ, is also 

Lpi-cOfOo).    Analogously, we have defined a digital signal space Ipj 

together with its transform domain, which, when z  = e^T, is :Lr,(0,2;i/T). 

We now are in a position to define a specific isomorphism between the 

analog and digital signal spaces via their transform domains; a procedure 

which was hinted at before. 

5» A Specific Isomorphism, p 

Remembering that we wish to map the jco-axis in the s-plane onto 

the unit circle in the z-plane, the familiar bilinear transformation 

S =  2-1 , -  1+S Z 
z+1 1-s 

is a natural choice. There is an additional factor required so that the 

transformation will preserve norms. The image [fp] e 12 corresponding 

to f(t) e Ls(-oo,oo) will then be defined as the sequence with the z- 

transform 

F(z) = —-— F (  z"1    , where we use the underscore 
z+1    z+1 '    to denote digital domains. 

Thus, the mapping uiL-,(-00,00) "• 1- is defined by a chain which goes 

from Lr,(-oo,oo) to ^(-cx^co) to 1^,(0,2^/1)  to 1-,, as follows: 
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M:f(t) - F(s) --^—Ff-Sl^V F(z) - ffn}  .       (1-9) 
Z+l    v Z+l s       " 

The inverse mapping is easily defined, since each of these 

steps is uniquely reversible: 

H"l:{fj - F(z) --iL-F (lliS-V F(s) - f(t)  . 
"^   "     1-s ~ ^ 1-s y 

The mapping ^ and its relations to the various spaces are shown 

schematically in Figure 1. 

To show that n is indeed an isomorphism, we first verify that 

u preserves the inner product. Let f end g be any two analog signals. 

Bjy Iheorem 3 (Parseval's relation for analog signals), we have 

Joo 

F(8)G(-s) ds (f'6) - ^r 
-Joo 

Letting z =    "• s ,  this becomes, with some algebraic manipulation, 
1-s 

(h F(z)G(2-1) -M. (f,s) = -r^ 

Izhl 

Then, using Theorem 5 (Parseval's relation for digital signals), we 

find that n does preserve the inner product: 

(f,g) =  ({fnMfin))      • 

\x. is obviously linear and onto.    We can row show that \x is one-to-one 
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in the following way: if f / g, then (f-G,f-g) =» ((fn)-^Ulnl-Cßn}) 

/ 0; which iraplieo that [f^] ^ [^nJ^ and hence that \x  is one-to-one. 

This establishes the fact that ^ is an isomorphism. 

We note here that under the isomorphisms u and ^ functions 

with ra-tional transforms are always matched with functions with rational 

transforms, this fact following from the nature of the transformation n. 

Ihis is a great convenience, since many of the functions commonly en- 

countered in engineering problems have transforms which are rational 

functions of s or z. 

6. The Orthonormal Ibcpansion Attached to ^ 

In our review of Hilbert space theory we showed how a set of 

orthonormal functions generated an isomorphism between two Hilbert 

spaces. It should come as no surprise, then, to learn that the iso- 

morphism n could have been so generated. This section will be devoted 

to finding this orthonormal expansion. 

We start with the z-trans form of the digital signal (fjj which 

is the image under ^ of an arbitrary analog signal f(t): 

F(z) = Ü-FC-^-V  y  £n ^n  • z+1  V z+1 y       L    -n 
n=-oo 

By (l-7)> the formula for the inverse z-transform, we have 

f = i  o ^ F C z-1 ^ zn -äa- 
nj   j  z+1   » z+1 s z 

UK 
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l+a 
Letting z = ^  u--, this integral becomes 

loo 
r 

-^   2 
i_   i F(3) . ii_rj>L.T ds   . (i-ii) 
nj   1       1+3 ^ 1-s ^ 

-Joo 

By Parseval's relation (l-U), this can be rewritten in terms of time 

functions as 
oo 

£n = f(t) \n(t) at , (i-i2) 

u 
-00 

where the Xn(t) are given by the inverse Laplace transform of the factor 

appearing in the integrand of (I-11) with s replaced by -s. Thus: 

^^i4rQW)a] ■ 

We see immediately that, depending on whether n > 0 or n < 0, Xn(t) 

vanishes for negative time or positive time, respectively. By mani- 

pulating a standard transform pair involving Laguerre polynomials, we 

find: 

((-l)11'1^ e""1 VjUt) u(t) , n = 1,2,3,..., 

^(t) =1    n  r  t 
l{'l)'n   '/2 ex L_n(-2t) u(-t) , n- 0,-1,-2,..., 

(I-1U) 

where u(t) is the Heaviside unit step function, and L^t) iti the Laguerre 

polynomial of degree n, defined by: 

Ln(t) = -V -~5- (tVt)^ n = 0A.2> n.'      dt" 
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Oü 

U 
and are called Lac^rre fianctio/.s.     They have been employed by Lee, 

The set of functions  {\n}     ,   is a complete,  orthonomal set on (0,00), 

11 

12 Wiener,      and others for networi: synthesis;  and are tabulated in 
TO 

Wiener,  ^ and, with a slightly different nornalization,  in Head and 

Wilson.   J    The functions   U-n}0^    are similarly complete and orthonormal 

on  (-oo,0),  so that the orthonormal expansion of f(t)  corresponding to 

(1-12)  is 

00 

f(t) =      )      f^ \n(t)      . (1-15) 
n=-oo 

We see then, that the values of the digital signal for i > 0 correspond 

to the coefficients in the Laguerre expansion of f(t) for positive t; 

and that the values of the digital signal for n < 0 correspond to the 

coefficients in the Laguerre expansion of f(t) for negative t. 

There follows from this representation the fact that the iso- 

morphism n matches one-sided functions with one-"' ■ . functions.  That 

is, f(t) = 0 for t < 0 if and only if [i^} = 0 for n < 0; and similarly, 

f(t) = 0 for t -■ 0 i-f" •. only if [r^]  =  0 for n .-  0. 

-icr orthonomal expansions, such as the Hermite, for example, 

also generate isomorphisms; but these will not be as convenient and 

as simple for our purposes as the Laguerre expansion. In particular, 

Kautz,  Gabor,"^ Huggins,  and others have considered the construction 

of orthonormal functions for signal representation. 

The fact that the mapping \i  is equivalent to a Laguerre expan- 

sion can sometimes lead to a quick way of expanding a given time function 
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in a Laguerre series. One need only find F{z)  from the Laplace trans- 

form of f(t) and expand this in a power scries in z. To illustrate 

this, and the way that the mapping \i  works in general, consider the 

function 

f(t) - e"1 sin t u(t) 

This function is in L, and its Laplace transform is analytic in the 

half-plane Re(c) > -1.  Thus, 

and 

F(s) 
(s+1)2 + 1 

?iz)  =  ^ (z.l) F( 
5z + 2z + 1 

= /2 J- z-1 + -J- z- 
5      35 125      <-,25 

Thus, by (1-15), 

f(t) =^2|-^- Xjt) + —2- ^(t) 
i r  *     25  ' 

11 

> 
\,(t) + -J— \4(t) + ...] 

125       625 J 

These coefficients can be checked by carrying through the integrations 

indicated in (1-12). 

7. Stable Filters as Bounded Linear Operators 

We cone now to the problem of incorporating within our frame- 

work the concept of "filter" or "transfer function." Trat is, wc wish 
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to formulizo the notion of a device vhich transforms one element of 

Hilbert space into another. 3uch a device might be a network of resis- 

tors, inductors, and capacitors which transforms one analog sipnal into 

another; or it nicht be a digital computer which transforms one digital 

signal into another such signal. We assume, mostly because we must to 

achieve any generality, that such filters are linear.  It is also 

reasonable to expet t that if we limit the energy content of the input 

function to a stable filter, that the energy content of the output will 

be lin.ited. 

Fortunately, operators with sucii properties have been studied 

widely in connection with Hilbert space. ^'0,' /.n operator A in a 

Hilbert space H is defined as a transformation which attaches to each 

element f in H cone elemenx Af which is also in H. An operator A in 

said to be li.ie;ir if 

/■.(af + ßg) = CtAf + pAg 

for any f,g in II and any complex numbers a. and ß. Lastly, correspond- 

ing to our energy requirement, o linear operator is said to be bounded 

if there is a positive real number II such that 

||Af!I<M |lf|I 

for all f in H. The norm of the linear operator A is the infinum of 

all such values of M, and is written ] JA j |. Equivalently, the noai of 

A can be defined as 
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sup 
feH 

1^11   . (1-16, 

One example of a bounded linear operator is the Fourier trans- 

forn.  By (1-2:) tnis operator has a norm equal to vl/2rk. As another 

example, consider a simple low-pass RC section vith the transfer function. 

M 

j oo ^ 

1 |F(s)!2 1             ^ 1   ds   1 1 i 
2T.J (X)     +   T I 

QD -joo 

If an input wave f(t) is applied to this network, the total energy in 

the outnut will be 

|F(s) 

so that the norm of this operator cannot exceed 1. Since this is a 

passive network, it is to be expected that the total output energy 

cannot exceed the input energy. 

We are thus led to adopt the following terminology: A bounded 

linear operator on the space L^ will be called a (linear) analog filter 

and a bounded linear operator on 1-, will be called a (linear) digital 

filter. 

It is now a direct consequence of our axiomatic setup that any 

bounded linear operator is continuous in the metric of Hilbert space. 

r  ■> oo 
That is, if ifnin^i is a sequence of functions in the Hilbert space H, 

and if f is a function in H such that 
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lim      |lfn- f|l - 0 
n - oo 

then 

lim      ||/vfn - ;'f|l - 0      ; 
n - oo 

vhere A j s a bounded linear operator. This follows immediately fror 

the fact that 

||;.fn-Af|| < M/.I!  • !|fn- f|| . 

Continuity is a desirable property of operators.  In L,, for 

instance, it means that if input functions to an analog filter /. 

approach a function f in the mean, then the output will approach Af in 

the mean. This convenience is bought at the price of considering only 

functions in I*, and using mean convergence as the convergence criterion. 

If we insist on thinking in terms of pointwise convergence, for instance, 

we lose continuity; as the following example shows: Let a set of input 

functions to some network approach the delta function.  The pointwise 

limit of the input functions is then 0 almost everywhere.  But in gen- 

eral the output will not approach 0, so that filters will not be con- 

tinuous in this framework. In a way, our convergence criterion is more 

natural them pointwise convergence:  for a sequence f„ to approach f in 

the mean we demand only that the total energy of fn-f approach zero. 

Gince n can be thought of as a bounded linear operator in the 

abstract Hilbert space H, n is continuous. Similarly, t'.ie  Fourier 

transform is continuous. Also, since 1-, and Lp(0,2n/T) are isomorphic 

Hilbert spaces, the z-transform as defined in Theorem h  is also contin- 

uous. Vte summarize these facts in the following theorem; 
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Theorem 6. All bounded linear operators are continuouß in the metric 

of Hilbcrt space. In particular, the folloving bounded linear opera- 

tors are continuous: 

1. Analog filters 

2. Digital filters 

3-  The Fourier transform 

k.     The z-transform 

5. The isomorphism n 

8. The Mapping ^ for Filters ond the Transforms of Filters 

Since our signal spaces are now equipped with operators, it is 

natural to extend our isomorphism ^  so that it matches operators that 

act equivalently in the two spaces Lp and lp. More precisely, if A is 

an analog filter, we define its image p(A) - .j in the following way: 

let x be any digital signal. Then there corresponds to x a unique 

analog signal n"1(x). The result of operating on this analog signal by 

the analog filter A, Au"1(x), is also well defined. This new analog 

signal can then be mapped by n into a unique digital signal nAn"1(x), 

which we designate as the result of operating by A on x. Thus, we 

define A to be the composite operator 

A = nAn"1 (1-1?) 

To avoid confusion between digital filters and z-transforms of digital 

signals, we use the double underscore. 
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It is easy to see that the mapping \x  for operators is linear, 

one-to-one, and onto. Given a digital filter A, its corresponding 

analog filter is n'1^. To ohov that the norm of an operator is pre- 

served under the matching n, we need only carry out the folloving 

calculation: 

|Ax!l MuCA^xnil 
SUp   ———^ = SUp   ——j-j  

xel.   Il^ll   XGI.      Itx 

sup 

(1-18) 

]Ml(*)\\    .sup JML= I|AI| 
xel3  ll^'Cx)!!   xeLs  ! |X 1 i 

It should be pointed out that in one sense there is really no problem 

here. The spaces Lg and lg are isoraorphic; -- an analog filter and its 

digital image under \i  are just two names for the same abstract object. 

Having defined the effect of ^ on filters, we should now like 

to do the same for the Fourier and z-transfrrms. This can be done in 

an equally natural way. Suppose A is an analog filter, a bounded 

linear operator on the space L-, of analog signals. The analog signal 

space is mapped by the Fourier transform operator, say^p( ), into a 

new space Lg, the space of Fourier transforms.  The Fourier transform 

of the operator A, denoted by 0Jf (h),  will then be defined as an oper- 

ator on this tranofom space so that if .'. maps f to g, then j^ (A) maps 

F(s) to G(s). Analogously to (l-l?) above, we require 

^(A) ^A?-1  , (1-19) 
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where ^F(     ) denotes the Fourier transform of an analog signal as veil 

as an analog filter.    Going throuc'a the sane calculation that we per- 

formed for u; we find that the Fourier transform preserves the norm of 

a filter: 

IHRA)!!  =   ||A||       . (1-20) 

Sirr.ilerly, we define the z-transform of a digital filter A by 

where j{     ) denotes the z-transform of a digital signal or filter. 

Again, the norms of filters are preserved: 

ll^(A)l| = MAU (1-22) 

Me  have now generalized n so that it pertains to filters as 

well as to signals, and we have defined the transforms of filters. 

Thus, a diagram analogous to Figure 1 can be drawn for filters, and this 

is shown in Figure 2. The connection between the Fourier transforms of 

analog filters and the z-transforms of digital filters is well defined 

by the three legs of the diagram, but nothing more than that can be 

said at this time. 

9« Some Familiar Classes of Filters 

In this section we will show how the preceding theory of 

filters applies to many situations that are commonly encountered in 
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engineering. For instance, time-invariant filtering is usually expressed 

by convolution in the time domain and by multiplication in the transform 

domain. Such time-invariant filtering is described in the analog case by 

the following theorem: 

Theorem 7» Let a(t) be a measurable function satisfying 

oo 

la(t)| dt < co   , (1-23) 

-co 

That is, let a(t) belong to Ll(-oo,oo). Let the operator A be defined 

by the following convolution integral: 

oo 

Af(t) = 

-oo 

Then A is an analog filter with norm 

f(T)a(t-T) dt  . (1-21+) 

oo 

VM < |a(t)| dt 

-oo 

rurthermore, the Fourier transform of the operator A is mul+ ilice.tion 

by the function A(8), the Fourier transform of a(t). 

The proof of this theorem is a direct consequence of Schwarz's inequal- 

ity and can be found in detail In Titchnarsh,^ section 3-13- 

This theorem applies to any linear time-invariant filter whose 

impulse response satisfies (1-23). Thus, any stable RLC network is an 

analog filter. Theorem 7 can also apply to the case where A is the 
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Identity operator Af = f, provided we are vlllinR to ad-nit the delta 

function as a sifting function satisfying (1-23). It is hardly 

necessary -o introduce distributions or other generalized functions 

on this account, however, since the identity operator is clearly a 

bounded linear operator in its own right. 

The following theorem for tine-invariant digital filters can 

be obtained in exactly the same way as Theorem ?! 

Theorem 8. Let [e^]  be a sequence of complex numbers satisfying 

oo 

T  |anl < oo  , (1-25) 
n=-oo 

and let the operator £ be defined on the space of digital signals by 

the following convolution sura: 

oo 

i=-oo 

Then A is a digital filter with norm 

oo 

llill<  I   K 
n--oo 

Furthermore, the z-transform of the operator A is multiplication by 

A(z), the z-transform of the sequence [B^] . 

Now consider the case where the digital filter A in Theorem 8 

is the image under ^ of the analog filter A of Theorem 7. Since the 
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Fourier transform of Af is A(8)F(s), the z-transforra of the digital 

signal ^(/.f) is 

-fz §_ A ( Z-1^)T( Z'1 ") -  A(z)F(z)  . 
+1   v z+1 x  ^ z+1 ' 

Therefore 

A(z) = Af-Sll^  . (1-27) 
V z+l y 

Thus, the transforms of filters vhich are equivalent under the iso- 

morphism n are related by a simple change of variable. This observa- 

tion will be useful when we consider the approximation problem for 

digital signals. 

By reversing the roles of the time and transform domains in 

Theorems 7 and 8 we come to consider the operation of multiplication by 

bounded time functions, or, in electrical engineering terras, amplitude 

modulation. More specifically, we have the following pair of theorems: 

Theorem 9« Let a(t) be a bounded measurable function of tiice, and let 

the operator A be defined on the class of analog signals by multipli- 

cation; 

Af(t) = a(t)f(t)  . (1-28) 

Then A is an analog filter with norm 

|!A!| < sup  Ia(t)|  . 
~ all t 
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Theorem 10. Let [an] be a bounded sequence of complex nunbers and let 

the operator A be defined on the class of disital signals by multipli- 

cation 

A (£„} = KJJ (1-29) 

Then A is a digital filter with norm: 

||;.|| < sup  |an|  . 
all n 

The proofs follow immediately from the relations 

oo oo 

|a(t)f(t)|2  dt l^PjaCt)]]3   • 

•00 -co 

lf(t)la dt   , 

and 

00 ^ oo 

1 lan£n|3<[a^nklj    •     I     l&l3      • 
n---oo n--oo 

When the transforms of a(t) and iaR} are in L!(-00,00) and L1(0,2J;/T)> 

respectively, it can be shown that the transforms of these multiplica- 

tion operators are convolution operators on the Ju>-axis or unit circle. 

This representation is not important for us, however. 

It is now easy to see that bounded linear operators are not in 

general comnutative.  That is, if A and B are two bounded linear oper- 

ators, then it is not necessarily true that B(Af) - A(Bf). Take, for 

example, the case where A is multiplication by u(t), and B is an RLC 

filter. A and B do commute, however, in the special cases when A and 
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B are both multiplications as in Theorems 9 or 10«    In general, we have 

the following results  concerning conblnations of operators:' 

Theorem 11.     If A and B are bounded linear operators,  then A+B and AB 

are also bounded linear operators, and 

||;.+B|| < ||A||* ||Bll     , 

and 
||AB||     <   ||A||  .   ||B||       . 

10.    A General Matrix Representation for Filters 

V/e have seen in the last section how certain classes of filters 

can be represented in the time domain by convolution with time-invariant 

weighting functions or by multiplication.    It would be desirable,  how- 

ever, to have a representation valid for any bounded linear operator. 

Such a representation can be constructed in the same way that matrices 

can be constructed from linear operators on a finite dimensional vector 

space; - that is,  by examining the effect of an operator on a set of 

elements which forms a basis.    Thus,   if A is a linear operator in a 

finite dimensional vector space of dimension n, and if [e^e-,,... ,en} 

is a basis, we can assemble the following array of equations: 

Ael   = aiiei + a1?,e? + ...  + a:nen 

Aer  = agje!  + a,.^ + ...   + a2nen 

(1-30) 

A<-n = ^i6!  + anse2  + •••  + annen 
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In this way,  every linear operator is associated with a unique nxn 

matrix [a^j].    Conversely, every ran aatrix determines a linear operator; 

for if x is a vector with components  lxl,x9,.. .,xn}/ 

n n        n 

/oc = /.   7   xiei =   ^  (^   Xia^jej      . (1-31) 

i=l 1=1 i=l 

This procedure allows us to characterize bounded linear oper- 

ators in the infinite dimensional case, provided we impose an appropri- 

ate condition on the elements of the matrices involved: 

Definition: The infinite matrix [&<■,],   , is said to be bounded if 

for some constant M we have 

j=-r i=-p 
Vi^ 

i=-p 
lxi Is • V lyj 

j=-r 

(1-32) 

for any numbers x_p,x_p+1,.. .,x0,x:,.. ^Xg^ and Y.^V.^^" ' t7Q,V\,"',VS' 

We then have the following result, which is proved in ;C:hiezer 

and Glazman: 

,oo 
Theorem 12. Let leih    be an orthonormal basis for the Hilbert space 
      '  i=-oo 

H. Then every bounded linear operator determines a unique bounded in- 

finite matrix [aj;} by 

oo 

Aei =  )  aije^  ,  1 = ...,-1,0,1,2,... (1-33) 

j=-oo 



32 

Conversely, every bounded infinite matrix determines a bounded linear 

operator in the following way:    If f eH has the orthonormal expansion 

put 

00 

i=-oo 

oo oo 

'S S     I    (  I     fiaiOeJ      ■ (I"3U) 

J=-oo    i=-oo 

For a fixed basis, we write A -v{a^j] whenever the bounded 

linear operator A admits the bounded infinite matrix representation 

{a^j}.    In analogy with the finite dimensional case,  it can be shown 

that if A ^{aij} and B ^'{bij},  then 

A+B^Uij+bij}      , (1-35) 

and 
oo 

BA -v 

l:=-oo 

where BA(f) = B(A(f)).    We have thus constructed a matrix-mechanical 

representation of signal filters, very much like that employed in 

quantum mechanics.    Sometimes it will be convenient to think of a 

filter as being disconnected from both  ohe input and the output for 

negative time.     In this case we need only consider the lower right 

quandrant of the matrix:    {a^j}?0^,. 

The interpretation of this matrix representation in the digital 

case is rather simple, mostly because the particular basis we have 
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choten has on easily grasped physical significance. The n-th basis 

element for the digital signal space Is Just 

[e^] = (...,0,1,0,...}  ,  n= ...,-1,0,1,2,..., 

where the one Is In the n-th place. This is the image under ^ of the 

n-th orthononaal Laguerre function Xn(t). Thus, the z-transform of 

{e } is z"n, and the z-transform of a digital signal, written as a 
—n      ■ 

power series In z, is a formal representation of its orthorormal ex- 

pansion. The element aj« in the matrix representation of a digital 

filter A then corresponds to the output of the filter a« time J vhen 

fe.) has been applied. If any signal {jTj is applied, cne output sig- 

nal will be 

oo 

•^ ^ a { I f-i  ain}  > (l-37) 
i=-co 

by (I-3U).    In the time-invariant case, we can write 

'a - aj-i 

and then the effect of a digital filter can be described by the familiar 

convolution formula 

oo 
M^n) = {  ^     tl ^-l}      • (1-38: 

i=-oo 

This can be written in the z-transform domain as 

A {f ] = A(z)F(z)      , (139) 



ik 

where 
(JO 

A(z) -  ^  a1 z-1 (I-^O) 

i--aj 

is the z-transform of the digital filter A.  Fron (1-33) we see thet 

oo 

7  K I3 < oo  , 
i=-00 

so that the weighting sequence {a^} is in lp and (I-40) is the z-trans- 

form of a digital signal. 

A common type of digital filter is the so-called recursive or 

autoregressive filter defined by: 

N M 

I V(n-k)- L 
k=o       :c=i 

Ihis filter produces each output by talting a linear combinttiun oi" pact 

outputs, and past and present inputs. It is time-invariant and its z- 

transform is 

N 

I   *&*        co 
A(z) =  — = Y a^-1  . (I-^J 

i + y ck2 
k=l 

Since the one-sided sequence {a^} is in lg,  A(z) mu^t be ".nalytic oux- 

side tne unit circle. 
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11. Relationship to the Weighting Function Representation in the 
Analog Case  

The mapping |i does not affer-1. the matrix representation of a 

filter, since it maps basis elements into basis elements. Thus, if A 

is an analog filter and ^ is its digital image under n, ve have 

oo 

AXi(t) =  £  aijM*) * 
J=-oo 

and 

oo 

J=-oo 

The interpretation of the matrix representation [B.*   ] is somewhat more 

difficult in the analog case,  however, because we do not usually think 

of en analog signal as being represented by the coefficients in its 

Laguerre expansion; while we do think of a digital signal as being made 

up of its values at the discrete observation times.    Furthermore, ve 

usually think of an analog filter as being defined in terns of the con- 

volution integral 
co o 

Af(t) = f(T)a(t,T)  dT       , (1-43) 

-00 

where a(t) is some weighting function.    We are thus raced wi      the 

problem of relating this representation to the matrix representation 

{a^j}.    When A is the identity operator, a(t) is the delta function,  so 

we see immediately that we cannot expect a(t) to be a proper function 

in the general case.    We can proceed formally, however, in the folio" 

ing manner:    Letting 
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oo 

f(t)  = y fixi(t) 
i=-oo 

oo 00 oo 

Af(t) =     ^     fiAX^t) =     ^     fi     )]     »ij^^) 
1—00 i=-oo        >"00 

since the bounded operator la continuous.    Replacing f^ by 

oo 

f(T),\1(T)   dT        , 

■CO 

and interchanging the orders of integration and aummation, we have 

co 

Af(t) = 
u 

-00 

CO 00 

f(T) ("   y )      ai^X5(T)\j(t)] dT      . 

1   -CO   j=-00 

We therefore have the formal equivalence 

nn oo 

a(t,T)  =      ) )      aijX1(T)\J(t) (I-VO 
i=-ao   j=-uo 

The problem is:    if A is a bounded operator, what kind of function will 

(1-1+4) be.    We would expect,  in general,  that a(t,T^ will be a distribi- 

tion, but a theorem to this effect does not exist in the mr*thematicttl 

literature and is certainly not obvious,    tfe will therefore content 

ourselves with the formal connection between the bounded uvxvrix [a^.j 

and the weighting function aCt,!-) given by (I-Uii). 
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The  formula inverse to (I-WO can be derived as follows: The 

effect of A on Xi(t) is 

oo 
r> 00 

AXi(t) = 

•00 

\i(T)a(t,T) dT =  y  a^XjCt)  .    (1-45) 
J-oo 

Therefore, 

oo     oo 

aij Xj(t) Xi(T)a(t,T) dx dt  . (1-46) 

•OO      -00 

Here we have assumed that (I-U5) is in Lg and hence can be expanded in 

a Laguerre series. 

When a^i = aj.^, the digital filter A will have as its z- 

transform multiplication by A(z). Hence, the Fourier transform of the 

(l+s N — i  ard therefore 

a(t,T) = a(t-T). Conversely, if a(t,T) = a(t-T), the Fourier transform 

of A will be multiplication by A(s), and hence the z-transform of A will 

be multiplication by A f-5l___\ This implies that a^ = f---i- We Bee 

that na  analog or a digital filter will be time-invariant when and only 

when a. , can be written a. .. 
IJ J-i- 

Thoce '-ime-invariant filters which are physically realizable 

are of great i.aportance in many fields. A time-invariant analog 

filter A is called realizable if Af = 0 for t < 0 wuenever f = 0 for 

t < 0. Similarly, a time-invariant digital filter A is called realiz- 

able if AffjJ = 0 for a < 0 whenever {f^} = 0 for n < 0. It is an 

important property of the mapping y.  that it always matches time-invariant 
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realizable filters vith time-invariant realizable filters. To see this 

suppose first of all that A is a time-invariant realizable analog filte'. 

Let [f^]  be any digital signal for which f^} ^ 0 for n < 0. Then its 

analog image f(t) is such that f(t) = 0 for t < 0. Thus Af = 0 vhen t 

is negative, and this implies that A{f } = 0 for n < 0. Tuis shows that 

A is a realizable digital filter. The same argument works the other way, 

and this establishes 

Theorem 13. The mapping ii for filters always matches tin'--invariant 

realizable filters with time-invariant realizable filters. 

A time-invariant digital filter is realizable if and only if a^ = aj.i 

= 0 when i > J. Hence, it follows that a time-invariant analog filter 

is realizable when and only when a^j = aj_i = 0 if i > j. 

Vie can thus characterize all time-invariant realizable filters 

by upper triangular infinite matrices of the form 

ao »i a2 as a4 

0 »0 al »a »3 

0 0 ao ai a2 

0 0 0 ao *! 

0 0 0 0 ao 

d-vn 

Thus, a time-invariant analog filter is determined completely by . ;s 

response to any \i(t); Just as a time-invariant digital filter is 
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determined completely by its response to any e„ « {... ,0,0,1,0,0,.. .}• 

It follows also that the response of a realizable time-Invariant analog 

filter to X^t) will have no Xj components when J < i. That is, the 

output vector in response to X^t) is orthogonal to Xj(t) when j < 1. 

For example, if we apply Xa(t) to a realizable time-invariant analog 

filter A, we would expect 

oo 

-00 

Xi(t) [ r a(t-T)X8(T) dtl dt » 0  . 

Using Peraeval's relation (l-U) and writing A^Cs) for the Laplace trans- 

form of X;L(t), this becomes 

A8(s)A(s)A1(-s) ds = 0  , 

-Joo 

which is indeed true, since the integrand is analytic in the ri^ht-half 

s-plane. 

In the time-varying case, on the other hand, ^ does not pre- 

serve realizability. To see this, consider the bounded operator ':1th 

the matrix 

ais = 1 

aiJ = 0 * otherwise 

This corresponds to the digital filter which delays fj one unit but has 

zero output at other times. Thus, A is a realizable digital filter. 

The analog filter A, however, is given by (I-U3) and (I-44). 
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00 
-» 

Af(t) = \ö(t)     f(T)>.:(T) dT    , 

-00 

and Is not realizable. 

To illustrate the relationship between the matrix and the 

veighting function representation of a time-invariant analog filter, we 

will take up as an example the all-pass function 

,.(s} =   
1+s 

Multiplication by A(s) in the transform domain defines a bounded oper- 

ator; in fact, the analog filter A leaves the energy constant of any 

signal invariant. The digital filter /.(z) corresponding to A(s) is z'x, 

a unit delay. Hence, the matrix representation of tiiese operators is 

aLJ = 1 if j = 1 <■ 1 

aj* = 0 otherwise 

According to (I-Mi-), then, the weighting function a(t,T) is 

oo 

a(t;a) =  ^  Xi(T)Xi+1(t)  . (1-48) 

i—oo 

Assume, without real loss of generality, that t > 0 and T > 0. (I-48) 

then becomes 

oo 
a(t,T) - y Xi(T)Xi+1(t)  . (1-49) 

1=1 
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We now need the following two identities, which are given in Head and 

Wilson:^ 

oo 

7 Xs(T)Xs(t) = 6(t-T)  , (1-50) 

s~l 

00 00 

1 M^Wn^) = - I   ^(T)Xn+S(t) +>/2 Xn+1(t.T)  .(1-51) 
S«! 8=1 

These identities are very useful for putting a(t,T) in closed form when 

the filter is time-invariant. Putting n = 0 in (I-51), we get finally 

a(t,T) = a(t-T) = - 6(t-T) + Ee'^1'^ u(t-T) 

This checks with the inverse Laplace transform of A(s) =  —.  (I-U6) 
1+s 

can  be checked similarly: the integral 

oo 

j \i(T)a(t,T) dT 
i 

-00 

is equal to X-j^.^t), and hence 

oo     oo 
r 

\At)        X.(T)a(t,T) d-r dt 

J 
-CO       -00 

is 1 when J = i + 1, and zero otherwise. 

It should be noted that the complexity of the representation 

of analoc filters as compared with digital filters is reflected in the 

identification and synthesis problems. To identify a time-varying 

digital filter, one need only apply signals [e^} and read the coefficients 
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a^j from the output.  Synthesis involves only the setting of coefficients 

in a digital computation program. In the analog filter case, however, 

there is no such natural and convenient basis. If we apply \±{t)  as a 

testing function, we must then resolve the output into a Laguerre series 

and use a formula like {1'hk)  to arrive at a weighting function. Even 

then, we are left with the problem of realizing a(t,T) in the general 

case. 

Still, it is a significant and not widely mentioned fact that 

any analog filter, even a time-varying one, can be characterized by an 

infinite matrix of numbers. More important, this fact has not been put 

to full use in the development of identification techniques. In fact, 

most identification technique«, whether they are based on a weighting 

function representation, ? lifferential equable, model, a time-varying 

transfer function model, or an orthogonal filter expansion, usually 

assume that the system is stationary over short measurement segments. 

The matrix representation, on the other hand, is a very general rep- 

resentation, valid even for fast varying systems. 

12. Optimization Problems for Systems with Deterministic signals 

We are now in a position to see how some optimization problems 

can be solved simultaneously for analog and digital signals. Suppose, 

for example, that a certain one-sided noise signal n(t), and that we 

are required to filter out the noise with a stable, realizable time- 

invariant filter H whose Laplace transform is, say, H(s). If we 
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adopt a least-mean-square error criterion, we require that 

oo 
r 

(r-H(r+n))a dt = min  . (1-52) 

0 

As described by Chang,    this can be transformed by Parseval's relation 

to the requireuent 

ioo P 

-JL         [R-H(R+N)][R-H(R+N)] ds = min.       , (1-53) 
2:tj 

-joo 

where R, H, and N are functions of s, and the overscore indicates that 

s is replaced by -s. It can be then shown, using an adaptation of the 

calculus of variations, that the realizable solution for H(s), say H^s), 

is given by 

iIo(s) = -if-lSiM.]    , (I-5U) 
* L  ?  JLHP 

where 

YY = (R+N)(R+N)  , 

emd Y has only left-half plane poles and zeros, and Y has only right- 

half plane poles and zeros. The notation [  j^gp indicates that a 

partial fraction expansion is made and only the terms involving left- 

half plane poles are retained. 

The fact that a least-mean-square error criterion is used means 

that the optimization criterion (1-52) can be expressed in the axiomatic 

framework of Hubert space. Thus, in the Hilbert space Lr,(-oo,oo), 

(I-52) becomes 
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||r-H(r+n) 11 = min      . (1-55) 

If we now apply tae mapping u to the signal r-H(r*-n), we see that 

||r-H(r+n)ll =   | |u(r-K(r+n)) 11  -   I |r-H(^n) | |      ,        (I-56) 

since ^ preserves norm. Hence H0 is a solution to the optimization 

problem 

||r-H(rfn)l| - min  . (1-57) 

Furthermore, since ^  matches one-sided analog signals with one-sided 

digital signals, and since n matches realizable time-invariant analog 

filters with realizable time-invariant digital filters, we see that HQ 

is the solution to a digital optimization problem that is completely 

analogous to the original analog problen. In addition, the general 

solution (1-5^) can be translated into digital terms by replacing the 

left-half plane by the unit circle in an appropriate way. Thus, 

H^, , -UÄ]   , (1.58) 
I L   Y   III 

where 

YY = (R+N)(ipN) 

Now R, H0, and N are functions of z; the overscore indicates that z is 

replaced by z'1; Y and Y have poles and zeros inside and outside of the 

unit circle, respectively; and the notation [ ]j^ indicates that only 

the terms in a partial fraction expansion with poles inside the unit 

circle have been retained. 
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In other optimization problems vc may wish to minimize the norm 

of some error signal while Keeping the norm of some other system signal 

within a certain range. In a feedback control system, for instance, we 

may want to minimize the norm of the error with the constraint that the 

norm of the input to the plant be less than or equal to some predetermined 

number. Using Lagrange's method of undetermined multipliers, this prob- 

lem can be reduced to the problem of minimizing a quantity of the form 

Heir +*?   Mill2  , (1-59) 

where e is an error signal, i is some energy limited signal, and both 

e and i depend on an undetermined filter function H. Again, if H0(s) 

is the time-invariant realizable solution to such an analog problem, 

then 8o(z) will be the time-invariant realizable solution to the analo- 

gous digitcl problem. 

It is almost always important to us that the solution to an 

optimization problem be realizable, but we nay want to allow as a solu- 

tion a time-varying filter. Unfortunately, the isomorphism u does not 

necessarily matcn realizable time-varying analog filters with realizable 

time-varying digital filters. Me  thus cannot show that optimization 

problems which allow time-varying solutions are equivalent in the 

analog and digital cases. Furthermore, since any known isomorphisms 

involve orthogonal expansions of the analog signals over semi-infinite 

or infinite ranges of time, it appears that an isomorphism between 

L,(-oo,oo) and ls  which preserves the realizability of filters cannot 
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be constructed. Thus, in order to show the equivalence; of an analog 

with a digital optimization problem, we require that the allowed class 

of filters, say {p ,  be invariant undei' a particular isomorphism. 

Another way of looking at the problem is to say that we are really de- 

manding that the entire optimization problem be expressible in the 

terms of abstract Hilbert space. Thus, when the class is the class of 

time-invariant realizable filters, we can characterize p in abstract 

Eilbert space as the class of all bounded linear operators A for which 

a^j « a^ and a^ = 0 for i > J. 

We can therefore state that any optimization problem which can 

be expressed solely in terms of abstract Hilbert space can be solved 

simultaneously for analog and digital systems. In particular we can 

state: 

Theorem 14. Let u be an isomorphism between L,(-oo,oo) and 12. 
,;,urther, 

let the follawing optimization problem be posed in the analog sicnal 

space Lj(-00,00): Find analog filters H^Ej,...,!^ which minimize some 

function of some norms in a given analog signal transmission cyctem and 

which are in a class of filters jb • '-^len if the class of filters f*  is 

invariant under v, the corresponding digital problem is equivalent to 

the original analog problem in the sense that if one can be solved, so 

can the other. 

As we have seen, the case where Iß  is the class of time-invariant 

realizable filters, and y is n, is an important application of this 

result. In this situation we have the following correspondences: 
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-joo 
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13. Random Signals and Statistical Optimization Problema 

While the consideration of syotemo vith deterministic signals 

is impoi-tant for many theoretical and practical reasons, it is r.ore 

often the case that the design engineer knows only the statistical 

properties of the input and disturbing signals, for  this reasor, the 

design of systems on a statistical basis has become increasingly impor- 

tant in recent years. In this section we shall show that the idea of 

linking continuous theory with discrete theory can be extended to a 

broad class of random phenonena; namely, stationary, ergodic processes 

with well-behaved correlation functions and spectra. 

Because a complete axiomatization of random processes is a very 

conrplex affair, we will simplify matters by approaching the subject 

through the correlation function. Tais is not nearly so restrictive as 

it might first appear, because physical stochastic processes almost 

always have correlation functions that are of exponential order, and 

their spectra are almost always bounded and continuous. For a more 
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complete dlscußßion of random sicnal theory and cenerallzod harmonic 

analysis, the reader is referred to Wiener. '   Accordingly, we assume 

that random sisals arc stationery, ergodic, and have zero mean.  If 

x(t) and y(t) are two such random signals, we assume further that the 

cross-correlation function 

^xy(T) ^ E[x(t)y(t+7)] (1-60) 

dies down exponentially with increasing |T|. The notation E[ ] means 

"ensemble average of." Since the processes are ergodic, (l-60) can be 

expressed as a time average: 

T 
c 

dii) =      lim      A 
Xy T - 00     T 

x(t)y(t+T) dt      . (l-6l) 

o 

Now let Xr/t) and ym(t) be the sane signals as x(t) and y(t) for 

0 < t < T, but zero outside of this range; and let X^s) and Ym(s)  be 

their Laplace transforms.  The cross-spectral-density function is then 

defined by 

■V (f,) = lim  4-E[:: '-£0Y^S^  . (1-62) 
A/ T - 00 ^ 

It is a classical result of generalized harmonic analysis, called 

Wiener's theorem, that ^xy(t) and ^Xy(s) are transform pairs: 

00 

V' - ^xy(t)e-
st dt  , (I-63) 

-00 
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and 
;co 

jLv(t) -- -J-—   ! fxv(c)c
st ds  . (I-6J0 

-Joo 

In the important case when x = y, the variance oC  :: is given by (1-64): 

Joo 

E[x2] = ^(0) r-       ] 
VxxCs) ds  . (I-65) 

-JOO 

As ve rJ-ght expect, a parallel theory exists in the digital 

case. Here, if xi and yi are tvo discrete stationary, and ergodic 

randon processes, the cross-correlation function is defined ty 

^cyU) = E[xixi+nj  . (1-66) 

Again vith ercodicity, we have 

II 
^xy(n) =    lim      U-   y   x^i+J      . (I-67) 

N - 00      fl    ^1 

The cross-spectrr.l-density is a Sanction of z,  defined 'by 

$x„(z)  =    Uta      -L.E^N(S-l)YN(z)]      , (1-66) 
N - 00    n 

where X^(z) and Yjj(z) are the z-transforms of signals which coincide 

with Xj^ and y^ for 0 < i < N, and which are zero outside this range. 

As in the analog case, ^xv(n) and ^xy.(z) are transform pairs: 
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N 

?xy(z) » lira  Y  ^xy(n)z"
n  , 

N -» oo 
xyv (1-^9) 

n^-N 

which exists on the unit circle If we assume that the correlation 

function dies off exponentially as n - oo; and 

xy (z) £ 2nj j 

Izl-l 

*)Cy(z)z 
n dz 

z 
(1-70) 

The variance of the signal x^ In analogy with (I-65), is 

1=1-1 

iz 
z 

(1-71) 

Hie parallel with the deterministic case is so strong when the 

random theory Is put in the above form, that the introduction of the 

mapping n presents no problem. Consider (I-62), for example. If we 

map the transformed analog signal X^s) to [>/2/(z+l) JX^ T-SlLA we 

should map XT(-S) to 

1 + 1   V z-1 + 1 ^ 

Similarly, YT(s) should map to [V2/(z+l)] YT C z^ ).    In accordance 

with (1-68), we define the mapping \i by 

n: ^ (t) - Ö (a) -  2z
g ö r-Ü.^ - ^(z) - i. (n)  .   (1-72) 
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The reverse mapping goes 

We have thus defined a mapping which maps analog to digital cross- 

correlation functions, nie Important Invariants under |i are the 

quantities 

^(0) = E[x(t)y(t)]  , 

and 

which correspond to the Inner product In the deterministic case. To 

verify that these are preserved under n, put t ■ 0 In (1-64): 

joo 

(Xy(s) ds 

»Joo 

P 

M°) - -k 
z-1 If we now n»ke the change of variable s =  +1 ,  we get 

(0) - _i_ Cb {  (-21^) 2  dz 

■|=1 

4,(0)   . 

V2» -T- 

Since all of the steps In (1-72) and (1-73) are reversible and give 

unique results, the mapping p Is clearly one-to-one and onto. 
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or 

co ■ -=-arctan CD . 

Suppose now that we are given some periodic function of cu, 

C(a))aay, that is to he the desired characteristic (magnitude, phase 

angle, real or Imaginary part) of a digital filter. C (-iLarctan coj) 

will then he the corresponding characteristic for an analog filter. 

We can then approximate C C arctan on as an analog filter charac- 

teristic, using any one of the many procedures available for analog 

filters. We thus arrive at a rational function of a, say A(s). Then 

A( z)  »A ( z"1>) will be a digital filter whose characteristic approaci- 
■ ^ 2+1 S 
mates the desired one.    Since the left-half s-plane is mapped inside tho 

unit circle In the z-plane, stable poles of the analog filter A(s) will 

beccoe stable poles of the digital filter A( z). 

Loosely speaking, we have taken the interval IOJ) < ä/T and 

stretched it out; done our approximation for an analog filter; and 

then squeezed the CD-zxis back into the original interval.    Although the 

co-axis is compressed, many of the widely used approximation criteria, 

such as equal ripple, maximal flatness, etc., carry over directly to 

the digital filter case.    If an analog filter A(s)  has magnitude M(co), 

phase angle $(co), real part R(co), and Imaginary part 1(a)); then the 

corresponding digital filter A(z) will have magnitude M(tan off/2), 

phase angle 5(tan üff/2)  in |CD| < jt/T, real part R(tan üff/2), and 

Imaginary part I(tan aiT/2). 
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As an illustrative exaicple, suppose we wish to approximate 

the ideal low-pass characteristic shown as a dashed line In Figure k. 

We have taken the cutoff frequency to tc at cu ■ «/2T, one-half the 

Nyquist frequency.    The analog filter A(s) should therefore, by (II-5h 

have an ideal cutoff at 

a) » tan crir/2 - 1     . (11-^) 

Let us now use for A(s) a third-order maximally flat Butterworth low- 

pass filter ^ with unit cutoff frequency: 

A(s) 
s3 + 282 + 2s + 1 

When we let s » z"1 , this becomes the digital filter 
z+1 

1 + 3z-1 + 5z-2 + z-3 A(z) m-±J-2Z     T ^  T a (n-5) 
5 + z"2 

whose normalized magnitude is shown plotted as curve B in Figure k, 

A( z) is now a maxdmally flat digital filter. Its response is zero at 

the Nyquist frequency co » n/T, this point corresponding to infinite 

frequencies for the analog filter F(s). The filter A(z) can be Imple- 

mented in a hand or machine computation according to (1-hl),  Section 10. 

Thus, if fi and g^, respectively, are the input and output digital signals; 

gi - -i-Cfi + Jfi-i + 5fi.2 + ^i-J - gi-2) •       (II-6) 
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A typical application of such a snoothlng operation would be to remove 

high frequency noise prior to halving the number of data points. 

As a more elaborate example of a smoothing routine, suppose 

we wish a low-pass filter with a sharp cutoff at one-quarter the Nyquist 

frequency, CD « n/^T. This corresponds under the mapping p. to the 

frequency 

ü> » tan dr/2 ■ tan A/8 « 0.klh2      . (II-7) 

Suppose further that we desire the digital filter to have equal ripple 

In the pass band. We might then start off with the fourth-order 

Tchebycheff filter having about 1$ ripple (€2 » l/5), and with a cutoff 

frequency at co « It 

A(s) = ±  . (II-8) 
s4 + 1.054s3 + 1.555s2 + 0.8506s + 0.50G2 

If we substitute (s/0.4l42) for s, we get 

A^s) 
B4 + 0.h2Bks3 + 0.2655s2 + 0.05905s + 0.009011 

(II-9) 

which he^ a cutoff frequency at CD « 0.hlk2.    We then substitute 

s » .-z"1   to obtain the desired digital filter: 
z+1 

A  , x 1 + 4z-1 + 6z"2 + kz~3 + z'4 

A,(z)  B     . 
1.760 - 4.705z"1 + 5.527z"2 - 5.225z"3 + 0.7849z"4 

(TI-10) 
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Figure 5 Bhows the normalized magnitude of this Tchebycheff equal 

ripple digital filter. If this filter were used prior to a one-half 

data reduction, noise at frequencies creator than half the Nyquist 

frequency would affect the resulting signal very little. If the power- 

spectral-denslty of the resulting reduced digital signal were measured, 

it would be desirable to correct for the ripples In the frequency char- 

acteristic of the filter A( z). The design of a high-pass or a bandpass 

digital filter follows the same pattern. 

We have thus seen how the mapping \x  allows us to reduce the 

approximation problem for digital filters to that for analog filters. 

The technique described allows the designer of digital information 

processing systems to deal with signals in the frequency domain in 

much the same way that the ccaranunications engineer deals with analog 

signals. 

5. Comparison with Fourier Series Techniques 

19 Guillemin y has suggested the use of Fourier series lor the 

approximation of magnitude characteristics of analog filters. His 

approximation procedure consists of using the mapping \i  to convert the 

desired characteristic to one that is a periodic function of frequency, 

using a truncated Fourier series in CD to approximate this, and then 

inverting the transformation v-  to give a rational function of o. Since 

we deal directly with periodic magnitude characteristics as a function 

of cu, we can use Fourier series directly. Thus the use of Fourier 
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series iß a natural choice for the design of digital filters, and 

GulUemin reversed our program and used it for the design of analog 

filters. 

Suppose, then, that we are given the desired magnitude charac- 

teristic M((ü) of some digital filter.    Since this is an even function 

of a) with period 2«/T, we can approximate it in a least mean-square- 

error sense with the truncated Fourier series 

n—K 

(ii-n) 

where 

it/T 

Cn-c. 
a       2« 

M(ü)) e^1^ cU» 

-«/T 

(11-12) 

The realizable digital filter 

2K K 
A(z)  -   I   VK Z-0 - Z-K     I   ^ z'* 

n=-K n«o 
(11-15) 

will then have a magnitude characteristic which approximates M(co), 

because when z « e''- 

|A(z)| 

K 

I 
n«-K 
I «n«-" 25M(ü)) (11-14) 
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This technique Is particularly valuable for two reasons. First, 

since the series (11-11) Is a cosine series, the only phase distortion 

Is that caused by the delay factor z"K. Thus, If the delay of KT Is 

tolerable, there Is essentially no phase distortion. Second, these fil- 

ters are polynomials In z-1 and have no denominator. Therefore, their 

Implementation 

61 "  C-Kfl + c-K+lfl-l + •" + CKfi-2K (11-15) 

does not require the storage of outputs. This leads to programs which 

can be easily effected by simple special purpose computers and which 

require a relatively small amount of storage capacity. 

On the other hand, the fact that these filters are polynomials 

In z'1 means that there Is a loss of several degrees of freedom. This 

usually leads to magnitude characteristics that have the ripple and over- 

shoot characteristic of Fourier series approximations. Looking at this 

problem In another way, we can consider these Fourier series filters, 

or any other polynomial filters, as power series approximations to ra- 

tional functions, since by (1-40) any time-invariant digital filter can 

be written as an infinite series: 

CD 

A(z) « ^  ajZ-1  . (11-16) 

i=-00 

We would therefore expect a finite polynomial in z"1 to have more ripple 

and overshoot than a properly designed rational function, whose power 

series does not terminate. 
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To Illustrate these points, suppose we again want a low-pass 

digital filter with a cutoff frequency at one-half the Nyqulst frequency. 

M((u) Is the Ideal characteristic shown as a dashed line In Figure 6. 

Equation (11-12)  then yields the following Fourier coefficients: 

1/2    , n - 0 

cn ■ c-n ■ -< 
,    v(n-l)/2 

I^±2      ,   n-1,3,5,... (11-17) 
nn 

0       , n ■ 2,4,6,... 

The normalized magnitude characteristics of the first three of the re- 

sulting digital filters are plotted In Figure 6: 

Curve A:  A(Z) - -i- + -^z.'1 + -i-z"2 (11-18) 
■     n   2     « 

Curve B:  A(z) = -^ + -^-z"2 + -±-z'3 + -^z-4 - ^-z"6 
» '   5n   «      2      n 3« 

Curve C:  A(z) « -J- - 1 z"2 + JLz"* + 1 z"6 + -L-z"6 - JLz"8 + J-z"10 
»    5«  3ä     ä     2 n     3«    5« 

We note the ripple and overshoot described above. One way to alleviate 

20 21 this difficulty would be to use Fejer means '  of the coefficients c^. 

This would produce smooth approxlmatlonp, but at the expense of having 

a slower cutoff and poorer rejection In the stop-band. In any event. If 

we need a digital filter with a magnitude characteristic that Is both 

close to Ideal and smooth, we must use either polynomials of very high 

order or rational functions. 



66 

k.   Ccmparlson vlth z-Transforms of Analor; Filters 

Vte take up now another approxtaation methodj one that at first 

appears natural, "but is actually not very promising.    Suppose that 

Instead of taking the ^-transform of an analog filter, A(s), we take 

the ordinary z-transform.    In this case, the resulting digital filter 

Is given by 

oo 
A^ä^.JL    y     A(Jü)+ Jn2n/t)      . (11-19) 

ne-oo 

Typically, A( s) would be designed so that It approximates the desired 

digital filter characteristic for |üJ| < n/T, and is small in magnitude 

outside this range.    If A(s)  then has all its poles inside the left-half 

plane, A(z) will be a stable digital filter with approximately the de- 

sired characteristic.    The main difficulty with this method is the addi- 

tion of unwanted terms in (11-19) due to aliasing of the filter function. 

To use this idea, we must start with analog filters which have carefully 

tailored characteristics with sharp cutoffs and good rejection in stop- 

bands, and all this leads to high order filters. 

Purtheimore, finding the z-transform of a high order filter 
z-l 

Involves a great deal more work than just letting s ■ —-; and when 
2+1 

we are done, we must recalculate the magnitude or phase characteristic 

of the result to assess the errors introduced by the aliasing of the 

original characteristic. All in all, the ^-transform is much better 

suited for the purpose of converting analog filters into useful digital 

filters. 
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To Illustrate the above, consider again the third-order maxi- 

mally flat Butterworth low-pass filter that we considered in Section 2s 

A(s)-— 1   , (11-19) 
s3 + 2s2 + 2s + 1 

The z-transform of this filter is 

A(z) 0.3703.-11 o.Kkez-*  _   (II.20) 
1 - 0.5981z'1 + 0.2k7kz'z  - 0.04321 

The normalized magnitude characteristic of this digital filter is plotted 

as curve A in Figure k, which also shows the magnitude characteristic of 

the M,-transformed filter.    Because of the relatively high cutoff fre- 

quency of A(s)  (one-half the Nyquist frequency),  and because of the low 

order of A(s), the effects of the aliasing of the filter characteristic 

are quite pronounced -- the cutoff is not sharp and the rejection is poor. 

In sunnnary, the mapping M, converts the approximation problem 

for digital filters to the approximation problem for analog filters. 

This latter problem has received a great deal of attention over the past 

fifty years, and we are fortunate to be able to use it to our purposes. 

5.    Building Analog Filters with Digital CcmTmters 

We conclude Part II with a discussion of the possibility of 

constructing an analog filter from a sampler, a digital filter, and a 

data reconstruction device.    Such a system would probably be Implemented 
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In real time using a digital computer. The advantages of using a digital 

computer as an analog filter are the fiexibility, accuracy, and stability 

which can be readily obtained, and vhich are practically Impossible to 

achieve with analog hardware. The coefficients in a digital computer 

program can be set to a high degree of accuracy, can be changed very 

fast, and are not subject to unwanted variation with temperature or age. 

Furthermore, with the use of pulse-code modulation for the low noise 

transmission of signals over large distances, the availability of signals 

already in digital form can make it more feasible to filter in real time 

with a digital computer. Ultimately, however, whether such a scheme is 

practical depends on the state of computer technology. 

Suppose then that we sample an analog signal f(t), pass the 

resulting digital signal through a digital filter A(z), and then recon- 
m 

struct an analog signal with a data reconstruction circuit H( s). The 

Laplace transform of the output signal is 

G(s) = A(esT)H(s)F*(s)  , (11-21) 

where F*(s) is the Laplace transform of the sampled input. We can thus 

write a transfer function with respect to the sampled input: 

G(°)  = A( esT) H( s)  . (11-22) 
F*(s) 

We assume now that we have sampled at a frequency at least twice as 

great as the bandwidth of f(t). Then, in the range |a>l < jt/T, the 
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transfer function (11-22) represents the effect of the system on the 

original signal, and outside this range represents spurious harmonics 

of the Input signal caused by Imperfect data reconstruction. These 

upper sidebands can be removed with a simple low-pass analog post-filter 

having a cutoff frequency near the Nyqulst frequency. 

As an example, suppose that H(c) Is a zero-order hold: 

H(8) -JLU   , v 11-25) 
sT 

|H( ja>) | 
sin air/2 

ü/r/2 
il-.-2h) 

|H(J(ü) I has Its first zero at twice the Nyqulst frequency, and has lobes 

of appreciable magnitude well-outside the range |ü>| < «/T. Hence, the 

overall transfer function (11-22) will have spurious responses at high 

frequencies unless these are filtered out. Suppose now, as an example, 

that we use the Tchebycheff filter (11-10) of Section 2 as our digital 

filter A(z). The normalized magnitude of the resulting digital filter- 

hold ccmblnatlon is shown in Figure 7. We note that the shape of the 

digital filter A(z) Is slightly distorted in the pass-band by being 
1 sin cdT/2 , 

multiplied by j rrrr 1. If necessary, the magnitude characteristic 

of A(z) can be coorpensated to correct for this distortion. 

It is Interesting to note that the filtering characteristic of 

our final system can be changed as fast as the coefficients in the digital 

computer program can be changed. If we used bandpass digital filtery, 

for example, we might then be able to use the system to replace a bank 

of fixed filters or a frequency sweeping system. 
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PART lilt APPLICATIONS TO POWER SPECTRUM MEASURHffiHT 

1. Introduction 

The concept of power-spectral-density has become an important 

tool for the analysis and synthesis of many types of physical systems. 

As a result, there is a pressing need for ways to estimate the power- 

spectral-density of a signal from a finite record of that signal. 

Originally, analog methods provided the only practical way to do this. 

These methods usually involve the selection of a narrow band of fre- 

quencies with a bandpass analog filter, and then a measurement of the 

power density of the signal in this bend. Too wide a pass-band results 

in an averaging of the spectral density over an excessively wide range 

of frequencies, with a resulting decrease in resolution; while too 

narrow a pass-band results in excessive statistical fluctuations of the 

estimates. In 195^ Chang^ derived an expression for the optimum band- 

width for the spectrum analyzer and showed that the optimum shape for 

the spectrum analyzer was semicircular. 

In recent years, when high speed digital computers became 

available, methods for spectrum analysis based on equally spaced samples 

of the signal of interest were developed. These methods were at first 

divorced from the concept of a bandpass filter, until the concept of a 

spectral window was introduced. Still, the connection between the analog 

and digital methods of spectrum estimation has remained obscure. One 

goal of this part will be the clarification of this connection. Ife 
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begin with a review of the methods lor spectrum analysis of equaiiy 
oJi OK OC 

spaced data, based mostly on the vork of KLaclaaan, Tukey, and Press. ' ^, 

First of all, if a random signal is sampled, the sampled power 

spectnan of the resulting digital signal is related to the original 

spectrum by 

n«=-oo 

where T is the sampling interval. We see Immediately that we must 

sample at a rate fast enough to reduce undesirable aliasing of the origi- 

nal spectrum. Otherwise, the spectrum we measure, $3^(2) will not be an 

accurate reflection of the spectrum of the original signal. 

Assuminc that we have sampled fast enough, and have prefiltered 

the original analog signal to reduce high frequency noise if necessary, 

we can compute estimates of the autocorrelation function. We assume 

throughout this part that we have observed samples X1,X2,...XJJ of the 

original signal x(t), and that N is so large that we can neglect end 

effects. Thus we compute the (nH-l) mean lagged products 

N-|k| 

I fk = ^xr ^ XiXi+w  '  -*^* •   (ii1-2) 

These f^ are unbiased estimates of the autocorrelation function ^(k): 

lim     fk = ^(k)       . (III-3) 
N - 00 



72 

^(z)  -   lim      )"     ^(k)2"k     , (HI-1*) 
N -• oo ,.   „ 

Since the power spectrum is given by (I-69)s 

N 

I 
k—N 

we are led to the estimate 

A a .k 

Wzo) =   I     W     ' f111^ 
k=-m 

where z0 = e
Jüio , and CUQ IS the frequency of interest. This estimate Is 

known as the periodogram. These estimates are statistically unstable 

because they give equal weights to all the f^, while the f^ for larger 

k are much less reliable. This suggests weighting the sum (II-5) in the 

following manner: 

A    m 

k=-m 

where 

w. » w . 
k   -k 

The expected value of this estimate is 

m 

'O 

A Ul 

K'xx^o)  =   ^     wk *Wk)z; 
k=-m 

I ^(-^«f w^k-f-)^k 
k=-m i Ji  , 

|z|=l 
(Cont'd.) 
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Cont'd. 

T 
2« 

Izl-l k»-m 

n/T 

^((o) WCco-o^,) dco      , 

-it/T 

(III~7) 

where 

m 
U(z) -   ^    ^z1 

ko-xn 
(m-e) 

Is a weighting function which determines an estimate of ^((u)  end is 

called the spectral window,    fy a convenient abuse of notation we write 

'xx^   k18"1*8^ of SjQ^e''    ).    The problem of choosing a good spectral 

window has received much attention.    A good evalua* '.on of many spectral 

27 windows can be found in Grenander and Rosenblatt. ' 

2. A Class of Windows Generated by Digital Filters 

If we now try to mimic the analog method for spectrum analysis, 

using digital filters instead of analog filters, we are led to a special 

class of estimates involving a special class of spectral windows. Suppose 

then that we design a bandpass digital filter that is tuned to the parti- 

cular frequency cu^, say D(z). Let us pass the digital signal xi,...,xN 

through this filter to obtain an output sequence yi,...,yjj. The power 

density of this output signal is then the average energy: 



fk 

A N 
ft 

XX. K) --f I yf  • (III-9) 

i-i 

The expected value of this estimate is 

^'xxK) « E(yf) " ^yy(O) 

2äJ 

dz 

z 

n/T 

T 
2n 

|D(üi) |2 «^(oi) dtu  ,        (111-10) 

-n/T 

so that these estimates correspond to the weighting function 

W(CO-<ü0) = |D(<ü)|
2
 . (III-ll) 

Thus, this special class of estimates has the desirable property of 

having a weighting function that is always positive. This means that 

no matter what *-.he shape of the original spectrum, the estimates will 

always be positive, a situation that is not always true for the more 

general estimates using windows U(ü)-CD0) . We therefore have eliminated 

the problem of negative power leaking through a side lobe of the weighting 

function. 

In general, the Implementation of the estimate (III-9) will 

necessitate running the digital signal x^ through the digital filter 

D(z) for each frequency of interest. This is a decided disadvantage. 
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because of the long tine that this would take on a cocputer.    In the 

special case when D(z)   lo a polynomial, however, we can compute the 

estimates directly from the f^.    To see this, write 

««<%) •-tl*l--£r<b   «z)«^1) Wf*-1)   J& 
1=1 |z|«l (111-02) 

where we define 

X(z)  = Xi + Xgz"1 + xaz'2 + ••• + xNz"N      . (111-13) 

As aiming that 

K 
D(z) «   V   dkz"k     , 

k»=l 

(III-12) becaaes 

A K 

$xx(%)  -     ^    *kWk-l     > (111-14) 

k,l=o 

which Is Just as easy a quantity to calculate on a cooputer as (111-6). 

The coefficients djj will, of course, be different for each frequency of 

interest. 

Whether we use this last method and restrict D(z)  to be a poly- 

nomial or we use a rational function of z and run the signal through the 

filter for each measurement, we can now use tne approximation methods 

discussed In Part 2 to design spectral windows.     It Is very easy to use 

different windows for different parts of the spectrvna, for we have 
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complete control over the shape of the window at all times.    We have 

thus seen hwr the measurement of power-spectral-denslty for discrete 

signals can be thought of in terms of filtering and energy measurements, 

just as in the analog case. 

5.    Th; Mean-Square-Error of These Estimates 

With a view towards deriving the optimum digital filter for 

25 these estimates in a manner similar to Chang's, ^ we will now calculate 

the mean-square-error: 

This mean-square-error can be broken up into two parts; first the square 

of the bias: 

(bias)2 = ['VJCüJ  - E?   Ycojf      , (III-16) xxx  o' »r  o 

and second the variance 

variance = E[v(üi0} f - [E^COQ) f      , (111-17) 

Thus 

e2 = (bias)2 + variance      . (III-16) 

From (III-IO), \Te have 

«/T 

bias = Syxiaio)  - -~ 
2« 

.2 
|D(^) I   W«5) &»    -       (111-19) 

-«/T 
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We see from this that the bias error is due entirely to the fact that 

the weightlnc function is not a 6-function. For this reason we may call 

it the "blurring" error, after Chang. 

The variance is somevhat more difficult to calculate. From 

(II-9) we have first 

A K 

E[v(^0)f=-V Y ECygyg]  . (in-20) 
n,m=l 

In order to evaluate these fourth-order moments, we now assume that the 

original signal has a .normal probability distribution function.    With 

this assumption,  the digital signal y^ is also normally distributed, and 

using the characteristic function for the y^, we get 

E[y^] = ^(0) + 2 ^ydn-n)      . (111-21) 

Thus, 

A N 

ECVCOOQ)]
2
 = 4/(0) + "j|"    ';     ^yy(n"n)     • (111-22) 

n,m--l 

Also, we have 

[E?(a>0)f = ^(0)       , (111-25) 

so that 

N 
varlance=-^-     )      ^^.(ra-n)       . (III-24j 

n,ra-l 
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This can be put in terms of the power-spectral-density of the yi by 

using formula (I-70): 

rt/T 

Vy(n) "-i^-  $    V(z); n   dz 

z
Ji=i 

^(o)) eJ"^1 d^      .  (III-25) 

■n/T 

Hence, we can \rrite 

variance = —^-{r2/2n)' 
if 

n/T   tt/T 

-ä/T -n/T 

N 
-J'-'Ui-o^T 

(111-26 

Using the identity 

IT 

)     e-jv(ü>1-üte)T 
sin- —(üii-üfe) T 

sin2 —(OüI-üö)T 
2 

(III-27) 

this becomes 

variance « —~-(T/2jt)' 
11- 

n/T   n/T 
sin" _iL(ü)i-aö)T 

2        ^,-.,(ü)I)'2._,.(üCG)  (koidxc    . 

-n/T -n/T 

^ 2  1 /       -im   yy      yy sin'-  -i-(coi-üte)T 
(III-PS) 

The inner integral in this expression is hnown as Fejer's  Integral,  and 

is discussed In Carslaw,  " and in Titchmarsh.        The cscential result is 

that 

2    1 lim       sin   -r- Naff 
c. 

N - co 2n 

sin"' —- off 
N 6(Cü) (III-29) 
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That is, the Fejer kernel tends to a 6-function vlth increasing N. 

S-«1  In our case N is very large (usually larger than 50 or 100 for a 

meu  ^-i-'ul spectral analysis), we can write as a good approximation 

n/T 

variance = 
2 
N 

T 
2n 

^(0))   ck.        . 

-n /T 

Jt/T 

2 
N 

T 
2« 

4     2 
D(ü))       ^(^   da) (III-JO) 

-*/' 

Thus the variance is inversely proportional to N, which is in agreement 

27 
with Grenander and Rosenblatt, ' who used a different derivation that 

applied to spectral windows that are not necessarily generated by digi- 

tal filters. Furthermore, if we normalise by the square of the area 

under the window: 

n/T 

r_2. 
L 2n 

-,2 
D(co) \2  toj (111-51) 

-ä/T 

the variance is inversely proportional to the length of the record NT, 

which agrees with the analog case. Ue thus have derived an expression 

for the mean-square-error of the digital filter estimates: 

n/T n/T 

*2 = [$xx^o) - -ir I^ I2 ':,xx(^ H   + IT 2« 

■n/T 

|4 2 

-n/T 

|D(<ü)|. ^(C) do) 

(111-52) 
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k.   The OptJaua Digital Filter 

Our program now is to find the dicital filter shape that mlni- 
23 

mizes this ne an-square-error, thus following the derivation that Chang 

presented for analog filters. Accordingly, we represent the digital 

filter characteristic |D(a)) | by \fiü)/L),  where n » aya^, % is the 

center frequency to which D(a>) is tuned, and A is sane kind of bandwidth 

such that UsCn)/A) is small for |jl| > A. We thus focus our attention on 

only one main lobe of the digital filter characteristic, at OJ = cu^. We 

assume also that the filter D(z) is sharply timed to (üQ,  SO tlat we can 

write to a good approximation 

K/T 

2   T 
variance • .,   _ ■ 

N   2ä |D(a>) I* *«(a>) cLo 

-«/T 

«/T 

4- -t ^ \D(ci)\4 dm   .   (111-35) 

-n/T 

This becomes in our new notation: 

CO 

variance«-ij |p ^(%) I Ü*(n/A) d^        (111-34) 

-co 

To express the bias simply, we expand the spectral density ^(üü) in a 

power series about a^: 
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W^ " Qxx^ * *ic^ (a>^o) 

+ -y- ^(^(CD-CüQ)
2
 + •••  . (111-55) 

Assuming that the area under the filter characteristic is one, or, 

equivalently,  that our estimates are adjusted by dividing by the area 

under the filter characteristic, the bias term (111-19) becomes 

bias ■ -i-   —^— *" (en ) 

-1- *: (a) ) 2n     y3QC^O^ 

00 

-00 

TC/T 

JD(ü)) |    (tü-o^j)    du) 

-ä/T 

1^(0/A)  n2 dfl      , (111-56) 

where we have also assumed that U^fl/A) is an even function; that our 

filter has a syrmetrical magnitude characteristic about the resonance 

frequency. 

TJe seek to minimize the normalized mean-square-error, given by 

4>rm      TPT " ^    •      (III-57) 

[-JL- J    liXo)!2 da)]" (T/2Ä)2[2 J U^fl/A)  dflj 

-«/T -oo 

For convenience of notation, we nov define the folloving integrals: 



82 

oo 

I = l^Cn/A)  d(fi/A)       , (111-58) 
u 

-00 

00 

i^Cfi/^Cn/A)2 d(n/A)     , (111-39) 

-00 

CO 

K « 

-CD 

u*(n/A) d(n/A)    . (ni-^o) 

V/lth these notations, the normalized mean-square-error beccones: 

which Is exactly the same as Equation (25)  In Chang's paper, ^ which was 

derived for an analog filter Instead of a digital filter.    Hence, the 

rest of the derivation is identical to that for the analog case, and we 

are done. 

Thus, the optimum bandwidth, obtained by differentlatlnc (III-41) 

with respect to A and setting the result equal to zero, is 

Vte have therefore shown that the optimum bandwidth is inversely propor- 

tional to the length of the record available for spectral analysis. 

Tills optimum bandwidth was derived by Grenander and Hosenblatt for two 

specific windows; we have here shown that it holds In general for windows 
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generated by digital filters. 

The non^allzed nean-square-orror in the case that the bandwidth 

is chosen optimally is 

€norm m -^ (2Ä/I^^)•
8 C^K)]1,6 [^(o^)]'1* K'If . (111-43) 

Since 

S       K'^J'2 r n   "s"1,2 

h^'^r- JLf- [}*>o' ]-8 [♦«<%) (-#-)]'   < III-W" 

we can define the error cctsfflcient 

K, --f-     K' Z'2       . (111^5) 

which is a quantitative measure of how small an expected error can be 

achieved with filter characteristics of different shapes. As Chang 

shows, the optimum shape for the function U is given by 

U(fi/A) =0  ,  for |fi| > A 

(III-46) 

U^fl/A) » A{1 - (fi/A)2)  ,  for |n| < A . 

This being obtained by setting the first order variation of Ke with 

respect to U equal to zero. This semicircular filter shape gives 

Kg « 0.C6. The shape of the filter is actually not too critical, pro- 

viding that the bandwidth has been chosen well, and providing that the 
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side lobes of the digital filter characteristic in the region |fll > A 

are small.    Thus, the ideal rectangular filter shape 

U(fl/A)  «0      ,     for      |n| > A 

(111-4?) 
U(n/A)  =1      ,     for      |n| < A 

yields Kg = 0.68, which is close to optlnum.    Thus, the bandpass trans- 

formations of a low-pass Butterworth or Tchebycheff filter would serve 

well as spectral windows,  although the Fourier series filters would be 

easier to Implenent using (III-14). 

5.    Prewhitenlnp: Techniques 

Vfe thus see how the approximation techniques described in Part 2 

can be applied to the design of spectral windows.    These approximation 

techniques are »Iso especially useful in prewhitening spectra before the 

above estimation methods are applied.    The idea of prewhitening has be^n 

strongly advocated by Hladonan and Tukey     for a few reasons, one of 

which can be seen by examining the expression for the mean-square-error 

(III-41).    This error depends directly on the second derivative of the 

spectrum at the measurement point, which appears in the bias term.    If 

we could somehow flatten the spectnan before measurement and then compen- 

sate for this after the estimates have been computed, we would reduce 

the bias term without affecting the variance.    Another advantage of 

measuring an essentially flat spectrum is that there is then little 



85 

possibility of an unreasonable contribution from a peak in the spectrum 

that happens to correspond to a minor lobe in the spectral window. 

Therefore,  if we have a rough idea of the shape of the spectrum 

we are measuring, we can approximate this shape with a digital filter 

D(z), so that 

|DM |2 a ^(co)       . (111-48) 

We can then pass the original signal x^ through a digital filter l/D( Z) , 

producing a signal with a relatively flat spectrum.    Estimates of this 

power-spectral-density are then computed in the usual way, and then cor- 

rected by multiplying by  |D(ü)) | ,    The techniques described In Part 2 are 

well suited to accomplish this prewhitening in an organized way. 

6.    The Identification of Power Spectrum Parameters* 

Suppose now that a system designer needs to know the power- 

spectral-density of seme signal.    Assuming that he his an idea of the 

bandwidth of the signal, he can obtain samples of it, calculate the mean 

lagged products fjj, and then use some spectral window to estimate the 

spectral-density.    What he gets after this procedure are estimates at 

points along the frequency axis, usually equally spaced.    If the results 

of this spectral analysis are going to be used for anything besides a 

visual presentation, the designer will have to put this in some closed 

analytical form.    One way to do this is suggested by the mapping \x. 

The points of the power spectrum can be transformed by the mapping \i. as 

* Tne results in the remainder were reported by the author in Reference 28. 
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In Equations (1-72)  and 1-73) •    The neasiirement points nov represent the 

spectrum of an analog signal, and this can be put in the form of a ra- 

tional function of s by using Eode's method of semi-infinite slopes.    The 

reverse mapping M-"
1
 will then yield a rational function of z, which is a 

form which can be used for explicit design.    This procedure leaves much 

to be desired.    First of all, it involves two consecutive approximations 

and the accuracy of the final result is difficult to gauge.    Second,  it 

is not easily mechanized on a computer,  and is hence ill-suited for real 

time application as an identification method for adaptive systems. 

It would therefore be desirable to have a method of measuring 

power-spectral-density that yields an analytical form for the answer. 

The technique of prewhltening suggests the following method of accom- 

plishing this:    suppose we -pass the signal of interest Xj^ through a 

digital filter D( z)  of some canonic form, and then adjust the coefficients 

of DCz) SO that the output is in some sense most nearly white noise.    Then 

we have 

lD(üi)|2 i^iüi) ä 1      , (111-49) 

so that 

Wz) - -  ;   *     r (III-50) ^ D(z)D(z-1) 

can be used as an analytical expression for the unknown power-spectral- 

density. 

If this program is to be carried out,  the following consideration 
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is Important;    the most tine consuming, and hence expensive, step in a 

spectral analysis is always the computation of the mean lagged products 

Ifc.    Hence, we would like to calculate only one set of these for each 

spectral analysis.    If we assume that D(2)   is a polynomial in z"1, the 

output mean lagged products can be expressed in terms of the input mean 

lagged products rather easily.    On the other hand, if D(z)  has even one 

pole, it becomes intractable to express the output mean lagced products 

in terms of those of the input, and the mean lagged products of the out- 

put must be recalculated for each choice of coefficients in D( z); and 

this becomes Impractical.    Hence, the procedure outlined is only practi- 

cal when D(z)  is a polynomial in z"1. 

At first, the following method was tried on a computer.    D(z) 

was assumed to have the form 

D(z)   = 1 + az"1 + bz"2      , (III-51) 

the input mean lagged products were computed, and the appropriate mean 

lagged products of the output of D(z) were computed from thece. The cri- 

terion for whiteness weis that the autocovariance determinant of the output 

signal be maxinun. Ey the method of steepest descent, the coefficients 

a and b were found. The method converged nicely, but gave good results 

only when the untnown power spectrum was of the appropriate form: 

^ (-r) ß  fTTT-IP^ 
**      D(z)D(z-1) 
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Furthermore, the extremal seeking procedure becaaes less reliable when 

more unknown coefficients are Introduced. 

It was then found that the above problem Is equivalent to a 

well-known problem In mathematical statistics: the solution of this 

latter problem can be found in the literature; a good discussion Is given 

29 
by Hannan, y for example. Thus, when D(z) Is assumed to have the form 

D(z) = 1 + o^z"1 + a,z'2 + ••• + o^z'P  ,        (111-53) 

a completely analytical expression for the coefficients o^ can be de- 

rived in terms of the mean lagged products of the input signal.    The 

method cannot be extended to the case where D(z) has poles, for essen- 

tially the same reason described above.    Thus, it is the responsibility 

of the experimenter to ensure that the unknown spectrum can in fact, be 

represented closely by the form (111-52).    Seme ways of getting around 

this problem will be discussed later.    We now present the solution to 

the identification problem described above when D(z)  is a polynomial in z"1. 

7.    Statement of the Problem 

We make the following assumptions: 

1. N points of the signal of interest are available: 

^U^SJ • • '^n     ' 

and N is large enough so that end effects can be neglected. 

2. The signal is normally distributed with zero mean, and Is 

stationary and ergodic. 
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3*    The signal h.\8 a power-spectral-denslty which can be closely 

represented by 

9    (z) ß!       , (III-^) 

where 

D(z) - 1 + a^z'1 + Cfez"e + ••• + o^z-P (111-55) 

has all of its zeros inside the unit circle in the z-plane. 

The problem is to estimate the parameters Qi,cfe,...,ap, and ß ; given 

the N observed points of the signal. 

8.    The Most Litely Estimates 

The solution given here will be essentially the sane ao that 
29 given by Hannan,     except that our argument will be in terms of power 

spectra. 

Define a new signal y^ by x^  through the digital filter D(z). 

That Is, put 

or,  In z-transform notation 

Y(z)  » D(z) X(z) 

The stochastic variable y^ is normally distributed.    Furthermore, its 

power-spectral-density ie 
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JyyU)        .D(Z)D(Z^) tW{z)        -ß2 
'JOT (111-57) 

so that the signal y^ Is gxiassian distributed white noise with mean square 

2 
value ß .    The Joint probability density function of the observed sample 

(y1>y2>"-*yii) is then 

N 

i>iyi,ys,-",yn) 
(2«)N/2ßN 

exp 

i-1 (111-58) 

The maximum likelihood estimates of the unknown parameters; 

denoted by ax,C(2,...,0^, and ß ; are obtained by maximizing this proba- 

bility.    Thus the following set of equations must be solved: 

and 

& log pCy^Ya,...,^) 
^a ;J 

5 log viyi,yz,---,yi]) 

o, j « 1,2,...,p; (111-59) 

(111-60) 

When (111-56)  is substituted in (III-58) and the indicated operations are 

carried out, the most likely estimates result: 

A  "1 r 
fo fi        fa 

A 
fl f0          fl 

A 

• s    - 
f

2 
• 

fl         fo 

• 

A 
% 

• 

. * • 

fp-x 

fp-e 

kp-3 

-1    p     -n 

f3 
X 

fP 

(111-61) 
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and 

^ 

i,J=o 

A A 

i-J 
A     A     A A 

(111-62) 

where the f J are the mean lagged products 

NrJ 
fjB urr I v^     (J -0) 

i=l 

(ni-63) 

In sianmary, then, the following computations are performed: 

1. From the N sample points of the signal, the mean lagged products 

^o'^if'f^D are calculated In accordance with (111-63). 

2. The pxp matrix (fn.-ij i,J = 1, ...,p)   is formed and inverted. 
A 

5.    otj (J a 1,...,p)  are calculated frcm (111-61) 

k.    ß2 is calculated from (111-62). 

These computational steps are shown diagramatically in Figure 8. 

9.    Variability of the Estimates 

If this identification method is to be used for any practical 

purpose,  sane knowledge is required about the accuracy of the estimates 

29 A 

for u given N.    It can be shown     that the vector a - a defined by 

A a - a = 

A 
Ol 
A 

<*1 

«P"0^ 

(111-6^) 
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Is anymptotlcal-ly nonaally distributed vlth zero mean and covarlance 

matrix 

£ 
N-p 

io h 4 
K K k 
k K K 

k-> 

This can be estimated conveniently by 

Pp-i 

^p-2 

^p-3 

-1 

(111-65) 

An 

1I-P 

^o 

p-i 

AP-a 

^p-3 

(111-66) 

^ P"1 0 

which does not use any quantities which have not already been calculated. 

The distribution of the estimate fr is difficult to calculate 

since it is a more complicated function of the fj's. It is easy, however, 

to derive the distribution of 

N 

H L 
z 

-   I 
1=1 

aiVii-j 
l>J«o 

(111-67) 
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and this will give some (optimistic)  indication of the variability of 
A2 
ß . With this in mind conoider the random variable 

K 

V (yj/ß)2  . (111-66) 

1=1 

This is the sum of squares of Independent, normally distributed random 

variables whose means are zero and vhose variances are 1. This random 

variable is therefore x -distributed with N degrees of freedom. Cramer-^ 

shows that with increasing N the x distribution becomes asymptotically 

normal with mean N and standard deviation y^N. Therefore, the random 

variable (111-67) Is asymptotically normally dietributed with mean ß2 and 

standard deviation /2/N ß ; and hence /I/N p2 can be used as a low esti- 

A„ 
mate of the standard deviation of ß4". 

10. Extension to Spectra with Zeros 

As mentioned before, the assumption that the unlaiown spectrum 

does not have any zeros is rather restrictive, and the derivation breaks 

down when a more general form for 'r,x:c(z) "'s assumed. There are some situa- 

tions when something can be done to extend the method, and thece will now 

be discussed. 

Suppose that the signal of interest has an unknown pov-er spec- 

trum of the form 

fig N(z)Nrz-
1) 

D(z)t>(z-i) 
(111-69) 
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and that the locations of the zeros are known (at least approximately). 

Then the signal can be preflltered by a digital filter l/N(z) (or an 

equivalent analog filter). The resultant signal will then be of the 

requisite form and the method described In this paper can be used to deter- 

mine the pole locations and ß . 

As another example, suppose that the signal of Interest, XQ, IS 

the sum of two independent signals; one of which has a known power spec- 

trum (such as white noise of a given amplitude), and the other of which 

has only poles In Its power spectrum. That Is, suppose 

W^ = ^x(z) +  , w TT  ' (111-70) ^     ^     D(z)D(z-1) 

Tne autocorrelation function of the signal Is, then, the sum of known and 

unknown components: 

^(n)  =^(n) +&x(n)      . (III-TD 

The known components can be subtracted from the computed fn and the re- 

sulting mean lagged products 

fo " &c<0)' fi " t^W'  •'• ' fp " &M (I11-^ 

can then be used to estimate D(z) end ß2. 

Other situations suggest themselves. Some pole locaJ 'ons may 

be known in advance, for instance. These poles can be removed before 

analysis by a digital or analog filter. Alternatively, the maximum like- 

lihood equations (III-59) end (111-60) can be reworked. 
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11. An Example 

To demonstrate the method, a sequence of 210 Independent normal 

random numbers was passed through the digital filter l/il-.^z'1).    The 

resultant time series then had a power spectrum 

l/gg 
(l-^z^Hl-.Sz) 

Thus for this signal, assuming p = 2, 

«l " -•5 

Qfe s 0.0 

ß2 s .00597 

Three mean lagged products were conputed: 

f2 = .001^7, 

and (111-61) used to give the estimates 

^ = -.495 

(111-75) 

(111-7^) 

f0 = .00624, 

fx = .00507, (111-75) 

Cfe = .0070, (111-76) 

ß   = .00^75 

The estimated covariance matrix of the a« was calculated from (III-66): 

f  .0048 -.00241 
L-.0024 .0048J      , (111-77) 
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and It Is seen that the ou are well within one standard deviation of the 

a,. The optimistically estimated standard deviation of ß2 is 

•/ÜTN ß2 a (l/lCtfß2 , (111-78) 

so that the 16 percent actual deviation is not unreasonable. 

Figure 9 shows plots of the actual and the estimated power spec- 

26 
t-nim. Also shown are the results of a conventional spectrum analysis 

using a Hamming window and 7 mean lagged products. Note that more than 

twice as many multiplications were required by the conventional method 

to produce similar accuracy, and that the results are not in a form that 

is suited for direct use. 

12. Applications of the Identification Method 

The above identification method is especially promising for use 

in an adaptive loop; first because it can be Implemented in real time by 

a computer, and second because it gives direct estimates of parameters that 

can characterize a signal or a plant. Thus, the following method of self- 

optimizing control is suggested: a controller is designed whose optimum 

or near-optljnum operation depends on the knowledge of the parameters 

Q^,...,QL and ßs of the power spectrum of some signal in the system. From 

A    A    A2 
a record of this signal of length N the estimates a1,...,ap and ß are 

periodically calculated by a digital computer and used to adjust the con- 

troller. In a particular application, the choice of N is an Important 

problem. N must be chosen large enough so that the estimates of the power 
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spectrum parameterB are accurate enough to be useful. On the other hand, 

N should not be so large that the system reacts to obsolete informtion. 

The Identification method described above may also be used as a 

first step in a conventional spectral analysis. After D(z) is estimated; 

the original signal can be passed through the filter D(z) and subjected 

to further spectral analysis by conventional methods. If the form assumed 

for the spectrum was appropriate the output will be nearly white, and this 

procedure will amount to an "automatic" prewhitening technique which can 

be used in conjunction with conventional spectral analysis. 

Finally, it might be mentioned that the identification method 

can be used with the adaptive information processing method described by 

Chang. 

We have seen in this part how the concept of digital filtering 

can be applied to the problem of measuring the power-spectral-dcnsity of 

a digital signal. We first showed how the idea of bandpass filtering can 

be carried over from the analog case to the digital case to generate 

spectral windows that always give positive estimates of the spectrum. 

Furthermore, we have pointed out along the way how digital filters can 

be used to advantage as prefilters and postfilters much as analog filters 

are used for continuous signals. For these applications, the approxima- 

tion techniques described in Part 2 are especially useful. Lastly, we 

described a method of identifying unknown parameters in a power spectrum 

of an assumed formj a method which is promising as an identification pro- 

gram that con be incorporated into an adaptive loop. 
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SUMM/JY 

Our main goal has been to tie together the thaorles of filtering 

digital signals and analog signals. With the axiomatlzation of filtering 

and signal theory in terms of Hilbert space, we saw how an Isomorphism 

could be constructed between the analog and digital spaces which allowed 

us to transfer many concepts from one domain to the other. The use of 

Hilbert space showed how the z-transform can be defined with much the 

same generality as the Fourier transform, and led to a definition of stable 

filters that can be used in both the analog and the digital cases. We then 

saw how any such filter, whether time-varying or not, could be represented 

by an infinite matrix of numbers. In particular, we saw that in the time- 

invariant case the digital and analog theories are essentially identical. 

Thus, many conmon optimum-filtering problems can be solved simultaneously 

for analog and digital signals, both in the deterministic and the random 

case. We also looked at data reduction filters and their interpretation 

in terms of frequency response. 

In Part 2 we showed that the approximation problem for time- 

invariant digital and analog filters were equivalent, and we discussed 

sane methods that were particularly applicable to the design of digital 

filters for some ccmmon purposes, such as preflltering prior to data re- 

duction. We showed in particular how Fourier series can be used to design 

digital filters with prescribed magnitude characteristics that were poly- 

nomials in z" , and hence could be Implemented economically. 
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Part 3 was devoted to the application of these ideas to the 

problem of measuring power-spectral-density from digital information. 

We saw in particular how bandpass digital filters could be used as spec- 

tral windows which always give positive estimates of the power-spectral- 

density. We then derived the optimum bandwidth and the optimum shape 

for such digital filters, following the results of Chang ^ for analog 

filters. Throughout this discussion we indicated how the approximation 

techniques of Part 2 could be used effectively in the processing of digi- 

tal information; prewhitenlng being an example. We then presented a 

method of identifying unknown parameters in a power spectrum. This method 

results in an analytical form for the spectrum, and is suitable for a 

systematic prewhitenlng program, or for use in an adaptive control loop. 
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Figure 

LIST OF ILLUGTRATIONS 

1 A schematic representation of the mapping \x  and its relations 
to the various signed spaces. 

2 A schematic representation of the mapping ^ and its relations 
to the various spaces of operators. 

s T 1+ s 3.   The s-plane, the z = e— plane, and the cu-axis; when z = 
l-s 

h.        Curve A is the normalized magnitude characteristic of the 
digital filter corresponding to the z-transform of a third-order 
Butterworth filter. Curve B is the normalized magnitude char- 
acteristic of the digital filter corresponding to the p.-trans- 
form of the same analog filter. 

5. The normalized magnitude characteristic of the digital filter 
corresponding to the n,-transform of a fourth-order Tchebycheff 
low-pass filter with 10 percent ripple. 

6. Fourier series approximations to an ideal low-pass digital filter 
magnitude characteristic. 

7. The normalized magnitude characteristic of an analog lov-pass 
filter constructed from a Tchebycheff digital filter and a zero- 
order hold circuit. 

8. Estimation of power spectrum parameters. 

9-   Ccmparlson of actual and estimated power spectra. 
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