RESEARCH REPORT EERL 27 N. LISKOV

DDC
‘]“,1[8_(?‘1”3[1

JAN 19 1965

Analytical Techniques for

Linear Time-Varying Systems N

DDCIRA C

November 1964
TR No. 81 Contract No. DA36-039-AMC-000 34(E)

.

ELECTR”ICAL ENGINEERING
R'SEARCH LABORATORY




ELECTRICAL ENGINEERING RESEARCH LABORATORY

CORNELL UNIVERSITY
Ithaca, New York

RESEARCH REPORT EERL 27

ANALYTICAL TECHNIQUES FOR
LINEAR TIME-VARYING SYSTEMS

N. Liskov

SYSTEM THEORY RESEARCH
Technical Report No. 814 November 1964

Published under U. S. Signal Corps Contract No. DA36-039-AMC-00034(E)
U. S. Army Electronics Laboratories, Fort Monmouth, N. J.



ACKNOWLEDGMENTS

The author would like to express his gratitude to his special
committee chairman, Professor N. DeClaris, and to the other members
of his committee, Professor H. S. McGaughan and Professor R. P.
Agnew, for their valuable guidance and advice in the preparation of this
thesis. He also wishes to thank Professor J. S. Thorp for helpful sug-
gestions and the U. S. Army Electronics Laboratory and the U. S. Steel

Company for their support of this research.

~1ii-



TABLE OF CONTENTS

LIST OF FIGURES

ABSTRACT
I. INTRODUCTION
A. THE RELATIONSHIPS AMONG SYSTEM
FUNCTIONS OF TIME-VARYING SYSTEMS
B. DRIVING-POINT IMMITTANCE FUNCTIONS
OF LINEAR TIME-VARYING SYSTEMS
C. TRANSFER IMMITTANCE FUNCTIONS
D. DUALITY CONCEPTS

II.

I1I1.

CASCADED SYSTEMS

A.

m o o v

F.

SYSTEM FUNCTIONS FOR CASCADED SYSTEMS
THE TERMINATED MULTIPLIER

PERIODIC MULTIPLIERS

LINK STRUCTURE

ALTERNATING STRUCTURE WITH
EXPONENTIAL MULTIPLIERS

MODULATOR-DEMODULATOR STRUCTURE

REPRESENTATION OF SYSTEM FUNCTIONS BY
SAMPLING AND SERIES EXPANSIONS

A,

B.

INTRODUCTION
SAMPLING EXPANSIONS

EXPANSION OF THE SYSTEM FUNCTIONS IN A
DOUBLE SERIES

Page

ix

X1

-J

10

13
13
15
19

22

24

28

31
31

32

37



Page

1. Time-Invariant Systems 37
¢. Time-Varying Systems 39
D. SYNTHESIS BY DOUBLE EXPANSION 47

IV. APPLICATIONS CF EXPANSIONS: THE MATRIX

APPROACH 53
A. INTRODUCTION 53
B. MATRIX CHARACTERIZATION 53
C. THE INVERSION PROBLEM 57
1. Finite Matrices 62
2. The Inverse in Feedback Systems 64

3. Relationship Between Impedance and Admittance
Functions and Equivalence tc the Inversion Problem 66

D. MINIMUM DISTORTION SIGNALS AND SYSTEMS 67
E. APPLICATICN OF DOUBLE SERIES TO THE
EJGENFUNCTICN PROBLEM 72
1. Error Evaluation 74
V. SYNTHESIS OF TIME-VARYING SYSTEMS 76
A. INTRODUCTION 76
B. THE CROSS-COUPLED REALIZATION 78
C. BILINEAR FORM 81
D. APPROXIMATION IN ONE DIMENSION 84
E. REALIZATION BASED ON SAMPLING EXPANSION 86
VI. APPLICATIONS AND CONCLUSIONS 89
A. SATELLITE COMMUNICATION SYSTEM 89
B. AIR-TO-GROUND COMMUNICATION SYSTEM 95

C. SIDE-LOOKING RADAR 98

-vi-



D. FEEDBACK CONTROL SYSTEM
E. A WHITENING FILTER

F. MATCHED FILTER TO A SIGNAL IN NON-
STATIONARY NOISE

1. Optimum Signal Design for Slowly Varying Noise

G. CONCLUSIONS

APPENDIX. SAMPLING THEOREMS
A. SAMPLING THEOREM IN ONE DIMENSION

B. THE SAMPLING THEOREM IN EUCLIDEAN
N-SPACE

REFERENCES

-vii-

Page

100

102

107
113

115

118

118

122

127



.10
.11

.12

LIST OF FIGURES

Relationships among System Functions.,
Two Time-Varying Systems in Cascade.
G-Separable System.
H-Separable System.

Multiplier with Its Associated Input and Output
Networks.

Magnitude and Phase of B(jw).
Magnitude and Phase of C(jw).
Magnitude of H{jw,t).

Phase of H(jw,t) at t=0.

Phase of H(t, jw) Showing Three Sections of
Phase Cylinder.

Magnitude and Phase of H(t, jw).
Link Structure.

Series Alternating Structure.

Coefficient Evaluation Scheme for Sampling Series.

Coefficient Evaluation Scheme for Single Series.

Coefficient Evaluation Scheme for a) k(t,1);
b) K(Wac)r C) Ki(W,T); d) Kz(t)é ) '

Coefficient Evaluation Scheme for Double Series.
Plot of h(t,v) on R = (0, T)x(0, T/2).
Realization of h(t, v},

Feedback System.

Cross-Coupled Realization of h{t, v).

-ix-

Page

14
16
16

17
21
21
21

21

23
23
25
25
36

38

41
42
49
52
65

80



Figure

wn

tw

.10

Realization of h(t,v) With One Passive Network.
Sixteen-Term Expansion of h(t, t).

Realization of k(t,7) Based on the Sampling
Expansion.

Sampling Expansion Realization of k(t, 7) using
rink Structure.

Ceometry of Satellite Comnmunicaticn System.

Doppler Shift Geometry.

Geometry of Air-to-Ground Communication System.

Delay versus Time.

Plot of t - d(t) versus Time.
Doppler Shift versus Time.
Side-Looking Radar System.
Feedback Control System.

Matched Filter No. 1 for Channel with Non-
stationary Noise,

Matched Filter No. 2 for Channel with Non-
stationary Noise.

Page
83

85

87

87
90
92
95
97
97
97
99
100

108

108



ABSTRACT

The definition of several new systern functions leads to a more
complete characterization of time-varying linear systems. A family
of twelve system functions, including the impulse-response K system
functions, are used to describe time-varying linear systems. The re-
lationships among the various system functions are clearly illustrated.
The K system functions are shown to be convenient for the analysis cf
cascaded systems. The time-frequency duality concept is discussed with
respect to the system functions, and the introduction of physical vari-
ables extends the duality concept so that knowing one relationship is
equivalent to knowing four relationships.

The expansion of system functions in terms of a complete set of
functions in two dimensional space or in a sampling series for an ap-
propriately band-limited and/or time-lir .ited system leads to a matrix
charactlerization of time-varying iinear systems. Schemes for evalu-
ating the coefficients of the expansions are described. The causality
condition requires that the matrix of k{(t,7) be lower triangular.
Marcovitz's findings, using the matrix of k(t,7), on the conditions
for the existence of quasi-inverses and inverses to time-varying
systems are extended to the recoverability of a signal of finite duration.
The matrix formulation is applied to the problem of finding eigen-
functions and eigenvalues for timer-varying systems. When one knows
the eigenvectors of a time-varying system, the input-output relation-

ship is oreatly simplified.
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When the h(t,v) function is expanded in a series in terms of a
complete set of realizable networks {lbi(v)} , it can be realized by a
parallel combination of h-separable networks in which a typical branch
consists of the network sb.i(v) followed by the multiplier ai(t) . Be-
cause of the difficulty in synthesizing an arbitrary multiplier, one con-
siders the double expansion of h(t,v) in terms of the complete set
{¢i(t)¢j(v)} where one has some choice in the set of multipliers {¢.l(t)}.
In particular, if the multipliers are sisoids the multiplier becomes a
standard modulator network., A unique realization, basea on the
double expansion, is presented where the networks {¢i(v)} are con-
nected to the multipliers {q;i(t)} by a resistive coefficient matrix. A
realization scheme using the link structure and based on the sampling
theorem is also presented.

The characterization and analysis methods are shown to be
applicable to characterizing a satellite commmunication system and to
correcting for delay and Doppler in an air-to-ground communications
system and in a side-looking radar surveillance system. The matrix
methods are applied to a feedback control system for a time-varying
plant and to finding the system matrix of a whitening filter whose out-
put is white stationary noise when the input is nonstationary noise with
a given correlation Rn(t,'r) . The matched filter for a channe! with
nonstationary rivise is shown to consist of the whitening filter followed
in cascade by a time-varying matched filter that is matched to the
signal component of the output of the whitening filter. When the noise

is slowly varying, the optimum transmitted signal is found.

-X11-



I. INTRODUCTION

Linear time-varying systems have received considerable atten-
tion in recent years. Besides the intellectual challenge of the extension
of system theory that linear time-varying systems present to the the-
orists, there is an increasing practical need for techniques of analyzing
and synthesizing these systems. Description and analysis of physical
systems by time-varying models, analysis of existing time-varying
systems, more effective use of physical devices exhibiting time-
varying characteristics, and adaptive feedback control of time-varying
systems are some examples of practical as well as theoretical interest.

Little work in time-varying systems had been done from the
system theory point of view before 1950 when Zadel’z1 introduced the
H system function. Since then, however, a number of articles on time-
varying system theory have appeared in the liaterature. The G system
function that 1is the dual of the H-system function was introduced by
Gersho,'2 and more system functions have been introduced by others.3’ 4
In this connection, time-frequency duality seems to play an important
role.5 A clear description of all the various system functions and the

transform, functional, and dual relationships among them is now pos-

sible.

A. THE RELATIONSHIPS AMONG SYSTEM
FUNCTIONS OF TIME-VARYING SYSTEMS

In the study of time-varying systems, various system functions



e rise that are useful in characterizing the system and in determining
the output from a given input. For a given system, one system function
may be easier to find or work with than another system function. All
the system functions are now defined, and the attempt is made to show
clearly the relationships which exist among all the system functions.
This information will be useful for finding dual results, and for finding
one system function when another system function is given.

In Figure 1.1, the relationships among the system functions are
shown in diagram form. Some of these functions are familiar, but
others that are new are explained here,

The system functions in the time-time domain give the system
output in time, to an impulse in time applied at the input. These func-

tions are:

k{t,7) = output at time t to an input applied at time 7,
g(v, ) = output v seconds after an input applied at time r,
h{(t,r) = output at time i to an input applied r seconds ago.

The time-shift or "age' variables are
o

Vv = r =t -1 . (1. 1)

The impulse-response functions in time are therefore related by the

changes of variables,

glv, 7 = k(r+v, 1) , (1 2)
and

h{t, r} = k(t,t-r) . (1. 3)
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Note that the function h{t,r) has its variables interchanged from pre-
vious definitions, later leading to the fact that corresponding variables
of dual functions are duals. This was not true before, unless one re-
labeled the variables of either the function or its dual.

The system functions in the frequency-frequency domain give
the system output in frequency, to an iimpulse in frequency applied at

the input. These functions are:

K(s,\}) = output at frequency s to an input at frequency \,
N(p,\) = output at p cycles higher than the input frequency X\,

M(s,c) = output at frequency s to an input at o cycles lower.

The frequency-shift variables are
p =0 = s - A . (14)

The impulse-response functions in freq'uency are therefore related by

the changes of variables,

N(p,\) = K(p+ X\ (1.5)

and

M(s,o0) = K(s, s - o) . (1.6)

The frequency-impulse-response functions K, N and M are, re-
spectively, the double Laplace transforms of the time-impulse-
response functions k, h and g . The functions k(t,7) and K(s,\),
h(t,r) and M(s,c¢), and g(v, 1) and N(p,\) are duals, and their

corresponding variables are dual variables.



The functions in the time-frequency and frequency-time domains
are of a mixed nature and must be discussed separately. The familiar
system functions G(s,7) and H(t,\) are defined by a single trans-
form of g(v,T) and h(t,r), respectively. These system functions are
convenient because they look like system functions of time-invariant
systems. This is evident from the alternate definitions of the G{(s, 7)

and H(t,\; system functions

G(s,m) = ~{2b : (1.7)
X(s) s
X(s) = e 57
and
H(t,\) = X8 : (1.8)
x(t)
x(t) = e)\t
The functions G(s, 1) and H(t,\) are duals.
The tunctions Ki(s,'r) and Kz(t,)\) are defined as single
transforms of k(t, 1) by
Q0
K, (s, 7) = fk(t,'r) e Star | (1.9)
-
and
0
AT
Kz(t,)\) = fk(t,T)e dr . (1. 10)
<)
It can be shown easily that
_ -sT
Ki(s,'r) = G(s.71) e = Y{(s) st , (1. 11)
x(s) = e
[x(t) = 6(t - 7)]




and

Ky(t\) = H(t,\) e = y(t) : (1.12)

x(t) = eM
[ X(s) 218(s - A\)]

Now a physical interpretation can be given to Ki(s,r) and
Kz(t,X) . The function Ki(s,'r) is the output in frequency to an im-
pulse in time which is applied at time t=71, and the function Kz(t,)\)
is the output in time to an impulse in frequency applied at frequency

s=A . The system output is given by

o0
Y(s) = fKi(s,'r) x(7) dr , (1.13)
-0
and
oo
y(t) = IKZ(t,k) X(\) dx . (1. 14)
-0

The mixed-impulse~-response functions Ki(s,-r) and Kz(t, \) are duals.
One convenience of the interpretation of the K functions as impulse
responses is that one has to remember only one input-output equation,

instead of four:
y{output variable) = fy(output variable, input variable)
x(input variable) d{input variable) , (1. 15)

where Y is the K-system function which is appropriate for its

variables.



The complimentary system fuvactions H'(p,t) and G'(v,o)

are defined according to Figure 1.1 as

Qo

H'(p,r) = fh(t,r)e"’tdt : (1.16)
-Q0
and
QO
G'(v,q) = j'g(v,f) e "Tar . (1.17)
-0

No physical significance for the complimentary system functions has
been found yet, but they are still effective in characterizing the sys-
tem because they are uniquely related to the other system functions.
The complimentary system functions H'(p,r) and G'(v,o) are duals,

and the following relationship holds between them:

H'(p,r) = G'(r,p)e-rp . (1.18)

B. DRIVING-POINT IMMITTANCE FUNCTIONS
OF LINEAR TIME-VARYING SYSTEMS
The G , H and K system functions give relationships
between input and output variables of a system, ’without regard to the
physical quantities that the variables represent. The input and output
variables in the driving-point case represent voltage and current, and
the G , H and K system functions take on an impedance or admit-

tance character. The driving-point immittance functions are defined by



I{s) i(t)

G (S,T) = = H (t))\) = —

Y E(s) Y e(t)
E(s) = e ST

E(s) _ eft)

G,(s,7) = —= H,(t,\) = —=

z 1(s) z i(t)
I(s) = e 57

Kyyls:1) = Ls)

K, ,(s,7) = E(s)

e(t)

8(t-7)

i(t) = &(t - 1)

KZY(t,X) = i(t)

KZZ(t,X) = elt)

elt) = oM

i(t) = e)\t

I(s) = 2m&(s-\)

(1.19) -

(1. 20)

E(s) = 2w8(s - \)

(1. 21)

(1.22)

From the definition of the K function and its physical signifi-

cance, it is clear that the time-to-time and frequency-to-frequency

impulse-response functions are

KY(s, \) = I(s)

Kz(s,)\) = E(s)

Relationships between the driving-point variables are found

ky(t,7) = i(t)
E(s) = 2786(s - \)

kz(t,T) = ef(t)
I(s) = 2mw6(s-\)

e(t) = &(t-1)

1i(t) = 6(t - 1)

(1. 23)

(1.24)



from the above definitions and from previously obtained equations

relating input and output variables. They are

i(t) = fHY(t » A) E()\) e)\t dX\ =fKZY(t,)\) E(\) d) :ka(t,T) e(r)dr

(1. 25)
e(t) =[Hz(t,X) I(\) e)\t dXx =fKZZ(t,)\) I(\) dX\ =sz(t,T) i(7) d7 ,

(1. 26)
I(s) =fGY(S, 7 e(r) e °Tar =[K1Y(s,f) e(r) dr =IKY(S’>‘) E(\) d\

(1.27)
E(s) =sz(S,T) (r) e ®Tdar =fKiz(s, ) i(7) d7 :fKZ(s,)\) I(\) dX

(1. 28)

C. TRANSFER IMMITTANCE FUNCTIONS

Transfer immittance functions of time-varying linear systems
can be defined by direct analogy to time-invarient systems. For
example, in time-invarient systems the transfer impedance ij(s)
is defined by

E.(s)
(1. 29)

Z. (s) =
ik L.(s)
L(s) = 0, j#k

By direct analogy the following can be defined:



E (s)
G, (s,7) = =2 , (1. 30)

2k L (s)
e T, j=k
I.(s) =
J 0 , j#k
e.(t)
H, {t,\) = - : (1. 31)
jk i (£)
At .
e , Jj=k
i.(t) =
J 0 . j#k
K (s,7) = E.(s) , (1.32)
1ij J
e-S‘r ,j=k
Ij(s) =
0 , j#k

and similarly for k (t, ) , and for K (t, 7y . Analogous
ij ij
definitions can also be made on an admittance basis (GY (s, 1) etc.)
ik
or on any mixed-parameter basis.

D. DUALITY CONCEPTS

The introduction of the physical variables, current and vol-
tage, has added a new dimension to duality. First, one can consider
duality on the basis of dual-system functions. It was seen before that
G(s, 1) , H{t,\) ; Ki(s,'r) , KZ(t,)\) etc. are dual-system functions,
and their corresponding arguments are dual arguments. Adding a
subscript of Z or Y on the system function does not affect this type

of duality, hence GY(s,-r) , HY(t,X) ; KiY(S’T) , KZY\t,k) etc. are

-10-



duals. To take a dua! on the basis of dual-system functions, vne re-
places all system functions by their duals and uses dual arguments.
Equations (1. 25) and (1.27), and Equations (1.26) and (1. 28) are duals
on this basis.

Secondly, one can consider duality on the basis of dual physical
quantities suchas v and 1, Z and Yetc. Using the same system
functicn does not affect duality on this basis, hence GZ(S, T), GY(S, 7);
HZ(t,)\), HY(t’)‘) etc. are duals. To tale z ~uirl on the basis of dual-
physical quantities, one replaces all physical quantities by their
duals. On this basis, Equations (1.25) and (1. 26) and Equations (1. 27)
and (1. 28) are duals.

Finally one can consider ''complete'' duality, that is duality on
the basis of both physical quantities and system functions. To take a
""complete'' dual, one replaces physical quantities by their duals,
system functions by their dual-system functions, and all arguments
by their dual arguments. On this basis, Equations (1.25} and (1. 28)
and Equations (1.26) and (1. 27) are duals.

As a consequence of this extended duality, kn.wing one rela-

tionship is equivalent to knowing four relationships instead of two.
For example, given Equation (1.25), one can take its dual on the basis
of dual-system function to obtairn Equation (1. 27); one can take its dual
on the basis of physical quantities to obtain Equaticon (1.26); and one
can take its ''complete'' dual to obtain Equation (1. 28).

This concept of system-function duality has a physical signifi-

cance. .'or example, a time-invariant systern and a time multiplier

11



are duals, and a time-varying delay system is the dual of a selective

frequency-shift system.

-12-




II. CASCADED SYSTEMS

A. SYSTEM FUNCTIONS FOR
CASCADED SYSTEMS
The impulse-response function k(t,r) is useful in finding the
over-all system function for a cascade of time-varying systems when
the individual system functions are known. For two systems in cas-
cade, as shown in Figure 2.1, the over-all system function k(t,T)
can be found easily. When the input is an impulse in time applied at

time t = 7, the output of the first network in time is
1
y(t) = k(1) (e,7)y (2. 1)

where k(i)(t,'r) is the impulse response of the first network. Applying
the input-output relation of Equation (4. 15) to the sccond system with

y(t) as its input yields the over-all impulse-response function:

(00
k(t,7) = fk(z)(t,ti) kM myae, (2. 2)

-00

Equation (2. 2) is the convolution product for time-varying systems.
In a similar manner the over-all mixed impulse response is found
to be

(e o)
K,(s,7) = [K(f)(s,ti) k(i)(ti,-r) dt, . (2. 3)

-0

13-



o k(l)“’n : o k(Z)(t,'r)——o
x(t) y(t) z(t)

FIGURE 2.1. Two Time-Varying Systems in Cascade.

Equations for the other K-system functions are obtained by taking the

duals of Equations (2.2) and (2. 3):

K(s\) = —fo‘z)(s,pi) kM p, N dp,
2mj Q

K,(t,\) = #f@”(npﬁ kM p, 0 ap, (2. 4)
2mj Q

These results are easily extended to a system of n networks in cas-

cade. The over-all k(t,r) function is

1

-

s>
k(t,T) =j. .:}'k(n) (t.tn-i) k(n-i)(tn_i, tn—Z) oo

k(z)(tz, ti) k(i)(ti,'r) dti. .. dtn_ih ; (2.5)

the over-all Ki(s,‘r) function is

n-1
e,

K,(s,7) = Jf KMt e He e )

k(z)(tz, ti) k(i)(ti,T) dti. .. dtn_1 (2.6)

-14-



The other K system functions can be expressed as the duals of Equa-
tions (2.5) and (2.6). Equation (2.5) is not the only expression for the
over-all k(t,7) function because the convolution may be done over any

mixed basis. A more general expression for k(t,7) is

n-1
m —"
k(t,7) = (—i—) f-:[Y(n)(t,un_i)Y(n'i)(pn_i,Hn_z)
27j
Y(Z)(uz, Hy) Y(i)(nz, Byddpy oo dp 0 (2.7)

where |.Lj is either a time or a frequency variable, and K(‘])(pj, }‘Lj_i) R
K(n)(t, Hn-i) and K(i)(pi,r) are the K-system functions appropriate

to their arguments.

B. THE TERMINATED MULTIPLIER

An important cascaded system is the terminated multiplier.
Because of parasitic elements at high frequencies, it becomes neces-
sary to consider multipliers along with their associated input and
output networks. The link structure can be regarded as a parallel
connection of terminated multipliers; therefore, the analyses pre-
sented here are applicable to studying the link structure as a high-
frequency modulator. In modulating systems it is important to de-
termine when the system functions are separable into a function of the
time variable multiplied by a function of the frequency variable be-

cause it is easy to relate the input to its modulated signal when the

system function is separable.

-15-



The systems of Figure 2.2 and Figure 2.3 are G-separable

ard H-separable, respectively, vwith

G(s,7) = a(1) B(s) (2.8)
for the first system, and

H(t,\} = a(t) B(\) (2.9)

for the second system. The terminated multiplier is shown in Figure

2.4. The over-all system function Ki(s,'r) is found by considering the

O—— a(t) ) B(s) —oO

FIGURE 2,2. G-Separable System.

O—— B (a) a(t)

FIGURE 2.3. H-Separable System.

terminated multiplier as the network B(s} in cascade with the G-

separable network consisting of the multiplier a(t) followed by the

network C(s} . Using Equation (2. 3) with

KMer) = bt (2.10)

16 -



x(t) y(t)
o— B (s) —O- C(s)
X(s) Y(s)
FIGURE 2.4. Multiplier with Its Asso-
ciated Input and Output Networks.
and
K(iz)(s,'r) = a(r) C(s) ™7,
yields
o
K1(s,'r) = C(s) fa(t) e~ St b{t-7) dt
-0
Making the change of variables
r = t-rT s
gives.
o
G(s, 1) = C{(s) f b(r) a(r+7) e > dr

the terminated multiplier as an H-separable netwurk followed by a

-

The over-all Kz(t,X) function can be found by considering

network C(s) with

-17-
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ks, n) = B A(s-N) (2. 15)
and
Kf,_z’(c,x) = co) e . (2. 16)
From Equations (2.4) , (2.15), aad (2. 16),
K,(t,0 = 2 [ A cls) et as (2.47)
27j Q
making the change of variables,
P = s - A\ , (2. '18)
yields
Hit,\) = B fA(p) Clp+\) ePlap . (2.19)
2mj 9
It appears to be difficult to find the general conditions under which
the system functions of Equations (2.14) and (2.19) are separable. If,
however, one assumes the multiplier to be of exponential form:
p.t
a) = e ° Als) = — | (2. 20)
s ~ Py
then
P,T
G(s,7) = B(s-p) C(s) e
= B(s-p,) C(s) a(1) . , (2.21)
and
Pt
H(t,A\) = B(\) C(X+po) e
= B()\) C()\+po) a(t) . (2. 22)
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From Equation (2. 22), Equation (1. 12) and Equation (1. 14) one sees

that the output of the terminated multiplier for x(t) as the input is the

Pot

signal y(t) modulated by af(t) = e , where

y(t) = —— [BO) C+p) X(\) eMax . (2.23)
2mj Q

Thus, for a separable terminated multiplier structure the input is

reshaped according to Equation (2. 23) and then is modulated by the

multiplier af(t) .

C. PERIODIC MULTIPLIERS

Now one can easilv extend these results to the class of periodic
multipliers a(t) , which is indeed an important class of multipliers
for the general case of modulation. If a(t) is periodic with period T,

it can be expressed in a Fourier series,

p:t
a(t) = Z}i e ', (2. 24)

p. = ;32X | (2. 25)

27

where

Now, from Equations (2. 21) and (2. 22), the system functions become

P: T
G(s,7) = Zai B(s -p,) C(s) e v (2. 26)

-19.



p.t
H(t,\) = Zai B(A\) C(A+p,) e S (2.27)
By considering certain particu'... functions B(s) and C(s) ,
one can make some interesting observations from Equations (2. 26)
and (2.27). If, for example, C(\) is periodic along all vertical axes

with period T , then

C()\+pi) = C(\) (2.28)
therefore

p;t

H(t, \) Zai B(\) C(\) e

B()\) C(N\) aft) . (2.29)

il

Similarly if B(s) is periodic along a!ll vertical axes with period T ,

B -p) = BN (2.70)
and

G{(s,7) = B{(s) C(s) a(T1) . (2. 31)

The H function of Equation (2.29) and the G function of Equation
(2. 31) are completely separable.

One can also regard Equations (2.29) and (2. 31) in terms of
sampling. If, for example, B(\) has a spectrum B(jw) along the
jw-axis with magnitude and phase shown in Figure 2.5, with C(jw)
having the magnitude and phase shown in Figure 2.6, and a(t) a

periodic time function such that

w =T (2.32)

~-20-
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(2.33)

then H(t,\) has the maygnitude curve shown in Figure 2. 7.

Note that |H(t,\)| is independent of time. The phase of
H(t,\) does, however, vary as a function of time. At t = 0, the
phase is given in Figure 2.8, and at time t , one must add nTt/2n
degrees to the piece centered about nu0/5 .

One can give a geometric interpretation to the phase of H(jw,t);
i.e., 2ach piece in the curve of Figure 2.8 is traced on the surface of
a cylinder of unit radius centered about the w axis, and a cut is made
between each nonzero piece in Figure 2.8. Thus the original cylinder
is divided into a number of secticns. Now the cylindrical section that
contains nwo/S rotates v.ith angular frequency nuo/S radians per
second, and the phase angle at W= w, is measured in a plane parallel
to the x-y pline at w=w, . The phase of Hit,jw) , viewed in this
way, is shown in Figure 2.9.

Now it is eas *‘o0 see what would happen for other spectra and
values of T . 1Uf .n cne above example, T > wo then H(t, ju) would
have only one sample, with magnitude and phase shown in Figure 2.10.

Note that H(t,jw} 1s not a function of t in this case,.

D. LINK STRUCTURE

The methods fur finding the system function of a multiplier with
its associated input and output networks can be used to analyze the link

structure. The link structure can be thought ¢f as having the form



FIGURF 2.9 Phase of H(t,jw) Showing Three Sections of Phase Cylirder.

A

 [H(t, jw)]

AL H(t jw)

FIGURFE 2.40. Muagnitude and Phase of Hit, jw) .



shown in Figure 2,11, If the a(t)'s are periodic multipliers, i.e.,

E Pt
_ i
a (t) = a, e , (2. 34)

1

then
Poct
H(t,\) = ay B (\) C (h+p)e
k 1
Pyt
= Bk(X) an Ck()\ + pik) e , (2. 35)
k 1
and
Pt
G(s,1) = Ck(s) a Bk(s - pik) e . (2.36)
k i

E. ALTERNATING STRUCTURE WITH
EXPONENTIAL MULTIPLIERS

The system functions associated with the series alternating

structure of Figure 2.412 when the multipliers are exponential,

p.t

1

ai(t) = e , (2.37)

have the separable forms:

H(t,\) = Bi(k) BZ()\’rpi)... Bn()\+p1+... +pn_1)a1(t)... an-i(t) ,
(2. 38)

and

_24-
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Gis,1) = B1(5~p1—pz—... -pn_i)... Br‘_i(S-pi) Bn(s) ai(T) ... 4 1(7)

n-
(2. 39)
Now consider the particular example of the H(t,\) system
function for a band-limited input X(\) ,
X{(» = 0 for IN] > XO . (2. 40)
Define a restriction of the networks to a band-limited form by
N> -(pyte o P 4N ),
B, (Rip,+... +p ) for 1 k-1 "o
k 1 n-1 A< N «ps=-+.. =p, -1 ,
- o 1 k
Bk()\) )\0 =
0 othc rwise . (2. 41)

Then the quantity of interest for determining the reshaped output time

function x(A\H(t,\} becomes

(p1+. .. +pk_1) t
X A) (L, \) = x';x)[Bi(x) |x0] [B?_(x)no].. .[Bn()\) 'xo] e

(2. 42)
Now one can note that if
L ior A > -(pi+... +pk—1+)\0) ,
A€ AN -p ... - ,
B, (A} [N = “o™P1 Pk-1
k e
0 otberwise | (2. 43)
then
(pyt .. 4 )t
X(\) H(t n) = X(A) e - At (2. 44)
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and x(t) 1is not reshaped at all. This means that if Bk(X) is flat )\o
cycles above and below - (p1 +... +pk_1) , then multiplication of the

input signal x(t) will result.

If one now considers the multipliers in the alternating struc-

ture as periodic functions of time, namely

Pik
ai(t) =Z aiki e ; (2. 45)

R AL |
H(t,)&) = aik te an-ia k Bi(X) BZ()\"’pik )‘. -
i n-1 i
k1k2' . kn_i"-'i
(pik1+"'+pn-1 <)
r ‘n_
Bn (k+p1k +... +pn-i,k e ’
1 n-1
(2. 46)
and
ngn,...n
G(S,T) = Z ai'k e an_i,k Bi X—Pi’k ---pn_1‘k .
1 n-1 1 n-
k ... k =1
n n-1
Bn()‘) e n- (2.47)



¥. MODULATOR-DEMODULATOR STRUCTURE

Note that the alternating structure, which consists o. two
multipliers and three networks, may be regarded as a model for a
modulator-demodulator systermm, where the middle network embodies
the system response of the terminating network of the modulating
multiplier, the channel, and the system response of the input network
of the demodulating multiplier.

The system responses for the modulator-demodulator structure

with multipliers

Pyt Pyt
ai(t) = e and az(t) = e (2.48)
are:
(P1+P2) t
Hit,\) = Bi()‘) BZ(X+p1) B3(x+p1+p2) e , (2.49)
(py +P,I7T

G(s,r) = Bi(s - Py - p3) Bz(s - pi) B3(s) e . (2.50)
For Py = Py and the input limited to the band -)\o <\ < )‘o

and the conditions:

Bi()\‘, and B3()") flat for )‘o cycles above and below
0 cycles, and

BZ(X) flat for XO cycles above and below p, cycles, then
X(A) H(t, N) = X(\) (2.51)

and the input tothe second multiplier is



Pat
X(\) e |

Thus, the input signal has been modulated and demodulated success -

fully.

For the case of multipliers that are real sinusoids, i.e.,

ai(t) = e + e ,

aZ(t) = e + e , (2.52)

one obtains, by using Equation (2. 38),

(py + Pyt
H(t,X\) = B,(A\) B,(A +p,) Bj(A +p, +P,) e

(py - Pt
+ Bi()\) BZ()\ + pi) B3(X +py - pz) e
(PZ - p1) t
+B,(\) B,(x - py) By(h +p, - Py e
+ By(\) Bo(\ - py) By(A - py - p,) e . (2.53)

It py=rp; and the networks satisfy the conditicus in the previous ex-

ample, then

X(\) H(t,\) = 2 X(N\) , (2. 54)

and the input to the second multiplier is



(i 2
X(\) \e + e = X(\) a () . (2.55)

Thus, the input signal has been modulated and demodulated successfully.



III. REPRESENTATION OF SYSTEM FUNCTIONS
BY SAMPLING AND SERIES EXPANSIONS

A. INTRODUCTION

The expansion of a function of several variables in a series,

f(xi,xz,...,xN) = Z aigi(xi,xz,...,xN) , (3.1)
i=1

that is convergent uniformly or in the mean is useful for theoretical
calculations as well as in practical applications where one can store

a close approximation to a continuous function by storing a finite num-
ber of expansion coefficients.

When the expansion coefficients are samples of the function,
the expansion is a sampling series and the functions gi(;) can be
considered as interpolation functions. The extension of the sampling
theorem in one dimension to N Euclidean dimensions by Petersen
and Middleton6 is reviewed in Appendix A. Applications to expan-
sions of system functions will be detailed in this chapter.

Given that the sets

G C
{4’1 i=1,2,3,... » fri=t2....N ’

are complete sets on the intervals (aj, bj) , respectively, then
f(xi, Xy eens xN) can be expanded7 in a mean-square convergent

series in terms of the set
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(2) (N)
(x1)¢i2 (x,). .- ¢,

lN (X

8i(xi, xz, ...,XN) = ¢(1)

i=1,2, ... 1y N

i, 2,

R PIRRERIN

(3.2)
For N = 2 the system functions can be expanded in a double series,
and if the sets
(J)
i

¢
i=1,2, ...

are orthonormal for j - 1, 2, the expansion coefficients can be
evaluated by a network that is quite similar to the network used to
evaluate the samnles for the two dimensional sampling series. If

the system function h(t,v) is expanded in terms of the set

&,(t) & (v) :
14, 5=1, 2, ...
where ¢j(t) is realizable as the impulse response of a passive netwo -k,
then the truncated expansion of h(t,v) has a realization as a paraliel

combination of H-separable networks,

B. SAMPLING EXPANSIONS

The one dimensicnal sampling theorem in time siates that for
a function f{(t}, whose Fourier transform F(«) is zeroc cutside the
band lwl < 2nB, one can specify sampling times and an interpolation

function g(t) such that

Sy




QO

f(t) - Z f(tk) g(t—tk) . (3.3)

-00

When the samples are taken as the slowest rate (tk = k/2B), g(t) is

the cardinal weighting function:

g() = B ETBL : (3.4)

The one dimensional sampling thcorem in frequency states that a
function F(w), whose inverse transform {(t) is time-limited, can bhe
expanded in a sampling series.

The proof of the sampling theorem in N dimensions is reviewed
in Appendix A. In particular, the two dimensional case is of interest
for system functions. The theorem in two dimensions states that for a
function vy(s,r) (where s or r may be either time or frequency vari-
ables), whose double Fourier transform y(u,v) is zero outside a
finite region of the (u,v) plane, one can find sampling times sk and

r, and an interpolation function g(s, r) such that

©
v(s, r) = Z y(sn, rm) g(s-sn, r-rm) . (3.5)
n, m=-00

The sampling times and interpolation function have a degree of arbitrari-
ness depending on the region in the (u, v) plane, outside of which vy
is zero. For the simplest case the region is a rectangle: R:(-so, s’o)""x

(-ro, ro), and the interpolation funciion g(s,r) is a product of cardinal
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interpolation functions:

sin sos sin ror
g(s, r) = s M . (3.6)
o o

Thus, the system function k(t, 7), whose double Fourier trans-
form K(w,{) is zero outside the rectangle R in the (w,{) plane,

where

R = (-2nB, 27B) x (-27W, 27«W) , (3.7)

can be expanded in the series

[o ) n m
n m sin 2B (t- Zﬁ) sin 2mW (1' - -ZW)
k(t, 1) = k==, , (3.8)
2B’ 2w 27B [t- == 2aW [1- =2
n, m=-0o m ( " ZB m ZW)
where because of causality
n m \ _ m n
k(‘Z—B—, z'v—v) =0 , for W ° I8 . (3.9)

The system function K1(w, T) whose double Fourier transform

Kz(t, L) is zero outside the rectangle in the (t, L) plane,
R = (-'I’o, To) x (-2wB, 27B) , (3. 10)

can be expanded in the sampling series

k
o sin T (-”—) X k
K. (o, 1) = K l’_l._ Kk o To sin 27B (‘r- ﬁ) (3. 11)
et L1 To ' 2B T Tk 2B k : :
jyk=-0 o T;) m (T'TB
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The system functions Kz(t, L) or K{w,{) can be expanded by
the sampling theorem if their double transforms Ki(w, 7) or k(t, 1)
vanish outeide of 2 finite portion of the (w,7) or (t,T) planes, respec-
tively. The four possible expansions, depending on whether the system
is time-limited in both variables, frequency-limited in both variables,
or time-limited in one variable and frequency-limited in the other, are
to be expected by time-frequency duality.S

To instrument the expansion of k(t, 7} by the sampling series
given in Equation (3.8), one must take an infinite number of samples.
Since this may be infeasible from a practical point of view, one could
take a finite, but large enough number of samples inside a certain
finite, but possibly large region of the (t, 7) plane with the samples
outside this region small enough so that the truncated sum differs
from k(t, 7) by an acceptable amount of error. For simplicity, take
the region to be the square S = (-TO. TO) x (-To. To) in the (t, 7) plane.

To evaluate the sample values

r
n m _ 2B

k(ZF’ZW) for n = [m wJ,[rnz-W]+i,...,LZBTO ,

(where the symbol [a] means the largest integer contained in the

number a), one applies an impulse to the system at time m/2W and

then samples the output at the times n/2B, for rn > [m2B/2W], by

ltiplying the output by impulses at the times n/2B and then inte-
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In order to evaluate all the sample values in the square S, one

must let m vary over the range (—[ZWTO] , —[ZWTO] +1,..., [ZWTO]) :

To do this there must be either [4WT ] identical systems with
5(t-m/2W) applied to the mth system whose output is sampled as
in Figure 3.1, or the time variation must be controlled by some vari-
able elements that can be ''reset'' to zerg preparing the system to
evaluate the next set of coefficients.

Implementation of the expansion of Ki(w’ T) can be done in a
marner that is easy to instrument. Evaluation of the sample value
Ki(rrn/To, m/2B) for m = -M, -M+1,..., M is done by applying an
impulse in frequency é(w-rrn/To) to the network and then sampling
the output in time at the times m/2B. Thus, one applies a complex
sinusoid of frequency nn/TO and samples the output in time. This
technique is especially useful in measuring channels such as the
atmosphere. The evaluation process must be repeated for each n

to obtain all the samples.

C. EXPANSION OF THE SYSTEM
FUNCTIONS IN A DOUBLE SERIES
1. Time-Invariant Systems
For time-invariant systems, the impulse response function

h(t) can be expanded over the interval (a,b) in the series

[0 0]

h(t) - Z a, ¢ (1) ) (3.

i-1

37
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where

{x)
{CP‘ x}i=1, 2,...

is a complete orthonormal set over the interval (a,b), and where the

coefficient a; is given by

1

b A
a, = fh(t) ¢,(t) dt . (3.13)
a

For (a,b) = (0, o0), if ¢i(t) can be realized as the impulse response
of a network, then a, can be evaluated according to the following
scheme, suggested by Huggins:8 The signal h(-t) is applied to the
input of each of the networks with impulse response cpi(t), and the
output sampled at time zero is the desired coefficient. The system

shown in Figure 3.2 is used to implement this scheme.

h(-t) ¢

b (1) b, (1) S

[]
yl(o)=c:I )!2(0)=<J2

FiGURE 3.2. Coefficient Evaluation Scheme for Single Series.
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Practical restrictions may allow one to reverse only T seconds
of h{t), in which case the coefficients obtained by the scheme of Fig-

ure 3.2 are
T

yi(O) = fh(t) q;i(t) dt . (3. 14)
0

These yi(O) are an approximation to a, if h(t) does not vanish for

t > T. This same approximation to a, may also be obtained by applying
h(t) to the network with impulse response ¢i(T-t) u(t) and then sampling
the output at time T . Another way to evaluate the coefficient 2, is

to sample the output of the given network h(t) at time zero when the
input is ¢i(-t). This process must be repeated for each i, unless

there are as many identical networks as coefficients to evaluate.

2. Time-Varying Systems

Consider the sets of orthonormal functions

{‘W} and ij} .
i-1,2,... j1,2, ...

which are complete on the intervals {a,b) and (c,d), respectively.

Their Cartesian product set

& (%) )3
J‘X Y iog=1,2, ...
\ j st

1s complete on the rectangle R (a,b) x {¢,d). If the set {¢i} 18

complete on (c,d) as well as on {a,b), then the s¢! Qpi(x) ¢>J.(y)> 18

C39 -




complete on R. The system function k(t,T) can be expanded in a

double series that is valid ocver R:

w
k(t, 7) = Z a m ety (1) : (3.15)
n, m=1
where a m is given by
a = [[ ¢ (t) k(t, 7) ¥ m(T) dt dr . (3.16)
(t, 7) eR
t >71

Equation (3. 16) is valid for all (t,7) if k(t, T) vanishes outside
of R or if R 1s the entire (t,T) plane. The coefficient a ., can
be evaluated by means ot a network with the input ¢m(t) and where
the integration is performed over the limits (a,b), as shown in Fig-

ure 3. ja. It is easily seen that the output of this network is indeed

a and the set of coefficients
nm

2hm
n=1,2,...,N

can be evaluated simultaneously by the network shown in Figure 3. 4.
As in the instrumentation of the two dimensional sampling theorem,

to let m varyfrom 1 to M, one must either have M identical
networks or be able to ''reset'' the network. Note the :imilarity
between the coefficient evaluation scheme of Figure 3.4 and the sample

evaluation network of Figure 3.1. They are exactly the same when

{q)i(t)} <¢1(:)> , <6(t-1’1‘)> . (3.17)
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(a}

¥ (—> k(t,r) @—4 S —~a_

(b)

\I’m(w)——) K(w,l) ¢n(w)—®—\—0bnm

(c)

‘Pm(f)-—) K, (w, 1) ¢n(w1 L—-@———Ocnm

(d)

~
Wm(w)_) KZH'C) G-r:(” ' % —ﬁodnm

FIGUREFE 3.3. Coetfficient Evaluation Scheme for a) k(t, 7);

b) K(.. L), ) Ki((u, 7)., o) Kz(l,é) .
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s olm
—> k(t,r)
Vo (t) ' ' '
| | |
{ I I
L °
S on

FIGURE 3.4. Coefficient Evaluation Scheme for Double Series.

] ) 2
The sets in Equation (3. 17) are not complete in L, but the sets

] ! 1
k ZﬂBt‘\t - Z_B

. i
{sxn ZnB t - 2—-) ]
B
layto) {wi(t)> / . f (3. 18)
| |
are complete on (-w, o) for functions which are appropriately frequency-
limited. The coefficients obtained by using the sets of Equation (3. 18)
in the scheme of Figure 3.4 are the same as those obtained by using
the sets of Equation (3. 17) in the scheme of Figure 3. 4.

Since the system Kk(t, 7) is causal, the truncated expansion of

Equation (3. 15) can be improved by restricting it to be zero for t « 7

-3l



anm¢n(t) ¢m(T) for (t,7)eR and t>T1

k(t, 1) = ¢ (3. 19)

0 for t <r

\

Where Qi(w) and J i(m) are defined by the Fourier transforms

@
8 (w) = f ¢, (t) ST )
-

T.(w = [ b (1) e JWt gt , (3. 20)

the sets <§i(w)> and <Ii(w)> are orthonormal and complete over the
intervals (a',b') and (c',d') that are appropriate for the intervals
(a,b) and (c,d), respectively.

K(w,8), the dual system function to k(t,7), can be expanded

on the interval R' = (a', b') x (¢',d') in terms of the complete orthonormal
set (8(u) B0}

[09)

K(w, L) - z; b &, & (L) , (3.21)
n,m=1
where
b - ff ¢ (w) K(w,é)gm(g) dw d§ i (3.22)
(w,4) €R!
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If K{w,l) is zero outside of R', or if R' is the entire /(w,{) plane,
then Equation (3. 21)is valid on the entire (w,l) plane. The coefficient
bnm can be evaluated by the system shown in Figure 3.3b. The systems
of Figures 3. 3a and 3. 3b are duals, as one would expect from time-

frequency duality.

The s’ystem functicn Ki(w"T) can be expanded in terms of the

complete orthonormal set <§j(w) ‘Uk(T)} on the rectangle R1: {a', b') x
(~,d) by
(2o
Kilw, 1) = S m Qn(w) ‘bm('r) , (3.23)
n, m=1
where
Cm = ][ @n(w) Ki(w,'r) lJJm('r) dw dT . (3. 24;
(pr ) eRi

Similarly Kz(t, {) can be expanded in terms of the set <¢.J(t) Qk(;)>,

which is complete and orthonormal on RZ = (a,b) x (c',d'), by

QO
Kyt L) = }: dom ¢a® ¥ 00, (3.25)
n, m=-1
where
dm jj ¢ (t) Ky(t, L) Em(é) dt dg . (3. 26)
(t, L) €R,
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The coefficients c and d can be evaluated by the dual networks
nm nm
shown in Figure 3. 3c and Figure 3. 3d, respectively.

It is important to notice that for a given system, the single
Fourier transform of the expansion of k(t,T) given by Equation (3. 15)
is of the form of the expansions of Equation (3. 23) or Equation (3. 25),
and the double transform of k(t, ) is of the form of Equation (3. 21);

hence,

a = b = c = d ' (3.27)

and the outputs of the four systems of Figure 3.3 are the same.

By considering two dimensional systems such as optical systems,
radar systems, or acoustical systems, one rnay obtain a coefficient
evaluation scheme that is the direct two dimensional analogy of the
scheme introduced by Huggins.8 The input-output relation for a two

dimensional system is

X o
Y(Pi»PZ) = f f k(pi'pZ’ui’uZ) x(ui,uz)du1 du2 , (3.28)
-0 -00

where k(pi, Py Uy, uz) gives the output at coordinates (pi, pz) due to
an impulse at the coordinates (ui, U‘Z) . The coefficient a m is the
output at the coordinates (n, m) of the system

sin(pi-n) sin(p,-m)
(py-n} (p,-m]

13 TR A~
’

N L_' ‘;’n
m=

n, 1

(@) ¥_{a,)
1" "m"' 2

when the input is k(t, 7).
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The choice of the sets <q;,l> and <~b.1> for a given function of
two variables is important, in that a judicious choice may give a
truncated expansion that has fewer terms for a2 given error. For

example, a degenerate kernel such as sin x siny on (0, 27n) x (0, 27)

should be recognized as its own expansion in terms of the sets

<¢k(x)} = <¢k(x)> = <sinkx, cos kx} . (3. 30)

If the complete sets are eigenfunctions of the kernel k(t, 7}, then
the expansion contains no crossterms. Frora the kernel k(t, 7), one

can construct the symmetric kernels

d
k'(t, ) = jk(t,u) k{r,u) du ,
C
b
K'(t, 1) = fk(u, t) k(u, 1) du . (3. 31)
a

There exists a sequence of pairs of eigenfunctions and associated

eigenvalues such that

d
$(8) = xvfku. 1) b dr

C

b
b = Ay ,[ k(t,t) ¢ (7) dT ;
a

b
¢, () - xs [k(t,r) ¢, (7) dT ,
a
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d
UNORE xsz"u,rwvm ar : (3. 32)

v
C

The sets <¢v> and {upv) are complete; the coefficient of the expansion
of k(t,T) is

b d b
(Do (1) 8
- =Jf $,(0) fk(t.rwm(r)dr dt [ ————dt=
a

m m
C a

(3. 33)

o_(tyy_(T)
k(t,T) = 2; m x m , (3. 34)
- m

Furthermore, if the right-hand side converges uniformly, then it

and

converges uniformly to k(t,7).
In the case where k(t, T) is symmetric, ¢>v = \bv . If the eigen:

values are positive, the expansion

6 (1) 6 ()
k(t,T) = Z -ﬁ—{—l“—— (3. 35)

m=1 m

converges uniformly in both variables, according to Mercer's theorem,

D. SV.THESIS BY DOUBLE EXPANSION

Consider the double expamnsion of the system functior h{t, v)
in terms of the complete sets {cpi} and (tb_;} )
@©

hit,v) = m Pt ¥ (V) : (3. 36)

a
n
n,m=1
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This expansion "= valid on & rectangle K where Uym(t) is reclizable
as the lmpulse response of 4 tirne invariant system, The trancated
expanzion is realizable a: a paraliel combination of H-separable
retworks in which a typical brarch counsists of a netwerk of impulse

resporse M}Jrn(',) fellowed by a multiplier @ m cpn(t) .

For example, consider the particular system function

0 t < 7T or t < 0 ,
kit,7) = (3. 37)
S(t-2T1) otherwise ,
where
Stx) - (x) (x-a) 3. 18]
X " u_g(x} -u_,(x-4 . (3. 38)

Fer smill A this system function is an approximation of a time-varving
delay systemn with delay 7. The range {0, T) x (C, T} of the k(t, )
function ccrresponds to the range R - (0, T x (0, T/2) of the h(t, v)
functicr, where
O v<0 or t <0
) (5. 39,
S5(2v-t) ctherwise
Figure 3,5 chows a piot of the hi{t, v} functicn ot Equation (3. 39).

Tale the complete sets cnthe ranges (0, T) and (0, T/2), re-pectively,

te be
2nk .
T

<¢k> \/:r . | ,

k0,12 1,2 2,...
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h(t,v) A

<
-4
O
o

v
FIGURE 3.5. Plot of h(t,v) on R = (0, T) x (O, T/2) .
and
- N
P 4k i

o . T
N Jff e T . (3. 40)
L) ’ k=0,+1,+£2,...




Then

)4rma T
0
and
T /2.
a o7 J t} h(t, v) Lb_m(v) dv dt
( Z'rrmA
T\ -e 5
B j 4mmaA m, -n

The expansion of h(t,v) on R is

2mmA . .
2.8 - 2wmt 4mmv
E T (1 -e T ) | T

j 4mma ¢

hit, v) =

m=-00

The cross terms are all equal tc zero because pJ4mmv/T

e_)Zmnt/T

kernel h{t,v).

, (3.41)

(3.42)

(3.43)

and

are shown by Equation (3.41) to be eigenfunctions of the

Taking the transform of Equation (3.43) with respect to v yields

jrma  j¢mmt

[0 6]
Tsin-”%‘- a T . T
2TmA _ 4mm

H(t,\) =
m==w R
X .. ™M
B T sin T 4 (2wmt mm ) PAS
- /. 2mmA co T T A 2 14 \ 2
m= =00 Y +( LEL
8mm
+ sin g—?i + W,;n A) T 5 (3. 44)
2 (4wm>
N+ T

=50 -




The expansion of H(t,\) in Equation (3. 44)

makes evident the reali-

zation of H(t,\) as a parallel combhination of h-separable networks,

as shown in Figure 3.6, in which a typical branch consists of the net-

work with transfer function

followed by the multiplier

.. ™m
T sin T A (Zvrmt
cos
™TmA

or the network with transfer function

followed by the multiplier

4 sin

+ mma
—T— 'T—' ’

A
T . (Z'rrmt
sin
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Realization of h(t, v).




IV. APPLICATIONS OF EXPANSIONS:
THE MATRIX APPROACH

A. INTRODUCTION

The expansion of system functions and inputs in appropriate
series can lead to the conversion of integral relationships to matrix
relationships. The matrix relationships are in some ways easier to
handle. The inversion problem was solved by Marcovitz,9 who used
the matrix approach. Matrix methods can be success’ully applied to

the eigenvalue and eigenvector problem.

B. MATRIX CHARACTERIZATION

Consider the input-output relationship
d
y(t) = fk<t,r) x(7) dr - (4.1)

C

According to Chapter [II, one can expand k(t,7) in the series

k(t. 7) - Z am Gt ¥ (7) (4.2)
n,m

on (a,b) x {c,d). The input is expanded on the interval (c,d) by

x(1) = ijqu(T) ‘ (4. 3)

]
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The 1nput-cutput relationship now becomes

d
Z anmquan(t)f\llm(r)tbj(r) dr
C

n,m,j

1

y(t)

} Z anmbm¢n(t)
n, m
) Z Zanmbm\ dnt) ' (4-4)
n T /

The right-hand side ~f Equation (4. 4) is the expansion of the output y(t)
on the output time interval (a,b). The coefficient of the expansion of

the cutput is

c, = Z a_ b : (4. 5)

The coefficients of the output expansion are related to the coefficients

of the input expansion by the matrix equation

[c] - [a] 8] , (4. 6)

where

300 204 22 ]
240 %11 212
[A] - | %20 221 222 ,
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n 7]
By o
0 c
B] = b, , c]: c, (4.7)

One should notice that if the sets {¢n} and {Wn} are eigen-
functions of the kernel k{t,7), as defined by Equation (°> 32), then the
expansion of Equation (4. 2) reduces to the expansion of Equation (3. 34).

Thus the system matrix A is seen to be diagonal with

a - (4.8)
0 for n¥m ,

and the relationship between the input and output coefficients becomes

simply

n Y : (4.9)

When the series of Equations (4.2), (4.3), and (4.4) are sampling series
of the form of Equations (3. 3) and (3. 5), then for sampling in the

quadrant where t, 7> 0,

a.. = k.. = kLT, , j
1) 1) 17 772

|
'
[1°N
[
o
LT

= 0 for J >t . (4. 11)
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Therefore, the system matrix is triangular

-~ -
kOO 0 0 U .
kjo kp 0 0
] - koo kz1 ka2 O (4.12)
. —
The input-output relationship equation becomes
Y x] . (4. 13)
where
7 =
Yo %0
Y4 4
Y] = ) and x] = X, (4 14)

are the coefficients of the output and the input with samples taken at
intervals of T1 and TZ sez, respectively.

The jth column of the system matrix [K] has the particular
significance of being the output sampled at every iT1 sec due to a unit

impulse input applied at time jT,. Similarly, the jth column of the

system matrix [ A] gives the output coefficients due to an input ¢j(t) :
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C. THE INVERSION PROBLEM

The inversion problem consists of finding a system which, when
placed in cascade with a given system, makes the over-all syst.mn unity.
It arises in many applications, i.e. signal recovery, feedbhack systems,
and in relating time-varying impedance and time-varying admittance
functions.

The two systems in cascade shown in Figure 2.1 have an over-
ail system function Ki(s, 7). From the definition of the Ki(s, T) sys-

tem function, a unity system has the response function

-8T

Ki(s, 1) = e (4. 15)

Solving the inversion problem is then equivalent to solving the integral
equation of the over-all Ki(s, 1) function
Jo )
e ST - f K(iz)(s, u) k“)(u, 1) du (4. 16)
-0

for the left-hand system function k(‘)(t, T), or the right-hand system
function K(iz)(s, 7), when the cther system function is given. Not only
it is difficult, in general. to solve Equation (4. 16) for the inverse system
function, but it is also difficult to tell when « solution exists at all. For

a tirme-v
a 1l e

2 1 vaetara it
ExX X Y " o P

m, is poss:
which an inverse system function exists and to find the inverse system
function itself. Let the left-hand system be a delay system with celay

a(T):
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kY r = st -1 - a() . (4.17)

Also, let the notion of inversion be extended to allow the over-all system
to have a constant delay response rather than a unity response. Then

Eguation (4. 16) becomes

e-S(T+D) - fK(iz) (S,t) 6(1» - T - a(‘r)) dt

= K(iz) (s, T + a(1)) : (4 18)

where the delay constant D is chosen to assure realizability of the

inverse system. Thus,

K¢, r+a(r) = 8(t - 7 - D) . (4.19)

In order to solve for the right-hand inverse, T + a(T) must be invertible

(i.e. strictly monotonic in T), in which case

K9 (en = st - x(1) | (4. 20)
where

x(7 +al(r)) = 7+D . (4. 21)

From the form of Equation (4. 21) it is seen that the right-hand
inverse is a delay system with delay x{7} - 7. For example. if a{t) =7,
then x(7) - T -7/2 4LC - 1=D - 1/2. Note thatif D = 0, delayby 7
in the left-hand system is compensated for by prediction of 7/2 in the

right-hand inverse systermn. If the input to the first system is zero for
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T > D, the right-hand inverse is a realizable delay system (i.e. no
prediction). Thus D must be chosen large enocugh, depending on the
input, so that the right-hand inverse will be realizakle. As another
example, delay by a(r) = 1'3 - T is compensated for by delay of

D-(T—ri/B):D+11/3-

T.
For a simple example where the right-hand inverse system func-

tion does not exist, take a(t) =D - 1. Then 7T + a(1)=D, which has

no inverse. The physical explanation for this is that the first system

delays the input &(t - 7) by D - 1, giving an output &t - D} as the

input to the second system. The second system sees the same input

for every value of T and obviously has an output that cannot depend

on the value of T; hence the output cannot be 6(t - 7 - D).

If the righkt-hand system is given as a delay systemrn with delay

b(t), then
K(iz)(s,t) e 78(t +b(t)) (4. 22)
Equation (4. 16) now becomes
eSlT+ D) je-s(t o) (M e (4. 23)

If t+ b(t) is invertible, there exists a function y(t) such that
y(t + b(t)y=t. Now the change of variables t + b(t) = u can be made

in Equation (4. 21), giving

e—s(T + LY fe-su k(i) (y(u), 7) y'(u) du ) (4. 24)
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Taking the tranc¢form of Equation (4. 24) with respect to s yields

&(t - - D) = fé(t - u) kK My 1) y'u) du

y'(t) k“’(y(t) T) ; (4.25)
thus,
k(i)(t. T) = Wt-i???ﬂ' 8(t + b(t) - 7 - D) . (4.26)

For example, if the second system has delay b(t) = t, then y(t) = t/2,

and

KM - 2 82t - 1-D) . (4.27)

’

As another exanmple, let b(t) = t3 - t; then y(t) = t1/3 and

KDy = 3t st - 1 -D) . (4. 28)

A simple example of the ncnexistence of an inverse 1s when
b(t) - D - t, in which case b(t) +t does not have an inverse. [t should
be noted that by using system-function duality, the discussicn here 1s
made equally pertinent to the finding of the inverses of a selective fre-
quency-shift <ystem.

The matrix approa

. . ) -
ch can be used in the inversion prob

em witn
a gocd deal of success. For the system with a matrix A fcllowed in

cascade by the system with matrix B, the over-all system matrix is

BA. The right hand quasi-inverse to the system K of Equation (4.12)

4



is defined as the system K' so that

KK = |- =i~ - . (4. 29)

The system K followed in cascade with the system K' is an identity
within a finite amount of delay (finite aumber of rows of zeros). The
matrix K may be finite or infinite.

The necessary and sufficient conditions for the existence of a

quasi-inverse are due to Ma.rcovitz.9 Using the following notation:

Ki is the i xi submatrix of K containing the first i rows
and i columns,

Kij is the submatrix of Ki+j containing the first i columns,
and

Kij is the submatrix of Ki+j containing the last j columns,

Marcovitz's main theorem states that, if the rank of Ki is r, the

tj
necessary and sufficient conditions for the existence of a quasi-inverse
with j units of delay are that the rank of K;J. be r -i. The theorem

verifies the obvious facts that a sufficient condition for the existence of

an inverse is that the terms on the main diagonal are nonzero, i.e.

£ 0 : (4. 30)

ii

and that the sufficient conditions for the existence of a quasi-inverse
with minimum delay j is that the main diagonal and the j - 1 diagonals

.t . .
below it be zero and that the j b diagonal below it have all nonzero
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terms; 1, e.

kjyp g =0 for i<j, 1 =0,1,2,... (4. 31)

Kivr g £ 0 for 1 =0,1,2,... : (4. 32)

The necessary and sufficient conditions for existence of a unique quasi-
inverse are also given by Equations (4. 31) and (4. 32).
An interesting corollary is that, if the first ) diagonals are zero

as in Equation {4. 31) and if kj # 0 for some value of [, then a

+1,1

necessary condition for the existence of a quasi-inverse is that k.

J+l, 1 =0,

either for an infinite number of ! or for no I at all.

Application of the main theorem may be difficult because it may
require an infinite number of calculations. The calculations must be
applied for each value j of delay until one s found which works. If
there is no value of j for which the conditions are satisfied, the quasi-

inverse does not exist.

1. Finite Matrices
Finite system matrices occur in coding systems and in the time-
limited approximations to the system matrix. For an input that is
t units long, one need be concerned with only the first t columns of
the system matrix K. The quasi-inverse with respect to an input t
units long exists if, and only if, the rank of Kt is t, where Kt is
the matrix of the first t columns of K. The maximum delay in recover-

ing the input is given by the number of the last of the t independent
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r ws of Kt' where the first row is numbered zero. If some of the
input digits are zero, then one should consider the submatrix K<r) of
Kt , where K(r)

to the r nonzero digits of the input. Since there may be cases where

is the matrix of the r columns of K which correspond

the rank of Kt is not t, but the rank of K r, the quasi-inverse

(r) **
with respect to a t digit input that has some zeros may exist when the
quasi-inverse with respect to a t digit input does not exist.

Let Kmr denote the finite submatrix of the infinite matrix K
containing the r columns of K that correspond to the r nonzero
information bits of the t digit input, and terminating after m rows.
If K. . is of rank r, then a quasi-inverse withat rnost j=m-r units of
delay exists. It would be particularly interesting to find the smallest
value of m for which the matrix Krnr has rank r so that the delay
in signal recovery is th. shortest. This is done by testing the rank of
Kmr sequentiallyin m for m=1r, r + 141, r+2,... until its rank is
foundto be r. If there exists no value 0o m for which the rank of
Kmr is r, then the quasi-inverse does not exist for that input,

Let K! be the quasi-inverse of K if it exists, then
mm mr

Jr
--- . (4.53)

1
rr

'
mm mr

The matrix K'nm can be augmented to be a quasi-inverse of
1

the system matrix K with respect to a particular input:

1
K = [K;’L"H—Z,m l G ] ) (4. 34)
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where

zZ = t-r , (4. 35)

and K'' is K! with z rows of zeros added to correspond to
m+z, m mm

the z zeros in the input. For example, if m =5 and z = 3 and the

zeros occurred at the Oth, 3rd’ and St}'i digits, then the Oth, 3rd, and
Sth rows of K!'' are zero, and the 1St, an, 4th, 6th, and 7th
m+3, m
rows of K;r'1+3, m 2fe the ist, an, 3rd, 4th, and Sth rows of K;nm .
respectively. Enough columns of zeros are added to K'' to make
m+z, m

the matrix K' compatible with K :

O -

jt

K'Kt = | , _ (4. 36)
]
Itt

where It' has ones on the main diagonal corresponding to the nonzero

t
digits of the input and has zeros elsewhere. From Equation(4.36) one sees
that whenthe input is passed through the system K followed by the
system K', the output is j units of zero followed by the input. The
recoverability of a t digit input is therefore dependent on the existence
of a quasi-inverse to the finite matrix ‘:mr .
2. The Inverse in Feedback Systems

The response to the feedback system of Figure 4.1 can be ob-

tained from the eguation

by = kAx + kBQkAy , (4. 37)
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FIGURE 4. 1. Feedback System.

where kAx means the system function kA operating on x. Equa-

tion (4. 37) can be rewritten as

(6 - kg ®k,)y = k,x : (4. 38)

A
Thus,

1o kA] x = kx . (4. 39)

;
4

y = l:(é-kBekA)

The inverse to (6 - k_ @ kA) must be found in order to find the over-all

B
system function k. In matrix notation convolution is replaced by matrix

multiplication and the system matrix is given by

K - (1-BA) ta , (4. 40)

where B and A .re the system matrices of kB and kA’ respectively.

By using the methods given earlier in this section. one can find the

inverse of 1~ BA if it exists. If a quasi-inverse (I - BA)' exists,



j|o o
(1 - BA)(I - BA) = ¥ = D . (4. 41)
10
Then
DK = (I - BA)' A . (4.42)

The first j rows of the right-hand side of Equation (4. 42) must be

zZero.

3. Relationship Between Impedance and Admittance
Functions and Equivalence to the Inversion Problem

The K and kz functions can be related by inserting Equa-

1Y
tion (1. 26) into Equation (1. 27) and interchanging integrals:

I{s) = [Kiy(s, u) e(u)du =[[fK1Y(s, u) kz(u, 'r)du] i(r)dr . (4. 43)

By the uniqueness of Fourier transforms,

e 5T - fx”(s,u) k4 (u, T)du . (4. 44)

The following dual relations:

e 5T - fKiZ(s,u) ky(u, 7) du , (4. 45)

Mt - fx (t, p) K., (p, \)dp (4. 46)
2yt P) By (p , '

= (K.t p) Kulp, \) d (4. 47)
T Tzt P By P AP ' '
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are obtained by physical-quantity duality, system-function duality and

complete duality, respectively. These relationships can also be writ-

ten in terms of G and H functions by using identities. By comparison

of Equations (4. 44) through (4.47), the problem of finding an impedance

driving-point system function from ar admittance driving-point func-

tion, or vice-versa, is seen to be equivalent to finding a left or a

right inverse system to a given system.

D. MINIMUM DISTORTION SIGNALS AND SYSTEMS

The problem of finding signals that will pass through a given
system without distortion other than a multiplicative constant is an
eigenvector problem. From the input-output relationship of Equa-
tion (4. 13), one sees that the zero-distortion inputs are the eigen-

vectors of the following characteristic equation:

Xx] = [K x]
Since K is triangular, the eigenvalues are clearly
x. = k..
] JJ
The eigenvector corresponding to the eigenvalue )‘j 18
S I R
7t e T {
One may assume that the ~igenvalues are all nonzero, as the zero
(ig)
eigenvalues are of no interest. The e genvector x 0 can be found
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v b il

by an iterative method. If \. is not repeated, i.e.

o
k. . k for l j , 4.51
(ig)
then the components of x can easily be solved for
( 0 for k= 1,2,...,0g-1
(-jo) xjo for k = Jo s
x - ( , (4.52)
k (Jo)
0
k-1 )%
z ————)‘11 for k:j0+1,...,
. & Cy
\ o Jo "k
(o)
where Xx. is an arbitrary constant.
0
If )‘_j is repeated, assume it occurs first at kjj . The matrix
A.., where
JJ
rkii T
- o
A, = : : . 4.53
i ) _ ( )
k,. . . . k.
i Jj
- -
hae the eigenvector {0, ..., O,XJ.} corresponding to X_j with xj chosen
arbitrarily. The matrix Aj+1, i+1 has the eigenvector {0, N xj, xj+1}
corresponding to )\J. , where xj+1 is determined by the equation:
(XJ. - )\j\%)x‘“’1 = kj,j+1xj ) (4. 54)
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then either k.

if )‘j7{XJ+1' But if RN j,j+1 ©OF X; must be

zero. In either case x. is arbitrary, but if k.

41 i, j+1 is nonzero,

X; is no longer arbitrary and must in fact be zero.

Suppose the first repetition of )‘j occurs at )”j+r' then the

eigenvector of Aj+r,j+r is
0,...,0, xj'xj+1""’xj+r-1'xj+r .
J
where xj+1, xj+2' ceey xj+r-1 have been computed by considering the
eigenvectors of xJ. in the matrices Aj 1, j+1° Aj+2, 2 Aj+r-1,_j+r-1'

respectively. The new component xj+r is determined by the equation

jir-1
(IR W PO Z Ky e Xy . (4. 55)
1=
Since the left-hand side of Equation (4. 55) is zero, x, is arbitrary.

J+r

But if the right-hand side is not zero, then x. must be zero, in which

case Xip1 X420 000 Xjypoq 3TE all zero. Similarly, if the next repe-
tition of )‘j occurs at xﬁ”t then
jtr+t-1
z Ky jeree X1
15)
must be zero ‘and XS prat is arbitrary. Since the right-hand side of

Equation (4. 55) is zero, this is equivalent to saying that

-69 -



jrrtt-1

Ky jeret X2
l=)+4r

must be zero. If it is nonzero, then x, must be zero, in which case

jtr
xj+r+1’ cees x_j+r+t-1 are all zero. This process is now continued,
and it is clear what happens at the next repetition of )‘j .
It may be possible that all eigenvectors of a given infinite

matrix may be zero, as in the matrix
r— —

1
1

. U
K = 1. . (4.56)

3]

-

In finite triangular matrices where eigenvalue )\j is repeated J times,
there is at least one nonzero eigenvector because the component at
the place of the last repetition is arbitrary. Also, the nurmber of zero
eigenvectors is equal to the number of times during the iterative pro-
cess that a previously arbitrary component was forced to be zero.

In a system whose matrix has more rows than columns, the

output that is desired for minimum distortion is the input followed by

ZEeros:
B k ] -
11 l?_ x1
. c. x,
k .. .k
Xx - 1“ nm . (4 57)
B : X . ; )
k .. . k
im nm x
. R n_J
e —d
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Generally one cannot solve Equation (4.57) because there are more

equations than unknowns. But if the row vectors k, ,...,k for
im nm
()

m > n are orthogonal to a particular eigenvector x of the matrix

A, the equation is satisfied where

k
S [}
A = . . (4. 58)
k

k‘l
| in nn |

Note that if x(J) is the eigenvector of matrix A of XJ. = kjj , and y(”

is the eigenvector of its transpose conjugate ma'rix A* corresponding

(1)

to X,=k,,, and if )‘j 7 N\, then x93 and y are orthogonal:

I
r;(x‘i’,y‘”) ] (xm,A*y(z)) ] (Axm,ym) ,\j(xm,yu)) . (4.59)

Since W;()\j,
(x(j),y(l)) = §. . (4. 60)

jl

If Xi;( )\j for i #j, then A is diagonable and

e —

k4
1 L
TAT = . ) (4. 61)
7]
k
L nn |
where the jth column of T is x(J) and the jth row of T-i is ','(J).

For this case the infinite matrix

, (4. 62)
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where the rows of W are y(l) for ! # j, passes the signal x(j)
without distortion because {x‘J), 0} is an eigenvector of K. Similiarly,

if the rows of W are made up of y(k) for k # Jq+dpseeeri,, then the

Gg  G2) Ur)
system will pass x 1 y X 2, . er without distortion.

o oy

E. APPLICATION OF DOUBLE SERIES TO
THE EIGENFUNCTION PROBLEM

Matrix methods can be used to solve the eigenfunction equation

b
W= fk(t, ) $(7) dt . (4. 63)

a

One can expand the unknown eigenfun=tion in terms of the complete

G = iuk(pk . (4. 64)

k=1

set {¢1} :

Taking the terminated expansion and substituting it into the eigcnfunction

equation yields
N N

b
\ Zakq,k(t) = Zakf k(t,T) ¢ (T) d7 . (4. 65)
a

k:i k'—‘i

Now multiplying both sides by q;j(t) and integrating gives

N b b

< p
A = ka[l &(t) k(t,7) 9 (7) dt dr
a

k=1 a
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= a.a for j=1,...,N , (4. 66)

jk%k

where ajk is the (_jlt:)th coefficient of the expansion of k(t, T):

k(t, 7} = ajk ¢J(t) ¢k(7) . (4.67)

™1

i, k=1
I
Thus, the integral eigenfunction equation has been reduced to

the matrix eigenvector equation

xa] = [A] o , (4. 68)
where
.
2
“] - : [A] - {ajk}
i\L

An approximation can be made to the eigenvalue A\ and to the coefficients
of the expansion of the eigenfunction by solving the matrix character-
istic Equation (4. 68).

Note that {qai} need not be complete but only good enough to
approximate k(t,7) and ¢ to within a olerable error. When the {cpi}
are approximating rectangles, this method reduces to the Fredholm
method where one approximates the integral by a sum to reduce the
integral equation to a matrix equation. One advantage of this method
is that a judicious choice of the set {¢i} may lead to a better approxi-
mate solution for 2 given N, or a smaller N for a fixed amount of

error.



{. Error Evaluation
By the completeness of the set {¢i} and by Bessel's inequality

one can choose N so large that

N
o] * - Zﬂf < e . (4.69)
N
"k(t,-r)"z - Z a;‘k < € . (4.70)
R

The equation

gives the exact solution:

R (4.72)

ia ay for j=1,..., N (4.71)

and the equation

\'B. =

j ajk (Sk (4. 73)

>z

gives the approximate solution:

N
e
i

——
-3
Y |
e

N
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By Schwartz's inequality,

1 1
0 \ 2 Z
2 2
ajk a, < ajk I <e , (4. 75)
¥1 N+1 N+1
and Equation (4.71) can be rewritten
N
N aj = y ajk a, * Ole) . (4.76)
.1_.

As N becomes increasingly large, Equations (4.71) and (4. 74) be-

come virtually identical.
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V. S5YNTHESIS OF TIME-VARYING SYSTEMS

A. INTRGCDUCTION

The realization of the double expansion of h(t,v), as demon-
strated in the example of Section Iliw, is applicable to the synthesis

problem. The function

hit, v) = Z a ¢ (t) ¥ _(v) (5.1)

n,m

on R=(a,b) x (c,d), where ¢m(7) is a realizable impulse response,
was shown to be realizable as a parallel combination of Ii-separable
branches with a typical branch consisting of the network of impulse
responses \bm(r) followed by the multiplier a 4)11(1‘) .

The realization by double expansion has certain practical
advantages over the method proposed by Cruz and Van ValkenburgiO
in which h(t, v) was realized from the expansion in terms of the com-

plete set {mpi}:
hit,v) - Zam(t) b (V) ' (5.2)
m
where
d

am(t) = fh(t,v) \IJm(v) dv . (5. 3)

C
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The multipliers um(t) may be of complicated form and therefore diffi-
cult to build, whereas one has some choice over the sets {¢n} . For
example, if the interval (a, b) is finite one can choose {¢n} to be
sines and cosines, in which case the multipliers are standard modu-

lating networks. Actually if one were to arrange Equation (5. 1) as

h(t,v) = Z Zanm 1 SN U T (5.4)
m

'\ T
then by comparison with Equation (5. 2),

um(t) = Zanm ¢n (t) . (5.5)

n

Equation (5.5) is seen to be a realization of the multiplier am(t) in
terms of the elementary multipliers ¢n(t) .
Conversely, consider the single expansion of h(t,v) in terms

of a desired set of multipliers {q;n(t)}:

h(t, v} = Z ¢ (t) B (V) , (5.6)

n
where
b
B(v) = j h(t, v) ¢_(t) dt . (5 7)
a

The network of impulse response ﬁn(v) is not necessarily realizable.

The rearrangement of Equation (5. 1),




h(t, v) - Z Zanm “’m“’) ¢n(t) . (5.8)
n m

by comparison with Equation (5. 6) gives

nm m

Y_'ﬂ
ﬁn(v) = Z a Y (v) . (5.9)

-
The truncated expansion

B v} =~ Z LI ) (5. 10)

m=1

gives an approximate realization of ﬂn(v) in terms of the realizable
networks \bm(v) . This approximation is arbitrarily close in the mean

square sense for M sufficiently large.

B. THE CROSS-COUPLED REALIZATION®

The H-separable realization of the terminated single expansion,

M
hit,v) s /Tamm b_(v) , (5. 11)

| R

m=1

consists of M branches, each containing one passive ne'work followed

by one multiplier, whereas the H-separable realization of the terminated

*Suggested by Prof. N. DeClaris
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double expansion

M, N
hit, v) = Z a6 (D _(v) (5. 12)

m, n=1

consists of MN branches, each containing one passive network fol-
lowed by one multiplier. This represents an increase on the crder
of NZ for the double expansion. There 1s, however, a great deal of
redundancy in the H-separable realization of the double expansion
which can be eliminated by the cross-coupled realization, as shown
in Figure 5.1. The cross-coupled network contains M netwcrks
and N mulapliers with a coupling array linking the networks and
multipliers. The number of networks and multipliers 1s of the same
order as in the realization of single expansion.

The coupling array may be realized in a number of ways. Since
Figure 5.1 is actually a flow diagram, there must be a summer at the
input to each multiplier. Aifter scaling the largest lanml to unity, the
potentiometers at the inputs to the summer of multiplier dpi are set to
|aik| k=1,2,... M’ but tnose a, thatare negative in sign are first
passed through an inverter. The coupling network may be a one-~
element kind of network (resistive for lcw frequencies or capacitive
for high frequencies). This network must have M inputs and either

N outputs of the form
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FIGURE 5.1, Cross-Coupled Realization of h{t, v).
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or NM outputs of the form am ¢m . The latter is obtainable by
tapping unity resistors of input voltage \pm at values Ianml and in-
verting the coefficients of negative sign. Summers must still be
built at the inputs to the multipliers, whereas summation is done by
the networks in the former case, but the class of coefficients {aij}

for which this network can be synthesized is limited by the realiza-

bility conditions on the network,

C. BILINEAR FORM

It is useful to think of the realization of the truncated expansion

of Equation (5. 12) as the realization of its corresponding bilinear form:

B V) = b Agy 9 (5. 13)
where
Mg = Wby
ANM {anm} ,
¢, ]
)
¢]N - . . (5. 14)
o, .
YN_

One can identify the form of Equation (5. 13) with the ctructure

of the realization of Figure 5.1 with the crcss-<ccupling network cor-

responding to the matrix A;\IM = AMN'



Suppose that the set {\Pi} is the orthonormalization of a minimal
complete set {91} and the set {¢i} is the orthonormalization of a

minimal complete set {y;}, then @&, and ¢ area linear com-

bination of the first M ei's and the first N yi's , respectively:

Eom &M Bum d
¢]x = Cnn Yn - (5. 15)
Since the sets are minimal complete, the matrices BMM and CNN
are invertible, and
h(t,v) = & v BymAMNCNN YN - (5. 16)
The new cross-coupling matrix is
A'MN = BMM AMN CNN . (5.17)

In particular, suppose the {Wi} are the orthonormalization

of a set of exponentials,

{6} - {esit . (5. 18)

One can easily synthesize a ladder network whose poles are SgrcSpge

The outputs of M rungs of the ladder are linear combinations of ex-

ponentials of the pole frequencies:

st
e MQMM . (5. 19)

Jm
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One can choose M independent rungs of the ladder so that QMM i

invertible. Now,

-1 J

Y
hlt.v) = My Qum AmN Y,

N (5. 20)

has the realization shown in Figure 5.2 with the cross-coupling matrix

-1 1

A;m = QM AMN ) (5. 21)
’7,
LADDER
Mo
NETWORK o
WITH I "!!’
o—— POLES AT ' Al | ——o
| MN
(S, ,...5y) |
|
1 (%)

FIGURE 5.2. Realization of h{t,v) with One Passive Network,



For the case where M = N, an interesting N-port synthesis
problem arises. If one could synthesize a network with poles at
Byscees Sygo with one input port 'nd N output ports, and with the

zeros of the output ports chosen in such a way that

Q = A

MM (5.22)

!
MM !
then

Ai\:iM = 1 : (5. 23)

and the coupling network consists only of wires connecting \Pi to ¢i .

D. APPROXIMATION IN ONE DIMENSION

The bilinear form approach can be used in the one-dimensional
approximation problem when the expansion in one dimension can be
put into a bilinear form with both variables the same. If both {\l:i} and

{cpi} are exponential sets, then h(t,t) of Equation (5. 20) is expanded
(s +s )t
m n

in terms of the exponentials e with coefficients a The

realization of h(t,t) is an MN term expansion of h(t,t) obtained by
using a network with M poles and N multipliers.

For example, the network of Figure 5.3 is a 16-term reali-
zation containing a network whose poles are s = 0, -2, -4, -6 and multi-

8t  -16t
e » 2n

pliers 1,e ; and

Wiere
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FIGURE 5.3. Sixteen-Term Expansion of h(t,t).
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®
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E. REALIZATION BASED ON SAMPLING EXPANSION

The realization of the sampling series

k({E,r) sinc sz( %E) (5. 25)

using a delay line and a summer, as shown in Figure 5.4, was proposed
by Kaila.th.4 A similar realization, based on the link structure, is
shown in Figure 5.5. The advantage of the link structure is that the
summation is performed by the plate delay line.

The impulse response of the link structure for A= 1/2B, is

h
k(t, 1) = Zaj(r+(j+1) g-) sinc an(t-%i—’) . (5. 26)
j:

The expansions of Equations (5.25) and (5.26) are identical when

2, (‘r+(j+1) é‘.) - k(zt%,r) . (5.27)

Since

>k

(4 (% ) win z,,w(t : Tgﬁ)

1=0
Q0
- a. [ + (j+1) 2] sinc 27W ft - =t 2
= 3y AT j 5 | sin T "W , {5.28)
1=0 ' ’ ; !

the samples of the double expansion of k(t, ) are related to the multi-

plier samples by
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on the Sampling Expansion.
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FIGURE 5.5.

Sampling Expansion Realization
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k(zig, ‘ZZW) = a (ZITV' + (j+1) ﬁz) . (5.29)

Thus the samples of the output due to an impulse at t = [ /2W are

[ 1 l 2 l
k(o' zw) k(Z'E’ ‘Z'W’) k(zzx" Z'W)

/
= ao(TvV *'Z)'ai(’z"lw*%)'a.z{%*zzé) ‘ (5. 30)

The multipliers can be set according to Equation (5. 27) or for

A=1/W they can be set sequentially;i.e. at t=A/2 the multipliers are

{ao(ﬁz),o,o,....o}

-

at t = A the multipliers are

{aO(A),ai(%é-),O,O,...,O} ,
at t = 3A/2 the multipliers are

{%(‘32%’ a,(28), az(%‘i>, o,...,o} ,
etc.
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VI. APPLICATIONS AND CONCLUSIONS

Several examples of time-varying systems will be briefly
outlined in this chapter. The emphasis of the presentation is on the
application of the methods that were presented in previous chapters

to these examples.

A. SATELLITE COMMUNICATION SYSTEM

The ccmmunication channel between two ground stations via
an earth satellite is time-varyirg because the time delay and Doppler
shift that the receiver sees change in time due to the movement of
the satellite. If the satellite is active its transfer function may be
time-varying due to satellite precession, position of solar cells, etc.
For geometric simplicity, assume that the satellite is traveling in a
circular orbit of radius R, as shown in Figure 6.1, and that the
transmitter, receiver, and satellite are located as indicated at angles

a, P and 6, respectively. Some of the notation concerned with this

channel follows:

wgp = angular velocity of satellite,

] = —th )

T = Zw/wR = time for one orbit,

v = RwR = tangential velocity of satellite,
ve = speed of light,

r = radius of earth,
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RECEIVER

TRANSMITTER

EARTH

FICURE 6.1. Ceometry of Satellite Communication System.

-90-



R = radius of orbit,

&4, = time delay between transmitter and satellite,
Wa = Doppler shift between transmitter and satellite,
w = carrier frequency.

The total amount of delay between the transmitter and receiver is

_ _ atb
A—A'*'Ab--\? ’ (61)

where a and b are the transmitter-to-satellite distance and satellite-
to-receiver distance, respectively. These distances can be computed

by the rule of cosines:

1
a = rZ+R2+Zchos (E)+c1)Z ,
1
b = r®+R%+2rR cos (8-8)° . (6. 2)

The Doppler shift is proportional to the component of the velocity tcwards
the transmitter or towards the receiver, and for the channel of Fig-

ure (6. 2.),11 a transmitted carrier of frequency w is received as a
sinusoid of frequency w + W, where the Doppler shift W is

W = (-\rn,I.+vnR):;°—c . (6. 3)

The total Doppler shift in the communication channel is

W_+W

w a b

1}

W

RwR

\%
C

(-cos(QO -8,) + cos (90 - eb))
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FIGURE 6. 2. Doppler Shift Geometry.

Rwa
= (sin eb - sin Ga) v
c
By a trigonometric identity,
r _ a
sin CH " sin(180-6-a)
and
r B b
sin 8 - sin(B8-B)
Thus,

a

sin{0+a)

0 = sin-i <§ sin(9+a)} ,

\
Gb = sin-1 {_rg sin(e—B))
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and the total Doppler shift becomes

rRw '
W = -Tc&-w— [% sin(6-B) - é sin(9+u)] . _ (6.8)

Now the Kz(t, w) system function can be calculated. For a
jwt . . JetWy )(t-4,)
transmitted carrier e , the satellite receives e .

If the satellite H function is H(t,w), the satellite output is then

JwtW _)(t-a )
Hit, 0 + W )e a a

The received signal becomes H(t—Ab, w+Wa) eJ(w+W)(t-A),which for

HotWit-jws = o cidering

v << v. is approximately H(t—Ab, w+Wa) e
the fact that the satellite first comes into the line of sight of the re-
ceiver at time t:‘3 and first goes out of the line of sight of the trans-
mitter at time tu , the system function is

HwtWit-jua for t +nT<t<ta+nT ,

H(t—Ab,w+Wa)e B
K(t, w) = (6.9)

0 otherwise ,

where Ab, Wa’ W, and A are functions of time that have been deter-
mined by Equations (6. 1) through (6. 8).

For a passive satellite, the satellite transfer function is a
constant that is close to one; for a stably oriented satellite, the satellite
transfer function will be a time-invariant repeater H(w). In an un-
stable mode, the axes of the satellite change direction in time, and

thus the satellite receiving antenna and transmitting antenna come
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into and out of view with the ground transmitter and receiver, respec-
tively, causing a multiplicative effect on the satellite transfer function.
Since the effect of the receiving and transmitting antennae must be

taken separately, the satellite transfer function is of the form:
H(t,w) = a(t) B(t) H(w) ' (6. 10)

where a(t) and B(t) may be periodic functions.

Actually, except for possible time variations in the satellite
system function, the change in Doppler shift and time delay will usually
be small compared with the signal duration, and the over-all system
function can be considered as fixed for signals of short duration. Numeri-
cal estimates of Doppler and of delay for the typical parameters,

3 x 108 m/sec,

v =
c
r = 4000mi:6.4x106m,
R = 16000 mi = 25.6 x 106 m,
T = 3 hr,
wp = 27/10800 rad/sec ,
a = 60°,
B = 0°,
e = cos-1% ~76°
are:
B -6
Wa = -14.8 x10 "w ,
W = 10-5w ,
Ab = .094 sec ,
A = .185 sec . (6.11)
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For a typical carrier frequency of 4 x 109 ¢cps, the total Doppler

shift is 40 kc .

B. AIR-TO-GRCUND COMMUNICATION SYSTEM

The signal received at a ground station from a plane or a missile
passing by at high speed is distorted by time delay and by Doppler shift
in frequency. Under the assumption that the plane is traveling at
velocity v in a straight line at a minimum distance h from the
ground station, the geometry of the air-to-ground communication sys-

tem is shown in Figure 6. 3.

If communication is begun at time ty when the missile is at a

lateral distance r from the station, the delay as a function of time is

GROUND STATION

PLANE

FIGURE 6. 3. Geometry of Air-to-Ground Communication System.
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at) = (6.12)

and is plotted in Figure 6. 4.

To compensate for the delay d(t), one must construct an inverse
filter for it. In Chapter 1] it was shown that the inverse filter exists
if t - d(t) is invertible. Figure 6.5 gives a plot of t - d(t} versus

time. The derivative of t - d(t) is

d v ryovt
3¢ (t-dt) = 1 +7;- 3 (6.13)
Z
,
l ¢ +(r_ - vt)z]
o
Since v/vc < 1, the right-hand side of Equation (6. 13) is greater
than zero for all t, T and h:
d > , 6
I (t-d(e) > 0 , (6. 14)
therefore t - d(t} is a monotonically increasing function and its in-
verse exists.
The Doppler shift as a function of time is given by
-v -y ro - vt
W(t) = T Yo coset-‘-/-—uo I . (6. 15)
c c i
2 2
[h +(r_ - vt) ]

Figure 6.6 shows this Doppler shift as a function of time. The Doppler
shift can be corrected for by using a voltage controlled oscillator in

the receiver. If the oscillator control voltage is W(t), the mixer
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FIGURE 6 6. Doppler Shift versus Time



frequency will be w, + W(t), and the intermediate frequency will be
wi - wo .

C. SIDE-LOOKING RADAR

A plane with a radar unit mounted on its side can be used for an
all-weather ground mapping system by flying parallel to the meridian
being mapped with the radar antenna facing the target meridian.. The
resolution of the mapping is proportional to the carrier fr-guency of
the radar pulses. Ideally the plane will be held on line without turning
or rolling, and the time delay and Doppler shift will be constant. Although
one can fly a plane paraliel to a fixed meridian at a fixed distance, the
roll of the plane cannot be controlled perfectly. A typical trajectory of
receiving antenna movement due to wing flutter, air drafts, etc., is
shown in Figure 6.7.

The time delay will be essentially constant, and since the plane
velocity will be small compared with the speed of light and I'a! , the
time delay is approximately

21
v

Cc

4 ~z (6. 16)
Since the angle a between the incident and reflected waves is small,
it can be approximated by

8in a =& a = 9-1\1 , (6.17)
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FIGURE 6.7. Side-Locking Radar System.

where v is the plane velocity, During the surveillance flight the
received data, as well as the data on plane movement, can be recorded
on tape. Afterwards, a curve of the angle between the received wave
and the direction of antenna can be computed, and the Doppler shift,
which is denendent on this angle, can be compensated for by a voltage-

controlled oscillator in the receiver mixer.
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D. FEEDBACK CONTROL SYSTEM

Feedback is often used to control the sensitivity of a system to
internal variations. If the variaticns are large the systern may be
adaptive in that the feedback changes with tirne to counteract the
changing system variations. If the system function for the plant is
knowr., it rnay be possible to .ompute the system function of the con-
troller that wiii give the desired over-all system function. For the
systeri shewn in Fijure 6.8, the controller A is to be chosen for a

given plan® B so that the over-all system functior will be K.

< /'
- SE—

FIGURE 6.8. Feedback Contrcl System.

The mat~ix of the system function K is

K - (1+BA) !BA

- 1-(1+BA)? , (6. 18)

where B nd A are¢ the matrices of systems B and A. Equation (6. 18)
can te reavranged as

BA (1 K ! . , (6.19)
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and if B-A1 exists, then

A=Blu-gt.pt . (6. 20)

If only a quasi-inverse of B with j units of delay exists, then

1

DA - B'(I-K) " -B' , (6.21)
where B' is the quasi-inverse of B and
2]
D = *x - B'B . (6.22)

Since the first j rows of the left-hand side of Equation (6. 22) are zero,
the first j rows of the right-hand side must be zerc. This will ke true
if the first j rows of K are zero. Thus, for a given system B that
is quasi-invertible with j units of delay, one can obtain any specified
over-all system function K to within j units of delay by choosing the
appropriate controlling network A,

As a numerical example, take the plant matrix to be

- -
0 0 ¢
1 00
B - 2 10 (6. 23)
3 2 1|
B has the quasi-inverse B' with one unit of delay, where
o
B' - (€. 24)

_— e s O
r'w»OO

lo o o o
]

t ]
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Hence K must be chosen so that the upper left-hand element of

(1 - K)-1 is one:

0 0 0 o0 |
K - 1 0 0
1.1 0
2 -1 1 0
L e

It can be verified by performing the matrix multiplications indicated

by Equation (6. 21) that

—
"

NJ\J»O

vV =»= O O

- O O O
o o O C

and theretore the matrix of the controller is

1 0 0 O
A - -2t 0 O
2 -2 1 0

This method is also applicable to infinite matrices.

E. A WHITENING FILTER

A whitening filter for stationary noise n(t)

spectrum Sn(w) is a network with transfer function H(w) such that

el - ko

n
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When n(t) is passed through the network H(w), the spectrum of the

output noise n'(t) is

5_,(0) - IH(M)'Z S () - . (6. 29)

Thus the output noise n'(t) is white.
If the noise nft) is nonstationary, then the whitening filter may
be time-varying, if it exists. For example, if the noise consists of
a Gaussian pro:ess with mean zero and spectrum S (w) plus a time-
)

varying mean mft):

n(t) = ng(t) + m(t) , (6. 30)

the whitening filter is a network that subtracts m(t) frcm the input
and then passes ng(t) through its time-invariant whitening filier.
This whitening filter is time-invariant but contains a source (generator

of mi(t)) and a subtractor. If the noise n{t) is of the form

n(t) = ng(t) £(t) , (0. 31)

the whitening filter is a G-separable network with the multiplier 1/f(t)
followed by the time-invariant whitening filter of ng(t) .

Generally the r. 1stationary noise will be characterized by its
autocorrelation Rn(t,T) . The whitening filter problem is to find tie
network k(t,T7) for a given Rn(t, T) such that the output spectrum is
Rn,(t - 1) =06(t - 7). Using the noi-e output

T
n'(t) - fkﬁ.r) n(7t) dr , (6.32)

(@]
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the correlation function of the output noise is given by

T T
R_,(t,5) = ffk(t.f) k*(s,u) R_(7,u) d7 du . (6. 33)
0 0

The matrix approach can be used by expanding Rn(‘r, u) and the system

functions in terms of the complete sets <¢i> and (‘PJ.} :

N
k(t,‘r) = Zal.] ¢1(t) q}J(T) ’
i, ]

1,

N
k¥(s,u) = Z a}:} ‘Pi(S) ¢;((u) ,
k, !
N
*
R (T, u) = rmp ¢>m(u) Y p(‘r) . (6. 34)
m,p

Substituting Equations (6. 34) into Equation (6. 33) yields the expansion

of Rn,(t,s);
N .
R (1, ) = Z 2 2Kk! Tmp ffq»i(cw k(8 &)@ o, (W (n) b H(r)dudr
i,j,k, I, m,p 00

1

Z 3 W TEXOEME
Pk, 1

- Z b, o (t)¥ Mc) ; {6.35)

1, k
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where

%<
bik = Z a1j a; rlj . (¢. 36}

2
Since 5(t-s) is not in L, the expansion of Equation (6. 35) can be an
expansion of a high thin pulse which is in LZ and is an approximation

to &(t-s). The coefficients of Rq,(t, s) are approximately

0 for ik ,

1 for i=k . {6.37)

The N2 unknowns ay; of the NZ equations (6. 37) are the coefficients
of the time-varying whitening filter.

For real n(t), Rn('r, u) 1s symmetric. Therefore a standard
eigenfunction approach can be used to solve the integral equation (6. 33).
Let {daj} be the set of eigenfunctions of Rn(’r, u),

T
)\J ¢J(T) . J Rl".(T' u) ¢_](u) du . (h.38)

Since the set of eigenfunctions 15 complete, the system functions <an

be expanded as

F PSR Y 1 PRI\ ’ ~ sy
u {t) & {7) {h.39)
J J '

=

—_—
or
=~

~

¥
T
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where

T
a.(t) = f k(t, 7) o.(7) dT . (6. 40)
j J j

By using the expansion of Equation (6.39), Equation (6. 33) becomes:

TT
ijm!t[ k*(s,u) R_(7,u) ¢J.('r) dr du
J

T
ij a,(t) fk*(s,u) ¢(u) du

j 0

it

Rn,(t, s)

H

B | S a(t) aJT“(s) . (6. 41)
j

If one first considers making the output noise spectrum to be only
stationary:

Rn,(t, s) = R(t - s) ; (6.42)

J/)\j)i/2 ¢j(t) , where up).(t) and 7 are

the eigenfunction and eigenvalue associated with R(t - s):

then a (t) is identified as (y,
J

T

Yj \bj(t) = [ R(t - s) ll,tj(s) ds . (6.43)
0

The filter given by the expansion of Equation (6. 39) makes the input
noise stationary; a time-invariant whitening filter in cascade with

k(t, T) makes the noise white.

-106-




One physical model of this process of whitering fcllows. W hite
stationary noise passes through some time-varying filter k-i(t, T) to
become nonstationary. The whitening filter is essentially the right-
hand inverse to k_i(t, 7). Finding k(t,7) from Rn(t, T) is the same
as identifying k_i(t, 7) from Rn(t, 1) and then constructing its right-

hand inverse k(t, 7).

F. MATCHED FILTER TO A SIGNAL
IN NONSTATIONARY NOISE

If the whitening filter k(t, 7} has a left-hand inverse k-i(t, T},
the nonstationary noise n(t) can be considered as having been generated
by passing white stationary noise through k-i(t, 7). By using k-i(t, 7)
as a pretransmission filter, the matched filter for a channel with non-
stationary noise is constructed as shown in Figure 6.9. This matched
filter has components at both the transmitting and receiving ends. It
is desirable, however, not to have a pretransmission filter because
one would like to transmit a standard signal and not worry about time-
varying average and peak power restrictions.

A reasonable detection scheme has the whitening filter followed
by a matched filter to the signal component of the output of the whitening

filter, which, in turn, is a matched filter to yT(t), where
o

t
y_ (1) - f k{t, 7} x{7) dr . (6. 44)

To

T
O
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Since v, (t) depends on the initial time of transmission L the matched
filter itZelf is time-~varying. In the case where transmission will
occur only at discrete times T, 2 vank of matched filters, each
matched to y.ri(t) , can be used. Now one can show that this detection
scheme, as given in Figure 6.10, is indeed the matched filter for a
channel with nonstationary noise.

A filter {(t, ) is a matched filter to a signal x(t) if the ratio
of the instantaneous output power of the signal component at time to

to the average output noise power at time t, be 2 maximum. The

instantaneous output signal power at time t is:

¢ 2
5 o
PY {t) = ﬁ'_rc;(to)-] = f f(to, 7) x(71) dT . (6.45)
TO To
The average output noise power at time ts is
2
E[n()?]= R e, 1) = Nt . (6. 46)

Also, the noise component of the output of £(t, ) at time t is

t
n'(t) = f f(t, 7) n(7) d7 R (6.47)

-0

and the autocorrelation of the output noise is

t u
R_,(t,u) = f f f(t,7) £ (0, r) R (r,r) drdr . (6.48)
- -®
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Under the assumption that n{t) is generated by passing white stationary

noise n''(t) through a filter k-i(t, T}, 1. e.

t
n(t) = [k"(t,r) Nt (r) dr

-Q0

Rn(T, r) becomes

T r

R _ -1 *4
n(T’ r) = k (r,u) k (r,v) Rn,,(u,v) du dv

-Q0 ~-QO

Since n''(t) is white,

R, v) = 6(u-v)

and Rn(‘r, r) becomes

T

R_(r,1) = [k-i(r,v) ke, v) av

=0

The average noise power at time ty

t t

then becomes

(6.49)

{6.50)

(6.51)

(6.52)

o [0} tC)
R_(t_,t)= f f [f(to,‘r) £*u, r) k", v) k¥ ¥(r, v) dr dr dv

-® - -®

t t

(o] o
= [ [ f(to, T) }"1(7, v) dT dv

-0 =-Q0
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The ratio to be maximized is

2
t
(o]
f f(to, 7) x(7) dr
P (t) T
y o _ o .
Novl : . 5 , (6.54)
o 0]
f ff(to,r) k7, v) ar| av
-Q0 -Q0

which can be simplified by making the change of variables:

flt, ) = g(t) ® k(t, 7) . (6. 55)

Thus,

t
[f(t, T) k_i(’r, vidr = (g(t) ® k(t, 'r)) e k-i('r, v)

= g(t) ® (k(t. 7 8k r, V))

= g(t) @ 5(t-v) = g(t-v) , (6. 56)
and
t
o
_ [ 2
N(to) = lg(to-v) dv . (6.57)
-
The numerator becomes
2
tO / v
Py(to) = f g(to-v) j (v, 7) x(7) d7 | dv , (6.58)
- Tq
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but by Schwartz's inequality,

2

t t
(o)

o v
R lt,) < f |g(to-v)|2dv j’ fk(v,T)x(T)dT dv .
T
(o]

-0 -00

The maximum bound on the ratio of Equation (6. 54) is therefore

<2
t

P (t) ° 1 7

< k(v, d d

——m-t—os- f f (V T) X(T) T v
-0 TO

This maximum occurs when gt} is chosen as

v
g(to-v) = [k(v, 7y %(71) d7 = Y, (v) ,
o
To
or
B0 =y, (to0)

The impulse response g(t) is the impulse response of the matched

(6.59)

{6.60)

(6.61)

(6.62)

filter to y.ro(t) . Considering the change of variables of Equation (6. 55),

the rnatched filter for a channel with nonstationary noise is seen to be

f(t,1) =y, (t -t) ® K(t, 7)
o

(6.63)

Equation (6. 63) represents the whitening filter cascaded with the matched

filter to the signal component of the whitening filter output.
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The maximum bound given by Equation (6. 60),

2

yTo(v) dv , (6.04)

is a function of both to and T From the form of M(to, To) one sees
that M(to, Tc) increases with increasing ts in the same way as in the
time-invariant case. For fairly large t, M(to, ‘ro) is essentially the
energy in yTo(t) . This suggests that optimization of the signal trans-
mission time, for a fixed signal x(t), be done s. that the signal is
transmitted at a time Ts for which the output of the whitening filter
yTo(t) has maximum energy. This corresponds to choosing T, ata
time when the noise power is low, in some sense. Tl;le optimization of
To should be done in conjunction with optimization of the shape of the

signal x(t) for a fixed transmission time T, ©OF for a given a priori

distribution of cost function over To .

1. .Optimum Sigral Design for Slowly Varying Noise

For the case where the duration of the signal x(t) is short
enough so that the noise has fairly constant statistics over the duration
of the signal, the noise can be approximated in a stepwise manner. The
noise can be considered as stationary on the time intervals (Ak] with
corresponding spectral density {Nk(w)}, where Z Ay is the time inter-
val of interest. Then the time-varying whitening filter on the time

interval Ay becomes simply the time invariant whitenin,_ filter Wk(w) ,
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where

’wk(m)l2 - NL%GT : (6. 65)

The optimum signal maximizes the quantity M(to, TO) . For
large t_ and To = TREB M(to, ‘rk) is approximately
e

M(w, 7,) = f |X(w) Wy () % dw . (6. 66)

-0

M(co, 'rk) is maximized by taking
ijk
X{w) = a Wk(w) e , (6.67)

where a is a constant, and then by choosing the index ko for which

(o 0)
M(w, 7)) = [ ka(w)|4dw (6. 68)

-0

is a maximum. Equation (6.67) gives the optimum signal waveshape,
and A} is the optimum time interval during which the signal should

o
be transmitted. The value of ko for which Equation (6. 68) is a maximum

corresponds to the time interval &y when the noise power is lowest.
o .
It should be mentioned in conjunction witk signal optimization

that there is essentially no difference between the first and second

matched filters, as shown in Figures 6.9 and 6..0. If xo(t-'r) is the

optimum signal for the second matched filter, then
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t-T
x(‘)(t-'r) = f k{t-T, u) 'xo(u—'r) du (6.69)
T

is the corresponding optimum signal for the first matched filter.

If the signal for the second filter xi(L-T) is not optimum and
if M(oo, T) is greater for the first matched filter syétem, when axi(t-'r)
is its input (where the constant a is chosen to that the transmitter of
either matched filter has identical average power), then it is obvious
that the output of the pretransmission {filter

t-T

x'1 (t-1) = [ k 1(t--'r, u) xi(u-T) du (6.70)
is a better signal tc use for the second matched filter system.

G. CONCLUSIONS

In this investigation a number of methods were developed for
analyzing and synthesizing time-varying systems. The characterization
of time-varying systems was completed by the definition of the K system
functions and the complimentary system functions. The relationships
among the system functions were clarified, and the physical interpre-
tation of the K system functions as impulse responses was seen to be
useful in finding the system function for a cascaded system. The time-
frequency duality relationships among the system functions were noted,

and the introduction of physical variables enlarged the concept of duality
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so that knowing one relationship becomes equivalent to knowing four
relationships instead of two.

The terminated multiplier structure was shown to be separable
for an exponential multiplier or for a periodic multiplier when one of
the terminating networks has a periodic frequency response. The
analysis of the terminated multiplier was applied to a modulation-
demodulation system.

The system functions were expanded in a double series in terms
of the complete set {q)i(x) lbj(y)}, as in a double sampling series. Net-
works were presented to evaluate the coefficients of these expansions.
By using the system function expansion, the input-output equation was
shown to be reducible to a matrix relationship.

The conditions for the invertibility of a time-varying delay system
were found, and the general inversion problem was discussed from the
matrix point of view. The known theorems on the existence of inverses
and quasi-inverses were presented and were extended for the recovera-
bility of a signal of finite duration. The application of the double series
to the integral eigenvector equation reduced it to a matrix eigenvector
equation. It was suggested that a judicious choice of expansion functions
could lecad to faster convergence than Fredholm's method.

Based on the double expansion, a method was presented for Syn—
thesizing system function by a parallel combination of separable networks
where one has some control over both the networks and the multiplier.
By considering the double series as a bilinear form, a unique realization

was found in which a resistive cross-coupling network connected the
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networks to the multipliers so that only N netwcrks and N multipliers
were used to achieve an N2 term expansion., A synthesis scheme
using the link structure and based on the sampling expansion was also
presented.

The system function for a satellite communication was found, and
correction for unwanted Doppler shift and time delay in an air-to-ground
communication system and in a side-looking radar system were suggested.
The problem of finding a whitening filter for nonstationary noise was
formulated. The matched filter for a channel with nonstationary noise
was shown to consist of a whitening filter followed by a matched filter
to the signal component of the output of the whiten'ng iiiicr. Because
the vhitening filter is time-varying, the signal component of its output
is different for different input signal starting times and thus the matched
filter varies withtime. When the noise varies slowly enough to appear
constant over the time duration of the signal, the optimum signal is
the impulse response, delayed by T, of a constant whitening filter.

The transmission time 7T is chosen at a time when the noise power is low.
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APPENDIX. SAMPLINC THEOREMS

A. SAMPLING THEOREM IN ONE DIMENSION

Let f(t) have a Fourier transform F(w)

where F{w) is zero

outside the band |w| < 2wB. In this band, F(w) can be expanded in a

Fourier series:

( - _ikw
Z a,e ¢B for |w| < 2uwB ,
-0
Flw) = <
0 for |w| > 2mB , (A. 1)
\
where
2nB ikw
1 2B
a3 T I0H f F(w) e dw
-2nB
1 k
i) f(m) (A.2)
Thus,
( ikw
QO -
1 k 7B
>B -Zoof(ﬁ)e for le < 2nB ,
F(w) = ﬁ '
0 for |w| > 2nB . (A.3)
\
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and

x ZwB iw (t -—k-)
1 k 1 2B
-0 -2uwB
0 k
Kk sinZnB [t - ZE) X
= { V33 = (A. 4;
2B (t - __)
= B

This last equation was viewed by Middleton6 as an interpolation
formula with the weighting function (sin 27Bt)/2nBt. He postulated the
following general interpolation formula in which f(t) and g(t) are

assumed to be Fourier transformable:

(¢ o]

£(t) = Zf(tk) glt - t,) . (A.5)

-Q0

Equation (A. 3) can be rewritten as

© foe)

f(t) = Z f f(7) glt-1) 8(7 - tk) dr . (A.6)

-0 -Q0

and by reversing the order of summation and integration,

© [00)
o

f(t)y = f f(1) glt - 7 Z_’é('r - tk) dt . (A.7)
-0 -0

The impulse train can be expanded in the Fourier series:

o) _ 2mikt
ié(t—tk)z%z e T , (A.8)

-0 -0
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where t = kT. Now f(t) is seen to be a sum of convolutions of g(t),/T

and {(t) e-ZMkt/T , therefore the Fourier transform of f(t) becomes
0
Flw = S ZF(w+—2%l—(-) . (A.9)
-

If one .::00ses G(w) in such a way that Equation (A.9) is an identity,
then Equation (A.5) will also be an identity and g(t) will be a suitable
interpolation function. Equation (A.9) is an identity for any F(w)

limited to the band |w| < 2#B if

TS 55 (A. 10)
and
T for |w| < 21B ,
Glw) =
0 for iT"—k- - 2B < |w] 5-2——11‘,1‘ +2mB, for k=1,2,...

(A.11)

If T=1/2B and F(w) = 0 at only a countable number of points in the

band [ < 2B, then the interpolation function g(t) is unique because

55 for  |u| < 2uB ,
Glw) =
0 for o] > 2B , (A.12)

except at a countable number of points, and thus
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2B

1 1) iwt _ sin 2Bt
.&.(t) S (ﬁ)e dw = TTTBC—- . (A13)

-2mB

Note that if the function is sampled at faster than 1/2B seconds,

on the intervals

ETTI_}E + ZTTB < w < ﬁ.(_ﬁ.—i_). - ZTTB for k = 0, 1, 2, e ’
T
F‘(m ¥ i}lli) - 0 : (A. 14)

From Equation (A.9) it is seen easily that G(w) is arbitrary on these
intervals. For a particular F(w), these intervals are part of the total

set
o0]
21k _ 1
w ZF(&+—,I‘—-) —0, T<—2—B—
-0

on which G(w) is arbitrary. For example, let

T for Jw] £ 2#B

Glw) = { a for 2mB < |u| < & - 2mB (A.15)
C otherwise ,
in which case
2
. i — - 27B |t
2wBt sin ( )
glt) = (T -a) 20— 4 th (A. 16)
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Whereas the interpolation function of Equation (A. 13) when shifted by
e is orthogonal and g(t - tk) is zero at the other sampling times
tj(j # 0), and thus a truncated expansion must agree with f(t) at the
sampling time tye s the function of Equation (A. 16) when shifted by te
is not orthogonal, and g(t - tk) may be nonzero at other sampling
times tj(j # k). Therefore a truncated expansion would not necessarily
agree with f(t) at the sampling times t,_ .

Petersen and Middletons used the arbitrariness of the function

g(t) as an essential feature of their extension of the sampling theorem

to Euclidean N-space.

B. THE SAMPLING THEOREM IN EUCLIDEAN N-SPACE

Consider the functien f(?‘c) = f(x1, Xy ev e xn) whose Fourier

transform F(@) exists as

a2
F(@) = Flog,wy.vosw ) = ff(sz) e T ax . (A.17)
X
F(®) is said to be ''wave-number limited'' if it vanishes outside of
a finite subspace R of ''wave-number space'' . In this case one

can define a basis

N _ ’_;. — -
<Vj> = {vi’VZ’ ...,vn> s (A. 18)

in terms of which the lattice sampling points are expressable as

— l —n

v[l] = 11'61+12v2 +.o.. +
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Llo= 0, £2,... . (A. 19)

It is desirable to find the conditions on g(t) which make it an

interpolation function such that {(R) is expandable in the series

£(x) = Z f(;'\[z] ) g(i - '5[”) . (A. 20)
]

By using the N-dimensional Dirac delta function, Equation (3.22) can

be written:

£(x) = ff(?) glx - ) Zé(ﬁ‘-‘&m)da‘ : (A. 21)
X [1]

It can be shown that
- P
2, 1 '
5 &b’-ym)= > 5 e o) , (A.22)

where Q is the hypervolume of a parallelepiped with edges —v} and —u‘k

relared by

(A.23)

where 6jk is the Kronecker delta. By using Equation (A. 22), Equa-

tion (A. 21) becomes

f(x) = Z Jf(p) e e &Q'—p— . (A.24)

[m] X
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As in the one-dimensional case, Equation (A. 24) is recognized as a

sum of convolutions. Taking the Fourier transform of both sides yields

FlB) - c(()_:,‘) Z F(o +T1'[mj) . (A.25)
m

Conditions on G(a) and ﬁk for which Equation (A.25), and subsequently

Equation (A. 20), are identities follow:

1. The vectors ﬁk must be large enough and so oriented that
the shifted spectra do not overlap.

2. Let

Glw) = ' (A. 26)

Oforwe‘R[m] R

where R[m] is the subset R shifted by the vector ‘L?E_n] :

P §

RM‘ =<w|3-a‘meR} . (A.27)

R[rrﬂ is the subset on which F(TS‘+%) may be nonzero. For any
F(w) which vanishes outside R, G{w) is arbitrary on the compliment

of the set

" (Hrey
G(w) will be unique if

U »
[

[m] = , (A. 28)
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but because of the shape of R, one may not be able to chcose the vectors
{T;k} such that Equation {A. 28) is satisfied. If not, G(ﬁ) will be arbi-
trary over some nonzero subset of Q. In the one-dimensional case,
however, one could always choose T = 1/2B (T is the length of the
vectcr U‘i) in such a way that the domains of F(w + 2nk/T) covered
the set 2 = (-00, @) and G{w) was unique.

The N-dimensicnal sampling theorem can now be stated: A
function f(';c‘) whose Fourier transform F(Z}) venishes outside of a
finite subset R of wave-number space 2 can be reproduced from
its sample values taken over a lattice of points <l 1vi + ZZVZ ... 4 lnvn}
for li’ZZ""

to assure nonoverlapping of the subsets R[{nJ of @, where REnJ is

R Zn =0,x1,1+2,... where the vectors {7: are chosen
the set R shifted by the vector 3 and ¥V, -m, = 216, .
m J k jk
In the case where R i3 a parallelepiped centered at the origin,

a particularly simple interpolation function results:

N . i -—
sin 5 T4 - X
g{x) = | l T . (A. 259)
k=1 7 O X

If R is rectangular and centered at the origin and uy is chesen

. . . th ]
in the direction of the k unit vector, then

N sin 1 u, X
2 'k 7k
g(x) = | l i . (A. 3C)
k= -2- U.k Xk

Equation (A. 30) is the interpolation function that can be considered the

simplest extension from one to N dimensions. Actually this interpolation
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function can be used to reconstruct any function f(X) whose Fourier
transform F@ vanishes outside of an irregularly shaped finite region
R' by choosing a rectangular region R centered at the origin which is
large enough to include R'. The conditions of the theorem are satisfied
for the larger region R.

Although the simplicity of the sampling function of Equation (A. 30)
makes it especially useful, it should be mentioned that choosing those
lattice vectors may lead to a relatively inefficient sampling lattice.

An effective sampling lattice is one in which the vectors <_x?> are
chosen to ''pack'' the spectra <F(i)h +3M )} as close as possible to
each other withcut overlapping, thus assuring that the least number of -
samples per unit hypervolume in X space are nceded. For example,
in one dimension for T = 1/2B the spectra F(w + 2nk/T) are adjacent.
This sampling time is the slowest possible; thus the least number of

samples per unit time are required.
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