


■ 

-, 

Dl-82-0387 

A CLASS OF LINEAR PROGRAMMING PROBLEMS 

REQUIRING A LARGE NUMBER OF ITERATIONS 

by 

Victor KLee 
University of Washington 

Mathematical Note No. 375 

Mathematics Research Laboratory 

BOEING SCIENTIFIC RESEARCH LABORATORIES 

November 1964. 

-- I 



ABSTRACT 

; 

A coordinate-free description of the simplex algorithm (for 

nondegenerate linear programming problems) is supplied, and is 

used to show that the number of iterations can be larger than was 

previously knovm» For 0 < m < n, there is constructed a non- 

degenerate linear programming problem whose bounded (n - m)-dimensional 

feasible region is defined by means of m linear equality constraints 

in n nonnegative variables, and in which, after starting from 

the worst choice of an initial feasible vertex, m(n - m - l) + 1 

simplex iterations are required in order to reach the optimal 

vertex» It is conjectured that this is the maximum possible number 

of iterations (for arbitrary 0 < m < n), but the conjecture is 

proved only for n < m + 4.« 
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INTRODUCnON 

Before attacking a linear programming problem with the simplex 

algorithm, It can be very comforting to have a good estimate of the 

number of iterations which may be required in order to reach a 

solution»    For problems of a given size, the number of iterations is 

nearly proportional to the actual computation time, and it may also 

give some indication of the extent to which round-off errors will 

become troublesome (depending on the computer program by means of 

which the algorithm is implemented).    Of primary Interest is the 

expected number of iterations.    This can be defined mathematically 

in various ways, but the resulting systems appear to be too complex 

for mathematical analysis and in any case are of doubtful relevance 

to the practical situation.   It seems that the only reliable guide 

to the expected number of iterations is computational experience 

such as that reported by Kuhn & Quandt [ll], Wolfe & Cutler [14.] or 

Dantzig [2]   (p, 160). 

In addition to the primary interest in the expected number of 

iterations, there is a strong secondary Interest in the maximum 

number of iterations for problems of a given size.   Here the analytical 

approach seems more relevant as well as more feasible, and the still- 

unsolved problem of determining the maximum number has been of central 

interest since the inception of the simplex algorithm.    The present 
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note contributes to this problem \>j supplying a coordinate-free 

description of the simplex algorithm which helps to clarify the 

underlying geometry, and by using the description to show that the 

number of Iterations can be larger than was previously known, 

(Here the Iterations are those In the most commonly used version of 

the simplex algorithm [1,2], where each pivot operation maximizes the 

gradient In the space of nonbaslc variables) that Is, the pivot 

column Is chosen so that Introduction of the associated variable 

Into the basis permits the greatest possible Improvement In the 

objective function per unit level of the variable.)    For   0 < m < n 

there Is constructed a nondegenerate linear programming program 

whose bounded (n - m)-dimensional feasible region is defined by 

means of   m   linear equality constraints in   n   nonnegative variables, 

and in which, after starting from the "worst" choice of an initial 

feasible vertex, m(n - m - l) + 1 simplex iterations are required 

in order to reach the optimal vertex.    It is conjectured that this 

is the maximum possible number of iterations, for arbitrary 

0 < m < n, but the conjecture is proved only for    n < m + ^. 

I.      A COORDINATE-FREE DESCRIPTION OF THE SIMPLEX ALGORITHM 

The linear programming problems which are described in the next 

section are not given in an explicit numerical form»    Instead, their 

existence is established by means of a geometrical construction based 

on mathematical induction.    For this purpose, it is convenient to have 

a coordinate-free description of the simplex algorithm.   In the 

»aim <—imi m,- 



Interest of simplicity, attention will be confined to nondegenerate 

problems• 

Let X be an affine set (or flat) in a real vector space; 

that is, \x + (1 - X)x» t X for all x « X, x' c X and \ e R 

(the real number field). An affine form on X is a real-valued 

function ^ such that ^(Xx + (1 - X)x») = X^(x) + (l - X)c(xl) 

whenever x c X, x' c X and X e Rj if ^ is not constant on X, 

then the sets H(0 = {x e X : ^(x) = 0} and J(0 = {x e X : ^(x) ^ 0) 

are respectively the hvoerplane and the halfspace associated with t,» 

A d-polyhedron in X is a d-dimensional set P which is the inter- 

section of a finite number of half spaces» The faces of P are inter- 

sections of P with its various supporting hyperplanes and thus are 

sets of the form P ("1 H(0 where P c jfc).     The 0-faoes, bounded 

1-faces, and (d - l)-faces of P are called respectively its vertices, 

edges, and facets, and two vertices are ad.lacent provided they are 

joined by an edge, A d-polyhedron P is called proper provided it 

has at least one vertex, and a proper d-polyhedron is simple provided 

each vertex is on exactly d 1-faces or, equivalently, on exactly 

d facets. 

In order that our tenninology may suggest the appropriate 

correspondents in the usual treatment of linear programming, an 

affine form ^ on X will be called a variable provided it is not 

constant on P. 

■* » 
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Now suppose that P Is a simple d-polyhedron In X and « 

Is a variable« We are concerned with the problem of minimizing 

«  over P. Let F denote the set of all facets of P, and for 

each F e F let cpu be a variable such that F c HCcpu,) and 

P c JC^p). Let * = {cpp i F c Fj, whence of course P is the 

intersection of the set 0 ^J(a) with the affine hull äff P 

of P, Henceforth, our discussion will be relative to the STStem 

(P,0,9 )• For an arbitrary choice of numbers <*_ > 0, the systems 

(Pifoupp, : F c F}|(p ) and (P|*,cp ) correspond to the same linear 

programming problem, but the simplex algorithm is materially 

affected by (nonuniform) rescaling of its variables and would not 

in general require the same number of Iterations for the two systems. 

If v is a vertex of the simple d-polyhedron P, a variable 

cp • <1> will be called basic or nonbasic for v according as 

9(v) > 0 or «p(v) =0. The set of all nonbasic variables will be 

denoted by 0 , so that cp c ♦  if and only if v e H(<p), or 

equivalently, cp = cpu for some facet F » v. Since P is simple, 

each set a  is of cardinality d, and two vertices v and v1 

are adjacent if and only if there is exactly one variable cp ,v  in 

* ~«v, •  The nonbasic (vjV1) gradient of cp  is then defined 

as the quotient 

cp^VW'^v)! 

*fn 
r •■• ^ 



let   C(h,l,J,k)    denote the assertion that   C(h|l,;J,k) < CTJ»   For 

2 ^ m ^ d,   let   A     denote the assertion that   y- > or^ > QfpYo > ••• 

> a Y »    B     the assertion that   a0< ••• <cr ,    and   C     the assertion m m       m z ram 

that   C(h,i,j,k)   holds whenever   l^h<i<J^k^d   and   J^m. 

We want to choose the   or. ^    so that   A ,B     and C     are true for i nr m m 

all   m,    and this will be accomplished by induction on   nu 

Choose   or-    so that   or Y   > a.Y2 > 0,      Then   A«   holds, and 

B2 and C« are vacuously satisfied.   In order to satisfy A,, B, and C- 

the number   a,   must be chosen subject to the following restrictions: 

< 
V2 

"iVA 
Y3(QflYl - V2 + Vk5 

V2 (3^k^d). 

But   Qr2 < Q'XjY'i   because   Yp > Yo»    so the desired choice of   a, 

can be made if and only if 

Wk 
Vi - Va + Vk 

< O^k^d). 

This is evidently equivalent to the condition that 

V^-YkX^Y^-Y^, 

an inequality which follows from   Ap    in conjunction with the fact 

that   Y2 > Yk. 

U^-jk^L'^J 
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For the general inductive step* we suppose that 4- ^ m ^ d 

and that the numbers or. .••••or . have been ohosen so that conditions 
l    m—i 

A ntB . and C , are all satisfied. We want to choose or  so 
m-l* m-1     m-1 m 

that A ,B  and C  are all satisfied, and as in the case of A. m   m m i 

the choice is possible if and only if 

(2)       C(hfi,m,k) <-a^-B=1   for   1 ^ h < 1 < m ^ k ^ d, 

If   m = 1 + 1,    the Inequality (2) reduces to the assertion that 

Vl(Yi-Yk) < Vh(Yl -Yk), 

which is a consequence of   A.    and the fact that   y* ^ Yk#    ^ 

m > 1 + 1, (2) is equivalent to the inequality 

Yrtft  < „ 

which is merely   0(h,i,ni - 1, k)    and hence is a consequence of 

0m-l- 

This completes the proof of the lemma,    (Actually, condition (B) 

of the lemma will not be used in the sequel.) 

Abounded polyhedron will be called a polrbope. 

THBOMM 1       For   n > d > 1,    there exists a simple d-polvtope 

P   having exactly   n    facets« a variable    cp ,    and a set   *   of 

.>-«;^ ....   . -— 
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variables corresponding to the facets of   P   such that the system 

(P/I»,9 )    admits an unambiguous simplex   9 -path of length 

(n - d)(d - l) + 1   running through all the vertices of   ?• 

Proof.   For an arbitrary fixed    d,    the proof Is by Induction 

on   n«   For the case In which n = d + 1,    let the numbers   f.    be 

such that   Yi ^ Y? ^ ••• > y, . > 0    and let the   or 's   be as In 

d+1 the lemma*   Let   P   be the d-slmplex In   R   '    whose vertices are 

a,6., a2*2,*'#,Qrd+^^d+l,   w^ere ^e points    6.    are the Rronecker 

deltas, and for each point   x = (x ,x ,#,*,x     ) c R let 

cp (x) = L. . Y-X •    By condition (A)  of the lemma, the sequence 

^l6l,0r262,*",Qrd+l6d+l^    ls a Vpath in   P•   If   Fl    is the 

facet of   P   determined by all of   Prs vertices other than   or.6,, 
XL. 

let the corresponding variable   %(= 9p )  € ^  be the   1       coordinate 

function.   Then the nonbaslc (a, 6, ,or.6.)    gradient of   9     Is equal 

to   C^i-Yv, - Q^Y-j)/0^»    and ^e P*"^1 l*1 question Is an unambiguous 

simplex   cp -path provided 

Vh - Virh.i > Vh - *jb  forl^h<h + 1<J^d + 1. 
J h+l 

But this inequality is equivalent to 

Vh - Vi^h+i+ VIYJ    
ay 

which in turn is equivalent to the inequality C(h,h + 1, J, J) 

of the lemma* (Note that d + 1 here corresponds to d in the 

nwi-ir TI «BIN ■^ ^MUti* rt*-n*vmit&i xiäki**-'^ *^bmf 
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lemma.) This completes the proof for the case In which n = d + 1, 

Suppose the theorem is known for n = r ^ d + 1, and let 

(P,<!>,<$) ) be the corresponding system. Let (v >v-i>***»v«) be an 

unambiguous simplex cp -path running through all the vertices of 

P, where i = (r - d) (d - l) + 1, The P-minimum of cp  is 

attained only at the vertex v.. We may assume without loss of 

generality that the d-polytope P lies in R , with the vertex 

v, at -he origin. Since P is simple, there are exactly d 

variables in <& which are nonbasic for v., and there is a 

nonsingular linear transformation t of R onto R  such that the 
—♦ -♦ 

variables   cpt (for   cp € <I>)    are exactly the    d    coordinate functions 

on    R •    The system    (tP,   {cpt ! cp c <!)), cp t)    will then have the 

properties required of the system    (P^l),cp )•    Thus we may assume 

without loss of generality that   t   is the identity transformation, 

and the   d   vertices of   P    which are adjacent to    v.   must then lie 

along the positive coordinate axes.   We may assume that the 

P-minimum of   cp     is    0.    whence   cp     is a linear form on   R     and Yo ' ro -» 

there are positive numbers    y.    such that    cp (x) = Z.  ,Y.I
X

J    for all 

x e R •    The relevant aspects of the situation are clearly unchanged 

by a sufficiently small perturbation of   cp , so we may assume that 

the    d   numbers   y.    are all distinct.    By a uniform contraction or 

dilation together with a suitable permutation of the coordinates, 

we may assume that   v. ~ = b~    and that   y? ^ Y-a ^ *** ^ Y^- 

urn m  ;.*<•■    .  .• .,   ,-   . 



•'* 

11 

Now let the positive numbers ».,•••,or. be as in the lemma, 

and note that for each X e ]0|l[ the conditions of the lemma are 

also satisfied by the sequence \a-,»»»,Xad#  Let v.(X) = v. 

for 0 ^ j < i and let v.(X) = ^or, i+1 for i ^ J ^ i + d - 1. 

Let P. denote the convex hull of the set {v.(X) : 0 ^ J <£ ü + d - 1), 

Then it can be verified that P. is a simple d-polytope having the 

points v.(X) as its vertices. Each facet of P is contained in 

a facet of P. , with the sole exception of the facet F. = 

conCXa. 6. : 1 ^ i ^ d} of P. • Thus P.  has exactly r + 1 

facets.  Let $.  be obtained from Q    by the addition of a variable 

cpr,  corresponding to F. . Then the sequence (v (^)>VT (^)#,,,»v*. J -I(X)) 

is a path of length (r + 1 - d)(d - l) + 1 which runs through all 

the vertices of P. • Indeed, it is a cp -path, for (v (X) v. (X),•••,v, .(\)) 

is identical with the cpo-path (VQI^»*"'»^! ) and (vi_i^^",»vx+d-l^^ 

is a cp -path by condition (A) of the lemma, because «p (v. ,(X)) = y-i 

and cp (v.(X)) = \ot .f.    for X^j^A + d-1» To complete the proof 

of the theorem, it suffices to show that for X  sufficiently small 

(in ]0,l[) the path (v (X) ,v., (X),»«»,v,. , -(X)) is an unambiguous 
O     J.   '     *TU—X 

simplex ^ -path relative to the system (P. j1!». ,cp )« 

If 0 ^ h < Ü ^ j ^ £ + d - 1 and the vertices vfX) and 

v,(X) are adjacent in P. , then v. and v,(= 0) are adjacent 

in P, Further, the variable in «t».  which is nonbasic for v, (X) 
K n 

but basic for   v.(X)    is identical with the variable in    $   which 

is nonbasic for   v,     but basic for    v •    Thus for   X    very small, 
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the nonbasic (v, (\),v.(>.)) gradient of cp is very close to the 

nonbasic (v.,v.) gradient of 9 • The desired conclusion then 

follows from this fact in conjunction with the facts that (v fV, ,**%vJ) 
Ol Mi 

is an unambiguous simplex cp -path in P, that v.(X) is the only 

vertex of P. which is adjacent to v _ and gives a smaller value 

to   cp ,    and that (v,(X),'*,,v    , .(X))    is (by the first paragraph 
O ft *T'Cl—x 

of the proof of the theorem) an unambiguous simplex   cp -path relative 

to the system    (P. ^,cp )• 

III. REPRESENTATION IN STANDARD FORM 

Our main result will be stated in a somewhat redundant fora 

in order to exhibit explicitly its various features of possible 

interest, 

THEOREM 2        For   0 < m < n,    there exists a linear programming 

problem in standard form such that the following conditions are 

all satisfied: 

(a) the feasible region is defined by means of   m   linear 

equality constraints in   n    nonnegative variables 1 

(b) the feasible region is a simple    (n - m)-polytope which 

has    n   facets and   m(n - m - l) + 2 vertices! 

(c) the objective function does not assume equal values at 

any two distinct vertices of the feasible region; 

(d) starting from the feasible vertex which maximizes the 
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objective function»    m(n - m - l) + 1    simplex iterations are 

required in order to reach the minimizing vertex; 

(e)    for a random choice of the initial feasible vertex, 

£(m(n - m - l) + l)    is, the expected number of simplex iterations 

required to reach the minimizing vertex. 

Proof,    Let    d = n - m    ana let the system    (P,<I',cp )    be as in 

the preceding theorem.    Let    0      be the positive orthantin   R 

and let    G    be the affine hull of    P,      By a theorem of Davis   [3] 

(also 4,,2 of [6]),  there exists a nonsingular affine transformation 

t    of    G    into    Rn    such that    tP = (tG)  PI 0n,    The d-flat    tG    does 

not pass through the origin, because    P    is bounded and consists of 

more than one point.    Since    tP    has exactly   n    facets, its facets 

are precisely the sets of the form    (tP)  H H.,    where    H.    is  the 
J J 

set of all points    x = (x ,x ,*»»,xn)  e Rn    such that    xJ  = 0, 

If   cp.    is the variable in   0    corresponding to the facet 

t" ((tP) fl H.),    then the variable    cp.t"      on   tG   must be a 
J J 

positive multiple  of the    j        coordinate function—say 

cp.(t    (x)) = u.x.     for all    x e tG,    Let the transformation    s    of 

R     onto    R      be defined by the condition that   x(x .•••.x ) = 
—• -♦ 

(x/^:L,»»»,x /\i  ),      Finally, let    Q = stP,    let    *   be the set of 

all coordinate functions on    R ,    and let    z    be a linear form on 

R   whose restriction to stG (the smallest flat containing    Q)     is 

equal to the function   cp t~ s~ ,    Then the system    (Q,?,z)    has 

all of the relevant properties of the system    (P,<l>,cp ),    Since the 
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flat   aff stP    is of dimension   d = n - m   in   Rn.    it can be 

determined by means of   m   linear equality constraints—equations 

of the form   t^. (x) = ß.,    where   r\.    is a nonconstant linear form 

on   R     and   ß.    is a real number   / 0 (1 ^ i ^ m)• 

The desired linear programming problem is that of minimizing 

the linear form    z(x)    subject to the   m   linear equality constraints 

TK (x) = ß.    and the   n   nonnegativlty constraints    xJ ^ 0»      Assertions 

(a),  (b) and (c) are obviously true, and (e) follows from (d) in 

conjunction with the fact that all of the vertices of the feasible 

region lie on the simplex path described In (e).    In order to Justify 

(d), it suffices to compare the previous section's description of 

simplex   «p -paths with any of the usual descriptions of the 

simplex algorithm.    The descriptions In Dantzlg's Chapter 7  [2] and 

in Kuhn & Quandt [ll] are especially good for this purpose, as they 

emphasize the geometry of the situation. 

The standard form of a linear programming problem. Involving 

linear equality constraints, is the one to which the simplex algorithm 

Is applied.    However, the form most directly related to the under- 

lying practical situation usually Involves linear Inequality constraints 

which are then replaced by equality constraints  (with the introduction 

of a slack variable for each Inequality) In order to convert the 

problem to standard form.    In this connection, we note the following, 

COROLLARY       For   k > 1 ^ m,    there exists a linear programming 

^■HMH • a»i. ««j " 
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problem in Inequality form such that the following conditions are 

satisfied: 

(i)    the feasible region is defined by means of    m   linear 

inequality constraints in   k   nonnegative variables; 

(ii)  if the problem is converted to standard form by adding 

a slack variable for each of the   m   inequality constraints, then 

with   n = m + k   the resulting problem in standard form satisfies 

all the conditions (a) - (e) of the preceding theoremt in particular, 

for the worst choice of an Initial feasible vertex, m(k - l) + 1 

simplex iterations will be required to reach the optimal vertex. 

Proof,    Let n = m + k    and consider the problem in standard 

form described In the preceding theorem.    Let    v      be the feasible 

vertex which maxiinizes the objective function.    Then exactly   k    of 

the coordinate functions are nonbasic for   v ,    and we may assume 

that they are the variables    xJ    for ra + 1 ^ j < n.    For 1 ^ j <£ m, 

let    (3,    denote the    j        coordinate of   v ; that is.    ß=v*1>0, 
J o '      j        o 

The problem can be transformed into feasible canonical form ([2], 

p. 94.) with respect to v ,  and in this form it will ask for values of 

x   ^0, x    ^OJ'^JX   )>0, and minimum    z    such that 

m 

(-z) 

-' 

ra+1 , . ^       n 
l,m+l l,n 

+ CV        +,x
m+1

+   • •   •   +«.      x" 2,m+l 2,n 

+ c*   ^..x^1 + . . . + a     xn 

m,m+l m^n 

ra+1 n + Ym+i
x + * • • + Ynxn 

= ß, 

n 

-z i 
T* 
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where the numbers z . or. . and YJ are constants. 

Now consider the problem of finding x  ^0,*»»,x ]>0 

and minimum z such that 

P+l J - . » or. ..x   + • • • 
l,m+l 

n + %** ± h 

m+1 ^ 
a  ,., x   + 
m|m+l 

n + or  x < ß 

w m+1 
m.n 

n 

n 

•+YX   = Z - Z • 'n o 

The two problems are clearly equivalent, and the former results 

from the latter under the usual conversion to standard form by 

the addition of slack variables. The desired conclusion follows« 

■»•»■ M*K. ■ ■-■.-■- 
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IV.    COMMENTS 

Saaty [13]  conjectured that in applying the simplex algorithm 

to nondegenerate linear programming problems involving   m   linear 

inequality constraints in   k    nonnegative variables, the number of 

iterations required to reach an optimal vertex is at most   ~ I   p )• 

This is  contradicted by the corollary, with its number   m(k - l) + !• 

In particular, when    m = k    Saaty's number and that of the corollary 

2 
are respectively   4-k - 2   and    k   - k + !•    When    k = 3, they are 

2 2 m    - 3m - 6   and    2m   + 2m,    Thus there is a ncndegenerate problem 

whose feasible region is defined by means of 5 linear inequalities 

in 3 nonnegative variables,  in which Saaty's conjectured bound is 

exceeded,    (Quandt & Kuhn [12]  mention some 25 x 25 problems in 

which the bound is exceeded when a very inefficient pivot rule 

(not the standard one) is employed.) 

W»tf»W*W«»*» 

A result similar to Theorem 1 appears in  [7], but there the 

paths maximize the gradient in the containing normed space and 

thus are not based on the usual pivot rule,    (See also Gcldman   & 

Kleinman U].) 

***<tttWW*»»tt» 

Now let us consider the number (n-d)(d-l)+l    of Theorem 

1,    I conjecture that this is  the maximum length of simplex   cp -paths 

for a system (P,*,cp )    in which   P   is a simple d-polytope having 

n    facets.   More than that,  I conjecture that it is  the maximum length 

of    cpo-paths in d-polytopes having   n    facets.    However, the 

a    i .aBUrfiSir- ■- .-, Vi-*»? ■.-•».»«*• \ .•  -   —i . X&9-1- 
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conjecture has been proved only for  d ^ 3 

[?] and hence the corresponding conjecture for Theorem 2 is 

established only for 0<m<n<ni + 4.» If the conjecture is 

correct, then at its worst» the usual simplex algorithm behaves at 

least as badly as any of its variants« That is, the maximum number 

of iterations which may be required for problems of a given size 

is at least as much for the usual pivot rule as it is for any 

algorithm which improves the value of the objective function at 

each stage« 

In closing, we repeat from [8] a comparison which is of 

interest for linear programming and in connection with the above 

conjecture. For 1 ^ i ^ 5, let L. (d,n) denote the smallest 

number JL    such that the statement (i) below is true whenever P 

is a d-polytope having n facets and cp  is a nonconstant affine 

form on P» 

(1) any two vertices of ? can be joined by a path of length 

(2) any vertex of P can be joined to a cp -minimizing 

vertex of P by a cp -path of length £ X; 

(3) if a cpo-path ("V'IV ) in P maximizes the 

improvement of «p  at each stage (that is, if cp (v, ,) ^ cp (w) 

for each vertex w adjacent to v. ..), then its length is £ I; 

miamt*mmmmimmam*m0m*r**i « n ^.^mmmmrimm^-^^^amm -».««^«^W-^M.-«^]L .. _r .«A» 
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(4.)    every   «p -path in   P   Is of length <, l\ 

(5)    every simple path in   P    is of    ength <, I* 

(A simple path is one in which no vertex is repeated.) 

It is conjectured that the values of the numbers   L. (d,n) 

are a3 follows, where  [r] denotes the greatest integer ^ r, 

(1) [^ n]    - d + 2, 

(2) n - d; 

(3) n - 2 if    d = 2j p^i] - ^ if d = 3; 2(n-d) - 1 if d ^ 4; 

[K) (d - l)<n - d) + 1; 

Each of these conjectures has been established for d < 3| in addi- 

tion, (l) is known when n < d + 4. and (5) when d<6 orn<d + 3 

or n ^ (d/2) - 1, In each case, the number given is known to be a 

lower bound for L. (d,n) and to be attained for a simple d-polytope 

having n facets, (This statement requires a slight modification 

for (l)») The evidence supporting these conjectures is of varying 

strength; it seems rather weak in the case of (3) with d ^> 4., although 

this is of great Interest for linear programming. For details and 

additional references, see [5] for (l), [10] for (2), [7] for (3) 

and (0, and [9] for (5). 
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