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ABSTRACT

The definition of several new system functions leads to a more

complete characterization of time-varying linear systems. A family

of twelve system functions, including the impulse -response K System

functions, are used to describe time-varying linear systems. The re-

lationships among the various system functions are clearly illustrated.

The K system functions are shown to be convenient for the analysis cf

cascaded systems. The time-frequency duality concept is discussed with

respect to the system functions, and the introduction of physical vari-

ables extends the duality concept so that knowing one relationship is

equivalent to knowing four relationships.

The expansion of system functions in terms of a complete set of

functions in two dimensional space or in a sampling series for an ap-

propriately band-limited and/or time-li, .ated system leads to a matrix

characterization of time-varying linear systems. Schemes for evalu-

ating the coefficients of the expansions are described. The causality

condition requires that the matrix of k(t,T) be lower triangular.

Marcovitz's findings, using the matrix of k(t,j), on the conditions

for the existence of quasi-inverses and inverses to time-varying

systems are extended to the recoverability of a signal of finite duration.

The matrix formulation is applied to the problem of finding eigen-

functions and eigenvalues for tirn-varying systems. When one knows

the eigenvectors of a time-varying system, the input-output relation-

ship is greatly simplified.
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When the h(t, v) function is expanded in a series in terms of a

complete set of realizable networks { i (v)) , it can be realized by a

parallel combination of h-separable networks in which a typical branch

consists of the network 4,i (v) followed by the multiplier a i(t) . Be-

cause of the difficulty in synthesizing an arbitrary multiplier, one con-

siders the double expansion of h(t, v) in terms of the complete set

{0iM(t)'P(v)} where one has some choice in the set of multipliers {4i(t)}.

In particular, if the multipliers are sisoids the multiplier becomes a

standard modulator network. A unique realization, basea on the

double expansion, is presented where the networks {4i(v)} are con-

nected to the multipliers {ýi(t)} by a resistive coefficient matrix. A

realization scheme using the link structure and based on the sampling

theorem is also presented.

The characterization and analysis methods are shown to be

applicable to characterizing a satellite cornmunication system and to

correcting for delay and Doppler in an air-to-ground communications

system and in a side-looking radar surveillance system. The matrix

methods are applied to a feedback control system for a time-varying

plant and to finding the system matrix of a whitenin•g filter whose out-

put is white stationary noise when the input is nonstationary noise with

a given correlation R n(t,r) . The matched filter for a channel with

nonstationary noise is shown to consist of the whitening filter followed

in cascade by a time-varying matched filter that is matched to the

signal component of the output of the whitening filter. When tie noise

is slowly varying, the optimum. transmitted signal is found.
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I. INTRODUCTION

Linear time-varying systems have received considerable atten-

tion in recent years. Besides the intellectual challenge of the extension

of system theory that linear time-varying systems present to the the-

orists, there is an increasing practical need for techniques of analyzing

and synthesizing these systems. Description and analysis of physical

systems by time-varying models, analysis of existing time-varying

systems, more effective use of physical devices exhibiting time-

varying characteristics, and adaptive feedback control of time-varying

systems are some examples of practical as well as theoretical interest.

Little work in time-varying systems had been done from the

system theory point of view before 1950 when Zadeh introduced the

H system function. Since then, however, a number of articles on time-

varying system theory have appeared in the liaterature. The G system

function that is the dual of the H-system function was introduced by

Gersho, and more system functions have been introduced by others.

In this connection, time-frequency duality seems to play an important
5

role. A clear description of all the various system functions and the

transform, functional, and dual relationships among them is now pos-

sible.

A. THE RELATIONSHIPS AMONG SYSTEM
FUNCTIONS OF TIME-VARYING SYSTEMS

In the study of time-varying systems, various system functions

-I-



E rise that are useful in characterizing the system and in determining

the output from a given input. For a given system, one system function

may be easier to find or work with than another system function. All

the system functions are now defined, and the attempt is made to show

clearly the relationships which exist among all the system functions.

This information will be useful for finding dual results, and for finding

one system function when another system function is given.

In Figure 1. 1, the relationships among the system functions are

shown in diagram form. Some of these functions are familiar, but

others that are new are explained here.

The system functions in the time-time domain give the system

output in time, to an impulse in time applied at the input. These func-

tions are:

k(t,T) = output at time t to an input applied at time T

g(v, 7-) = output v seconds after an input applied at time r

h(t, r) = output at time t to an input applied r seconds ago.

The time-shift or "age" variables are

v r = t T (1.1)

The impulse-response functions in time are therefore related by the

changes of variables,

g(v,r) k( T + v, r) )(i )

and

hit,r) = k(t,t-rr) (1. 3)

-2-
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Note that the function h(t, r) has its variables interchanged from pre-

vious definitions, later leading to the fact that corresponding variables

of dual functions are duals. This was not true before, unless one re-

labeled the variables of either the function or its dual.

The system functions in the frequency-frequency domain give

the system output in frequency, to an impulse in frequency applied at

the input. These functions are:

K(s,k) = output at frequency s to an input at frequency X

N(p, X) = output at p cycles higher than the input frequency X

M(s,a) = output at frequency s to an input at o- cycles lower.

The frequency-shift variables are

p = = s-X (1.4)

The impulse-response functions in frequency are therefore related by

the changes of variables,

N(p,X) K(p + X, X) (1.5)

and

M(s,a) = K(s, s - a-) (1.6)

The frequency-impulse-response functions K, N and M are, re-

spectively, the double Laplace transforms of the time-impulse-

response functions k, h and g . The functions k(t,T) and K(s, X)

h(t,r) and M(s,ao), and g(v, T) and N(p,X) are duals, and their

corresponding variables are dual variables.

-4-



The functions in the time-frequency and frequency-time domains

are of a mixed nature and must be discussed separately. The familiar

system functions G(s, T) and H(t, X) are defined by a single trans-

form of g(v, r) and h(t, r), respectively. These system functions are

convenient because they look like system functions of time-invariant

systems. This is evident from the alternate definitions of the G(s, r)

and H(t, X) system functions

G(s,T) Y(s) (1. 7)X(s)-S
X(s) = e-ST

and

H(t, X) - y(t) (1. 8)x(t)[ xt
x(t) = e

The functions G(s, r) and 11(t, %) are duals.

The functions K 1 (s, r) and K2 (t, X) are defined as single

transforms of k(t, T) by

00
Kf(s,r) ; k(t, r) e dt (1.9)

-00

and

co

K 2 (tX) = f k(t, T) e dT (1.10)

-00

It can be shown easily that

KI(s, r) = G(s,-r) e- S Y(S) x(s) = e- St

[x(t) = N(t - r)]

-5-



and

K 2 (t,X) = H(t, X) = y(t) W(. ( 2)
xtfx(t) = e

[X(s) = 2r6(s - X)]

Now a physical interpretation can be given to K 4 (s,7-) and

K 2 (t,X) . The function Kl(s,T) is the output in frequency to an im-

pulse in time which is applied at time t = -, and the function K2 (t,X)

is the output in time to an impulse in frequency applied at frequency

s = X . The system output is given by

00

Y(s) = f K (s,'r) x(r) dT (1.13)

-aO

and

00

y = f K2(t,X) X(X) dX (1. 44)

-0,

The mixed-impulse-response functions Kl(s,T) and K 2 (t, %) are duals.

One convenience of the interpretation of the K functions as impulse

responses is that one has to remember only one input-output equation,

instead of four:

y(output variable) = fy(output variable, input variable)

x(input variable) d(input variable) (1. 15)

where y is the K-system function which is appropriate for its

variables.

-6-



The complimentary system fi:-ations H'(p,t) and G'(v,a)

are defined according to Figure 1. 1 as

H'(p, r) h(t, r) e Pt dt (t. 16)

-00

and

G'(v,o) = f g(v,Tr) e-° dr (1. 17)

-00

No physical significance for the complimentary system functions has

been found yet, but they are still effective in characterizing the sys-

tem because they are uniquely related to the other system functions.

The complimentary system functions H'(p, r) and G'(v, a-) are duals,

and the following relationship holds between them:

H'(p, r) = G'(r, p) e-rp (1. 18)

B. DRIVING-POINT IMMITTANCE FUNCTIONS
OF LINEAR TIME-VARYING SYSTEMS

The G , H and K system functions give relationships

between input and output variables of a system, without regard to the

physical quantities that the variables represent. The input and output

variables in the driving-point case represent voltage and current, and

the G , H and K system functions take on an impedance or admit-

tance character. The driving-point immittance functions are defined by

-7-



Gys',T) = I'S) Hy(t,k} - i(t) (1.19)
E(s) e(t)

E(s) = e -ST e(t) = e

Gz(S,T) = E(S) Hz(t,x) _ e(t) (1. 2-0)
I(s) (t)

I(s) = e -ST i(t) = et

K1y(S,T)= I(s) K K2 Y(tX) = i(t)

e(t) = 6(t - T) E(s) = 2-r6(s -X)

(1..21)

Kiz(S,T) = E(s) Kzz(tX) = e(t)

Ii(t) = 6(t- T) I(s) = 2nr6(s-X)

(1. 2Z)

From the definition of the K function and its physical signifi-

cance, it is clear that the time-to-time and frequency-to-frequency

impulse-response functions are

Ky(sX) = I(s) ky(tr) = i(t)

E(s) = 2-6(s- )le(t) = 6(t-7-)

(1. 23)

Kz(s,k) = E(s) kz(t,1r) = e(t)I

I(s) = 21T6(s- x) i(t) = 6(t - T)

(1. 24)

Relationships between the driving-point variables are found

-8-



from the above definitions and from previously obtained equations

relating input and output variables. They are

i(t) = fHY(t, X) E(X) e Xd = ,X) E(X) dX =fkY(tT) e(r) d ,

(1. 25)

e(t) =fHz(t,X)IXM e Xt dX =fKzz't,×X) I(X) dX =,fk z(t,) i(T) dT

(1. 26)

I(s) =fGy(sS, r) e(T) e-ST dr =fKy(s,,r) e(r) dr =fKy(sX) E(X) d%

(1. 27)

E(s) =fGz(S,T) i(r) e -ST d- =fKiz(S, 7) i(T) dT +fKz (s,) I(X) dX

(1. 28)

C. TRANSFER IMMITTANCE FUNCTIONS

Transfer immittance functions of time-varying linear systems

can be defined by direct analogy to time-invarient systems. For

example, in time-invarient systems the transfer impedance Zjk(s)

is defined by

E.(s)

Zjk(s) - -- (1.29)
Ik(s)

Ij(s) = 0 , j ý k

By direct analogy the following can be defined:

-9-



Ekj(s)

0 j k

e. (s)

P ,jk

H t X) I ef(t) (1. 31)
Zjk k (t) = k

ijtt 0 , j k

KZk tE(s)

eJ , j#k

and similarly for k zjk(t,s) , and for KZjk(t,3) .Analogous

definitions can also be made on an admittance basis (G y (s, T') etc.)

jk ik

or on any mixed-parameter basis.

D. DUALITY CONCEPTS

The introduction of the physical variables, current and vol-

tage, has added a new dimension to duality. First, one can consider

duality on the basis of dual-system functions. It was seen before that

G(s, T) , H(t,X) ; K 1(S, T) , K 2(t,k) etc. are dual-system functions,

and their corresponding arguments are dual arguments. Adding a

subscript of Z or Y on the system function does not affect this type

of duality, hence G y(s,,r) , H y(ttk) ; Kly (S,T) , K2y (t, X) etc. are

10-



duals. To take a dual Gn the basis of dual-system functions, one re-

places all system functions by their dumls and uses dual arguments.

Equations (1. 25) and (1. 27), and Equations (1. 26) and (1. 28) are duals

on this basis.

Secondly, one can consider duality on the basis of dual physical

quantities such as v and i , Z and Y etc. Using the same system

functicn does not affect duality on this basis, hence Gz(s, T), Gy(s, r);

Hz(t, X), Hy(t, )) etc. are duals. To taile a I'.ul on the basis of dual-

physical quantities, one replaces all physical quantities by their

duals. On this basis, Equations (1. 25) and (1. 26) and Equations (1. 27)

and (1. 28) are duals.

Finally one can consider "complete" duality, that is duality on

the basis of both physical quntities and system functions. To take a

"complete'" dual, one replaces physical quantities by their duals,

system functions by their dual-system functiuns, and all arguments

by their dual arguments. On this basis, Equations (1. 25) and (1. 28)

and Equations (1. 26) and (1. 27) are duals.

As a consequence of this extended duality, kn.,wing one rela-

tionship is equivalent to knowing four relationships in.tead of two.

For example, given Equation (1. 25), one can take its dual on the basis

of dual-system function to obtair. Equation (1. 271: one can take its dla!

on the basis of physical quantities to obtain Equation (1. 26); and one

can take its "complete'' dual to obtain Equation (1. 28).

This concept of system-function duality has a physical signifi.

cance. :'or example, a time-invariant syste-n and a time multiplier

-.11-



are duals, and a time-varying delay system is the dual of a selective

frequency-shift system.

-12-



II. CASCADED SYSTEMS

A. SYSTEM FUNCTIONS FOR
CASCADED SYSTEMS

The impulse-response function k(t,i-) is useful in finding the

over-all system function for a cascade of time-varying systems when

the individual system functions are known. For two systems in cas-

cade, as shown in Figure 2. 1, the over-all system function k(t,7-)

can be found easily. When the input is an impulse in time applied at

time t = T , the outpt-t of the first network in time is

y(t) = k0 ) (t,r) , (2.1)

where k0) (t,r) is the impulse response of the first network. Applying

the input-output relation of Equation (1. 15) to the second system with

y(t) as its input yields the over-all impulse-response function:

00

k(t,T) = f k( 2 ) (t,t 1 ) k( 4 )(t 1,r) dt 1  (2. 2)

-co

Equation (2. 2) is the convolution product for time-varying systems.

In a similar manner the over-all mixed impulse response is found

to be

co

K (s, T) -- f K•2)(s,tl) k )(t)(t ,T) dt . (2. 3)

-- 3

-13-



(0 __________ (2)
Sk (tT) k( t ,T) 0

x(t) y(t) z(t)

FIGURE 2. 1. Two Time-Varying Systems in Cascade.

Equations for the other K-system functions are obtained by taking the

duals of Equations (2. 2) and (2. 3):

K(s,X) 1 t1fK(2)(s,pl) K(tllptX) dp,

K (t,X) -L_ K fK2))(t,pl) K( t )(p1 ,%) dp . (2.4)
21TJ 0

These results are easily extended to a system of n networks in cas-

cade. The over-all k(t,T) function is

n-1
kMt, r) f .Jfk (n) (t, tn _j) k (n-1) (t n-1, t n-2) ...

k(2)(t2, tj) k( t) (i)2.5)

the over-all K 1 (s,T) function is

n-i

K (sT) f.f K(n) (s t 1) k(n 1t t)1 f n- (n- ' tn-2)"'

k(2)(t 2 , t1) k(1)(ttr) dti. . dtn-1 (2.6)

-i4-



The other K system functions can be expressed as the duals of Equa-

tions (2.5) and (2. 6). Equation (2.5) is not the only expression for the

over-all k(t, 7r) function because the convolution may be done over any

mixed basis. A more general expression for k(t,r) is

n-1r )m f f <n t )~ _1
k(t,T7) =ýL (4)rn2) ....

Y(2)(• , ý _) Y(1)(.L 2 , I•1 ) d1 Lj ... d .n_1  (2. 7)

where p. is either a time or a frequency variable, and K(J)(Ij, 4ý 1) ,

K(n) (t, ýin- ) and K( 1 )(41v,T) are the K-system functions appropriate

to their arguments.

B. THE TERMINATED MULTIPLIER

An important cascaded system is the terminated multiplier.

Because of parasitic elements at high frequencies, it becomes neces-

sary to consider multipliers along with their associated input and

output networks. The link structure can be regarded as a parallel

connection of terminated multipliers; therefore, the analyses pre-

sented here are applicable to studying the link structure as a high-

frequency modculator. In modulating systems it is important to de-

termine when the system functions are separable into a function of the

time variable multiplied by a function of the frequency variable be-

cause it is easy to relate the input to its modulated signal when the

system function is separable.

-15-



The systems of Figure 2. 2 and Figure 2. 3 are G-separable

arid H-separable, respectively, w.,ith

G(s,r) a(r) B(s) (2. 8)

for the first system, and

H(t,\) a(t) B(X) (2. 9)

for the second system. The terminated multiplier is shown in Figure

2.4. rhe over-all system function K1(sT) is found by considering the

U t)2 2 0 p B( (Sy

FIGURE 2, 3. G-Separable System.

FIGURE 2.. 3. H-Separable System.

terminated n-iitiplier as the network B(s) in cascade with the G-

separable network consisting of the multiplier a(t) followed by the

network C(s) . Using Equation (2. 3) with

k0 )(t, r) = b(t- r) , (2. 10)

-16-



x(1) x10) y(i) z(t)

0---- B(s) 0o(t) 0 - C (S) ---

X(S) X ',(S) Y(S) Z(S)

FIGURE 2. 4. Multiplier with Its Asso-
ciated Input and Output Networks.

and

)(s,, ) = a(r) C(s) e (2. IS)

yields

K 1 (s, T) = C(s) fa(t) est b(t-r) dt (Z. 12)

- CO

Making the change of variables

r = t-r -Z (2.13)

gives

G(s, T) = C(s) fb(r) a(r + r) esr dr (2. 14)

The over-all K 2 (t,k) function can be found by considering

the terminated multiplier as an H-separable netwvrk followed by a

network C(s) with

-17-



K()(s,X) = B(%) A(s-.) (2. 15)

and

K 2 ) (t,X) = C(%) e . (2.16)

From Equations (2.4) , (2. 15), and (2. 16),

K2lt, X) = Bl) fA(s-%) C(s) e ds (2.17)2nj ý2

making the change of variables,

p = s- . , (2. 18)

yields

H(t, X) = Bok) fA(p) C(p+X) ept dp (2. i9)

Zirj 2

It appears to be difficult to find the general conditions under which

the system functions of Equations (Z. 14) and (2. 19) are separable. If,

however, one assumes the multiplier to be of exponential form:

Pot1

a(t) = e , A(s) 1 (2. 20)
s - P0

then

G(s,r) = B(s-p 0 ) C(s) e 0

= B(s- po) C(s) a((T) (2. 21)

and

pot

H(t,%) = B(X) C(%+po) e 0

= B(X) C(%+po) a(t) (2. 22)

-18-



From Equation (2. 22), Equation (i. 12) and Equation (1. 14) one sees

that the output of the terminated multiplier for x(t) as the input is the
Pot

signal y(t) modulated by a(t) = e , where

y(t) = 1 fB(X) C(X+p ) X(X) e t d% (2. 23)
Xt( 3

Thus, for a separable terminated multiplier structure the input is

reshaped according to Equation (2. 23) and then is modulated by the

multiplier a(t)

C. PERIODIC MULTIPLIERS

Now one can easily extend these results to the class of periodic

multipliers a(t) , which is indeed an important class of multipliers

for the general case of modulation. If a(t) is periodic with period T,

it can be expressed in a Fourier series,

a(t) = •Iai ePit (2. 24)

wher e

Pn= nT (2. 25)

2w

Now, from Equations (2. 21) and (Z. 22), the system functions become

PiT
G(s,r) = iB(s -Pi) C(s) e , (2. 26)

-19-



H(t,k) = ai B(X) C(R+pi) e P (2. 27)

By considering certain particu'i., functions B(s) and C(s)

one can make some interesting obse-vations from Equations (2. 26)

and (2. 27). If, for example, C(X) is periodic along all vertical axes

with period T , then

C(X+pi) = C(X) ; (2. 28)

therefore

Pi.t

H(t, X) = Zai B(R) C(R) e P

= B(X) C(X) a(t) (2. 29)

Similarly if B(s) is periodic along all vertical axes with period T

B(% - pi) = B(X) ,

and

G(s,r) = B(s) C(s) a(T) (2.31)

The H function of Equation (2. 29) and the G function of Equation

(2. 31) are completely separable.

One can also regard Equations (2.. 29) and (2. 31) in terms of

sampling. If, for example, B(A) has a spectrum B(jw) along the

jw-axis with magnitude and phase shown in Figure 2. 5, with C(jw)

having the magnitude and phase shown in Figure 2. 6, and a(t) a

periodic time function such that

S= T , (2. 32)

-20-
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a = 1, a =3, a =-2, a 3 =-, a4 :4, a5 -1, ak =a_k (2 33)

then H(t, %) has the magaitude curve shown in Figure 2. 7.

Note that JH(t, X) I is independent of time. The phase of

H(t, X) does, however, vary as a function of time. At t = 0 , the

phase is given in Figure 2. 8, and at time t , one must add nTt/2Zr

degrees to the piece centered about nw 0/5

One can give a geometric interpretation to the phase of H(jw,t)

i.e. , each piece in the curve of Figure 2. 8 is traced on the surface of

a cylinder of unit radius centered about the w axis, and a cut is made

between each nonzero piece in Figure 2. 8. Thus the original cylinder

is divided into a number of sections. Now the cylindrical section that

contains nwo /5 rotates vith angular frequency nw 0/5 radians per

second, and the phase angle at (s=wt is measured in a plane parallel

to the x-y plc-ne at w= . The phase of 1(t,jw) , viewed in this

way, is shown in Figure 2. 9.

Now it is ea. to see what would happen for other spectra and

values of T . If £n ý.ne above example, T > w0 , then H(t, jw) would

have only one sample, with magnitude and phase shown in Figure 2. 10.

Note that H(t,jw) is not a function of t in this case.

D. LINK STRUCTURE

The methods fir finding the system function of a multiplier with

its associated input arid output networks can be used to analyze the link

structure. The link -,tructure can be chought of as having the form
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shown in Figure 2, 11. If the a(t)'s are periodic multipliers, i.e.,

ak(t) = Laik ePikt (2. 34)
k ~ik

then

H(t,X) = 2 aik Bk(X) Ck (\ + Pik) e

k 1

= Bk M) aik Ck(X + Pik ) e (Z. 35)

k i

and

G(s, T) = Ck(s) aik Bk(s - Pik) e 1 (2.36)

k i

E. ALTERNATING STRUCTURE WITH
EXPONENTIAL MULTIPLIERS

The system functions associated with the series alternating

structure of Figure 2. 12 when the multipliers are exponential,

ai(t) = e (2. 37)

have the separable forms:

H(t,X) = BI(X) BZ(X+pl). . . B n(X+p +... 1Pn _)aj(t).. . an_1 (t)

(2. 38)

and
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G(s,r) = B 1(s-pj-p 2 -.. . -P t).. BrnPs-Pi) B (s) al(r) .. ). a _ (r)

(2. 39)

Now consider the particular example of the H(t,k) system

function for a band -,imited input X(\) ,

X(kP = 0 for 1XI > x (2. 40)0

Define a restriction of the networks to a band-limited form by

k pt+. +p_) for{
B k(k)] I X : o-P 'p

10 oth, rwise (2.41)

Then the qiantity of interest for determining the reshaped output time

fum tion x(-H( t, X) become:

X,X) TI(t,X) - Xik)[B 1 (k) I X0] [B 2 ()I X0 . [Bn(k) 'xo] e ('i" +pkl)

(2. 42)

Now one can note that if

I for < f -P -

Bk(k) 1 "0 o '

0 otbe rwis e (2. 43)

then

(P I÷ 'Pk -t
X(X) t(It, k) z X(X) t•(Z. 44)



and x(t) is not reshaped at all. This means that if B k(k) is flat X0

cycles above and below - (p 1  +Pk-.) ' then multiplication of the

input signal x(t) will result.

If one now considers the multipliers in the alternating struc-

ture as periodic functions of time, namely

Pik t

ai(t) aik e (2. 45)

k.--i
1

then by superposition, one immediately obtains

n 1n • n n -1

H(t,X) T -1ak.., an-1, kn1 B 1) BZ(%+Pikt)"

kk2. .. Ik l

B (k+p +. +pn 1, k,) e (P1k I +Pn-1, k 1 )t

(Z. 46)

and

n n "" nn-i

G(s, T) a kI an-1 kn- B (-Pik Pn-1kn4

k... k -i=n n-1

t kt"" rn-t, kA

B n() e( (2.47)
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F. MODULATOR-DEMODULATOR STRUCTURE

Note that the alternating structure, which consists o- two

multipliers and three networks, may be regarded as a model for a

modulator-demodulator system, where the middle network embodies

the system response of the terminating network of the modulating

multiplier, the channel, and the system response of the input network

of the demodulating multiplier.

The system re~ponses for the modulator-demodulator structure

with multipliers

al(t) = e and a2 (t) = e (2.48)

are:

H(t,k) = Bl(k) B 2(X+pl) B 3 (k+pl+p 2 ) t (2.49)

(P, + P?)

G(s, r) = B (s - P1 - P 3 ) B 2 (s - pl) B 3 (s) e (2.50)

For p1 = -p 2 , and the input limited to the band -X < X < X

and the conditions:

Bj(k) and B 3 (k) flat for k° cycles abovte and below

0 cycles, and

B2 (X) flat for X cycles above and below p, cycles, then

X(X) H(t, X) = X(k) , (2.51)

and the input to the second multiplier is

-Z8 -



Pit

X(X) 
e

Thus, the input signal has been modulated and demodulated success -

fully.

For the case of maltipliers that are real sinusoids, i. e.

Pit P~t
al(t) = e + e

P2t - Pzt

ap(t) = e + e (2. 52)

one obtains, by using Equation (2. 38),

(p1 + P2 ) t

H(t, X) = B 1 (\) B (X + p1) B 3 (. + p 1 + P 2) e

(p1 - P) t

+ B i(%) BZ(X + Pi) B 3 (X + pi - P 2) C

(P2 - Pi) t
+ B 1 (X) B2 (X p PI) B 3 (X + P Z _ Pi) e

+ B1 (k) B 2 (X - P1) B 3 (X - P1 - p 2 ) e 2 (2. 53)

If p, = p 2 and the networks satisfy the conditiuos in the previous ex-

ample, then

X(X) H(t, X) = 2 X(X) (2. 54)

and the input to the second multiplier is
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X(X) (e ÷~ e z )= X (X) a 1 t) (2. 55)

Thus, the input signal has been modulated and demodulated successfully.
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III. REPRESENTATION OF SYSTEM FUNCTIONS

BY SAMPLING AND SERIES EXPANSIONS

A. INTRODUCTION

The expansion of a function of several variables in a series,

f(xi,xz .... xN) = •j aigi(x,x 2 ,... ,xN) , (3.1)
i= 1

that is convergent uniformly or in the mean is useful for theoretical

calculations as well as in practical applications where one can store

a close approximation to a continuous function by storing a finite num-

ber of expansion coefficients.

When the expansion coefficients are samples of the function,

the expansion is a sampling series and the functions gi(x) can be

considered as interpolation functions. The extension of the sampling

theorem in one dimension to N Euclidean dimensions by Petersen

and Middleton6 is reviewed in Appendix A. Applications to expan-

sions of system functions will be detailed in this chapter.

Given that the sets

{ýi}ij ,2 for j = 1,2, . .. ,Ni=1i, 2, 3,. . . .

are complete sets on the intervals (a., b ), respectively, then

f(x1 , xZ, ..... xN) can be expanded7 in a mean-square convergent

series in terms of the set
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gi XVx?,-f (X1 ) (2) ( ) (N) (
N i, 2 ... N

(3. 2)

For N 2 2 the system functions can be expanded in a double series,

and if the sets

are orthonormal for j 1, 2, the expansion coefficients can be

evaluated by a network that is quite similar to the network used to

evaluate the samples for the two dimensional sampling series. If

the system function h(t, v) is expanded in terms of the set

qi (t) ý i v)/ i, j = 1, 2, . . .I

wher- C(t) is realizable as the impulse response of a passive netwo -k,

then the truncated expansion of h(t, v) has a realization as a parallel

combination of H-separable networks.

B. SAMPLING EXPANSIONS

The one dimensional sampling theorem in time siates that for

a function f(t), whose Fourier transform F(w) is zero outside the

band ILJ I 2rrB , (one can specify sampling times and an interpolation

function g(t) such that



00

f (t) r- T . f(t k) g(t-t k) (3.3)

When the samples are taken as the slowest rate (tk k/2B), g(t) is

the cardinal weighting function:

sin ZwrBt
g(t) = 2rrBt (3.4)

The one dimensional sampling theorem in frequency states that a

function F(w) , whose inverse transform f(t) is time-limited, can be

expanded in a sampling series.

The proof of the sampling theorem in N dimensions is reviewed

in Appendix A. In particular, the two dimensional case is of interest

for system functions. The theorem in two dimensions states that for a

function y(s, r) (where s or r may be either time or frequency vari-

ables), whose double Fourier transform y(u, v) is zero outside a

finite region of the (u, v) plane, one can find sampling times s k and

rk and an interpolation function g(s, r) such that

co

Y(s, r) = Y Y(sn,rm) g(s-sn, r-r) (3. 5)

n, m=-oo

The sampling times and interpolation function have a degree of arbitrari-

ness depending on the region in the (u, v) plane, outside of which Y

is zero. For the simplest case the region is a rectangle: R=(-so, So)"x

(-ro, r ), and the interpolation func'.4on g(s, r) is a product of cardinal
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interpolation functions:

sin s s sin r r0 0
g(s, r) ss rr (3.6)

0 0

Thus, the system function k(t, T), whose double Fourier trans-

form K(w, ý) is zero outside the rectangle R in the (w, ,) plane,

where

R = (-2TB, 2rrB) x (-ZrW, ZwW) (3.7)

can be expanded in the series

sin nk - sin ZrW (T -
k~~~ (t')k(,, 2W rB (t-n 21TW (T -n'(38

n, m=m Bo( (i. -

where because of causality

k (B, = for m n (3.9)2 W 7= 02 o •>Z'B

The system function K 1 (W, T) whose double Fourier transform

K 2 (t, ,) is zero outside the rectangle in the (t, ,) plane,

R = (-To, TO) x (-Z2rB, 2rB) (3. 10)

can be expanded in the sampling series

00 sin T 0(-w_ Trk) (T _ k

KJTT 0=sino1_ Tk (3. 21B)

-3- T W 2 rB
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The system functions K 2 (t, ,) or K(w, ý) can be expanded by

the sampling theorem if their double transforms KI(w, -.) or k(t, r)

vanish outside of a finite portion of the (w, ') or (t, 7) planes, respec-

tively. The four possible expansions, depending on whether the system

is time-limited in both variables, frequency-limited in both variables,

or time-limited in one variable and frequency-limited in the other, are

to be expected by time-frequency duality. 5

To instrument the expansion of k(t, 7) by the sampling series

given in Equation (3.8), one must take an infinite number of samples.

Since this may be infeasible from a practical point of view, one could

take a finite, but large enough number of samples inside a certain

finite, but possibly large region of the (t, T) plane with the samples

outside this region small enough so that the truncated sum differs

from k(t, T) by an acceptable amount of error. For simplicity, take

the region to be the square S = (-To, T ) x (-T ,T ) in the (t, T) plane.

To evaluate the sample values

k~~n m) Em2Bl Bk-, =, mg + i ZBT

(where the symbol [a] meanis the largest integer contained in the

number a), one applies an imp~ulse to the system at time m/2W and

then samples the output at the times n/ZB , for n > [mZB/ZW] , by

multiplying thec output by impulses at the times n/ZB and then inte-

grating. The instrumentation of this ;cheme is shown in Figure 3. 1.
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In order to evaluate all the sample values in the square S, one

must let m vary over the range (-[ ZWTo] -[ 2WT ] + 1, . [2WTo)

To do this there must be either [4WTo] identical systems with
th

6(t-m/ZW) applied to the m systcrr, whose output is sampled as

in Figure 3. 1, or the time variation must be controlled by some vari-

able elements that can be ''reset'' to zercý preparing the system to

evaluate the next set of coefficients.

Implementation of the expansion of K1(w, T) can be done in a

maroier that is easy to instrument. Evaluation of the sample value

K,(Trn/To, m/2B) for m = -M, -M+I, . .. , M is done by applying an

impulse in frequency 6(L-jrn/T0) to the network and then sampling

the output in time at the times m/ZB . Thus, one applies a complex

sinusoid of frequency wrn/T and samples the output in time. This

technique is especially useful in measuring channels such as the

atmosphere. The evaluation process must be repeated for each n

to obtain all the samples.

C. EXPANSION OF THE SYSTEM
FUNCTIONS IN A DOUBLE SERIES

i. Tirne-Invariant Systems

For time-invariant systems, the impulse response function

h(t) can be expanded over the interval (a, b) in the series

o0
h (t) ai ir (3. 12)

i-i
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where

Oi (x )}

is a complete orthonormal set over the interval (a, b), and where the

coefficient ai is given by

b

a. = f h(t) 4,i(t) dt (3. 13)

a

For (a, b) = (0, o), if pi(t) can be realized as the impulse response

of a network, then a. can be evaluated according to the following1
8

scheme, suggested by Huggins; The signal h(-t) is applied to the

input of each of the networks with impulse response bi(t), and the

output sampled at time zero is the desired coefficient. The system

shown in Figure 3. 2 is used to implement this scheme.

h(-t) o [

#(t 2 (

yI(O) 0 1I Y2 (0) = 02

FIGURE 3. 2. Coefficient Evaluation Scheme for Single Series.
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Practical restrictions may allow one to reverse only T seconds

of h(t) , in which case the coefficients obtained by the scheme of Fig-

ure 3. 2 are

T

yi(O) f h(t) ý,(t) dt (3. i4)

0

These yi(O) are an approximation to a. , if h(t) does not vanish for

t > T. This same approximation to a. may also be obtained by applying1

h(t) to the network with impulse response 41(T-t) u(t) and then sampling

the output at time T . Another way to evaluate the coefficient a. is

to sample the output of the given network h(t) at time zero when the

input is pi(-t). This process must be repeated for each i, unless

there are as many identical networks as coefficients to evaluate.

2. Time-Varying Systems

Consider the sets of orthonormal functions

(,(x. and { (y 2,...

which are complete on the intervals (a, b) and (c, d), respectively.

Their Cartesian product set

/O (x) d J ( Y)ý i iýt 1 -2 . . .

is complete on the rectangle R (a,b) x (ý.,d). If the set (€i is

complete on (c, d) as well as on (a, b), then the st, {Ii(x) 4(y)} is



complete on R . The system function k(t, T) can be expanded in a

double series that is valid over R
Co

k(t, T) = anm 4n(t)4 (rn() (3. 15)

n, m= 1

where a is given byn iTi

a nm - if (ýn (t) k(t, Tr) 4J m (T) dt dT" (3. 16)

(t, T) cR
t >T

Equation (3. 16) is valid for all (t, T) if k(t, T) vanishes outside

of R or if R is the entire (t, r) plane. The coefficient a cannmn

be evaluated by means ot a network with the input 4 'm(t) and where

the integration is performed over the limits (a, b), as shown in Fig-

ure 3. 3a. It is easily seen that the output of this network is indeed

a and the set of coefficients
nrm

can be evaluated simultaneously by the network shown in Figure 3.4.

As in tlie instrumentation of the two dimensional sampling theorem,

to let m vary from 1 to M , one must either have M identical

networks or be able to 'reset'' the network. Note the ;imilarity

between the coefficient evaluation scheme of Figure 3.4 and the sample

evaluation network of Figure 3. 1. They are exactly the sam( when
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I I I

I I I

0

alm

FIGURE 3.4. Coefficient Evaluation Scheme for Double Series.

2
The sets in Equation (3. 17) are not complete in L , but the sets

Fsin -- rB t - "1i

f' 2i (3. 18)

are complete on (-, ,co) for functions which are appropriately frequency-

limited. The coefficients obtained by using the sets of Equation (3. 18)

in the scheme of Figure 3. 4 are the same as those obtained by using

the sets of Equation (3. 17) in the scheme of Figure 3.4.

Since the system k(t, T) is causal, the truncated expansion of

Equation (3. t5) can be inmproved by restricting it to be z( ro for t e T

-4Z -



N, M

E a 4n(t) m (r) for (t, T) LR and t > T

n, mn- :
k(t, r) 9 (3. 19)

0 for t < T

Where (w) and (w) are defined by the Fourier transforms

00

i(w) f 4i(t) e-jwt dt

-00

li(w) f 4i(t) ejwt dt (3. 20)

-00

the sets (li(w)t and (Iii(w)) are orthonormal and complete over the

intervals (a,,b') and (c', d') that are appropriate for the intervals

(a, b) and (c, d) , respectively.

K(w, ý ), the dual system function to k(t,T), can be expanded

on the interval R' z (a', b') x (c', d') in terms of the complete orthonormal

set 'i(a) I (G) ) "

K(w,ý) nI bnm 0n(w) m(•) (3. 2t)

where

bnm ff t n(w) K(w, ,) IMmM)dw d (3.22)

(w,g) AR'
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If K(V, ý) is zero outside of R' , or if R' •s the entire (w, ý) plane,

then Equation (3. 2t) is valid on the entire (w, ,) plane. The coefficient

bnm can be evaluated by the system shown in Figure 3. 3b. The systems

of Figures 3. 3a and 3. 3b are duals, as one would expect from time-

frequency duality.

The system function Kt(w•,) can be expanded in terms of the

complete orthonormal set (sj(W) 'Pk(T)} on the rectangle R 1 (a', b') x

(':,d) by

It(wo, T) T . n-rrn . •n(W) rn (T) (3.3)

n, m=1

where

cnm ff tn(W) Kt(wr ) Ym(r) dw dr (3. 24)

(w,T) cR 1

Similarly K 2 (t, ý) can be expanded in terms of the set {ýj(t) Mk(

which is complete and orthonormal on R. (a, b) x (c', d'), by

03

? (t, ) L d n(t) m(•) (3. 25)

n, m= -

where

d. nm = 0n(t) K2(t, •)• )dt dý (3. 2 ()

(t, e) 2R2
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The coefficients c and d can be evaluated by the dual networksnm nm~

shown in Figure 3. 3c and Figure 3. 3d, respectively.

It is important to notice that for a given system, the single

Fourier transform of the expansion of k(t, T) given by Equation (3. 15)

is of the form of the expansions of Equation (3. 23) or Equation (3. 25),

and the double transform of k(t, v) is of the form of Equation (3. 21);

hence,

a = b = c = d , (3.27)
nm nm nm nm '(.7

and the outputs of the four systems of Figure 3. 3 are the same.

By considering two dimensional systems such as optical systems,

radar systems, or acoustical systems, one may obtain a coefficient

evaluation scheme that is the direct two dimensional analogy of the
.8

scheme introduced by Huggins. The input-output relation for a two

dimensional system is

Go 00

y(p1 , p2 ) f f k(p 1 , p?, u U. x(U1 u )du du, (3. 28)

-0 -0O

where k(pl, pZ, u,) gives the output at coordinates (p 1 . p.) due to

an impulse at the coordinates (u1 , u ). The coefficient a is thenni

output at the coordinates (n, m) of the system

-sin(pl-n) sin(p?-m)
"'% 1Pj, 2,U 1'-2 - / - %+%\1Y41 4rn\"21 _TPl_n) (p?-m) .•

n, m=i

when the input is k(tj)
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The choice of the sets (0) and ý4i for a given function of

two variables is important, in that a judicious choice may give a

truncated expansion that has fewer terms for a given error. For

example, a degenerate kernel such as sin x sin y on (0, Zr) x (0, 2
1T)

should be recognized as its own expansion in terms of the sets

kx)- = (sk(x)) = in kx, cos kxJ (3. 30)

If the complete sets are eigenfunctions of the kernel k(t, T), then

the expansion contains no crossterms. From the kernel k(t, T), one

can construct the symmetric kernels

d
k'I(t, r) f k(t, u) k(T, u) du

c

b

k"(t, T) f k(u, t) k(u, r) du (3. 31)

a

There exists a sequence of pairs of eigenfunctions and associated

eigenvalues such that

d

4V(t) Xv f k(t, T) 4 () d-
c

b

Vt M 'kv f k(T, t) cýV(T) dr

a

b

dfv(t) - kv t, ft ) iv (T) d T

a
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d

~4~ f k~ fktT) Ti() dr (3. 32)

C

The sets 4v and ýk )are complete; the coefficient of the expansion

of k(t, T) is

a r O( t) ( k(tT ) Pj(T)dT)d -t=>

and

k(t,T) 00 m(t)M p m(M (3. 34)

Furthermore, if the right-hand side converges uniformly, then it

converges uniformly to k(t,T).

In the case where k(t, T) is symmetric, ýv= 1 . If the eigefl

values are positive, the expansion

on r

converges uniformly in both variables, according to Mercer's theorem.

D. S"viNTH-ESIS, BY DOUBLE EXPANSION

Consider the double expansion of the system furnctior. h(t, v)

in terms of the complete sets and

h (t, V) Z. CLnm ýn(t) ýrn (v) (3. 36)
n, m= 1
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a.- t I e it npJ,, I -, re I:-e of ýA t I nf-. *trivair,,in ri W tem . T1he tr-incatcd

expan,-iur. i.; r ealizable' -1ý a p~ir~dile couflbnflatic of H-n~eparable

rnet'o:1<- in which a tyjpI:C-.1 bral~h COIISiStsý uf a netwurk of impulse

respor'ie ý ni(t) fucllowied oy a rnultiplicr cL nm( (t)

For example, consider the particala-r system function

0 T r~ t < 0

{S(t-2-r) Dtherwise

w he re

S(X) W~~jx - Ul1(x-A)? (3. 38)

Fcor -irn 1" this system func:tion1 is an approximnation of a time -varN-ing

delay system with delay T , The ranrge (0, T) x (0, T' of the k(t, r-)

function ccrrtsponds, to th-e rarngc R -(0, V, x (0, T/Z) of the h(t, 'v)

iurc-o,- where

0 vO < or t <O

h~tv 39,.

Lig2r1 5 h hu w a piot o -,f the h(t, -.,) functicn of EquationI (3. 39).

T,a*e the c:onipleteet, uji the r-rines (0, T) anid (0, T/2), re.-pec.ti vely,

t(, be

k:0,T e k Z,0.
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FIGURE 3. 5. Plot of h(t, v) on R (0, T) x (0, T/2)

and
f

4 -rrk t

T e 
( (3.40)

kk 0, ± 1, ± Z,
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Then

T /Z -(- jZ~rmt

h(t, v) Lý (v) dv T 4(1 e e (3.41)

f-m j4iir m
0

and

T T/2

a nff q= n(t) h(t, v)_ m (v) dv dt

nnZ-rrn A

T (1- e )(3. 42
j 4Trmt mn, -n

The expansion of h(t, v) on R io

0 -- T -e TZr ")

h(t, v) T j eTrm eT (3.43)

jj44Tmv/m= -00

The cross terms are all equal to zero because ej47rmv/T and

e jrmt/T are shown by Equation (3. 41) to be eigenfunctions of the

kernel h(t, v)

Taking the transform of Equation (3. 43) with respect to v yields

j rmA j Z rnt
T sin - -A TT

H(t, X) ZTin A e T

m= -OD

07 T •in TA { 2rnt 2XT •m s con -T-- A,
C--/ o SZri, +z +(-•

2~-rrM'A T T~ +(4rrm

8 iTtm

+ sin + T A ( (3.44)
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The exparnsion of H(t, k) in Equation (3. 44) makes evident the reali-

zation of H(t, k) as a parallel combination of h-seperable networks,

as shown in Figure 3. 6, in which a typical branch consists of the net-

work with transfer function

followed by the multiplier

T sin .rm 6T cos Zrn+ T

or the network with transfer function

1

2 (4 rrm\
X+ T

followed by the multiplier

4 sin 7M- A
T sin +

-5T



II

+ \ (4 T ) 
Tr

+ T 
T

I ___

FIGUR2E 3.6 Realization of h(t, v).



IV. APPLICATIONS OF EXPANSIONS:

THE MATRIX APPROACH

A. INTRODUCTION

The expansion of system functions and inputs in appropriate

series can lead to the conversion of integral relationships to matrix

relationships. The matrix relationships are in some ways easier to

handle. The inversion problem was solved by Marcovitz,9 who used

the matrix approach. Matrix methods can be successfully applied to

the eigenvalue and eigenvector problem.

B. MATRIX CHARACTERIZATION

Consider the input-output relationship

d

y(t) = f k(t, T) x(T) dr (4. 1)

C

According to Chapter III, one can expand k(t, T) in the series

k(t, T) = Y anm cn(t) km(T) (4. )

n, m

on (a,b) x (c,d). The input is expanded on the interval (cd) by

X(T) jZ.4 (T) (4.3)
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The input-output relationship now becomes

d

y(t) ) anmbj n(t)fM m(T)4j(T) dT

nIT1, j C

a anmb mn(t)

n, m

n7 ( ZT . anmb m ) a(t) (4.4)

The right-hand side (,F Equation (4. 4) is the expansion of t;he output y(t)

on the output time interval (a, b) . The coefficient of the expansion of

the output is

c a b (4. 5)
n C nm m 5

m

The coefficients of the output expansion are related to the coefficients

of the input expansion by the matrix equation

H [A] B] (4.6)

where

Fa., a04. a0 .

alO a l a1 2

[A] 2a0 a22 a2 2
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bo 0 Co0
bc2 c 0

B] b ~ ci~ (4.7)

One should notice that if the sets {t} and {4n} are eigen-

functions of the kernel k(t,T), as defined by Equation (" 32), then the

expansion of Equation (4. 2) reduces to the expansion of Equation (3. 34).

Thus the system matrix A is seen to be diagonal with

1 {for n = m
m

a = (4.8)

0 for n/m

and the relationship between the input and output coefficients becomes

simply

b
n n (4.9)
n

When the series of Equations (4. 2), (4. 3), and (4.4) are sampling series

of the form of Equations (3. 3) and (3. 5), then for sampling in the

quadrant where t, T > 0,

= k = kWiT iT I.4 4Mfl

By the causality condition,

k.. 0 for j > i (4. i1)
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I
p

Therefore, the system matrix is triangular

k 0 0 0
00

ki0 k 0 0

[K] k0 k2i k22 0 (4. 12)

The input-output relationship equation becomes

yj[K] x] (4. 13)

where

Y0  x0

Yi xi

] Z and X1 xj (4 14)

are the coefficients of the output and the input with samples taken at

intervals of T and T se: , respectively.
.th

The j column of the system matrix [K] has the partn.cular

significance of being the output sampled at every iT 1 sec due to a unit

impulse input applied at time jT, . Similarly, the j column of tte

system matrix f A] gives the output coefficients due to an input d•i tM
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C. THE INVERSION PROBLEM

The inversion problem consists of finding a system which, whcn

placed in cascade with a given system, makes the over-all syst-.n unity.

It arises in many applications, i.e. signal recovery, feedback systems,

and in relating time-varying impedance and time-varying admittance

functions.

The two systems in cascade shown in Figure 2. i have an over-

all system function K 1 (s, T) . From the definition of the K 1(s, T) sys-

tem function, a unity system has the response function

K 1 (s,T) = e -ST (4. 15)

Solving the inversion problem is then equivalent to solving the integral

equation of the over-all K 1 (s, r) function

00

e - j K 2)(s, u) k (u, T) du (4. 16)

-00

for the left-hand system function k A)(t, -), or the right-hand system

function K 2 )(s, T), when the other system function is given. Not only

it is difficult, in general. to solve Equation (4. 16) for the inverse system

function, but it is also difficult to tell when •. solution exists at all. For

which an inverse system function exists and to find the inverse system

function itself. Let the left-hand system be a delay system with celay

a(-):
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IM
k (t, T) 6(t - T - a(T)) (4. 17)

Also, let the notion of inversion be extended to allow the over-all system
I

to have a constant delay response rather than a unity response. Then

Equation (4. 16) becomes

e S(T + D) JK(2) (s,t) &(t - - a(T)) dt
e = -r- -

K() (s, T + a(T)) (4 18)

where the delay constant D is chosen to assure realizability of the

inverse system. Thus,

k0 ) (t, T+a(T)) = 5(t - T - D) (4. 19)

In order to solve for the right-hand inverse, r + a(T) must be invertible

(i. e. strictly monotonic in T), in which case

02) (t, r) = 6(t - X(T)) (4.20)

where

x(T + a(r)) T + D (4. 21)

From the form of Equation (4. 21) it is seen that the right-hand

inverse is a delay system with delay x(r) - -. For example, if a(T) = T,

then x(T) - T - T1/2 + E - r = D - r/'. Note that if D : 0, delay by T

in the left-hand system is compensated for by prediction of Ti 2 in the

right-hand inverse system. If the input to the first system is zero for
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T > D, the right-hand inverse is a realizable delay system (i.e. no

prediction). Thus D must be chosen large enough, depending on the

input, so that the right-hand inverse will be realizable. As another
3

example, delay by a(T) = T - T is compensated for by delay of

T13) 1/3D-(r-T )=D+r -T¢.

For a simple example where the right-hand inverse system func-

tion does not exist, take a(T) - D - Tr. Then T + a(r) = D, which has

no inverse. The physical explanation for this is that the first system

delays the input 6(t - T) by D - T, giving an output 6(t - D) as the

input to the second system. The second system sees the same input

for every value of T and obviously has an output that cannot depend

on the value of T; hence the output cannot be 5(t - T - D).

If the rig7t-hand system is given as a delay system with delay

b(t) , then

K (s,t) = e5(t +b(t)) (4. 22)

Equation (4. 16) now becomes

-s(T + D) fe-s(t + b(t)) k(i)(t, T)dt (4. 23)

If t + b(t) is invertible, there exists a function y(t) such that

y(t + b(t))= t. Now the change of variables t + b(t) = u can be made

in Equation (4. 21), giving

e- s( + fes. U k(i) (y(u), r) y'(u) du (4. 24)
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Taking the transform of Equation (4. 24) with respeLt to s yields

S(t - T - D ) f&(t - u) k(t)(y(u),r) y'(u) du
; J

y'(t) k() (y(t) r) ; (4. 25)

thus,

00 (t T) = 6(t + b(t) - T - D) (4.26)

For example, if the second system has delay b(t) = t, then y(t) t/2,

and

01) (tr) Z 6(Zt - T - D) (4.27)

As another exanxple, let b(t) t- t ; then y(t) = t 1 7 3 , and

k(i)(t,r) = 3t 2  b(t 3 
- T -D) (4. 28)

A simple example of the nonexistence of an inverse is when

b(t) - D - t, in which case b(t) + t does not have an inverse. It should

be noted that by using system -function dualitv, the discussicn here is

made equally pertinent to the finding of the inverses of a selective fre-

quency-shift -ystem.

The matrix approach can be u.ed in the inversion problem withl

a good deal of success. For the system with a matrix A followed in

cascade by the system with matrix B , the over-all system matrix is

BA. The right hand quasi-inverse to the system K of Equation (4. 12)
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is defined as the system K' so that

F0 01
KIK = - (4. 2 9)

The system K followed in cascade with the system K' is an identity

within a finite amount of delay (finite .number of rows of zeros). The

matrix K may be finite or infinite.

The necessary and sufficient conditions for the existence of a

quasi-inverse are due to Marcovitz. 9 Using the following notation:

K. is the i x i submatrix of K containing the first i rows1

and i columns,

Kij is the submatrix of Ki+j containing the first i columns,

and

KN. is the submatrix of K.i. containing the last j columns,
1j 1+

Marcovitz's main theorem states that, if the rank of K. . is r , the1+3

necessary and sufficient conditions for the existence of a quasi-inverse

with j units of delay are that the rank of K!. be r - i. The theorem1j

verifies the obvious facts that a sufficient condition for the existence of

an inverse is that the terms on the main diagonal are nonzero, i. e.

k.. i 0 (4. 30)

and that the sufficient conditions for the existence of a quasi-inverse

with minimum delay j is that the main diagonal and the j - I diagonals
.th

below it be zero and that the j diagonal below it have all nonzero
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terms; i.e.

k.i+1 1 0 for i <j, I = 0, 1,Z... (4. 31)

kj+. , , 0 for I = 0,1,2,... (4. 32)

The necessary and sufficient conditions for existence of a unique quasi-

inverse are also given by Equations (4. 31) and (4. 32).

An interesting corollary is that, if the first j diagonals are zero

as in Equation (4. 31) and if kj~1 l / 0 for some value of I, then a

necessary condition for the existence of a quasi-inverse is that k. 0,

either for an -nfinite number of I or for no I at all.

Application of the main theorem may be difficult because it may

require an infinite number of calculations. The calculations must be

applied for each value j of delay until one is found which works. If

there is no value of j for which the conditions are satisfied, the quasi-

inverse does not exist.

1. Finite Matrices

Finite system matrices occur in coding systems and in the time-

limited approximations to the system matrix. For an input that is

t units long, one need be concerned with only the first t columns of

the system matrix K. The quasi-inverse with respect to an input t

units long exists if, and only if, the rank of Kt is t, where Kt is

the matrix of the first t columns of K. The maximum delay in recover-

ing the input is given by the number of the last of the t independent
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r ws of Kt, where the first row is numbered zero. If some of the

input digits are zero, then one should consider the submatrix K(r) of

Kt .where K(r) is the matrix of the r columns of K which correspond

to the r nonzero digits of the input. Since there may be cases where

the rank of Kt is not t, but the rank of K(r) is r, tUe quasi.-inverse

with respect to a t digit input that has some zeros may exist when the

quasi-inverse with respect to a t digit input does not exist.

Let K denote the finite submatrix of the infinite matriA Km r

containing the r columns of K that correspond to the r nonzero

information bits of the t digit input, and terminating after m rows.

If Kmr is of rank r, then a quasi-inverse with at most j=m-r units of

delay exists. It would be particularly interesting to find the smallest

value of m for which the matrix K has rank r so thaL the delaym r

in signal recovery is th. shortest. This is done by testing the rank of

Kmr sequentially in m for m = r, r + I, r+2, . . . until its rank is

found to be r. If there exists no value ol" m for which the rank of

Kmr is r, thon the quasi-inverse does not exist for that input.

Let K' be the quasi-inverse of K if it exists, then
mm mr

K' K (4. 53)mm. mr

L_ rr_j

The matrix K' can be augmented to be a quasi-inverse of
inm

the system matrix K with respect to a particular input:

K K zJ (4. 34)
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where

z t - r (4.35)

and K'' is K' with z rows of zeros added to correspond to

m+z, m mm

the - zeros in the input. For example, if m = 5 and z = 3 and the

th rd th th rd
zeros occurred at the 0 , 3r, and 5 digits, then the 0 , 3d, and

th st nd th th th5 rows of K'' are zero, and the I , 2, 4, 6t, and 7rm+3, m
1st nd rd th throws of Kn+ 3 m are the 1s,d2 d3 ,4 and 5 rows of K'mm

respectively. Enough columns of zeros are added to K" to make
m+z, m

the matrix K' compatible with KtSjt

K'Kt = (4. 36)

IttI

where I' has ones on the main diagonal corresponding to the nonzero
tt

digits of the input and has zeros elsewhere. From Equation (4.36) one sees

that whenthe input is passed through the system K followed by the

system K', the output is j units of zero followed by the input. The

recoverability of a t digit input is therefore dependent on the existence

of a quasi-inverse to the finite matrix mr.

2. The Inverse in Feedback Systems

The response to the feedback system of Figure 4. 1 can be ob-

tained from the equation

6y = k Ax + k B0kAy (4. 37)
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xo 30 A 1 •

A

FIGURE 4. 1. Feedback System.

where kAx means the system function kA operating on x. Equa-

tion (4. 37) can be rewritten as

(6 kB@kA)y = kAx (4. 38)

Thus,

y = (6 - kB 0kA) 0 kAl x = kx (4.39)
1

The inverse to (6 - kB 0 kA) must be found in order to find the over-all

system function k. In matrix notation convolution is replaced by matrix

multiplication and the system matrix is given by

-i
K = (I - BA) A (4.40)

where B and A -.re the system matrices of kB and kA respectively.

By using the methods given earlier in this section. one can find the

inverse of I - BA if it exists. If a quasi-inverse (I - BA)' exists,
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(I-BA)'(I-BA) = - D (4.41)
[10

Then

DK = (I - BA)' A (4.42)

The first j rows of the right-hand side of Equation (4. 42) must be

zero.

3. Relationship Between Impedance and Admittance

Functions and Equivalence to the Inversion Problem

The Kiy and kZ functions can be related by inserting Equa-

tior. (1. 26) into Equation (1. 27) and interchanging integrals:

I(S) = fK~y(s, u) e(u)du = J[fK~y(s, u) kZ(u, T)duj i(T) dT (4, 43)

By the uniqueness of Fourier transforms,

e ST = fKiy(s, u) kZ(u, r)du (4.44)

The following dual relations:

e = JKiz(s, u) ky(u, T) du (4. 45)

e t K 2 Y(t, p) KZ(p, X)dp (4.46)

e xt fKzz(t, p) Ky(p, X) dp (4. 47)
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are obtained by physical-quantity duality, systern-function duality and

complete duality, rebpectively. These relationships can also be writ-

ten in tf-irms of G and H functions by using identities. By comparison

of Equations (4.44) through (4.47), the problem of finding an impedance

driring-point system function from ar admittance driving-point func-

tion, or vice-versa, is seen to be equivalent to finding a left or a

right inverse system to a given system.

D. MINIMUM DISTORTION SIGNALS AND SYSTEMS

The problem of finding signals that will pass through a given

system without distortion other than a multiplicative constant is an

eigenvector problem. From the input-output relationship of Equa-

tion (4. 13), one sees that the zero-distortion inputs are the eigen-

vectors of the following characteristic equation:

X = z K H ] (4.48)

Since K is triangular, the eigenvalues are clearly

X. = k.. (4. 49),1 JJ

The eigenvector corresponding to the eigenvalue X. isJ

-. 0U) T (j -. ) -.j ) A 50)Ar..tl `2t ' & ' -.1V

One may assume that the -igenvalues are all nonzero, as the zero
(Jo)

eigenvalues are of no interest. The e genvector x can be found
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by an iterative method. If X. is not repeated, i.e.Jo

k. / k for I / $ (4.51)

Jo jo)1
then the components of x can easily be solved for

0 for k= i,2 ... ,jJ0 -i

(0) x. for k = j 0
Xk k(Jo)

X kixi for k = jo+,...
i1J 0 J-o k

00o)
where x. is an arbitrary constant.Jo

If >1. is repeated, assume it occurs first at k.. . The matrixj JJ

Ajj, where

L
A.- (4. 53)

k lj . . . k ..i

has the eigenvector {O,...,O,x.1 corresponding to X. with x.j chosen

arbitrarily. The matrix Aj+ij+i has the eigenvector t0, .... , xj, x j+i

corresponding to Xk, where xj+i is determined by the equation:

- j+1)Xj+1 = kj,j+xj , (4. 54)
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if X i /j+ *. But if X3  Xj+1, then either kj,j+t or x. must be

zero. In either case xj~i is arbitrary, but if kjj+t is nonzero,

x. is no longer arbitrary and must in fact be zero.J

Suppose the first repetition of X. occurs at Xj+r, then the

eigenvector of A.jr,j~r is

{0. ... 1' x. X. .0,
jJ J1r-l JiJr

where xj+i, xj 2 .... ,Xj~r-i have been computed by considering the

eigenvectors of X. in the matrices A. A jZ, .. Aj~rjj.-i,j~i' jZj+2' "'' r-1,j~r-1.'

respectively. The new component xj+r is determined by the equation

j+r-i

j j+r )Xj+r = Z. kl,j+r 'l (4.55)

I=j

Since the left-hand side of Equation (4. 55) is zero, x j+r is arbitrary.

But if the right-hand side is not zero, then x must be zero, in which

case x ..... xj+r.-I are all zero. Similarly, if the next repe-

tition of X. occurs at k. then

j+r+t-I
2 kl I j~r+t 'I

l=j

must be zero -and xj+r+t is arbitrary. Since the right-hand side of

Equation (4. 55) is zero, this is equivalent to saying that
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j + t-1 k , Ij+r+t x1

I -j+r

must be zero. If it is nonzero, then xj+r must be zero, in Nwhich case

x j+r+ ... * ,* xj+r+t are all zero. This process is now continued,

and it is clear what happens at the next repetition of X..

It may be possible that all eigenvectors of a given infinite

matrix may be zero, as in the matrix

I
I A 2

K 1 (4. 56)

In finite triangular matrices where eigenvalue X. is repeated J times,J

there is at least one nonzero eigenvector because the component at

the place of the last repetition is arbitrary. Also, the number of zero

eigenvectors is equal to the number of times during the iterative pro-

cess that a previously arbitrary component was forced to be zero.

In a system whose matrix has more rows than columns, the

output that is desired for minimum distortion is the input followed by

zeros:

xz

XX k]in knM (4. 57)

k k
Im" nm x n-
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Generally one cannot solve Equation (4. 57) because there are more

equations than unknowns. But if the row vectors kim* ,,knm for

m > n are orthogonal to a particular eigenvector x~j) of the matrix

A, the equation is satisfied where

k 10
A= (4. 58)

k 1n k nn

Note that if x(j) is the eigenvector of matrix A of X. = k.. , and y(I)
.J .JJ

is the eigenvector of its transpose conjugate matrix A* corresponding

to Xk , and if X X1 , then x(j) and y(l} are orthogonal:

7-(x(jy), = (xJ)X,A*y(1) = (AX( u y = kj(x(J), (l)) (4.59)

Since X X-.j,

0) . ( ) . (4.60)

If X• / X for i / j, then A is diagonable and

k 1

T A T =0 (4.61)

- k
Snn

where the- i co luimn of T is om j and, the it row of T i i1 -(j

For this case the infinite matrix

K ( 7B (4.62)
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where the rows of W are y(l) for I /j, passes the signal x(j)

without distortion because {x(j), 0 is an eigenvector of K. Similiarly,

if the rows of W are made up of y(k) for k •/jj 2, . ' Jr* ' then the
(iJ) (J2) (Jr)

system will pass x , x , .. . , x without distortion.

E. APPLICATION OF DOUBLE SERIES TO
THE EIGENFUNCTION PROBLEM

Matrix methods can be used to solve the eigenfunction equation

b

S= f k(t, T) 4(T) dT (4.63)

a

One can expand the unknown eigenfunction in terms of the complete

set {P1}:

7 = • kok 
(4.64)

k= 1

Taking the terminated expansion and substituting it into the eigcnfunction

equation yields

N N b

X akk(t) = Zcak f k(t,r) ýk(r) dT (4.65)

k=1i k= i a

Now multiplying both sides by *.j(t) and integrating gives

N bb-f-XCL i Lk f •J (t) kit, 7 ) qýk(T) dt d-r

k=i a a
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XT

a j for j=1, ... ,N (4.66)

where ajk is the (jk)th coefficient of the expansion of k(t, T):

k(t, 'r) = a jk 4(t) Ok(r) (4.67)

j, k=i

Thus, the integral eigenfunction equation has been reduced to

the matrix eigenvector equation

X al [A] a)] (4.68)

where

17

a] [A] ={a~k

N

An approximation can be made to the eigenvalue X and to the coefficients

of the expansion of the eigenfunction by solving the matrix character-

istic Equation (4.68).

Note that {4,i} need not be complete but only good enough to

approximate k(t,T) and 4o to within a olerable error. When the {ýi}

are approximating rectangles, this method reduces to the Fredholm

method where one approximates the integral by a sum to reduce the

integral equation to a matrix equation. One advantage of this method

is that a judicious choice of the set {41i} may lead to a better approxi-

mate solution for a given N, or a smaller N for a fixed amount of

error.
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t. Error Evaluation

By the completeness of the set {,il and by Bessel's inequality

one can choose N so large that

N

11411 -E(4.69)

N

Ik(t, T)I2- aZ < E (4.70)
j, k= 1

The equation

ka a ajkk for j= (....N (4.71)

gives the exact solution:

%P = Cj ,(4.72)

and the equation

N

x 'p. = I.jk Pk (4.73)

gives the approximate solution:

N

4.__,. '741
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By Schwartz's inequality,

OD 7 7

ajl < a 2 a 2 < (4.75)

and Equation (4. 71) can be rewritten

N

aj a ja k + O(c) (4.76)

As N becomes increasingly large, Equations (4.71) and (4.74) be-

come virtually identical.
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V. SYNTHESIS OF TIME-VARYING SYSTEMS

A. INTRODUCTION

The realization of the double expansion of h(t, v), as demon-

strated in the example of Section IIij, is applicable to the synthesis

problem. The function

h(t, v) = T anm On(t) %pm(V) (5.1)

n, m

on R = (a, b) x (c, d), where ý m(T) is a realizable impulse response,

was shown to be realizable as a parallel combination of H--separable

branches with a typical branch consisting of the network of impulse

responses 4 me(T) followed by the multiplier anm 01(T).

The realization by double expansion has certain practical

advantages over the method proposed by Cruz and Van Valkenburg10

in which h(t, v) was realized from the expansion in terms of the com-

plete set {qi}:

h(t,v) a M (t) mr(v) (5.2)

m

where

d

a (t) f h(t, v) i4i(v) dv (5. 3)

C
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The multipliers a m (t) may be of complicated form and therefore diffi-

cult to build, whereas one has some choice over the sets {n} . For

example, if the interval (a, b) is finite one can choose {On} to be

sines and cosines, in which case the multipliers are standard modu-

lating networks. Actually if one were to arrange Equation (5. 1) as

then by comparison with Equation (5. 2),

a (t) (5.5)

n

Equation (5. 5) is seen to be a realization of the multiplier am(t) in

terms of the elementary multipliers 4n(t).

Conversely, consider the single expansion of h(t, v) in terms

of a desired set of multipliers {4)n(t)}

h(t, v) = O n(t) Pn(V) (5.6)

n

where

b

Pn(v) = J h(t, v) n(t) dt (5 7)

a

The network of impulse response P n (v) is not necessarily realizable.

The rearrangement o' Equation (5. 1),
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h(t, v) -{ a nm4,v ( ýn t (5.8)

h v n Imn v 5
by comparison with Equation (5. 6) gives

7'-1
Pn(v) = a nm4m(v) (5.9)

m

The truncated expansion

M

Pn(v) IL a nm 4m(V) (5. 10)

gives an approximate realization of Pn(v) in terms of tne realizable

networks 4m(v) . This approximation is arbitrarily close in the mean

square sense for M sufficiently large.

B. THE CROSS-COUPLED REALIZATION*

The H-separable realization of the terminated single expansion,

M

h(t, v) a m(t) 4m(V) (5. ii)

m=1

consists of M branches, each containing one passive network followed

by one multiplier, whereas the H-separable realization of the terminated

*Suggested by Prof. N. DeClaris
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double expansion

M,N

h(t, v) = Z a pn(t) 4m(V) (5. 12)

01, nf i

consists of MN branches, each containing one passive network fol-

lowed by one multiplier. This represents an increase on the order

of N for the double expansion. There is, however, a great deal of

redundancy in the H-separable realization of the double expansion

which can be eliminated by the cross-coupled realization, as shown

in Figure 5. 1. The cross-coupled network contains M networks

and N mulLipliers with a coupling array linking the networks and

multipliers. The number of networks and multipliers is of the same

order as in the realization of single expansion.

The coupling array may be realized in a number of ways. Since

Figure 5. 1 is actually a flow diagram, there must be a bummer at the

input to each multiplier. After scaling the largest lanml to unity, the

potentiometers at the inputs to the summer of multiplier 0, are set to

I alikj k=1, 2,..,, M' but tiiose aik that are negative in sign are first

passed through an inverter. The coupling network may be a one-

element kind of network (resistive for lcw frequencies or capacitive

for high frequencies). This netvork must have M inputs and either

N outputs of the form
M

-- a ij 41

iJ
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I • / /I
I I /\ \I
I I // \I

I I

FICGURE •. 1. Cross-Coupled Realizattion if h(t, v)



or NM outputs of the form a nm4m The latter is obtainable by

tapping unity resistors of input voltage 'Fm at values lanmI and in-

verting the coefficients of negative sign. Summers must still be

built at the inputs to the multipliers, whereas summation is done by

the networks in the former case, but the class of coefficients (a ij)

for which this network can be synthesized is limited by the realiza-

bility conditions on the network.

C. BILINEAR FORM

It is useful to think of the realization of the truncated expansion

of Equation (5. 12) as the realization of its corresponding bilinear form:

h (t, v) 'M AIt M ]N (5. 13)

where

q, = (• , .. ,'M )41--'M 4 týZ' "4

AN =-{a }

ANM nm

ý1 N (5. 14)

t NJ

One can identify the form of Equation (5. 13) with the structure

of the realization of Figure 5. 1 with the crcss-ccupling network cor-

responding to the matrix At A
NM MN"
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Suppose that the set {ti.) is the orthonormalization of a minimal

complete set {.,0 and the set {0i) is the orthonormalization of a

minimal complete set {yiJ, then 6 and '3N are a linear corn-

binat ion of the first M 0's and the first N yi's respectively:

M M _ - M BMM

01 N CNN Y]N (5. 15)

Since the sets are minimal complete, the matrices BMM and CNN

are invertible, and

h(t,v) = 0 MBMM AMNCNNY]N (5. 16)

The new cross-coupling matrix is

AM4N = BMM AMN CNN (5. 17)

In particular, suppose the are the orthonormalization

of a set of exponentials,

{oi1 {esit} d (5. 18)

One can easily synthesize a ladder network whose poles are si, ... s .

The outputs of M rungs of the ladder are linear combinations of ex-

ponentials of the pole frequencies:

st

M- ,M e -M Q-MM (5. t9)
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One can choose M independent rungs of the ladder so that QMM

invertible. Now,

h(t,v) = 1MQMMAMN •" (5. 20)

has tne realization shown in Figure 5. 2 with the cross-coupling matrix

Ai Q AN (5. 2 1)
MN MM MN

LADDER

NETWORK

WITH I

POLES AT A MN I- ----

(SI ,...SM) I

FIGURE 5. 2. Realization of h(t, v) with One Passive Network.
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For the case where M = N, an interesting N-port synthesis

problem arises. If one could synthesize a network with poles at

BID ... VSM, with one input port -ind N output ports, and with the

zeros of the output ports chosen in such a way that

QMM= AMM (5. 22)

then

AM I (5. 23)MM

and the coupling network consists only of wires connecting to 0i

D. APPROXIMATION IN ONE DIMENSION

The bilinear form approach can be used in the one-dimensional

approximation problem when the expansion in one dimension can be

put into a bilinear form with both variables the same. If both {4i) and

{'0i) are exponential sets, then h(t, t) of Equation (5. 20) is expanded
(sm + sn~

in terms of the exponentials e with coefficients a . Thenm

realization of h(t, t) is an MN term expansion of h(t, t) obtained by

using a network with M poles and N multipliers.

For example, the network of Figure 5. 3 is a 16-term reali-

zation containing a network whose poles are s = 0, -Z, -4, -6 and mu'lti-

pliers 1 ,e 8t and e ,4t where
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AI

44 OUTPUT

1/3 2/3 10/3- 'vW- -W -- - e-

INPUT 1 3/2 ;c3/5 v 1 110
0*-

FIGURE 5. 3. Sixteen-Term Expansion of h(t, t).

4

h(t, t) a. e-(Zm+8n)t + 10t

n, m=1
15

a , ke -. kt (5. Z4)

k=o
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E. REALIZATION BASED ON SAMPLING EXPANSION

The realization of the sampling series

OD

k(t, T) k (,r T) sina 2,rB (t - s)(5. 25)

using a delay line and a summer, as shown in Figure 5. 4, was proposed

by Kailath.4 A similar realization, based on the link structure, is

shown in Figure 5. 5. The advantage of the link structure is that the

summation is performed by the plate delay line.

The impulse response of the link structure for A = 1/2B, is

h (

k(t, T) aj (T+ (j+ 1) T) sinc 2 rB t- -7-B (5.26)

The expansions of Equations (5. 25) and (5. 26) are identical when

a i T +(j +1) T)(5.27)

Since

k(JB T) k s inc 2,rW(t-

1=O

a j + (j+1) sinc 2-wW (t (5.28)

1=0

the samples of the double expansion of k(t, T) are related to the multi-

plier samples by
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G Mw

FIGURE 5.4. Realization of k(t, 7) Based

on the Sampling Expansion.

S~ DELAY LINE

SA I_.._

o -- - - - -- D E L A Y L I N E

FIGURE 5. 5. Sampling Expansion Realization

of k(t, T) Using Link Structure.
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Thus the samples of the output due to an impulse at t = 1/zW are

-{aZ(-, + ) , a ( w+.) 2A + 3A) .... (5. 30)

The multipliers can be set according to Equation (5. 27) or for

A=t/W they can be set sequentially; i.e. at t=A/Z the multipliers are

at t = A the multipliers are

at t = 3,/2 the multipliers are

etc.
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VI. APPLICATIONS AND CONCLUSIONS

Several examples of time-varying systems will be briefly

outlined in this chapter. The emphasis of the presentation is on the

application of the methods that were presented in previous chapters

to these examples.

A. SATELLITE COMMUNICATION SYSTEM

The communication channel between two ground stations via

an earth satellite is time-varyirg because the time delay and Doppler

shift that the receiver sees change in time due to the movement of

the satellite. If the satellite is active its transfer function may be

time-varying due to satellite precession, position of solar cells, etc.

For geometric simplicity, assume that the satellite is traveling in a

circular orbit of radius R, as shown in Figure 6. 1, and that the

transmitter, receiver, and satellite are located as indicated at angles

a, P and 0, respectively. Some of the notation concerned with this

channel follows:

WR = angular velocity of satellite,

e = t

T = ZTr/WR = time for one orbit,

v = RwR = tangential velocity of satellite,

vc = speed of light,

r = radius of earth,
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FICURF 6. 1. Geometry of Satellite Communication System.



R = radius of orbit,

La = time delay between transmitter and satellite,

Wa = Doppler shift between transmitter and satellite,

w = carrier frequency.

The total amount of delay between the transmitter and receiver is

+ a+b (6. 1)
S= a +tAb v

C

where a and b are the transmitter-to-satellite distance and satellite-

to-receiver distance, respectively. These distances can be computed

by the rule of cosines:

a = r 2 r R cos (E+a)-7

I

b = r +R + ZrR cos(0-P) (6. 2)

The Doppler shift is proportional to the component of the velocity tcwards

the transmitter or towards the receiver, and for the channel of Fig-
ure 6 2)II

ure (6. 2), a transmitted carrier of frequency w is received as a

sinusoid of frequency w + W, wheie the Doppler shift W is

W = (-vnT + vnR) - (6.3)
c

The total Doppler shift in the communication channel is

W Wa Wb

= (-cos(90 - 0a) + cos (90 - eb)) R W
SvC



FIGURE 6. 2. Doppler Shift Geometry.

(sineb -sinea) w (6.4)
C

By a trigonometric identity,

r a a(65
siTn -E) sin(180 -e-cL) -sin(O+a) '~5

and

r b (.6
si1n -Eb s(91)(.)

Thus,

e = Sin- {r sin(O+a)

E) b=sin {~sin(O-P)I (6. 7)
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and the total Doppler shift becomes

rRcR W [1 sin(e-P) - 1 sin(e+a)j (6.8)

[ Ib aI

Now the K2 (t, w) system function can be calculated. For a

j(w+Wa )(t-&a)transmitted carrier ejW t the satellite receives e

If the satellite H function is H(t, w), the satellite output is then

j(w+Wa) (t- A a)
H(t,w•+ W)e a a

The received signal becomes H(t-Ab W+Wa) eJ( W+W)(t-A)which for

c H~tAb~w+) ej(w+W)t-jw&v<<vc is approximately H(t-Ab) .+Wa) ej - Considering

the fact that the satellite first comes into the line of sight of the re-

ceiver at time t and first goes out of the line of sight of the trans-

mitter at time ta, the system function is

H~-AbtW+ a)ej(wo+W)t-ju&~ for t P+nT <t~t CL+nTbW+Wa e(+Wp

K(t, w) = (6.9)

otherwise

where Ab, Wa, W, and A are functions of time that have been deter-

mined by Equations (6. 1) through (6.8).

For a passive satellite, the satellite transfer function is a

constant that is close to one; for a stably oriented satellite, the satellite

transfer function will be a time-invariant repeater H(w) . In an un-

stable mode, the axes of the satellite change direction in time, and

thus the satellite receiving antenna and transmitting antenna come
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into and out of view with the ground transmitter and receiver, respec-

tively, causing a multiplicative effect on the satellite transfer function.

Since the effect of the receiving and transmitting antennae must be

taken separately, the satellite transfer function is of the form:

H (t, w) = a (t) P (t) H (w) ,(6. 10)

where a(t) and P(t) may be periodic functions.

Actually, except for possible time variations in the satellite

system function, the change in Doppler shift and time delay will usually

be small compared with the signal duration, and the over-all system

function can be considered as fixed for signals of short duration. Numeri-

cal estimates of Doppler and of delay for the typical parameters,

Vc = 3 x iO8 m/sec,

r = 4000 mi = 6.4 x 10 m ,

R = 16000 mi = 25.6 x0 m ,

T = 3hr,

SR = Zn/10800 rad/sec

a = 60°

P = 0.

0 = cos- 1 -'76 ,

are:

W = -14.8 x 10 6 Wa
W = Io- 5

Ab =0.094 sec

,1 = .i5sec (6. 11)
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For a typical carrier frequency of 4 x 109cps, the total Doppler

shift is 40 kc

B. AIR-TO-GROUND COMMUNICATION SYSTEM

The signal received at a ground station from a plane or a missile

passing by at high speed is distorted by time delay and by Doppler shift

in frequency. Under the assumption that the plane is traveling at

velocity v in a straight line at a minimum distance h from the

ground station, the geometry of the air-to-ground communication sys-

tem is shown in Figure 6. 3.

If communication is begun at time t when the missile is at a0

lateral distance r from the station, the delay as a function of time is

GROUND STATION

h r

PLANE

FIGURE 6. 3. Geometry of Air-to-Ground Communication System.
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h+'(r - vt)z

d(t) h 0  (6. 12)
v

and is plotted in Figure 6.4.

To compensate for the delay d(t), one must construct an inverse

filter for it. In Chapter II it was shown that the inverse filter exists

if t - d(t) is invertible. Figure 6. 5 gives a plot of t - d(t) versus

time. The derivative of t - d(t) is

d r -vtdi ( t - d ( t )) z Lr 0 - t( 6 . 1 3 )
TFv 1

[h Z+(r - Vt) 2
c0

Since v/vc < 1 , the right-hand side of Equation (6. 13) is greater

than zero for all t, r, and h:

dd- (t-d(t)) > 0 (6. 14)

therefore t - d(t) is a monotonically increasing function and its in-

verse exists.

The Doppler shift as a function of time is given by

r vt

W(t) Wo 0o -W (6. 15)v 0 v o 1C c

C C 1~h aZ + ( r , - v t) Z] 1

Figure 6. 6 shows this Doppler shift as a function of time. The Doppler

shift can be corrected for by using a voltage controlled oscillator in

the receiver. If the oscillator control voltage is W(t) , the mixer
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frequency will be w 1 + W(t), and the intermediate frequency will be

W i -W o "

C. SIDE-LOOKING RADAR

A plane with a radar unit mounted on its side can be used for an

all-weather ground mapping system by flying parallel to the meridian

being mapped with the radar antenna facing the target nmezridian.. The

resolution of the mapping is proportional to the carrier fr-quency of

the radar pulses. Ideally the plane will be held on line without turning

or rolling, and the time delay and Doppler shift will be constant. Although

one can fly a plane parallel to a fixed meridian at a fixed distance, the

roll of the plane cannot be controlled perfectly. A typical trajectory of

receiving antenna movement due to wing flutter, air drafts, etc., is

shown in Figure 6. 7.

The time delay will be essentially constant, and since the plane

velocity will be small compared with the speed of light and I' I 1 , the

time delay is approximately

zl
V- 

(6. 16)
c

Since the angle a between the incident and reflected waves is small,

it can be approximated by

sin a " a G -T" A (6. 17)
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FIGURE 6. 7. Side-Loc ',ing Radar System.

where v is the plane velocity, During the surveillance flight the

received data, as well as the data on plane movement, can be recorded

on tape. Afterwards, a curve of the angle between the received wave

and the direction of antenna can be computed, and the Doppler shift,

which is dernendent on this angle. can be comrpensated for by a voltnage-

controlled oscillator in the receiver mixer.
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D. FEEDBACK CONTROL SYSTEM

Feedback is often uFed to control the sensitivity of a system to

internal vriations. If the variations are large the system may be

adaptive in that the feedback changes with tirme to counteract the

changing systern variations. If the system function for the plant is

known, it may be possible to oompute the system function of the con-

troller that wiii give the desired over-all system function. For the

systei i sh..wn in Figure 6. 8, the controller A is to be chosen for a

given plan" B so that the over-all system functior will be K.

SA ' A

FIGURE 6. 8. Feedback Control System.

The matrix of the system function K is

-1
K - II-BA) BA

I - (I + BA)" 1  (6. 18)

where B nd A arc the matrices of systems B and A. Equation (b. 18)

can he rearranged as

BA (I K) - (6. 19)
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-'1
and if B exists, then

A = B- (I - K)- -B- (6. 20)

If only a quasi-inverse of B with j units of delay exists, then

-I
DA = B' (I - K) - B' (6. 21)

where B' is the quasi-inverse of B and

D = I 2 B' B (6. 22)

Since the first j rows of the left-hand side of Equation (6. 22) are zero,

the first j rows of the right-hand side must be zero. This .vill b.t true

if the first j rows of K are zero. Thus, for a given system B that

is quasi-invertible with j units of delay, one can obtain any specified

over-all system function K to within .units of delay by choosing tht

appropriate controlling network A.

As a numerical example, take the plant matrix to be

B 2 1 0 (6. 23)

L3 2 1

B has the quasi-inverse B' with one unit of delay, where

0 0 0 0

B' 0 1 0 0 (6. 24)
-I I 0

,_ ot-2 _



Hence K must be chosen so that the upper left-hand element of

-1
(I - K) is one:

0 0 0 0

K L ] (6. 25)
-1 1 0 0

2 -1 1 0

It can be verified by peiforming the matrix multiplications indicated

by Equation (6. 21) that 0 0 0 0
DA] [1jT 0 0 0 (6.26)

-2 1 00

-2 -2 1 0

and therefore the matrix of the controller is

1 000

A - 0 0 (6. 27)

2-2 1 0

This method is also applicable to infinite matrices.

E. A WHITENING FILTER

A whitening filter for stationary noise n(t) with a nonwhite

spectrum Sn (w) is a network with transfer function H(c) such that

H 21 (6.28)

lHz-- n



When n(t) is passed through the network H(w) , the spectrum of the

output noise n'(t) is

S M H(w) 2 S() I (W0. 29)

Thus the output noise n'(t) is white.

If the noise n(t) is nonstationary, then the whitening filter may

be time-varying, if it exists. For example, if the noise consists of

a Gaussian pro :ess with mean zero and spectrum S(7 (w) plus a time-

varying mean m(t)

n(t) = n (t) + m(t) , (6. 30)

the whitening filter is a network that subtracts m(t) frcrm the input

and then passes n (t) through its time-invariant whitening filter.

This whitening filter is time-invariant but contains a source (generator

of m(t)) and a subtractor. If the noise n(t) is of the form

n(t) = n (t) f(t) , (6. 31)

the whitening filter is a G-separable network with the multiplier ti/f(t)

followed by the time-invariant whitening filter of n (t) .

Generally the r-, istationary noise will be characterized by its

autocorrelation R (t,T) . The whitening filter problem is to find t e

network k(t, T) for a given Rk(t, T) such that the output spectrum is

Rn,(t - T) - b(t - r), Using the noi, e output

T

n'(t) - f k(t, T) n(T) dT (6. 3Z)

0
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the correlation function of the output noise is given by

T T

Rn, (t, s) 2 f f k(t, -r) k*(s, u) Rn(r, u) dT du (6. 33)

0 0

The matrix approach can be used by expanding Rn(T, u) and the system

functions in terms of the complete sets and {%:)

N
k(t, T.) a . aij 4,i(t) Tb(1)

i,j

N

k*(s, u) ak/ ( (u

k, I

N

Rn(T, U) rr7 rp Om(u) 4J*(T) (6. 34)
, p

Substituting Equations (6. 34) into Equation (6. 33) yields the expansion

of R ,(t, s):

N

Rn,(t, s) a a *a.. rp wt, k(s) p"u,) 0(u)4J.(T) J*(T)didTnLij kI rrpJ k J1r~ p
i,j,k,p 1, m, p 0 0

a ij a k1 rlj (ýi(t) k*k(s)

i~jk, l

i,k
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where

b. z a, ak, r (6. 36)
ik ki lj

j, 1

Since 8(t-s) is not in L, the expansion of Equation (6. 35) can be an

expansion of a high thin pulse which is in L2 and is an approximation

to 6(t-s) . The coefficients of R n(t, s) are approximately

{0 for i/k
b ik !,

for i k (6. 37)

The N unknowns a.. of the N equations (6. 37) are the coefficientsii

of the time-varying whitening filter.

For real n(t), Rn(T, u) is symmetric. Therefore a standard

eigenfunction approach can be used to solve the integral equation (6. 33).

Let (4)il be the set of eigenfunctions of Rn(T,u),

T

X i(Tr) - Rn(T, U) ¢(u) du (.). 38)

Since the set of eigenfunctions is complete, the system functions "an

be expanded as

' -(t ,' ( ) 4 j ' - ( 6 . 3 c4 )
',I 1 / j~ i



where

T

aLt) k(t, -r) c1(T) dT (6.40)

By using the expansion of Equation (6. 39), Equation (6. 33) becomes:

T T
k*(s, u) Rn(T, U) (T) d- du

T
Xk CLji(t) f k*(s, ui) ¢j (u) du

j 0

a.(t) a *(s) (6.41)

If one first considers making the output noise spectrum to be only

stationary:

R ,(t, s) = R(t - s) (6.42)

then a.(t) is identified as (-yj/\) i (t) , where tl(t) and y, are

the eigenfunction and eigenvalue associated with R(t - s):

T

.ij kýj(t) f R(t - s), (s) ds (6.43)

0

The filter given by the expansion of Equation (6. 39) makes the input

noise stationary; a time-invariant whitening filter in cascade with

k(t, T) makes the noise white.
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One physical model of this process of whitening fellows. White
-i

stationary noise passes through some time-varying filter k (t, T) to

become nonstationary. The whitening filter is essentially the right-

hand inverse to k- (t, T) . Finding k(t, T) from Rn (t, T) is the same

as identifying k- (t, T) from R n(t, T) and then constructing its right-

hand inverse k(t, r) .

F. MATCHED FILTER TO A SIGNAL

IN NONSTATIONARY NOISE

If the whitening filter k(t, T) has a left-hand inverse k- I(t, r),

the nonstationary noise n(t) can be considered as having been generated

by passing white stationary noise through k- i(t, T) . By using k 1(t, 7)

as a pretransmission filter, the matched filter for a channel with non-

stationary noise is constructed as shown in Figure 6.9. This matched

filter has components at both the transmitting and receiving ends. It

is desirable, however, not to have a pretransmission filter because

one would like to transmit a standard signal and not worry about time-

varying average and peak power restrictions.

A reasonable detection scheme has the whitening filter followed

by a rnatt hed filter to the signal component of the output of the whitening

filter, which, in turn, is a matched filter to y7 o(t) , where
0

t

S(T) f k(t, T) x(T) dr (6.44)

0
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Since yr (t) depends on the initial time of transmission T 0 the matched
0

filter itself is time-varying. In the case where transmission will

occur only at discrete times ri., a bank of matched filters, each

matched to yTi(t), can be used. Now one can show that this detection

scheme, as given in Figure 6. 10, is indeed the matched filter for a

channel with nonstationary noise.

A filter f(t, r) is a matched filter to a signal x(t) if the ratio

of the instantaneous output power of the signal component at time t 0

to the average output noise power at time t be a maximum. The0
instantaneous output signal power at time t is.t -20

P 0 (to) = ,r(to) = T) x(r) dj (6.45)YT o

The average output noise power at time to is

E [n'(t) 2 ] = R n(to, to) = N(to) (6.46)

Also, the noise component of the output of f(t, T) at time t is

t

n'(t) = f f(t, r) n(Tr) dr (6.47)

and the autocorrelation of the output noise is

t u

Rn,(t,u) = f f (t, r) f *(u,r) Rn(T, r) dr dr (6.48)

-c0 -O0
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Under the assumption that n(t) is generated by passing white stationary

-1!
noise n"'(t) hrough a filter k (t, T), i.e.

t

n(t) f k'1(t, r) n''(T) dT , (6.49)

R (T, r) becomes

T r

Rn( T,r) f f k(TU k r, v) R n,,(u,v) du dv (6. 50)

-00 -OD

Since n"'(t) is white,

Rn,,(uv) = 8(u-v) (6. 51)

and R n(T, r) becomes

T

R n(T,r) = k kI(T,v) k•-(r,v) dv (6.52)

-oD

The average noise power at time t then becomes
0

t t tr0  r0  0
R n(to,t) J Jf f(to0 , ) f*(u,r) k (T,v) k A'(r,v)dTdrdv

-00 -0C -00

t 0t 00 0

f f f(t 0, T) I- (T, V) dT dv (6.53)

-0O -00
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The ratio to be maximized is

2°
)f(t 0) X(T) d]

Py x'to)__ ___

o 0 (6.54)
N0t 0 t t 2

0 0

f Jf(to'T) k- (Tv) dT dv

-OO -00

which can be simplified by making the change of variables:

f(t, T) = g(t) O k(t, r) . (6. 55)

Thus,

t

f f(t, T) k- (T, v)d = (g(t) 9 k(t, T) ) k (r, V)
-00

- g(t) 0 (k(t, T) 0 k -1 (T, V))

- g(t) 0 6(t-v) = g(t-v• (6.56)

and

t
0

N (t) f Ig (to v)J2 dv (6. 57)

The numerator becomes

to

Py(t = f g(to-V) f k(v, 7) x(T) d 2 dv (6.58)
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but by Schwartz's inequality,.

t t
0 0 v

F (t) f. Ig(t -V) 2 dv , k(vT) X(T) dT dv(6. 59)
-O -00 T

The maximum bound on the ratio of Equation (6. 54) is therefore

t .2
Py(t) 0o V

N(t) <_ k(v, ) x(T) dr dv (6. 60)

-00 T
0

This maximum occurs when g(t) is chosen as

v

g(t 0 -V) = f k(v, T) x(T) dT = yr (v) , (6.61)

or

g(t) = YT (t 0 -t) (6. 62)
0

The impulse response g(t) is the impulse response of the matched

fltter to yo(t) . Considering the change of variables of Equation (6. 55),

the matched filter for a channel with nonstationary noise is 3een to be

f(t, T) = y T (t -t) 0 k(t, T) (6.63)
0

Equation (6. 63) represents the whitening filter cascaded with the matched

filte-r to the signal component of the whitening filter output.
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The maximum bound given by Equation (6. 60),

t
0

M(t°0) =,-To YT°(v) 2 dv (6.64)

is a function of both t and °T From the form of M(t, 0To) one sees

that M(t , T ) increases with increasing to in the same way as in the

time-invariant case. For fairly large to, M(t 0 , To) is essentially the

energy in y (t) . This suggests that optimization of the signal trans-

mission time, for a fixed signal x(t) , be done s. that the signal is

transmitted at a time T for which the output of the whitening filter

YT (t) has maximum energy. This corresponds to choosing r7 at a

time when the noise power is low, in some sense. The optimization of
T should be done in conjunction with optimization of the shape of the

signal x(t) for a fixed transmission time T or for a given a priori

distribution of cost function over r 0

1.. Optimum Signal Design for Slowly Varying Noise

For the case where the duration of the signal x(t) is short

enough so that the noise has fairly constant statistics over the duration

of the signal, the noise can be approximated in a stepwise manner. The

noise can be considered as stationary on the time intervals (A with

corresponding spectral density {Nk(w)3 I where Z Ak is the time inter-

val of Interest. Then the time-varying whitening filter on the time

interval Ak becomes simply the time invariant whitenin, filter Wk(W)
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where

-Wk(W) 1 Nk=-N 1 (6.65)

The optimum signal maximizes the quantity M(to, T ). For

large to and T = T k E Ak, M(to, Tk) is approximately

M(00, Tk) = f X(w) Wk(w) 1d. (6.66)

-00

M(c0, T k) is maximized by taking

X(w) = a Wk(w) e (6.67)

where a is a constant, and then by choosing the index k for which

coo

M(CO, T k f IV k(W)I1 dw (6. 68)
-0O

is a maximum. Equation (6. 67) gives the optimum signal waveshape,

and Ak is the optimum time interval during which the signal should
0

be transmitted. The value of k0 for which Equation (6. 68) is a maximum

corresponds to the time interval kowhen the noise power is lowest.

It should be mentioned in conjunction with signal optimization

that there is essentially no difference between the first and second

matched filters, as shown in Figures 6.9 and 6.-2.. If x (t-r) is the

optimum signal for the second matched filter, then
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t-T

x t (t-T) k(t-T, u) Xo(U-T) du (6.69)

T

is the corresponding optimum signal for the first matched filter.

If the signal for the second filter x (t-T) is not optimum and

if M(c0, T) is greater for the first matched filter system, when cxl(t-T)

is its input (where the constant a is chosen to that the transmitter of

either matched filter has identical average power), then it is obvious

that the output of the pretransmission filter

t-T

X' (t-T) f k 1 (t-T, U) x (u-T) du (6.70)
T

is a better signal tc use for the second matched filter system.

G. CONCLUSIONS

In this investigation a number of methods were developed for

analyzing and synthesizing time-varying systems. The characterization

of time-varying systems was completed bv the definition of the K system

functions and the complimentary system functions. The relationships

among the system functions were clarified, and the physical interpre-

tation of the K system functions as impulse responses was seen to be

useful in finding the system function for a cascaded system. The time-

frequency duality relationships among the system functions were noted,

and the introduction of physical variables enlarged the concept of duality
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so that knowing one relationship becomes equivalent to knowing four

relationships instead of two.

The terminated multiplier structure was shown to be separable

for an exponential multiplier or for a periodic multiplier when one of

the terminating networks has a periodic frequency response. The

analysis of the terminated multiplier was applied to a modulation-

demodulation system.

The system functions were expanded in a double series in terms

of the complete set [ýi(x) 4•y)i), as in a double sampling series. Net-

works were presented to evaluate the coefficients of these expansions.

By using the system function expansion, the input-output equation was

shown to be reducible to a matrix relationship.

The conditions for the invertibility of a time-varying delay system

were found, and the general inversion problem was discussed from the

matrix point of view. The known theorems on the existence of inverses

and quasi-inverses were presented and were extended for the recovera-

bility of a signal of finite duration. The application of the double series

to the integral eigenvector equation reduced it to a matrix eigenvector

equation. It was suggested that a judicious choice of expansion functions

could lead to faster convergence than Fredholm's method.

Based on the double expansion, a method was presented for syn-

thesizing system function by a parallel combination of separable networks

where one has some control over both the networks and the multiplier.

By considering the double series as a bilinear form, a unique realization

was found in which a resistive cross-coupling network connected the
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networks to the multipliers so that only N networks and N multipliers

were used to achieve an N term expansion. A synthesis scheme

using the link structure and based on the sampling expansion was also

presented.

The system function for a satellite communication was found, and

correction for unwanted Doppler shift and time delay in an air-to-ground

communication system and in a side-looking radar system were suggested.

The problem of finding a whitening filter for nonstationary noise was

formulated. The matched filter for a channel with nonstationary noise

was shown to consist of a whitening filter followed by a matched filter

to the signal component of the output of the wbiten-'ng iliLcr. Because

the v'hitening filter is time-varying, the signal component of 1ts output

is different for different input signal starting times and thus the matched

filter varies withtime. When the noise varies slowly enough to appear

constant over the time duration of the signal, the optimum signal is

the impulse response, delayed by T, of a constant whitening filter.

The transmission time T is chosen at a time when the noise power is low.
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APPENDIX. SAMPLING THEOREMS

A. SAMPLING THEOREM IN ONE DIMENSION

Let f(t) have a Fourier transform F(w) where F(w) is zero

outside the band jwi < 2rB . In this band, F(w) can be expanded in a

Fourier series:

ikw

Z aake for [•1 S ZrrB
-0O

F(w) =

0 for Iwi > 2TrB (A.i)

where

ZiTB ikw

ak f F( ) eB dw

1 f-/kf(A. 
2)

Thus,

Co ikw

-B Zf(Be for Iwi- ,wB

F(w)=

o for wi > 2TrB (A. 3)
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and

Z2rB t k

f(t) = - f I f e1W 2B)dw
-00 -2-r

0 k sin ZTrB t - (A.4)

fB ZTrB (t-k)
-(01 -B6

This last equation was viewed by Middleton6 as an interpolation

formula with the weighting function (sin ZwrBt)/2rrBt. He postulated the

following general interpolation formula in which f(t) and g(t) are

assumed to be Fourier transformable:

f(t) = f(tk) g(t - tk) (A. 5)

-00

Equation (A. 3) can be rewritten as

f(t) = X f f(T) g(t-r) 6(T - tk) dT (A. 6)

-a0 -a)

and by reversing the order of summation and integration,
CO 00

f(t) = f(1T) g(t - r) /& 6(rT - td (A. 7)

-a) -00

The impulse train can be expanded in the Fourier series:

00 2, ffikt

(t - tk) = T. e k T (A. 8)

-aO -a)
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where tk = kT . Now f(t) is seen to be a sum of convolutions of g(t)/T

-Zrikt/T
and f(t) e , therefore the Fourier transform of f(t) becomes

0o

F(w) =-T-- F +U T( (A. 9)

-(0O

If one .:iooses G(w) in such a way that Equation (A. 9) is an identity,

then Equation (A. 5) will also be an identity and g(t) will be a suitable

interpolation function. Equation (A. 9) is an identity for any F(W)

limited to the band 1w I <_ 2TrB if

T <ý •(A. 10)

and

T for IH w_ 27rB

G(w) =

0 orZrk Zw •l< T
0 for 2 -w IS-- + 2TrB, for k=1, 2....

(A. 11)

If T = 1/2B and F(w) = 0 at only a countable number of points in the

band I•w 2•TB, then the interpolation function g(t) is unique because

for Ijw < 2rrB

G (w)

0 for Iwi > 2rB (A. 12)

except at a countable number of points, and thus
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2TTB

e [ i \ diwt sin ZirBt (A. 13)
dw = 2T-Bt

-2TrB

Note that if the function is sampled at faster than 1/2B seconds,

on the intervals

2 rk + 2vB < w < 2Tr(k+1) ZTrB for k = 0,1,2,...
T T

F (w +.2=k 0 (A. 14)

From Equation (A. 9) it is seen easily that G(w) is arbitrary on these

intervals. For a particular F(w), these intervals are part of the total

set

w F (L+ 0 T < 10,

-00

on which G(w) is arbitrary. For example, let

T for IwI <T 2B

G(w) a for 2TrB < IwI < L 2 sB (A. 15)T

0 otherwise

in which case

g(t) := (T - a) sin 2ZrBt + a I - (IA. 16)
wt rrt
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Whereas the interpolation function of Equation (A. 13) when shifted by

tk is orthogonal and g(t - tk) is zero at the other sampling times

t.(j / 0), and thus a truncated expansion must agree with f(t) at the

sampling time tk, the function of Equation (A. 16) when shifted by tk

is not orthogonal, and g(t - tk) may be nonzero at other sampling

times t.(j / k) . Therefore a truncated expansion would not necessarily

agree with f(t) at the sampling times tk-

Petersen and Middleton5 used the arbitrariness of the function

g(t) as an essential feature of their extension of the sampling theorem

to Euclidean N-space.

B. THE SAMPLING THEOREM IN EUCLIDEAN N-SPACE

Consider the function f(1) = f(xV, x 2 ..... xn) whose Fourier

transform Ftcý) exists as

F(Z) = F(wj, w,, .. n) = f (') e Wx dx` (A. 17)
x

F(M) is said to be ''wave-number limited'' if it vanishes outside of

a finite subspace R of "wave-number space' Q2. In this case one

can define a basis

1V = - 2' Vn (A. 18)

in terms of which the lattice sampling points are expressable as

v[ = + I + ... + n V
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1 l2 1 n = 0±1, ± 2.... (A. 19)

It is desirable to find the conditions on g(t) which make it an

interpolation function such that f(-) is expandable in the series

f() g( (A. 20)
[ii'

By using the N-dimensional Dirac delta function, Equation (3. 22) can

be written:

f(x) J f(p) g(x -) T. 6(P - v) d_ . (A. 21)
x [1]

It can be shown that

• -• i - poU '_ý]
""= [m e (A. 2.2)

[IM]

where Q is the hypervolume of a parallelepiped with edges v. and k3 Uk

related by

v U k = 21'jk (A. 23)

where 6jk is the Kronecker delta. By using Equation (A. 22), Equa-

tion (A. 21) becomes

(X ff df"•m] % ' -
f(x) = ')d (A. 24)
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As in the one-dimensional case, Equation (A. 24) is recognized as a

sum of convolutions. Taking the Fourier transform of both sides yields

G L• Sy rw)=GF(' + -u[] (A. 25)

m

Conditions on G(W) and uk for which Equation (A. 25), and subsequently

Equation (A. 20), are identities follow:

1. The vectors uk nuist be lange enough and, so oriented that

the shifted spectra do not overlap.

2. Let

Qfo r W ER

G(w= (A. 26)

L for w c R In]

where R is the subset R shifted by the vector ur-,

R mI ] = {I- E R (A. 27)

R [] is the subset on which F(a• + may be nonzero. For any

F(w) which vanishes outside R, G(S) is arbitrary on the compliment

of the set

~R

G(t') will be unique if

R[R = , (A. 28)
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but because of the shape of R, one may not be able to choose the vectors

{•k/ such that Equation (A. 28) is satisfied. If not, G(t') will be arbi-

trary over some nonzero subset of 0. In the one-dimensional case,

however, one could always choose T = 1/ZB (T is the length of the

vectcr u ) in such a way that the domains of F(w + 2Trk/T) covered

the set Q = (-oo, oo) and G(w) was unique.

The N-dimensional sampling theorem can now be stated: A

function f(") whose Fourier transform Fjw- vanishes outside of a

finite subset R of wave-number space 0 can be reproduced from

its sample values taken over a lattice of points 1Z1v1 + 1 2 v 2  + +I + nvnj

for 1 , 129..., n = ±1, ±2,+.... where the vectors { are chosen

to assure nonoverlapping of the subsets Rin] of 02, where R [nj is

the set R shifted by the vector um and vj • uk = ZTr6jk.

In the case where R is a parallelepiped centered at the origin,

a particularly simple interpolation function results:

N sin-• uk• xN (A -_.
g(x) = s (A. 29)

k= 1 7 uk x

If R is reztangular and centered at the origin and uk is chosen
kth

in the direction of the k unit vector, then
I

N sin ukxk 
(3

g(x) 1 7-U - 1 (A. 30)
Z~ Uk 'k

Equation (A. 30) is the interpolation function that can be considered the

simplest extenbion from one to N dimensions. Actually this interpolation
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function can be used to reconstruct any function f(-x) whose Fourier

transform F() vanishes outside of an irregularly shaped finite region

R' by choosing a rectangular region R centered at the origin which is

large enough to include R' . The conditions of the theorem are satisfied

for the larger region R.

Although the simplicity of the sampling function of Equation (A. 30)

makes it especially useful, it should be mentioned that choosing those

lattice vectors may lead to a relatively inefficient sampling lattice.

An effective sampling lattice is one in which the vectors u are

chosen to "pack'' the spectra {F(t+ U~) as close as possible to

each other without overlapping, thus assuring that the least number of

samples per unit hypervolume in X space are needed. For example,

in one dimension for T = 1/ZB the spectra F(w + ZTrk/T) are adjacent.

This sampling time is the slowest possible; thus the least number of

samples per unit time are required.
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