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INTRODUCTION
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The current|interest in sheet materiasl has emphasized th?l?%ed

for a more accuratd understanding of the sigpdficance of duct y of
materials. This is especially true of elo on, which is the most

common megns of assessing the dquctility of sheet mmteriale.] Unfor-
tunately, ,longa:tion values depend on such geometrical factors as
specimen hickness and width in addition to gage length and the inher-
ent ductility of the material itself./ As a convenience, a constant
gage length and specimentwidth are used as the A.S.T.M. standard sheet
tensile speclmenl s but this means that lfhe elongation of specimens of
different thicknesses are not strictly conpa:rable. If an interrela- -
tionship between elongation, gage length, speci¥én width, and specimen
thickness could be determined, either asnalytically or empirically, it
would be possible to correlateﬁ@ctility r materials of widely diff-
erent size and shape. ﬁ’em Liom -/p_ryf,:j

Recognizing that elongation values can be affected by end re-
straint, type of fracture, etc., but convinced that elongation is more
dependent on specimen size,Ehe primary purpose of this paper is to
obtain a greater understanding of elongation as & measure of the duc-
tility of plate and sheet materials as gffected by specimen size and
gage length. ] These other variables were studied, together with the
influence of specimen geometry on yield and tensile strength, and will
be reported at a later date.

LITERATURE REVIEW

There has been considerable interest in the effects of specimen
geometry on tensile properties ond especially elongation in the past,
The older Fmropeer literatuvye Lcstbeen reviewed .in Handbuch der
Werkstoff‘prufung s »rlmreae much of the American literature is reviewed
in a recent DMIC repor’tJ

Fc,z—uant:u:ative relations between elongation and gage length and/or
cross~section geometry generally take two forms:
a. variation of elongation with gage length for specimens of
a glven cross-section, and
b. varistion of elongation with specimen area in specimens
with differing cross-section size ang/or geometry but with the same

gage 1engb1\1;{

i Equations relsting elongation end gage length have been impor-
tent becauvese of the great number of gage Xengths in common use and the/
E‘_} -



(Eesirability of comparing elongation values. Throughout the world, the ,
gage lengths used for determining elongation vary from 3.54% to 10 times )
the specimen diemeter for round specimens? (1 to 11.3 times the area

for flat specimens)%) Even inside one country, two or more gage lemgths

may be used. ]‘§ome. of the equations relating elongatiom snd gage length wé'¢

rgu/'&;(c«".{‘
" Martens(®) E - Ey =§f v
Bach(E) Ea=C =§ (2)
. By ¢
aa11ik(2) E~-EBEy=q == a1 + Eu/lm’)’E‘Ekﬂ
TR T
Krisch and Kuntzel®) = - B, = (B, - Eu)a‘(_l-/Do)en ()
Bauschinger(7) E=E,= Q‘%‘ | (5)
Bertella(8) , E-C = ‘%1413 (6) &
wmm » ) c‘ »

per cent elongsbtion

per cent elongation measured cn an infinitely long

gage length ‘
per cent elongabion measured on a zero gage length

per cent reduction in ares

gage length

original diampeter

original ares
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B,C,Q,

a,m,n, constants

an all the equations it is recognized that the elongstion de-
creases o some limiting value as the gage length spproaches infinity.
This is genmerelly termed the infinite gege length elongation. (In some
cases the limiting elongation for zerc gage length is used. This can
be calculated from the reduction in area if constancy of wvolume is
assumed. Between these limiting values the elongastion decresses with
increasing gage length, in s complex éxponential manmmer according to
Krisch snd Kuntze, or with an exponential function of the reciprocal
of the gage length. This exponent is 1 sccording to Martens, Gallik,
and Bauschinger, 2 according to Bach, and arbitrary according to

Bertella. ’ Ny

The dependence of elongation on specimen cross~-section area has
alweys been recognized. This can be seen by the deslignation of gage
length as some multiple of specimen diameter. Even for rectangular
specimens, gage lengths have been specified as 2 miltiple of the square
root of the areca. Since the elengation depends on the areas and not the
dimensions, the cross-section shspe is not importsnt. Templin re-
ported similar elongabion values for various shaped specimens, in-
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cluding tubular?, of the same area. Some of the equations relating &=
longation in s fixed gage length and specimen ¥ross-section area are:

Bausch:l.nger(7) E = EBEy+ %ﬂ\_ (5)
Berkb1na(8) E = C Mg A0/2 (6)
Temp1in(9) E = CAB (7

where the terms have the same meaning as hefore. All three equatiomns
show that the elongation incresses with some exponential function of the
srea. Templin's equation does not consider variastions in both gage
length and area, sc the term E; does not sppear.

Malmberg studied the effect of various factors on tensile elonga-
tion.l0 By measuring the strain distribution along the length of a bar
during straining, he showed that the strain is fairly uniform until
Just before maximm load, except near the shoulders. When necking
occurred, the parts of the bar outside the neck still continued to de-
form, until just before the fracture load was reached. On round ten-
sile bars verying in size from 5 to 25 mm. diameter, the same varistion
of elongation with gage length was found for all bars between gage
lengths of 2 4 to 20 d. This supports the lmportence of the quantity
/L in determining elongation. Tensile bars with rectangular cross
sections and width-toethickness ratios varying from 1 to 20 snd areas
from 25 to 1500 square mm. were studied. In contrast to the results on
the round bars, here it was found that the elongstion in a certain gage
length expressed as a miltiple of the square root of the area did de-
pend on area, and tended to decrease with increasing area. Finally,
the effect of length of reduced section was studied on round bars. It
was found that the shoulders have an effect over a length 1.5 to 3 times
the dismeter. Beyond this distence from the shoulder, the strain dis-
tribution was independent of specimen length.

Miklowitz studied the strain distribution in various size flat
tensile bars.ll He concluded that because of shoulder restraints,
straining is non-uniform from the very onset of yielding. In line with
this, he maintained a constant ratio of reduced section length to
specimen width. He also studied in detail the local strains occurrin
during necking. Aronofsky also studied necking ingf3fgt tensile bars'<.
He studied the effect of width to thickness ratio on the formation of
the oblique neck that forms under certain conditions.

Low and Prater studied the effect of various geometries on tensilew
elongationl3. They showed that the ratio of reduced section length to
specimen width determined the length restrasined by the shoulders, and
hence the length under simple tension. The influence of lateral re=-
straint in reducing the elongation of bars of width to thickness ratior
greater Yhan 6 was pointed out.

PROCEDURE

Since contributions to elongstion can ideslly be considered to
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donle frofi two sources, the uniform elongition snd the extension sssoc-

iated with the neck, the effeit of specimen geometry on these quanti- :
ties was to be determined. This was accomplished by photogridding the

specimens with a grid spacing of twenty to the inch slong the reduced

section and snalyzing the distrdbution of strain throughout this regiom, '
with particular emphasis placed on the necked region. With this in

mind the materials used were sllected becsuse of thelr differences in

wniform strain values. The materials used, each of which were indivi-

duel heats, were hard drawn snd ennesled copper, AIST 1020 steel, and

H/1 tool steel, The copper and stefl were obtained as 1/2" thick by

2 1/8" wide bar in random lengths and the H 11 was supplied in 1/8"

sheet. After insuring the homogeneity of the material by macroetching

and hardness surveye, tensile specimens of wvarious thicknesses and

widths were prepared from the 12" bar by slicing to the approximate

thickness and then careful grinding to size. Specimen thicknesses from

0,010 to 0,500 inches were prepared, with widths renging from 1/8 to

2 inches, see Figure 1. This resulted in specimen width to thickness

ratios of from 1:1 to 20031 and areas ranging from 0.0013 to 1.00

square inchaes.,
Tensile properties of the various materials used are summarized
in Table T, .
1 Y
]
TABLE I
0.2%

Yield Tensile Reduc~ FElonga~ Elongation,
Strength Strength tiom in tion, = Uniform Specimen

Material  psi psi Area, % Total,% % Type
Copper; 34,800 37,000 69.2  30.0 740 357" D
drawm '
(bglelg, o 8,900 31,000 y(u=n 37-9% 26.5 -35T" D
mealed | 4
1020 Steel 32,300 55,900  63.0 37.1 25,0 357" D
HALl YMEDR1,000 250,900 we-s 8.8 540 1/2" X 1/8"
Tool Steel . . .

The copper was recdived in the hard drawn condition, and testing was

carried out after machining and sn aenneal of 2 hours at LOOYF, The

amnealed copper was obtained by ennealing the as-received material for - ~
one hour at 1200°F. It too was given an snneal of 2 hours at 4OO°F

after machining. The AISI 1020 hot rolled steel was normslized st

1TO0°F prior to machining and annealing at 750°F for 2 hours. The H 11 p
tool steel was machined to size, sustenitized in a salt pot at 1880°F

for 20 minutes (after preheating at 1450°F), quenched in still elrx,

and tempered twice, 1 hour each time, at 1050°F.

i
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Since the specimens were of various sizes, a good range in load
capacities was necessary and three different tensile testing machines
were utilized. The head speed of the machines was regulated so that
gll specimens were strained at an initial rate of 0.01 inches per inch
. of gage length up to the yield and then %t 0.02 inches per inch of gage

lengtheto fracture.

All the gpecimens had been photogridded prior to testing with the
grids spaced at twenty to the Inch. Grids were put on the width sur=-
face for specimen thicknesses of 3/ 8" or less and on both the width and
thickness surfaces for specimen thicknesses of 1/4" and 1/2", see
Figure 2. As shown or this figure, two local strains, namely thg width
and longitudinal strains, could easily be measured on all specipens and
the thickness strain could be measured on the lsrger specimens. On the
thimmer specimens the aversage thickness strsins could be measured di-
rectly, with a micrometer. Furthermore, any one strain can be calcu-
lated from the other two, since because of constancy of volume, the sum
of the principal strains is zero.

FESULTS AND DISCUSSION OF RESULTS

) Since the distance between grids on s longitudinal line running
'y along the center of the bar was measured, the elongation for any gage
ldngth could be determined. Plots of elongation versus various combi-
nations of gage length and area were constructed and observations are
. made., The idealized picture of tensile deformation is that a test
piece contracts uniformly in the transverse directions as it elongates.
This wniform deformation continues until a maximm in the load is

reached. /At this voint, Purther deformation becomes limited solely to
a restricroc pormdlon o Lho Lest plece termed the neck. The size of
this neeked rogion decends on the specimen dimensions. The results <3

will be discussed in terms of this simplified picture.

A, Effect of Gmge Length on Elongation
Typical results showing the dependence of elongation on gage length
for the four materials are shown in Figures 3a to d.

In each case the elongation decresses as the gage length in-
creases, due to the decrease in the fraction of the gage length repre-
senting the necked region. There are three festures of each curve
which are worthy of further discussion. These are the zero gage length
elongation, the infinite gage length elongation, and the variation of
elongation with gage length between these two values.

The zero gage length elongation does not seem to be a constant
value for a given material, but seems to decrease with specimen area.
The smallest gage length measured is 0.1l inches however, and closer
agreement might have been obtained if the zero gage length elongation
e} been calculated from measured transverse and thickness strains.

L It was not possible $o obtain accurate values of thickness strain at
the fracture howsver, since the fracture surface often cut through the
region of minimum thickmess gt an oblique angle. Furthermore, all
elongation values, measured along the center line of the specimen,
include & gep that forms between the two halves of the speclmen as the

— -
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fracture propggates from the center outward. This gep is nommally in-
cluded in standard elongation values obtained by placing the broken
halves of the specimen together and is generslly greater the greater
the specimen thickmess. Finally, there is no indication that bars of
different geometries fracture at a constant value of longitudinal
strain. Results by Miklowitzll suggest that the conditions for frace
ture are more nearly s comstant thickmess straim.

The infinite gage lenmgth elongation is the elomgation that a bar
infinitely long would exhibit, and where the contribution of the neck
would be effectively zero. This could aslzo be comsidered to be the
maximm uniform extension, Thie value should be independent of gpeci-
men size. The zcbual results for the longest gage lengths measured do
not show this, If infinitely long specimens had been used, no doubt
this would have been cbserved, bub the restraining effects of the
shoulders tend to reduce the elonmgation in this region. Of some inter-
est are the very low slomgations displayed by the 9.010" specimens,
which are even lese *hm. the gtreins at meximm load as determined ,
from true stressestrein tests on round bars. The reason for this must
lie in pop-uniformisy of the originsl test piece. Even a varigtion in
thickness of 0,0003", whish represents 5% variation in area for a
0,0L0" specimen, would tend to strongly localize deformastion from the
start of straining, with sccomparying low elongabion.

The varistion of elomgation between zero and infinite gage length
has been expressed by several of the equations presented earlier. It
should be poinbted out thab in no case ls there a sound fundeamental
reagon for derdving any of the equations, beyond recognizing the sig-
nificence of zern and infinite gage length elomgation.

To check some or thele equatioms, elongation has been plotted
versus L/L and LT in Figures % end 5 for each materisl st one size.
The results show thut eithsr reletionship is valid over short ranges
of L, bub that nelther holds over a large renge of gage lengths. In
some cagses, oze or the otler relabtionstip does give a reassonsbly
straight lime, but for u@t‘h@r material or size similar results are
not found. It has beer noted thaet extrapolations of the curves to ine
finite gage lengbns do nob yisld a ﬂ@%‘“aﬁmt value, and in some cases
yield negative values, whick polats out the insdequacy of the relation-
shipes Plots of the same date on loge=log coordingtes, Figure 6 do not
show a straight line either, ghowing thet Bertella's equation (Eq. 6),
is not corrsch.

After comsidering the Tact that there is no known theoretical
basiz for expecting a simple relsbionship, coupled with experimental
conditions such ss end effects, possible non-homogeneity of material
and specimens, and the ovcurrance of double necks, it is not sur-
Prising that no one equation adequately predicts the sctugl variation
of elongation with gege length.

B. Effect of Specimen Ares on Elongation in a Fixed Gage Length

The results plotted in Figure 7 show that over a range of sizes,
there is a linear relationship bebwesen log of elongation in 2" and log
of area. There is zomsidersble scabber however, amd at low aress
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there is a deviation from the linear behasvior. These points represent
B the thinmnest specimens, where dimensional variations would have the
greatest effect. As discussed earlier, many of the elongation values
» are lower than the streain at maximm load, which supports the view=
- point of the non-homogeneity of strain because of dimensional varia-
tions.

Three equations, Eqs.5, 6, and T, mentioned esrlier, relate e~
longation to some power of the area. It must be reslized that for a
specimen with an area approaching zero, the elongation spproaches the
uniform elongation, and for very large specimens, the elongation in
2 inches gpproaches the zero gage length elongation. None of the
equations approach these limits at zero or infinite gage length, which
emphasizes their empirical nature. Bauschinger's and Bertella's
equations do approach a finite value at zero srea however. In Figures
8a to 4 are plotted log (El - Ely) versus log area. The uniform e-
longations were determined from true stress~strain tests. It can
readily be seen that a straight line can be drawn here also, although
from a practical viewpoint Pemplin'®s equation is to be preferred since
the smount of scatter for the lower elongations is seemingly reduced.

GENERAL DISCUSSION

There are two questions concerning the observed relationship
between elongation and area which are of interest. The first is con-
» cerned with the significance of area, rather than width-to-thickmess
ratickor reduced section length-to-width ratio in determining elonga-
tion, and the second with the slope of the straight line portions of
the curves in Figure 7.

A, Significance of Specimen Area
Figure 9 shows a plot of the distribution of loecal elongation,

measured over gage lengths of one grid spacing. It can readily be
shown that the elongation over a two inch gage length can be repre-~
sented on such a plot by a horizontal line drswn such that the area
under it is the same as the area under the curve. Figure 9 shows a
plot of strain distribution for three bars of the same cross-section
geometry, but different areas. The shapes of the curves are generally
the same, except that as the specimen srea gets larger, the curve gets
broader which is an indication of the larger extent of the necked
region. There is an effect of size on the maximm strain. Here ggain,
the arguments adveanced in the earlier dilscussion are valid, in which
it was pointed out that the true zero gage length elongation was not
determined. Further the local strain at the extremities of the gage
length section is greater for the larger area bar, because of the

- closer proximity to thefineck. All in all however, the greater elonga~-
tion in 2 inches (area under the curve) for the larger aree bars camn
be attributed to the larger extent of necked region.

® Figure 10 shows similar plots of local strain for three bars
having the same area. Within experimental accuracy, these bars have
the same elongation, and hence tbe same ares under the curve. Notice
now that the shapes of the curves are quite different. At a width-to-
thickness ratio (w/t) of 1, the local strain decreases uniformly with
distence from the fracture. As w/t increases, there is a tendency for
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a more rapid decrease of strain with distance in a very narrow range in

the vicinity of the fracture, with a change to a more graduel decrease

at larger distences from the fracture. The height of the curve for

high w/t ratios is such that at intermediate distances from the frac-

ture it lies below, and af large distances from the fracture it lies B
sbove the curve for a square specimen, withh the net result being the

sagme area under the curve. ‘

Bécause of the constancy of volume, it is possible to break the
longitudinal strains into a component of transverse or width strain
and thickmess strain. Furbher insight into the shape of the curves
cen possibly be found by comeidering the effect of width-to-thickness
ratio separately om width and thickness strains., Some results are
plotted in Figure 11, wher: true strains have beem used, since here
the sum of the width and thickness strain should equal the longitudi-
nal stmin. The width strains were determined over a ome grid length
(0.05"), wheress the thickness strains were determined over the whole
thickness.

The results clearly show the differing behavior for the various
wft's. For s wft of 1, the width and thickness strains are almost
equalo. (The hard drswn copper is actually slightly amisotropic, by
virtue of having a preferred oriemtation arising from cold working.) .
As w/t increases, there is @ restraint in the width direction H@nd the '
rgtio of the thickness strain to the width strain increases at the
fracture, so thal most of the elorngation at this poimt arises from
the comtribution of the tialckness strain. .

B, Significemce of Exponent “n” in Templin®s Equation
O some importamce is the glope of the curves in Figure T, which

is characterized by the exponent "a" in Tewplin®s equation, Eq. T.
The impovtance of this lies in the fact that it is a measure of the
sensitivity of eloogation veluves to thickness changes. It would tell,
for exsmple, whether two materigls which Heve the same elongation
value of a thickness of 1/8" would also have the same elongation ab
some other thickness. Omne is tempted to look upon the expoment "n”
as a maberial property, which can be delermined and tabulated. A

Ttle reflection on the problewm will show the fallacy of such an
approach.

Consider the case of the seme meberials used in this lnvestiga~
tion, but fracturing at & lower strain. The curves of percent elonga-
tion versus gage lenghth, Figure 3, would then have a different shepe.
This has in effect beem done by pulling various size bare to as con-
stant a strain as possible abt the center of the meck, but below the
frecture strain, and measuring the strain distribution. These results
are plotted in Figures 12a to ¢ together with strain distributions
from the fractured bars. It is readily apparent that at small gage
lengths the elongabions are much lower for the bars not fractured,
but that as the gage lengths increase, the elongations for the two o
cases spproach each other, and for an infinite gege length they would

presumsbly be the same, Note further that for some intermediate
gege length, szy 2 inches, the spresd in elongation values between the
Mestfma largest areas is less for the bars pulled to a strain
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less than the fracture strain than for the bars pulled to fracture.

If these values of elongation are plotted versus area as formerly,

the results such as in Figure 13 are obtained. Allowing for experi-
mental scatter and for the fact that all bars were not pulled to ex-
actly the same strain, it can be seen that a straight line is obtalned,
but with a lower slope than for the bars pulled to fracture. In fact,
in an extreme case, if the bars were all pulled to or fractured at or
before the limit of uniform strain the elongation would be the same
for all bars over all gage lengths, and the slope would be zero on &
log=log plot of elongation versus gage length.

From these comsiderabions, it cen be seen that the expopent “n”
in Templin®s equation is not a general material property which can be
tabulated, but rather depends on the ductility of the specific lot of
naterial being tested. For two different materials with the same
wniform strain, the one having the higher fracture strain would have
the greater value of the exponent "n”. Similarly, for s constant
fracture strain, the lower the wmiform strain the higher the value of
this exponent. The quantity, determineble from & single temsile test,
which best correlates with Templin'’s exponent "n™ is probebly the
ratio of the fracture to the wniform strain. Unfortumately, the high
strength sheet materials of current interest do have a low value of
wmiform strain with moderate fracture strains, so that their elongation
values are qulite sensitive to variations in thickness.

Co Prediction of Per Cent Elongation

In many cases, 1t would be desirsble to be sble to predict the
elongation for any arbitrary size specimen. Lacking complete data for
many specimens which would allow an interpoletion to be made, there is
a method which suggests itself. This is based on the concept that &
constent elongation is obtained if JA/L is maintained constant, as
suggested by Bauschinger®s equation, Eq. 5. Malmberg found this to be
valid for round bars, but not for rectangular bars. The results of
this investigation support Malmberg and show that this is not generally
true. Nevertheless, under some conditions it is a good approximstion.
If it is valid, then at s constant velue of elongation:

Iy & Ip

ST

where L and A are the gage lengths and area of two different bars 1 and
2. To determine the elongation in a length Lp on a bar with an ares

Lo from measurements on & bar with ares A, simply measurdihbeloipd:ion
on bar 1 over a gage length 1, = 12]% « From this relation, the

elongation in a fixed gage length for eny ares bar can be calculated
from measurements over different gege lengthsson one bar.

Some results using this method have been calculated for several
size bars of the various materials, and are plotted in Figure 1k with
the experimentally determined results from Figure 7. In some cases, §
the points do not lie on the experimentally determined curve, since
the standard 2 inch elongation for the ber used lie off the curve. In
general the results are good, and the slopes of the experimental and
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caleulated curves are the same. Deviations are noted when the elonga-
tion must be measured over such & long gage length that either a
second necked region or end restraints are encountered.

In a practical sense, this principle could be gpplied to standard
1/2" wide specimenz. Suppose for exsmple one had availsble and knew
the properties ot 1/8" sheet. What elongation would be expected in
sheet 0.080" thick ¢ From the sbove relation, on® can determine that
the elongation measured on I = 2 = 2.5 of the 1/8" sheet is
the same as the elongation in 2 ing 0,080" sheet. Accuxrate
values should be obtaslned if the areas do not differ apprecisbly.

SUMMARY

n study has been made of the effect of specimen gage length,
width and thickness on the elougution as ggemined in ile test.
Hard=-drawn copper, amnealed copper, 1020 Bttel, and H eel were
studied. -

- Although a mmber of relatiomships have been proposed to explain
the variation of elongation with gage length, the results show that -
no one relationship adequabely describes the course of the curves.

The elongution in 2 inches is found to vary approximately linearly
with the specimen area on a log=log plot, showing agreement with
Templints egquation. The reason for the dependence of elongation on
specimen aresa rather than width-to-thickness ratio, can be seen from a
study of the local width, thickness and longitudinal strains.

The sensitivity of elongatiom to specimen area or thickness, as
measured by the exponent “n" in Templints equation, El = CA®, is de-
pendent on the fracture strain as well ag the wmiform strain, and
hence varles from heat to heat of mgterial. This exponent is most
closely relatéd to the ratio of fracture strain to wniform strain.

If I/ & iz maintained coustant, the elongation will be epproxi-

mately comstant. Using this relation, &£ is possible to estimate the
elongation for any size bar from measurements made on one bar. -

s
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