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ABSTRACT

A coordinate-free description of the simplex algorithm (for
nondegenerate linear programming problems) is supplied, and is
used to show that the number of iterations can be larger than was
previously knowne For 0 < m < n, there is constructed a non-

degenerate linear programming problem whose bounded (n - m)-dimensional

feasible region is defined by means of m linear equality constraints

B e T

in n nonnegative variables, and in which, after starting from
the worst choice of an initial feasible vertex, m(n - m - 1) +1
simplex iterations are required in order to reach the optimal

g vertex. It 1s conjectured that this is the maximum possible number
of iterations (for arbitrary 0 < m < n), but the conjecture is

proved only for n < m + 4.
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INTRODUCTION

Before attacking a linear programming problem with the simplex
algorithm, it can be very comforting to have a good estimate of the
number of iterations which may be required in order to reach a
solution., For problems of a given size, the number of iterations is
nearly proportional to the actual computation time, and it may also
give some indication of the extent to which round-off errors will
become troublesome (depending on the computer program by means of
which the algorithm is implemented). Of primary interest is the

expected number of iterations. This can be defined mathematically

in various ways, but the resulting systems esppear to be too complex
for mathematical analysis and in any case are of doubtful relevance
to the practical situation, It seems that the only reliable guide
to the expected number of lterations is computational experience

such as that reported by Kuhn & Quandt [11], Wolfe & Cutler [14] or

Dantzig (2] (pe 160).

In addition to the primary interest in the expected number of
iterations, there is a strong secondary interest in the maximum
number of iterations for problems of a given size., Here the analytical
approach seems more relevant as wel. as more feasible, and the still-
unsolved problem of determining the maximum number has been of central

interest since the inception of the simplex algorithm, The present
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note contributes to this problem by supplying a coordinate-free

description of the simplex algorithm which helps to clarify the
underlying geometry, and by using the description to show that the
number of iterations can be larger than was previously known.

(Here the iterations are those in the most commonly used version of
the simplex algorithm [1,2], where each pivot operation maximizes the
gradient in the space of nonbasic variables; that 1s, the pivot
column is chosen so that introduction of the associated variable

into the basis permits the greatest possible improvement in the
objective function per unit level of the variable.) For 0 {m<n
there is constructed a nondegenerate linear programming program
whose bounded (n - m)-dimensional feasible region is defined by

means of m 1linear equality constraints in n nonnegative variables,
and in which, after starting from the "worst" cholce of an initial
feasible vertex, m(n - m - 1) + 1 simplex iterations are required

in order to reach the optimal vertex. It 1s conjectured that this

is the maximum possible number of iterations, for arbitrary

0 <m < n, but the conjecture is proved only for n < m + 4.

I. A COORDINATE-FREE DESCRIPTION OF THE SIMPLEX ALGORITHM

The linear programming problems which are described in the next
section are not given in an explicit numerical form. Instead, their
ex.stence is established by means of a geometrical construction based
on mathematical induction. For this purpose, it 1s convenient to have

a coordinate-free description of the simplex algorithm. In the
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interest of simplicity, attention will be confined to nondegenerate

problems,

Let X be an affine set (or flat) in a real vector spaces;
that 1s, Ax+ (1 -A)x' ¢ X forall xe¢ X, x' ¢ X and X\ ¢R
(the real number field). An affine form on X 18 a real-valued
function [ such that E(Ax + (1 - A\)x') = Ag(x) + (1 - A\)g(x')
whenever x ¢ X, x! ¢ X and A ¢ R; if ¢ 1s not constant on X,
then the sets H(f) = {x ¢ X ¢ E(x) =0} and J(t) = {x ¢ X : E(x) >0}

are respectively the hyperplane and the halfspace assoclated with .

A d-polyhedron in X 1is a d-dimensional set P which is the inter-
section of a finite number of halfspaces. The faces of P are inter-
sections of P with 1ts various supporting hyperplanes and thus are
sets of the form P N H({) where P C J()s The O-faces, bounded
1-faces, and (d - 1)-faces of P are called respectively its vertices,
edges, and facets, and two vertices are adjacent provided they are
Joined by an edge, A d-polyhedron P 1is called proper provided it
has at least one vertex, and a proper d-polyhedron 1s gimple provided
each vertex is on exactly d 1-faces cr, equivalently, on exactly

d facets.

In order that our terminology may suggest the appropriate
correspondents in the usual treatment of linear programming, an
affine form ¢ on X will be called a yariable provided it is not

constant on P,
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Now suppose that P 1s a simple d-polyhedron in X and P
is a variable, We are concerned with the problem of minimizing
9, over P, Let F denote the set of all facets of P, and for
each F ¢F let @ be a variable such that F < H(ch) and
PcC J(ch). Let ¢ = {ch t F ¢ F}, whence of course P is the
intersection of the set nq, ‘oJ (p) with the affine hull aff P
of P. Henceforth, our discussion will be relative to the system
(P,o,q;o). For an arbitrary choice of numbers ap > 0, the systems
(P,{apch : Fe E],cpo) and (P,0 ,:po) correspond to the same linear
programming problem, but the simplex algorithm is materially
affected by (nonuniform) rescaling of its variables and would not

in general require the same number of iterations for the two systems.

If v 1is a vertex of the simple é-polyhedron P, a variable
o ¢d will be called basic or nonbasic for v according as
o(v) >0 or ¢(v) = 0. The set of all nonbasic variables will be
denoted by ®_, so that ¢ ¢ & if and only if v e H(ep), or
equivalently, ¢ = @p for some facet F 3 ve Since P 1s simple,
each set ov is of cardinality d, and two vertices v and v
are adjacent if and only if there is exactly one variable (Pv,v' in
O, ~® e The nonbasic (v,v') gradient of ?, is then defined
as the quotient

P (V') - ¢, (V)

Icpv’v'(V') - cpv’v'(V)l
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let C(h,i,j,k) denote the assertion that ¢(h,1i,],k) < a,. For
2{mgd, let A denote the assertion that y; > a;y; > ajy, > e
>ay , B the assertion that a, { eee < @, and C the assertion
that C(h,1,j,k) holds whenever 1 { h<1i< j<k<d and j<me
We want to choose the a,'s so that Am’Bm and Cm are true for

dl
all m, and this will be accomplished by induction on m,.

Choose a2 so that ain > anz > 0. Then A2 holds, and

B2 and 02 are vacuously satisfieds In order to catisfy A3, B3 and 03

the number 03 must be chosen subject to the following restrictions:

ay

2'2

@, < g < Y,

Q. xY.T QY

17217 2'2
Y4lagr) - @y, + a5y, ) N T Yy (3<kga)

But a, < aérz/YB because Y, > Y3 8O the desired choice of @,

can be made if and only if

"1k
¥y = Xy Ay

< v (3{k<d).

This is evidently equivalent to the condition that

an inequality which follows from A2 in conjunction with the fact
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For the general inductive step, we suppose that 4 {m { d

have been chosen so that conditions

and that the numbers a.,s¢+,a

1! m-1
are all satisfied. We want to choose am S0

Ap1Bpy and CGpy
that Am’Bm and Gm are all satisfied, and as in the case of A3

& the choice is possible if and only if

am-lYm-l
(2)  ¢(hyi,m,k) <—"r'— for 1{h<i<m{k<d.
m

t If m=1+1, the inequality (2) reduces to the assertion that

agrs vy -1 <oy (ry - vyds

which is a consequence of Ai and the fact that v, > Yo If
m>1i+1, (2) is equivalent to the inequality

@, v,y )
Z & '5 o »
Ym-1 ¥ h %1 Y1ty m-1

which is merely C(h,i,m - 1, k) and hence is a consequence of

cm—l ¢

This completes the proof of the lemma. (Actually, condition (B)

of the lemma will not be used in the sequel.)

Bk 22 i anped =

Abounded polyhedron will be called a polytope.

F THEOREM 1 For n>d>1, there exsts a simple d-polytope
i* P having exactly n facets, s variable ¢ , and a set & of

*i
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variables corresponding to the facets of P such that the system

pR——

(PR0,9,) admits an unambiguous simplex ¢ -path of length
(n-d)(d -1) + 1 running through all the vertices of P.

S &

Proof. For an arbitrary fixed d, the proof is by induction

on ne For the case in whichn=d + 1, 1let the numbers be

i !
such that yq >y, > s¢¢ >y, >0 and let the a;'s be as in

i
the lemma, Let P be the d-simplex in l_i.dﬂ' whose vertices are

N

6 62,00-,a d+16 a+1? where the points 61 are the Kronecker

%10 %
deltas, and for each point x = (xl,x2,°°° ,xdﬂ) ¢ §d+l

cpo(x) = Zg:i Yixi. By condition (A) of the lemma, the sequence

let

6

(0161 y&,0 is the

2629%**9%418441) 1

facet of P determined by all of P's vertices other than aibi 5

let the corresponding variable :pi(= Pp ) ¢ & be the ith coordinate
1

is a cpo—path in P, If F

e e

function. Then the nonbasic (ahéh’aj 6 J) gradient of ¢ 1s equal

to (ath - an j)/aj’ and the path in question is an unambiguous

i B i A gy

simplex cpo-path provided

“n'h =~ *h+1Thel N o\ AR
“n+1 oy

for1{h<h+1<Jj<d+1.

But this inequality 1s equivalent to

“n*h+1¥n o
8 L
“N'h T “ntl’hel T 1Yy J

e L e B o 2 U s = e

which in turn is equivalent to the inequality C(h,h + 1, j, J)

of the lemma, (Note that d + 1 here corresponds to d in the
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lemma.) This completes the proof for the case in which n=4d + 1.

Suppose the theorem is known for n=r 2>d + 1, and let
(P,o,cpo) be the corresponding system. Let (vo,vl,"',v‘) be an
unambiguous simplex cpo-pa.th running through all the vertices of
P, where £ = (r-d)(d -1) +1, The P-minimum of ¢, 1s
attained only at the vertex Ve We may assume without loss of
generality that the d-polytope P lies in R%, with the vertex

v, at the origin. Since P 1s simple, there are exactly d

y/

variables in ® which are nonbasic for v and there is a

z’
nonsingular linear transformation t of lj.d onto Ed such that the
variables ¢t (for ¢ € ®) are exactly the d coordinate functions
on Ed. The system (tP, {¢t : @ ¢ @}, cpot) will then have the
properties required of the system (P ,cpo). Thus we may assume
without loss of generality that t 1s the identity transformation,

and the d vertices of P which are adjacent to \f must then lie

along the positlive coordinate axes. We may assume that the
P-minimum of P is 0, whence ¢ 1s a linear form on l_i‘d and

there are positive numbers such that (x) = Zd for all
Yy %

1=171%1
X € Ed. The relevant aspects of the situation are clearly unchanged
by a sufficiently small perturbation of 9,2 SO We may assume that
the d numbers Yy are all distinct. By a uniform contraction or
dilation together with a suitable permutation of the coordinates,

we may assute that v, . = 6, and that y, >y, > eee >y..

.

EEPLE Y S
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Now let the positive numbers @ 5°°%9%, be as in the lemma,
and note that for each X\ ¢ ]0,1[ the conditions of the lemma are
also satisfied by the sequence xal,---,Xad. Let vj(X) = v,
for 0 j<£ and let v,(\) = \a for £ <j<L+d-1.

i J-4+1
Let P

A
Then it can be verified that Px is a simple d-polytope having the

denote the convex hull of the set {vJ(X) 10 {{j<4+d-1},

points vJ(k) as its vertices., Each facet of P 1is contained in

a facet of P with the sole exception of the facet FX =

)\’
con[)\aiéi :1<14d} of P,o Thus P, has exactly r +1

facetss Let ®, be obtained from & by the addition of a variable

A
¢p  corresponding to Fy. Then the sequence (vo(k),vl(X),°",v£+d_1(k))

N
is a path of length (r + 1 - d)(d - 1) +1 which runs through all
the vertices of Py. Indeed, it is a @ -path, for (vo(k)’vl(X),°°°,v£_1(X))
is identical with the ¢ -path (vo,v1,°°°,vz_1) and (vz_l(X),°°°,v£+d_1(X))
is a q_-path by condition (A) of the lemma, because ¢o(vz_l(k)) =y,
and ¢o(vj(k)) = Kajyj for £<j<4%+d-1. To complete the proof
of the theorem, it suffices to show that for \ sufficiently small
(in ]O,1[) the path (vo(k),vl(k),°°',vl+d_l(k)) {s an unambiguous

simplex wo-path relative to the system (PX’QX’¢0)'

If 0<<h<4<j<4+d-1and the vertices vh(K) and
vj(k) are adjacent in P,, then vy and v£(= 0) are adjacent

in P. Further, the variable in ¢, which is nonbasic for vh(X)

A

but basic for vj(k) is identical with the variable in ¢ which

is nonbasic for KN but basic for Ve Thus for M\ very small,
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the nonbasic (vh(k),vj (\)) gradient of ?, is very close to the
nonbasic (vh,v j) gradlent of @ . The desired conclusion then
follows from this fact inconjunction with the facts that (vo,vl,’" ,v‘)
is an unambiguous simplex ¢ -path in P, that vl(k) is the only

vertex of P)\ which is adjacent to v and gives a smaller value

£-1

to P and that (vz()\)p" (\)) 1is (by the first paragraph

"V g+a-1
of the proof of the theorem) an unambiguous simplex cpo-path relative

to the system (P)\,Q)\,wo).

III., REPRESENTATION IN STANDARD *ORM
Our main result will be stated in a somewhat redundant form
in order to exhibit explicitly its various features of possible

interest.

THEOREM 2 For 0 <m <n, there edsts a linear programming

problem in standard form such that the following conditions are

all satisfied:

(a) the feasible region is defined by means of m linear

equality constraints in n nonnegative variablesj

Y
(b) the feasible region is a simple (n - m)-polytope which

has n facets and m(n - m - 1) + 2 vertices;

(c¢) the objective function does not assume equal values at

any two distinct vertices of the feasible reglonj

(d) starting from the feasible vertex which maximizes the



13

objective function, m(n -m - 1) + 1 simplex iterations are

required in order to reach the minimizing vertex;

(e) for a random choice of the initial feasible vertex,

#(m(n - m - 1) + 1) is the expected number of simplex iterations

required to reach the minimizing vertex.

Proofe Let d=n-m and let the system (P,@,mo) be as in
the preceding theorem, Let 9? be the positive orthamtin g?
and let G be the affine hull of P, By a theorem of Davis [3]
(also 4e2 of [6]), there exists a nonsingular affine transformation
t of G into R such that tP = (tG) NQ". The d-flat tG does

—b

not pass through the origin, because P is bounded and consists of
more than one point., Since tP has exactly n facets, its facets

are precisely the sets of the form (tP) N Hj’ where Hj is the

set of all points x = (xl,x2,°--,xn) € E? such that xb = 0.
s Qj is the variable in © corresponding to the facet
£71((tP) N H,), then the variable ¢jt—1 on tG must be a
positive multiple of the jth coordinate function—say
¢j(t_l(x)) =y, for all x ¢ tGe Let the transformation s of
gM

(xl/pl,°°°,xn/bn). Finally, let Q = stP, let % be the set of

onto En be defined by the condition that x(xl,-oo,xn) =

all coordinate functions on ﬁn’ and let 2z be a linear form on
gn whose restriction to stG (the smallest flat containing Q) is
equal to the function ¢ot-ls-l. Then the system (Q,%,2z) has

all of the relevant properties of the system (P,®,¢O). Since the

!y e e R

a3,

2P
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flat aff stP 1s of dimension d =n-m in R', 1t can be
determined by means of m linear equality constraints--equations
of the form ni(x) = Bi’ where Ny is a nonconstant linear form

on B.n and B, is a real mumber £0(1<1<m.

The desired linear programming problem is that of minimizing
the linear form z(x) subject to the m 1linear equality constraints
qi(x) = B; and the n nonnegativity constraints x3 > 0., Assertions
(a), (b) and (c) are obviously true, and (e) follows fram (d) in
conjunction with the fact that all of the vertices of the feasible
region 1lie on the simplex path described in (e). In order to justify
(d), it suffices to compare the previous section's description of
simplex cpo-paths with any of the usual descriptions of the
simplex algorithm. The descriptions in Dantzig's Chapter 7 [2] and
in Kuhn & Quandt [11] are especially good for this purpose, as they

emphasize the geometry of the situation,

The standard form of a linear programming problem, involving
linear equality constraints, is the one to which the simplex algorithm
is applied. However, the form most directly related to the under-
lying practical situation usually involves linear inequali ty constraints
which are then replaced by equality constraints (with the introduction
of a slack variable for each inequality) in order to convert the

problem to standard forme In this connectlon, we note the following.

COROLLARY For k >1<m, there exists a linear programming

T TP ST VRPN .. 4 75+ T A T o oL 1 & -
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problem in inequality form such that the following conditions are
satlsfled:

(1) the feasible region is defined by means of m linear

inequality constraints in k nonnegative variabless

a slack variable for each of the m inequality constraints, then

with n=m+ k the resulting problem in standard form satisfies

all the conditions (a) - (e) of the preceding theorem; in particular,

simplex iterations will be required to reach the optimal vertex.

Proofs Let n =m + k and consider the prob em in standard
form described in the preceding theorem., Let vy be the feasible
vertex which maximizes the objective function., Then exactly k of
the coordinate functions are nonbasic for Vo and we may assume
that they are the variables x form+1 €J<ne Forlgj<m,
= voJ > 0.

let B, dencte the jth coordinate of V.3 that is, B

J J
The problem can be trensformed into feasible canonical form ([2],
pe 94) with respect to v, and in this form it will ask for values of

x:L 2 0, x2 20,"',)(n 2 0, and minimum 2z such that

1 m+1 n
+ + o o o 4+ =
X ,m+1* 1,n* = 8
2 m+l n
+ +eeeet+a. X =
x 2,m+1% 2,n &
L4 . .
[ ° 3
L ] 'Y [ ]
m+1 n
m [ ] = [~
X * m,me1* teeed o{m,nx *n
m+1 n
(-z) + Y1 X tesrt by x =z,

B - o e LT 2 e ) - S

VR A AR, Oyt ™
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where the numbers Zy ai’ 3 and Y are constants.

% Now consider the problem of finding xm+l 20 ,°°°,xn 20
t and minimum 2z such that
m+1 n

G an* Tt X SBy

L] L]
[ ] [ J
®
m+1 n
) . e o o + (&
§ Q'm,m+.lx * m,nx S Bn
Ym+1xm+1 ek Ynxn R

The two problems are clearly equivalent, and the former results
from the latter under the usual conversion to standard form by

the addition of slack variables, The desired conclusion follows.

s

4 = T e e ) w\( RaiRtal S L g SR
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IV. COMMENTS

Saaty [13] conjectured that in applying the simplex algorithm
to nondegenerate linear programming problems involving m 1linear
inequality constraints in k nonnegative variables, the number of
iterations required to reach an optimal vertex is at most ﬁ (h;k).
This is contradicted by the corollary, with its number m(k - 1) + 1.
In particular, when m = k Saaty's number and that of the corollary
are respectively 4k - 2 and k2 -k + 1l. When k = 3, they are
m2 -3m - 6 and 2m2 + 2m, Thus there is a ncndegenerate problem
whose feasible region is defined by means of 5 linear inequalities
in 3 nonnegative variables, in which Saaty's conjectured bound is
exceeded, (Quandt & Kuhn [12] mention some 25 x 25 problems in
which the bound is exceeded when a very inefficlent pivot rule

(not the standard one) is employed.)

33 3t 3 3 3t 3 ¢ 3 3 3t

A result similar to Theorem 1 appears in [7], but there the
paths maximize the gradient in the containing normed space and
thus are not based on the usual pivot rule. (See also Goldman &

Kleinman [4].)

# 3 R 3t 3 3t 3 3t 3 3t 3

Now let us consider the number (n - d)(d - 1) + 1 of Theorenm
le I conjecture that this is the maximum length of simplex wo-paths
for a system (P,0,¢o) in which P is a simple d-polytope having
n facets, More than that, I conjecture that it is the maximum length

of ¢o-paths in d-polytopes having n facets., However, the

- Silel T

3
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conjecture has been proved only for d <3

[7] and hence the corresponding conjecture for Theorem 2 is

established only for 0 {m<n <m+ 4, If the conjecture is

least as ba as any of its varlants. That is, the maximum number
of iterations which may be required for problems of a given size
i1s at least as much for the usual pivot rule as it is for any

algorithm which improves the value of the objective function at

each stage.

* % 3 3 O 3 3 % # # 3¢
In closing, we repeat from [8] a comparison which is of
interest for linear programming and in connection with the above
conjecture. For 1 £ 1< 5, 1let Li(d,n) denote the smallest
number 4 such that the statement (1) below is true whenever P
is a d-polytope having n facets and R is a nonconstant affine

form on P,

(1) any two vertices of P can be joined by a path of length
<43
(2) any vertex of P can be joined to a ¢ -minimizing

vertex of P by a goo-path of length £ 4;

(3) if a ¢,-path (vo,"‘,vk) in P maximizes the
improvement of ¢  at each stage (that is, if cpo(vi_l) < (po(w)

for each vertex w adjacent to vi-l)’ then its length is < &;

S i U T T St Lo T it T N Sttt b Y BIMPE0-05 Dbl et PR T 3l VO g A LY Y - B PR AN PN e
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(L) every ¢,-path in P 18 of length < 43

(5) every simple path in P 1is of ength £ £,

(A simple path is one in which no vertex is repeated.)

It is conjectured that the values of the numbers Li(d,n)

are as follows, where [r] denotes the greatest integer { r.
d-1
(1) [d n] -d+ 23 ;
(2) n - d;

(3) n-21if d=2;[3n7‘1*]-41fd=3; 2(n-d) - 1 if d > 4;

(4) (@ -1Mn-d) +1; ;

o (C5). (C1) - |

n-d

Each of these conjectures has been established for d £ 33 in addi-
tion, (1) is known whenn { d + 4 and (5) when d {6 orn<d+ 3
or n (d/2)2 - le In each case, the number given is known to be a
lower bound for Li(d,n) and to be attained for a simple d-polytope
having n facets. (This statement requires a slight modification

for (1).) The evidence supporting these conjectures is of varying
strength; it seems rather weak in the case of (3) with d > 4, although
this is of great interest for linear programming. For details and
additional references, see [5] for (1), [10] for (2), [7] for (3)

and (4), and [9] for (5).
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