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Abstract 

This report iß an effort to collect under one cover the existing theory of 

three continuous zone refining systems; the zone-void system, the zone-transport 

system and the matter transport system.    The steady-state equations which de- 
scribe these systems are derived using consistent terminology and under boundary 
conditions which account for the density change due to melting.    The newly devel- 

oped nondimensional steady-state equations are also derived and the results of an 
extensive computer study based on these equations are presented in graphical form. 
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Continuous Zone Refining 

I. INTRODUCTION 

That trace impurities are capable of influencing the physical and chemical 

properties of their host material has been known for many years.   Recently in 
fact, instances have been found in which trace impurities are responsible for or 

control critical properties of the matrix material.   One of the most dramatic ex- 
amples of the ability of trace impurities to control a property of its matrix is 

found in the field of semiconductors.    The variation of the type, quantity or dis- 
tribution of impurities in the part per million to the part per billion ringe can 
completely ct \nge the electrical properties of a semiconductor.   For this reason 

the control of trace impurities in semiconductors is of primary importance. 

In order to systematically study the effect of various impurities and combina- 
tions of impurities on the electrical properties of a semiconductor, it became 
necessary to prepare semiconducting materials which were pure to the part per 

billion range or better.   In the early days of the semiconductor industry the most 
important semiconductor was germanium.   Known purification techniques failed 

to purify germanium to the required purity level.   Pure germanium was finally 
prepared by a new purification technique developed primarily to purify semicon- 
ductor materials.   This technique, which was originated by W. G. Pfann, is called 

zone melting.   When materials are purified by zone melting techniques the process 
is termed zone refining. 

(Received for publication 22 October 1964) 



Zone refining is not a technique which resulted from the discovery of new 

principles.  In retrospect one can clearly see that zone refining was a logical ex- 

tension of the use of the freezing or crystallization process as a means of purifi- 

cation.  To use crystallization as a means of purification one takes advantage of 
a well known physical fact, namely, when a solution starts to freeze the solute is 

almost always unevenly distributed between the liquid and solid phases.  A typical 
example of this uneven distribution of solute is found in the use of the freezing 
process to remove salt from sea water.  When the temperature of a saline solution 
is lowered below the freezing point the first ice particles which freeze out have a 

lower concentration of salt than the original solution.  A process based on this 
fact is being given serious consideration as a means of the large scale preparation 
of fresh water from sea water in Israel. 

Under equilibrium conditions the measure of the inequality of the solute dis- 
tribution between the solid and liquid phase of such a system is given by the equi- 

librium distribution coefficient, k , which is the ratio of the concentration of o 
solute in the solid Cg to the solute concentration in the liquid C,.   Thus 

The freezing process has been known as a purification technique for a great 

many years.  Its utilization however has been very limited due to the fact that it 

is an extremely tedious technique to employ.  Prior to zone refining the only basic 

improvements made in art of purification by freezing was fractional crystalliza- 
tion and fractional crystallization was simply a repetition of the freezing process. 

In fractional crystallization just as in a regular crystallization all of a solution 
consisting of two or more components is made molten. The solution is then allowed 

to cool until a predetermined fraction of the total solution has solidified.   The solid- 

fied fraction is then separated from the melt by mechanical means. In a simple 
crystallization (assuming a favorable k    and an ideal binary mixture) the partial 

separation of the two components obtained in this manner constitutes the entire 
purification procedure.  In a fractional crystallization this process would be re- 
peated using the separated solidified fraction of the first crystallization as the 

starting solution of the second crystallization. The number of crystallizations used 

would depend on the purity of the product desired.   Probably the most famous ap- 
plication of fractional crystallization was the separation of radium from barium by 

the Curies.   The fact that by use of this technique the Curies and others were able 
to effect the remarkable separations they did is a tribute to their analytical tech- 

nique and their determination rather than the efficiency of the technique. 



Purity via fractional crystallization is an arduous, tedious chore.   Hüs process 
requires that the material being purified undergo a change in state.   Hie drawback 

of the process is that one of these states is the solid state.  The reason that the 

solid state poses such difficulties in a purification process is that under normal 
conditions solids do not flow.  When the solid state is met in such a process, the 

separation of pure and impure fractions must be effected by the operator and not 
by the materials themselves (as is the case in distillation).   Unfortunately, until 

zone refining was discovered fractional crystallization was the only purification 

method employing the freezing principle, by which a separation factor of any given 
multiple of the distribution coefficient could be obtained. 

The production of single crystals from the melt is an application of the freez- 
ing process.  Therefore under ideal conditions for crystal growth, the measure 
of the distribution of impurities between the solid and the liquid at the freezing 

interface is given by the distribution coefficient.  In the Bridgeman   process for 
crystal growth, where both the melt and the growing crystal are contained in the 

same crucible and solidification proceeds slowly from one end; if the distribution 
coefficient, k, is less than one, the growing crystal injects impurities into the 
liquid.  When crystallization is complete the impurities will be unevenly distributed 
throughout the crystal. 

Making the following assumptions: 
1. The original solution is an ideal binary mixture 
2. Diffusion in the solid is negligible 

3. Uniform solute distribution in the liquid 

4. k (the effective distribution coefficient of the growing crystal) is constant 
2 

Pfann    reports that C, the concentration of impurity at any plane along the crystal, 
can be expressed by Eq. (2).  Thus, 

C = kCo(l-g)k_1 (2) 

where 

C = solute concentration in the solid at the liquid-solid interface, in 
units of solute per unit volume of solution. 

C    = initial impurity concentration 
and 

g = the fraction of the original solution that has solidified. 
2 Pfann   called this type of freezing process normal freezing.   Equation (2) of course 

assumes a crystal or ingot of uniform cross section whereas in the Bridgeman 
technique the ingot usually tapers to a point at one end. 

*» 



2 
In 19ü?; Pfann   reported the basic principles of zone melting.  Zone melting 

is a technique whereby the freezing process could be carried out on an ingot in 

such a way that impurities could be distributed in a manner which differed from 
that which would be produced by a normal freeze.   The main difference between 
zone melting, fractional crystallization and normal freezing is in the amount of 

material that is made molten at any one time.  In both fractional crystallization 

and normal freezing all of the material undergoing treatment is made molten at 
the start of the process.  For zone .netting only a fraction of the total material is 
made molten at any one time.  Zone melting is normally accomplished, as shown 
in Figure 1, by arranging the material to be treated in the shape of a bar and 
causing a molten zone to travel from one end to the other.  The solute distribution 
which results from the passage of such molten zones along a bar is a function of 
many parameters among which are:  the distribution coefficient, the original solute 

distribution, the number of zones which traverse the bar, the direction in which 
these zones travel, the size of the zones and the length of the bar.  It is obvious 

that a great many different solute distributions are possible.  The methods for con- 
trolling these solute distributions by variation of these parameters are called zone 
melting techniques. 

The most important application of zone melting is in the purification of mate- 

rials.  Zone melting techniques which are designed specifically to purify materials 
are called zone refining techniques.   For simplicity the discussions of zone re- 

fining which follow will be restricted to the purification of an ideal binary solution 
in which the solute (impurity) is present in very low concentrations and k is con- 

stant.   In this system we also assume that there is no diffusion in the solid and 

complete diffusion in the liquid.   These assumptions which will hold for the re- 

mainder of this report are very closely approximated in most zone refining systems. 

The equilibrium distribution coefficient k    can be determined from the phase 

diagram of the binary system being purified.  If the solute raises the melting point 

of the solvent then k   > 1; however, if the solute lowers the melting point of the 

solvent then k    < I.   The value of k    can be attained only under perfect equilibrium 

conditions.   In an actual zone refining operation the value of k    can only be ap- 

proached.   The value of the effective distribution coefficient, k, the distribution 

coefficient which actually exists, can and must be determined experimentally for 

any given system.   If normal experimental care is exercised the assumption of a 

constant k for dilute solutions is quite reasonable. 

Purification via zone refining is accomplished by passing a number of molten 

zones through an ingot of the material to be purified.   All the zones travel in the 

same direction.   The number of zones is predetermined by the purity desired. 

The direction of travel of impurities is a function of the effective distribution co- 

efficient.   For k < 1, impurities collect in the liquid and travel with the zones. 



For k >  1, impurities are rejected into the solid and travel in the direction opposite 

to the zones travel.   The degree of purification is a function of the number of zones 

passed through the ingot and approaches a limit as the number of zones used ap- 

proaches infinity. 

The equation which describes the solute distribution in an ingot after one mol- 
2 

ten zone (pass) has been put through the ingot was reported by Pfann.     This equa- 

tion Pfann expressed as: 

_C_ 
C 1   - (l-k)e 

kx 
T (3) 

Equation (3) describes the solute distribution which exists in all but the last zone 

length of the ingot.   A complete derivation of Eq. (3), the idealizing assumptions 

on which it is based, and the definitions of the terms involved are given in Appen- 

dix A. An equation describing the solute distribution in an ingot following the pas- 
3 4 sage of more than one molten zone is not easily derived.   Lord    and Reiss   were 

5 
the first to present approximate solutions.   It was left to Braun and Marshall    to 

generate a complete analytical solution for multipass solute distributions.   Even 

with Braun1 s expressions, however, obtaining the solute distribution which exists 

after five or more passes requires a great deal of computation and is a problem 

which is more realistically solved by a computer. 

The separation of impurities obtainable by passing molten zones through a 

charge increases as the number of passes increases until a steady-state or ulti- 

mate distribution is reached.   When the steady-state is obtained, the passage of 

additional zones through the ingot does not alter the solute distribution.   The equa- 
2 tions which describe this distribution were first presented by Pfann.     They are: 

C(x) =  Ae Bx (4) 

where 

B£ 

e      - 1 
(5) 

and 

A = 
C    BL o 
BL     , (6) 



A derivation of these equations is given in Appendix B.   These equations do nol 

take into account the back reflection of solute due to the effect of the normal freeze 
g 

in the terminal zone of the charge.   Braun   presents a solution for the ultimate 

distribution, for any value of k, which takes into account the effect on the ultimate 

distribution due to the normal freeze which occurs in the final zone during each 

pass. 

Zone refining is an easy way to carry out a fractional crystallization.   The 

simple change in procedure namely, the passage of molten zones has greatly in- 

creased the efficiency of crystallization as a purification technique in that it has 

automated the separation of pure and impure fractions.   A number of molten zones 

can be passed through an ingot in a single operation providing, in simple fashion, 

the end of fractional crystallization which, as has already been mentioned, is a 

separation factor which is any given multiple of the distribution coefficient. 

2.  C0NTINU01S ZONE REFINING 

Zone refining as described by Pfann in Reference 2 is a multistage batch pro- 

cess.   Such a batch process can in many instances fulfill all of the requirements 

involved in the production of a pure material.  Batch processes, however, have 

many intrinsic limitations which can be eliminated if the process can be made con- 

tinuous.   In general, a continuous purification process is one which comprises an 

enriching and a stripping section and the means for the introduction of feed and 

the removal of product and waste.   The addition of feed to a continuous system 

must occur at a point in the system which is between the places where product and 

waste are removed.   Continuous fractional distillation is the analog of continuous 

zone refining which treats the phase change between vapor and liquid.   In principle 

they are very similar.   In practice the ability of the vapor phase to be compressed 

easily and the fact that the liquid phase flows and does not build up on the container 

walls allows the feed to be introduced easily at any point on a distillation column 

and also provides counter current flow.   In a zone refining system things are not 

quite so simple.   Here neither phase is easily compressed and the solid instead of 

flowing freely usually adheres tenaciously to and builds up on the container walls. 

The continuous zone refiner must live with these difficulties and still provide for 

the requisite flows of feed, product and waste while permitting the unidirectional 

movement of molten zones down the column.   Such a system is shown in generalized 

form in Figure 2. 

The creation of molten zones and the mechanism by which these zones are 

made to traverse the column are experimental problems and therefore are beyond 

the scope of this paper.   It will be assumed that the mechanism for their creation 

-j   -TT I 
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Figure 1.   A Molten Zone Being Passed Through an Ingot of Length L 
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Figure 2.   A General Continuous Zone Refining Apparatus 



and movement has been found and that this mechanism produces zones which have 

planar interfaces, are of constant size and move at a rate of travel which is con- 

stant. 
7 

In 1955, Pfann   described the zone-void system, the first zone refining system 

postulated capable of completely continuous operation.   In this system the movement 

of material into and out of a system is brought about by the movement of voids in- 

side of the system.   Voids are normally gas filled spaces, however, in a more 
Q 

general fashion Pfann   has defined a void as a region in which there is a substantial 

deficiency of the material undergoing treatment.   Material movement is produced 

by causing voids formed at the product and waste exits to move to the feed inlet. 

The column is constructed in two parallel vertical sections joined together at the 

top by the feed section.   An example of this type of apparatus is shown in Figure 3. 

Voids are created at the bottom of each section by the controlled removal of a 

small amount of material from the column.  The size of the  void must be less 
8 9 than one molten zone.  Several methods cf forming voids have been reported. ' 

Product and waste are collected at the bottom of the enriching and stripping sec- 

tions, respectively, in forming the voids. Material is moved down the column as 

a result of movement of the molten zones which cause the voids to move upward. 

When the voids reach the top of the section they are filled in by feed. Thus, feed 

is introduced into a column every time a void reaches the feed section. In the 

enriching section, voids travel continuously with the molten zones while in the 

stripping section their travel is intermittent, a zone length at a time. 

One of the primary advantages of continuous operation is the ability to operate 

at or near the steady state. The time required to attain this distribution will vary 

from system to system, however, even if the start up time is long, once attained, 

the system continues to deliver material of maximum purity. 
7 

Pfann   has shown that for any continuous zone refining system the overall 

material balance in terms of the volume flow rates of feed, F, waste, W, and 

product, P, is given by: 

F = W + P (7) 

In a continuous zone refining system it is the function of the enriching section to 

produce a pure product.  In doing this the enriching section injects into the feed 

the impurities which it has removed from the product it produces.   Without a 

stripping section this injection of impurities into the feed would eventually increase 

the solute concentration in the feed to the point where no purification wo- Id be ob- 

tained.   The function of the stripping section is to inject into the feed material of 

sufficient purity and in sufficient quantity to maintain the solute concentration in 

the feed constant. When the stripping section accomplishes this function the solute 

balance for the system is given by 



FEED 

ENRICHING/ 
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HEATER 
MOVEMENT 

HEATER 
MOVEMENT 

STRIPPING 
SECTION 

VOID FORMER 

PRODUCT 
LIQUID      SOLID       VOID □ 

4 
I 

Figure 3.   A Zone-Void System 
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FCf - PCp ♦ WCw (8) 

where C,, C , and C    are the solute concentrations in, respectively, the feed, 
I        p W 

product, and waste.   When 

C
P 

= aCf (9) 

and 

Cw " ^Cf (10) 

the ratio of the flows of product to waste  (P/W), which will provide this solute 
balance can be found by substituting Eqs. (7), (9) and (10) into Eq. (8).   Thus 

w    1 (ii) 

Purity requirements and the solute concentration in the feed determine a. 
When the steady state has been reached the weight of solid material, L , that must 

be in the enriching section to effect the constant removal of a product of concen- 
tration C    can be obtained by solving the steady-state equations.  Thus, for a 

material of known k, in a system using a molten zone of convenient weight, £, and 
a convenient void size, L    is given by 

Le = 0.434 B log [«(■*-»)] (12) 

where B , u> and ^/ are constants which depend on h, S. and k and are given by: 

Beh 
e  e    =  1 + V (13) 

w= (l-k)B   I e 

Be(h-1) 
(14) 

hk-£ 
TT=T (15) 

n 
The derivation of Eqs. (13) to (15) was first reported by Pfann.     The authors have 

modified the definitions of terms originally used by Pfuin to account for the change 
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in density due to melting.   The derivation of Eqs. (13) to (15) along with the def- 
initions of previously undefined terms is given in Appendix C. 

The steady-state solute distribution these equations describe is shown in 
Figure 4.  The mathematical model does not give any information about the actual 

7 
total weight of material in the enriching section, however, Pfann   reports that in 
practice this weight is usually equal to L   + h. 

7 e 

Pfann   also presented the steady-state equations for the stripping section of 

the zone-void system.   As a result of his derivation Pfann reported that in the 
stripping section the length of column L    which will, produce a separation ß is 

B 
given by 

Ls = 5^3TB-8
1°g[(^:-k)+1] <16> 

where B ,  6 and y are constants and functions of h, £, k and ß which can be s 
obtained by the following: 

e  sl   = 1 + Bg \ (17) 

B   [(h-Ä)ß-h(l-k)] 
y - BIT <19> 

1 + B   h-e  s 
s 

As part of the theoretical continuation of the zone refining effort in this labo- 
ratory a study of the effect of variation of the significant parameters of the zone- 

void system was undertaken.   The parameters under study were h, I, and k (as 
7 defined by Pfann ).   The object of this study was to determine the effect of these 

parameters on a and ß. 
In the stripping section the definition of k and ß precludes the possibility 

of ß assuming values less than unity when k < 1.  In the course of this investi- 
gation it was found that computations based on Eqs. (16) to (19) gave values of ß 

less than unity in the region 1 > k >  i/h for almost all values of L .   Further 
s 

computations showed that ß assumes negative values when k >  1 for many values 
of L ,   I and h.   A study of Pfann's derivation of Eqs. (16) to (19) revealed an 

0 

error in the equation describing the solute balance over the entire cycle. 
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(Equation (28), Reference 7.)  This error invalidated the final equations of Pfann1 s 
ivation. 

The equation cf the correct solute balance is 

derivation. 

h Cf =      /   C (x) dx + (h-1) ß Cf (20) 

Using Eq. (20), corrected steady-state equations which account for the change 
in density due to melting are derived as shown in Appendix D.   In this derivation 
terms are redefined to account for the density change.   Based on these corrections 

and the accompanying definition changes L    is given by 

's      0.434 B s **[«] (21) 

where 

B (£-w) . 
e =  1 + Bs | (22) 

6 - k(J) (23) 

and 

£- k(£-w) (24) 

Calculations based on Eqs. (21) to (24) remove the aforementioned inconsistencies 

in ß.   Figure 5 shows the steady-state solute distribution in the stripping section. 

A paper describing part of this phase of the effort has been published elsewhere. 

After the error in Eq. (28) of Reference 7 and its implications with respect 
11 12 to the zone-void system had been noted (as above), Pfann     pointed out that Abe 

using an independent method had derived steady-state equations for the zone- 

transport system and had already reported the existance of this error in a paper 

which treated the zone-transport system.   The zone-transport system, a continuous 
13  14 zone refining system, was also invented by Pfann.    '        An example of a zone- 

transport apparatus is shown in Figure 6.   In this system movement of material 

from the feed section to the product and waste exits is accomplished by virtue of 

the difference in level between the feed and the product and waste exits.   Because 
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Figure 4.   Steady-State Solute Distribution in the Enriching 
Section of the Zone-Void System 
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Figure 5.   Steady-State Solute Distribution in the Stripping Section of the 
Zone-Void System when the Terminal Zone Undergoes a Normal Freeze 
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Figure 6.   A Zone-Transport System 
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of this difference in level, material in the molten zones flows down hill.   The 

weights of material produced, per pass, at the product and waste exits respectively 
14 were given by Pfann     as 

2 L 

w  = V 
2 L. 

(25) 

(26) 

In describing conditions existing when the steady state has been obtained, 
14 Pfann     stated that the steady-state equations which describe the zone-void system 

could be used to describe the zone-transport system provided the same assumptions 

are made and that the expressions for the parameters which define material flow 

were changed in accord with Table 1.  Our investigation has shown that this is not 

a valid transition due to the fact that the solute concentrations in the product and 

waste which are used as parameters in the derivation of the steady-state equations 

are different in the zone-void and in the zone-transport systems.   Thus in the zone- 

void system C    is given by Eq. (27) and C     by Eq. (28). p w 

TABLE 1.   Expressions for the material flow parameters 
in each system when constant density is assumed 

Pfann Pfann Abe 
Zone- Zone- Zone- 
Void Transport Transport 

h - H P P 
Enriching 

Section 
h P+ f 

£- P 

h - I W W 
Stripping 

Section h i. 

n -w 
i + w 

Thus 

i    rh*£ 

Vh-h-J    c(x)dx (27) 
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The value of C    depends upon the mode of freezing in the last zone.  In the 

zone-void system C    is defined as the average solute concentration of the charge 

between L.   + £  and L    + h. s s 
Thus 

w 
1 

h - 

L +h 
f   8    C(x)dx (28) 

In the zone-transport system, because of the physical difference in the mode of 

collection of the product and the waste, C    is given by Eq. (29). 

C    =£ /    C(x)dx (29) 

while 

C(L) 

w (30) 

12 In his study of the zone-transport system Abe     transformed Pfann's zone- 

void steady-state equations into Pfann's zone-transport equations by following 
14 Pfann's directions.      Using Pfann's zone-transport steady-state equations Abe 

made calculations which revealed the same inconsistencies in ß noted previously. 
12 Using his own technique Abe     derived steady-state equations for the zone- 

transport system.   These derivations are given in Appendices E and F.   Using his 
12 own equations Abe     found that all of the inconsistencies in a and ß were elimi- 

nated. 
12 In his paper Abe     compared the limits of a and ß obtained when his zone- 

transport equations and Pfann's zone-transport   quations were used (at constant 

density).   This comparison revealed three main discrepancies.   These discrep- 

ancies are: 

1.   In the enriching section when kf 1 and L   = 0, Pfann reports Q= un///l +u> 

whereas Abe finds a = 1 when L   = 0 irrespective of the value of k.   Where in the 
e 14 zone transport system, u>, ty, L ,  £ and P are defined by Pfann     as follows: 

oj k B   1 e 

/        B P\ 
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* - k ♦  (^ 

L    ■ the distance from the exit end of the enriching section to the plane 
e      at which the solute cone, in the solid is kC, 

t   - the length of the molten zone 

P = the volume of product collected per pass 

2. In the stripping section when the actual length of the stripping section minus 

one zone length (Pfann calls this length L , Abe calls it L') equals infinity and 

k = 1, Pfann's equations show  ß = 0 whereas Abe's equations yield ß  = 1. 

3. In the stripping section when the distance defined as the actual length of 
the stripping section minus one zone length is large enough and when k > 1, Pfann's 

equations yield ß < 0 whereas under the same conditions, Abe's equations have 
12 ß = 0 when k > (£+w)/l (where I and w are defined by Abe). 

15 The authors have pointed out     that in their opinion these differences and other 

differences, which become apparent when References 7 and 12-14 are studied care- 

fully, are the result of three factors: 
1. Partially inconsistent definition of terms. 
2. The error in Eq. (28) of Reference 7. 
3. The transformation of the steady-state equations of the zone-void system 

to the steady-state equations of the zone-transport system without taking into ac- 

count the difference in the mathematical expressions of the product and waste con- 
centrations in each system. 

The derivation of the steady-state equations for the zone-transport system as 
14 12 reported by Pfann     and Abe     are different and are based on different assumptions. 

However, in the enriching section of each system a comparison of the expressions 

that define material flows is straightforward since the physical and mathematical 

significance of these flows is identical.   For the stripping section a comparison of 
the expressions that define material flows is complicated by the different methods 
of derivation.   Thus, in the stripping section, the physical volume of the zone that 

is maintained molten and caused to travel by a moving heater is, for the purpose 

of each derivation, different. The mathematical significance of the molten zone in 
each derivation, however, is identical.   Table 1 lists the expressions for the param- 

eters that define the same material flows in Pfann's zone-void system as well as 

Pfann's and Abe's zone-transport systems.   The differences in definition of terms 
12 between systems which Table 1 clearly shows are not explicit in Abe's     paper. 

The definitions of terms used to define column lengths are also partially in- 

consistent or different.  For the zone-void system (and hence the zone-transport 
14 system) Pfann     defines L    as the distance from the exit end of the enriching 

section to the plane at which the solute concentration  in the solid is kC- and com- 
ments that in practice this length will usually be one heater length less than the 
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14 
actual section length.   For the zone-transport system, Pfann     defines the actual 

length of the enriching section as L£.  In Reference 12, Appendix B, Abe defines 

L    the same way Pfann does; however, in Appendix A and Figures la and 2 of 

Reference 12, L   is shown as the actual section length. 
14 

In the stripping section of the zone-void system, Pfann     defines the length 

L8by 

Ls = Lg-h-nv(h-i) 

where L'   is the actual length of the stripping section and n    is the number of void 

encounters.  Since there are no voids in the zone-transport system, Pfann*s def- 

inition of L   for the zone-transport system is given by 

K = K - h s        s 

Abe on the other hand defines L    as the actual which is the reverse of Pfann1 s s 
terminology.   Thus for Abe 

L'   = L   - h s        s 

The authors can find nothing wrong with the definition of terms used by 1 -ann to 

describe his zone-void or zone-transport systems. Therefore since Pfann invented 

both systems and because of the almost universal acceptance of his terminology 

except where difficulties were encountered in treating the density change due to 

melting, the authors have tried to adhere rigidly to his terms and definitions of 

terms. 

This is true even in Appendices E and F where we use Abe's derivation of the 

steady-state equations. 

In his derivation of the steady-state equations for the zone-transport system 

Abe introduces the term y, P„/Pt, to account for the density change due to melt- 

ing.   The authors feel that a simpler method of accounting for this density change 

in all continuous zone-refining systems is to redefine terms by expressing solute 
ig 

concentration in weight-fraction as suggested by Pfann     and to change the units 
15 of measure of position along a column from length to weight of solid material. 

When these changes are made the expressions for the material flow parameters 

and their respective definitions for each system are given in Table 2. 

Abe's derivation of the steady-state equations for the zone-transport system 

as given in Appendices E and F have been modified in light of these decisions con- 

cerning the definition, and consistency of terms and the handling of the density 
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TABLE 2. Expressions for the material flow parameters 
in each system when the density change due to melting is 
taken into account 

Pfann Pfann Abe 
Zone- Zone- Zone- Definition 
Void Transport Transport 

h- 1 P P Weight of product collected 
per pass 

Enriching 
Section i t I- P Weight of liquid material 

in the molten zone that is 
maintained molten and 
caused to travel by a 
moving heater 

h P + I i Weight of material equal to 
the weight of liquid mate- 
rial that is maintained 
molten and caused to trav- 
el by a moving heater plus 
the weight of product col- 
lected per pass 

W W W Weight of waste collected 
per pass 

Stripping 
Section i i. i + w Weight of liquid material 

in the molten zone that is 
maintained molten and 
caused to travel by a mov- 
ing heater 

h h £ Weight of solid material 
that would fill the volume 
occupied by the moltr n zone 
when the cross section of 
the column is unity.* 

*In Abe's zone-transport system this volume is smaller than the 
volume of the molten zone. 

change due to melting.   These changes correct an error in the handling of density 
15 present in Abe's derivation of the steady-state equations in the stripping section. 

A derivation of the steady-state equations for the enriching section of the zone- 
transport system is given in Appendix G.   This is the same derivation outlined by 

14 Pfann     except that it has been modified in light of Table 2 and to account for the 
different product concentrations which exist in the zone-void and the zone-transport 
systems.  As a result of this modification, the expression for L    is given by: 

0.434 B 
iog r**<p+o+i. j 

*   L     a(P+f) "J (31) 
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where 

w = " (P+I) (1-k) (32) 

and 

B (P+i) B  i 
e  e =  1+—r- (33) 

In the stripping sections of both the zone-void and zone-transport systems the 
shift in the solute distribution due to the mode of freezing of the final zone at the 
end of each pass has not been treated analytically.   Therefore due to the fact that 

the waste is withdrawn from the zone-transport system before the last zone begins 

to freeze the solute concentration in the waste (back reflection not considered) is 

independent of the mode of freezing in the terminal zone.   The steady-state equa- 
tions for the stripping section of the zone-transport system can be derived as shown 

in Appendix H.   This is the same derivation used by Pfann to describe the stripping 

section of the zone-void system corrected for the error in Eq. (28) of Reference 7 
and using the proper waste concentration (Eq. (30)). Using this derivation L    is 
given by 

where 

B (£-w) B i 
e   s =   1 + -§- (35) 

and 

_w  (36) 

k(w-i)+ f 

Abe's derivation of the zone-transport equations (Appendices E and F) differs 

substantially from Pfann's corrected derivation (Appendices G and H).   However, 

both derivations describe the same system and unless the mathematical model is 
different the expressions for L    which result should be identical.   Algebraic ma- 

nipulation using Table 2 shows that this is, indeed, the case. 
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The limits of a and ß therefore are also identical.   These limits and those 

for the zone void system are shown in Table 3. 

TABLE 3a.   Limits of a and ß for the zone-transport system 

Value of k 

Range of a 

L   = 0           L„ = oo e                   e 

Sign 
of B, e 

Enriching 
Section 

1                    0 

.            kP + Kk-1) 
1                    P 

+ 

Value of k 

Range of ß 

L   = 0          L   = oo s                    s 

Sign 
ofBg 

Sign 
of ß 

Stripping 
Section 

k<-*— -f - W 

k-i - W 

.            kW + «l-k) 
1                     W 

1                     0 

+ + 

b. Limits of a and ß for the zone-void system 

Value of k 

Range of a 

L   = 0          L   = oo e                   e 

Sign 
of B^ e 

Enriching 
Section 

*<-4 
«4 

1 + w 

1 + w                ™ 

+ 

Value of k 

Range of ß 

L    = 0           L    = oo 
e                    e 

Sign 
of B s 

Sign 
of ß 

Stripping 
Section 

k<-rh 
k^rh 

k           kW + l(l-k) 
6                    W 

1 
+ + 
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Table 3, Table 2, and algebraic manipulation, where required, reveals that 

the limits of a and ß are the same for the zone-void and the zone-transport sys- 

tem when L    and L    are infinite.   When L   = 0 the value of ß in the zone-void es s r 

system is k/6 while in the zone-transport system ß = 1.   In the stripping section 

of both systems when L   = 0 the actual weight of material in the section is i. 
a 

The difference in the value of ß when L   = 0 is due to the difference in the method s 
of waste collection.  In the zone-transport system the waste is collected when the 

last zone is completely molten.   The solute concentration in the waste then is equal 

to feed concentration when L   = 0 and therefore a must equal unity.   In the zone- s 
void system the waste is not collected until a weight of material I - w of the last 

zone has frozen then the remaining liquid, w, is collected as waste.   When L   = 0 

the whole column is the last zone and the last zone is assumed to freeze by a nor- 

mal freeze.   It is easily shown that under these conditions ß must equal k/ 6. 

When L   = 0,   a   =ünj//l + a> in the zone-void system while in the zone-transport 

system  a - 1.   This difference in the limit of a is due to the different mechanisms 

of product collection and the change which these mechanisms make on the mathe- 

matical definition of the solute concentration in the product.   Within the limits of 

the mathematical models both limiting values of a  are correct. 

The first zone-void system to demonstrate Pfann's hypothesis was built 
17 18 at this laboratory for the purification of Sil..       Buford and Starks     later continued 

this effort for this laboratory on a contractual basis.  In an effort to eliminate some 

of the experimental deterrents to ultrapurification inherent in the zone-void system 
19 Moates et al     designed a new continuous zone refining system.  A complete de- 

20 scription of this system has been presented elsewhere.       This system which we 

refer to as the matter transport system uses the matter transport phenomenon 
21 14 described by Pfann    '      as the driving force for material flow in either the en- 

riching or stripping section of the system.   Material movement in the other section 

is accomplished by means of voids. 

In his description of the zone-void system Pfann always considered p   * p., 

In the zone-void system if the change in density which occurs in going from the 

solid to the liquid state (or vice versa) is taken into account, material can be made 

to flow even if the voids are reduced to zero volume in one of the arms.  In such 

an arm, material flow is accomplished by collecting an amount of material per pass 

that is equal to the difference in volume between a zone of material in the cold and 

hot condition.   Figures 7 and 8 show two systems which utilize this principle. 

In order to simplify the description of the operation of these systems, assume 

p    >ßf and k < 1.   Then in Figure 7 the enriching section is on top, the heaters 

travel downward and matter transport moves material from the mid-feed upward 

to the product exit.   At the start of each cycle the uppermost heater is in position 

at the top of the section.  It melts the solid starting at the product sidearm down 

I 
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Figure 7.   Matter Transport System with Feed Section Located in the Middle 
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to a plane where a weight of solid material h has melted.   The liquid expands 

overflowing into the product sidearm and down into the product container.   As the 

heater travels down the column, solid freezes at the level of the sidearm.   When 

the liquid zone reaches the mid-feed, it joins its liquid length with the mid-feed 

and then reciprocates.   The liquid zone that was brought down contracts on freezing, 

drawing up into the column a volume of feed equal to the volume of product which 

has been collected in that pass.  Repetition of this process (that is, the passage of 

molten zones) provides both purification by the freezing process and continuous 

material movement via the matter transport phenomenon. 

In Figure 8, the apparatus is arranged in the same manner as a conventional 

zone-void refiner.  The enriching and stripping sections are both below the feed. 

In the matter transport section, the enriching section, the heaters travel upward. 

Material movement in this section is downward and product is collected at the bottom. 

Material movement is produced by the same steps used to describe Figure 7.   The 

only difference is that when the heaters start a pass, the bottom heater melts in a 

weight of solid material h, as before, however the expanding material instead of 

overflowing directly, as in Figure 7, pushes the molten material below it down and 

then up over the inverted U-tube in the product collector. 

The stripping sections in both Figures 7 and 8 are identical and use examples 
9 

of the void-former already described. 

A derivation of steady-state equations describing the enriching section of a 

matter transport system is not as clear-cut as in the zone-void or zone-transport 

systems.   In the zone-void and zone-transport systems experimental product col- 

lection provides a concise mathematical definition of the solute concentration ex- 

isting in the product (Eqs. (27) and (29) respectively).   The best description of the 

solute concentration in the product of a matter transport system is that it lies 

somewhere between that predicted by the zone-void and the zone-transport equa- 
22 tions.       The conservative estimate, which the authors prefer, is given by the zone- 

transport steady-state equations.   This derivation has already been given (Appen- 

dix G). 

The stripping section of the matter transport system uses a void-former and 

if freezing in the terminal zone is by normal freeze the derivation of the steady- 

state equations is the same as the zone-void system (A;   ••.idix D).   If the void- 

former described in Reference 9 is used, freezing in the final zone of each pass is 

not accurately described by the normal freeze mechanism.   The actual freezing 

process is somewhere between a normal freeze and a uniform freeze.   If the 

terminal zone freezes by a uniform freeze, the derivation of the steady-state equa- 

tions would be that given in Appendix H. 
20 The expressions used to define material flow in the matter transport system 

5 
were those originally used by Pfann  defined on a weight basis. To make terminology 
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consistent within this report the expressions used to define the zone-void system, 

Table 2, can be used to describe the matter transport system noting that in the 

matter transport stripping section h - f is the same as w in Table 2. 

For the three continuous zone refining systems described thus far, the zone- 

void, the zone-tranppcrt, and the matter transport systems, only two sets of steady- 

state equations exist for each section.   These equations are, however, relatively 

complex.   An evaluation of the effect of variation of some of the pertinent param- 

eters by the iterative substitution of various values of the parameters in question 

is a time consuming, arduous task.   By nondimensionalizing to obtain the minimum 

number of parameters it is feasible with the aid of a high speed digital computer, 

to show, in graphical form, the effect of the variation of any of the physical param- 

eters on the enriching and stripping sections of each system.   The nondimension- 

aliz~Mon transforms the steady-state equations of each section into a pair of 

equ&*;ons we call universal equations.   An equivalence table for the nondimensional 

variables is given in Table 4.   The derivation of the universal equations for each 

section is given in Appendices I-L. 

TABLE 4.   Nondimensional terminology equivalence 

Pfann Pfann Abe 
Zone- Zone- Zone- Nondimensional 
Void 

System 
Transport 

System 
Transport 

System 
Parameters 

B h e Be(P+£) Be(P+£) V 

Enriching 
Section 

£ 
h 

Le 
h 

£ 
P+ £ 

L e 

£ 
y 

z 

P + £ 

Le 
P + £ P+ £ 

B £ s B £ s B (h+w) s V 

Stripping 
Section 

£ - w 
£ 

L s 
£ 

f - w 

L s 
£ 

h 
h + w 

L s 

y 

■i h + w 

The universal equations for the zone-void enriching section are: 

ev-l 
(37) 
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and 

(38) 
l^(7Ä 

For the stripping section of the zone-void system when the freezing in the final 

zone is assumed to proceed by normal freezing the universal equations are: 

k - ~^— (39) 
e^ - 1 

and 

evz(l-ky) 

(l-kyXl-y)1"11 + evz(l-y) - (1-y) 
(40) 

In the zone-transport enriching section the universal equations are given by 

k '- -~£- (37) 
e    - 1 

and 

y-k 
evz(l-k) + y- 1 

(41) 

The universal equations for the stripping section of the zone-transport system 

or the zone-void or matter transport systems when the terminal zone undergoes 

a uniform freeze are 

(39) 
e
yy - 1 

and 

vz 
ß = —/ i.tw „, r (42 

1 + dw-o 
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The four sets of universal equations, Eqs. (37) and (38), Eqs. (39) and (40). 

Eqs. (37) and (41) and Eqs. (39) and (42) were programmed and run on a high speed 

digital computer.   The computations were made for k > 1  as well as for k < 1. 

The y and z values were chosen to give maximum range to the data.   Using 

Eqs. (37) and (39) the families of curves which result from plotting k versus v 

for several y values are shown in Figures 9 and 10, respectively.   For plots of 

a    or ß versus k each y value used generated a family of z curves.   There were 

seven y values used for each of the four cases.   For k < 1 the twenty-eight families 

of z curves which resulted are shown in Figures 11-38 inclusive.   Figures 11-17 

show   Q versus k when Eq. (38) is used. Figures 18-24 are plots of ß versus k 

when Eq. (40) is run. Figures 25-31 are the  a versus k plots of Eq. (41) and Fig- 

ures 32-38 show the ß versus k curves when Eq. (42) is used. 

A comparison of Figures 11-17 with Figures 25-31 reveals that the effect of 

the difference in the definition of the solute concentration in the product on the 

value of a increases with decreasing z.   However, for z > 5 the value of a for 

both cases is almost identical. 

A comparison of Figures 18-24 with Figures 32-38 permits an evaluation of 

the effect of assuming a normal or uniform freeze in the final zone of a stripping 

section.   It is readily seen that for z  = 2 the normal freeze section provides a 

slightly better separation than the uniform freeze, however, for all other values 

of z the values of ß are essentially identical. 

The functions of the respective sections of a zone-refining system when k < 1 

are reversed when   k > 1; thus, the stripping section becomes the enriching sec- 

tion and vice versa.   Graphs of k versus a or ß for each set of universal equa- 

tions when k > 1 are shown in Figures 39-66.   Thus: 

1. Figures 39-45 are plots of a versus k when Eq. (38) is used. 

2. Figures 46-52 are plots of ß versus k when Eq. (40) is used. 

3. Figures 53-59 are plots of a versus k when Eq. (41) is used. 

4. Figures 60-66 are plots of ß versus k when Eq. (42) is used. 

A comparison similar to those made with Figures 11-38 can be made with Fig- 

ures 39-66. 



Figure 9.   Plot of k vs  v Using Eq. (37) 
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Figure 10.   Plot of k vs v Using Eq. (39) 
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Figure 11.   Plot of log a vs k when Eq. (38) is Used and k  < 1 
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Figure 12.   Plot of log a vs k when Eq. (38) is Used and k  < 1 
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Figure 13.   Plot of log a  vs k when Eq. (38) is Used and k  < 1 
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Figure 14.   Plot of log a vs k when Eq. (38) is Used and k < 1 
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Figui e 15.   Plot of log a vs k when Eq. (38) is Used and k < 1 
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Figure 16.   Plot of log a vs k when Eq. (38) is Used and  k  < 1 
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Figure 17.   Plot of log a vs k when Eq. (38) is Used and k  < 1 
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Figure 18.   Plot of ß vs k when Eq. (40) is Used and k < 1 
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Figure 20.   Plot of ß vs k when Eq. (40) is Used and k  < 1 
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Figure 21.   Plot of j3 vs k when Eq. (40) is Used and k  < 1 
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Figure 22.   Plot of ß vs k when Eq. (40) is Used and k < 1 
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Figure 23.   Plot of ß vs k when Eq. (40) is Used and k  < 1 
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Figure 24.   Plot of ß vs k when Eq. (40) is Used and k  < 1 
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Figure 25.   Plot of log a vs k when Eq. (41) is Used and k  < 1 
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Figure 26.   Plot of log a vs k when Eq. (41) is Used and k  < 1 



mmmmmMmmwmmwmmmmim 

47 - 

-20- 

o 
3 

-4.0- 
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Figure 28.   Plot of log a vs k when Eq. (41) is Used and k  < 1 
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Figure 29.   Plot of log a vs k when Eq. (41) is Used and k < 1 
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Figure 30.   Plot of log a vs k when Eq. (41) is Used and k  < 1 
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Figure 31.   Plot of log avsk when Eq. (41) is Used and k < 1 
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Figure 32.   Plot of ß vs k when Eq. (42) is Ü3ed and k < 1 
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Figure 33.  Plot of ß vs k when Eq. (42) is Used and k < 1 
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Fieure 34.   Plot of ß vs k when Eq. (42) is Used and k  < 1 
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Figure 35.   Plot of ß vs k when Eq. (42) is Used and k  < 1 
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Figure 36.   Plot of ß vs k when Eq. (42) is Used and k < 1 
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Figure 37.   Plot of ß vs k when Eq. (42) is Used and k < 1 
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Figure 38.   Plot of ß vs k when Eq. (42) is Used and k  < 1 
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Figure 39.   Plot of log a vs k when Eq. (38) is Used and k > 1 
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Figure 40.   Plot of log a vs k when Eq. (38) is Used and k > 1 
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Figure 41.   Plot of log a vs k when Eq. (38) is Used and k > 1 
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Figure 42.   Plot of log a vs k when Eq. (38) is Used and k  > 1 
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Figure 43.   Plot of log a vs k when Eq. (38) is Used and k  > 1 
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Figure 44.   Plot of log a vs k when Eq. (38) is Used and k > 1 
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Figure 45.  Plot of log a vs k when Eq. (38) is Used and k > 1 
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Figure 47,   Plot of log ß vs k when Eq. (40) is Used and k > 1 



68 

o 
O 

Figure 48.   Plot of log ß vs k when Eq. (40) is Used and k > 1 
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Figure 49.   Plot of log ß vs k when Eq. (40) is Used and k > 1 
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Figure 50.   Plot of log ß vs k when Eq. (40) is Used and k > 1 
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Figure 51.   Plot of log ß vs k when Eq. (40) is Used and k > 1 



72 

-1.0 

-2.0 

o 
3 

»3.0 - 

-4.0 - 

-5.0 

Figure 52.   Plot of log ß vs k when Eq. (40) is Used and k > 1 
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Figui-e 53.   Plot of log a vs k when Eq. (41) is Used and k  > 1 
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Figure 54.   Plot of log a vs k when Eq. (41) is Used and k  > 1 
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Figure 55.   Plot of log a vs k when Eq. (41) is Used and k > 1 
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Figure 56.   Plot of log a vs k when Eq. (41) is Used and k  > 1 
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Figure 57.   Plot of log a vs k when Eq. (41) is Used and k > 1 
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Figure 58.   Plot of log a vs k when Eq, (41) is Used and k  > 1 
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Figure 59.   Plot of log a vs k when Eq. (41) is Used and k > 1 
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Figure 60.   Plot of log ß vs k when Eq. (42) is Used and k > 1 
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Figure 61.   Plot of log ß vs k when Eq. (42) is Used and k  > 1 



<3. 

0 

-IX) 

-2.0 —        1 

y«0.7 

-3.0 

1           \ 

Z"2\ 

-4.0 

Z«KX> 

iz«io 

Z»20l 

\Z«5 

-50 \    1 1 
3 
k 

Figure 62.   Plot of log ß vs k when Eq. (42) is Used and k > 1 
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Figure 63.   Plot of log ß vs k when Eq. (42) is Used and k > 1 
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Figure 64.   Plot of log ß vs k when Eq. (42) is Used and k  > 1 
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Figure 65.   Plot of log ß vs k when Eq. (42) is Used and k  > 1 
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Figure 66.   Plot of log ß vs k when Eq. (42) is Used and k  > 1 
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3.  RESULTS 

As a result of the effort described in this report several accomplishments 

have been made in the field of continuous zone refining.   An error was found in 

the overall solute balance equation used in the derivation of the basic equations 

describing the stripping section of the continuous zone-void system reported by 
7 

Pfann.    The correct solute balance equation was reported (Eq, (20» and a new 

set of steady-state equations derived (Appendix D).   A difference between the zone- 

void and the zone-transport system not previously noted was found.   This differ- 

ence, which is in the mathematical definition of the solute concentrations of the 

product and waste of each system, and the error made by Pfann in the solute bal- 

ance equation of the stripping section of the zone-void system were used to com- 

pletely explain the discrepancies between the limits of a and ß obtained by using 
14 12 Pfann's     steady-state equations for the zone-transport system and Abe's     steady- 

state equations for the zone-transport system.   An error in Abe's zone-transport 

equations due to improperly accounting for the density change due to melting was 

noted and corrected. 

A new continuous zone refining system, the matter transport system, was 
20 described.       The matter transport system increases the flexibility of design of 

a zone refining system which can result in increased product purity. Steady-state 

equations describing the three continuous systems treated herein were rederived 

with particular attention being paid to terminology and the treatment of the change 

in density due to melting. The feasibility of describing the matter transport sys- 

tem by the mathematical model of either the zone-void or the zone-transport sys- 

tem was noted, however, the authors have indicated their preference for the zone- 

transport model wherein the mode of freezing in the terminal zone of the stripping 

section is taken into account. 

The actual "alues of a and ß obtained using the matter transport system will 

be somewhere between those predicted by the zone-void and the zone-transport 

systems. 

The choice of the optimum physical parameters of a continuous zone-refining 

system required to produce any given a or ß has been greatly simplified by the 

introduction of nondimensional parameters.   The nondimensionalization permits 

complete description of a zone refining system with a minimum number of param- 

eters.   A high speed digital computer can and has been used to obtain results 

which in graphical form clearly and simply indicate the magnitude of the effect 

produced by variation of any of these parameters.   The nondimensionalization 

transforms the steady-state equations of each section of a continuous system into 
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a pair of equations which we have called universal equations.   The universal equa- 

tions for the zone-void system and the zone-transport system were derived 

(Appendices I-L).   The universal charts which result from computer computations 

made by substituting realistic parameter values into the equations are shown in 

Figures 9-66.   With the aid of these charts it can be seen that the difference be- 

tween the enriching section of the zone-void and zone-transport systems is negli- 

gible for y <0.9 and z > 10.   In the stripping section the difference between the 

normal and uniform freeze is also negligible for y < 0.9 and z > 10, however, of 

more importance is the fact that the curves clearly demonstrate the futility of in- 

creasing z over 10. 



89 

• 

References 

1. P. W. Bridgeman, Certain physical properties of single crystals of tungsten, 
antiminy, bismuth, tellurium, cadmium, zinc, and tin, Proc. Amer. Acad. 
Arts and Sciences 60:305, 1925. 

2. W. G. Pfann, Principles of zone-melting, Trans. AIME 194:747, 1952. 

3. N. W. Lord, Analysis of molten-zone refining. Trans. AIME 197:1531, 1953. 

4. H. Reiss, Mathematical methods for zone-melting processes, Trans. AIME 
200:1053, 1954. 

5. I. Braun and S. Marshall, On the mathematical theory of zone-melting, 
Brit. J. Appl. Phys. 8:157,  1957. 

6. I. Braun, On the ultimate concentration distribution in zone-melting, Britt. 
J. Appl. Phys. 8:457, 1957. 

7. W. G. Pfann, Continuous multistage separation by zone-melting. Trans. AIME 
203:297,  1955. 

8. W. G. Pfann, Segregation Process, U.S. Patent 2,739,045,  20 March 1956. 

9. J. K. Kennedy,  Void former for continuous void-zone purification. Rev. Sei. 
Instr.  33:387,  1962. 

10. J. K. Kennedy, Comments on the theory of continuous zone-melting,  Trans. 
AIME 230:243,   1964. 

11. W. G. Pfann, Private Communication. 

12. T. Abe,  Design theory for continuous zone refining, J. Japan Inst. Metals 
25:9, 593,  1961. 

13. W. G. Pfann, Continuous Zone Refining, U.S. Patent 2,852,351. 

14. W. G. Pfann, Zone Melting, John Wiley and Sons, New York, 1958. 

15. J. K. Kennedy and N. G. Parke, Theory of Continuous Zone Re£irung via the 
Zone-Transport Method   (submitted for publication as an AFCRL Report). 



/,-..- . ■   --"    . ■■_-■• 

90 

16. W. G. Pfann, Significance of the term "Zone Length" and the ratio of density 
of solid to liquid in the mathematics of zone melting, J. Appl. Phys.  35:258, 
1964.     ~ 

17. G. H. Moates, Continuous multistage purification of silicon tetraiodide by 
zone-melting. Solid State Physics in Electronics and Telecommunications, 
Academic Press, New York, 1960, Vol. 1, pp. 1-8.   ~ — 

18. J. T. Buford and R. J. Starks, The development of a method for the removal 
of boron from silicon tetraiodide by zone-melting, Ultrapurification of 
Semiconductor Materials, M. S. Brooks and J. K. Kennedy, Eds., The 
Macmillan Co., New York, 1962, pp. 25-33. 

19. G. H. Moates, W. B. Jackson and J. K. Kennedy, Continuous Multistage Void- 
Differential Density Hybrid Zone Melting Apparatus, patent applied for. 

20. J. K. Kennedy, A continuous zone-refining apparatus, Rev, of Sei. Instr. 
35:25, 1964. 

21. W. G. Pfann, Change of ingot shape during zone me^.ng. Trans. AIME 
197:1441, 1953. 

22. J. K. Kennedy and N. G. Parke, Solution and theoretical evaluation of steady- 
state equations in continuous zone refining, J. Appl. Phys. 35:2248, 1964. 

9 



 ^5?      ="S« 
p?»fe_4ii-"'..ij'--.'t" HI urn)».".»-?' ii:.if-t-if,vo«»ii<B»«»»wfe«-^ 

Appendix A 
DERIVATION OF THE SOLLTE INSTRUKTION IN A SEMI-INFINITE INGOT 
AFTER THE PASSAGE OF ONE MOLTEN ZONE. EQ. (3) (AFTER PFANN2) 

The purpose af this derivation is to find an expression which will define the 

solute concentration in the solid, C, at any plane along a charge after one molten 

zone has passed.   The authors have modified Pfe'in's original derivation to account 

for the change in density due to melting.   The matter transport phenomenon and its 

complicating effects on the shape of the charge can be accounted for by the change 

due to melting. 

In order to derive an equation for the solute distribution under these conditions 

the spacial orientation of the charge and the ratio of the density of the solid to the density 

of the liquid, pjp» » mustbe considered.   If Figure 1 is placed in a vertical 

position, the mathematical treatment is fairly straightforward.    If k  <   1  and 

p    > p. a molten zone can be made to travel downwaid without fear of breakage 

due to matter transport, since expansion is taken care ol in the first zone.   When 

the molten zone reaches the bottom of the charge the zone contracts on freezing. 

The equation for the solute concentration C at the plane which exists at any weight 

of solid material x measured from the beginning of the frozen ch; . ;     o the freez- 

ing interface of the molten zone being passed through the charge is derived as 

follows: 

Let: 

C    = the average solute concentration at any plane in the charge, 

prior to passage of the molten zone, expressed in weight 

fraction. 



• 

A2 

C.  = the solute concentration in the molten zone in weight-fraction. 
s  = the weight of solute in a zone at any x 

s     = the weight of solute in the zone at x = 0 
k = effective distribution coefficient 
£  = weight of liquid in the molten zone 

Assume: 

1. £ is constant 
2. the charge is of unit cross-section 

When the molten zone moves a distance equivalent to the weight increment dx, 

a weight of solid, dx,  will be frozen out of the zone at the freezing interface and 

an equal weight of soiid will be melted in.   The weight of solute frozen out is 

kCfdx (A-l) 

but 

C£   - f (A-2) 

The weight of solute melting into the zone is 

C0 dx (A-3) 

Therefore the resulting change in s is 

ds   =   (C0-*f- )dx (A-4) 

or 

ds + ^y-dx =  CQ dx (A-5) 

Integrating Eq. (A-5) yields 

kx kx 
Ü f i e      s  = £coe (A-6) 

Evaluating Eq. (A-6) between the limits 0 and x 



since s    = C 1 then o        o 

Since C = *#: 

or 

A3 

se 
l   - s    - -2- o        k 

kx 

eT-l (A-7) 

s  = v ♦ ¥ (.* 
kx 
I 

(A-8) 

_ &2L        p   e 

(A-9) 

. kx 

C  = C (k-l)e    "*" + C 
O o (A-10) 

= 1 - (l-k)e 

kx 
T 

(3) 



Appendix B 
DERIVATION OF THE ULTIMATE DISTRIBUTION IN A BATCH SYSTEM. 

EQS. (4) - (6) (AFTER PFANN2) 

Consider Figure 1; assume that a sufficient number of passes have been passed 

through the charge to establish the ultimate distribution.   Under these conditions 

when a molten zone is passed through the ingot it does not change the solute distri- 

bution.   Using the assumptions and definitions of terms as given in Appendix A, the 

solute concentration in the molten.zone, C.(x), is defined as C(x)/k.   C-(x) is also 

given by Eq. (B-l).   Thus 

x+£ 
C.(x) =j-   /        C(x)dx (B-l) 

x 

or 

C(x) = f   J C(x) dx (B-2) 
X 

The solution of Eq. (B-2) is 

C(x) =  AeBx (4) 

substituting Eq. (4) in Eq. (B-2) and integrating yields 

• 

- 
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B2 

Solving Eq. (B-4) for x -  0 gives 

Bl 
B* . i (5) 

k = 
e~* - 1 

If the whole ingot is considered then Eq. (B-2) can be written as 

C(x>=i-/     c(x)dx (B_4) 

From Eqs. (4) and (B-4), Eq. (6) is readily obtained thus 

C   BL 
A - —& 

eBL - 1 (6) 
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Appendix C 
DERIVATION OF THE STEADY-STATE EQUATIONS FOR THE ENRICHING 

SECTION OF THE ZONE-VOID SYSTEM, EOS. (12) -(15) (AFTER PFANN7) 

When the enriching section of the zone-void system has reached the steady 

state, removal of product at the start of each pass form a void.   Passing the void 

through the section shifts the solute distribution C(x) as shown in Figure 4.   When 

a molten zone is passed through the section it shifts the solute distribution back 

to the steady state. 

Under these conditions the derivation proceeds as follows: 

Let: 

f  = the weight of liquid material in the molten zone that is maintained 

molten and caused to move by a moving heater, 

h -S.  - weight of product collected per pass. 

h = the weight of material equal to the weight of liquid material 

that is maintained molten and caused to move by a moving heater 

plus the weight of product collected per pass. 

L    = weight of material in the column up to the plane where the solute 

concentration is kC,. 

The amount of solute in a molten zone having its freezing interface at the 

plane x is C(x)£/k.   This amount of solute is equal to the same amount of solute 

that was melted into the molten zone minus the amount that had frozen out.   Thus 

» x+h x 
C(x) i =    / C(x)dx-    /    C(x)dx (C-l) 

K      h-f 0 



C2 

The solution of Eq. (Ol) is 

B x 
C(x) =  Al + A2e   e 

(C-2) 

Substituting Eq. (C-2) into Eq. (C-l) and integrating yields 

i(vA2e
BeX)= V+^ 

B x 

1 -e 
Be(h-f) A2e / 8 h '     e 

1* -1 (C-3) 

There are two sets of terms on both sides of Eq. (C-3).  One set of terms contains 
B x e the variable in the form e   c ; the other set contains constant terms only.   In order 

V for the equation to hold, the e terms have to be equal and the constant terms 

must be equal. R 

ex 

Equating the e        terms and simplifying yields 

B h B I 
(13) 

when the constant terms are equated and rearranged 

0 = A2u>- Aj (C-4) 

where 

k     r    B (h-in 
(14) 

Using Eq. (C-4) and the assumed boundary condition C(L ) = A, + A„e 

expressions for A.   and A„ can be determined.   Thus 

B L e   e 

kCfu> 

B L 
^  e  e ^ e + a» 

(C-5) 

kCr 

B L 
«   e   e . e + u) 

(C-6) 
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The expression for the solute concentration in the product is given by: 

C3 

C (h-i) -    j 
v 0 

h-i f B x> 
A, + Age   e    } ds 1< (C-7) 

Integration of Eq. (C-7) shows 

*2 
Al+ BlhTIT e 

" B (h-i)      ] r  -'J (C-8) 

From Eqs. (C-5), (C-6), and (C-8) it can be shown that 

B L .   e   e 
■-»-) 

(C-9) 

or 

Le = öÄhir ^K^"1) (12) 

where 

,      kh - i "/ = 'h—r (15) 



Appendix D 
DERIVATION OF THE CORRECTED STEADY-STATE EQUATIONS FOR THE 

STRIPPING SECTION OF THE ZONE-VOID, SYSTEM, EQS. (21) - (24) 

The steady-state solute distribution C(x) for the stripping section of the zone- 

void system is shown in Figure 5.   The shift of the solute distribution due to pass- 

ing a void through the system is indicated by the dashed curve.   The travel of the 

molten zone through the system shifts the solute distribution back to the steady 

state.   C(x) is made up of two parts joined at x - L , the zone refining portion 

and the normal freezing portion. 

The derivation of the steady-state equations which define such a system is as 

follows:   Let 

w  = weight of waste collected per pass 

£  = weight of liquid material in the molten zone that is maintained 

molten and caused to travel by a moving heater 
ps h  =  a weight of material equal to i — 
Pf 

In the zone refining portion of C(x) the amount of solute in the molten zone, 

whose freezing interface is at x, is given by: 

^P =  (C.+    J C[x-(h-«+w)l dx -    /    C(x)dx <D-1) 
k f      h 0 

which after manipulation yields 



D2 

IC(x) 
k 

x+f-w 
=  f C, +      f C(x) dx 

f       f-w 
/    C(x) dx (D-2) 

The solution of Eq. (D-2) is 

C  =  Aj + A2e 
B x s (D-3) 

Substituting Eq. (D-3) into Eq. (D-2) and integrating yields 

B  x 
Al     A2e »Mh^l^^^-'lL 

B x s Equating the e   "    terms of Eq. (D-4) and simplifying gives 

B (£-w) B I 
-   1 + -J- (22) 

Equating the constant terms of Eq. (D-4) and using Eq. (22) yields 

kCf =  Al + A2 (D-5) 

Equation (D-5) is a boundary condition describing the solute concentration at 

x = 0.   In order to solve for A.   and A2, a second expression for  A,  and A„ is 

needed.   The solute balance over the entire cycle is such an expression.   Thus: 

£-w 
f C    =    / C(x) dx + wßC 

1       0 t 
(D-6) 

Using Eq. (D-3), Eq. (D-6) can be rewritten 

I.-ßw 
f - w Ai+ B7FW! 

S 

B (£-w) s (D-7) 

From Eqs. (D-7) and (D-5) are obtained 

A    - kCf Mß 1 f **K (D-8) 



D3 

and 

A2 = kCfÜ - ßß) (D-9) 

where 

"= i - Mi-w) <24) 

It has been assumed that Eq. (D-3) describes the solute concentration in the 

charge up to the plane at weight of material L . The solute concentration in the 

molten zone from which the solid at L    is freezing has the solute concentration 

C(L )/k.   Assuming that between x = L    and x = L   + £ a normal freeze takes s s s 
place, then the normal freezing equation (Eq. (2)) describes the solute concentration 

over this distance, Figure 5.  Since a weight of material equal to w is removed 

from the waste end of the section in order to form a void during each pass, then 

the solute concentration in the plane L   + t - w is equal to C    = ßC..   The solute 
S W I 

concentration in the solid at the plane L   + I - w is kC,.   Therefore since: 

B L 
C(L ) = A. + A.e   S   s (D-10) s 12 

and the normal freezing equation is 

C  = kCo(l-g)k_1 (2) 

combining Eqs. (D-10) and (2) gives 

C(V/       £-w\1_k 
cw = ßCf = HT'l1 _ 1TJ[) (I)-n) 

or 

C(Lg) = ß6Cf (D-12) 

where 

1-k 
k(f) (23) 



D4 

Substituting Eqs. (D-8), (D-9), and (D-12) in Eq. (D-10) gives 

„   s   s  _  p(6-ku) 
" k(l-ßji) (D-13) 

or 

L s 
i      ,    rg<6-kjx)n 

0.434 Bc 
l0g LkÜ-ß^rJ (2D 



Appendix E 
DERIVATION OF THE STEADY-STATE  EQUATIONS FOR THE ENRICHING 
SECTION OF THE ZONE-TRANSPORT SYSTEM ISING ARES12 TECHNIQUE 

Abe points out that when the steady state has been obtained, if we consider 

the two zones a and b (FigureEl), the total amount of solute in these two zones 

when a is liquid and b is solid is equal to the total amount of solute in the zones 

when a is solid and b is liquid.   This equality assumes that the shape of the ingot 

is a rectangular parallelopiped and that surface tension is negligible.   This expres- 

sion is written 

<m +  f+P+l c<x+P+f)dx =  jX+P+l c(x)dx + cfr+r+m (E.U 
X X 

or 

.        X+P+JE 
C(x+P+4) - C(x) » j  J [C(x+P+f) - C(x) dx] (E-2) 

x 

The rate of change of solute in the molten zone is: 

d [^j—-] » [C(x+P+f) = C(x)] dx (E-3) 
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The solution of Eq. (E-2) is 

B x 
C(x+P+I) -C(x) = Ae   e (E-4) 

Substituting Eq. (E-4) into Eq. (E-2) and simplifying yields. 

B (P+£)      B « 
e  e = -~ + 1 (33) 

Equation (E-3) can be rewritten thus 

2£j& = £ [C(x+P+f) - C(x)j (E-5) 

Substituting Eq. (E-4) into Eq. (E-5) and integrating between the limits 0 and x 

yields 

i (."*-) C(x) = C(o)+ g? le        - 1 (E-6) 

Assuming the boundary conditionC(L)= kCf and using Eq. (E-6) it can be shown 

that 

Le = §; to |l+*[kCf-<*>>]} <E-7) 

By definition 

1        rP+£ 

aC. =  C    *  5-J-j   / C(x) dx (E-8) 
v 0 

From Eqs. (E-8) and (E-6) it can be shown that 

C
P 

= c(o) - rr + B-IPTH <B->) e e 

Consideration of the gain and loss of material in the two regions 0  < x  < P+ f, 

and P + f   < x  < 2(P+£) when they are molten and solid respectively yields 



E4 

CM 
P pit 

„2<P+«) 
/ C(x) dx / 

0 

P+f 
C(x)dx + cj^m (E-10) 

Using Eq. (E-8) and performing the necessary integration and simplification it can 

be shown that Eq. (E-10) can be rewritten as 

r   fA- c(P+f) 
p      k k (E-ll) 

When x  =  0, Eq. (E-4) becomes 

C(P+£) - C(o) = A (E-12) 

Substituting Eq. (E-12) into Eq, (E-ll), using Eq. (E-9) to substitute for C(o) and 

solving for A yields 

A = 
aCfBel().-k)(P+£) 

I - MP+f) (E-13) 

Using Eq. (E-9), Eq. (E-7) can be rewritten 

L    =  ~-   In e      B e 

Bel £ 

"AT (kCf " Cp> + MPTD (E-14) 

From Eq. (E-13) 

Bf 

£ - k(P+l) 
Ak     "   kaCf(l-k)(P+f) (E-15) 

From Eqs. (E-15) and (E-14) it can oe shown that 

f       /[f-k(P+£)j (k-a) 
L     =  77-   In e      B e k(P+f)\ fa(l-k) +  1 (E-16) 

or 

B  L e   e £       ([I -k(PfQ](k-a) 

k(P+f) fa(l-k) +   1 (E-17) 



Appendix F 
DERIVATION  OF THE  STEADY-STATE EQUATIONS FOR THE STRIPPING 
SECTION OF THE ZONE-TRANSPORT SYSTEM I SING ARE'S12 TECHNIQUE 

As in Appendix E, consider the amount of solute in the two zones c and d, of 

FigureFl, when c is liquid and d is solid and when c is solid and d is liquid. 

Assume the ingot shape is a parallelopiped except in the molten zone where the 

shape of the liquid zone is as shown.   Then the solute balance can be expressed as 

C(x)<h+w) +    /X+h C(x+h)dx =    /** C(x)dx+ <h+w),C(x+h) (F-l) 
X X 

or 

C(x+h) - C(x) » ~£     / (C(x+h) - C(x) j dx (F-2) 

For the molten zone the rate of change of solute is 

H/C(x)[h+W]\ __   /c(x+h).c(x)\ dx (F.3) 

The solution of Eq. (F-2) is 
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C(x+h)-C(x) =  Ae 
B x 

(F-4) 

From Eqs. (F-4) and (F-2) it can be shown that 

B h      B (h+w) 
e   s    = -~  + 1 (F-5) 

Equation (F-3) can be rewritten thus 

«4.4,(0«...».) (F-6) 

Substituting Eq. (F-4) in (F-6) and integrating between 0 and x yields 

C(x) =  C(o) + Ak 
Bg(h+w) e  6   - 1 (F-7) 

At x - 0 the following boundary condition holds 

C(o) = kC f (F-8) 

By definition 

Cw  = 
C(L  ) 

(F-9) 

and 

L'   = L   + h s s (F-10) 

From Eqs. (F-7), (F-8) and (F-9) it can be shown that 

Cw  =    —T1    '- ßC, *  C, + n  .ft     t k r  f f      B (h+w) s 

B L 
e   s   s- 1 (F-ll) 

Solving Eq. (F-ll) for L 



F4 

.          /       B Cf(B-l)(h+w) 
Ls  =  Bs 

ln (1 +  -^-K  (F-12) 

For the two zones L    = l  < x < L    and L    < x  < L'   the gain and loss of mate- s s s s 
rial when they are molten and solid respectively can be expressed as 

r   s 
wßCf +       J        C(x) 

(h+w)C 

dx 
(L -h) 

(F-13) 
L -h s 

Using Eqs. (F-5) and (F-7) and performing the indicated integration Eq. (F-13) 

becomes 

i(1-h^;) = cfH1-ß> + h(1-k)) (F-14) 

solving for A yields 

B Cf(h+w)(w[l-ß]+h[l-k]) 

w + h(l-k) (F-15) 

Substituting Eq. (F-15) in Eq. (F-12) and simplifying yields 

T X   ,    r        Ph(l-k)       "I 
s " Be   *n    h(l-k) +w(l-p) (F-16) 

or 

,BsLs . ph(l-k) 
h(l-k) + w(l-ß) (F-17) 



Appendix G 
DERIVATION   OF THE  STEADY-STATE EQUATIONS FOR THE ENRICHING 
SECTION OF THE ZONE-TRANSPORT SYSTEM USING PFANNS'4 TECHNIQUE 

This derivation uses the same mathematical technique shown in Appendix C. 

The modifications are imposed by the variation in boundary conditions and termi- 

nology.   Thus the amount of solute in the molten zone whose freezing interface is 

at the plane x is C(xM/k and is given by the solute balance expression, thus 

CUM .  jx+P+t 
C(x)dx-   /    C(x)dx- p^-j    / C(x)dx 

o o 
(G-l) 

The solution of Eq. (G-l) is 

C  ■  Al + A2 e 
B x e (G-2) 

Substituting Eq. (G-2) in Eq. (G-l) and integrating yields 

.       .   /      B x\        B x A„    B (P+l)" 

Be Be 

A„    B JP+I) A, I             A9f         B (P+£) 
 fi. f.    e +    A    I   -      ■    +  ^ p    e 

B   e                + Al* B (p+|) + B (p+|) e 
e e                   e 

(G-3) 
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G2 

B x 
Equating the e   e    terms Eq. (ü-3) gives 

B (P+f)      B I 
e   e = -£- + 1 (33) 

Equating the constant terms in Eq. (G-3) yields 

0  = A2u» - Ax (G-4) 

where 

w = " (p+lHi-k) <32) 

One of the boundary conditions is 

B L 
kCf =  Ax + A2e   e   e (G-5) 

From Eqs. (G-4) and(G-5)it can be shown that 

kCfu) 
ll        B L 

e   e   e + W 

and 

kC 

. rP+l  I B x\ 

(G-6) 

A2 = -TIT  <G-7> 
e   e   e + W 

The solute concentration in the product is 

dx (G-8) 

Integrating Eq. (G-8) and utilizing Eqs. (G-6), (G-7) and (33) to solve for L    yields 

„BeLe . u>k(P+l) + I      ,, ._ .. 



or 

 ' "   ^ 

G3 

L    = 1         w fto>k(P+l) + I 
0.434 Be 

log [    *(P+D  .„] (31) 
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Appendix H 
DERIVATION OF  THE  STEADY-STATE  EQUATIONS  FOR THE STRIPPING 
SECTION OF THE ZONE-TRANSPORT SYSTEM USING PFANN'S14 TECHNIQUE 

In the zone-transport system the waste is withdrawn before the terminal zone 

begins to freeze.   Since back reflection is not considered then, when the density 

change due to melting is taken into account, the derivation, which is very similar 

to that given in Appendix D, is as follows: 

The amount of solute in a molten zone having its freezing interface at x 

(Figure HI) is 

^^ = £Cf +   f        C(x-[n-f+w]) dx-    /    C(x)dx (H-l) 
h o 

Equation (H-l) can be rewritten as 

.x+£w 
C(x) + | 

VT r W x n 
£Cf+     / C'x)dx-    /    C(x) dx (H-2) 

f-w o J 

The solution of Eq. (H-2) is 

B x 
C  =   Ax + A2e   S (H-3) 



H2 

0 h 

Weight of Solid Moteriol(x) 

Figure HI,  Steady-State Solute Distribution in the Strippi' >, Section of the 
Zone Transport System when the Terminal Zone Undergo ;<s a Uniform Freeze 
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> 

Substituting Eq. (H-3) in Eq. (H-2) and integrating gives 

A. + A„e 
B x      . s        k 

1Cf+1g»[i-c"s 
B (i-w)     A0    B x/  Bjl-v/) 

^.-•"(.-^""-x) (H-4) 

B x s Equating the e terms yields 

B Oe-w) B i 

k 
(H-5) 

Equating the constant terms of Eq. (H-4) and using Eq. (H-fa) gives 

kCf =  A1 + A2 (H-6) 

the boundary condition existing at x = o.   The solute balance for the entire cycle is 

,£-w 
£Cf =    / C(x)dx +wßCf (H-7) 

From Eqs. (H-3)and(H-7) it can be shown that 

S. -w Al +  BlFwl 
A2   u8-«-'. L) 

(H-8) 

Using Eqs. (H-6) and (H-8) it is readily shown that 

Al  = ' CfßM (H-9) 

and 

A2  = kCf(l-ßM) (H-10) 

where 

w 
M =  £ - k(f-w) (H-ll) 
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Substituting Eq. (H-3) in Eq. (H-2) and integrating gives 

A. + A„e 
B x      . s    _ k IC   + -— i,-.8.u->t£.V(.8.«->.l) (H-4) 

B x 
s Equating the e terms yields 

B(l-w) Bc 

e   s 1+ -J (H-5) 

Equating the constant terms of Eq. (H-4) and using Eq. (H-b) gives 

kCf =  Al + A2 (H-6) 

the boundary condition existing at x = o.   The solute balance for the entire cycle is 

.£-w 
iC{ =    / C(x) dx + wß Cf (H-7) 

From Eqs. (H-3)and (H-7) it can be shown that 

B_(£-w)      \ 

a- w 

A2 (.   B- 
=  Al + B tf-w) s 

(H-8) 

Using Eqs. (H-6) and (H-8) it is readily shown that 

Ax  = ' CfßM (H-9) 

and 

A2  = kCf(l-ß/i) (H-10) 

where 

w 
V "  \ - k<4-w> (H-ll) 
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At L 

B L 
C(L ) =  Al + A2e   S   S (H-12) 

s 

Because of the method of waste removal 

C(L ) 
cw = -ir-=Pcf (H-13) 

From Eqs. (H-9), (H-10), (H-12) and (H-13) it is straightforward to show that 

L« = n 434 R    
lQg förjjjr) (H-14) 0.434 B 

or 

e
BsLs „ ß(l-M) e "   i.A.. (H-15; T^M 



Appendix I 
DERIVATION OF THE UNIVERSAL EQUATIONS FOR THE ENRICHING 

SECTION OF THE ZONE-VOID SYSTEM (EOS. (37) and (38)) 

The pertinent equations are 

BeLe t&      \ 

B h e B £ 
(13) 

CO Be£(l-k) 

B (h-f) 
1 -e (14) 

Y      h - S. (15) 

where 

..S* 

rewriting Eqs. (C-9), (13), (14) and (15) 



"*m" ■'■■*"-* 

12 

Bh 

KM (1-1) 

eBh =  1 + Bh.f 1 
h    k (1-2) 

U) = 
1 - k Bh. £ n 

;.-H)" (1-3) 

* '4 (1-4) 

1 L Using the equalities Bh = v, T- = y, r- 

respectively 

= z to rewrite Eqs. (1-1) - (1-4) yields 

vz 
e      = Qi (H (1-5) 

e'  =  1 + ¥ (1-6) 

a      1 - k     vy I1    e J (1-7) 

♦ ■■fc* (1-8) 

Substituting Eqs. (1-7) and (1-8) in Eq. (1-9) and solving for a gives Eq. (38) thus 

k^L 
1 - y 

I + Lz±(, vz      \ vye          \ 
k    li- evd-y)j 

(38) 

rearranging Eq. (1-6) t Eq. (37). 

k  = yy 

ev-l 
(37) 
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Appendix J 
DERIVATION OF THE UNIVERSAL EQUATIONS FOR THE STRIPPING 

SECTION OF THE ZONE-VOID SYSTEM 

The basic equations when the terminal zone freezes by a normal freeze are 

= p(6-kjx) (D.12) 
BsLs  = |3(6-ku) 

B (£-w) B 1 
e =   1 + -£- (22) 

6 = k(f) (23) 

and 

M =  I - k«-w) <24> 

where 

C 
ß- # 



J2 

Letting Bg*  = v, y = -^, and z  » -p Eqs. (D-12), (22), (23) and (24) can be 
rewritten respectively as 

evz =   (6-ku) 
k(l-oM) (J-l) 

e^ =  1+Jt (J-2) 

6 = k(l-y) 

M      O^kyT 

1-k 
(J-3) 

(J-4) 

Sulstituting Eqs. (J-4) and (J-3) in Eq. (J-l) and solving for ß gives 

ß  = eVZ(l-ky) 

(l-ky)(l-y)1"k+ evz(l-y)-(l-y) 
(40) 

rearranging Eq. (J-2) yields 

k = 
e^-l 

(39) 
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Appendix K 
DERIVATION OF THE UNIVERSAL EQUATIONS FOR THE ENRICHING 

SECTION OF THE ZONE TRANSPORT SYSTEM 

The pertinent equations are 

6 '     a (P+l) W (G"9) 

B (P+JC) B It 
e   e =  1 + -£- (33) 

and 

W=-    (P+i)(l-k) (32) 

( L 

Letting Be(P+{)  =  v, ~y   =  y and  ~j - z, Eqs. (G-9), (33) and (32) can be 

rewritten respectively 

vz      kci> + y ,„  , . e      =  i- - u> (K-l) 
a 

eV = ^ +  1 (K-2) 



K2 

and 

o>= jU-jL (K-3) 

Substituting Eq. (K-3) into Eq. (K-l) and solving for a yields 

y-k 

eVZ(l-k) + y- 1 
(41) 

rewriting Eq. (K-2) gives 

k = -££_ 
ev-l 

(37) 

Deriving Eqs. (41) and (37) from the basic equations which result when the zone- 

transport steady-state equations are derived by Abe's technique (Appendix E) can 

be accomplished as follows. 

B L ,   e   9 £       f [l-k(P+l)](k-a) 
k(P+i) £a(l-k) + 1 (E-17) 

B (P+£) B l 
e   e =  1+ -f- k (33) 

e e 
When, as above,  Be(P+l) =  v, ^-j  = y and  ~^ = z, Eq. (E-17)can be rewritten 

vz (ij)fc-a) 
iN TO + 1 (K-4) 

Solving Eq. (K-4) for o yields Eq. (41).   Thus 

y- k 
evz(l-k)+ y - 1 

(41) 

It was shown above that Eq. (33) can be transformed into Eq. (37).   Therefore, 

when carried to the universal equation form, the identity of the results of Abe's 

and Pfann's derivation techniques is obvious. 
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Appendix L 
DERIVATION OF THE UNIVERSAL EQUATIONS FOR THE STRIPPING 

SECTION OF THE ZONE-TRAN SPORT SYSTEM (EQS. (39) AND (42)) 

The basic equations are 

,BsLs . P(l-M) 
1-p/i 

(H-15) 

B  (£-w) B It 
e i r 

** = k(w- i) +T 

(35) 

(36) 

■ 

4. -w Letting B 4  = v, ^^p- = y and -£■ = z, Eqs. (H-15), (35) and (36) can be rewritten 

vz  . ß(l-M) 
" T^ß/T (L-l) 

>vy «♦f (L-2) 

M r i -y 
1 - ky 

(L-3) 
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L2 

Substituting Eq. (L-3) in Eq. (L-l) and solving for ß yields 

vz 
ß  = .   ,   i - y     vz     , 1 + r-ty-e   -1 

(42) 

Equation (L-2) can be rewritten as 

>vy 
(39) 

Equations (39) and (42) can also be derived from Abe's derivation of the steady- 

state equations for the zone-transport system stripping section (Appendix F) 

The basic equations then, are 

B-L- ßh(l-k) s   s 
h(l-k) f w(l-ß) (F-17) 

B h      B (h+w) 
e   s    = -A, +i (F-5) 

Use of the identities for v, y and z (Table 4) permits the rewriting of Eqs. (F-17) 

and (F-5). 

vz ßy(l-k) 
y(l-k)+ (l-ß)(l-y) (L-4) 

k  = 
s^-l 

(39) 

Solving (L-4) for ß yields 

vz 
ß  -- 1 + (f^)<«™-» 

(42) 
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