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SYMBOLS

r, e polar coordinates

u, v radial, tangential velocity components

P pressure

LP streamfunction

R,P, a see Fig. 1
IL, v absolute, kinematic viscosity

p mass density

T temperature

6 boundary layer thickness; also, "variation of"

[ ] " jump" in quantity; "+" refers to free shear layer

M Mach number

Re Reynolds number

Pr Prandtl number

P", Pe'clet number

y ratio of specific heats

P tD /Pneck

h static enthalpy

V velocity vector

C specific heat
p

k thermal conductivity

w vorticity

q heat flux rate
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Subscripts

r, 0 partial derivatives

1,2,3,4, flow field subregions (Fig. I)

DSL dividing- streamline quantity

D dividing streamline quantity at matching point

t, o stagnation condition

w wall condition

* dimensional quantity

H inviscid flow conditions atv a

B recirculation region quantity

n component normal to shock

Superscripts

ordinary derivative

1 first approximation

non-dimensional quantity

ii

- v
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ABSTRACT

An analytical model of the two-dimensional laminar near wake is

described. All relevant physical features of the flow, including the boundary

layer expansion at the shoulder, free shear layers, recirculation regions

and recompression region are included. A tractable problem is formulated

by matching approximate solutions for each of these regions along mutual

boundaries. A set of coupled algebraic equations is derived, and numerical

results obtained for the conditions of a wind tunnel wedge experiment. Satis-

factory agreement is obtained between the measured and theoretical variation

of base pressure with Reynolds number. Additional computations are

carried out for a series of wedges of different length, apex angle and wall

temperature. The variation of base pressure, wake angle and neck enthalpy

ratio with altitude is obtained for these bodies. It is shown that the near

wake dimensions scale approximately with body size, and that the neck en-

thalpy ratio has a significant variation with body size, wall temperature and

altitude. The effect of free-stream velocity on the neck enthalpy ratio is

seen to be relatively unimportant, however. A number of extensions of

the first-order model are suggested.
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Introduction

The laminar near wake of a slender, sharp-edged hypersonic body

is typical of a large class of unsolved problems in fluid mechanics known as

separated flows. Typically a region of large pressure gradients, reversed

flow, large variations in Mach number and non-adiabatic conditions, a sep-

arated flow probably requires the solution of the complete Navier-Stokes

equations for its accurate description. For most boundary conditions,

however, this problem becomes intractable. Analytic solutions of the near

wake must therefore be based on simplified models, which then yield only
1

approximate results. The importance of this problem and the complexity
2of obtaining numerical solutions nevertheless justify such an approach.

The usefulness of a flow model is a function of both the physical content of

its assumptions and its capacity for refinement. One such model, con-

sisting of several subregions of the flow field matched along common bound-

aries, will be examined.

The flow field is represented in Fig. 1. It is described in terms

of inviscid, boundary-layer (free shear layer) and recirculation regions.

When the boundary layer thickness is very small compared to the base

height, i. e., at high laminar Reynolds numbers, Chapman' s original theory3

as modified by Denison and Baum 4 should be adequate for two-dimensional
5

flow. At the other limit, the wake of a flat plate or a needle, Goldstein's

and Viviand and Berger's 6 theories neglect the "Base Region" completely.

The present analysis will attempt to deal with conditi'-ns for which the

boundary layer is a significant fraction of the base height, and where coup-

ling of the free shear layers and recirculation regions is important. In-

clusion of the recirculation regions, therefore, constitutes the essential

improvement on previous theories.

The "inviscid" regions are assumed to be described by the Prandtl-
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Meyer relation, and the free shear layers (in general) by thc Integral

Boundary Layer Equations. The solution of the free shear layer with this
method by Kubota and Dewey suggests the approximation of a straight-line
velocity profile between the dividing streamline and inviscid flo, after a
short transition distance from the shoulder. The relatively hot, low-density,
low-velocity gas occupying the recirculation regions suggests that they can
be approximately described with a streamfunction expansion in Reynolds
number, the first term of which satisfies the biharmonic equation. An

"eiliptic" system which zetains the highest order derivatives of the Navier-
Stokes equations, the biharmonic equation is both physically and mathe-
matically appropriate in these regions. The influence of the boundary con-

ditions in this region of reversed flow naturally results in the formulation
of a boundary value problem, and the patching requirements along dividing

streamlines demand retention of highest-order derivatives. This system
allows foi pressure gradients in all directions and can be solved indepen-

dently of the energy equation. Most important of all, it is linear. While a
streamfunction obtained from the biharmonic equation is a valid represent-
ation of a low Reynolds number, bounded flow field, an examination of the

actual limitations of this approximation is given in the next section.

The requirements for matching the subregions are the continuity of
pressure, velocity and shear. To make the problem tractable, some as-
sumptions about the shape of the boundaries of each region are made. It is

assumed that 1) the flow is symmetric about the center-line; 2) the dividing
streamlines are straight and 3) the displacement thickness of the free shear
layers is constant. Since the change in free shear layer thickness, 6 with
distance is relatively small when the expanded boundary layer thickness,

6t., is a significant fraction of the base height, the assumption that 6 3 ='2
is justified. Thus, we are assuming a constant pressure inviscid region
(until the flow turns near the center-line) and cannot hope to match pressure

at more than two points: at the base wall and at the important rear stagna-
tion point. Furthermore, by avoiding the solution of the free shear layer
we are restricted to matching of velocity and shear at one point on the

M. Bloom has pointed out to the author that Ting and Bloom 8 first sug-

gested this approach for cavity flows.

-3-



dividing streamline. The near wake geometry is then completely specified

by the free shear layer thickness and the wake angle, P. The matching con-

dition on the dividing streamline is thereby reduced to finding the magnitude

of the dividing streamline velocity which is consistent with continuity of

shear. Finally, the wake angle is determined by the continuity of pressure

at the stagnation point of the dividing streamline, the well-known "Chapman

recompression condition". Calculation of the stagnation pressure requires

knowledge of the temperature field, and this is determined by an approxi-

mate solution of the energy equation. From this solution, it is possible to

calculate the stagnation enthalpy of the dividing streamline as a function of

all the flight parameters. Since the dividing streamline stagnation point is

likely to be the hottest point in the flow field of a sharp, slender body, this

calculation is of considerable practical importance.

I. Approximate Solution of the Recirculation Region

The "vorticity diffusion equation", the reduced form of the incom-

pressible Navier-Stokes equations, is written in non-dimensional form as

Re LP - V- V(VZ L) = 0 (1)

let us assume 41 to be an analytic function of l.e and, therefore, an expan-

sion of the form

41 = 4o + Rehl + Req 2 + .

which leads to a velocity field

V = V + ReV +....
01

The above expansion satisfies the equation of motion for arbitrary Re only

if coefficients of all powers of Re vanish siraultaneously: these conditions

are

V4o = 0
0

4 2&=V*-"V(V2 p0VPi= V 0•( 4j)

etc. etc.

-4-
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The expansion proposed is expected to be valid up to some Remax' where

an upper bound to Rema x is defined by

Rmax

Remx (Im in

The first term in the expansion satisfies the biharmonic equation (the Stokes

equations), and when substituted back into the full momentum equations, the

first order pressure distribution may be calculated. For example, along

the dividing streamline in a Cartesian coordinate system constructed as

shown in Fig. 1,

P 12 U= -vZa -u ux
0 0

and the important inertia terms appear. In fact, available experimental17
evidence, together with the solution that will be obtained here (Fig. 3),

indicate that

IV u << u u
Me o 0 xo

0

over most of the recompression portion of the dividing streamline (velocity
profile inflection point is at = 0) for uDR/v w > 10. During recompression,

then,

thn u Ux or P t constant.

DSL °[DSL

The assumption of a constant total pressure recompression process will
therefore be made. It is, of course, possible to carry out the integration

to obtain

P - P J u1UUdstag baseo e UoUx dx
oJDSL

and obtain a higher stagnation pressure. This effect is obviously Reynolds

number-dependent.

It is important to note that the usual test of the validity of the

"Stokes Streamfunction", namely that the ratio of inertia terms to viscous

4terras be required to be less than unity, has not been used. Weinbaum 9
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has pointed out that this commonly used criterion is too severe. Wherever

this test leads to ratios less than unity, however, the expansion used above

will be valid. Since the calculation is simple, we will compute this ratio in

the radial and tangential momentum equations:/ 2o
ruu + vu -v )

ru +u u1-U-V-
1 1r r r 00

I uv +-V +- I

_ r r 0 r +2So v +- v T~ 2
-+ urr rr- 2 7v00 + 0uLr r r 0

These may be written (withyF = r/R, U = U/U D)

S IF)

0 G1 (T, 01,)

s (0)
0 - G (M, 0,15)

The equations of motion are written in polar coordinates whose origin is at

the stagnation point (Fig. 1), the resulting concavity in the base wall being

insignficant for small wake angles. The streamfunction is then defined by

(2)
V =4dr

The first term in the expansion in Re, 0 , must therefore satisfy

Vt + =4 2 41 1+I 1 40 rrrr r- rr r --T rr + T r +  d0000

22r 4r r(32 (3)
+ -'E'OOrr - -T 'POOr + 400 0

r r
0

The boundary conditions are:

-6-
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(i) at r = 0: u = 0 = V

(ii) on r = R: u = 0 = v (4)

(iii) on 0 = +p: u = uDSL(r); v = 0

Note that UDSL(r) must be determined from the matching conditions, and

the boundary conditions reduce to:
1

(i) at r = 0: = 0 = dPr
r 0

(ii) on r = R: = 0 = 4) (5)

(iii) onO = +P: 1 = DSL r = 0

It is known that the solution to such a Boundary Value Problem exists and is
10

unique. It is further known that the solution satisfies (in addition to the

Boundary Conditions) the Variational Principle:

I f V 4 4l6qrdrdO = 0 (6)

The Ritz Method may be used to obtain an approximate solution for 0 o(r,0).

Expanding 4,o in a set of suitable functions which satisfy the Boundary

Conditions:
00

_P 0 E= amgm(r)f (9) (7)

If both g and f are assumed, based on the expected behavior of the solu-
*m

tion, substitution into Eq. (6) will result in an infinite set of algebraic equa-

tions for the a m . A more accurate procedure is to assume only the g m(r)-

functions, and solve ordinary differential equations for f (9) (which include

the a m). Accurate representation of the velocity profile will be important

in the matching procedure, and this latter approach entails little difficulty.

Substituting Eq. (7) into (6), and noting that 8f is arbitrary, yields:m

W rg V4(gmfm)dr = 0 (8)
m=lo

for p = , , 3,.....

-7-



an infinite set of coupled, ordinary differential equations with constant co-

efficients. The general solutions are

fm = cmlfml + cm 2fM 2 + cm-fm 3 + cm4fm4 (9)

with the cm's determined by the remaining boundary conditions on 0 + 3.

If the gms are chosen to be an orthonormal set, important simplifications

are possible. In addition, we may then expand -ruDSL(r) in such a set and

obtain:
00

- ruDSL (r) b mg m

(10)

where b = r 2 uDSL(r)g mdr

(If non-orthogonal functions are used, Eqs. (8) are coupled; in addition, the
b must be determined by another procedure).

m
The symmetry of the flow may now be used to eliminate the even

functions in f M(since qp must be odd; i. e., anti-symmetrical) and obtain

fm = Cmlfml + Cm2 fM 2  (11)

The conditions [ (5)-(iii) ] may be written:

00 00
E "j g mf M ', V = E br g m

lM=l

(12)
00

g M f ( W = 01

Substituting Eq. (11) into (12) yields

Cmlml' ) Cm~m2' )= bm

(13)
Cmlf ml() + Cm fm = 0

form = 1,2,3,....

*calculated for various geometries by Chandrasekhar; completeness"
has not been proved for this or any other applicable set.
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This system must be truncated at some m = M, giving a total of 2M equa-
tions for ZM constants. But uDSL(r) can then be matched at only M points
to determine the M values of b m. It should be noted here that no proof can
be given for completeness of the gm set, and the convergence of as M-oo
can only be shown by "numerical experiment".

For these boundary conditions, orthonormal functions have the dis-
advantage of being difficult to integrate, and it is helpful to choose another
"relatively complete set" suggested by Kantorovich, 12

rm+2 ( 1  ) (14)gm- ( - R){4

In addition to satisfying the boundary conditions [(5)-(i) and (5)-(ii)], these
functions have the property that Eqs. (1) are bounded as r - 0.

Choosing m = p = M = 1 in Eq. (8) yields an equation for f

f '' + 15.33f + 75. 66f - 0 (15)

In this first-order approximation, we obtain

u = r 2 [1 fl() (16)

Defining
uD U DSL (17)

max

we calculate from Eq. (16)

16
-2 uD
R

and

UDSL = 16 ( [1 -) D  (18)

The conditions to be satisfied by Eq. (15) are then

f{)= 0

16 uD (19)

and the solution is

-9-



(,) - 6 uDR F3 (1-)2(z sinh aO cos bO- cosh aO sin bO)

where r = b coshao cos bp + a sinh ap sinbp
(20)

- z (a cosh ap cos bp - b sinh ap sin bp)
and = tan b a=7 b=2.86

S-/taRe&., -8

So0()/Re and So00)/Re may now be evaluated for representative wake geo-
metries. In particular, calculations carried out at IZ mesh points for

= . 10,.15, .20, .30,. 40 and . 50 radians yield the following results:

a) the variation of So ()/Re and S o()/Re with 03 is small

b) S ( ) S oo 0 o-
= in general

c) S (F/Re varies many orders of magnitude over the recircu-

lation region, but a "histogram" display'indicates the over-

whelming (80%) frequency of

So-
0 - sO'(5xl 0- 3

Thus, this severe test results in Lo being a good representation of 4 over
80% of the region for Re = P 3 uDR/JPW up to 200. Since it can be shown that
typical values of Re are of this size, the expansion is valid over most of the
region. Finally, since qso0 satisfies the boundary conditions exactly, kp 0 is
an exact solution on the dividing streamline, precisely where the more

severe comparison of various derivatives of ip would indicate 4so to be a poor
representation of 4'exact. Thus, 410 should be a satisfactory engineering
estimate of 4j for the low Re cases under consideration. Furthermore, two

additional refinements can be made:

A. Calculation of 12I

Using the variational principle

+o,
V --)-% 0 VV Z d d = 0

-10-
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we can expand l as

00

a = f m(O)gmI (T)
m= 1

and proceed as before for jo, imposing homogeneous bound-

ary conditions on fml and gml,

B. Approximation of the Inertia Terms with a Modified Oseen

Technique:

Since the high Reynolds number recirculation region has been
23shown by Batchelor to consist of an "inviscid core" sur-

rounded by boundary layers, it is necessary to accurately

approximate the inertia terms only in these thin regions.

The "modified Oseen technique" replaces the convective

velocity there by a given suitable average velocity and there-

by linearizes the Navier-Stokes equations. Weinbaurn 8 has

shown (in a cylindrical geometry) that this approximation

leads to a smooth transition to the "Stokes" solution with de-

creasing Reynolds number.

II. Free Shear Layer Approximation and Matching Conditions

On the DSL, for m = p = M = 1, the matching is carried out at one

point, chosen to be r = R/2 (where uDSL = UD). Thus it is prescribed that

(i) UDSL] 0 at r = R/Z

(ii) DS _+ 0 at r = R/Z (21)

(iii) [PDSL]+ 0 at r = R/2

Assuming uDSL = 16 [,i r1  + we require that UD = UD

The pressure continuity can only be satisfied approximately since

the dividing streamline shape is given, and only (i) and (ii) will be satisfied

here. Then uD is determined by [(21)-(ii)];

-11-



TD =D (22)

Using the observation made before concerning free shear layer solutions, it

is assumed that the velocity profile between DSL and edge of the free shear

layer is linear and the shear is given by

+ [u 3 -uPD (23)

From Eq. (20) we may compute T D

T- = 4ab ()z cosh a sin bp + sinh a cos bp (24)

D MD -J~~D[c hain+5facob]

From Eq. (22) and Fig. 1,

UD 1

where 4ab
N r- [z cosh a3 sin b3 + sinh a3 cos bp].

We will assume 63 to be the thickness of the expanded boundary

layer at the shoulder, thus neglecting the shear layer calculations. This

approximation is certainly valid for thick shoulder boundary layer thick-

nesses, and the important interaction is the effect of uD on TD

HI. Shoulder Expansion

Since an exact solution of the corner expansion of a supersonic
boundary layer is not available, the relatively simple streamtube method

will be employed to estimate 6'/6. Assuming an isentropic expansion of

each streamtube to pressure P 2 (determined by turning the inviscid flow

through an angle v = a + p), and conserving mass in streamtubes, it is

possible to calculate the velocities and streamline locations after expansion
(details of this calculation are given in Appendix I). Specific results are

obtained with the good approximation for hypersonic boundary layers of a
linear velocity profile and Busemann Integral enthalpy profile. The boundary

-12-
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layer thickness before expansion is taken from Truitt 1 3 for insulated walls,
and it is seen in Schlichting (for representative Mach numbers) that cold
wall thicknesses are well within a factor of two of the adiabatic results.

IV. Recompression Process

The final matching condition consists of equating the dividing stream-
line pressure at the stagnation point to the local value of the inviscid pres-

sure field. Since the inviscid flow is not, in general, horizontal at this
location, the pressure is less than the neck pressure. Assuming isentropic

processes exterior to the free shear layer,

Pneck P 3 (v = a) _= PH (26)

Then, P stag = 'PH' where n depends on the "re-attachment" process in15
the neck. A typical value calculated by Reeves gives n . 6. It is now
assumed that the total pressure on the dividing streamline is approximately

constant during recompression, and is therefore equal to Pt at the matching
point (Y = 1/2). This assumption, discussed in a previous section, physic-
ally consists of a division of the dividing streamline into two parts: a region
of acceleration by shear forces, in which the free shear layer does work to
increase the kinetic energy of the DSL, and a region of isentropic recom-
pression, in which further pressure rise due to shear forces is relatively

insignificant.

We may therefore write

P3 + Y 2 1M ZQD)( )] 3 1n H (27)

It is to be noted that - is dependent on the length of the recompression re-
gion in the free shear layer, and can be expected to decrease as Reynolds

number decreases.

V. Solution of the Energy Equation in the Recirculation Region

Consistent with approximations made in the solution of the momentum
equations, we will assume the density to be approximately constant in the
low Mach number recirculation region. We may then neglect friction and

-13-



compression work in the energy equation 16and write:

P6v-Vh = V h (28)

where
V = iu+ jv

U = U~/j V*/D Yr/R
*/uD , v */uD

h = h*/hD and Pe'= PrRe--(.-) (-I-L)

The boundary conditions are:

(i) h = f(1) on 0 =

(ii) 8h = 0 on 0= 0 (29)

(iii) h = f(l) on = 1

where f(-) is to be specified. To obtain homogeneous boundary conditions,

set
h = f() +T(r, 0) (30)

and obtain
-P v ah - 2- d

where G = +P( u f' -' f" is a known function.

The resulting nonhomogeneous equation is linear, since V has been

obtained. An expansion of h in Pe-number is the simplest approach to a

solution, but cannot be expected to converge for Reynolds numbers as high

as those found valid for the momentum equation. This is because isotherms

are generally expected to be non-parallel to streamlines due to the wall and

axis boundary conditibns, and PeV- Vh is non-negligible for flight Pe -

numbers (the equivalent term in the vorticity diffusion equation was

Re -*VVw, which can be small due to the nearer coincidence of vorticity
19

contours and streamlines ). We must therefore retain the convective terms
and deal with the variable coefficients in some approximate manner. The

procedure adopted is to solve the equivalent "Galerkin" formulation of the
12

problem (see Kantorovich ).

-14-



Let o oL 0 00 ajkXj(P)gk(0) 
(32)

with the Xk(r) taken to be a complete set of functions satisfying the boundary

conditions:
Mi -(0, 0) =0 (33)
(ii) -h(1, 0) = 0

The functions Xj = sin j 7T-F are therefore suitable. The boundary conditions

(iii) h(?, ) = 0

(34)(iv) al- (Y, ) = o034

are satisfied by even functions comprising a "relatively complete" set: 12

gk(0) = 1 - 02 P2 )0 2(k-1) (35)

Thus, the N/M approximation is given by

M N

M(N) G -0 2/P32) 1 E= a.k02(k-l)sinj7r' (36)

The solution (the a k' s)will be determined from the equivalent Galerkin

formulation:

ff[LM(N)) G] Xjgk FdFd0 = 0 (37)

for j =1, 2 ...... M

k= 1, 2, 3,... N

with

L- V 2-P q'u - + v
a Y

U(o) = 16r2 -F) 2 F ) from Eqs. (2) and (20)

with 'u 11 ") - F (0)
v(O ) = - 16r 2(1 -F)(3 -5) wtO)

F(O) = z sinh aO cos be - cosh ae sin be

and

-15-



i- auD Pr

We have assumed the Prandtl number to be constant and PB to be approxi-

mately P 3 /RT in this first iteration. To simplify the integration here,

and to provide polynomial coefficients for a possible series solution, F(0)

and F'(0) will be approximated as follows:

F(O) = mO( - 0/13) (38)

F' (e) a I ~ .~T] r~ 0 0l 0/P3) - 1$ (39)

It is seen in Figs. (2) and (3) that F'(O) is very well represented with 0o/p

-. 55 over a large range of 3. The approximation of F(0) should be most

accurate near 0 = P, and can be poorly represented near 0 = 0, where

Oh/ 8 0-- 0. Thus, m is required to minimize the average weighted error

in the interval (o, 1):

f0[m0(l -0/1) -F()] dO 0= (40)

a typical solution is given in Fig. (4), and m is given in Appendix II.

We expect that thermal boundary layers will form at even moderate

Psf-numbers, and the approximate solution must reflect this behavior. Con-

vection is expected to decrease temperatures on the dividing streamlines

and increase them on the axis, indicating that a reasonable approximation

may be obtained with M = 1 and N = 2. Proceeding from Eq. (36)

h1(2) = (I 02/p Z)[a,, +a 1 2 02]sin7rF (41)

and we must solve the. equations:

S[ 1i(2) _G]1 - 02 /PZ)sin7frd'dO = 0o
(42)

f'IJ [L( 1 ( 2 )) -G] (1 02 /p 2 ) 02 sinrrYdrd 0 0

-16-
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98 RADIANS

.122

.14

.12

.02

-0.8 -0.6 -04 -0.2 0.2 0.4 0.6 0.8 1.0 U D

UD

Fig. 2 Approximation for (Dfor ~ 16 radians;

(o) f = F'(0)
whe re-- H( 2-

UD IT ~ 5
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Fig. 3 Core location, 0/P, vs P
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where L(h (2))

92zh 1(2) 1z 2) l z  a -R1 2)( 0)a} 1. l( ) ,(o) 8Tl(zj
7 a' y --I o-_ + _pe,[o + -- 0-

+ T 1

=(1 -02/p 2) [a1 I r2 sinirY? + a 12 02lr 2sinlrF]

+1 (1 - 0,/P,) [a 11 7rcos7fr + 7ra 12 02cos7Y7] (43)

++ insin + asin7r-;
212

- l1P'I-( - >)2 [ao(l - 02/p2) - ,] -1] o2/p2] [a ,,o + a12 .7]

16 1 -T) 3 -7) 0( - .p .- sin~rF + 20a1 sinrF 1 _z2i'/P)i j

To proceed further, we must specify f(f). This is done by assuming a

linear change from hw to hD' followed by a constant total enthalpy recom-

pression. These assumptions are consistent with those employed in solu-

tion of the momentum equations (Pt(o, 13) - Pt(1/Z, 6)):

h
.r - ( -I) w for .5_ r_ 1.0

f (F) D 1 .2 2 D (44)

+ -h-; luD -u* ) for 0 - r 5

where u* uu (o), the dimensional velocity; thus

2h- -1] for .5 - r _5 1.0
D 2

f, _ 3 3 UD (45)_512?3(1 _ F)3(l _ -- D z?: 0 :_ r : .5

and 0 for .5 ___ r -_ 1.0
2, (46)

5 12F?(1 -P)-(3- 147 + 14 h

The Galerkin equations then reduce to:

-19-



alA I + a12A 2  I

(47)
allB I + a 1 2 B 2 = R 2

where A l, A2 , B i, B 2 , RI and R2 are given in Appendix II.

Solving for al1 and a1 2,

A

Bl -B-X

Bz 1 AI )

(48)

R 2 R 1 \~

a 11a1 2  B 2 - /A2

and it is noted that R 1 and R2 depend on hw/hD and uD2/hD.

Now, in dimensional terms,

h1 (
2 ) h hD 1 8 h1 (

2 ) - hD(
- I-I a.+ a3--,.- sin7r?

which, at F= 1/2 and 0 =

4h D2'
4 + 23a121 (49)

VI. Free Shear Layer Solution of the Energy Equation

We assume that the enthalpy profile is "locally similar" and can be
approximated in the matching plane by the Busemann Integral solution 14

(assuming a constant pressure free shear layer with Pr = 1.0): i. e.,
H = Au + B, with the boundary conditions:

(i) H(u 3) = H 3  (50)

(ii) H(uD) = HD

Thus, A -H 3 HD
u3 -uD

-20-
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and 3 h -1 U(A u)

using the profile of Eq. (23)

8 h3 (51)

where the approximation H3~ =u 3
2/2 has been used and the definitions made:

~D +  hD / /u 3  (52)h D H 3, u = u

VII. Matching Conditions

The matching conditions at F = 1/2, 0 p are simply:

Mi [h D] + 0
(53)

(ii) [qD

Thus, the enthalpy gradient is continuous and we obtain:

4hD Ia 1  += 2P 3 1 )2  -h DI-- a +2R 121 3

or, _____ ~ 2 ~ ~ ' i

(U -1)2-h D + )D A 2 R))I R 2 2 jR 2 -R 1 ( J0

To solve for hDP we must write 16 and I7 (integrals which appear in

Eq. (42); see Appendix II) in the form:

(h 2u
16 = 2 ) Q -1024Q2

I7 _ 1 -. 46 u--
1 7 7r D
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h
and define h Mw -- 3

Now defining

32QPe(aI 2321eo9-18) - 'I8 -- N1

|32QI Pe(a o I10 -- 1 1)  -- 1 N

1. 64 x 104 Q2 (ao 19 -I8) -. 4618 = M I

1.64x 104 Q2 (aoI10 -Ill)-.461 1  = M 2

we may solve for hD

~- (2)B-3 ('- 2u
(N Nh ,A u _P ( hw_

'. , 4 3

(u 1) , FI 2/I - -. )

B 2B1 (P21AI) (55)

We may now calculate uI (subscripts now refer to the iteration-number)
* inotea(2)iskonfrom Eq. (25) for a trial P. Inserting U1 into the above, hD is known,

* 1
and U may be calculated from Eq. (27). A new trial p is selected until

4* 0 *
u 2=Ul, starting from p = 1 (u decreases with P and u increases with p;
a convergent iteration results).

VIII. Busemann Integ.ral Solution in the Recirculation Region

A still simpler approximate solution may be obtained by extending

the free shear layer solution into the recirculation vortex, taking as a new

boundary condition:

H = h at u=Ocore

hcore is best approximated by assuming

hcore s hwall (56)

-22-



(this assumption implies the absence of a thermal boundary layer on the

base wall).

Then, T D T w *(7
T + u + ( - u(lu - 57)

which replaces Eq. (55). Actually, the solution to Eqs. (25), (27) and (57)

may be solved directly by assuming p, solving Eq. (27), with Eq. (57), for

u(a quadratic equation), and Eq. (25) for Re For the sake of uniformity
of the program, however, TD/T 3 was used in the iteration described. The
results of this calculation will be discussed together with those of the pre-

vious section.

To relate the remaining unknowns to flight conditions, it is necessary

to write down the inviscid flow field solutions. Given the velocity and al-

titude, ambient conditions are known and post-shock conditions are computed

as follows:
M ul/al, Re = I S (58)

Shock angle, 6, is obtained from
M2sin6l = (--1--I) M Z sin6 sina (59)

22 Zr.....M....2-
Then, [sIn1[ 2 (sin60)

2 1 1 +2M

and with Mn Mlsin6, standard tables are used to compute p2 , T2 , a2
f 76

- and u2 . We assume the viscosity law 12/g, = (T 2 /T)" . The Prandtl-

Meyer Function determines MH (required for calculation of PH) and M 3

from an expansion of a and a + 1 degrees, respectively. Isentropic equations

give 
2T 3 1 + 2. M 2  a

1 2 a
2 ~ 3 2

2 3 = (61)

P -t 2 =[I + It- M 2]-/-
3 L2J
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From the integral solution mentioned previously, 13

62 [ (T /TZ )76 (6/)
2 (o )2 s (62)

whe re p2 u2 S (63)
P92 SRezs -(3

+In= % i +iml +2 + 2n (l +mz +%m2
2 m 2

m 2 = (Y / M 2

The characteristic Reynolds number for the recirculation regions is

ReB - uDR

where (64)
slsin a.)

Of course, Tw, a and S are given data and together with u I and altitude con-

stitute the independent variables in this analysis.

IX. Numerical Results

Calculations have been carried out for the conditions of the wind-
200tunnel wedge experiment of Dewey ; Ml = 6, a = 15 , S = 0483 ft and

T = 300 0 F. The base pressure was calculated over the Reynolds number

range of the experiment for various values of -n, the only free parameter

in the solution. The theoretical base pressure decreases with 11, due to the

reduction of the dividing streamline stagnation pressure (Eq. (27)). Two

results are shown in Fig. 5, from which it is apparent that a constant value

of -n yields a reasonable approximation to the data. The value = 0. 6 was

selected based on the theoretical work of 'Reeves 15 (for Re = 3720).(frRZH, NECK = 30)

It is seen, however, that 11 . 4 results in a theoretical curve that is never

more than 20% from the data. This would indicate that the recompression

-24-
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process is rather gradual, with the neck displaced significantly downstream

of the DSL stagnation point. Additional calculations were carried out using a.

Busemann Integral approximation, Eq. (57). It is seen that some variation

from the more exact solution occurs, due to the core temperature being

held fixed at the wall temperature. To more precisely fix the stagnation

enthalpy and to carefully investigate the effect of variable wall temperature,

the-Galerkin solution to the recirculation region enthalpy field is a necessary

complication.

A series of calculations was performed to provide a rough under-

standing of the full-scale behavior of the near wake. Four representative

wedges are considered: S = I ft and 10 ft and h = .05, .15 (typical of loww

temperature and high temperature ablators). The wake-angle, base pres-

sure and stagnation enthalpy were calculated at various free-stream velo-

cities and altitudes. These results are plotted in Figs. 6-8. In general,

stagnation enthalpies decrease significantly with increasing altitude. The

DSL velocity ratio, u, always decreases with increasing altitude, while hD

slowly increases and then decreases (at approximately 200, 000 ft for

u I = 20, 000 ft/sec). The latter effect is due to the competition between

thermal conduction and convection and the variation of the stagnation en-

thalpy: at the lower altitudes, the stagnation region is hot, but convection

keeps the dividing streamline enthalpy down. As the altitude is increased,

conduction begins to become dominant and increases h slightly. However,
D

at still higher altitudes, the conversion of kinetic to thermal energy during

recompression is markedly reduced and enthalpies everywhere begin to

drop.

The effect of increasing wall temperature is qualitatively as expected.

Significantly, it is seen in Fig. 8 that stagnation enthalpies of "cold" ten-foot

bodies and "hot" one-foot bodies are comparable. At equal wall tempera-

tures, however, the larger body has a stagnation enthalpy that is typically

25% higher. Furthermore, the calculated base pressures are 50% higher

with a relatively hot wall, which qualitatively checks the experimental ob-

servations of Kurzweg. 21

From Fig. 6, we observe that the near wake "dimensions" scale

roughly as the body size for low and intermediate altitudes. At the higher
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altitudes, a small body exhibits a proportionately larger base region, but

this never approaches the size of the near wake of the body used for com-

parison (additional calculations show that the wake angle increases slowly

with increasing wedge angle).

The effect of free -stream velocity is exhibited in Fig. 9. Apparently,

beyond 10, 000 ft/sec there is very little influence of this parameter on the

stagnation enthalpy ratio. At velocities below this, the greatest effects

occur at high altitudes, indicating the small influence of variable velccity

during a ballistic trajectory (assuming these results to be qualitatively

correct for a three-dimensional body). Similar remarks apply to the wake

angle and base pressure p!otted in Figs. 6 and 7.

The effect of changing the only free parameter, tl, is demonstrated

to be small in Fig. 10. Because of the improved agreement with the experi-

mental base pressures at y = .4, this value was assumed in the above cal-

culations. (2),
It was also found that the approximation solved, h 1  , was suffi-

ciently general to allow a boundary layer to develop along the dividing

streamline. Enthalpy profiles at two altitudes are shown in Fig. 11, where

the perturbation from the boundary value is seen to be only a few percent.

It would be possible, of course, to accurately calculate the wall boundary

layer with more tt-rrs in the radial direction. From the present computa-

tion, only a rough estimate of the base heat transfer can be obtained:

-- h (-) h_ D[f'()+ (1- 02 p 2 ) (al + a 1 2 0 2)7rcosr

and, since
* 8h.
b - k , the stagnation rate is

* 1(2 ) (°  - al

* * kh Dwhere Q >0 implies heat transfer to the base. The variation of Q(0)/
with altitude is shown in Fig. 12, where it is always seen to be positive for

cold wall conditions (hw = . 05) and negative for a relatively hot wall (hw=. 15).
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X. Summary and Extensions

A tractable and physically correct model of the two-dimensional

near wake has been analyzed. The flow field was divided into subregions,

including the recirculation regions, which were matched along mutual bound-

aries. The zeroth order solution of the velocity field was obtained from a

series expansion of the streamfunction in local Reynolds number. Calcula-

tion of the uncoupled enthalpy field was carried out with a Galerkin procedure,

with these results valid for arbitrary Reynolds number. Numerical results

were obtained for the conditions of a wind-tunnel wedge experiment, and

agreement of the base pressure variation with Reynolds number was satis-

3,4factory. Previous theories, it should be noted, have yielded results

which are Reynolds number-independent. The effect of body size, wall

temperature and free-stream velocity and density on the dividing stream-

line stagnation enthalpy was also investigated. It was found that the stag-

nation enthalpy ratio increased with decreasing altitude but was rather insen-

sitive to Mach number at hypersonic speeds. An increase in wall tempera-

ture was found to significantly increase the stagnation enthalpy and base

pressure. It was seen from calculations for two bodies, that near wake

size scales directly with body size. Finally, it was shown that the stagna-

tion enthalpy was relatively insensitive to changes in the ratio of dividing

streamline stagnation pressure to neck pressure, the single free parameter

in the solution. While simple improvements are possible in the two-

dimensional analysis (solution of the free shear layer, multiple-point

matching with the recirculation regions, etc. ), it is anticipated that three -

dimensional effects will be more important. The concentration of stream-

lines in the stagnation region, growth of the free shear layer displacement

thickness (due to geometry alone), and the incompletely understood recom-

pression process external to the dividing streamline are expected to make

quantitative changes in the near wake solution. While the results presented

herein are expected to indicate the general behavior of axisymmetric near

wake properties, it must be emphasized that they (and all other presently

available theories) are strictly applicable to two-dimensional flow fields.
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APPENDIX I.

Expansion of the Boundary Layer

The geometry of this problem is shown below

M

T 2

The assumptions are as follows:

(i) the rapid expansion process along streamlines is essentially

isentrrpic

(ii) each streamline reaches the pressure P 2 , as determined by

turning the inviscid flow through the angle v

(iii) the initial velocity profile is linear and the enthalpy profile

is "similar" (Hl - Au 1 + B)

(iv) y = 1.4
The calculation procedure is simply to expand each streainline with P and0
T held constant, and calculate the velocity and density after expansion. We

then conserve mass between streamlines to locate them after expansion, and

to estimate the expanded boundary layer thickness. Denoting streamlines

by i and conditions before and after expansion by 1 and 2, respectively, we

can write

Y2 . Y2  Ii+l~ i i

011 +n

where i =0, 1, 2, .... nand Y2 =0
0
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")- U_°- lit, a  18 tljp 1i . u1 * p 1  2i1
1 UT P,+1 i1

from "averaged" conservation of mass.

Also,

P1  (equation of tate)
Pl

6 5

Ul. Yl.u (given profile)

and it can be shown that

ufro ae 0 1/2 cPni y T y l To ma

u, T', ) -- -1T- oT

Als,

T

T 1

° - + 1 /2

OLt.18I , M
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T orou162 YJ 2

To6 T 0 + T6

2TTo 1. To 06

I + -- M Y-l

2 M"

M 2 is obtained from the Prandtl-Meyer Tables

For M1>Ip0, we may use
P 1

2

and

2

It should first be pointed out that under the given boundary conditions, the

expanded flow will be non-parallel. We must therefore assume some pro-

cess to turn the inner streamlines badk to the direction given by v. A

"lip shock" or combination of expansions and shocks is probably necessary,

and this complicated region is presently under study. The assumption of

constant P 0along the wall is also an obvious inconsistency, and requires a

finite velocity to exist there after expansion. However, since experiments
by Hammit 19 indicate the reasonableness of this approximation away from

the wall, we allow "slip velocities" to be calculated and interpret them as
22

velocities at the edge of a high-shear sub-layer. A typical profile is
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shown in Fig. 13 and 82/61 is plotted against all the independent variables,

M 18, Tw/To, and v in Figs. 14-15. It is seen that a significant thickening

can occur, and the results are certainly limited by boundary layer-shock

wave interaction. The most rapid changes with angle occur at the higher

Mach number and the most significant Mach number effects are at low Mach
number. Increasing wall temperature has the effect of decreasing the

thickening and at a temperature ratio of 0.8, the MI = 2 boundary layer

actually becomes thinner for small angles of expansion (this is actually ob-

served in Hammit's Schlieren photographs). The sub-program detailed

above is used in the near wake solution with the following changes in nomen-

clature

61 62

2 62'

M - M

Tw
T- w06
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APPENDIX II.

A = - r 1119 + 7r1219  2 - 16P rI4 o - 3.22r 15113

A 2 = -7r 2 + 1 1 + 2 13 18 6 - 16Pe1rl4 [al2-I

+ 3 2 ap- 5 I 3-- I1
I5 [13

R 1 = 16Pe'I6 aoI9  181 -1718

B1 -7 1 Il1 + rI 2 110 3Il- °1 16 ao11-I 1  -- 2 1ae' 1

1 11 - 1 30!. p.]5I14

B2 - 2IiI6 + 2116 + 2 13 1 o16P44 [a 1 7 1 6]

+ 3 2 - - I 5 1 4 2 I 1 I ]

=2  16PAI 6 [aoI 10 - I11] --I7111

1  = .25

1 = 0

13 = 1.22

14 - 2.09 x 10 -3

15 = .32 x 10 - 2

Q = 3.98 x 10 2

Q- = 1. 16 x 10 - 5

1 8 2P/3

19 = 8p/15

110 = 8p3/105

Ill = 2p 3/ 15

112 = 16P3 /315

113 = 3/20
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I 13P 5 /840

= 16p/35
1.5

1 16 = 8p5/315

1 17 = 48P5 /3465

7
1 18 = 34P /5040

1 19 = zp /35

a = 1.43

-f u~ /in
Pe = ~ 

w

Pr = 1.0

m = -j- ~~rI- ) [in(bp)cosh(aj3)(a2 -bZ + 2 ab)

m ~~ 12a + b )
+ cos (bp3)sinh(ap)(a 2-b 2-- 2 ab)]

[sin(b3) sinh(ap) (a - bz) - co s(bp3)co sh~a3) (b +az),]
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