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ABSTRACT

Part I is devoted to the general theory of digital filters.

The filtering theories for both continuous-time and discrete-time sig-
nals are formulated in terms of abstract Hilbert space, with the notion
of a stable filter defined as a bounded linear operator. This abstract
setting allows the z-transform to be defined with the same generality as
the Fourier transform. A specific isomorphism is then constructed which
connects the filtering theories for continuous-time and discrete-time
signals, and in the linear time-invariant case the two theories are shown
to be essentially identical. This means that many optimization problems
can be solved simultaneously for continuous-time and digital systems.

In the second pa-t, the iscmorphism developed in Part I is used
to reduce the approximation problem for digital filters to that for
continuous-time filters. This allows the designer of digital filtering
canputer progrems to use many of the concepts which have proven important
to the commmnications engineer.

In the last part, the problem of estimating the power-spectral-
density of a signal from equally spaced samples is discussed. It is
shown that bandpass digital filters generate a class of spectral windows
which produce always positive estimates of the power-spectral-density.
The optimum bandwidth and shape of such a filter are then derived.
Finally, a method for identifying unknown parameters in the power-spectral-

density of a digital signal is presented.
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PREFACE

Historically, methods for processing signals that are functions
of continuous time were developed long before the advent of high speed
digital computers. When high speed computing facilities did became
available, the commnications and control engineers were not the people
who developed computing techniques. As a result, the filtering theory
that had been highly developed for continuous-time signals was not applied
in full force for the processing of digital signals.

The main purpose of this thesis i1s to tie together the theories
of filtering digital and analog information. This will enable the data
analyst to carry over effectively to his domain many of the concepts which
have been important to network designers. In particular, all the approxi-
mation techniques developed for continuous-time filters become available
for digital applications.

The strong link that is developed between the digital and con-
tinuous domains will also be of theoretical value. It will present to us
a unified picture of signai and filtering theory, a picture chat is

equally applicable to digital and continuous signals.



PART L: THE GENERAL THEORY OF DIGITAL FILTERS

l. Introduction

It is easy to observe a parallel between signal theory for
signals with a continuous time parameter and signal theory for discrete-
time signals. In fact, it is common practice to develop in detail a
filtering theory for continuous-time signals and to pay less attention
to the discrete theory, with the assumption that the derivation in the
discreie case follows the one for continuous-time signals without much
change. Thus, without going into details,1’2’3 the Wiener filter for

a noise-corrupted continuous-time signal is

Fo(s) = — rérir(s)]xm ’ .

Y(e) L Y(e) briry (8)

and the optimum filter in the discrete case 1is

1 rlr(z) ]
Y(Z)L Y(z) JIN|z]=1 ’

Fo(z) = éryry (2)
where r is the uncorrupted signal and r, is the corrupted signal. On
the other hand, the two cases are always considered as distinct and -
essentially different situations.

This correspondence between continuous and discrete phenomena
is far from accidental, howe':r. In fact, when both theories are
axiomatized in terms of Hilbert space theory (L, and 1, theory), they
are isomorphic. This simple fact is quite illuminating and leads to a

more unified theory of filtering and prediction.



Usually, it is assumed that the signals of interest are of
exponential order as t becomes infinite. This leads to two-sided
Laplace transforms which converge in a strip in the s-plane, or double
ended z-transforms which converge in an annulus of the z-plane. This
is replaced in Hilbert space theory by mean convergence on the Jw-axis
and unit circle, respectively. In one sense the signal spaces L, and
1, are more restrictive, because they do not include signals of posi-
tive exponential order. On the other hand, assuming that we are
dealing with physically real signals, the spaces I, and 1, are more
general and intuitively satisfying; roughly, they include all signals
whose total energy content .: finite.

Oux main purpose in this first part, then, will be to imbed
the theory of continuous-time signals in L, theory and the theory of
discrete-time signals in 1, theory; and to show that the filtering
theories for these two classes of signals are essentially the same.

We will thus arrive at a definition of digitel filter that is as
general as the definition of continucus-wave filter, and we will show
that many problems in the design of discrete-time systems need not be
re-solved. As a by-product, we will see how well Hilvert space theory
is suited to describe linear filtering theory for both continuous and
discrete time.

Wnile Youla, Castriota and Ca.rl:[n,h and other network theo-
rists have applied Lo theory to continuous-time network theory, to

the author's knowledge 1 theory has not been applied to the z-transform



and the isomorphism between L, and l; has not been exploited by
electrical engineers.
We Legin with a review of the elements of Hilbert space

theory.5’6’7

2. A Review of Hilbert Space Thecry

We will adopt the widely accepted definition of abstract
Hilbert space. That is: a set H of arbitrary elements f,g,... (some-
times called functions or vectors) is termed a Hilbert space if:
I. H is a linear space.
II. An inner product is defined in H as follows: to every
pair of elements f,g there is associated a complex number
(£,3) such that
1) (f,8) = {g,f)
2) (of,g) = a(1,g)
3) (f3+fy,8) = (£,,8) + (f,,8)
4) (f£,f) = O if and only if £ = O.
III. Tae space H is complete in the metric ||f-g]| =
(f-g,f-s)"?-
IV. His infinite dimensional; that is, for any integer n
there are n linearly independent elements in H.
V. H is separable; that is, H contains a countable and dense
set. (This condition is often omitted, allowing spaces

of dimension higher than z‘\o).



Thus, a Hilbert space is a complete, separable, infinite-dimensional
Euclidean space.

Historically, two concrete realizations of Hilbert space play
central roles. The first is the space Ly(a,b), which is defined to be
the set of all complex-vulued Lebesgue measurable functions on (a,b)

such that

b
[ l£(t)P dt < @ .
J
a

The inner product in this space is defined by

b
(f,8) = J‘ f(t)g(t) at .
a

Two functions in L, are considered equal if they differ only on a set
s

of measure zero. Since the metric in this space is (f-3,f-g)~, the

sequence fp will approach f if

lim Ith-£1° at =0 .
n

b
.f
-.mg]

This will be called mean convergence and will be written

A T R O
n-=2aL

The other Hilbert space 1s called 1,. It is defined to be the

set of all sequences of complex numbers



X = [xt,x?,oco,xn’tco}

satisfying the condition

Q0

Z % <0 .

=1

Here, the inner product is defined by

00
(x)Y) = 2‘ Xn 5:1- .
=1

(Sometimes it will be convenient to think of 1, as containing double
ended sequences: {..,.X.1, Xg, X3,Xp,---}. The theory is really the
same. )

For us, the space L,(-®, +oo) will play the role of the space
of continuous time signals, ar? 1, will represent the space of discrete-
time signals.

An isomorphism from one Hilbert space H; to another Hilbert

space H, is a one-to-one linear transformation U from H; onto li; such
that (Ux,Uy) = (x,y) for every pair of vectors x.y in H;. An isororphism
preserves all the structure embodied in th« definition of Hiltexrt space
and isomorphic Hilbert spaces are geometrically indistinguishable and

for our purposes can be consldered as identical.

The following theorem is central for our purposes:

Theorem 1. All Hilbert spaces are isomorphnic.



The proof of this theorem is interesting and useful. We now review its
main points.

1. 5Since H is separable, we can choose in H a countable dense set.
From this set we can construct an orthonormal set {hx,h,,ha,...} that i3

complete in H. That is,

01is 1
(hy,hy) = {1 i; 1113 ’

and linear combinations of the hj are dense in H.

2. This implies that any element of H can be approximated with
arbitrary accuracy by linear combinations of the hj. If we define the

partial sum of a generallized Fourier series by

n

S

Sp = 2‘ cxhx
k=1

then the distance between Sp and f in the metric of H is smallest when

In that case, we have in fact

Now let n approach infinity. OSince 5, is the best n-th order approxi-
mation to f, and since the orthonormal set {h,,h,,...} is complete, we

must have



lim ||f-s4l]2P =0 ,
n - oo
and hence
@
k=1

3. Conversely, let c¢;,c,,... be a sequence of numbers such that
@
) ekl <o

k=1

and construct the sequence of partial sums

n
fn = Z‘ ckhy .
k=1
It then follows that
n+p
Nemprtal P = ) el .
k=n+l

As n approaches infinity the right side goes to zero. The left side
nust go to zero, and this implies tnat the sequence f, is fundamental.
The fact that H is complete in its metric then implies that there is a

limit function f ¢ H such that
Hf'fn” -0
as n = oo. It then follows easily tnat

cg = (£,ky)



and that

o>~8

(f:f) = |ck|2

k=1

L, Ve now assign to each element in H the sequence {c1)C2)°"] of
its Fourier coefficients. By step 2 above this is an elemocnt in 1,.
Furthermore, by step 3, for each element {c;,c,,...} in 1, there is an
f in H which has Fourier coefficients {c¢;,cs,...}. This correspondence
is linear, one-to-one, onto, and preserves norm. It is therefore an
isomorphism, and we have therefore shown that any Hilbert space is iso-
morphic to 1,, and hence to any other Hilbert space. In the case
H = L,(a,b) this procedure corresponds to mapping a function to the
sequence of its coefficients in some orthogonal expansion on the inter-
val (a,b); such as an ordinary Fourier series on (0,21) or a Laguerre
series on (0,00), for example.

Vith this review we go on to apply tlese ideas to more familiar

situations.

3. [Ixiomatization of Deterministic Sipgnal Theory

In most deterministic situations encountered by engineers, the
signals are ecitner functions of a continuous time variable or a discrete
time variable. In elther case, the total energy contained in a signal
is really finite, even though we make up models which deny this. For
example, we say that a step input is applied to some system at t = O and

we write
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f(t) =

This 18 clearly not realistic. The definition

O -0<t<O
£(t) = {1 0<t<T
o) T<t< o

vhere T is very large; or the definition

0O -0 <t<O0

f(t) = {

e o<t <

vhere @ is very small, describe the situation just as well. Thus,
without serious limitation, we cen assume that any wave will have a
finite total energy. With this assumption, Hilbert space L,(-co,m),
with its convenient completeness and with its continuous Fourier trans-
form, provides a neat setting for our discussion of deterministic
signals which are functions of the continuous time parameter t.

Similarly, when a signal is & function of discrete times, the
Hilbert space 1, is a realistic model with many convenient mathematical
properties. From now on, & function in L,(-c0,00) will be called an
analog signal, and a function in 1, will be called a digital signal.

It is now rather startling and counterintuitive to the engineer
that L,(-co,00) and 1, are isomorphic. /After all, any signal in 1,
could have been obtained by sampling at discrete times any one of an

infinite number of analog signals. The problem here is that the mapping



L,(-00,00) — 1, defined by sampling:

£(t) = {...,£(-2T),f(-T),£(0),£(T),...}

.

is not an isomorphism, since it is not one-to-one. Nevertheless, L,
can be made isomorphic to 1, by an appropriate choice of mapping; in
the same way, for example, that the Abelian group of integers can be

made isomorphic to the Abelian group of even integers.

L., The Transform Domains

Our next goal will be to construct a specific isomorphism
which can serve as a concrete link between the analog and digital sig-
nal spaces. Naturally, we would like the mapping to have some intuitive
significance. The very natural correspondence provided by sampling
analog signals has been ruled out because it is not an isomorphism. It
would still be desirable, however, to have the left half s-plane corre-
spond to the interior of the unit circle in the z-plane, because these
regions seem to play analogous roles, even when no signels have been
sampled. To make these ideas precise, we must add the Laplace transform
and the z-transrorm to our Hilbert space theory.

The key theorem for the construction of a transform domain for

L,(-00,00) is called Plancherel's Theorem:8’9

Theorem 2. (Plancherel) If r(t) ¢ L.(-co0,00), then




A
f £(t)e Bt at (I-1)

exists for s = ju, and F(Jw) € L,(-00,00 .

Furthermore,
+00 +i00
(f,f) = F Ir(t) ] at = zig IF(s)I° as . (1-2)
-00 -560
and
A
£(t) = 1l.i.m. F(s)eft at . (I-3)
A - 00-3%

Analytic extension of F(jw) to the rest of the s-plane (via (I-1) when
it exists, for example) will give us the Laplace transfomm.

lie will also uce Parseval's Theorem:

Theorem 3. (Parseval) If f,g € L,(-00,00), then

00 Jjoo
(f,g) = r £(t)e(t) dat = . S | F(s)G(-s) ds

J 21

- -jo (I-14)

The theory required for the enalogous construction of a z-
transform for digital signals is really no more than the theory of
Fourier series. Think of the original periodic function as the z-
transform evaluated on the unit circle in the z-plane; and think of
the Iourier coefficients as the values of our digital signal. The

8,10

Riesz-I'ischer Theorem then reads:



Theorem 4, (F. Riesz-Fischer) If (fn}‘?_"_mc 1., then

|

P(z) = lL.i.m Z eEl (1I-5)
N=o N

exists for z = e‘jc‘—’T , and F(eJ‘ET) € L;,(O,Zn/T), vihere w is the independ-

ent variable of L,(0,2x/T), and this w is unrelated to tre w used in the

s-plane.
Furthermore,
+00
({tn}, {£0]) = Z len° = L (l:'F(Z)P a2 ) (1-6)
s 29 z
lz|=1
and
- _ 1 r n dz -
£5 o (,‘,) F(z)z = . (I-7)
|z]=1

3
As in the analog case, the analytic extension of F(e“LBT) to the rest of
the z-plane will coincide with the ordinary z-transform, which is
usually defined only for digital signals of exponential order.

Parseval's relation also holds:

Theorcnl 5. (Parseval) If {f,},{g,} € 1., then

oo P
({tn},{ca}) = z fnen = ﬁ j/ F(z)G(z™") dzz . (I1-8)
n=-00



1L

To summarize, we have defined an analog si~nal snace Ln(-oo,OO);
together with its transform domaln, wiich, when s = jw, is also
L,(-00,00). Analogously, we have defined a digital signal space 1,;
together with its transform domain, which, when 2z = ed¥T 45 L,(0,2x/T).
We now are in a position to define a specific isomorphism between the
analog and digital signal spaces via their transform domains; a procedure

which was hinted at before.

5. A Specific Isomorphism, p

Remembering that we wish to map the jw-axis in the s-plane onto

the unit circle in the z-plane, the familiar bilinear transformation

.oz=1 _ 1lts
2+l l-s

(4]
!

is a natural cnoice. There is an additional factor required so that the
transformation will preserve norms. The image {fj} € 1, corresponding
to f(t) € Ly(-00,00) will then be defined as the sequence with the z-

transform

\
F(z) = Ve F ( z-1 ., where we use the underscore
z+l 2+l - to denote digitel domains.

Thus, the mapping p:L.(-00,00) — 1. is defined by a chain which goes

from L,(-0,00) to L,(-00,co0) to L,(0,2:/T) to 1., as follows:
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2 \/-" ( z-1 ) &
:" - - & = - b4 . I'
u:f(t) = F(s) = F (. = F(z) = {£3} (I-9)

The inverse mapping i1s easily defined, since each of these
steps is uniquely reversible:

wte{) - F(z) - : F<l+s >= F(s) = £(¢t) .

1-s l-s3

The mapping p and its relations to the various spaces are shown
schematically in Figure 1.

To show that u is indeed an isomorphism, we first verify that
B preserves the inner product. Let f end g be any two analog signals.

By Theorem 3 (Parseval's relation for analog signals), we have

joo
I 's)G(- .
(f,g) 53 J F(s)G(-s) as
-Jw

Letting z = i+2 , this becomes, with some algebraic manipulation,

Zrd

(£,8) = —X 4-;2(2)9(2'1)‘—?— :

~

|z|=l
Then, using Theorem 5 (Parseval's relation for digital signals), we

find that p does preserve the inner product:

(r,8) = ({£,},{gg})

p is obviously linear and onto. We can row show that g is one-to-one
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in the following way: if f # g, then (f-g,f-g) = ({fn]-fgn],[ﬁn]-[gn])
7 O; which implies that {f,} 7 ‘g,}, and hence that u is one-to-one.
This establishes the fact that u is an isomorphism.

We note here that under the isomorphisms n and ™' functions
with rational transforms are always matched with functions with rational
transforms, this fact following from the nature of the transformation u.
This is a great convenience, since many of the functlons comuonly en-
covntered in engineering problems nave transforms which are rational

functions of s or z.

6. The Orthonormal Expension Attached to u

In our review of Hilbert space theory we showed now a set of
orthonormal functions generated an isomorphism between two Hilbert
spaces. It should come as no surprise, then, to learn that the iso-
morphism p could have been so generated. This section will be devoted
to finding this orthonormal expansion.

We start with the z-transform of the digital signal {fj]} which

is the image under p of an arbitrery analog signal f(t):

0.0
Js z-1
i = F< >= 2 f -n
£(z) z+1 z+l =n 2
=-

By (I-7), the formula for the inverse z-transform, we nave

- 1 § \[-2 F(Z-l P dz

f
-n 2%d z+1 < z+1 z
|z |=1
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Letting z = iff , this integral becomes
?
£o= L | F(s) . YE <1+S>nds : (I-11)
- 2nJ J 1+s l-5s
-Jm

By Parseval's relation (I-4), this can be rewritten in terms of time

functions as
[0's)

fn = J £(t) \p(t) at (1-12)
-00
where the A\p(t) ere given by the inverse Laplace transform of the factor

appearing in the integrand of (I-11) with s replaced by -s. Thus:

I. n
(o) = Y- ()]

We see immediately that, depending on whether n > O or n < 0, Ap(t)
vanishes for negative time or positive time, respectively. By mani-
pulating a standard trensform pair involving Laguerre polynomials, we
find:

((c1)» 1z et n_((2t) u(t) , n=1,2,3,...,

An(t) =
1(-1)”1 Sz et L_(-2t) u(-t) , n = 0,-1,-2,...,
(I-14)

where u(t) is the Heaviside unit step function, and L,(t) is the Laguerre

polynomial of degree n, defined by:

t n -
Ln(t) = i, éin (t%"%), n=0,1,2,... .
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@
The set of functions {An}n- is a complete, orthonomal sct on (0,00),

]
and are called Laguerre functioas. They have been employed by Lec,ll

12

Wiener,™™ and others for networ: synthesis; and are tabulated in

Wiener,l“ and, with a slightly different normalization, in Head and
Wilson.'3 The functions fk-n]gzo are similarly complete and orthonormal
on (-00,0), so that the orthonomal expansion of f(t) corresponding to

(I-12) is

r(t) =

~"8
g"ﬁ

N E (I-15)
==-00

We see then, that the values of the digital signal for 1 -~ O correspond

to the coefficients in the Laguerre expansion of f(t) Jor positive t;

and that the values of the digital signal for n < O correspond to the

coefficients In the Laguerre expansion of T(t) for negative t.

There rollows from this representation the fact that the iso-
morphism u matcnes ogne-sided functions with one-~": . tunctions. That
is, f(t) = O for t < O if and only ir {f;} = O for n < 0; and sinilarly,
f(t) = 0 for t ~ 0if . only if {£,} = O for n - O.

© .er orthonormal expansions, such as the Hermite, for exzample,

also generate isomorphisms; but these will not be as convenient and
as simple for our purposes as the Laguerre expansion. In particular,

16

Kautz,lh (}abor,*b Huggins, and others have considered the construction
of orthonomal functicns for signal representation.
The fact that the marping u is cquivalent to a Laguerre expan-

sion can sometimes lead to a quick way of expanding a given time function
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in a Laguerre series. One need only find_f(z) from the Laplace trans-
form of f(t) and expand this in a power series in z. To illustrate
this, and the woy that the mapping p works in general, consider the
function

£(t) = e ¥ sin t u(t)

This function is in L. and its Laplace transform is analytic in the

half-plane Re(s) ~ -1. Thus,

1
Fls —
2 (s+1)® + 1 ’
and
F(z) = Ve (z11)

_Jp f 1 -1, _3 ,-=2_ _11 -3, L ]
L5 25 125 525
Thus, by (I-15),
(1) = V2 [ Ay (1) + =2 (1) - =21 a, (1) ¢ =L A, (8) ¢ .
— L.)

5 125 625

These coelficients can be checiied by carrying through the intesrations

indicated in (I-12).

T. Stable I'ilters as Bounded Linear Operators

We come now to the problem of incorporating within our rrame-

work the concept of "filter" or "transfer rfunction.” Trat is, we wish
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to formulize the notion of a device which transforms onec element of
Hilbert space into another. OSuch a device might be a network of resis-
tors, inductors, and capacitors which transforms one analoz signal into
another; or it might be a digital computcr which transforms cne digital
sipgnal into another such signal. We assume, mostly because we nust to
achieve any generality, that such filters are linear. It is also
reasonable to expec’ that if we limit the energy content of the input
function to a stable filter, that the energy content ol the output will
De linited.

Fortunately, operators with such properties have been studied
widely in connection with Hilbvert spacc.5’6’7 fn operator A in a
Hilbert space i is defined as a transformation whichi attaches to cach
element I in H some element Af which is also in H. An operator £ is

said to e li.aeur if
Llaf + Bg) = QA + fig

for any T,mg in H and any comploex nunbers ¢ and B. Lastly, correspond-
ing to our energy requirement, 2 lincar operator is sa’d t> be bouwded

if there is a positive real number I! cuch that
Harll < m {lel]

for all f in H. The norm o the linecr operator fi is tue nfimum of
all such values of M, and is written |l.l]. Equivalently, the nom or

A can be defined as
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| 15]] = sup _nell . (1-16)

reg ot

One example of & bounded linear operator is the Fourier trans-
form. By (I-2) tnis operator has & norm equal tO'Ji/Zx. As another

example, consider a simple low-pass RC section with the transfer function.

[ &)

If an input wave f(t) is applied to this network, the total energy in

the outpnut will bhe

joo joo
2 ! -~
: [ 7)) P |l ds <=2~ | [F(e) P a5
21 ' - R T = ER !
-jo -Sjoo

so that the norm of this operator cannot exceed 1. Since this Is a
passive network, it is to be expected that tne total output encrgy
cannot exceed the input energy.

We are thus led to adopt the following terminolog,: .. bounded

linear operator on the space L., will be called a (linear) ane.og lilter

and a bounded linear operator on l, will be called a (linear) digital

filter.

It is now a direct consequence of our axiomatic setup that any
bounded linear operator is continuous in the metric of Hilbert space.
That is, if {fn}ggl is a sequence of functions in the Hilbert space H,

and if  1s a function in H such trat
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Um ||r, - £|| =0 :
n- oo

then
um  lagg - Al -0,
n - o

vhere A is a bounded linear operator. Thls follows immediately fror
the fact that

[t - arll < [la]] - flen - £f

Continuity is a desirable property of operators. In L., for
instance, it means that if input functions to an analog filter [,
approach a function f in the mean, then the output will approach Af in
the mean. This convenience is bought at the price of considering only
functions in L. and using mean convergence as the convergence criterion.
If we insist on thinking in terms of pointwise convergence, for instance,
we lose continulty; as the following example snows: Let a set cf input
functions to some network approach the delta function. The pointwise
limit of the input functions is then O almost everywhere. But in gea-
eral the output will not approach O, so that filters will not be con-
tinuwous in this framework. In a way, our convergence criterion is more
natural than pointwise convergence: for a sequence fn 1o approach f in
the meen we demand only that the totel energy of f-f approach zero.

Since p can be thought of as a bounded lincar operator in the
abstract Hilbert space H, u is continuous. Similarly, tae Fourier
transform is continuous. Alsc, since 1., and L,(O,Zn/T) are isomorphic
Hilbert spaces, the z-transform as defined in Theorem 4 is also contir-

uous. We summarize these facts in the following theoren:
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Theorem 6. All bounded linear operators are continuous in the metric
of Hilbert space. In particuler, the following bounded linear opera-
tors are continuous:

1. Analog fllters

2. Dirital filters

3. The Fourier transform

4. The z-transform

5. The isomorphism u

8. The Mapping u for Filters snd the Transforms of Filters

Since our signal spaces are now equipped with operators, it is
natural to cxtend our isomorphism u so that it matches operators that
act equivalently in the two spaces L, and 1.. More precisely, if A is
an analog filter, we define its image u(L) - Q in the following way:
let x be any digital signal. Then there corresponds to x a unique
analog signal “-1(5). The result of operating on this analog signal by
the analog filter A, Au'l(i), is also well defined. This new analog
signal cen then be mapped by p into a unique digital signsl uAu'l(i),
which we designate as the result of operating by g on x. Thus, we

define A to be the composite operator
A= paptt (1-17)

To avoid confusion between digital filters and z-transforms of digital

signals, we use the double underscore.
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It is easy to see that the mapping u for operators is lincer,
one-to-one, and onto. Given a digital Iilter Q, its corresponding
analog filter 1is u'lgu. To show that the norm of an operator is pre-

served under the matching p, we need only carry out the following

calculation:
Hax!| |l (Au™ {x) )] |
lall = sup ——= = sup T
xel, |1x| xela 3l
B (1-18)
T T €3 A — |1f»”~".! - 1Al
xel, [0 xeln x|

It should be pointed out that in one sense there is really no problem
here. The spaces L, and 1, are isomorphic; -- an analog filter and its
digital image under u are just two names ror the same abstract opject.
Having defined the effect of u on filters, we should aow like
to do the same for the Fourier and z-transfcnns. This can be done in
an equally natural way. Suppose A is an analog filter, a bounded
linear operator on the space L. of analog signals. The analog signal
space is mapped by the Fourier transform operator, say:?f( ), into a
new space L,, tne space of Fourier transforms. The Fourier transform
of the operator /., denoted by °F (A), will then be defined as an oper-
ator on this transform space so that if .. maps f to g, then f}:(ﬁ) maps

F(s) to G(s). Analogously to (I-17) above, we require

F) = FF (1-19)
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where ﬁ}( ) denotes the Fourier transform of an analog signal as well
as an analog filter. Going througn thne same calculation that we per-
formed for u, we find that the Fourier transform preserves the norm of

a filter:

DS OHERTITE (I-20)

Similerly, we define the z-transform of a digital filter A by

2@ = %a 3 (I-21)

where ’}( ) denotes the z-transform of a digital signal or Tilter.

ihgain, tne norms of filters are preserved:

i (r-22)

@11 = 1

Vle have now generalized p so that it pertains to filters as
wvell as to signals, and we have defined the transforms of filters.
Thus, a diagram analogous to Figure 1 can be drawn ror filters, and this
is shown in Figure 2. The connection between the Fourier transforms of
analog filters and the z-transforms of digital filters is well defined
by the three legs of the diagram, but nothing more than that can be

said at this time.

9. Some Familiar Classes of Filters

In this section we will show hcw the preceding tneory of

filters applies to many situations that are commonly encountered in
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engineering. For instance, time-invariant filtering is usually expressed
by convolution in the time domain and by multiplication in the transform
domain. Such time-invariant filtering is described in the analog case by

the following theorem:

Theoren 7. Let a(t) be a measurable function satisfying
00

{ la(t)] dt <@ (I-23)
-
That is, let a(t) belong to L,(-00,00). Let the operator £ be defined
by the following convolution integral:
o)
Af(t) = ( f(r)a(t-1) ar . (I-24)
-0

Then A is an analog filter with norm

00

a1 < [ la(t)] at .
-
Turthermore, the Fourier transform of the operator A is mult )licetion

by the function i(s), the Fourier transform of a(t).

The proof of this theorem is a direct consequence of Scawarz's inequal-
ity and can be found in detail in Titchrmarsh,? section 3-13.

This theorem applies to any linear time-invariant filter whose
impulse response satisfies (I-23). Thus, any stable RLC network is an

analog filter. Theorem 7 can also apply to the case where A is the
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identity operator Af = f, provided we are willing to adnit the delta
function as a sifting function satisrying (I-23).
necessary .o introduce distributions or other generalized functions
on this account, however, since the identity operator is clearly a

bounded linear operator in its own right.

It is nardly

The following theorem for time-invariant digital filters can

be obtained in exactly the same way as Theorem 7T:

Theorem 8. Let {gn} be a sequence of complex numbers satisfying

Q0
) lepl<o
n=-co

and let the operator 4 be defined on the space of digital signals by

the fullowing convolution sum:

90

] = 21 an-i
i=-00

: g,

Then / is a digital filter with nom

(0.0

el < ) legl

n=-Qo

Furthermore, the z-transform of the operator /. is multiplication by

A(z), the z-transform of the sequence {ay].

(I-25)

(I-26)

Now consider the case where the digital filter A in Theorem 8

is the image under pu of the analog filter A of Theorem 7.

Since the
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Fourier transform of Af is A(s)F(s), the z-transform of the digital

signal u(Lf) is

2, ( :;Ji >F(z‘1 Y- A(z)F(z)

z+] Szl

Therefore

W(z) = A( Z'1> . (1-27)

z+1

[ [pett

Thus, the transforms of filters which are equivalent under the iso-
morphism u are related by a simple change of variable. This cbserva-
tion will be useful when we consider the approxim.tion protlem for
digital signals.

By reversing the roles of the time and transform domains in
Theorems 7 and 8 we come to consider the operation of multiplication by
bounded time functions, or, in electrical eagineering terms, amplitude

modulation. More specifically, we have the following pair of theorenms:

Theorem 9. Let a(t) be a bounded measurable function of time, and let
the operator &\ be defined on the class of analog signals by multipli-

cation:

Ar(t) = a(t)r(t) . (1-28)
Then /. is an analog filter with nom

Hall < sup  la(t)|
all t
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Theorem 10. Let {nn] be a bounded sequence of complex numbers and let
the operator Q be defined on the class of dizital signals by multipli-
cation

b Lg,) = (ant,) (1-29)

Then A is a digital filter with norm:

211 < sup ap] .
ell n

The proofs follow immediately from the relations

e il
2 [ sup ]3 . 2
[ la(t)£(t) |? at SLall t|a(1;)| ’ It(t)]° at
S -0
and
23 x

. -2
lontnl® <[ 52 lenl] - Y gl

n==-m n=-00
When the trensforms of a(t) and {a,} are in L,(-o,m) and L,(0,2:/T),
respectively, it can be shown that the transforms of these multiplica-
tion operators are convolution operators on the jw-axis or unit circle.
This representation is not important for us, however.

It is now easy to see that bcunded linear operators are not in
general commutative. That is, if .. and B are two bounded linear oper-
ators, then it is not necessarily true that B(.if) = £(Bf). Take, for
cxample, the case where [. 1s muliiplication by u(t), and B is an RLC

filter. /. and B do commute, however, in the special cases when /. and
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B are both multiplications as in Theorems 9 or 10. In general, we have

the following results concerning combinations of opcrators:7

Theorem 11. If .. and B are bounded linear opera‘ors, then A+B and B

are also bounded linear operators, and

|l+Bl} < Hall+ LBl

and

Hatl - 11s]]

| 1aB]!

IN

10. A General Matrix Representation for Filters

Vle have seen in the last section how certain classes of filters
can be represented in the time domain by convolution with time-invariant
weighting functions or by multiplication. It would be desirable, how-
ever, to nave a representation valid for any bounded linear operator.
Such & representation can be constructed in the same way that matrices
can be constructed from linear operators on a finite dimensional vector
space;, - that is, by examining the effect of an operator on a set of
elements which forms a vasis. Tnus, if .\ is a linear operator in a
finite dimensional vector space of dimension n, and if {e1,e:,...,en}

is a basis, we can assemble the following array of equations:

Ae; = 31181 + 51982 + o T alnen
he, = Bpy1ey t agaey + ...+ a5 e,

(I-30)
Acn = apj€e; * ap.e; * ... + a e,

as
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In this way, every linear operator is associated with a unique nxn
matrix {aij]° Converseliy, every mxn natrix determines a linear operator,;

for if x is a vecior with componenis {%q,Xs,...,Xp},

13

n

n
Ax = L Z_ xjey = (Z xiaid) ey . (1-31)

~

j=1 1=1

[oN
1}
—

This procedure allows us to characterize bounded linear oper-
ators in the infinite dimensional case, provided we impose an appropri-

ate condition on the elements of the matrices involved:

Definition: The infinite matrix {aij} is sald to te bounded if

(o0
1,J=-c0

for some constant M we have

S L . q 5
2 ¥y s ) iyl ) Iyl (1-32)
J=-r i=-p i=-p j=-r

for any nuabers x_p,x_p+l,...,xo,x1,...,xq and YoprYopspreccsdgoYraeeesYge
We then have the following result, which is proved in alihiezer

and Glazman:6

00
Theorem 12. Let {ei}i- - be an orthonormal basis for the Hilbert space
H. Then every bounded linear opcrator determines a unique bounded in-

finite matrix {aij} by

o0
Jey = Z aj je: , I = aae ;o] 40,12 jane o ; (1-33)



Conversely, every bounded infinite matrix determines a bounded linear

operator in the following way: If fe¢H has the orthonormal expansion

oo

f = E fiey ,
i=-0c0

put

=-00

© o
AL = }: < Z fiaij> ey . (I-34)
J=-0 1

For a fixed basis, we write % \a{aij] vhenever the bounded
linear operator {. adnits the bounded infinite matrix representation
[aiJ]° In analogy with the finite dimensional case, it can be shown

that if A '\/{aij} and B ‘v {bgj}, then

At+B ~v {ai,jﬂ)ij} ’ (1I-35)
and
e
BA "v{ \L aikbks} , (I-36)
=- 0o

where BA(f) = B(A(f)). We have thus constructed a matrix-mechenical
representation of signal filters, very much like that employed in
quantum mechanics. Sometimes it will be convenient to think of a
filter as being disconnected from botn the input anc the output for
negative time. In this case we need only consider the lower right
quandrant of the matrix: {aij]??j=l.

The interpretation of this natrix representation in the digital

case is rather simple, mostly because the particular vasis we have
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chosen has an easily grasped physical significance. The n-th basis

element for the digital signal space is just
{e,} = [...,0,1,0,...}  , n=...,-1,0,1,2,...,

where the one is in the n-th place. This is the image undcr u of tne
n-th orthonormal Laguerre function Ap(t). Thus, the z-transform of
[gn} 1s z°B, and the z-transform of a digital signal, written as a
pover series in z, is a formal representation of its orthocrormal ex-
pansion. The element &y 3 in the matrix representation of a digital
filter ;X then corresponds to the output of the filter a. time ) when
{gi] has been applied. If any signal {f } is applied, une output sig-

nal will be

8]
sl ={ ) fem) (1-37)

by (I-34). In the time-invariant case, we can write

and then the effect of a digital filter can be described by the familiar

convolution formula

m ~
slead = { ) moams} - (1-38,
{=-00

This can be written in the z-transform domain as

Af{f )= A(2)E(2z) , (7-39)

f
—{1
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where
o

h(z) = Z a8, 274 (1I-'0)
i=-00

is the z-transform of the digital filter A. From (I-33) we see the*
00
> |ai P<o ,

80 that the weighting sequence {e;) is in 1, and (I-40) is the z-trans-
form of a digital signal.
A common type of digital filter is the so-called recursive or

autoregressive filter defined by:

N M

) = A ; } T.
ALy = {2 Y n-k)” 2, Cx AL(n-x)}S - (Z-41)
k=0 %=1

This filter produces each output by taiking a linear combinetion oi past
outputs, and past and present inputs. It is time-invariant and its z-

trensform is

Since the one-sided sequence {a;} is in 1,, A(z) must be ~aalytic out-

side tne unit circle.
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11. Relationship to the Weighting Function Representation in the
Anelog Case

The mapping p does not affeci ihe matrix representation of a
filter, since it maps basis elements into basis elements. Thus, if A

{s an analog fiiter and A is its digital image under u, we have

(00]
aq(t) = Z agjrj(t)
J=-c0
and
(o)
iegd = ) eyylegd
J==0

The interpretation of the matrix representation {ai J} is somewhat more
difficult in the analog case, however, because we Co not usually think
of sn annlog signal as being represented by the coefficients in its
Laguerre expansion; while we do think of a digital sigaal as teing made
up of its values at tne discrete observation times. Iurthermore, we
usually think of an analog filter as being defined in terms of the con-

volution integral
o0

A(t) = J f(t)a(t,7) d1 |, (I-43)
-0
where a(t) is some weighting function. We are thus Jaced wi the
problem of relating this representation to the matrix representat:ion
{a;j}. When i is the identity operator, a(t) is the delta function, so
we see immediately that we cannot expect a(t) to be a proper function
in the general case. We can proceed formally, however, in the follo-

ing manner: Letting
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@
£(t) = Z fiki(t) ,
i=-
we can write
(o o] 0 oo
12-00 {=-00  }=-00

since the bounded operator is continuous. Repiacing £y by
00
f £(t)r(T) At
L

and interchanging the orders of integration and summation, we have

oo/

a) f ?
2 Tico0 j=-oo

We therefore have the formal equivalence

o
—

a(t,r) = Z z aﬁki(r)xd(t) .

( I‘ l#"r )

The problem is: if A is a bounded operator, what kiad of “unction will

(I-44) be. We would expect, in general, tnat a(t,7) will be e distribi-

tion, but a theorem to this effect does not exist in the mathematical

literature and is certainly not obvious. wWe will tnerefore content

ourselves with the formal comnection between the bounded .mirix {aij}

and the weighting function a(t,t) given by (I-L4).
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The formula inverse to (I-44) can be derived as follows: The

effect of A on \y(t) is

00
o
Mi(t) = [ )\i(‘r)a(t,‘f) daTt = y aijkj(t) ) (I-45)
. J=-_'oo
-
Therefore,
@ 00
ajj = [ ry(t) Ai(T)a(t,t) dt at . (I-46)
-0 -0

Here we have assumed that (I-45) is in L, and hence can be expanded in
a Laguerre series.
When a;y = aj_j, the digital filter A will have as Iis z-

trensform multiplication by A(z). Hence, the Fourier transform of the

~
analog filter ./ will be muwltiplication by A <:if: /L ard therefcre

a(t,t) = a(t-t). Conversely, if a(t,t) = &(%-1), the Fourier transform

of A will be multiplication by i(s), and hence tne z-transform of A will

be multiplication by A <::;i :} Tnis implies tnat 8y = Loog- Ve see
that un analog or a digital filter will be time-invariant when and only
when a,, can be written a, ..

iJ J-1i

Those time-inveriant fiiters which are physically realizable

are of great i.aportance in many fields. /. time-invariant analog
filter A is called rcalizable if ..f = O for t < O wuenever £ = O for
t < 0. Similarly, & time-invariant digitzal filter 4 is called realiz-

able if A{f ] = O for & < O whenever {f } = 0 for n < 0. It is an

important property of the mepping u that it always matches time-invariant



realizable filters with time-invariant realizable filters. To see this
suppose first of all that A is a time-invariant realizable analog filte-.
Let [gn] be any digital signal for which {£,} = O for n < 0. Then its
analog image f(t) is such that f(t) = O for t < 0. Thus Af = O when t
is negative, and this implies that ﬁ{gn} = 0 for n < 0. Tuls shows that
é is a realizable digital filter. The same argument worxs the other way,

and this establishes

Theorem 13. The mapping p for filters always matches itim:-invariant
realizable filters with time-invarient realizable filters.
i/ time-invariant digital filter is realizable if end only If 813 = &8;.1
= O when 1 > jJ. Hence, it follows that a time-invariant analog filter
1s realizable when and only when ajj = a3-3 = 0 1f 1 > j.

Vle can thus characterize all time-invariant realizable filters

by upper triangular infinite matrices of the form

.0 0 a8, & &, . (I-47)

Thus, a time-invariant anaiog filter is determined completely by . :s

response to any ki(t); Just as a time-invariant digital filter is
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determined completely by its response to any ¢ = {2 1o 0 ORI 050, 505 s
It follows also that the response of a realizable time-invariant analog
filter to A;(t) will have no A4 components when § < i. That is, the
output vector in response to A;(t) is orthogonal to xj(t) vhen J < {i.
For example, if we apply A,(t) to a realizable time-invariant. analog
filter A, we would expect
_° t
J‘ A (t) [Jﬂ a(t-1)x,(7) dr] dt = 0
-00 2
Using Perseval's relation (I-4) end writing A;(s) for the Laplace trans-
form of A;(t), this becomes
Jjoo
[ hg(s)A(s)Ay(-s) ds = O
- joo
which is indeed true, since the integrand is analytic in the rizht-half
s-plane.
In the time-varying case, on the other band, u does not pre-
serve realizability. To see this, consider the bounded op:rator -:ith
the matrix

1

d1a

ajj = 0 , otherwise

This corresponds to the digitel filter which delays {, one unit but has
zero output at other times. Thus, A is a realizable digital rilter.

The analog filter A, however, is given by (I-43) and (I-uk).
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AP(t) = Ny (t) £t (t) at

8"—-—’38

and is not realizatle.

To illustrate the relationship between the matrix and the
weighting function representation of a time-invariant analog filter, we

will take up as an example the all-pass function

Multiplication by A(s) in the transform domain defines a bounded oper-
ator; in fact, the analog filter /i leaves the energy constant of any

signal invariant. 'The digital filter /.(z) corresponding to A(s) is z°},

a unit delay. Hence, the matrix representation of tnese operators is
By = 11if 3 =1+ 1

aij = 0 otherwise

According to (I-L4), then, the weighting function a(t,T) is

(00}
a(t,n) = ) Al . (I-48)
i=-00

Assume, without real loss of generality, that t > O and T > 0. (I-48)

then becomes

00

a(t, ) = ) A (0) (Z-19)
i=1
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We now need the following two identities, which are given in Head and

Wilson:l3
‘0_9
) As(t)Ag(t) = 8(t-1) (1-50)
ézl
4 o
) A ganan(8) = = ) Ag(t Mg (8) + V2 Ay (te1) L (-51)
s=1 s=1

These identitics are very useful for putting a(t,t) in closed form when

the filter is time-invariant. Putting n = 0 in (I-51), we get finelly

al{t,t) = a(t-1) = - §(t-1) + 2¢”(t-7) u(t-7)

This checks with the inverse Laplace transform of (s) = ilz . (I-46)
can be checked similarly: the integral
00

f A (t)a(t,T) dr

|
o

-
is equal to Aj41(t), and hence
00 o)

o
Riy = [ lj(t) l A (1)a(t,T) dr at
is 1 when j = i + 1, and zero otherwise.

It should be noted that the complexity of the representsticn
of analog filters as coumpared with digital filters is reflected in the
identification and synthesis problems. To identify a time-varying

digital filter, one need only apply signals [Ei} and read the coefficients
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ajy from the output. OSynthesis involves only the setting of coefficients
in a digital computation program. In the analog filter case, however,
there is no such naturul and convenient basis. If we apply Xi(t) as a
testing function, we must then resolve tne output into a Laguerre series
and use a formula like (I-44) to arrive at a weighting function. Even
then, we are left with the problem of rcalizing a(t,T) in the general
case.

Still, it is a significant and not widely mentioned fact that
any analog filter, even a time-varying one, can be characterized by an
infinite matrix of numbers. More important, this fact nas not been put
to full use in the development of identification techniques. In fact,
most identification techniques, whether they are based on a weighting
function representation, # differential equa*:ic.. model, a time-varying
transfer fanction model, or an orthogonal filter expunsion, usunally
assume that the system is stationary over shcrt measurement segments.
The matrix representation, on the other hand, is a very general rep-

resentation, valid even for fast varying systems.

12. Optimization Problems for Systems with Deterministic Sipgnals

We are now in a position to see how some optimization problems
can be solved simultaneously for aralog and digital signals. OSippose,
for example, that a certain one-sided noise signal n(t), and that we
are required to filter out the noice with a stable, realizable time-

invariant filter H whose Laplace transform is, say, H(s). If we
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adopt a least-mean-square error criterion, we requirc that
00
r\
(r-H(r+n))? at = min . (I-52)
L
o
hs described by Chang,l this can be transformed by Parseval's relation
to tne requirement
3o
= | [R-H(R+N) )(R-H(R+N) ) ds = min. , (I-53)

2y
-jw

vhere R, H, and N are functions of s, and the overscore indicates that
s is replaced by -s. It can be tnen shown, using an adaptation of the
calculus of variations, that the realizable solution for H(s), say Ho(s),

is given by

iy(s) =

;‘i (R+N)R J , (I-54)
Y Y LHP
where

YY = (R+N)(R+N) ,

and Y has only left-half plane poles and zcros, and Y has only right-
half plane poles and zeros. The notation [ ]LHP indicates that &
partial f.action expension is made and only the terms involving left-
half plane poles are retained.

The fact that & least-mean-square error criterion is used means
that the optimization criterion (I-52) cen be expressed in the axiomatic
framework of Hilbert space. Thus, in the Hilbert space L.(-o,00),

(I-52) becomes



| |r-H(r+n) || = min . (I-55)

If we now apply the mapping u to the signal r-H(r+tn), we sece that

| |r-(r+n) ||

Hu(r-B(rn)) | = He-BGe) ||, (1-56)

since p preserves norm. Hence H, is a solution to the optimization
problem

Nr-B(r+n) || = min . (T=5)

Furthermore, since p matches one-sided analog signals with one-sided
digital signals, and since p matches realizable time-invariant analog
filters with realizable time-inveriant digital filters, we see that Hy
is the solution to a digital optimization problem that ic completely
analogous to the original analog probleri. In addition, thne gencral
solution (I-54) can be translated into digital terms by replacing the

left-half plane by the unit circle in an appropriate way. Thus,

1 (RN)R 7
Ho(z) = T{—"-_'_-'“_] : (I-58)
2 p IN
where
YY = (R+N)(R*N)
Now R, d,, and N are functions of z; the overscore indicates that z is

replaced by z'l; Y and z have poles and zeros inside and outside of the
unit circle, respectively; and the notation | ]IN indicates that only
the terms in a partial fraction expansion with poles inside the unit

circle have been retained.
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In other optimization provlems we way wish to minimize the nom
of some error signal while ieeping the noru of some other system signal
within a certaln range. In a feedrtack control system, for instance, we
may want to minimize the norm of the error with the constraint that tne
norm of the input to the plant be less than or equal to some predetermined
nunber. Using Lagrange's method of undetermined multipliers, this prob-

lem can be reduced to the problem of minimizing a quantity of the form
Hell” « ¥ [1L1P7 (1-59)

vhere e is an error signal, i is some energy limited signal, and both
e and 1 depend on an undetermined filter function H. /gain, if Ho(s)
is the time-invariant realizable solution to such an aralog problem,
then go(z) will be the time-invariant realizalle solution to the analc-
gous digitecl problem.

It is almost always important to us that the solution to an
optimization problem be realizadvle, bui we may want to allow as a solu-
tion a time-varying filter. Unfortunately, the isomorphism u does nct
necessarily matcn realizeble time-varying analog filters with realizatle
time-varying digital filters. We thus cannot show that optimization
problems which zllow time-varying solutions are equivalent in the
analog and digital cases. Furthermore, since any known isomorphnisms
involve orthogonal expansions of the analog signals over semi-infinite
or infinite ranges of time, it appears thot an isomorphism between

L,(-00,00) and 1, which preserves the realizabilily of filters cannot
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be constructed. Thus, in order to show the =quivalence of an analog
with a digital optimization problem, we require that the allowed class
of filters, say é:, be invariant undeir a particular lsomorphicm.
Another way of looking at the problem is to say that we are really de-
manding that the entire optimization problem be expressible in the
terms of abstract Hilbert space. Thus, when the class is the class of
time-invarlant realizable filters, we can characterize F: in abstract
Hilbert space as the class of all bounded linear operators .. for waich
834 = aj.4 and 8y.4 = O for 1 > .

We can therefore state that any optimization problem which can
be expressed solely in terms of abstract Hilbert space can be solved
simultaneously for analog and digital systems. In particular we can

state:

Theoren 14. Let v be an isomorphism between L,(-o,00) and 1,. Turther,
let the following optimization problem be posed in the analog signal
spece L,(-on,00): Find analog filters d;,H,,...,Hy which minimize some
function of some norms in & given analog signal {ransmission sysiem and
vhich are in a class of filters/f . ‘Then if the class of filters ﬁ is
invariant under v, the corresponding digital problem is ecuivalent to

the original analog problem in the sense that if one can be solved, so

can the other.

s we have seen, the case where }f is tne class of time-invariant
realizable filters, and Vv is u, is an important application of this

result. 1iIn this situatinon we have the following correspondences:
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13. Random Signals and Statistical Optimization Problems

While the consideration of syctems with cdeterministic signals
is important for meny theoretical arnd practical reasons, it is rore
often tne case that the design enginecer knows only the stotistlical
properties of the input and disturbing signals. For this reasor, tie
design of s stemns on a statistical basis has become increesiagly impor-
tant in recent years. In this section we shall show that the idea of
linking continuous theory with discrete taeory can be extended to a
broad cless of random phenomena; nemely, stationary, ergodic processes
with well-behaved correletion functions and spectra.

Because a complete axiomatization of random processes is a very
complex affair, we will simplify matters by approaching the subject
through the correlation function. This is nct nearly so restrictive as
it might first appear, because prysical stochastic processes almost
always have correlation functions that are of exponential order, and

their spectra are almost always bounded and continuous. For a more
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complete discussion of random sipnal theory and gencralized harmonic

8,12 Accordingly, we assume

analysis, the reader is referred to Vlener.
that random signals arec stationery, ergodic, and have zero mean. If
x(t) and y(t) are two such random signals, we assume further that the

cross-correlation function
bry(T) = Elx(t)y(t+s)] (1-60)

dies down exponentially with increasing |t|. The notaticn E[ ] means
"ensemble average of." Since the processes are ergodic, (I-60) can be

expressed as a time average:

T
".
¢xy(7) = lim = x(t)y(t+r) at . (1-61)
T-~o T
o

Now let xm/t) and yT(t) be the same signals as x(t) and y(t) for
0 <t < T, but zero outside of this range; and let XT(s) and Y.(s) be
their Leplace transforms. The cross-spectral-density function is then

defined by

3 (8) = 1lim -3 E(%(-8)Ym(s)] . (1-62)
T~ < g ‘

It is a classical result of generalized harmonic analysis, called
Wiener's theorem, that ¢xy(t) and Qxy(s) are transform pairs:

o]

—
[
]
N
(9]

ny(8) = | dey(tiestar

-Q0
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and

¢xy(t) S ‘ ¢xy(s)05t ds . (1-64)

In the important case when x = y, the variance ol x is given by (I-Gu):

Joo
E[x?] = ¢, (0) = rlj [ Yex(s) ds . (1-65)
14
- joo

a3 Wwe might expect, a perallel theory exists in the di;ital
case. llere, if xj and yi{ are two discrete stationary, and ergodic

rendon processes, the cross-correlation function is defined bty
dxy(n) = Elxixi+n] . (I-66)

Agein with ergedicity, we have

fuy(n) = {

i)
y iximf . (1-67)
N - 1

H|H

The cross-spectrrl-density is a function of z, defined by

fylz) = Un L Higg=ng(a)] (1-68)
N -0
where Xy(z) and Yy(z) are the z-transforms of signals waich coincide

with x4 and y; for 0 < i1 < N, and which are zero outside this range.

As in the analog case, ¢xy(n) and éxy(z) are transform pairs:
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by(z) = lim Z ry(niz™® (1-09)

N-ow neeN

which exists on the unit circle if we assume that the correlation

function dies off exponentially as n - co; and

Fry(z) = =2 & by (z)2" 42 (1-70)
|z| 1l

The variance of the signal x,, in enalogy with (I-65), is

1 dz
= 0) = —— Q@ 5 __(z) =2 . (I-72)
R P
|z |=1
The parallel with the deterministic case is so strong when the
random theory is put in the above form, that the intioduction of the

mapping u presents no problem. Consider (I-62), for example. If we

map the transformed analog signal XT(s) to [Jé/(z+1)]xT< :;i' >, ve

should map Xp(-s) to

Jz 27} -1
-1 Xp 1
z7° + 1 2= +]

Similarly, Yp(s) should mep to [V: 2/(z+1)] Yq (:;i ) In accordance

with (I-68), we define the mapping p by

o g (t)-'° (s) - —22__ (z+1)3 ¢ <z+1> &y(2) ~ 4 () . (I-72)
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The reverse mapping goes

wts o gey(n) = 2yy(z) - —ﬁg- by ( itz >= bey(s) = duy(t) . (I-73)

We have thus defined a mapping which maps analog to digital cross-
correlation functions. The important invaeriants under u are the

quantities
dey(0) = Elx(t)y(t)] ,

éxy(o) = E[xnyn] ’

vhich correspond to the inner product in the deterministic case. To

verify that these are preserved under u, put t = O in (I-64):

joo
1
- oo
If ve now make the changeof variable s = :;i , we get

.1 C£ z-1 2 |
¢xy(°) ———2::‘1 1 Qxy<z+l) (z+l)3 dz

|z|=1

1 da

" =g <§ bey(z) <F
|z|=l

= éxy(o) .

8ince all of the steps in (I-72) and (I-73) are reversible and give

unique results, the mapping p is clearly one-to-one and onto.
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or

Q-—g-arctanw.

Suppose now that we are given some periodic function of w,
C{w)say, that is to be the desired characteristic (magnitude, phase
angle, real or imaginary part) of a digital filter. C (-i-arcta.n w>
will then be the corresponding characteristic for an analog filter.
We can then approximate C (—s—a.rctan a;) as an anelog filter charac-
teristic, using any one of the many procedures available for analog

filters. We thus arrive at a rational function of s, say A(s). Then

ﬁ( z) = A ( :;i will be a digital filter whose characteristic approxi-
mates the desired one. Since the left-half s-plane is mapped inside th2
unit circle iu the z-plane, stable poles of the analog filter A(s) will
become stable poles of the digital filter .i.(z) .

Loosely speaking, we have taken the interval |_a_)| < 7/T and
stretched it out; done our approximation for an analog filter; and
then squeezed the w-zxis back into the original interval. Although the
w-axis is compressed, many of the widely used approximation criteria,
such as equal ripple, maximal flatness, etc., carry over directly to
the digital filter case. If an analog filter A(s) has magnitude M(w),
phase angle §(w), real vart R(w), and imaginary part I(w); then the
corresponding digital filter f'.( z) will have magnitude M(tan of'/2),
rhase angle 3(tan af/2) in |w| < /T, real part R(tan of/2), and

imaginary part I(tan al/2).
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As an i1llustrative example, suppose we wish to approximate
the ideal low-pass characteristic shown as a dashed line in Figure 4.
We have taken the cutoff frequency to te at @ = n/2T, one-half the
Nyquist frequency. The analog filter A(s) should therefore, by (II-3),

have an ideal cutoff at
w=tan @l/2 = 1 . (II-4)
Let us now use for A(s) a third-order maximally flat Butterworth low-

pass filter19 with unit cutoff frequency:

A(s) = 1 .
83 + 282 + 28 + 1

z-1
z+l

When we let s = , this becames the digital filter

1+ 3271 43272 + 273
3+ 272

(II-5)

Az) =
=

whose normalized magnitude is shown plotted as curve B in Figure L.

ﬁ( z) is nov a maximally flat digital filter. Its response 1s zero at
the Nyquist frequency @ = n/T, this point corresponding to infinite
frequencies for the analog filter F(s). The filter é(z) can be imple-
mented in a hand or machine computation according to (I-41), Section 10..

Thus, if f4 and g;, respectively, are the input and output digital signalsj

81 = —;"(fi + 38053 + 30+ T35 - B1-2) - (II-6)
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A typical application of such a smoothing operation would be to remove
high frequency noise prior to halving the number of data points.

As a more elaborate example of a smoothing routine, suppose
we wish a low-pass filter with a sharp cutoff at one-quarter the Nyquist
frequency, w = #/4T. This corresponds under the mapping u to the

frequency
o = tan of/2 = tan n/8 = 0.41k2 . (II-7)

Suppose further that we desire the digital filter to have equal ripple
in the pass band. We might then start off with the fourth-order
Tchebycheff filter having about 10 ripple (€2 = 1/5), and with a cutoff
frequency at w = 13

A(s) = 1 . (II-8)
s% + 1.034s + 1.535s2 + 0.8306s + 0.3062

If we substitute (s/0.4142) for s, we get

AI(B) B = ’
s* + 0.4284s® + 0.2633s2 + 0.05903s + 0.009011

(II-9)

which has a cutoff frequency at w = 0.4142. We then substitute

g i z'i to obtaln the desired digital filter:
2+
1+ 427 + 6272 + Lz™3 + ™4
ﬁl(z) L

1,760 = 4.703z"1 + 5.527272 - 3.,225273 + 0.7849z"4
' (TI-10)
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Figure 5 shows the normalized magnitude of this Tchebycheff equal
ripple digital filter. If this filter were used prior to a ore-half
data reduction, noise at frequencies greater than half the Nyquist
frequency would affect the resulting signal very little. If the power-
spectral-density of the resulting reduced digital signal were measured,
it would be desirable to correct for the ripples in the frequency char-
acteristic of the filter !ax( z). The design of a high-pass or a bandpass
digital filter follows the same pattern.

We have thus seen how the mapping pu allows us to reduce the
approximation problem for digital filters to that for analog filters.
The technique described allows the designer of digital information
processing systems to deal with signals in the frequency damain in

much the same way that the commmnications engineer deals with analog

signals.

3. Camparison with Fourier Series Techniques

Gui]leminl9 has suggested the use of Fourier series for the
approximation of magnitude characteristics of analog filters., His
approximation procedure consists of using the mapping p to convert the
desired characteristic to one that is a periodic function of frequency,
using a truncated Fourier series in w to approximate this, and then
inverting the transformation p to give a rational function of w. Since
we deal directly with periodic magnitude characteristics as a function

of w, we can use Fourier series dircetly. Thus the use of Fourier
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series ic a natural choice for the design of digital filters, and
Guillemin reversed our program and used it for the design of analog
filters.

Suppose, then, that we are given the desired magritude charac-
teristic M(w) of scme digital filter. Since this is an even function
of @ with period 2x/T, we can approximate it in a least mean-square-

error sense with the truncated Fourier series

X
Mo) = ) o eI, (11-11)
n=-K
where
z/T
c,=cp= —2T“— Ma) 2T ay . (II-12)
-x/T

The realizable digital filter
2K K
A(z) = z Cp-K 2P .z K Z cp z B (1I-13)
n=o n=-K

will then have a magnitude characteristic which approximates M(w),

because when z = ngﬂ‘

X
|a(z) | = 2 gz 0| =Me) . (II-1h)

n=-K
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This technique is particularly valuable for two reasons. First,
since the series (II-11) is a cosine series, the only phase distortion
is that caused by the delay factor z'K. Thus, if the delay of KT is
tolerable, there is essentially no phase distortion. Second, these fil-
ters are polynamials in z-! and have no denominator. Therefore, their

implementation

81 = C_gfy + cgerfy-1 + oo+ cxfy2k (1I-15)

does not require the storage of outputs. This leads to programs which
can be easily effected by simple special purpose computers and which
require a relatively small amount of storage capacity.

On the other hand, the fact that these filters are polynomials
in z"! means that there is a loss of several degrees of freedom. This
usually leads to magnitude characteristics that have the ripple and over-
shoot characteristic of Fourier series approximations. Looking at this
problem in another way, we cen consider these Fouriler series filters,
or any other polynomial filters, as power series approximations to ra-
tional functions, since by (I-40) any time-invariant digital filter can

be written as an infinite series:

@
Az) = ) ezt . (11-16)
i=-c0
We would therefore expect a finite polyncomial in z-! to have more ripple
and overshoot than a properly designed rational function, whose power

series does not terminate.
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To 1llustrate these points, suppose we again want a low-pass
digital filter with a cutoff freguency at one-half the Nyquist frequency.
M(w) is the ideal charascteristic shown as a dashed line in Figure 6.

Equation (II-12) then yields the following Fourier coefficients:

~

1/2 , n=0
_y(n-1)/2
ey =g =q L2 - n=1,3,5... (1I-17)
0 ’ n=2546,... .

The normalized magnitude characteristics of the first three of the re-

sulting digital filters are plotted in Figure 6:

Curve A: A(z) = 2 + 2,71 4 1 ;-2 (1II-18)
= n 2 P
. B —— o e + — P — - com——
Curve B Ié(z) 7 —2 52 —2 hz

C: A a L - 1,24 1,44 1,6, 1,6 _ 1,6, 1,0
Curve B(z) o 5“2 - =2z 3?2 5“2

We note the ripple and overshoot described above. One way to alleviate

this difficulty would be to use Fejer means<0’<t

of the coefficients c,.
This would produce smooth approximations, but at the expense of having
a slower cutoff and poorer rejection in the stop-band. In any event, if
we need a digital filter with a magnitude characteristic that is both
close to ideal and smooth, we must use either polynamials of very high

order or rational functions.
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L. Comparison with z-Transforms of Analop Filters

We take up now another approximation method$ one that at first
appears natural, but is actually not very promising. Suppose that
instead of taking the u-transform of an analog filter, A(s), we take
the ordinary z-transform. In this case, the resulting digital filter

is given by

0o
A(e¥) = -%- 2 Aljo + Jn2n/t) . (II-19)
n=-co

Typically, A(s) would be designed so that it approximates the desired
digital filter characteristic for |w| < #/T, and 1s small in magnitude
outside this range. If A(s) then has all its poles inside the left-half
plane, é(z) will be a stable digital filter with approximately the de-
sired characteristic. The main difficulty with this method is the addi-
tion of unwanted terms in (II-19) due to aliasing of the filter function.
To use this idea, we must start with analog filters which have carefully
tallored characteristics with sharp cutoffs and good rejection in stop-
bands, and all this leads to high order filters.

Furthermore, finding the z-transform of a high order filter

z2~-1
z+1

we are done, we must recalculate the magnitude or phase characteristic

involves a great deal more work than just letting s = 3 and when
of the result to assess the errors introduced by the aliasing of the
original characteristic. All in all, the u-transform is much better
suited for the purpose ¢f converting analog filters into useful digital

filters.
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To illustrate the above, consider again the third-order maxi-

mally flat Butterworth low-pass filter that we considered in Section 22

A(s) = 1 , (II-19)
82 + 282 + 25 + 1

The z-transform of ‘this filter is

-1 -2
e 0.3703z-% + 0.13462 . (TI-20)

1 - 0.3981z"% + 0.247hz"2 - 0.04321

The normalized magnitude characteristic of this digital filter is plotted

as curve A in Figure 4, which also shows the magnitude characteristic of

the p-transformed filter. Because of the relatively high cutoff fre-

quency of A(s) (one-half the Nyquist frequency), and because of the low

order of A(s), tle effects of the aliasing of the filter characteristic

are quite pronounced -- the cutoff 1s not sharp and the rejection is poor.
In sumary, the mapping u converts the approximation problem

for digital filters to the approximation problem for analog filters.

This latter problem has received a great deal of attention over the past

fifty years, and we are fortunate to be able to use it to owr purposes.

5. Bullding Analog Filters with Digital Camputers

Ve conclude Part II with a discussion of the possibility of
constructing an analog filter from a sampler, a digital filter, and a

data reconstruction device. Such a system would probably be implemented
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in real time using a digital computer. The advantages of using a digital
computer as an analog filter are the flexibility, accuracy, and stability
wvhich can be readily obtained, and which are practically impossible to
achieve with analog hardware. The coefficients in a digital camputer
program can be set to a high degree of accuracy, can be changed very
fast, and are not subject to unwanted variation with temperature or age.
Furthermore, with the use of pulse-code modulation for the low noise
transmission of signals over large distances, the availability of signals
already in digital form can make it more feasible to filter in real time
with a digitel computer. Ultimately, however, whether such a scheme is
practical depends on the state of computer technology.

Suppose then that we sample an analog signal f(t), pass the
resulting digital signal *hrough a digital filter i\(z) , and then recon-
struct an analog signal with a data reconstruction circuit H{s). The

Laplace transform of the output signal is
G(s) = g(eST)H(S)F*(S) ’ (II-21)

where F*(s) 1s the Laplace transform of the sampled input. We can thus

write a transfer function with respect to the sampled input:

G(s) sT .
T*(5) é(e JH(s) . (II-22)

We assume now that we have sampied at a frequency at least twice as

great as the bandwidth of f£(t). Then, in the range |w| < n/T, the
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transfer function (II-22) represents the effect of the system on the
original signal, and outside this range represents spurious harmonics

of the input signal caused by imperfect data reconstruction. These
upper sidebands can be removed with a simple low-pass analog post-filter
having a cutoff frequency near the Nyquist frequency.

As an example, suprose that H(s) is a zero-order hold:

-sT
H(s) = _1_'_;1._ , { 1I-23)
8
sin of/2 e
|H(Jw) | = W‘ : (..-24)

IH( Jw)| has its first zero at twice the Nyquist frequency, and has lobes
of appreciable magnitude well-outside the range |a>| < n/T. Hence, the
overall transfer function (II-22) will have spurious responses at high
frequencies unless these are filtered out. Suppose now, as an example,
that we use the Tchebycheff filter (II-10) of Section 2 as our digital
filter é(z) . The normalized magnitude of the resulting digital filter-
hold cambination is shown in Figure 7. Ve note that the shape of the
digital filter A( z) is slightly distorted in the pass-band by being

“sin aﬂ‘/2
| If necessury, the magnitude characteristic

multiplied by |
of A(z) can be compensated to correct for this distortionm.

It is interesting to note that the filtering characteristic of
our final system cuan be changed as fast as the coefficients in the digital
computer program can be changed. If we used bandpass digital filters,
for example, we might then be able to use the system to replace a hank

of fixed filters or a frequency sweeping system.
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PART III* APPLICATIONS TO POYER SPECTR'M MEASURRMENT

l. Introduction

The concept of power-spectral-density has become an important
tool for the analysis and synthesis of many types of physical systems.
As a result, there is a pressing need for ways to estimate the power-
spectral-density of a signal from a finite record of that signal.
Originally, analog methods provided the only practical way to do this.
These methods usually involve the selection of a narrow band of fre-
quencies with a bandpass analog filter, and then a me..surement of the
power density of the signal in this bend. Too wide a pass-band results
in an averaging of the spectral density over an excessively wide range
of frequencies, with a resulting decrease in resolution; vhile too
narrow a pass-band results in excessive statistical fluctuations of the
estimates. In 1954, Cha.ng‘?3 derived an expression for the optimum band-
width for the spectrum analyzer and showed that the optimum shape for
the spectrum analyzer was semicircular.

In recent years, when high speed digital computers became
avallable, methods for spectrum analysis based on equally spaced samples
of the signal of interest were developed. These methods were at first
divorced from the concept of a bandpass filter, until the concept of a
spectral window was introduced. Still, the connection between the analog
and digital methods of spectrum estimation has remained obscure. One

goal of this part will be the clarification of this connection. Ve
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begin with a review of the methods for spectrum analysis of equally

spaced data, based mostly on the work of Blackman, Tukey, and Pres:s.‘?h’%’26
First of all, if a randam signal is sampled, the sampled power

svectrun of the resulting digital signal is related to the original

spectrum by

(0 o)
8, (eF =—%- z T do + 03 20) (III-1)
n=-

where T is the sampling interval. Ve see immediately that we must
sample at a rate fast enough to reduce undesirable aliasing of the origi-
nal spectrum. Otherwise, the spectrum we measure, $,(z) will not be an
accurate reflection of the spectrm of the original signal.

Assuming that we have sampled fast enough, and have prefiltered
the original analog signal to reduce high frequency noise if necessary,
we can compute estimates of the autocorrelation function. lie assume
throughout this part that we have observed samples x,;,X5,...X) of the
original signal x(t), and that N is so large that we can neglect end
effects. Thus we compute the (mtl) mean lagged products

N- |k |

i)
£, = —— Ky -m<k<m . (III-2)
A Y 1*1+|x|

These f) are unbiased estimates of the autocorrelation tunction g (k):

lim £y = 6.(k) . (III-3)
N-o



Since the power spectrum is given by (I-69)3

N

2) = Unm ) g0z (III-b)

f)xx( o
© k=-N

we are led to the estimate

A n -k
8(Z0) = z fiZo. (II1-5
k=-m

where z, = eJ%T, and w, 1s the frequency of interest. This estimate is
known as the periodogram. These estimates are statistically unstable
because they give equal weights to all the fy, while the fy for larger
k are much less reliable. This suggests weighting the sum (II-5) in the

following manner:

m
A -k
e = ) MifyZa (1I1-6)
k=-m
where
Wi T Vx

The expected value of this estimate is

A m
Ebyylay) = z Wk "xx<k)25k
k=-m
m
- S wk(——l $ o (z)zk——dz>z"k
) 2KJ K Z °
k=-m J

|z|=1
(Cont'd.)
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l o ”
" “xj g‘:cf\z)< /. w2z NGl
|2]=1 <%
/T
- 2T“ [ (@) Wlamag) am (II1-7)
-%/T
where
2) = N gk
W(z) = ) e (II1-8)
k=-m

is a weighting function which determines an estimate of & (w) and is
called the spectral window. By a convenient abuse of notation we write
8 (w) instead of 3,,( edaﬂ‘) . The problem of choosing a good spectral
window has received much attention. A good evalua*’on of many spectral

windows can be found in Grenander and Rosenblatt.>!

2., A Class of Windows Generated by Digital Filters

If we now try to mimic the analog method for spectrum analysis,
using digital filters instead of anelog filters, we are led to a special
class of estimates involving a speciel class of spectral windows. OSuppese
then that we design a bandpass digital filter that 1is tuned to the parti-
cular frequency w,, say D{z). Let us pass the digital signal X1y00 0%y
through this filter to obtain an output sequence yi,... »¥y- The power

density of this output signal is then the average energy:



A N
) = = Z o (II2-9)
im=l

The expected value of this estimate is

Egm(wo) = E(¥]) = 4(0)

1 -
- cﬁ D(z)D(z"2) #yy(z) ﬂz
/T
“ J D) | bpela) d (III-10)
-5/T

so0 that these estimates correspond to the weighting function
2
Wow)) = |[D(w) | . (IIT-11)

Thus, this special class of estimates has the desirable property of
having a weighting function that is always positive. This means that
no matter what the shape of the original spectrum, the ectimates will
always be positive, a situation that is not always true for the more
general estimates using windows W(w-w,). We therefore have eliminated
the problem of negative power leaking through a side lobe of the weighting
function.

In general, the implementation of the estimate (III-9) will
necessitate running the digital signal x4 through the digital filter

D(z) for each frequency of interest. This is a decided disadvantoge,



75

because of the long time that this would take on a computer. In the
special case when D(z) is a polynamial, howcver, we can compute the

estimates directly from the fy. To see this, write

2n) z

A N "
becl0g) = ) 3= SE o)D) XX g
1=l |z|=1 (111-12)

where we define

X(z) = x; + X270 + x3272 4 00+ xNz-N . (III-13)
Assuming that
K
Mz) = ) gzt
k=1

(III-12) becomes

X

A ,

3yc(@g) = Z Gdefyet > (TII-1k)
k,L=0

which 1s Just as easy a quantity to calculate on a computer as (III-€).
The coefficients d) will, of course, be different for each frequency of
interest.

Whether we uce this last method and restrict D(z) to be a poly-
nanial or we use a rational function of z and run the signal through the
filter for each measurement, we con now use tne approximation methods
discussed in Part 2 to design spectral windows. It is very easy to use

different windows for different parts of the spectrum, for we have
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camplete control over the shape of the window at all times. We have
thus seen howv the measurement of power-spectral-density for discrete
signals can be thought of in terms of filtering and energy measurements,

Just as in the analog case.

3. Th: Mean-3quare-Error of These Estimates

With a view towards deriving the optimum digital filter for
these estimates in a menner similar to Cha.vng's,:23 wve will now calculate

the mean-square-errors

A
e = B3 (0) - 2o lo)F . (11I-15)

This mean~-square-error can be broken up into two partssy first the cquare

of the bias?
2
(vias)® = (5_(w) - B} (o)) (111-16)

and second the variance

A2 A 2
variance = E[i(wy) ] - (B () ] , (I1I-17)
Thus
€2 = (bias)? + variance . (I1I-18)
From (III-10), we have
x/T
m 2
bias = dxx(wo) - 35— ID(w) | Byy(@) d . (ITI-19)



We see from this that the bilas error is due entirely to the fact that
the weighting function is not a §-function. For this reason we may call
it the "blurring" error, after Cha.ng.25

The variance is somewhat more difficult to culculate. From

(II-9) we have first

X

A e -
El () )" = 132 ) ELRR) - (I11-20)
n,m=1

In order to evaluate these fourth-order moments, we now assume that the
original signal has a mormal probability distribution function. Uith
this assumption, the digital signal ¥4 1s also normally distributed, and

using the characteristic function for the i, we get

27 _ A= {2 ray y
ElySya] = £y(0) + 2 i (nn) . (TII-21)
Thus,
i 2 2 2 .
P,‘ - L pd - o
E{2(wp) 17 = By (0) + = py(m-n) . (I1I-22)
n,n=1
Also, we have
A 2 2
[Ei(wg) T = g, (0 (II1-23)
so that
N
i \ 2 -
variance = . ) pyy(m-n) . (III-2k)
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This can be put in terms of the power-spectral-density of the yqi by

using formula (I-70):

%/T
“‘I
- 1 X LN dz T F Jnuwil III-2
ﬁyy(n) oy CP ‘yy(z)g ==y J -yy(“’) e dw . ( 5)
|£|=l -n/T
Hence, we can write
n/T =/T 2
2 2 ! -3 (un-ap)T ,
variance = ———(7/2x) Vo e = ('yy(wl)éyj(u:) dwydne .
Ir’ l_
/T -x/7 % (III-26
Using the identity
N = g
8 sin~ —~——(wy-wp)T
) edv(ere)T £ , (111-27)
V=1 sin® —;—(wl-ax_x)'l‘
this becores
7/T =/T
- sin® I (wi-up)T
variance = —<—{T,/2x) — £ éyy(wl)'}yy(wg) devy dap
= . sin“ —%—(wl-we)T
-/T -x/T (III-26)

The inncr integral in this expression
is discussed in Carslaw,

that

1lim

21 and in Titchmarsh.

is Imown as Fejer's integral, and

10 The e¢ssential result is

N - o

(1II-29)
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That 1s, the Fejer kernel tends to a &-function with increasing N.
5% -+ in our case N is very largze (usually larger than 50 or 100 for a

mee © _oul spectral analysis), we can write as a good approximation

n/T
=2 I e
variance = — - xyy(w) do .
-5/
/T
2 o 4 2
== (@) | o () do . (III-30)
-5/7

Thus the variance is inversely proportional to N, which is in agrecment
with Grenander and Rosenblatt,27 who used a different derivation that
applied to spectral windows that are not necessarily generated by digi-
tal filters. Furthermore, if we normalize by the square of the area
under the window:
/T
m

[——éf;- |D(w) |2 dU)]a : (III-31)

'K/T

the variance 1is inversely proportional to the length of the record NT,
which agrees with the amalog case. lle thus have derived an expression

for the mean-square-error of the digital filter estimates:

/T /T
m 2 . 2 4 2
€2 = [f}xx(wo) - _2:1 J |D(a>)| uxx(w) dw] + ——g ——g‘ﬂ |D(a>) i Pex(@) dow.

-5/ T -n/T (1I7-32)
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L. The Optimzn Digital Filter

Our program now is to find the digital filter shupe that mini-
mizes this mean-square-error, thus following the derivation that Chang‘?)
presented for analog filters. Accordingly, we represent the digital
filier characteristic |D(w) |% by UP()/8), where 8 = w-ay, g i& the
center frequency to which D(w) is tuned, and A is same kind of bandwidth
such that U?(0)/4) is emall for |a] > A. We thus focus our attention on
only one main lobe of the digital filter characteristic, at w = w,. We
assume also that the filter D(z) is sharply tuned to w,, So tlmt we can

write to a good approximation

7/T
2 T 4 ,2
variance = —— —5— |D(w) |* 85, () dw )
-5/T
/T
=2 T 22w ] y
= —— ¥y J ID(w) | aw . (1II-33)
-x/T
This becaomes in our new notation:
oo
L T L2
variance = el e Tx (@) J‘ r*(a/a) an (ITI-34)
-0

To express the bias simply, we expand the spectral density Qxx(w) in a

power series about wg?



8l

Pac(@) = G (wg) + 3, () (wmiy)
+ =2 0l (o)) (wmag)® + oo (II1-35)
2 “‘xx\“o (o} $ /
Assuming that the area under the filter characteristic is one, or,

equivalently, that our estimates are adjusted by dividing by the area

under the filter characteristic, the bias term (III-19) becames

n/T
blas = 2 —- 8y, (w) () [© (wmg)™ o
-x/T
[o0)
= 'E%’ ¢ (@) J B(o/8) 92 an (III-36)
-®

where we have also assumed that Ue(Q/A) is an even function; that our
filter has a symmetrical magnitude characteristic about the resonance

frequency.

We seek to minimize the normalized mean-square-error, given by

2 P54
eiorm r:\t/Te — - c; . .
[ 2Tﬂ J In(e) [° d‘”} (T/zﬂ)g[Z f P(a/8) ea|
-a/T e

For convenience of notation, we now define the following integrals:
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Co

I= j UB(n/8) a(e/s) (1II-38)
=00

00}

J = J‘ Fea/a)(a/8)® a(a/s) (II1I-39)
-

Qo

K = J' w(a/a) ale/a) . ( III-bo)
-0

With these notations, the normalized mean-square-error becames?

l " J2 2“ K l _
2 m = Tltmlao) ¥ o a4+ 2 ofle) - & (111-42)

which is exactly the same as Equation (23) in Chang's pa.per,23 which was
derived for an analog filter instead of a digital filter. Hence, the
rest of the derivation is identical to that for the analog case, and we
are done.

Thus, the optimum bandwidth, obtained by differentiating (III-41)

with respect to 4 and setting the result equal to zero, is

5 (I1I-k2)

2

F D) T

KWL B o

Wle have therefore shown that the optimm bandwidth 1s inversely prcpor-
tional to the length of the record available for spectral analysis.

This optimm bandwidth was derived by Grenander and Nosenblatt for two

specific windows; we have here shown that it holds in general for windows
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generated by digital filters.
The normalized mean-square-crror in the case that the bandwidth

is chosen optimally is

L K.BJ.h

€horm = -2- (2"/“'1‘).8 (2 (p) 11.6 (8 y(wo) ] —z (I1T-43)

Since

42 _ ,
‘\/eiorm = /E s : [Qxx(wo)]'s l_q’;;x(wo) _ﬁ%)z] ( III-Uk)

we can define the error cocfficient

JE LoL2 ‘
K =2 L — (1I1-45)

vhich is a quantitative measure of how small an expected error can be
achieved with filter characteristics of different shapes. As Chang

shows, the optimm shape for the fumction U is given by

un/s) =0 , for |o| >4
(III-he€)

©(a/8) = A{1 - (/0)%) , for la] <a .

This being obtained by setting the first order variation of K. with
respect to U equal to zero. This semicircular filter shape gives
K. = 0.66. The shape of the filter is actually not too critical, pro-

viding that the bandwidth has been chosen well, and providing that the
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side lobes of the digital filter characteristic in the region Inl > A

are small. Thus, the ideal rectangular filter shape

u(a/a) =0 , for |al

v
>

(III-47)
ua/a) =1 , for |} <&

yields K. = 0.68, which is close to optimum. Thus, the bandpass trans-
formations of a low-pass Butterworth or Tchebycheff filter would serve
well as spectral windows, although the Fourier series filters would be

easier to implement using (ITII-1%).

5. Prewhitening Techniques

lle thus see how the approximation techniques described in Part 2
can be arplied to the design of spectral windows. These approximation
techniques are slso especially useful in prewhitening spectra before the
above estimation methods are applied. The idea of prewhitening has be=n
strongly advocated by Blackman and Tukey26 for a few reasons, one of
which can be seen by examining the expression for the mean-square-error
(III-41). This error depends directly on the second derivative of the
spectrum at the measurement point, which appears in the bias term. If
we could samehow flatten the spectrum before measurement and then campen-
sate for this after the estimates have been computed, we would reduce
the bias term without affecting the variance. Another advantage of

measuring an essentially flat spectrum is that there is then little
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possibility of an unreaconable contribution from a reak in the spectrum

that haprens to correspond to a minor lobe in the spectral window.
Therefore, if we have a rough idea of the shape of the spectrun

we are measuring, we can approximate this shape with a digital filter

D(z), so that
D) |* = 8 (@) . (III-8)

We can then pass the original signal x4 through a digital filter 1/p(z),
producing a signal with a relatively flat spectrum. Estimates of this

power-spectral-density are then computed in the usual way, and tlen zor-
rected by multiplying by |D(w) |2. The techniques described in Part 2 are

well suited to accomplish this prewhitening in an organized way.

6. The Identification of Power Spectrum Parameters#*

Suppose now that a system designer needs to know the power-
spectral-density of scame signal. Assuming that he has an idea of the
bandwidth of the signal, he can obtain samples of 1it, calculate the mean
lagged products fy, and then use some spectral window to estimate the
spectral-density. What he gets after this procedure are estimates at
points along the frequency axis, usually equally spaced. If the results
of this spectral analysis are going to be used for anything besides a
visual presentation, the designer will have to put this in some closed
analytical form. One way to do this is suggested by the mapping ii.

The points of the power spectrum can be transformed by the mapping u as

* Tne results in the remaincder were reported by the author in Reference 28.
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in Equations (I-72) and I-73). The measurement poinis now represent the
spectrum of an analog signal, and this can be put in the form of a ra-
tional function of s by using Bode's method of semi-infinite slores. The
reverse napping u'l will then yield a rational function of z, which is a
form which can be used for explicit design. This procedure leaves much
to be desired. First of all, it involves two consecutive approximations
and the accuracy of the final result i1s difficult to gauge. Second, it
is not easily mechanized on a computer, and is hence ill-suited for real
time application as an identification method for adaptive systems.

It would therefore be desirable to have a method of measuring
power-spectral-density that ylelds an analytical form for the answer.
The technique of prewhitening suggests the following method of sccom-
plishing this: suppose we pass the signal of interest xy through a
digital filter D(z) of some canonic form, and then adjust the coefficients

of D(z) so that the output is in some sense most nearly white noise. Then

we have
() % 8@ =1, (111-49)
so that
1
3 = i
xx(2) ST (III-50)

can b2 used as an analytical expression for the unknown power-spectral-

density.

If this program is to be carried out, the following consideruticn
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is important: the most time consuming, and hence expensive, step in a
spectral analysis is always the computation of the mean lagged products
fx. Hence, we would like to calculate only one set of these for each
spectral analysis. If we assume that D(z) is a polynomial in 2”1, the
output mean lagged products can be expressed in terms of the input mean
lagged products rather easily. On the other hand, if D(z) has even one
pole, it becames intractable to express the output mean lagged products
in terms of those of the input, and the mean lagged products of the out-
put must be recelculated for each cholce of coefficients in D(z); and
this becomes impractical. Hence, the procedure outlined is only practi-
cal when D(z) is a polynomial in z~1.

At first, the following method was tried on a computer. D(z)

was assumed to have the form
D(z) =1+ az"!+bz"2 (IZI-51)

the inpu: mean lagged products were computed, and the appropriate mean
lagged productc of the output of D(z) were computed from these. The cri-
terion for whiteness was that the autocovariance determinant of the output
signel be maxirnum. By the method of steepest descent, the coefficlents
a and b were found. The method converged nicely, but gave good results

only when the unknown power spectrua was of the appropriate Torm:

‘wx(2) = 6~ . TiT-52)
bl 2) = S S
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Furthermore, the extremsl seeking procedure becames less reliable when
more unknown coefficients are introduced.

It was then found that the above problem i1s equivalent to a
well-known problem in mathematical statistics:! the solutlion of this
latter problem can be found in the literature; a good discussion 1s given

by Ha.nnan,29 for example. Thus, when D(z) is assumed to have the form

1

Nz) =1+ 2" + aez'a + o0 4 apz'p , (III-53)

a completely analytical expression for the coefficients oy cen be de-
rived in terms of the mean lagged products of the input signal. The
method cannot be extended to the case where D(z) has poles, for essen-
tially the same reason described above. Thus, it is the responsibility
of the experimenter to ensure that the unknown spectrum can in fact, be
represented closely by the form (III-52). Some ways of getting around
this problem will be discussed later. We now present the solution to

the identification problem described above when D(z) is a polyncmial in 27,

T. Statement of the Problem

We make the following assumptions:?
l. N points of the signal of interest are available:
XysXpgeoesXn
and N is large enough so that end effects can be neglected.
2. The signal 1s normally distributed with zero mean, and is

stationary and ergodic.
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3. The signal his a power-spectral-density which can be closely

represented by

2
3 (z) = B (I1I-54)
= D(z)D(z"Y)
where
Diz) =1+ @zt + z™2 + ¢o0 4+ apz'P (III-55)

has all of its zeros inside the unit circle in the z-plane.
The problem is to estimate the parameters 0,02, 00 0,0p, and B‘?; given

the N observed points of the signal.

8. The Most Likely Estimates

The solution given here will be essentially the same as that
given by Hannan,29 except that our argument will be in terms of power
spectra.

Define a new signsl y; by xy through the digital filter D(z).

That is, put

Yy =X tayxy., toxy, 4 apxi-p ) (I1I-56)
or, in z-transform notation
Y(z) = D(z) X(z)

The stochastic variable y; is normally distributed. Furthermore, its

power-spectral-density ie



by(2z) = D(2)D(271) By (z) = BZ (III-57)

50 that the signal yy 1s guassian distributed white noise with mean square

value B°. The joint probability density function of the observed sample

(yl,ya’-oo,yN) iS then

1
2

N
l N
P(Y1,¥2s-+es¥N) = (228 ©F (- 26 ) i)

= (III-58)

The maximum likelihood estimates of the unknown parameters;
A A A
denoted by Q) 0z, 000 ,0p, and ;’3\2; are obtained by maximizing this proba-

bility. Thus the following set of equations must be solved:

3 log P(yl:}'al'“:yN)
an

=0, J =1,2,...,p; (III-59)

and

d 1og P(¥1,¥2se++ ¥

e (II1-60)

|
o
L]

When (III-56) is substituted in (III-58) and the indicated operations are

carried out, the most likely estimates result:

A T - T r 7
al fo fl fz s 00 fp-l fl
A
A
a, £, f, f . £ . .3
S S Rl S , (III-61)
A L . * L]
f L 2N N ) f f
-1
gap | *p o | |'p]




9l

AA A A A A ~

1,J=0

b1

vhere the fj are the mean lagged products

N-J

£y = le- xyxgey (320 . (I11-63)
i=1
In sumary, then, the following computations are performed:
1. From the N sample points of the signal, the mean lagged products
fosT1se--,1, are calculated in accordance with (III-63).
2. The pxp matrix (fli-,”; i,3 =1,...,p) is formed and inverted.
Br gj (j =1,...,p) are calculated from (III-61)
L, é\? is calculated fram (III-62).

These computational steps are shown diagramatically in Figure 6.

9. Variability of the Estimates

If this identification method is to be used for any practical

purpose, same knowledge is required about the accuracy of tle estimates
. 29

A
for u given N. It caa be shown ~ that the vector @ - @ defired vy

- &
-

> B>

(III-6M4)

IR>
[
IQ
]

!
.JQ)
of?



is asymptotically normally distributed with zero mean and covariance

matrix
~ - -1
bo Bi Be o b
dl ‘o ¢1 e .‘ ép-a

be b Bo e Bos
B (III-65)

This can be estimated conveniently by

e T !
S SR T S
As ST S
—I%- . ‘ . (I1I-66)
IR %o

which does not use any quantities which have not already been calculated.
The distribution of the estimate 82 is difficult to calculate
since it is a more complicated function of the fd's. It 1is easy, however,

to derive the distribution of

N

1 2. Y\ _

= ) = ) CLPRTI (I1I-67)
i=1 i,J=0



and this will give same (optimistic) indication of the variability of

A
Ba. With this in mind consider the random variable

(ys/8)% . (I1I-6€)

N~

i=1

This 1s the sum of squares of independent, normally distributed random
variables whose means are zero and whose variances are 1. This random
variable is therefore xZ-distributed with N degrees of freedom. Cramerjo
shows that with increasing N the xe distribution becames asymptotically
normal with mean N and standard deviation /2N. Therefore, the random
variable (III-67) is asymptotically normally dictributed with mean B° and
standard deviation\/§7§—82; and hence /§7ﬁ 62 can be used as a iow esti-

As
mate of the standard deviaticn of B“.

10. Extension to Spectra with Zeros

As mentioned before, the assumption that the unknown spectrum
does not have any zeros is rather restrictive, and the derivation breaks
down when a more general form for 5,.(z) *s assumed. There are some situa-
tions when something can be done to extend the method, and thece will row
be dlscussed.

Suppose that the signal of interest has an unknown pover srec-

trum of the form

B® ...(_;.N(z N’.Z'I; ITI-69
D(z)D(z-1 ( 2)



and that the locations of the zeros are known (at least approximately).
Then the signal can be prefiltered by a digital filter 1/N(z) (or an
equivalent analog filter). The resultant signal will then be of the
requisite form and the method described in this paper can be used to deter-
rire the pole locations and Bz.

As another example, suppose that the signal of interest, x,, is
the sum of two independent signalsj one of which has a known power spec-
trum (such as white noise of a given amplitude), and the other of which

has only poles in its power spectrum. That is, suppose

b (z) = 8% (2) + n(z)g;z'l) ; (11I-70)

The auvtocorrelation function of the signal is, then, the sum of known and

unknovn carponentss
f.(n) =g (n) + gL (n) . (III-71)

The known components can be subtracted from the coamputed fj, and the re-

sulting mean lagged products
fo = Bel0)s £ = $5(1), on s £ - A5 (D) (1I1-72)

can then be used to estimate D(z) znd 3°.

Other situations suggest themselves. Some pole loca’ ""ms may
be known in advance, for instance. These poles can be removed before
analysis by a digital or analog filter. Alternatively, the maximum like-

1lihood equations (ITI-59) end (III-60) can be reworked.
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1l. An Example

To demonstrate the method, a sequence of 210 independent normal

random numbers was passed through the digital filter 1/(1-.52

resultant time series then had a power spectrum

1/252
(1-.52")(1-.52)

Thus for this signal, assuming p = 2,

& = -5
o = 0.0

g% = .00397 .

Three mean lagged products were cormputed:

H
n

.00624,

1 "00307’
£, = .00147,

e
L}

and (III-61) used to give the estimates

&- = ".)4%

A

o = .0070,

Ar

8~ = .00473 .

The

(III-73)

(III-74)

(III-75)

(III-76)

A
The estimated covariance matrix of the @y was calculated from (III-66):

[ .ooks -.ooeh]
L-.0024 .00k8 p

(I11-77)
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and it is seen that the &J are well within one standard deviation of the

ch. The optimistically estimated standard deviation of 82 is
A
/2/n g% =~ (1/3.0)32 ; (1II-78)

so that the 16 percent actual deviation is not unreasonable.

Filgure 9 shows plots of the actual and the estimated power spec-
toum. Also shown are the results of a conventional spectrum ana.'l.ys:ls"26
using a Hamming window and 7 mean lagged products. Note that more than
twice as many multiplications were required by the conventional method

to produce similar accuracy, and that the results are not in a form that

is suited for direct use.

12. Applications of the Identification Method

The above identification method is especially rromising for use
in en adaptive loop; first because it can be implemented in real time by
a computer, and second because it gives direct estirates of parameters that
can characterize a signal or a plant. Thus, the following method of self-
optimizing control 1is suggested: a controller is designed whose optimum
or near-optimm oreration depends on the knowledge of the parameters
@ ,...,Q, and B2 of the power spectrunm of some signal in the system. From
a record of this signal of length N the estimates al,...,c/:\rp and é‘z are
periodically calculated by a digital computer and used to adjust the con-
troller. In a particular application, the choice of N is an important

problem. N must be chosen large enough so that the estimates of the power



spectrun parameters are accurate enough to be useful. On the other hand,
N should not be so large that the system reacts to obsolete information.

The identification method described above may also be used as a
first step in a conventional spectral analysis. After D(z) is estimated,
the original signal can be passed through the filter D(z) and subjected
to further spectral analysis by conventional methods. If the form assumed
for the spectrum was appropriate the output will be nearly white, and this
procedure will amount to an "automatic" prewhitening technique which can
be used in conjunction with conventional spectral analysis.

Finally, it might be mentioned that the identification method
can be used with the adaptive information processing method described by
Chang.31

We have seen in this part how the concept of digital filtering
can be applied to the problem of measuring the power-spectral-density cf
a digital signal. We first showed how the idea of bandpass filtering can
be carried over from the analog case to the digital case to generate
spectral windows that always give positive estimates of the spectrum.
Furthermore, we have pointed out along the way how digital filters can
be used to advantage as prefilters and postfilters much as analog filters
are used for continucus signals. For these applications, the approxima-
tion techniques described in Part 2 are especially useful. Lastly, we
described a method of identifying unlmown parameters in a power srectrum
of an assumed form; a method which is promising as an identification pro-

gram that can be incorporated into an adaptive loop.



SUMARY

Our main goal has been to tie together the theories of filtering
digital signals and analog signals. With the axiomatization of filtering
and signal theory in terms of Hilbert space, we saw how an isomorphism
could be constructed between the analog and digital spaces which allowed
us to transfer many concepts from one domain to the other. The use of
Hilbert space showed how the z-transform can be defined with much the
same generality as the Fourier transform, and led to a definition of stable
filters that can be used in both the analog and the digital cases. We then
saw how any such filter, whether time-varying or not, could be represented
by an infinite matrix of numbers. In particular, we saw that in the time-
ipvariant case the digital and analog theories are essentially identical.
Thus, many cormon optimum-filtering problems can be solved simultaneously
for analog and digital signals, both in the deterministic and the random
case. VWe also looked at data reduction filters and their interpretation
in terms of frequency response.

In Part 2 we showed that the approximation problem for time-
invariant digital and analog filters were equivalent, and we discussed
scme methods that were particularly applicable to the design of digital
filters for same common purposes, such as prefiltering prior to data re-
duction. We showed in particular how Fourier series can be used to design
digital filters with prescribed magnitude characteristics that were poly-

nomials in z'l, and hence could be implemented econamically.
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Part 3 was devoted to the application of these ideas to the
problem of measuring power-spectral-density from digital information.
We saw in particular how bandpass digital filters could be used as spec-
tral windows which always give positive estimates of the power-spectral-
density. We then derived the optimum bandwidth and the optimum shape
for such digital filters, following the results of Chm:ge5 for analog
filters. Throughout this discussion we indicated how the approximation
techniques of Part 2 could be used effectively in the processing of digi-
tal information; prewhitening being an example. /e then presented a
method of identifying unknown parameters in a rower spectrum. This method
results in an analytical form for the spectrum, and is suitable for a

systematic prewhitening program, or for use in an adaptive control loop.
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LIST OF ILLUSTRMTIONS

A schematic representation of the mapping p and its relations
to the various signal spaces.

A schematic representation of the mapping u and its relations
to the various spaces of operators.
1+s

The s-plane, the z = e plane, and the w-axis; when z = =

Curve A is the normalized magnitude characteristic of the
digital filter corresponding to the z-transform of a third-order
Butterworth filter. Curve B is the normalized magnitude char-
acteristic of the digital filter corresponding to the p-trans-
form of the same analog filter.

The normalized magnitude characteristic of the digitai filter
corresponding to the u-transform of a fourth-order Tchebycheff
low-pass filter with 10 percent ripple.

Fourier series approximations to an ideal low-pass digital filter
magnitude characteristic.

The normalized magnitude characteristic of an analog low-pass
filter constructed from a Tchebycheff digital filter and a zero-
order hold circuit.

Estimation of power srectrum parameters.

Camparison of actual and estimated power spectra.
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