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ABSTRACT

A general theory of recursive estimation is applied to the particular problem of

estimating the time history of a re-entry vehicle's position, velocity and ballistic

coefficient from radar measurements of range, elevation, azimuth and range rate.

The resulting algorithms have the following properties:

1) Conceptually simple and easy to implement on either
general purpose or special purpose computers

2) Noniterative

3) Storage requirements independent of amount of data

4) Extremely fast; capable of real time operation

5) A finite memory span; that is, can act like a "sliding

arc" algorithm.

Explicit formulae are provided along with general discussions on the basic concept.

Accepted for the Air Force
Stanley J. Wisniewski
It Colonel, USAF
Chief, Lincoln Laboratory Office
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ALGORITHMS FOR E-TIIMATING A RE-ENTRY BODY'S POSITION,
VELOCITY AND BALLISTIC COEFFICIENT IN REAL TIME

OR FOR POST FLIGHT ANALYSIS

1. INTRODUCTION

This report presents explicit computational algorithms for reducing radar

observations of range, azimuth, elevation and range rate to an estimate of the time

behavior of a re-entry vehicle's position, velocity and ballistic coefficient (or

weight-to-drag ratio, fl). The algorithms are conceptually simple and computationally

very fast. Computer storage requirements are small and independent of the amount

of data processed. Iterative techniques are not used. The algorithms can employ a

finite effective memory span. Thus knowledge of the exact equations of motion and

an assumption of constant p are not required as slow variations in P can be tracked.

The algorithms are for real time data processing. Their high speed also makes them

desirable for post-flight analysis when large amounts of data are to be processed.

Implemented on appropriate computer hardware, they enable fruitful man-machine

interaction.

The algorithms are recursive in nature and the basic concept is not new.

Reference 1 states it; Refs. 2 and 3 analyze its behavior for certain situations;

Ref. 4 contains a tutorial discussion on the linear theory which underlies it; and these

references are only samples; see for example, Refs. 5 and 6. The basic concept is

presently being used for estimating position and velocity from range, elevation and

azimuth observations in the real time system for the Tradex radar on Kwajalein. *

The Kwajalein algorithm employs a useful type of approximation which we also discuss.

The purpose of the present report is simply the collation of the existing material into

a form more directly suitable for implementation. Hopefully our presentation combines

formula and concepts almost ready for the programmer's pencil with generalities

* This application of the basic concept was developed by Ken Ralston of Lincoln Lab.

independently from the studies reported in Re fs. 1 - 4. His work provided the
motivation for this report.
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sufficient for understanding both the concept's power and its shortcomings.

Notational requirements cause many of our equations to appear rather foreboding.

Therefore we preview the simplicity of the resulting algorithms by giving Fig. 1. 1,

which is a verbal flow diagram for one of our algorithms. (The same diagram

expressed in mathematical symbols is given in Sec. 5, Fig. 5. 1.) The weighting

matrices are defined by recursive equations capable of real time numerical solution.

In a special case of practical importance, explicit, closed form expressions for the

weighting matrices are given.

An obvious and important question is; how does the accuracy of a fast, simple

scheme such as Fig. 1.1 compare with say an iterative solution of the Maximum

Likelihood equations? In this report, we do not address this question as it requires

the fairly advanced mathematics used in Refs. 2 and 3. However some answers are

known. Under certain conditions which often occur in practice, our algorithms are

as efficient as Maximum Likelihood. These conditions are listed in Sec. 3. Under

more general conditions (albeit Gaussian errors), the iterative Maximum Likelihood

approach intuitively seems to be better, but mathematical proofs of such intuition are

not available.

In Sec. 2 we go through some preliminaries and in Sec. 3 present the two basic

algorithms. Approximations for a special case are considered in Sec. 4. Various

computational aspects are covered in Sec. 5 with a final discussion given in Sec. 6.
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Old estimate of position, velocity and p New observation of range, azimuth,

given all past observations elevation (and range rate)

I _

Numerical Integration Forward
to Time of New Observation

Convert to
Radar Coordinates

Subtract 1

I Multiply by Weighting Matrix

Coordinate Conversion

New estim te of position, velocity and p

Fig. 1. 1 Flow diagram for one algorithm

(see also Fig. 5. 1) .
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2. PRELIMINARIES

We cryptically present some definitions and formulas which will be used in the

later developments.

2. 1. Basic .x-d-

For the present, we assume the re-entry body is moving in a known force field on

a trajectory that is completely specified by a parameter vector consisting of seven

elements; the six components of position and velocity at some instant of time and 13,

the weight to drag ratio. Let the vector p(t)

PI(t)!

jp2(t)
P3 (t)

p(t) = p4(t)

p5(t)

p6 (t)

denote the body's position and velocity in a cartesian, inertial, earth centered

coordinate system where pk(t), k = 1, 2,3, are the position components and pk(t),

k = 4,5, 6, are the velocit, components. The time behavior of this vector is governed

by the vector system of differential equations

d p(t) = 
(2.1)dt - t)e t

where the elements of the vector f are given by
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fk[ p(t),t]P=k+ 3 (t) k= 1,2,3

(2.2)

fkI p -(t), t]= 2 2 2 3/2 + t k = 4,5,6

[P2(t)+P2 (t)+P32(t)] 3/2

where P is the gravitational constant and dk(t)/P is the acceleration due to drag

given by

k(t) Pk(t)[p 4(t) + P5(t) + p6(t)]l/ P(t)

(3 2 W/Cd A

where /3 = W/CdA, p(t) is the atmospheric density and pk(t), k = 4,5,6 are the

inertial velocities corrected to account for the atmospheric rotation.

Define the object's position and velocity at time t relative to a radar on the

earth's surface by:

r(t) range

0(t) azimuth

0(t) elevation

i(t) range rate

6(t) azimuth rate

.(t) elevation rate.

Further, define the seven dimensional vector w(t) by
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r(t) Wz(t)

0(t) w3(t)

0(t) wv3(t)

w(t)= i:(t) = w4 (t)

0(t) wrt)

4(tw) w(t)
6

a (t) w 7(t)

where

p(t)

Knowledge of w(t) at t = tn combined with Eq. (2. 1) enables the calculation of w(tn+l)

for any value of t+ 1 . Define

W(tn+l) = I [w(tn), tn+1 , tn  (2.3)

as the corresponding function. The evaluation of Eq. (2.3Y]Lcan be done by:

1) Conversion of r(t ), Ot n), 0(tn ), i(t n), 6(t n), d(t n ) to inertial coordinates

P(t n )

2) Numerical integration of Eq. (2. 1) from t to tn+l to get p(tn 1n -n+1
3) Conversion of p(tn+1) back to radar coordinates

4) Evaluation of P(tn+I) - P(tn) from a model atmosphere.

The reasons for our choice of the coordinate system w(t) and in particular, the

definition of a(t) will become evident later on. We discuss in Sec. 5 the use of other

coordinate systems and methods of calculating Eq. (2.3).
0

Define e [ tn , tn, w (t m)] as the 7 by 7 matrix formed from the partial derivatives

of the elements of w(t n ) with respect to the elements of w(t m), evaluated for w(tm) =

6



w (tm). Thus,

Fwi (tn) Ow1 (tn )

3Wl(t) aw 7(t)

Oft ,t ,w 0 (t )i= (2.4)

aw(tTa(tn) /
P.l 7 (tm)

SwV1 (tm) aw 7 (t )

W(tm)=w°(t m
-i - m

Let the q-dimensional vector Y(tn) denote the observation made by the radar at

time t . Assume
n

ytn)=Hw(tn) + v(t) (2.5)

where H is a qX7 matrix and v(t n), n = 1,2,..., is a sequence of zero mean vector

Gaussian random variables with

0 n~m

E[v(tn )v I (t )] =

Q(t ) n=m

where the prime denotes transpose. To illustrate the use of this model consider the

case where at times t , n = 1, 2,..., the radar measures range, elevation, azimuthn 2 2 22

and range rate with stationary, independent, errors of variations , U0, o a. r,

respectiveli. Then

q=4
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1 0 0 0 0 0 0

0 1 0 0 0 0 0

H 0 0 1 0 0 0 0 (2.6)

0 0 0 1 0 0 0

a 0 0 0
r 2

! Q(t )=Q= 2 ' (2.7)

0 0 0 0'.
rl

Correlation between the errors (say between range and range rate errors) are handled

by "filling in" Q(tn).

Define

V(t/m 2 , in): The estimate of w(t n) made from y(tk),

k=m 1 I•... M 2

w(tn/m): The estimate of w(tn) made from Y(tk),

k=l,...,m •

The purpose of this report is the presentation of computational algorithms for

V W(t n/m2, m) and r(t n/m). An estimate of a(tn ) of course provides an estimate of

and we often refer to &(t ) as an estimate of 8.

2.2. Estimation for Linear Dynamical System

We now change the subject and consider some results from the theory of parameter

eltimation for linear dynamical systems. Consider the system

X(tn) " (tnI tn- 1 ) X(t)n-1 (2.8)
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where 4) is a square, invertable matrix. Assume we make- the observation z(tn) of

the form

zi(t n=Hx(t n) +v(t n

where H and v(t n are as defined and discussed with respect to Eq. (2.5). Define

X(t /n 2, i 1 ) and x(t n/m) in direct analogy with the w(t n/m 2 , mIn) and wtA/)

For the growing memory casc w-.e have the following formula:*

x(t n/n) = (t n/n-1)+.T (n/n)H'Q (t n) [z(t n) -H (t nfn-1)] (2.9)

-~ n -4(t n- -1)~ n-i/n1

+ H'Q1 (tn) H

where " -1 '" denotes matrix inversion.

For the finite memory case we have the following formula:t

-~ n n -- xtn /-,n-T1

I (n/n, n-T) {H; Q (t )[z(t_ n-Hx(t n/n-l,n-T-1]

(n 'tn-T-rQ - 1tn -T-1 )Z -T1

H x(t n-- n-1, n-T-1)]}

*These are explicitly given in Section 3.3 of Ref. 4.

tThese are not explicitly derived in Ref. 4 but the reference contains the ideas
necessary for their derivation.
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where

-(n/n, n-) = n(,t n- )I(n-1/n-l,n-r-1)I-1(tn, t n_)+H'Q -(tn)H -

- -1 )~( tn(.2

4(t (nni , tn- ) HI 1 (t ,- -,It ( ( T1

n-1, n-r-1) =)x(tn , tnl)X(tn/n-1, n-r-1)

_(tn /n-l, n-7r-I ) = -lti l -n l)n_i/n-l, n-r-l)

The preceding formulae appear complex but they actually have a simple

structure which we now unveil in hopes of providing the reader with some insight. *

Consider first the growing memory case of Eqs. (2. 9) and (2. 10). Define

T(n/m): The information matrix which
measures the amount of infor-
mation on x(t n) contained in
.(t,,), k=1,.,m

(n): The information matrix which
measures the amount of infor-
mation on x(t n ) contained in
z(t).

T(n) = H'Q-I (t n)H
-- 1

(tnt)=1  n)(n/m) tn+1, tn )

With these definitions, Eq. (2. 10) is simply a statement that information matrices are

additive; i. e., Eq. (2. 10) can be rewritten as

* Equations (2.9) through (2.12) are written in a form which leads most readily to the
nonlinear problem of real interest.
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F(n/n) = •(n/n-l)+Z-(n)

Now define

B(n/m): The information vector which
is the actual information on
x(tn) contained in z(tk),
k= 1,...,1M.

B(n): The information vector which
is the actual information on
X(t n) contained in z(t n).

B (n) = H'Q- (t n)Z(tn)

B(n/m)= I(n/m) (n/m)

-1'
B(n/m) = - (tn, tn_1 ) (n-i/m)

x(n/m) = -,(t n , tn _)_(n-1/m)

With these definitions, algebraic manipulation shows that Eq. (2. 9) is simply a state-

ment that the information vectors themselves are also additive; that is, Eq. (2.9)

can be rewritten as

B(n/n) =B(n/n-1) +B(n)

The same type of interpretation can be given to the finite memory case of Eqs,

(2. 1]) and(2. 12). Define

I(n/m 2, mI): The information matrix for
Z(tk), k = m ... , m2

11



Note that I(n/m, m) is the amount of information on x(t n) contained in z(t ) and thus

I(n/n, n) = l(n)

Then Eq. (2. 12) can be rewritten as

I(n/n, n-') = I(n/n-1, n-1 -7)

+ $(n) - I(n/n--1, n-r-1)

that is, Eq. (2.12) simply states that we add the information matrix for z(t ) and

subtract the information matrix for z(t nI-1). Define

B(n/m 2, im): The information vector
for z(tk), k=ml,...,m 2

Note

B(n/n, n) = L(n)

Then by algebraic manipulation, Eq. (2. 11) can be rewritten as:

B(n/n, n-T) =B(n/n-1, n-'r-l)

+B(n) -B(n/n-r-1,n-r--1)

which says we simply add and subtract the appropriate information vectors.

The terms, information matrix and information vector, a-e used as the

corresponding concepts can be directly related to information theory. * Reference 7

* Our information matrix is often called the Fisher Information Matrix. The term,

information vector, is not standard jargon. It is closely related to the concept of a
sufficient statistic.
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is contains complete mathematical discussions on this subject while the Appendix of

Ref. 8 contains a simplified discussion.

The information matrix has the following very useful physical interpretation,

-1I (n/m) = E {[_(tn/m)-x(t_)] [(t /m)-x(t n)] (2.13)

-1that is, I (n/m) is the covariance matrix of the errors in X(t/m). Reference 4

discusses why the algorithms of Eqs. (2.9) and (2. 10) give the minimum possible

- (n/m) under the constraint

E [x(tn/m)] = X(tn) 

An analogous interpretation can also be given -1 (n/m 2, mI).

13



3. THE ALGORITHMS

We now present the algorithms of interest. We do not derive them in any

mathematical sense, but the motivation behind their choice is straightforward.

Consider Eq. (2.3). A Taylor series expansfion about some estimate w(t n_) gives

_(tn) = *1 _(tn-1), tn.t_-1]

+O[ n tn-l, W(tn-1) ] I W(tn-l) -nV(tn]) ] .

+ Remainder terms

where 0 is the matrix of partial derivatives of Eq. (2.4). Now assume w(tn I ) - w_(t n)

is small enough to make the remainder terms negligible. It is then reasonable to use

the linear data processing algorithms of Sec. 2.2 where we make the following

associations:

x(t n - n [w(tn-1), tni, tn 1 ]

z(t n) o- y(t n) - H9 €[ tn-_ ), t n, t.-]

Nft n , tn_ ) ~ e[ t , tn. , :t~)-n-XI- n n-i11

In Sec. 2. 1, we assumed that P is constant and that the equations of motion of

the re-entry body are as given by Eq. (2.3). During re-entry, this is often a naive

assumption. However, over short periods of time, P is essentially constant* and

the body's motion is well approximated by Eq. (2.3). Therefore we handle the real

problem of interest by limiting the memiory span of the algorithms. This gives a

tracking action whereby we can follow slow variations, in say P.

* For the present algorithms, we do not attempt to estimate variations in drag due to

body oscillations. Thus, with respect to any such oscillatory effects, we estimate an
average 13.
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One basic algorithm is as follows:

'v(tn/n) = (t n/n-1) +T - 1 (n/n)H'Q - 1 (tn) [y(tn) -H(t n/n-1)] (3.2)

,(tn/n-1) = ,[(tn-l/n-I), t n tn-1l (3.3)

I(n/n) = [-t[ t'tnl W(tn- -/n-1)] I(n-I/n'l)oG-l[tn' tn-' t -- )]

-- i

+ H'Q (t)H for n-5 n (3.4)

= I(uo/n o ) for n > n

;e This algorithm is of course analogous to the growing memory formulae of Eqs. (2. 9)

and (2.10). The main difference is the "clamping" of I(n/n) at a fixed value,

Z(n /n ) for n > n . If Z(n/n) is not clamped, it goes to zero and (t /n) converges

to a single unique trajectory as n increases. This would be desired if 3 were

constant and Eq. (2.3) were exact. * The clamping action limits the effective memory

span of the algorithm and thereby provides the desired tracking ability.

The second basic algorithm is directly analogous to Eqs. (2. 11) and (2.12) and

thus achieves a finite memory span without subterfuge.

w(t n/n, n-") = '_(t n/n-1, n-T-i) +

I" (n/n, n-T){ H' Q- I (tn) [f(tn) - H (t n /n-I, n-T-i)] - (3.5)

()t l(t n, t nTr1l)H' Q -l(tn.-rl) [Y(tn_-r. I ) - H (t n.Tr1i/n-1, n-T-l)] }

* Reference 2 analyzes the behavior of w(t n/n) under these conditions for the scalar

case and gives conditions which guarantee convergence and asymptotic efficiency.
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I(n/n, n-T) =e E) (t n, t n-I)I(n-1/n-1, n--i) 0- 1 (t n, t nI) +

(3.6)

H'Q- (t)H - 01' (t n t nT 1 )H'Q- (t T1 )HE)- ~tnT 1 )

w~tIn-, -) = * [ wvt /n-l, n-'-I), t t] (3. 7)
-E~n/I'-l - n-Inn-

;7t n-I,nf-T-1)=[ =P (t/n-,n--1),t 1 ,t 1  (3.8)

where in Eqs. (3. 5) and (3.6) we have simplified the notation by writing

n rn , m [tn tm-rnV( m/,M-T -

Equation (3. 8) requires the numerical integration of Eq. (2. 1) from t n_1backwards in

time to t~ 1 This may be acceptable but if not, the following formulae can be used

instead:

i~tn--1/n1,n-T-1) = V(t T1 /n-2, n-r-2)

(3.9)

+ 0e 1(t n-,'t n-)- Iv(t n- /n-l,n-'r-1) - V(t n-I/n-.2, n-T-2)]

The algorithm requires storage of the observations, x(t k) ; k = n, ... , n-T-1 (and the

i( Ik-~k---1)if Eq. (3. 9) is used). However for most cases of interest, this

requirement does not limit the technique' s usefulness.

As stated, both algorithms evaluate *I each time a new vector observation is

obtained; that is, we relinearize as per Eq. (3. 1) with each n.-ew--, ob"servatdon. However,

in many high data rate radars, relinearization only every r thvector observation is

16



required. In such cases we can effectively combine the r, q-dimensional observa-

tions into a single 7-dimensional observation and the algorithm corresponding to

Eqs. (3.2) and (3.4) is

n

-1-
W(t /n) = (t n/n-r) + T-(n/n) {e'-l(t tk) H IQ (tkH[y(tk)-H(t /n-r)j}

-n -n£n k ~ k
k--n-r+l

(3.10)

/(n/n) = E' (tn, tn_r) (n-r/n-r) E) (tn, t r) +

n (3.11)

1 of -1tn' tk ) H'Q I!(tk ) H 0-1(tn,' Yk

k=n-r+l

where we have again simplified the E notation. Equations (3.5) through (3. 9) for the

finite memory case can be modified in a similar fashion. This reduction in the number

of relinearizations can save computer time as will be discussed in Sec. 5.

Both algorithms are recursive in nature. Initial conditions for the finite memory

algorithm of Eqs. (3. 5) through (3. 9) can be obtained from the growing memory

formulae for n = r; that is, we can use Eqs. (3.2) through (3.4) (for n 0 2T) to start0

up the finite memory scheme. The initial conditions required for Eqs. (3.2) and (3.4)

are _(tl/O) and T(1/0); that is, an aprfto'- guess on the value w(tl) and a measure of

how good the aprzort guess is. [I- (1/0) can be considered the covariance matrix of

the errors in the aprtort guess of w(t 1 ) as per the discussion of Eq. (2. 13).] If

1(1/0) = 0, then the aprfort guess is assumed to have 'Ifinite errors" associated

with it and it will not be weighed into any future estimates. However, if I(1/0) = 0,

I-(n/n) will not exist until the total number of observations, nq, (q is dimension of

the observation vector) equals or exceeds 7. There are various ways to handle this

nrohblm such as

17



1) Make I(1/0) small but not zero

2) Combine the first few observations into a single vector
observations as per the discussions of the preceding
paragraph.

The choice depends on the particular problem at hand.

In Sec. 2.2 we interpreted f "(n/n) and I- (n/n, n-T) as the covariance matrices

of the errors in the estimates, Z(t /n) and x(t /n, n-T). The errors in the estimates

;i(t n/n, n--) can be similarly interpreted in terms of 1 -1(n/n, n-T) of Eq. (3. 6)

provided:

1) The estimate errors are small enough so that the remainder terms
of Eq. (3. 1) are truly negligible and

2) P is "nearly" constant and Eq. (2.3) is a "good" approximation

over the memory span.

The relationship between the errors in _(t nn) for n at n and I (n/n ) have not

yet been investigated but under the above two conditions, they should be "in the same

general ball park."

The two conditions of the preceding paragraph are, of course, the conditions

which lead to the choice of the algorithms themselves. When the conditions are not

satisfied, it is very difficult to perform explicit error analyses but the algorithm

performance should degrade gracefully as the conditions are violated. If the algorithm

fails, it will probably be due to one or a combination of the following factors:

1) An incomplete error model; i.e., the neglect of error sources
such as bias errors or correlations

2) Insufficient data; i. e., good estimates are impossible using just
the observations made over the memory span

3) Bad initial conditions.

The recusiva sche.:e can be modified to handle a more extensive error model. The

18



problem of insufficient data can be solved by buying a more expensive radar. If the

choice of initial conditions, v(t1 /0), is poor, the algorithm may search around for a

while until it locks on to the trajectory. If !(tI/0) is very bad, it may fail to lock on

at all. For post flight analyses this is no problem as different initial conditions can be

tried. * For real time applications, failure to lock on must be avoided and, if

necessary, an auxialiary algorithm used to provide satisfactory initial conditions.

Our use of terms such as "transient," "search," "lock on" and "track" is

deliberate as the algorithms are directly analogous to a feedback control system

(or servomechanism) designed to track an input signal and its time derivatives. This

anplogy is mentioned as the author has found it to be a valuable aid.

For example, an initial transient can be removed by feedback of the E(t nn)

obtained after lock on.

19



4. A SPECIAL CASE

In Sec. 3 we gave the algorithms in a general form. We now restrict interest to

a special case and introduce some approximations of the type found in the Kwajalein

algorithm. This enables certain closed form expressions which greatly reduce

computation time and complexity. In addition, some of the behavioral properties of

the algorithms can be displayed.

Assume we observe range, elevation, azimuth and range rate and that the errors

in these observations are independent of each other and are stationary. Then we have

H and Q(t n) = Q as given by Eq. (2.6) and Eq. (2.7). The case where the range rate

observation is not present is included as a special case. Assume further that the

observations are equally spaced in time by A units of time. Thus

t=t + Ak
n n-k

The crucial approximation is to assume 0[ n , t_k' ,(t nk)] is of the form

1 0 0 Ak 00 A)
2

(Ak)2
0 1 0 0 Ak 0 2

(Ak)2 -
0 0 1 0 0 Ak 2y

e[t,t tk, W(tn )] = 0 0 0 1 0 0 nki r  (4.1)

0 0 0 0 1 0 Aky0

0 0 0 0 0 1 Aky

0 0 0 0 0 0

20



where

Yr _ n-k n-_k  n _k)

= V(t nk) (t -k) Cos [ (tk)]

%- % k) (t k)

2 2 2 '2( 1 2( C2-(v (tnk)= r (tn k) + r2(tnk) (tk) + (t n k) cos (tnk)]

It is easily seen that the ' ry and 'y are simply the coefficients that split the

total acceleration due to drag into its respective, r, 0 and 4) coordinates.

The motivation behind the choice of Eq. (4.1) is as follows. Consider a small

variation, 6 w(t+Ak), in w(t+Ak) due to small variations, 6 w(t), in w(t). Then to a

first approximation

6 w(t+Ak) = e(t+Ak, t) 6 w(t)

where we have again simplified the e notation. Now consider the range coordinate.

Equation (4. 1) states,

(A)2
6 r(t+Ak) = 6 r(t) + Ak 6 i(t) + (Ak)-  6 a(t)

2 r

that is we have made the approximations

ar(t+Ak) = 1
Br(t)

ar(t+Ak) Ak (4.2)
81(t)

ar(t+Ak) (Ak)2

aa(t) = 2 'r
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and in addition, have neglected the effect of the perturbations, 6 0(t), 6 0(t), 6 0(t)

and 6 4(t). These perturbation effects are dropped because the corresponding partial

derivatives are small; a valid step provided the corresponding perturbations, 6 0(t),..

are not too large. The incorporation of (Ak)2 bphavior only with respect to 6 a(t),

is motivated by the assumption that in practice, 6a(t) will be relatively large.

Equation (4. 1) models variations in a(t n) as constant. Section 5 discusses the use of

exponential atmospheres and Eq. (5.2) can be used to check this approximation.

The r , yo and y are time varying quantities but in many applications, they

will be essentially constant over the memory span of the algorithms. Thus we make

the additional assumption that they are constants, denoted by yr , yo, 7, and let

O(t n , tn k) denote the corresponding version of Eq. (4. 1). With this final approxima-

tion, it is possible to obtain closed form analytic expressions for i 1(n/n) and

I- (n/n, n-r).

Under our various assumptions,

!(n/n,n-r+i) = T(T/)

Thus we need consider only -1(n/n). Equation (3.4) can be written as (for n5 no)
0)

n-1

$(n/n)= 1 0 (tn t k)H'Q -1HE (tn, tnk) . (4.3)

k--O

Evaluation of I- (n/n) proceeds easiest by use of the orthonormal polynomials defined

by

X 0 2(kA) 2
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1 12 2_

a1= n 10 2-1)(n-2)

2 A)= 2 "9 2+.)2 (n -) n 2
2 n(nl) (2_4) 0 6

of

where

e
n-1 I j=j

I X(kA)k j(kA) = (4.4)

k=0 0 i#j

These orthonormal polynomials are discussed in many places, see, for example,

Refs. 9 and 10 (which are orthonormal over k= 1,..., n). Define

ed
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010

0 1

o~ ~ >1 o0I

0 000

o 0 0 00 0

I I x
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1(n -1)A y rA (n -1)(n -2)
1002 00 12

0( 00-1)LA 0 yO (n -1)(n -2)

2 12

o o1 02 12

D= 0 0 0 1 0 0 V )
2

y (n -1)A
o 0 0 0 1 0 2

o 0 0 0 0 0 1

Eq. (4. 6)

Then

(tn ,tn -k ) ~ 47

Substitution of Eq. (4. 7) into (4. 3) gives

1- (n/n) =DI D? (4.8)

where

n-I

IA= A(kA)H'Q 'HA(kA)

k=0
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Equations (2.6) and (2.7) for H and Q, and the orthonormal properties of the A (kA)

Eq. (4.4), result in TA being a diagonal matrix with main diagonal elements, I

given by

nr,, = 2
0T
r

n
1.22 = 2

60

n
T33-= 2

(4.9)

A2n(n 2-1) n
I44 2 +-

12a a.
r r

A 2n(n 2 -1)
-55 12 2

1ao

SA 2n(n 2 -1)
66 122

2 0 22 2 2
2A4 n(n 2_l)(n2 -4) + rA n(n 1)

-77 720 2a. 12
r

where

2 2 2
2 Yr IY 7y

S -+ -2 + - (4.10)

ar 00 0 (P

Since the inversion of diagonal matrices is considered to be trivial, the calculation of

the final closed form expression for I- (n/n) now proceeds directly by doing the

matrix multiplication of Eq. (4.8) using Eqs. (4.6) and (4.9). In order to display the
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result in a relatively simple form, we partition zl (n/n) as

A A A

App pv ApP

I-(n/n)= A' A A (4.11)
pv vv v3

A' A' A
p18 vp 131f

where

A 3 X3 matrix corresponding to the position coordinatesPP

9) A 3 X3 matrix corresponding to the velocity coordinates

A 99 1 Xl matrix corresponding to the a(t) coordinate

and Apv, A pp Avp are the resulting off-diagonal matrices. Define

Yr
r= YO

Then

2 ~2A2r + (n-1) A0 
0

n 4T44

0)

A = 0 n 0 + A (n-1) (n-2) IT
pp n(n+l) 144177)f

2T(4 -2 )

0 0 n(n+
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o o2/44

602

= 0 2  3 n-)2(n-2)pv 0 An(n+i1) 0 + 24177

60
2

0 0 0
An(n+I)

A p

12,77

4 0 0

1 22

0 (n-I)2 A2
VV A n(n-1) 77

I2
o 0 

L 
A2 n(n -1) 2

A Lr.(r-1)A r
v# 2/77

177
1
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Note that Eqs. (2. 6) and (2. 7) give

11 0 0 02
0*

r
100 12 0 02

0'0
0

1
0 0 0

-1
H'Q -- 0 0 0

2
0'°
r

0 0 0 0

o 0 0 0

o 0 0 0

Thus the 4 X7 matrix I- (n/n)H "Q can be calculated by inspection from Eq. (4. 11).

This 4 X7 matrix can then be substituted directly in Eq. (3. 2) to completely specify

that algorithm. The necessary expressions for the algorithm of Eq. (3.5) are obtained

in a similarly easy fashion.

The case where only range, azimuth and elevation are observed can be obtained

from our expressions for T I(n/n) simply by letting a -- co . When this is done,
r-(n/n) develops many more symmetries.

The approximation of Eq. (4.1) and the constancy of the r' 'y0 and y are valid

assumptions over only short periods of time. Thus if their consequences are to be

used, the effective memory span (r or n ) of the algorithm cannot be allowed to

become too large even if P is constant and the equations of motion are known over

longer periods of time.
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The approximation of Eq. (4. 1) is also useful in the insight it provides on the

performance of the algorithms. Assume, as per the discussions of Sec. 3, that

conditions are such that -I (n/n) represents the cova-iance matrix of the errors.

An instructive case occurs when doppler is not present and the re-entry body's

velocity vector lies entirely in the radial direction to give -y = = 0. For

simplicity we also assume n >> 1. Then Eq. (4. 11) reduces to
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An important question is the performance of our algorithms if we use them out-

side the atmosphere where we actually should not try to estimate .3. Such a procedure

would alleviate the need for an algorithm change as the re-entry ocLurs. The resulting

degradation can be measured by repeating our analyses for the case where 13 need not

be estimated. The result is as follows; if we use our algorithms exo-atmospherically,

we unnecessarily degrade the range accuracy by 4-9/4= 1. 5 and the range-rate

accuracy by 41 192/12 = 4. The amount of degradation can be somewhat misleading

as we are estimating the range and range rate at the time of the last observation and

at this point, the range-range rate estimate errors are highly correlated. The picture

changes if we compare the errors in the estimates of range and range rate as calculated

at the midpoint of the memory span; that is, if for the finite memory algorithm, we

consider the errors in r(t /n, n-T) and i(t /n, n-') where t = t + AT/2. Thismm m n-T

is the case of interest in post flight analysis. At midpoint, the range-range rate

estimate errors are uncorrelated; the degradation in rarge is still 491-4 = 1. 5;

but there is no degradation in range rate accuracy. These results are taken from Ref.

9 which contains curves showing the effect of the degree of polynomial and point of

estimation on the errors in parameter estimates. These curves are applicable m the

special cases under discussion. Note that our comparisons are for the special case

Yo = = 0. It is seen from Eq. (4. 11), that if instead, yr = 0, -y P- 0, y0 0, the

estimates of range and range rate are not effected at all by the 13 estimate. In this

sense, our comparisons are for the worst case.
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5. COMPUTATIONAL ASPECTS

The two basic algorithms were giver in Sec. 3. For completeness, we give the

corresponding flow diagrams in Figs. 5. 1 and 5.2. It is seen that Fig. 5. 1 is merely

Fig. 1. 1 expressed in terms of mathematical symbols instead of verbal descriptions.

The coordinate conversions indicated in Fig. 1.1 are not explicitly shown as the w(t)

coordinate system is based on rdar coordinates and multiplication by the matrix H

performs the necessary coordinate conversions.
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Old estimate New observation

Forward to t

Calculate

y(t n) -Hw (t n n-1)

(See Sec. 4 for

special case.)

Fig. 5. 1 Flow diagram for Eq s. (3. 2) - (3. 4).
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Old estimate New observation

_-n.1/n-l,nT-l) Y(tn)

0

__ 

4, 1.
Numerical Integration Numerical Integration Storage for

X(tn)

nnForward to t Backwvard to tYtn

(or use Eq. (3. 9)) , (tnT)

Y-(tn-1

Calculate Calculate
y(t n)  H (n /n-l, n-T-l) Y-(tnT_ 1) H _(t n.T_1 /n-1, n-T-1)

Do Additions and I 1(n/n, n--), etc.

Multiplications of Eq.(3. 5 (see Sec. 4 for special
case)

New estimate
i(L n/n, n-T)

Fig. 5. 2 Flow diagram for Eqs. (3. 5) - (3. 8)
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These algorithms are not quite ready for the programmer's pencil in that certain

questions of implementation can only be resolved using the particulars of the actual

problem. We now give a conglomerate of discussions relating to such mundane, but

very important questions.

We have presented two different algorithms. The algorithm of Eqs. (3.2) through

(3.4) is the easiest to implement and requires the least amount of computation time,

but it is basically an ad hoc procedure. The algorithm of Eqs. (3.5) through (3. 9) uses

a chosen finite memory span but this advantage is obtained at the expense of a more

complicated algorithm which requires some storage and an increased computation time

which may or may not be important. Obviously the choice between the two algorithms

depends on the problem of interest. However, for "scientific" post flight analyses, the

preciseness of Eqs. (3. 5) - (3. 9) appears to override any computational disadvantages.

The parameters n and T determine the effective memory span of the algorithm.0

Let T be the maximum time interval over which P is essentially constant and

Eq. (2.3) is a good approximation. Let T 2 be the maximum time interval over which

the approximations of Sec. 4 are valid. Let T = T 1 , or T = min {T 1 , T 2} depending on

whether or not the equations of Sec. 4 are used. It might be considered reasonable to

choose memory spans corresponding to T. However, the problem can rarely be so

easily resolved. First of all, T is difficult to specify as models such as a constant

or approximations a la Sec. 4 almost always fail gradually; that is, a small increase

in T means the model and approximations are only slightly worse. Secondly, even if

T were specified, a longer memory span might still be desirable to increase the ability

of the algorithm to smooth out the effects of measurement noise. Thus compromises

between the effects of model and approximation errors and the effect of the measurement

errors might be required- A third complication is the presently unknown relationship

between n and the effective memory span of the algorithm of Eqs. (3.2) - (3. 4). A0

final difficulty is the altitude and geometry dependence of T. Thus even for a given

re-entry, no single value of n or T need be optimum for the entire flight. The0

overall outlook, however, is not really so dismal as the memory span is an easily
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varied parameter and good val,,es can be learned through experience. A pre-

programmed memory span dependence on altitude and slant range is easy to provide.

Furthermore, in many instances the ultimate in accuracy is not needed and overly

conservative (i. e. small) memory spans are acceptable. If the ultimate is desired

for post flight analysis, a man can monitor the results of repeated processing to see

which memory span works best and make the appropriate adjustments.

The matrix, Q(t n), is fixed by the observation error distributions. Time

variations in Q may arise in various ways; for example, when the signal-to-noise

ratio is used to measure the variances of the observation errors. Note, however,

that it is the relative magnitude of the various elements of Q that is important, not

their absolute value (unless 'I (n/n) is to be associated with the estimate errors).

For many applications, a constant Q will be satisfactory.

The algorithms are based on the assumption of white observation errors; that is,

statistical independence in time. This is often not true as, for example, range and

angle tracking loops may be incorporated within the radar itself. If the memory span

of the algorithm is sufficiently long compared to the erro:" correlation time, little

harm is done although 1 (n/n) is then no longer the covariance matrix of the errors.

However, it is often advantageous to simply feed the algorithm with observations

taken far enough apart in time to be "effectively" uncorrelated. If these time intervals

are different for different observation coordinates such as range and angle, the ideas

behind Eq. (3. 10) can be used. Alternately, the values of Q can be modified to

correspond to an "equivalent" white noise process.

Our algorithms estimate the body's state, w(t at time t given the observations-- n
t up to time t . For post flight analysis,estimates at a time, tm , in the middle of the

nm

memory span are of more interest. w(t M/n) can be calculated from w(tn/n) by

numerical integration backwards from t to t . However, the algorithms can ben m

modified to provide midpoint estimates directly.

* See, for example, Ref. 11 which discusses the asymptotic efficiency of least

squares processing (i. e. a white noise filter) in the presence of correlated errors.
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We have presented algorithms that estimate the re-entry body's position and

velocity in terms of radar coordinates and a(t n), i.e. the w(t n ) coordinate system.

The choice of radar coordinates was made for several reasons. No coordinate

conversions of the raw data are required. This is important in high data rate radars

when the number of relinearizations is reduced using the ideas of Eq. (3. 10). It also

simplifies the incorporation of range rate and gives a simple form for Q. Finally,

the residuals between the observations and the smoothed trajectory are automatically

available and they are important in post flight analysis. However, these advantages

might be overweighted when the approximations of Sec. 4 are used as Eq. (4. 1) might

be a better approximation in, say, an inertial coordinate system than in radar

coordinates. If estimation in a nonradar coordinate system is desired, the algorithms

can be appropriately modified by simply considering the coordinate converted radar

observations as the actual observations. The evaluations of the corresponding Q (tn)

can be done using the well-known partial derivatives of the new coordinate system

with respect to the radar coordinates. * If range rate observations are to be used, one

approach is to do the coordinate conversions using an elevation and azimuth rate

calculated from the past estimates and then remove their effect by assigning these

"fake" observations infinite error variances.

P(t )
We estimate a(t n) = rather than # where p(t n ) is the air density. This is

valuable at high altitudes where p(t) - 0 as it keeps various "gains" from "blowing

up." It has another advantage in that a simple exponential atmosphere may prove

satisfactory for the actual processing. For example, if we use the model

* The Kwajalein algorithm estimates position and velocity in an x, y, z system without

appropriate modification of the Q matrix. However, since range rate is not used and

p is not estimated, it can be proved that this does not degrade the performance of the
algorithm. Unfortunately a proof, although straightforward, is not available in the
unclassified literature.
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h(tn )

h
P(tn) - poe 0 (5.1)

30

ty where p and h are scale factors and h(t ) is the height of the body above the Earth

at time t , then
n

ht . h(t) h(tn-) 1
L h

Q!(t) = O(tn-l)e (5.2)
ms

Because of the tracking nature of the algorithms, Eq. (5.2) need be valid only over

the memory span of the algorithm and the value of p need not be known. A pro-

grammed variation of h with altitude could also be included. Of course to estimate
0

e from a(t n), a standard atmosphere should be used. (This use of an exponential

model is especially fruitful in some real time applications where P itself is just a

nuisance parameter.) However, the decision to estimate a(tn) is not sacred and can be

modified to estimate P3 or some other function of P3 if the need arises. For example,

a mach number dependence might be incorporated.

We discussed the evaluation of Eq. (2.3) in Sec. 2 using numerical integration

in an inertial coordinate system. However, in practice the choi - - of this coordinate

system depends primarily on the programmer's whims. Furthermore, because of

the algorithm's tracking action, the model for Eq. (2.3) need be valid only over the

algorithm's memory span. Thus analytic approximations to these equations of motion

may be acceptable in place of any numerical integration. This argument is analogous

to that used for the exponential atmosphere.

The discussions of Sec. 4 are not the last definitive word on error analysis but

they indicate that, in many applications, it will be satisfactory to use our algor.Lhms

outside the atmosphere. However, if desired, we can employ a preprogrammed
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algorithm change to begin estimating P at some predetermined altitude. The position

and velocity estimates obtained exo-atmospherically furnish the initial conditions for

this re-entry phase. The algorithms for estimating just position and velocity exo-

atmospherically are an obvious special case.

In Sec. 4, we presented an approximation to E[ ( n' ti w(t m)]. Although this

approximation appears to have a wide range of application, situations may definitely

occur where a more accurate evaluation is required. There are several ways to

proceed. More accurate analytic approximations can be developed. Exact analytic

albeit complex, formulae are probably possible assuming an exponential atmosphere.

lhe most general approach however, is the use of numerical techniques and of the

various possibilities, the following appears to be the most satisfactory. In concept,

at least, we can write the 7-dimensional vector system of first-order, nonlinear

differential equations

dd-' VVjt) = [w(t), t]

where the elements of a, gk[ w(t), t], k = 1, ... , 7 include dependence on the atmospheric

density, earth rotation, etc. Define the seven by seven matrix

ag1 [ w1(t), t] ag1 [ w(t), t]

awI(t) .w 7 (t)

0
B[ w (t),t] =

ag 7[ w(t), t] ag7[ w(t), t]

awI(t) .w 7(t)

where the partial derivatives are evaluated for w 0.(t) as calculated from w(t m). Then
we have the matrix differential equation
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d Of t, tm' W(to [ w (t), t] Of t, tm' W(t )A
dt r-r rn-r

with the initial conditions

Of tin, tin, W(t m)] I

which can be solved by numerical integration from tm to t . * - 1 [t n' tin W(t m)] can

be found by numerical matrix inversion or by integrating backward from t to tn m
For the general cases not covered by Sec. 4, the I(n/n) matrix can be numerically

calculated by the recursive formula, Eqs. (3. 4) or (3. 6). Numerical matrix inversion

is required to obtain I- (n/n). There are various ways to reduce the computation

time required, see for example the discussions in Appendix A. 7 of Ref. 4. The
th

number of matrix inversions can be reduced by relinearizing only every r vector

observation as illustrated by Eq. (3. 10).

I(n/n) of Eq. (3. 4) becomes constant for n > n . Similarly, in many cases,0

I(n/n, n--) becomes essentially constant. In some applications, it might be acceptable

to simply precalculate these constant values and just use them in the algorithms. This

introduces additional transients into the system but they may not be important.

Similarly, in the special case of Sec. 4 it might be satisfactory to merely use the for-

mulae for the case where n >> 1 which simplifies the expressions.

• In practice, the integration would probably be done in inertial coordinates and then

converted into the w(t) system.
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6. DISCUSSION

The algorithms of this report have not yet been programmed and used. However,

the basic underlying ideas have been proven to be sound by analysis, simulation and

field application. The approximation of Sec. 4 is physically reasonable and leads to

an intuitively satisfying system. We therefore feel the algorithms are ready for

implementation using the approximations of Sec. 4. Questions such as memory

length and actual performance are best resolved by running the algorithms.

We have purposely addressed ourselves to a very special problem, namely the

estimation of seven parameters, position, velocity and P3 from a single radar.

However, it is obvious that the theory is actually applicable in a far more general

context. By introducing some more coordinate conversions and allowing variations m

the matrix H, the technique can be used equally well for multiple sites, each with

different tracking abilities; for example, the combination of Baker-Nunn and radar data.

In addition, many other parameters can be included in the model such as radar bias

errors, station location errors and more complex parameterizations of the body's

motion. These various extensions can be implemented directly using the numerical

techniques of Sec. 5 to evaluate E and T, but by some diligence, it is probable that

simplified analytic approximations such as those given in Sec. 4 can also be developed.

In fact, extension to a parameterization of a time-varying 6 such as

P

jul

where the are considered unknown parameters requires a fairly trivial analysis

provided the orthonormal polynomials of Sec. 4 are employed. The same is true for

the incorporation of coherent range acceleration and the estimation of lift forces. In

addition, if good doppler is available, it presently appears reasonable to estimate
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body oscillations by modeling P3 in terms of a sinusoid of unknown frequency. * The
th

basic recursive schemes can also be generalized to handle a order Markovian as

well as white observation noise.

A critical parameter of the data processing algorithms is the memory span as

determined by n or 7. We have discussed the use of a preprogrammed altitude0

dependence for varying these quantities and also the use of a men to determine the

best values in post flight analysis by repeated processing. However, the most

interesting and powerful approach would be to use the radar data itself to determine

the memory span. The basic tenets of such a technique are already known and are

applicable not only to memory span control but also to problems such as an automatic

transition from an exo-atmospheric to a re-entry algorithm. The analysis of the

technique will be helped by the analogy, mentioned in Sec. 3, between the basic

recursive algorithms and feedback control theory. As with most nonlinear control

systems, simulation on a computer complex capable of ,nan-machine interaction

will probably be required. This may be an area of future research.

• Recursive techniques similar to those of this report exist for estimating an unknown

frequency. A Lincoln Laboratory report, "Computationally Feasible Frequency

Estimates in the Presence of Unknown Phase and Amplitude" by L.A. Gardner, Jr.,

is presently in preparation.
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