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INTRODUCTION

The purpose of this investigation is to analyze the
effects of axlial and transverse acceleration on bearings of
various shapes which may be suitable for use in spring driven
timer mechanisms. The investigation considers the teasibility
of each bearing in terms of loads, stress levels, and friction
torques and indicates appropriate design and analysis tech-
nicques.

The conventional timer consists of a mainspring as an
energy source, a speed increasing set of gpur gears and pin-
ions on parallel shafts, and an escapement controlled by an
oscillating balance wheel., The case of the timer 1s fastenec
to the projectile and accelerations are imparted to the gears
and shafts through the bearings under investigation. The usual
orientation of a timer is with its shafts parallel to the axis
of the projectile and with the center of the timer housing
on the axis of symmetry.

Timer bearings are ordinarily subjected to two differ-
ent types of loading. The first, of short juration, results
from acceleration while in the gun tube and acts approximately
parallel to the axes of the shafts. During this interval
the mechanism may not be required to operate, but 1t must be
able to function properly as socn as the axial load drops off.
The second type of loading 1s caused by a radial acceleration
of increasing magnitude while the mechanism 18 in the gun
tube and of approximately constant magnitude during the flicht
of the projectile. The mechanism 18 required to fur.ction pro-

perly while under the latter loading.



The main part of this report 1s divided into four sections.

In the first cection bearings which can withstand axial load
are analyzed. Ten different combinations of srape and pressure
distribution are considered. Since it 1s likely that the mini-
mum bearing size will be limlted by axial load capacity, formulas
are derived 1in eaclh case expressing the required bearing size
as a functlon of 1itas pertinent ;;eometric parameters and the di-
mensionless a~ial cad.

These express'ons can te used in design in two ways. First,
if a particular ge-metry; has heen declded upon, they can be used
to find the minimui: bearin;; fize as determined by axial load ca-
pacity. Second, they can be used to see the effects of the var-
ious geometric par:meters upon bearing slze as determined by axial
load, and so will rerve as a culde in choosing the most sultable
shape and varamete 's. Throughout this section typicsl numeri-~al
values of load, ma.erial propertles, and geometric parameters
are used in tne fo-'mulas developed 1in order to give a physical
1dea of typical sl.es. Slnce some of the formuias developed are
represented by faj-ly complicated equatlons, many of these equa-
tlons are plotted .n order to determine the general trends of the
curves and to facl.ltate comparisons between the cases. Since
operatlior. while u.der azial load may be requircd, expressions
for the frictlion torrque are also ceveloped for cach of the ten
cases, Agaln typl-al numerical values are calculated in order to
zive an 1dea of th: orde-s of magnitude of these quantities and to

compare tnhe relatlire merits of the ten cases.
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In the second section of this report the bearings of Section I
are analyzed under transverse load. DBecause flat bearings can
withstand axial but not transverse load and because under trans-
verce load one normal pressure distribution is much more reason-
able than moet others, the ten cases cf Sectlion I reduce to four
distinct cases. They are: snherical bearings (solid and hollow),
torroidal bearings. conical bearings, and bearings with latitude
circle line contac:, In each of these cases fcrmulas for required
bearing silze as a unction of geometric parameters and applied
transverse 1oad are derived. Again typical numerical values are
calculated and 1t i1s found that with the load magnltudes u:;ed here
as typlcal, elther axial or fransverse load capacity may fix
the minimum bearing size. The one that controls depends not only
upon the ratio of maximum transverse to axlal load, but also
upon the type of bearing and the values of its geometric para-
meters, Again thece formulas may be used in two ways - for cal-
culating numerical sizes once the geometry has been fixed, and for
evaluating the effects of the various geometric parameters. Since
operation while uncer transverse load is a definite requirement,
expressions for the friction torque and typical numerical values
are calculated in each of the four cases.

Journal bearirgs sre investigated in the third section of
this report. These bearings could be used in conjunction with
one or two bearirge that have axial load capacity. An epproxi-
mate method 18 developed for calculating contact stresses in terms
of transverse load, bearing size, and meridian radius of cur-

vature., In addition expressions for friction torque are devel-

-3 -



oped. Again typical loading 1is considered and numerical values
are calculated for this loading.

In the fourth section of the report two topics are invesati-
gated., They are the estimation of typical loading and the inves-
tigation of the feasibility, for this application, of sharp

vee-jewel bearings as used in preciesion instruments and watches.



SECTION I

BEARINGS WITH AXIAL LOAD CAPACITY

There are three classes of bearing of this type. They
may be described as bearings with full contact, bearings with
thin ring contact and bearings with theoretical line contact.
A bearing from each of these classes 18 sketched in Figures
1l to 3.

A study of Figures 1 and 2 indicates that the surfaces
are initially con"orming - that 1s, in the unloaded condition
there i1s theoretical area contact. In addition, in order to
get cide thrust capabllity, and so eliminate the main disadvan-
tage of vee jewel bearings, (see SECTION IV), contact occurs
at radiil that are of the order of magnitude of the shaft radius,
This increases the eftective friction radius above that of vee
Jewel bearings and so izives the (unavoidable) penalty of
higher friction torque. However we want numerical values of
these parameters in order to evaluate an optimum design.

The various shapes will be considered only under axial
load in order to determine the required size. Just as for the
vee jewel bearing it 1s likely that the initial axial accelera-
tion will fix the size. Various normal pressure dlstributions
will be considerec for each shape. In addition friction torques
will be computed to see what would happen if the bearings have
to operate during the axial acceleration period. In SECTION II
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FIGURE I FIGURE II

; i
: - I ——
.'
SPHERICAL BEARING, CONVEX TORROIDAL BEARING, CONVEX
SHAFT, AND FULL CONTACT SHAFT, AND THIN RING CONTACT

FIGURE TII

SPHERICAL-CONICAL BEARING, CONCAVE

SHAFT, AND THEORETICAL LINE CONTACT
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these bearings will be considered under transverse loads only;
friction torques and bearing contact stresses will be computed
in addition to other quantities of interest for a particular bear-
ing.

Case 1 FLAT BEARING - WITH AND WITHOUT A HOLE - UNIFORM

PRESSURE DISURIBUTION - SIZING UNDER AXTAL LOAD

Defining 8 by

r
o
we et
{2) W
ﬂ(lo -y )
and
1/2
re o
(3) r = | 2

ol (1/‘9"51}

where ry and r_ are the inner and outer radil in inches, q,

is the meximum beering pressure in psi, and P 1s the axlal load
in 1b. Tt 1is reacily observed that the mirimum size bearing 1s
the one with 8 = » (no hole). Thus we define a reference out-

gide radlus as

1/
(4) ) bt

o :
O rei w qo
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FIGURE IV

FLAT BEARING

WITH A HOLE




and a dimensionlest relative bearin; size D as

r v

) D=T—-,-—“
(5 To ref

and get for the solld flat bearing

(6) D= 1

and for the hollow flat bearing

- 1/2
Q¢ =

T
(7) D = L:?—i i
The range of 2 of Interest 1s from 2 = o for the solld flat
bearing t> about 3 = ro/(ru - .lro) ~ 1.1 for relatively thin
bearings. (Anythiiy: thinner would require exccssive folerances.)

)

The bearin: relative size D = r“/(r of equation ‘7) va 1/8

o‘red
1s shown in Fiy. 5 on Pa,e 10 and tabulated in Table 1 on

Paire 14, 1Tt can be seen that the thinnest scction that would
be used (3 ~ 1.1) requires about 2.3 times the outside diame-
ter of a no-nwle scctlon for the s3me load P and desi :n normal
pressure q . Jn order to investilrkate typlcal sizeg take

P = 15.95 1b, (See Pa-e 114 of SECTION 1V.) Tt 1s

typical
more difficult to «8gtimate a ocd degli . n value for Q- The value

chosen should be bclow q_ = 285,000 psi1 (Page 108) since there

18 area contact in the undeformed pcsition now and the likeli-

hood 1ieg high of having much ;reater than average pressure at

-9 -



Bearing Relative Size (D = PO/PO ref.)

.40

.30

.20

.10

.00

.90

.80

.70

.50

.40

.30

«20

.10

.00

FIGURE V

BEARING RELATIVE SIZE-D

VS. RADIUS RATIO 8 FPR /]/

VARIOUS CASES

\

\
]
\\.

Flat Bearing with ////

/

Triangular Load~_
Distribution \/

v

(n=1)

\

Torfroidal Bearing 4 /
with Cosine Load \/ //// //
Digtribution Spherical Bearings

(a =

o

T — — T —

SR

with Cosine Load
Distribution:

/
"

A
2

1 B B |

RAAR

;.

—

,/V

A

Flat Bearing with Trapezo

Load Distribution (n = .5)

|

B lala” i
E 7// s
7

Flat Bearing with Uniform
Load Distribution (n = 0);
Conical Bearing with Uniform
Load Distribution

idal

l

o

|

.2 % AU 5 .6

-

Rec}procallRadius Ratio r

F R e Y
{/rn= 1{8 | = |

10

m

Radius Ratio

- 10 -

3 T 5/4 10/9 1

B



repze ral Gochnol oy Corporataon

local irregularities. Thus use q = 242,000 psi (Page 95)
for the relatively thin sections and q_ = 175,000 psi (say)
for others.

Then for thin sections

1/2 - 1/2
I S S 15-3; -
(ro)ref min = T q_ [ N 4 ), )] = .00459 1n.

V)

and for th. ~k sec*ions

~ i
(ro)ref, max m qoj

=,00539 1in.

The reference shai't dlameters are then

(d,)

o'ref, min = ,0092 in. for thirn ring contact
and
(do)ref, S .0108 in. for larger contact area.

For a ratio of ri/ro = 1/ ~ .6, the outside diameter would
be ~ 1.25 x 0108 .. .013%5 in. (see Table I), while for r /v, ~ .9,
the outside diame®er would be .5 2.3 x .0092 = .0212 L. (The
higher design stress 13 ugsed for the relatively thinner contact

area. )

= BLL RS
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Case 2  FLAT BEARING - LINEAR PRESSURE DISTRIBUTIONS-

SIZING UNDER AXTAL LOAD

For the relatively thin sections the uniform pressure dis-
tribution is quite reasonable. For the thicker ones, in order
to prevent corners from digging in, the bearings could be made
somevhat a3 shown %n the exagrerated sketch on Page 13, (Pig-
ure 6). The small axial clearaace shown prevents the outside
corners from takin:; all the load. When the load 18 applied the
two surfaces deform into contact, The resulting normal pressure
distribution then drops off with increasing radlus.

Thus consider the Trapezoidal Distribution with parameteir n

shown in Figure 7, Here the normal pressure 13 given by

I"-I‘i
(8) a(r) = q, - m, N

Vthen n = o, this reduces to the uniform distribution; and when
n =1, 1t reduces o0 a triangular distribution. The equation

of axial equilibrium gives

r=7r r
(9) P j “ap = | (2mrar) (@) (1 - e L)
- = Y - ﬂl -
rEory '1”1 ° To = T4

Integratinz, uslig the definition of bearing relative size D

(Equation 5), and simplifying gives

- 12 -
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FIGURE VI

Small clearance
| that 1s taken up
elastically as
the axial load

— £ r P
S | is applied
|

!

EXAGGERATED VIEW OF A FLAT BEARING

BEFORE THE AXIAL LOAD IS APPLIED

FIGURE VII
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TRAPEZOIDAL LOAD DISTRIBUTION

q(r) FOR A FLAT BEARING
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10 D ) =rd
( ) (8 ﬂ) 82 _ 1 +(r\/3Xl e 282)_1

Comparing this to Equation 7, Page 9 shows that 1t reduces to
that equation for n = o. The quantity (1 + g - 292) is zero
for f = 1 (the smallest value of 8) and gets smaller (more
ne~rative) for increasin- 8. Thus for any positive n between
O and 1 the denominator gets less and D increases as expected.

Some tabulated values are piven in Table 1 below.

Table |

BEARING RELATIVE SIZE D AS A FUNCTION OF BEARING RADIUS RATIO r

FOR THREE LINEAR LOAD DISTRIPUTIONS

Uniform  Tranczoldal — Triangular

g  Din=»o' Ln=.5) D (n=1)
w 1.000 1.2252 1.732
10 1.005 1.220 1.670
5 1.021 1.225 1.640
2 1.062 1.261 1.642
2 1.153 1.360 1.732
o/ 3 1.250 1.463 1.848
5 /4 1.670 1.940 2.40
10/9 2.295 2.66 3.28

T
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These curves are plotted in Figure 5 on Page 10. For typical

flat bearing sizes as determined by axial load we have for
B =1.667 (1/8 = .6)

Uniform (n = O) D =1.25
d.uteide D(do)ref = ,0108 D = .0135 in,

Trapezoidal (n = .5) D = 1.46
doutaide = D(do)ref = ,0108 D = ,0158 in,

Triangular (n = 1) D=1,85
d_,tside = D(do)ref = ,0108 D = ,020 1n,

and for 8 = 1.11 (1/8 = .9)

Uniform (n = O) D= 2,23
doutside = D(do)ref = .0092 D = ,0207 in.

Trapezoidal (n = .5) D = 2.66
doutside =s D&do)ref = ,0092 D = ,0244 in.

Triangular (n = 1) D = 3.28
doutside = D(do)ref = ,0092 D = .C302 in.

(see Page 11 for (d ) .¢)
= 18 -
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The trapezoidal distribution with n = .5 seems most reasonable,
Thus to summarize, we have for flat bearings with a trapezol-
dal distribution with n = .5 and for P = 15,95 1b. axial load
(Page 114), a design bearing stress q, = 175,000 psi (Page 11),
and a radius ratio 1/8 = ri/r-o = .6, an outside diameter of

d = ,0158 in, Also for a thin section flat bearing with

outsglde
the radius ratio now 1/8 = Pi/ro = ,9 and the design bearing

stress now q = 242,000 psi (Page 11), we have & = ,0244 1in.

outslde
Both of these s8izes are recasonable.

Case 3  FULL SPHERICAL BEARING- UNIFORM NORMAL PRESSURE

DISTRIBUTION - SIZING UNDER AXIAL LOAD

The radius of the spherical tip 1is R, r 18 the outside
radius of the bearing, o 1s the total half angle subtended by
the bearing, 9 18 a varlable anile, and r 18 a variable radlus

as shown in Figure 8., Ve have

(11) sing = r/R
and

Yo
(12) 8ing = T

- 16 -
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FIGURE VIII

FULL SPHERICAL BEARING WITH

UNIFORM LOAD DISTRIBUTION

FIGURE IX

q(e) = qcos8

FULL SPHERICAL BEARING WITH

COSINE LOAD DISTRIBUTION

TH T A
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Since the normal pressure distribution is hydrostatic (uniform),
its axial resultant equals that of the same uniform pressure
distribution over the flat bearing of equal inside and outside
diameter. Thus the bearing size 1s the same as for Case II

with B = @ and n = O (Page 14).

Case 4 HOLLOW SPHERICAL BEARING - UNIFORM NORMAL PRES-

SURE DISTRIBUTION - SIZING UNDER AXIAL LOAD

As noted directly above, the sizes are the same as for the
flat bearirg with the same radius ratio 8 = ro/r1 and n = O,

(Page 14).

Case 5 FULL SPHERICAL BEARING - COSINE NORMAL PRESSURE

DISTRIBUTION -~ SIZING UNDER AXIAL LOAD

Here q(e), the normal pressure, ia taken as

(13) q(s) = q  coss (0 <6 <a)

The equation of axial equilbrium gives (See Figure 9)

6 =a
(1)  Pefar=]  (Ra0) (2nr) (g, cose)(cose)

Using the definition of the bearing relative size D, elimina-
ting R and r with equations 11 and 12, and integrating gives

- 18 -
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aal/2 .
(15) D(a) = L%J

S“n';
"(1 — COSBq)

"
1,724

As a check, for small values of n this becomes

1/2 a - e
(16) o) = 3 2

which has the 1limiting value one. Since small a means essen-
tially a solid flat bearin; with a uniform load distributiocn,

this checks with the results for a flat bearing with 8 = =

and n = O,

A tabulation of this functlion and a plot of 1t are pgiven
in Table 2 and Fij;ure 10,

- 19 -
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Table 2

BEARING RELATIVE SIZE D VS BEARING ANGLE ~ FOR FULL SPHERICAL

BEARINGS WITH A COSINE LOAD DISTRIBUTION

& Din

C 1.000
10° 1.002
20° 1.022
30° 1.036
4s° 1.079
60° 1.136
90° 1.225

Since practical bearin;; an;les would have 90o as an upper
limit ard since the cosine distribution 18 reasonable, a solid
spherical (conforming) bearin; is at most 1.225 times the dia-
meter of a solid flat beari:n; for the same axial load and de-

si;-n stress,
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Case 6 HOLLOW SPHERICAL BEARING WITH COSINE NORMAL PRES-

SURE DISTRIBUTION - SIZING UNDER AXTAL LOAD

Equation 14 holds with the lower 1limit replaced by ay and

with g replaced by qo/c03q1, where r, and a, are related by

Ty
(17) 8in oy = y-

The integrated equation Lecomes

/2
J

= 1/2 sing ‘.COSQ
el |

<

-1/2
rcos3a1 - coss3'1_J

—

where ay and the radius ratio ¢ are related by

sing

(19) B = ETHEZ’

Some values of D vs. @ and n are tabulated below in

Table 3 and plotted in Figure 5.

- 22 .
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Table 3

BEARING RELATIVE SIZE D VS RADIUS RATIC R FOK FOUR BEARING

ANGLLS

n = 0° \This corresponds to the rlat bearin with a uniform

distribution of pressure)

s ay D{a, ay) = Dfa,?)
«® 0 1.000 (Soiid flat brg)
Pa; e 14
10 0 1.005
3 0 1,021
5 0 1.062
2 o 1.153
B/ 3 0 1.250
5/4 0 1.570
10/9 0 2.295
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10

5/3
5/4
10/9
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\11

.00°

0 n (@
@
N
o

- b -

D(a; 0.1 = D(Q,Q)

-

1.036{3011d sph. biy)
Pare 20

1.039
1.056
1.101
1.180
1.283
1.688

D(Cll Q.i) . D(C’-lp)

—

1.13b (Solid sph. brg.)
Page 20
1.14%0
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10

w  m

n

5/ 3
5/4
10/9

0.00°
5.73°
12.54°
10 1RO
30.00°
36.4°
53.2°
64.2°

D(rx1 ﬂi) f“p(ql,b)

1.2¢% (doliu sph. br; )
Pa_e 20

1.232

1.252

1.300

1.429

1.532

Case 7 HOLLOW TORROIDAL BEARING - UNIFORM NORMAL PRESSURE

DISTRIBUTION - SIZING UNDER AXIAL LOAD

(e1)

(22)

and

For this case

) J (a,

0

S

)(2nr)(Rdg){cHsn)
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FIGURE XI

?
l \h.{ 6\(

TORROIDAL BEARING
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Combining and carryirg out the integration gives the same 1re-
su’t as for the flat besrin;; with a uniform load and the same

inside and outside radil, namely

o 1/@

D = t:?gt_-] (See Equatlon 7)

(See cases 3 and 4 for similar results)

Case 8 HOLLOW TORROIDAL BEARINC - COSINE NORMAL PRESSURE

DISTRIBUTION - SIZING UNDER AXTAL IOAD

Here instead of Eqs. 20 and 23 we have

(25) qi6) = q  cosg
and
0 =a 7
(26) F "’J; -, dP_ 4., (3) alj (q, cosg)(2ar)(Rdg)(cosn)

respectively. Integrating; and using the definltions of D and @
(Egqs. S5 and 1) gives

(27) DiB,a) = [ == 2 T
‘s, :
(8-1)% (5)(A2950) + (o-1) (g + B2pe2)

sin n
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& Nl/e
As n approaches zero, this approaches r-?ﬁ—-— as 1t shoulu.
B® - 1-

Some results are riven below in Table 4 for 5 = 900.

Table 4

BEARING SIZE D VS BEARING RADIUS RATIO 8 FOR A TORROIDAL BEAR-

ING WITH A COSINE LOAD DISTRIBUTION AND AN ANGLE o OF 90O

a = 90° 8 D (g,90°)

(Jee P, 25 for a
sclid sph. brg. _
with a cos. dist.)

o 1,225

10 1.258
5 1.304
3 1ea 38T
2 1.548
5/3 1.695
5/4 2.31
10/9 3.22

Case 9 HOLLOW CONICAL BEARING - UNIPORM NORMAL PRESSURE

DISTRIBUTION - SIZING UNDER AXIAL LOAD

The same results hold as for the flat bearing with a uni-
form normal pressure distribution. This 13 included here Jjust

to et a case number and a sketch for reference (See Figure 12).

o) R
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FIGURE XII

/_\O

HOLLOW CONICAL BEARING
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Case 10 BEARING WITH THEORETICAL LINE CONTACT - SIZING

UNDER AXIAL IOAD

In the sketch, (Figure 13), the bearing has theoretical
line contact at a radius r,. The normal to the surfaces makes
an angle v with the shaft axis, Rl is the meridian radius of
curvature of the shaft, positive if the shaft is convex, as
shown, R2 1s the meridian radius of curvature of the bearin:,
also positive 1f the bearing 1s convex, as shnwn. The other

two principal radil of curvature, Ri and Ré, are always equal

and opposite to each other in sign as shown, as the mating sur-
faces co form in one direction. Rl and R2 may each be infinite

or nerative, but neither may be zero. The quantity Ro defined

by (See Eqs. 126 or 130)
(126) Fof *R

must be poaitive in order to have thecretical 1line contact

(RO = + = means the most conformity, Rj = + ¢ > o means the

least conformity). In terms of the notatlion of equations (119)

and (121) we have

110" 1,1 1,1 1 1
(119) A+B =3 ot =) o=
I

- 30 -
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FIGURE XIII
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BEARING WITH
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(120) B - A o %-rké -1

- o= R 1 {0

o 1/2
+ g - )
Hé -R =
1
1
= + PR
=0
and
1
B-A 2 Q_R6
(121) co8) = g = — — =11

The minus siyn has no significance and s0 9 18 cero, anc
we verify that the surfaces conform in onc direction,
Axial equilibrium gives the (uniformly distributed) nor-

mal force per unlt lengtn of contact es

(pm) (2nr_)(cosv) = P

or
'28) SR PCOSvilb/in of cir.)
‘ o)
The maxinmum bearing pressure per unit area is given by
ep
m
(128) 9% = na

- 32 -
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where a 18 the small half width of the contact area and is

given by

ru P Ro 1/2
(125) &= |—5p—
o
with Ro from Eq. 126 or 130, and EO from Equation 131.

Eliminating p,» @, and r_ from Eqs. 4, 28, 125, and 126

gives for the dimensionless relative bearing size D

pl/2 g 1/2 -
(29) D = 743 3]20 = r_E_] r?n gf cosv1
2(n) (qo) R, cosv ", W o -
For P = 15,95 1b. (P. 114)

q, = 285,000 puyi (P. 108 - This choice 18 for theo-
retical line contact)

Eo = 21 x 106 p3l (P. 108 - Sapphire jewel and steel
shaft)
we have
P1/2E°
D= -
2(")3/2(q )3/8 R_coBv
o o}

(29)

(15.95)172(21 x 10%)

(2)(3.145372(.285 x 106)3/2 R, cosv

{
w
o

l
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B Ro'ggsz

We see then that RO should be as large as possible for
small D (relative bearin; sizc) and 8o 8should cosv. This means
that from the point of view of minimum bearin; size as deter-

r.dned by axial load we want conforming surfaces (lar;e RO)

normal to the axial load (large cosv). For o typical bearin:

consider the spherical-corical bearing shown in Fig. 3. There

R = R
(@]
(30) a = Vv
and R = ro/sinq

Combinin~ Eqs. &, 5, 29, nu 30 gives for this bearing

. 31) D = ‘gga————d

From thls we see that the angle a should not be greater
than say 45Y for this type of bearing. This 1s not only rea-
sonable from a sizing point of view, but 1t also helps to
prevent excessive circumferential stresses in the conical mem-
ber due to the wedgin; action of the sphere in the cone,

For typical numerical slzes we have with

EO = 21 X 106 psi (P. 108)
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q, = 285,000 psi  (P. 108)

a = 45° (Probable design maximum)

) 5 rEo tanaﬂl/Q (21 x 106) tan 45° ,1/2 e
E"Qo J “(2) (3.14) (.285 x 106)J .

(do)ref 13 calculated on the basis of a line contact design
bearing stress of q = 285,000 psi.

Thus
1/2 1/2

[ g )3= 00843 1n.

+ O ’

o ref

d, = D(d_ ), op = (3.42) (.00843) = .0288 in.

This 18 not out of line with the values of do for conforming
bearings (See Pages 15 and 16).
As a check and to determine if the eliminated quantities

have reasonable magnitudes, we calculate these quantities for

this example.
d
B= 29 = 49§§§:= 014"
(28) P, = P = 292 = 250 1b./in
m  2mr_cosv ~ (2] {3.770) (‘OTUUT7§§;7FRJ B: 3k Uop
(30) R, —]7—- 1uuL .0203 1in.
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(31) D o w2OHOT L0497 - Q891 3 e
’ Ro cosv (.0203] (.707) ~ .014% y
2 p ’2) .2 Ox
- m _ b [ ) 2 55
(12“) a = nqo W'W 000559 1n.

(125) & o omToat? sik) (200) (.0203)-"¢
omE, (3.14) 721 x 10°) -

O

= 00055“ 111 .

As a comparison the cylinder enclosing the ocutermost limit
of contact has a diameter of d_ + 2a cosa = .0296 1in. for this
case., The sharp vee Jjewel bearin; has for this cylinder's dla-
meter (P. 119).

(2a') = 2(.00:10) = ,01032 {in,

typ

Thus for the same loads and materialis, but with the potentlal

ability to withstand transverse loads, we are acout .02 63 = 2,86
times as lar;ce, This 1s quite reasconable., (Note that this 1is

2.86 times as large as the enlarpged vee Jewel., It still ex-
ceeds commercial practice on Jewels, but the ratio 1s repre-

gentative.)
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BEARINGS WITH AXIAL LOAD CAPACITY - FRICTION TORQUE WHEN OPEKA-

TED UNDER AXIAL LOAD ALONE

Case 1 (See P, 7) The general expression for the fric-
tion torque on ar annular area of radius r and meridian len: th

ds, with coefficient of friction u, and normal pressure q 1s
(32) dT... = uq(2nr)(ds!(r;

For Case 1: q(r) = q,, ds = dr, and the limits of inte-

gration are r = ry and r = T Thus

=Ty Fo
Ten =L£ . der‘r) sz 2nuq rodr
1 i
2ﬂuqo 3 3
=3 brg7 - Ty

We define as a reference frictlion torque the torque on a solid
flat bearing: with uniform normal pressure distribution. Since

ry =0 and r_ z(ro) (Eq. 4), we have for thls case

ref

/ 2nu qO r -,3 o .
\3“) (Tfr)ref = ’T“" "ro)x'ef; = 'g (uP) (Po)ref

B 7 AR
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S

It then seems natural to define a reference friction radius as

SN e

r
(36) A= T—L
‘Pfr)ref
and
i
r
(37) P ™ oy

Using these definitions gives for A in terms of 8 (when Eq.7
for D(R) 1is considered)

(38) O PR
o ‘3/
(" - 1)——

As 2 approaches infinity this approaches 1, as it should for
the solid flat bearing. This function is tabulated below in
Table 5 and plotted in Figure 14,

- A8 =
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Table 5

FRICTION RADIUS RATIO A VS BEARING RADIUS RATIO 8 FOR A UNI-

FORM LOAD ON A HOLLOW FLAT BEARING

£ 013
: 1.000
10 1.016
5 1.058
3 1.150
2 1.348
5/3 1.530
5/l 2.26
10/9 2.28

From the plot we note that aA(8) increases more rapidly

than 0(R”) in the range of & of interest.

Case 2 (See Page 1° ) 1In Eq. 32 q.r) is given by Eq. 8,

ds = dr, and the limits c¢{ inte;ration are 1, and r.. Thus

we et for the friction torque

0 '-10 "P(' , S I‘i 2
Tep =), OTpp{r) = | (2n){q )1 - mp——g=)rtar
) ”i © 1
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Bearing Relative Size D and Friction Radius Ratilo

3.20

FIGURE XIV

—~
»
4

o

0 o a2 v 4 oD .6 <7/ .8 .9

Reciprocal Radius Ratio 1/8 = ri/ro

BEARING RELATIVE SIZE D AND FRICTION RADIUS

RATIO VS. RECIPROCAL RADIUS RATIO 1/8 FOR

A HOLLOW FLAT BEARING WITH A UNIFORM PRESSURE

DISTRIBUTION
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r -
. r ok S (. _ b G 1 =
i, 3 AU B e L
The dimensionless friction radius ratic A becomes
1 3“7/)1‘4’ © l it .‘L/""I'A

"‘() A"a ) 25 ,D:f R = 03'.1 - - 3 A
(40) 8, A\ » ), ;3' B G

where D{2,n) 1s riven by Equaticn 1C. Rather thian plot this
we evaluate it for a typical case. Taking n = .Y [trapezoi-

dal istribution) and 8 = 1.667 w2 have (See P. 14)

1l

D(1.667,.5) 1.463

and

i

8(1.667,.5) = (1.463)3  .556)

il
—
=~
&

We compare this to A(1.667,0) = 1.530 (P, 29) and see that for
the trapezoldal distribution the friiction radius increases Ly
a factor of 1.74/1.53 = 1.14 over that for a uniform distrilu
tion with the same axial load, desi;n bearin; stress, and rcdilus

ratio.

Case 3 (See P. 16) In Eq. 32, qif) = q_, ds = R?7, and
the 1imits of integration are £ = 0 and A = a. Thus we get

for the friction torque
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where r(g) and R are related to § and « by Eqs. 11 and 12.

Integracirn: gives

3
r
' - o Ta 8in 24°

and the dimensionless friction ratio becomes

(42) 5(a,D(n)) = D3 [—3% _ 3 8in2q"
b -2 sing; 4 sing;J

where D = 1 for this case. PFor a typical slze take o = 300.

Then 4(30°) = 1.08. So for o = 30° the friction radius for

this case 1s 1.08 timey as high as for a flat beartn,_.

Cagse 4 <(See P, 18) Only the 1limits of integration change

from Case 3. The lower limit becomes 9 = 14 gaving



3
r ; " gsin 2a
- o) ra 3in 2qg P in
(43) Tre =AW == 13 - Tt m ot U
The dimensionless “riction iratio becomes
\ 3 3 N sin 2q sine
(Ly Ma,ay,Dia,a, i) = Do—mse B TERCR T
1 1 ¢ Sing: i - e

In kEquatlion 44, D 1s the same as for a flat hearin with uni-
form normal pressure (Eq. 7) and Qg A and 2 are related by

Eq. 19, For a typical size take

a = 90° and 8 = 1.667

Then
(19) 8in a; = & olma = (.6){1) = .6, o, - 36.8°
ara
D3 = (1.250)3 (F. 1b4;
and

p = {1.953)(1.5;(1 4081 = 4,12

This 1is high, but a uniform riormal pressure dlgtribution from

ay = 36.80 to a4 = 90O tIves o large friction offect from that

O 5 a .
part of the 2arc near A = GCY witn 1ittle or n. effect on the
axial load. We should expect fhe cosine normal oresdsure dis-

tribution of Case 6 to yive mere realistic valiec here,

-3
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Cage 5 (P, 16) Here

a(e) = g, cose
ds = R dg
r = R s8in9
i = R osira

and Eq. 32 tzcomes

dTp,  «)(g, cced;(21R 31n0)(R dg)(Rsing)

The limits are § = O and 3 = . Thus

p a)
T = dT = 1q 21H3 sinee co88 d§
"b 0

or -

1 C-) [ ——— -
(h5) gy G
The dimensionless fricticn radius ratlo becomes

(46) A

where D(a) 18 given by Ec. 15 and 1s tabailated on P. 20.

For numerlcsl values teke o« = 900, Then
: 1/2
2
Dia) = [#, = 1.225 (P. 20}

AY

ab £{90%) = 1.638
L uy



Gones x2) Technelogy Cerporation

Thus the solid hemispherical bearing with a cosine normal pres-

sure distribution has only 1.225 times the outslide dilameter

of a flat bearing of the same capacity, but has 1.838 times as

much friction %orque.

Cage 6 (P. 22)

limit becomes a, where 8in a, = ri/R 'Eq. 17).

torque becomes

J

Q
Ter =~L dTp.(8) “j;
1 1

uqo 2"R3 2

EBEEI-__ s cogn 4dn
or
2muq . r
o "o 1"
The friction radius ratio then becomes
3 (1 - :’1'3)
3
(u’8) A(B) D: 0.1) = CoB ,11

For typical numerical values take q = 90O and /8 = 1.667.

(P. 25) a, = 36.8° and D = 1.532 glving

SR

Here q/a) = q, cosg/cosay and the lower

The frictlon

Then
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p3 (1 -1

\ o3 _.532)30 - .6%) | 5 o

COSai .8

Thus the size 13 1.532 times that of a solid flat bearing,

but the frictlion torque 1s 2.52 times as much,

Case 7 {P, 25) Here

(20) q.8) = qg
(21) reg) = ry + R sing
gn(j r - I‘i
(22) R 2. 2
sing

The 1imits of integratiun are 9 = 0 and 6 = q, and ds = R de.

The friction torque thus becomes

N
1

=X " .
T, =J;~ 8T, ") xj; (W)iq,){2n)(ry + R sin3)

o R do

which upon 1integration gives

A43) Tfr = 2nuqu rriem + 2 riﬂ(l - ¢c8y)

+ R2(g _ 810 217

2777 i
The friction radius rati. then becimes

~ 45 -
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1
3z L )
( a _ 811’12@)
2 \ a |
sina -

For numerical values in a particular case take q = 90° and

8 = 1,667. Then

D = 1.250 (P. 14)

and

3 2(1 - 0
8 = (1.250)3 [(3)(.4) By + (.6)(.4)

n _ O
He W]

A= 1.250° (1.42) = 2.77

We see that the combination of a uniform prossure distribution
and o = 90° glves large weight to friction on the outer arc
length that is nearly parallel to the centerline (AB in the
sketch, Fig. 15) and so tends to make the friction torque high.

Case 8 (P. 27) This is the same as Case 7 except that
(25) af8) = q, coss

The friction torque is then

. .
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FIGURE XV

EFFECT OF LARGE NORMAL

PRESSURES NEAR ¢ = 90°
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a 5
Tep = [ 9Te(8) = [ ()(a, cosa)2n)

(r, + R 5118)°R do

which upon integration gilves

' 2m a R [r,° st R atn?, 4 2 3103
(51) Tpp = 2m QR [ry® sing 4 ry R 8in%y 5
The friction radlus ratlo then becomes

_p3f 10
(52) b =D7 11 - =

3

Note that even though Eq. 38 can be put into this form, D/g)
in Eq. 38 18 given by Eg. 7 while D(B) here 4is ::iven by Eq. 27
and is larner.

For the numerical values in a particular case take o = 90°
and 8 = 1,667. Then D(g,a) = 1.695 (P. 28) and
a(8) = (1.695)3 1 - .63] = 3.81. Comparing Cases 4, 6, 7,

and 8 with 8 = 5/3 and a = 90° ives

D(8 = 5/3, a=90°) a(5/3, 90°)

Case 4 - Hollow sph. unif. pres. 1.250 4,12 (P, 43)
Case 6 - Hollow sph. cosine pres. 1.532 3.52 (. 46)

Case 7 - Hollow torr., unif. pres. 1.250 2.77 (P. 47)
Case 8 - Hollow torr, cosine pres. 1.695 3.81 (r. 49)
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The uniform pressure assumption 18 seen to be more conservative
as regards friction torque for the spherical bearin;, but not
for the t rroidal bearin,; and the cosine pressure assumption

is more c nservative as rezards size for both cases. The cosilne
pressure assumptiocn is more reallstic for both shapes and with
this we see that for the angle 1 = 90o and &« = 1.667 the hcllow
spherical bearin. has both smaller size and lower friction than

the holluw torroidal bearin,..

Case 3 (P. 28) Here
qir) =q

dr/cosv

aa

and the limits of integraticn are ry and Ty The friction torque

becomes

r r

o o

- £ 258 \ y( 9 v

Ter _l; Peptr! _J; u(qo’(‘?"r"‘cow’(I>
i

it

which upon inte;ration _ives

3 _ 5.3

enuq_ (r -7
(53) T E o o i
fr = cosv 3

The friction radius ratio becomes
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(54 n = D (1 -'LE} coiv
8

Thus while the size of this conical bearin; 1s the same

asg for a flat bearing, the triction torque increases by a fac-

. 1
rtor ot .
cosv

The largest v used would probably not exceed 450 due to
the wedging that would occur, Thus for v = 45° and
A =1,667, A = 1.414 times that of the flat bearing with
the same 8 or (See P. 39 for 1.530).

b (R =2 v=245% = (1.4} (1,530} ~ 2,17

case 10 {See P, 30) In this case the normal forces are

all acting at the rodlus r, so that
U = 4 \
lfr = \u)(pm)(2nro,\ro,

Using Eq. 28 for P glves

(155) Tfr = yP I‘O/COS\)

The friction radius ratio then becomes

(56) A

A0

co8v
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For the spherical-conical bearin; shown in Fiy. 3, (P. 6) with
the numerical values of Pages 34 and 35, we have (See P, 35

for D)

/\‘ 59 g— ——.&Lnlﬂ = 7.214
cos L5C

While this seems hirh note on P, 36 that this bearin;; is about
2.5€ times as larpe as a fla‘ beariny with the same materials

anc¢ axial 1~ad capacity.

In all of the cases above we are probably not too worried
about hilgh friction torques due to axial loads a3 these loadc
are only acting a relatively short time and the mechanism may
not even he requlred to operate durlng; the axial acceleration
interval. The results above are included mainly for complete-

ness,
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SECTION 1I

TRANSVERSE LOADING ON BEARINGS WITH AXIAL LOAD CAPACITY

General Procedure

A reasonable distribution of normal forces will be assumed
for each of the bearing shapes, and the fricticn torque and
transverse force will each be found in terms of the maximum
normal ccntact pressure. This will allow the friction torque
and maximum contact pressure to be expressed in terms of the
transverse applied force.

Cagses 1 and 2 - Flat Bearings

These flat bearinys cannot resist transverse load. They
were analyzed because they provide the most resistance to axial
lcad and so form a standard for the other bearings, and tecause
they can be used in conjunction with journal bearings which
are studled in SECTION TIT,

Cases 3, 4, 5, and € - Spherical Bearings - Hollow and

Solid

Only one normal pressure distribution will be considered
for spherical bearings under transverse load. Solid bearings
will be considered as a special case of hollow ones., Figure 16
shows the bearing and the parameters of interest.

The normal pressure has been taken to be & function of the
latitude ani le A and the longitude angle %, As a reasonable
distribution for initially conforming surfaces such as these

we assume
- g8l
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FIGURE XVI

uq (e, ¢)dA

&4 -
shaft/bearing udN

P
transverse
1 bearine

SPHERICAL BEARING FOR

TRANSVERSE LOAD ANALYSIS

- BY -



General Technology Corporation

0.1_<_9f_a
sing

(57) Q(e, 4) = qo aTre cosh

-F < < g

This distributicn 1is sketched in Fig. 16 as a function of 8
for # = 0. For any other % between - g-and g-the variation
with 2 18 the same, but all values are scaled down by the fac-
tor cos 5, The longitude of maximwn normal pi'essure i1s taken
behind the plane of the transverse applied load by an acute
angle y as shown., At a rixed latitude ¢, the pressure is as-
sumed to drop off harmonically with longitude ¢ from this
maximum value, Simlilarly at a fixed longitude #» the pressure
is assumed to vary harmonically with o, being maximum when A
18 maximum. The angle y 18 caused by the transverse resultant
friction force as will be seen below.

The angles and radll are related by:

(11) r = R s1ind
(12) i = R sing

and the radius ratic & is

r
/ - 8ing _ "o
(19) Ala) = 8lna, T,

The differential element of area 1s
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(58) dA = (Rdg){rds)

The friction torque due to the anormal pressure q(A) on the area

dA 1s

(59) dTrr = HQ<91°)(GA)(r(9)) = (U)(dN)(r)

which, when equations 11, 12, 17, 57, and H£ are used can be writ-

ten as
ug, sine cos:(Rdt)(Rsined?)(Rsing)
ging
or
3
uq,
(60) dT.(8,”) = O O _ (gindg cosd) dods
r
8in '~
Then the friction torque beccmes
f=a ¢ = %
'%r=f J e 9T 8 %)
=1y ™= -3
or
(61) Trr (qo,a,ai) =
2uqor03icosai sin2a1 - c087 sineg + 2(cosa1 - cosa)3
381n 4
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In order to find q, in terms of the transverse load applled
to the bearing we must find the transverse components of dN

and dFr and write the transverse equations of equilibrium.

From the symmetry of q(6,%) about the xz plane we see
that the distribution q(e,») has zero Y component. Its X

component is given by

b=q. & = g
(62) - X, ==j;=a1J§ -3 (q(e, ¢)dA)(8ina)(coss)

vhich upon integration becomes

2
"Tq, T,

(63) -X, = .E;_I_g—-[(coeai sineq1 - cosq sinza)
Sin-a g

+ 2(cosa1 - cosa)]

The symmetry of q(9,%) atout the xz plane also gives zero er

component of the friction force. 1Its Yrr component 1is given

by

7
(64) -Y, = q{e,?)dA cosd
T

which upon integration becomes
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2
™ Ty

(65) - Yo = -I;;ggg [(a - ai) - % (8in 2q - 81n2a1)]

The equilibrium of forces parallel to the xy plane then

glves

1/2
2 2
(66) Ptr.l breg. [é“xn) +( "Yfr) j

and

B Yfr

(67) tan y = ED o

which can be used to express y in terms of the geometric quan-
tities o and ay and the coeficient of friction uy. Of more in-
terest, however, 18 the relation between Ptr.l brg. and Q0

which can be written as

maqr® 1/2
(68) Be ) brn [;;n%f—]L(Az(a,ai) + uPB%(a,ay) ]
where
(69) A(a,a1)= % [ﬂcosai sinaq1 - cosg sinzq)
+ 2(cosay - cosa)?
(70) B(asay) =7 T(a - a4) - 5(sin2 - sin2a,)]
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and

(70a) tany = ﬁé

To make the results dimensionless we introduce a reference

transverse outside radius (ro) such that the transverse

ref. tr.’
load on one bearing divided by the area of a semicircle of this

radius gives q,- Thus

[2Ptr. 1 brg. ﬁ1/2= rPtr. shalt"™

n qo ol - 11 qo -

1/2

(71) (ro)per. tr, =

(Note the similarity in form to Eq. 4, P. 7) Then we define

the transverse size ratio as

r
(72) D, = <
tr vy )per.tr.

(Note that D p=1fora = 90°, ag = 0°, and q(8,%) =q,; and

e
compare to Case 3 where D = 1.)

-

Using these definitions Equation 68 becomes

3 1/2

™ sin-y
(73) D = 5 o 9:T7?]
2(A° + u“BY)
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Next a transverse friction radius is introduced by

Ler.1 brg.
u P

(74) Tep. tr., ™
tr.l brg.

and a reference transverse friction radius by

(75) Ter. ref.tr. = g'(ro) ref. tr.

A cylinder of radius r, and length h with uniform pressure q,

over half of 1its circumference has a friction torque of Tfr

= uq nr hr, and a transverse load of P, 4 DRate q,(2r h).
Its transverse friction radius 1s then r,, .. vl Tfr/(“Ptr )

= nro/2. Both (Po)rer, tr. and Te.  nof. tr. are quite artificis
Finally, a transverse friction radius ratio Bt is intro-

duced as

Tfr.l biy.

r r
(76) - T8, G, - fr.tr. =5 -
tr. lbrg. "o rer

A =
tr, E- r, ref.

- i e

=&
™

rfr.ref.tr.
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