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The ever increasing need tobe informed has caused an 
ever increasing volume of publications. The very quantity 
of these publications, however, makes it difficult to satis¬ 
fy the need, because it becomes more and more arduous 
to locate the literature pertinent to any one subject; and 
because any one of us becomes more and more weary of 
having so much to read. Moreover, only a small minority 
of these publications may help satisfy the need, because 
an overwhelming majority is void of content. 

Consequently, it is imperative to present to the public 
only manuscripts which do carry new information without 
indue verbiage; hoping to be judged not by the number 

of published pages but by their quality. In particular, 
papers in the field of Applied Mathematics ought to be 
published only if they contain one or more of the follow¬ 
ing items: new basic results, new methods, new applicat¬ 
ions, new numerical results, new presentation of difficult 
and important topics, up-to-date bibliographies; and if 
the number of their pages is not dictated by the desire of 
imposing upon the superficial reader. 

To discharge our contractual obligations, we publish 
Technical or Scientific Reports, such as the one you now 
ha\ e in your hands. It has been our constant policy to 
see to it, that they satisfy the above strict criterion. 

PARKE MATHEMATICAL LABORATORIES, Inc. 

Carlisle y massachusetts 
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Abstract 

V. H. Weston has derived solutions of the wave equation in 

toroidal coordinates which can be used to solve the problem of 

acoustic radiation from a torus. The wave equation is not separable 

in toroidal coordinates and special methods are required to obtain 

solutions. Weston's solutions are not orthogonal functions, which 

also requires special methods in applying them to radiation problems. 

However, the special case of a torus of infinitesimally thin cross 

section can be solved by the usual methods, and in this report this 

thin torus problem is worked out in detail. The usefulness of this 

problem as a theoretical model for free-flooding ring transducers is 

shown by comparison of calculations and measurements. The calculation 

of toroidal wave functions is also discussed, and numerical results are 

given for those functions which are needed in transducer problems. 
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Toroidal Wave Functions and Their Application 

to the Free-Flooding Ring Transducer 

by 

Charles H. Sherman and N. G. Parke 

Intr duction 

Development work with free-flooding ring transducers for acoustic 

applications has long suffered from the lack of a theoretical description 

of the sound field of this type of vibrator. Typical shape and an 

approximate velocity distribution for such ring transducers are shown 

in Fig. la. The torus with an appropriately chosen velocity distribution, 

as shown in Fig. lb, could be expected to be a useful model for obtaining 

a theoretical treatment which would be approximately applicable to ring 

transducers. The torus has the correct topology, which is the essential 

requirement for a model. However, its circular cross section is a serious 

departure from actual transducer shapes which might be an important factor. 

The toroidal coordinate system^ is appropriate for this problem 

because one of the families of constant coordinate surfaces is a set of 

tori. The first basic difficulty that one encounters in the problem of 

acoustic radiation from a torus is that the Helmholtz equation is not 

p 
separable in toroidal coordinates. Fortunately, Weston has developed 

a method of solving the Helmholtz equation in non-separable, rotational 

coordinate systems and has derived in particular detail a set of wave functions 

-1- 



Fig. la. Ring Transducer — the arrows indicate an approximation 

to the motion of the surfaces. 

I 

Fig. lb Torus with a velocity distribution which approximates 

the motion of a ring transducer 
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for toroidal coordinates.3 He applied a special case of these wave 

functions to the problem of scattering of electromagnetic waves from a 

thin ring, but there appears to have been no other application to 

physical problems. 

It is our object in the present work to apply Weston's toroidal wave 

functions to the general problem of acoustic radiation from tori with 

special attention being given to obtaining theoretical results that will 

be useful in the development of ring transducers. This report will describe 

those parts of the program which are reasonably complete. Methods for 

calculating Weston's wave functions will be described, and a table of 

numerical results will be given. The acoustic calculations will here be 

confined to the special case of thin tori ( **■/*?, > > / , see Fig. lb). 

In this case it is possible to satisfy the boundary conditions by use of 

asymptotic approximations to the wave functions which are orthogonal, and 

results can be obtained with little numerical work. Various calculations 

will be compared with measurements on single ring transducers and co-axial 

arrays of ring transducers, and we will find that the thin torus solution 

has considerable practical usefulness. It also provides a relatively 

simple situation in which to investigate questions such as the effects of 

different velocity distributions. 

We are also carrying out numerical calculations for the general problem 

of radiation from a torus of arbitrary cross sectional size and from a 

toroid of rectangular cross sectional shape. These cases, which involve 

a large amount of numerical work, will be described in later reports. 

-3- 
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Some of the work to be described here has been presented in a 

preliminary fashion in an earlier technical memorandum.^ The only other 

theoretical work that we are aware of which may have application to the 

free-flooding ring transducer problem is that of Junger*5 and Chin.^ 

Weston^ Toroidal Wave Functions 

The Functions Needed for Transducer Problems 

There are many descriptions of the toroidal coordinate system, but 

no standard notation is in use. Moon and Spencer,^" for example, give a 

complete description using the notation Y), p for the toroidal coordinates. 

We'll follow Weston's notation and use 3, rj , «p respectively ( £ is also 

used by Weston where S * cosh ï ). The coordinate <f> is the usual 

azimuthal angle (identical with the ^ in spherical coordinates). Surfaces 

of constant 5 are tori centered on the origin with S«r-o being a ring in 

the X-plane and smaller values of s corresponding to thicker and thicker 

tori until Sx / is a torus consisting of the * -axis and a surface at 

Infinity. Surfaces of constant are portions of spheres; has the 

range and measures location around the cross section of a torus. 

The toroidal coordinate system also has a parameter J which is the radius 

of the ring which the tori reduce to as 6-o . Figure 2 illustrates 

some features of the toroidal coordinates; other details will be found in 

the Appendix. 

It should be noted that one frequently sees references to torus 

8 9 
functions or toroidal harmonics. These are Legendre functions of half 
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Fig. 2 Illustration of the relative dimensions of ton 

for fixed d and different values of s0 
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integer order and are solutions of Laplace's equation in toroidal 

coordinates. Laplace's equation is « -separable1 in toroidal coordinates 

and solutions can be obtained easily compared to the Helmholtz equation. 

3 
Weston has shown that any solution of the Helmholtz equation which 

is continuous and single valued outside the torus (i.e., the 

region \£ 5 Sa ) and satisfies the radiation condition and arbitrary 

boundary conditions on the torus can ’Je represented by a linear combination 

of the toroidal wave functions (reference 3, p. 255; page references to 

Weston will frequently be given) 

and 

where 

m = o, * I, t Z., 

¿ * o, i, X , . . . 

The V and W functions have the following structure as a result of 

satisfying the radiation condition (3, p. 248): 

(1) 

w f \ -1 ^ V J 

i -m-AÂ-a. 

where (3, p. 249) 

(3) 

^,(N»MtO•Tr,(it 

(s.Ço, 
=o 1 C S - C.J ^ ) F f 1 

t 
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In Eqs. (3) and (4) the subscript IS can be specialized to either of the 

values required in Eqs. (l) and (2), and the symbol is Pochhammer's 

notation for 

In the acoustic radiation problems which are being contemplated now 

there are two types of symmetry which restrict the wave functions we'll 

need to special cases of those above. In our problems the surface of the 

torus will be vibrating with axial symmetry and with symmetry with respect 

to the X-Jj. plane. The first symmetry means that the resulting sound 

fields do not depend on Cf> which requires wave functions with rv^o and 

M- O . The second symmetry means that the sound fields are even functions 

of ^ which requires the V functions only, since the \/ functions are even 

functions of and the W functions are odd functions of ^ . The set of 

wave functions which we need then are: 

4Â.+ I 

Va* C 5,0= + (5) 
where 

(lu)" y* ** 1_ y (~ £ K ( r^-£-'')r , t -»■ 

f}r(N*Vi»r)£# xiCs-cosO* 

To illustrate the situation more completely the lowest order wave functi 

(0 ) ¿s . 

on 

where 

c J_ '/t ^ ___p . X 
= ¿ ir ^ t\rc>ix*r) ^ 

i 

'TT'^CS- Co**.') 
'll. 

J-i 3 -e71 

s _ p (i , 
^ s-cos^) ** a r ( Vaf j.) >»-‘4 

(7) 

(8) 

(9) 

(t) 
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In addition to the series representation given above Weston derived 

an integral representation for the toroidal wave functions (3, p. 25I). 

When Weston's result is specialized to the case of interest here it can 

be shown that 

f **6*0 *• 
(s,0 * (-<) 'Tr(ajt)! f. 0) 

£*(*'*>) ¡1^ (xu)) di (10) 

and ^ are respectively the Legendre polynomial and spherical 

Hankel function of the first kind, where 

d'-')'1* *¡r>t 

and 

^ /Ï is- 0. ’ 

f-«-(«‘-o’'» c.,t -j'/i 

L 5- C9S ^ _J 

(11) 

X«-) - rc-fcj (12) 

This integral representation of the toroidal wave function has an interesting 

physical interpretation. It can be shown that X(t) is equal to ^ ^ where 

'k is the wave number and ft is the distance from a point on the ring s = •*> 

specified by the integration variable t to the field point . It 

can also be shown that 2 (t) is equal to cos & where S is the angle 

between a tangent to the ring at the point specified by t and the line 

from that point on the ring to the field point. Thus Eq. (lo) represents 

VaACft,\) as an integral over a continuous distribution of spherical 

wave sources of order .LÍ on a ring. 

Either the series representation in Eq. (6) or the integral 

representation in Eq. (lO) can be used to compute numerical values of the 

wave functions and their derivatives. We have made calculations by both 

-8- 
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methods and compare some of them in Table 1. The series converges readily 

Table 1 

Comparison of Numerical Values of 

Toroidal Wave Functions 

Func tion s n 
Ca leu la ted 

from Integral 

Caleu la ted 

from Series 

s. 
S. 

S-, 

S-, 

•Sjl 

8 

8 

8 

8 

8 

• 
0 

U5# 

0* 

0# 

.2121 

.2241+ 

. 1125 

. 1161 

-.0526 

.1 12 1 

.221+1+ 

. 1 I83 

. I2I7 

-.0519 

as long as S is not too small and ¿J is not too large, and under these 

conditions is more convenient than the integral for calculating the 

functions themselves. When convergence of the series is poor the integral 

representation can be evaluated numerically; it has the advantage of 

involving better tabulated functions than the series. We are using the 

integral for the calculation of derivatives of the wave functions. 

In tables 2, 3, and k we give numerical values for the wave functions 

• ’ ^i. and \/y as calculated from the series representation. Some 

of these results are plotted in Fig. 3 which shows the behaviour of the 

S.í», n) function. 

The Far Field Functions 

Wes ton derived the asymptotic forms for the toroidal wave functions 

in the far field (3, p. 25I). He expressed the toroidal coordinates 5 

-9- 



Table 2 The Toroidal Wove Functions S0 and 

kd> I 

2 4 6 8 6 8 10 

0* 4952 J634I .6650 6785 .5882 .7092 .7984 

45° .5824 .6609 .6804 .6893 .6282 .7402 .8241 

90* .7093 .7120 .7125 .7127 .7208 .8132 .8846 

135* .7775 7498 .7387 .7328 .8080 .8828 .9430 

180° .7981 7628 .7483 .7404 .8426 .9109 .9666 

kd*2 

• 
0 .04004 J607 .1958 .2121 .06893 .1183 .1563 

45° .0808 .1856 .2123 .2244 .07171 .1217 .1599 

90° .2189 .2468 .2520 .2538 .08295 .1326 .1701 

135° .3388 .3046 .2903 .2825 .09942 .1464 .1821 

0 O
 

GO .3802 .3268 .3056 .2941 .10745 J528 .1875 
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Table 3 The Toroidal Wave Functions S and S 

\ 5 
6 8 10 6 8 10 

°° 
.005569 .009780 .01215 -4.0381 -5.8410 -76767 

45° .01213 .01409 .01521 -2 4986 -3.7628 -5.0501 

90° .02324 .02209 .02145 + 1.5653 +1.5944 +1.6369 

¡3íf 02995 02759 .02617 + 6.0891 +7.4385 + 10.1151 

180° .03187 .02933 .02772 + 80893 +9.9854 + 11.8902 

kds 2 

0° - 06725 -.05193 -.04400 -.7623 -1.0144 -1.2639 

45° -.04501 - 03680 -.03264 -.5495 -.7380 -.9213 

90° - 00256 - 00603 -.008076 + .0069 - 0269 - 0523 

135° + .02785 + .01802 +.01188 + 6183 + .7398 + 8747 

a>
 

o
 o 

+.03780 +.02638 + .01908 +.8861 + 1.0727 + 1.2746 

-il- 



Tobte 4 The Toroidol Wave Functions S4 and S_5 

X 6 8 10 6 8 10 

0* .1589* I0*S J737X K)'S .1813 X IO“3 233.3 476.4 808.0 

45 .1372 X10 3 .1715 xlO*3 .1856 xlO-3 -86.10 -135.7 - 168.0 

90° .2112 xlO'3 •2227XI0'3 .2266xlO*3 -361.6 -671.7 -1072 

135* .3220 xlO'3 .2987 xlO"3 .2845 X IO'3 182.3 226.8 269.2 

180* .3627 xlO"3 3294x IO*3 .3090xl0'3 678.6 1062 1535 

kd = 2 

0° -.002765 -.002141 -.002049 8.240 16.31 2717 

45° -.003068 -.002219 -.002008 -2.427 -3.407 -4.370 

90° -.001840 -.001453 -.001380 -12.36 - 22..2I -34 83 

135° +.0001346 -.0001613 -.0004018 3 692 4.469 5.231 

180° +.0009176 +.0003974 +.00003395 18.90 29.46 44.12 

-12- 
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and in terms of the spherical coordinates f and & and found the 

asymptotic form of ^MfU (r, as r—') -o . His result for the case 

which N\. 0 is 
R*r 

***■> e_ . 
V^jt —> (-i-) Ru ( c-os s) ^ 

in 

(IB) 

where 
^ (-*)r (4+ Í )t ( A S>r>&Y ~ 

t? (ca.a)- Z. , \ ) 3" (-fj 
P*o * 0 (14) 

In Figures 4-7 the first four functions are plotted for 

^J - 1, 2, and 3• 

It seems useful to think of the RJ4 ( cor £ ) functions as the basic 

modes of radiation from a torus in the same sense that the Legendre poly¬ 

nomials give basic modes of radiation from a sphere. This view is 

supported by the fact that (3, p. 252) 

( a>i » ) -^> ^ ( ca»* » ) , —> O 

It should be noted that the lowest order far field function, 

Coi & ) • J0 (1&J Sih») t 

is the 1 ami liar far field of a circular ring source of zero thickness and 

radius d 

The Asymptotic Functions for .s —» _ 

Weston also derived the asymptotic forms of the wave functions as 

S-*«o(3> P- ¿55)- The result of interest here is 

4+1 
(-1) 6> )Tn-r 

1 

(1¾) 

'/l 

Pt-ACi) 
cas jli ao 

-14- 
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where €# = /2, and I for £> 0 . This asymptotic form of \J (*,>[) 

has the same s and dependence as the corresponding asymptotic form of 

the solution of Laplace's equation. The two are basically different, 

however, because of the k dependence of V,, ( ^ ) 

The value of the constant real part of (s,^) as was 

not given by Weston. However, it can be obtained as a power series in ÂJ 

from the series representation in Eq. (6) for fi- AjL by using the 

asymptotic forms of the Legendre functions. Denoting this constant by 

iikj) we find for jtmo and / : 

. . , y (-0r 
c. z cj.!)1 ( '/xj 

*¡r 

Cx(*j) * X 2 

In Figures 8-10 the exact results for , and V ior i> = 8 

and ; from Tables 2-4 are plotted as a function of ^ and compared 

with the corresponding asymptotic results as giver, by Eq. (I5). The 

purpose of this comparison is to gain some idea of how large S must be 

to make Eq. (1^) a useable approximation. We see that the exact and 

asymptotic functions have similar behaviour, but the values are often 

quite different. In Figures II-I3 a similar comparison is made of ^4, *t J 

The exact values of this derivative were calculated from the integral 

-21- 
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representatlon in connection with work in progress on radiation from 

a torus with relative cross sectional size corresponding to s. f 

The asymptotic real part of this derivative is zero, and the asymptotic 

imaginary part can be calculated from Eq. (I5) (see next section of this 

report). The extent to which the exact and asymptotic derivatives agree 

is similar to that for the functions themselves. It appears that use of 

Eq. (15) must be confined to S considerably greater than g for most 

purposes . 

Acoustic Radiation from a Thin Torus 

General Solution 

For the acoustic radiation problems which will have application 

to ring transducers the acoustic velocity potential can be taken as a 

linear combination of the ( s i() , 

(16) 

where the expansion coefficients, , are chosen to satisfy tne 

boundary conditions. In this case the boundary is the surface of a 

torus specified by S« , and we are interested in Neumann conditions 

for which the normal derivative of qiCs.lt) is specified on the boundary. 

We denote the normal velocity on the surface of the torus by 

UC^,t ) * U(i^J € (I?) 

and the outward normal derivative is given by 

(18) 

-22- 
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Combining these equations we find that the relation which determines 

the ajf is 

'L 
- J- C se - COÍ n Xs/- l) ^ ai£ is -rrV^U.O 

S« i 
- U(^ ) 

(19) 

There is no known weight function with respect to which the functions 

Xu ^ ^ ^ °r 'Xi ^ *< *0 ) are orthogonal in general (3, p. '¿^C) . 

The general torus problem then involves all the technical complications 

of determining the expansion coefficients in the case of non-orthogona1 

functions. The details of these technicalities have been described 

before, and are being used in the other problems mentioned in the 

introduction. The remainder of this report will be devoted to the case 

^0~ ^ where we can use Eq. (I5) in Eq. (I9) to satisfy the boundary 

conditions. The important characteristic of Eq. (15) is that the 

asymp to t i c /"¡s are orthogonal f une tions of »q with 

respect to any constant weight factor, because they are proportional to 

cos . Thus in this special case we can determine the by 

relatively simple procedures. Note that we are using the asymptotic wave 

functions only to satisfy the boundary conditions; once the <2^ have been 

determined they car. be used in Eq. ( 16) with the general wave functions. 

For example, we will find.that this solution is most useful in the far field. 

The case S —> oo , which corresponds to T? -» 0 and 1? —•> J 
0 I JL. * 

means that we are considering the problem of radiation from a torus with 

infinitesimally thin cross section. We must expect this problem to have 

limited usefulness as a mathematical model for ring transducers, since the 

--9- 
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only feature which might make it a good model is its appropriate topology. 

We will lind, however, that when a suitable velocity distribution is 

chosen the thin torus gives us a rather good model for the far field. 

After writing Eq . ( I9) for ^ and using Eq . (I5) we have 

^ ha« 
coi ■= ^ ^ (20) 

where we have used the abbreviation 

ï. —^ ' 

Any U(^) of the type under consideration can be expanded in a Fourier 

cosine series. 

(21) 

OO 

W(vj) « 2 \JÀ Co, ^ # (22) 

and then comparison with. Eq. (20) gives 

¿A (.41)***' P (i.- XJl) 
KJ. 

(23) 

After carrying out the indicated differentiation in Eq. (21) we have 

The asymptotic forms of the Legendre functions are (3, p. 255) 

I 
?i/aCO -TT constant] 

(ao V«.) 

p,(s^ > 7Tv*- r + *) ‘ 
So —> 0« 
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with which we find 

rr 
F. C O - 7TS. 

7 

Putting these results into Eq. (23) we have 

4 > (24) 

as the general expression for the expansion coefficients for the sound 

field of a thin torus with a normal velocity distribution of the type 

in Eq. (22). 

In carrying out the solution of this vanishingly thin torus problem 

it is necessary to use, in Eq. (19)> the asymptotic normal derivatives of 

the toroidal wave functions. It is not obvious that the procedure above 

accomplishes this, because we have differentiated the asymptotic wave 

functions instead of finding the asymptotic derivatives. This point has 

been investigated by differentiating the series representations of the 

wave functions, multiplying by C" X s*- 0 * J ^ an(j then 

taking the limit as 5 —^ . It was shown in this way that the 

procedure described above does give the correct results. 

An Approximate Solution for JLLOiL Transducers 

We assume that at frequencies near the fundamental ring resonance 
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the motion of a ring transducer is mainly an alternating increase and 

decrease of the mean radius K*. for which the velocity can be written 

% ft,. 

S-t (£5) 

However, this motion is necessarily accompanied by a Poisson contraction 

and expansion of the cross section. For a torus this part of the motion 

can be considered as an alternating increase and decrease of the cross 

section radius , and the corresponding velocity can be written 

s*. 
St 

(26) 

Actual ring transducers are usually driven either by électrostriction or 

magnetostriction, and a detailed description of the motion would have to 

include these effects. For the present, however, we will assume that the 

motion can b* usefully approximated by a superposition of the simple motions 

in Eqs. (25) and (26). 

/it is normal to the surface of the torus, but 'it 

purely radial motion which has the Cartesian components 

is a 

» VJ, ca* e 

. U, s.n<f <£‘ 

U o } 

for the »--axis along the axis of the torus. When 

formed to toroidal coordinates we find for the 5 

normal to the surface of the torus, 

-* ut 5* Co‘n - > 
u s. - 

this vector is 

component, which 

trans¬ 

is 
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With these results our normal velocity distribution is 

s. COE ^ _ I 

. u. A -J, 7—^ ■ (£-7) 

Since the two motions which have been superimposed are Poisson 

coupled the amplitude constants U. and U( are related. We can evaluate 

one in terms of the other by satisfying the physically reasonable 

requirement that for a thin torus the motion we have chosen corresponds to 

relative volume changes which are the same as those for a straight, thin 

rod when its length is changed» For a rod of length the volume velocity 

is related to the longitudinal velocity bv’ 

st 
M. (i 
St 

a <rj > (28) 

where is Poisson's ratio. For the thin torus we therefore want 

Y. lEi ( ,_ a<-). 
it 1?. s* J 

Since the volume of a torus is ATT1 % 

(29) 

a • , we have 

SV 
it 

aV 
“R. it 

V. ^ 
st 

.AU,t 
(30) 

and equating Eqs. (29) and (30) gives 

u. = - u, = - -f u, (31) 

vihere we have used S = as shown in the Appendix 

Using Eq. (31) in Eq. (27) our approximate velocity distribution becomes 

(32) 
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We can put U(n ) in the form of Eq. (2L) by expanding the second 

term in Eq. (3^)* Keeping terms only to order Yso [to be consistent 

with the first term of Eq. (32)] we have 

u.t £+ ...] 

This is in the form of Eq. (22) with 

u.= - £ U.'/J, 

u,- u, , 

a/iS. , 

(33) 

and from Eq. (2li) we find 

to/ TT“ ( tf*«- V» ) 

, 

a = 2, 

¿J (-£J )* -TT 
U, . 

(34) 

(35) 

For We note that both these coefficients are proportional to 

the limiting problem of S#—•> oo we must also imagine U(—} oo such that ^’/i‘ 

remains finite. This corresponds to keeping the volume velocity (or 

source strength) finite. When we use 0,,= U,4S- in Eq. (24) we find a 

. U'/ + 
proportional to / S# which vanishes in the limit compared to CL* and 

In the same way all higher order coefficients vanish. 

With these values for 0.# and 0,^ we have for the spatial part of 

the velocity potential for a thin torus vith the normal velocity 

distribution in Eq. (3^) 

y(stri)s -^-‘ [(<r+’MV.C*,0 * “3 , (36) 
J 
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and the corresponding result for the sound pressure is 

*o(3,>t, t ^ = t =-tt^c C/(¾^) c f(^'/JVInJ14(v)]. (37) 

Eq- (37) is the final result of our attempt to obtain a useful mathematical 

model for the ring transducer based on the results of the thin torus 

problem obtained in the last section. We must not overlook the 

distinction between the thin torus problem, which is solved exactly by 

Eq . (2Í4), and the ring transducer problem, for which Eq. (37) may be a 

useful approximation. The remainder of this report will be concerned with 

a detailed investigation of special features of Eq. (37) which can help to 

determine its usefulness. 

Comparison with Far Field Measurements 

During the years of development work with free-flooding ring 

transducers there have been many measurements of far field patterns as 

well as some near field measurements. However, there seem to be few cases 

in which the measurements were carried out under sufficiently well controlled 

conditions to provide data suitable for comparison with theoretical 

calculations. Qualitatively it has been found that the main features of 

ring transducer far field .patterns near ring resonance consist of a 

maximum in the plane of the ring and a minimum, or sometimes a minor 

lobe, along the axis of the ring 

The far field case of our theoretical result in Eq. (37) is obtained 

by use of Eq. (l-j). We get 
x -¿ fwt - -Är) j- 

g __ '/a ) ^ («o* •) - /4 

Y—y «0 

f?A(CAiê)jf ( 38) C-TT^C-Uk S-) 
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where the functions and are plotted in Figures 4 

and 5 for typical values of . For comparison with this result we 

have chosen patterns published by McMahon. The transducer used for 

McMahon s Fig. 3 has = I.76 om, and the height and wall thickness are 

such that we find = 0.37 cm for equal area circular cross section. 

These dimensions give d = I.72 cm (see relations in Appendix). At the 

ring resonance (26 ) we then have ÂJ = I.87 and at cavity resonance 

(18 ) = I.29. 

Figures lUa and ll+b compare McMahon's measurements with the pressure 

amplitude calculated from Eq. (38), using <f * 0.3 and normalizing to 

unity in the plane of the ring ( & = 90°). At the ring resonance (Fig. lUa) 

we find good agreement between the measured and calculated patterns. At 

the cavity resonance (Fig. lUb) the agreement is poorer, which is reasonable 

since the velocity distribution chosen was expected to be a good 

approximation only near ring resonance. 

It appears that our basic theoretical result contains at least the 

essential features of the far field of ring transducers near ring resonance. 

Far field pressure amplitude patterns calculated from Eq. (38) are 

illustrated further in Fig. 15 for AJ = 1, 2, and 3» Ring transducers 

are usually made of materials such that, when mass loaded by vibrating in 

water, the value of (which is approximately the same as -¿J ) is about 

two. We see from Fig. I5 that it is near = 2 that the two terms in 

Eq. (38) combine to give a null or a small minor lobe along the axis as is 

observed. This emphasizes the significance of the fact that the velocity 

-36- 



320' 
40* 

3W 
50* 

¿30' 
130* 

140* 

330' 
nr 

340' 
ÜO 

330" 
:»(»* 

no 
:uo 

r,o 
:too 

70 
]ii>0 

SO 

•¿70 

no 
¿40 

3ft0' 
00' 

200' 

70* 

2SO’ 
»0* 

200’ 

lOO 

2 no 
110* 

'240' 

120* 

430' 
¿10* 

loo' 
200* 

i;o' 
loo* 

ISO' 
I HO* 

¿i/o* 
170' 

2 Off 
nor 

2IO' 
1.10* 

37 



36 



39 



P*au MathiMATicaí Lmo*at»ui«, iNconroLtiio 
OHIMVUBOAO • IjUUOilJl. »rrr» 75660B-SR-2 

distribution in Eq. (32) leads to both a. and dx remaining in the 

limit and having about the same magnitude at £¿«¿2. Both terms are 

required to get a null or a small minor lobe along the axis. 

The Sound Field Near the Torus and the Radiation Reactance 

In a small toroidal region near the thin torus the sound field can 

be described approximately by using the asymptotic wave functions in Eq. (I5). 

This, however, only gives a consistent approximation for the imaginary 

part of tne pressure which is the dominant part in this region. The constant 

real parts of the asymptotic wave functions played no role in evaluating 

the expansion coefficients, and their use now would correspond to keeping 

terms of the same size as others which have been neglected. Thus in this 

region near the torus the pressure is 90° out of phase with U, and is 

given by 

|oc'iry.c O, ( V) Vi.) 
•âJ .¿«tr. . V s'/a s '* ?•/*<*) 

Cot. ]. (39) 

These phase relations are characteristic of the pressure on the surface of 

the source for any vanishingly small source. In such cases the power and 

the radiation resistance must be calculated from the far field, but the 

near field expressions, such as Eq. (39)» can be used to calculate the 

radiation reactance. 

When referred to \J, the radiation reactance is given by 

)r u*( (40) 
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where àS is the differential area element on a torus which is given by 

>L 

dS - ' df ^ d 

Us ing 

( - Co i ^ ) ^ 

(•),<-)- L/.e-'“* [- t < '^O + 

\ d T 
S.-0)-o 

Uc l- r+ /X ) + c-“ 
J 

carrying out the integration, and using the asymptotic forms of the 

Legendre functions for St—^o© we find 

' *■ «/ f> c. 4* J •a 77" 
(U) 

The expression for the radiation reactance in Eq. (M) is such that 

y„ / 
the ratio of the radiation mass, *v>r - "A) , to the mass of the torus. 

» i® finite in the limit and has the value 

W» 
r/w,T - 7- ^ 

where ^ is the density of the torus material. For typical densities of 

electrostrictive or magnetostrictive materials this ratio corresponds to 

a decrease of the resonant frequency by 5-10$ due to mass loading by 

water, while measurements on ring transducers usually show a greater decrease 

of the resonant frequency However, it is not surprising that the 

radiation reactance for the infinitesimally thin torus fails to correspond 

to observations on ring transducers. The radiation reactance is strongly 

dependent on the near field and on the detailed shape of the source. 

The Radiation Resistance and Directivity Index 

The radiation resistance for a thin torus can be obtained by calculating 

the radiated power from the far field expression for the pressure If the 
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radiation resistance is referred to U, the time average radiated power 

can be written 

P = 'A. 1?.. (te) 

where is the self radiation resistance. The power can be calculated 

by integrating the time average far field intensity over all directions 

? = ¿.TT j 

r ^ + 
rr 

Í Y *■ 5¡W ô- e/6 (^3) 

Using Eq. (38) for he pressure and equating the two expressions for P 

we find 
T 

J icoi ») -'AC-fcd)1 i?x(co4 e)] s«» s 

Using Eq. (lU) for the far field toroidal functions and the series 

representations for the Bessel functions we have 

*** ( Í Ä \JK' 
^ (77)» 1, —rj (b.- a«') 

(1.1-) 

where 
Bo“1 «T + Z_ 

When this series is squared and the integration in Eq. (^U) is carried out 

we find <*0 o*> 
3 r- s \+ S S V 

3/x) 

By use of rCn+'/r) VÎT 
(an-/) I I , 

where (.jn-')'! a Cj»-i)(jn-3)... 3-/ 

the expression for can be written 

f?M - <STT 

n+ *vi 
• u °0 I 1 

/ »-o »»« O 7 ^ ' 

( b%_ J« y bo- z».J( w* » ) J 

(j*) + Jih + / ) * 
«y-»»-/ ) ■ 
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For numerical calculation it is convenient to combine the terms which 

involve the same power of 1ÍJ and obtain 

R. ‘ ' .^ 

vtt'/oc.'J ^ ty ¢-0^^11 y (a»»«•»■>*) ïV’jmcJ*' \ 

-Ltn-wi)1 ]1 ( »i i )A 5/ jT Hr • ~• 
(½) 

We note that the factor So * in the expression for "R,, is just that 

which is required to make the power proportional to t/, * and. 

therefore, finite in the limit. For small we see that k>a(*J )* 

and R„ is proportional to For higher values of we have 

evaluated Eq. (4<j) with the results shown in Table 5. 

Table 5 

Self Radiation Resistance for a Thin Torus ( (f = 0.3) 

& J 

1/2 

1 

JT 

c. 

for = 16 

.151 

.U91 

.891 

1.08 

1 .bk 

2.3 

.8l X 10 

2.05 X 10‘¥ 

^.8l X 10 

5.82 X 10 * 

7.75 X 10'* 

12 X 10 

The value £oU 

which there is 

for (T = 0.3. 

Since the 

is 

a perfect 

that for which the quantity = 0, and for 

null along the axis in the far field pattern. 

surface area of a thin torus is 
+ir XJ x/ 

/ we can 

write . 
fco = (l*7) 

A 5.J 

.1*3. 
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where is defined in 

estimate actual values of the 

values of Sa . For example, 

aware of correspond to 5. ^ 

Table 5. 

Eq. (46). Eq. (47) can be used to 

radiation resistance for large, but finite, 

the "thinnest" ring transducers we are 

W / 
18, and for S0 = l8 we give u/ocA in 

The calculated radiation resistance can be used with the far field 

pattern expression to obtain the directivity ratio (DR) defined as the 

ratio of the maximum intensity (in the plane of the ring) to the average 

intensity. Thus we have 

DR - 
X av$ 

IpI pci»*)|l v-irr1' 

P/^Vr-- ~ R„ O,1- pc 

and from Eqs. (38) and (47) 

DR = Bet T - + *j 

In Table 6 the directivity index (DI = 10 log DR) calculated from 

is compared with measured values given by McMahon.^ The values 0 

in Table 5 were used and the frequencies correspond to I.72 

The calculated values in Table 6 agree well in magnitude with the 

measured values, but the frequency dependence of the two differ, 

the frequency range covered in this comparison is not great enough 

determine whether this difference has any significance. 

(48) 

Eq . (48) 

f 

cm 

However, 

to 
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Table 6 

Directivity Index for a Thin Torus 

‘id- frequency (jc) Calculated, Eg. (U8). <T= Measured McMahon's Fig. 7 

I9.7 

21.6 

24.1 

27.Ö 

2.3 

2 

The Sound Field on the Axis of the Torus 

In addition to the far field there is one other special case in 

which the general result for the sound field in Eq. (37) simplifies 

considerably. This is on the ? -axis (the axis of the torus) where 5=1. 

From Eqs. (ll) and (12) we see that for S = 1 and # 0 

¿(t) = ö. 

With these special values of ±{t) and X(t) the integral representation 

in Eq. (lO) immediately reduces to 

(^9) 

For /.= 0 and ^ = 1 we have 

(•£ /j 
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and Eq. (37) becomes 

f U, ) ) O^‘ + *0 + 3 (5u) 

From Eq. (50) we have calculated the pressure amplitude along the 

^ -axis with the results shown in Fig. 16. For ¿>>J and >> / Eq. (50) 

reduces to the far field expression in Eq. (38) for £=0. In Fig lo 

we have also plotted the far field expression, and we see that it gives 

the correct result for * greater than about sj . Figure 16 shows that 

the pressure amplitude along the *-axis oscillates before settling down 

to a steady decrease. This oscillation results from the combination of 

the two wave functions in Eq. (50). If we had used a velocity distribution 

which led to only one wave function there would be no oscillation. It would 

be of interest to compare such calculated results with measurements 

made along the axis of ring transducers. Such a comparison would help 

to evaluate the validity of the velocity distribution in Eq. (3^) and 

also help to determine how close to the transducer the far field expression 

in Eq. (38) remained useful. 

Superposition of Thin Torus Fields 

Co-axial Arrays of Thin Tori 

We now calculate the far field of an array of thin tori which are 

stacked co-axia1ly as shown in Fig. I7. We can also compare this 

calculation with measurements published by McMahon.The calculation 

consists of transforming the result in Eq. (38) for a thin torus with its 
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center at the origin to the case where the center Is displaced a 

distance 2 along the 2-axis. Then the sound pressures for a number 

tori at different locations along the t -axis are added to get the 

resultant field. This simple approach, which neglects scattering between 

tori, should be a good approximation for our infinitesimally thin tori 

as long as they are not too close together. However, for a stacked 

array of ring transducers scattering would be quite important, and we 

cannot expect detailed agreement between this calculation and measurements. 

For a thin torus with its center displaced a distance along the 

t -axis the far field is given by Eq. (38) with f' and 3' in place 

of t and S (see Fig. I7). The resulting expression can then be written 

in terms of \r and ft by use of 

r' * r - c** ft 

9* « ® 

which hold in the far field. Carrying out these steps and using the usual 

far field approximations we obtain 

i \x ~] 
i). ¿ir^ocU,l“*;)—-c (51) 

We next add the pressures for N thin tori of the same radius and same 

velocity with their centers at *' » 0, b , Aht .. ./*••)k and get 

f 1 _ aA ça* s 
pOr.&.t)-(52) 

This result is an example of the product theorem which holds here because 

all the individual sources have the same pattern and the same orientation. 

The sum in Eq. ($2) is tho pattern of N point sources in a line. The 
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(53) 

pressure amplitude obtained from Eq. (52) is 

1 I Tf/»c / 

-( X) (*- •)- i 

W« have calculated the far field pattern from Eq. (53) for an array 

of five thin tori with 4J ■ 1 87 dkii • L o .«a* ^ we i.of,- 4.9 and <T - 0.3. This corresponds 

to McMahon's five element array (for which h - 4.5 cm) at 26 *c . In 

Fig. 18 we compare the calculated pattern at 26 *c with the measured 

pattern at 25 *c taken from McMahon’s Fig. 6. The agreement is quite 

satisfactory except for directions near the axis of the array (for clarity 

in the figure we have omitted in the calculated pattern some axial minor 

lobe structure which is more than 25 it down). A more detailed comparison 

of calculations with these measurements is pointless, because the measured 

minor lobe structure near the axial direction is strongly affected by 

scattering and other factors which have destroyed the syranetry. The portion 

of these two patterns which are in substantial agreement depends mainly on 

4Ji ; therefore, the single element comparison in Fig. 14a provides the 

more stringent test of the 4J dependent part of the pattern. 

Mutual Radiation Resistance Between Thin Tori 

Next we calculate the mutual radiation resistance between thin co-axial 

tori by use of the far field approximation for an array of tori developed 

in the last section. Since this approximation neglects scattering the 

usefulness of the result for arrays of actual ring transducers may be 

quite limited. We get the mutual radiation resistance by calculating the 

power radiated by two co-axial tori separated by a distance b The 
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result can then be used for any pair of tori in an array of more than 

two tori. 

If the radiation resistances are referred to Ut the time average 

power radiated by two tori can be written 

P - ‘L ( j *„ * 11*,,.) u* (5<t) 

where is the self and the mutual radiation resistance for one 

torus. As before the power can be calculated from Eq. (^3), and with 

E<1* (53) for the pressure with N ~ 2 we obtain 

Comparing the two equations for P and using Eq. (4U) for we find 

It can be seen that —> RM as o and O as «o which is 

the expected behaviour for the mutual radiation resistance. Furthermore, 

for small the quantity in the square bracket approaches ( d"-*» ^ ) and 

the Integral can be evaluated with the result 

(57) o. 

This expression has the same dependence on separation h as exists for any 

small pulsating sources. For small ‘♦J the second order toroidal wave 

function becomes negligible leaving only the zero order function which arises 

from the pulsating part of the velocity distribution. 

The Integral in Eq. (56) for can be evaluated by expanding the 

integrand in series as we did for evaluating . We obtain 
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It is convenient to rewrite Eq. (57) as 

p aUl^L^ y <■-•)*(**-,)11 -»A 
Ki4- s* Z. (U), *j 

jr«# 
(58) 

where 

U* ■ (*J^ ("'i'C-O* A“” ^ 

By the same manipulations that led to Eq. (k6) we find 

(-O",,.* (*J/" J 
Ù. a" Ca»» ^ a/ + ,)f ! £— 
vtao Ml*« 

C BL" 4I«X ♦ «•* ) 
f(n-wi) Í]4 C m> )*■ 

The convenient ratio can be written 

±_ V ! ! . *£ 
I * ¿ (*jt)f ^ 

(59) 

(60) 

and has been evaluated as a function of éh for "fcJ = . xhe results 

are given in Table 7 f°r values of which go high enough to show 

the location of the first zero of . We see that, for 

&st_ is first equal to zero at kh of about 5-3 ( ^ ~ .6U wavelengths), 

while, for small ¿J , Eq. (57) shows that the first zero occurs at ^Irs.'TT 

( h— 5 wavelengths). 

As an example of the use of the mutual radiation resistance we 

now calculate the directivity ratio for an array of two tori. Using 

Eq. (5I+) and following the procedure used in the earlier calculation of 
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Table 7 

Mutual Radiation Resistance for Thin Co-axial Tori 

AL 
0 

• 5 
1.0 
1.5 
2.0 

2.5 
3.0 
4.0 
5.0 
5.48 

1 

.980 

.923 

.832 

.717 

.585 

.451 

.203 

.032 
-.016 

directivity ratio we now hav« 

« 1 PI* »TTi t>R 
( Z Æ»» ♦ Z. if,^oC 

OR m (61) 

With Eq. (53) for the pressure with N - 2 we get 

which shows that except for the Influence of the mutual radiation 

resistance DR for two sources is twice DR for one source. HJ* 

corresponds to a frequency of 21.6 4c for McMahon's transducers with 

^ - I.72 cm. At this frequency with b « 4.5 cm we have "kb * 4.1, 

Ri». ■ . 18R„ and DR equals (2/1.18) times the DR for one torus. Using 

the value in Table 6 we then find a directivity index of 4.6 for a two 

element array. McMahon's measured value is the same to the accuracy with 

which the curves in his Fig. 7 can be read. 
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Similar calculations for arraya of more than two elementa would 

require calculation of for larger . However, if we neglect all 

but nearest neighbor interactions the total radiation resistance for N 

equally spaced elements is NR* 4- l(N-i)J,) . We then have 

for ‘ftJ « fa.y and ‘ftk « U. 1 

(dr^ « - N ■ (OR) 
« ri+ ir) 1 > 

where 10R)N is the directivity ratio for an N element array. This 

formula gives values of which are a few tenths of a JU greater 

than McMahon's nmasured values for 3* 5* *nd 6 element arrays at 

21,6 ftc • The overestlsuite is caused by our neglect of some of the 

mutual radiation resistances. 

Conclusion 

The thin torus with an appropriate velocity distribution appears 

to be a useful theoretical model for predicting far field acoustic 

radiation from free flooding ring transducers. Reasonable agreement was 

found between calculations and measurements of the far field pattern 

and related information such as radiation resistance and directivity 

index for single transducers and co-axial arrays. The thin torus model 

has limited usefulness, however; it does not, for example, yield useful 

results on the radiation mass loading and its important effect on the 

resonant frequency of ring transducers. To Improve the model the present 

work is being extended in two ways: First, we are doing calculations 
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for the general torus problem in which the cross section is not 

vanishingly small. Second, we are beginning calculations for the case 

of a toroid of rectangular cross section, a model which is very similar 

geometrically to ring transducers. 
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Appendix - Geometrical Relationships 

The geometrical relationships which have been used in the text 

can be derived from the relations between Cartesian and toroidal 

coordinates; 
J ( •) * Ce« <f 

* * S- cm* • 

’l* * 

A siv» 

3- Cos »V. 

By eliminating «fand ^ we find that S 

surface of a torus with (see Fig. lb) 

R,. J/t**-.)1'* , 

Rt • ¿s. 

constant represents the 

It follows that 

The area and volume of a torus are given by 

Aa (JirffiXairff.) * •ur's J* / (t'-i) t 

V. (irR^Xiir R.)- jwSW’Aí*-»)*'*, 

which are intuitively reasonable and can be proved by integration. 
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