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ABSTRACT

One- and two-space dimensional finite-difference schemes for the lagrangian
numerical solution of problems in the motion of solids, including material
strength, are presented. Two~dimensional rectangular cartesian or cylindri-
cally symmetric problems may be handled. Results of sample calculations are
appended to illustrate the effect of material strength.
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SECTION I
INTRODUCTION

Solutions of problems in one- and two-dimensional
(rectangular cartesian or cylindrically symmetric) fluid flow
have been cbtained by numerical integration using high spced
digital computers. Such methods have been used widely to solve
problems of dynamic deformation of solids due to high speed im-
pact or due to detonation of high explosives. The assumption
implicit in such an approach is that material strength may be
neglected in comparison with the high pressures attending such

motions.

Experinental e¢vidence on craters resulting from very
high velocity particle impact: and on the response of plates
impacting at high vclocity:indicates that material strength
does influence the behaviour, even at high pressures and strain
rates. Aa attempt has been made to incorporate material strength
in a two-dimensional Lagrangian numerical integration scheme.
During the course of this study, two similar studies were re-
ported. The present work is essentially similar to that of
Wilkins and Giroux’in most essential features. The scheme of
Maenchen and Sack’is based on a different method of obtaining

finite difference analogs.

The relevant differential equations have been



collected. These are developed into finite difference equa-
tions by the application of Green's Transformation. Results
of a few sample calculations are included to demonstrate some

of the qualitative effects of material strength.




SECTION II
DIFFERENTIAL EQUATIONS

2.1 Tensor Equations

The governing equations are the differential equations
following [rom the principles of conservation of mass, momentum
5
and energy. From the principle of conservation of mass follows

the continuity equation
pdv = p, dV 2.1

where p is the density of the deformed volume element of ma-
terial dv , and p, the initial density of the undeformed
volume element of material 4V . The differential form of the

continuity equation is also useful.

f; +Pd:=0 2.2

vuere the superimposed dot denotes the material derivative, and

d} is the stretching tensor defined by dtj = Ui,j) - Here

ut = x' is the velocity and the comma denotes the covar-

iant derivative.

The equation of motion follows from the principle of

conservation of momentum



k k (km)
P Q = f f + f y™m
2053

t[k—] = 0

k 0 . . k , A
where a = U * is the acceleration, f the extrinsic

g k c 7
(e.g. gravity) force and t = is the (symmetric) stress tensor.

The principle of energy conservation and the definition

of internal energy lead to the energy equation
p& -t A, kb s paQ 2.4

where & 1is the internal energy per unit mass, h* is the

heat flux vector and @ the (chemical or other) energy supply
per unit mass. It is more convenient to resolve the first term
on the right, representing the stress work, into spherical and

deviatoric parts. Writing
i g t 5 k dt k
tm = 3 ti ™~ i ™~ 2.5

where the superscripted d denotes the deviator, and similarly

for d,':, , we have




2.6

Writing p = -56 t: where p 1is the pressurc, and using the
differential form of the continuity equation, the energy equa-

ction takes the form

“oi9.

joé = p I el ‘ol,m *A",k r QA 257

These equations are supplemented by the constitutive
equation, describing the material behaviour, and the boundary

conditions, which are described later.

2.2 Two-Dimensional Equations in Physical Components

The tensor equations are expanded in terms of
physical components for rectangular and cylindrical polar co-

ordinates for two independent space variables.

In two independent space variables, we consider rec-
tangular symmetry, with no variation in quantities along the y
axis, and cylindrical symmetry with no variation in quantities

in the tangential, or O direction. The physical cquations



for both cases may be written down simultaneously by writing >
and y 1in place of r and & for the cylindrical polar case,
and defining « = | for rectangular, o« = 2 for cylindri-

cal symmetry.

The equations of motion become

ot™" Jt** pxe gy
X
pat = f’lg Y ax T oz S x
s 258
X2 22 xZ
z 2 Jt PA: o - i
pe = P£ "ox T oz 7 (- 3 ]
The velocity gradient Ui has physical components
/
u* 0 Qu“\
dx 5;:
u!
Yap = . (x-1) x 0 2.9
ou* 0 du*
. dx dz )
where a , b take on successive values x , y > z and it is im-

material whether indices are written as subscripts or superscripts

since the coordinates are orthogonal.

The differential form of the continuity equation be-

comes, directly
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2510

In order to expand the energy cquation we require the

physical components of the stretching deviator

) ! . A
dy,o= dl -3 408
’ ‘
= dF¥ + =5k
Thus we have physical components
f : 3
aux 1 £ ' a_qi é_’-{'_t
x t3p 0 Y (a * o )
o S
- . L
d(ab) (<-1)5 3 P 0
. . égz + -’- -'—é
’ 3
g Jz P)

and the energy equation becomes

€
P5T = P

z

Q.
>

Q/
0.

+Pd¢‘:’ + {;—)t—x + + (x-1) f—i}-r}oQ

QU
N

“
where the deviator stress work p & may be written

2.11

2.12

2.13



ﬁ‘é = 2 "t"‘ ‘d" T Zdtxz dd-x + 2 Jtzx szz

2.14
+ dtnr ddzz . Jtzz ‘al..
Since material particles will be followed in the
computation, the velocities and accelerations are simply
given by e oz
u" = Jt u* = ¢
2415
x Jqu* z Ju*
a - 3f a = a

2.3 One-Dimensional Equations$ in Physical Componc its

The tensor equations are expanded in terms of phys-
ical components for rectangular, cylindrical, and spherical
polar coordiuates with variation only in the X or radial di-
rection. Proceeding similarly as in the two-dimensional case,
further defining == 3 for spherical symmetry. Then the equa-

tion of motion reduces to

. - atu tl_t'l
fa. = j)f 4-;—; + (N—l) —x—"‘" 2.16

There is no rotation, and the above stress components
are principal components, which is expressed by use of a single

superscript. Off-diagonal stretching components also disappear,

and




{%.'030] X = |

d® = [ jx
d® = [ aa—,%‘ ; fl ) OJ o( =2
d* }5' ; % ;4 « =3
The energy equation reduces to
Pl pf o (R et ) a

where the deviator stress work is

p“é T LI KL LA LT LR

d,x ddx

2.17

2.19



SECTION III
CONSTITUTIVE EQUATION

3.1 Compressible Fluid

We first discuss the constitutive equation of a fluid,
which cannot support a shear stress while at rest. The total
stress t; entering the conservation equations may be expressed
in terms of a thermodynamic (elastic) pressure Lp , a dissi-

pative (viscous) pressure ¥ > and a viscous stress deviator %H

ti = =(ep +9)di % 3.1

The viscous stress tensor must be isotropic. Taking the vis-
cous stress proportional to the stretchings, we have the follow-

ing form
ch‘=>\ol,,,5‘- + 2ud; 3.2

where A and M are here used as viscosity coefficients.,

Then

g= 1 gl (A }u)dl 3.3

10



and for the deviator

d‘h‘L = 7’; * ?’5f 3.4

Using Equations 3.2 and 3.3 this reduces to

d, i =

§, = Lm "ol} 3.5

d ¢ : c . . ;
where °“d ; is the previously defined stretching deviator.

The viscosity coefficients may be ''real' coefticients,
representing the viscous behaviour of the material, if these can
be evaluated. More usually artificial viscosity coefficients are
used with specific properties to aid in maintaining stability of
*he finite difference calculation without unduly affecting the

solutionf These will be discussed later.

The thermodynamic pressure ,p is related to the
thermodynamic state ( e, € ). This relation will be taken in

the form of power series in the compression % = (,f’ ‘ﬁ»)/f’

P Ll v £ f. (p)
f' = Kk, 7 { I + k,7 + k., 7‘ + e } 3.6

/:.‘ h, {I'Ph,? +h,_71+-"‘}

A similar eauation of state is used for explosion product gases,

but with different forms of the functions fl and f9.

11



3.2 Elastic Perfectly Plastic Material

3.2.1 Tensor Equations

For a compressible material which is able to support
a shear stress while at rest, it is necessary to add a non-
dissipative (elastic) stress deviator to the previous expression

for the total stress.

t; = -(ep+’,)5ji + :t-i + ‘?'ji) 3.7

The thermodynamic pressure and viscous stresses will be formu-
lated as in the case of a fluid. Here we will consider the

elastic stress deviator.

Making the usual assumptions of plasticity theory,
modified to include large compressions? viz:-

a) The stretching can be expressed as the sum of the
elastic and plastic stretchings.

& i ¢
d; = cdj + ’dj 3.8

b) The spherical stretching (dilatation) is entirely

elastic and recoverable, which is equivalent to assuming

.
c) The elastic stress deviator is limited by the von

Mises yield condition

12



¢ =T -3y <o 3.10
where ﬂ‘ = :i’; :t: is the second moment of the stress

deviator, and Y is a material constant. It is easily seen

that Y 1is the yield stress in a uniaxial stress tensile test.

d) The plastic stretching is orthogonal to the yield

surface, leading to the flow rule

ioer 2
c . ,
where Y is an undetermined proportionality constant. For

von Miscs yield criterion, this reduces directly to

di =24

P E‘J 3.12
In view of the fact that we have assumed ’d: = 0, we may also
write the stretching deviator on the left hand side of this
equation.

e) The usual assumption of a linear relation between

elastic stress rate and stretching must be modified to allow
for finite compression. The usual assumption of an isotropic

linear elastic mediui is expressed in Hooke's Law
Tk

tj = Adl 3] «2ud; 3.13

13



where A and m are now used as elasticity (Lamé) constants,
and the supcrimposcd triangle denotes objective stress rate.
Resolving this expression into spherical aand deviatoric parts

as was done [or the viscous stress tensor,

- P

n

(A+ 3 ) df

il
J

dyi
= 24 %]

J

We now make the special assumption that the elastic deviatoric
strain, which is limited in effect by the yicld condition, always
remains small.  We arce then concerned only with small deviations
from a hydrostatic state, and ake the assumption that the ma-
terial remains isotropic. We thus genceralize the avove equa-

tions oy writing

: P
- = IS
P 2
3.15
v d gt
tht - 2 G d,{

where Ko, the bulk modulus, and G , the shcar modnlus, arc
takeir to oe [unctions of the thermodynamic state (/9,c§)-
It is of coursc more convenient to use the integrated version

ol Equation 3.15a, that is Equation 3.6, for the spherical part.
! G P P

iy




Ihe cquations nccessary to determine the celastic stress

deviator <rom the stretcehing deviator arce therceiore

g : d ¢ on 18
‘d; = d4q4° + d . (deconposition)

‘th - 26 M - -
el = &) (¢lasiic relation)
3.10
I S Y (ricld eriterion)
4/ Soap
d: = £ low r
oA /ﬂ? €5y (Llow rule)

In the next two sections the second and third
equations of the above set will be expanded into physical

components. The first and fourth equations pose no difficulty.

]

2 2% Two-Dimensional LEquations in Physical Components

Lxpanding the sccond moment ol ithe sirceos deviator in

the two-dimensional case, the nonzero terms are

win

T2 () () ) i ) 3T

15



where use has been made of the fact that the trace of a

deviator vanishes.

The definition of objective stress rate is
o0 ar
- w‘.’r t‘r 3018

where w;: is the spin tensor defined as w;:= Uy; .y . Refer-
9] P &j LL'JJ

ring to the physical components of the velocity gradient given
previously, the only nonzero component is

_a__‘-i, aul
- 3. ) 3.19

oz dx

w"=3'_'(

so that the physical components of the objective stress rate

for both rectangular and cylindrical coordinates are

J'll a:t.‘ xx d; xz d, xx

S TR AR =26 d \
d, xz

ot S TS I 2 P Y 5.2
Jt

v A‘li’u

PR L] e Xz d; xz = d, 22

ct = 5}" t 2 w et 2G Ji )

It is unnecessary to refer to principal directions in

order to determine the stress deviator. If principal components

16




and directions are needed, for example, to apply a fracture

criterion, these can be found very simply. We note that the

stress deviator matrix is

4 z
:t" 0 :tx T
dtab - 0 :f" 0
d . xz d 3%
\et 0 et /

so that one principal direction is the 'y direction with

. 4, vy . .
principal component ot and the other two principal

components are found by diagonalizing its cofactor

% Zl{(:t' + (;’t"} zﬂ;’t"- @)t . +(:t“)v} 3.71

e

where a = |, 2 respectively.

Components of the unit vectors corresponding to these principal

values are then given by

d

etll
/(:tu_ :t.)t _ (:tx:.}l'

4

NS -

3.22

17



These components are direction cosines of the principal direc-
tions. It is easily seen that the angles between the principal

directions and the x axis are

O. = arctan . 3.23

d :
where the two values of ,t *  from equation 3.2l are used.

3.2.3 One-Dimensional Equations in Physical Components

In onc dimension, the cquations are somewhat simpler

due to the absence of rotation. The yicld condition reduces to

while the elastic relation becomes.

d
Jet” 3.25

!
N
(Y
.

o

For the rectangular ( « = | ) and spherical («x = 3)

cases, che symmetry of the motion leads to considerable simplifi-

cation. Since

o R R 3.26

18




and the condition

o T LA s 3,27

e

the yield condition immediately reduces to
2
- 3 a2 z oy
Hz_i(et) g Jy 3. 28
It is thevcefore unnecessary to refer to the rest of equations
3.16 when the material is at yield. When the material is c¢las-

: ; A B : . dgx
tic, cquation 3.25 suffices to determine ot

For the cylindrical casce (o« = 2 ) cuch simplificatien
is not possible It 1s thus necessarv to solve the whole svs-
tem of equations 3.16. The elastic relation in phvsical com-

ponents becomes

g—it-‘ = 267
%Z?t' + gx—“x = 26G.d 3.29
et =26 d”
J
Itt is wnnecegsary to uce tho socond clatliun above. Using the

. : D . dy ¥
property that the trace of a deviator vanishes to eliminate t

from the yield ccndition,

19



I- 1{(:'5')‘ A LY 3 B 3.30

3.2.4 Geometrical Representation of Stress

If the stress deviator is referred to principal axes,
which in the one-dimensional case coincide with the coordinate
axes, the shear components vanish. It is then possible to plot
the stress state in a three dimensional rectangular coordinate
systemf The condition that the trace of the stress deviator
vanishes, equation 3.27, defines a plane, called the [/ plane,
with a normal which has direction cosines [ W, Wy, 2@‘).

The yield condition, equation

“Wy 3.24 defines a sphere of radius

f v } Y . Thus all attainable
1T p'ﬂnt

wﬂr/ stress deviator states are lim-

Yield Circle ited to the TT plane in a domain

within a yield circle of radius

E 4 . It is convenient

Normal

-’ .

4 to rotate the coordinate system
so that the yield circle is in
the plane of the paper, and to

use polar coordinates to deter-

[ I mine any given stress state P

in this plane.

2C




A It is immediately evident from
equation 3.24 that the radius
P vector is given by./ﬁ . The an-

HST gle between the radius vector,

and the line formed by the inter-

section of the IT plane and the

a“r St ‘“t* - T coordinate plane is
given by
»
Y = arctan (- &) 3.31
where V. 2% -t -94=
th _dtl

is Lode's variable. Using equation 3.27, this reduces simply to

dy x
t” « dt* 3.32
-y arctan /S,th = dtz

It is clear that jf ; }V and p are sufficient to define

any elastic stress state.

21
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SECTION IV
STABILITY

4,1 Artificial Viscosity

Discontinuities or shocks may develop in solutions to
the motion of perfect compressible fluids and solids. Such dis-
continuities lead to instabilities in the finite difference cal-
culation. This problem is avoided by rendering the solution
smooth and continuous everywhere by the introduction of artifi-
cial viscosity, so formulated that solutions are only affected
in areas of very high gradients, i.e.,in shock zones. Follow-
ing von Neumann and Richtmycréwe choose a bulk viscosity coef-
ficient dependent on the dilatation so that the viscous stress

is negligible in areas of moderate gradient, i.e.,
(r¢ % ) = - b p d 4.1

in equation 3.3, where #, is a constant with dimensions of

length. In some problems it is found desirable tc include a
. . S = : L.

linear viscous coefficient. Following Landshofll this is for-

mulated as

(Ae %) = b pc 4.2

22




where 4, also has dimensions of length, and c is the sonic ve-
locity of the medium. The viscous pressure can therefore be

written, with the use of the continuity equation, as

e 2
*

Y o
g = /'"fT + b, cp 4.3

Since only compression shocks are possible, ¢ 1is set equal to

zero when P <0

Experience has shown that equivoluminal oscillations
may occur in two-dimensional finite difference schemes, and a
variety of artifices have been adopted to strengthen the viscous
stress in the dircction of maximum velocity gradient. This can
be done elegantly by introducing a viscous stress deviator in a

way analogous to the introduction of the viscous pressure above.
d_ i _ 2 4 i)t dgi
§; = — 4 p () e by pe(d)) i

Again, the viscous stress may be unnecessary on expansion,

and may be set equal to zero when ‘d} > 0.
There is no difficulty in expanding equation 4.4
into three equations in physical components for the two-dimensional

case. In the one-dimensional case it is sufficient to retain

only the bulk viscosity.

23




4.2 Stability Criterion

The conditional stability of second order finite dif-
ference equations is well known® In the finite difference
scheme, quantities are sampled at discrete intervals in space
(BHx , Az ) and time (At ). The time increment cannot
be chosen arbitrarily. If the time increment is too large,
disturbances with wave lengths of the order of the mesh size
tend to grow without bound. A variational analysis of the one

dimensional finite difference equations (Appendix A) in which

solutions are sought in the form
ikx +at
du = Ju, e’ 4.5

etc. suggests that a sufficient condition for stability is

At € o 6
(ld-llaz)c r 452 ]4u]

Deviator viscous stresses have been omitted in this development,
since they are in general smaller than the spherical viscous
terms. No difficulty has been encountered on this account, pre-
sumably because equation 4.6 is somewhat more stringent than

the necessary condition.

A complete stability analysis has not been carried out
for the two-dimensional finite difference equations (Appendix B).
However, an analogous form of stability criterion has been found
useful. Note that in one dimension the continuity equation

can be written (equation 2.2)

Zh




Taking /A as a measure of mesh size, where A is the area of

a mesh, cquation 4.6 becomes

VA

ot s (1+24,)c+ 4b/A | L]

4.8

Despite the fact that /ar is not a good approximation to the
mesh size for a highly distorted mesh, the use of this equation
has not, so far, led to any stability problems. This presum-
ably arises from the fact that the error in the numerator

partially offsets the error in the denominator.




SECTION V
FINITE-DIFFERENCE ANALOGS

The differential equations given in the previous
section are to be integrated numerically. The derivative
terms are replaced by finite difference analogs to produce
a set of algebraic equations which are solved in a stepwise
manner to produce the desired solution. The principal dif-
ficulty concerns the choice of finite difference analogs

to the partial derivatives.

In one space dimension centered difference ex-
pressions correct to second order will be used. In two
space dimensions, a variety of difference analogs, presum-
ably of the same order of approximation, have appeared in
the literature. Some of these have been compared in another
report.‘o Here short derivations of the analogs which were
found to be most suitable are given. Application of these
to develop the complete finite difference equations in one

and two space dimensions is postponed to the appendices.

In one dimension, the usual approach is to use
Taylor's expansion. Consider an arbitrary quantity ¥
varying with an independent variable x (which may represent
time, or distance in one space dimension). We wish to find
the gradient of Y at a point 0 given values of Q’ at neigh-

boring points 1 and 2 finite distances from 0. Applying

26




Taylor's expansion,

d
Vl = wo +(x,-x,)a~;w + ‘a‘f(’c:"’xo) dx?* + é

5.1
'Y Y
P RS L L PR
wla wa +(x‘-x°)a—xgl + i(X,-Xoj Ix? + 6 (II'XO) PIL t
. P
Solving these for il
a
Qﬂ y;;_w’ axw é’ _ 33“/ (xa -X,) = iJ ]- 5 9
ax = X, =X - J—x_i naj ax.’ 24 2 X2 .
where un = _.{(x1+ Jt,) =26, is a measure of the assym-

metry of the mesh. If the mesh is nearly symmetric the second
order term is negligible, and if the mesh size is small, the

higher order terms are negligible, and

v b-¥ 533

It is clear that the truncation error grows as the

mesh becomes more asymmetric.

Precisely the same reasoning has been used to con-

struct a finite difference analog itoc partial derivatives in

two space dimensions. Consider an arbitrary quantity Y vary-

2 I ing with two independent vari-

ables » and z. We wish to find
the gradients of !‘/ in the xand

3 s z directions at point 0 given
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values of ¥ at four neighboring points 1 2 3 4 finite dis-

tances from 0. Applying Taylor's theorem we obtain four equa-

tions of the type

P
Yy, = v, +(x,-x,)a—;w v (2 -z,) L¥

(9}
£

*r¢ 51 5
*a-'. ["l"xo)l dx™ (X'-Xo)(zr zo} Jxal + E' (z,-z,)" a?‘;w-r

Kolsky"suggested solving this overdetermined system of equations

by first solving for ( ¥ —Q{_) and ( ¢, - !ﬂ‘_ ) giving two

equations

( w) 3:( (x,-x_,) + ;—Eﬁ-,(z,-z.,) + R:a

3¢5

(!l' 9’4) (x;-x',} * l(za"ﬁ) + Ray

where the remainder terms again depend on the assymmetry of the
mesh and the mesh size. Again, providing that the assymmetry
and mesh size are both small, the remainder terms may be neg-
lecied in comparision with the first order terms. Solving for

*ne gradients in this case

j-)—(w- B Z_-l;- {(wl--g/A'.)(z’—zJ) -(Wl—%121-2+j}

7 = I {0 hxx) - (0 -9 A )

5.6
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where
A=+ {(z -z 5 %) = (2o f 2= ) f

It is seen that A represents the area of the quadrilateral

12 34,

It is interesting to note that an identical result
may be obtained in another way. Green's Transformatica in

two dimensions may be written

[v. da = fﬁ'”z ds 5.7

A S

where n; is the unit exterior normal to the surface S er-

closing an area A. In component form this becomes

fyas =/£§"da (). A

fyax- [ da
S A

wihere the gradients have been averaged over the area A. Apply-

5.8

(30 7

ing these relations to the nquadrilateral 1 2 3 4 surrounding

point 0, we find that the average gradients may be expressed as

WLy (rn) Y ) U (520) + W (-2

o {Wa (x-x) + U5 (-3 + Yz (0 -x0) + ¥ (0 -xJ}

2" A
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where q@; is the average of Q’ over the side 1 2 etc. if we

write
Vs = 1 (¢ +¢) ete

the above equations 5.9 immediately reduce to the previous

equation 5.6.

Both forms (equations 5.6 and 5.9) will be found use-
ful in developing the finite difference cquations in two space
dimensions. It is clear from their development, however, that
the truncation error due to neglect of the higher order terms
must depend on the asymm~try of the mesh. The truncation error
has been investigated in another report, and has neen [ound to
become comparable to the terms which are retained even for mod-

erate distortions of the wmesh.
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SECTION VI
RESULTS
A [ew illustrative calculations are presented in this
section., While the results are suzgestive or the role of mate-
rial strength in plastic wave propasation, considerable work

remains (o be done, particularly on the representation of mate-

rial properties, before quantitative information can be extracted.

lesults using the one-dimensional finite difference

method for the face-on impact of two aluninum plates arce shown
in Figs.1l through 4. The configurations were chosen to cor-
. 1 .

respond to erperimental data reported by Curren. The materi-

al constants used were

o

2.78 gm cms Y = 2.76 kb

ko = 764 kb h, = 5,473 ¢ = 286 kb
ki = 1 014 h = 1.0 §1 = 5.80
ko = -.236 h, = 1.0 G, = 844
k; = -.513 h; = 1.0 %, = 0.0

Figure 1 shows print plots ol stress profiles [or a
driver plate velocitv of 1.9 km sec, while Fig. 2 shows corre-
sponding results when the vield stress is sct to zecro. Figures
3 and 4 show initial recar surflace velocities ol the target plate
upon refllection of the stress wave as a fLunction of tarcet plate

thiclness (in terms ol driver plate thickness), for driver plate

velocities of 1.9 km/sec and 1.2 ki sec respectively. Also

L
shown are experimental data of Curran, and results of the
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hydrodynamic theory of Fowles.'”

The computer solutions for zero strength (Y = 0 )
fall well below Fowles'prediction. This may be ascribed to dif-
ferences in the fit to the hugoniot, and the fact that Fowles
did not account for cntropy changes, in so far as he used the
hugoniot for the expansion instead of an isentrope. The com-
puter solutions including material strength fall well belcw the
zero strength solutions, but not surficiently to agree with the
experimental data. The remaining disagrecement may well be due
t> an increcasc in viceld strength with compression as suggested

by Curran.

When material strength is includad, it is seen from
Fig. 1 that an clastic relecase wave with an amplitude of about
15 kb moves into the compresscd material behind the shock with
the local elastic wave velocity. The cxistence of a 15 kb
elastic release wave, despite the fact that the yield stress is
taken cunstant at 2.76 kb, can be explained by referring to
Fig. 5 which chows a schematic of the clastic plastic constitu-
tive relation neglecting hystercesis due to the entropy change in
the shock. On loading, a stress-strain path lying a distance
3 Y above the hydrostatic curve is followed (0 A B C in
Fig. 5). On release of stress from state C, path C D E is fol-
lowed, so that an elastic relecase wave of amplitude C D is gen-

erated. The amplitude of the eiastic release wave is determined
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by the slope of segment C D, relative to the slope of the hy-
drostats. The slope of C D is ( K + /3 G ) while the slope
of the hydrostat is (K ). Thus the relative slope depends on
the shear modulus G . At the same time the velocity of the

elastic release wave is given by

Thus, if the value of G is increased, the clastic wave amplitude
is decreased but its velocity is increased. Higher attenuation
results from a larger elastic release wave amplitude, but also
from a release wave of higher velocity. Thus the two effects
offset each other to some extent, and some variation in & does

”
not materially affect the results, as found by Jones.

Once the elastic release wave has reached the loading
shock, the shock amplitude is reduced. As the reduced amplitude
shock propagates, the material is now loaded to a lower stress
(state B, Fig. 5). When the release wave recaches this material,
a new clastic relecase wave will appear (corresponding to segment

B E, Fig. 5) and the attenuation process will be repeated.

Results, using the one-dimensional finite difference
method, for the response of an aluminum sphere 18 cm in diameter
containing a concentric spherical cavity 3.4 cm in diameter fil-
led with Pentolite are shown in Fig. 6 (not ail mesh points are
plotted). The configuration was chosen to correspond to experi-

’
mental data obtained at the Ballistics Rescarch Laboratory. The
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material constants for the aluminum were identical to those used

above, while the material constants for the Pentolite were taken

to be
f = 1.714 gn/cm’ p = 2.333 gn/cn’
¥ =1.77 P, = 290.289 kb.
g =2.77

= 7,991 km/scc

Q
|

It can be seen that the results for zero strength
( Y=0) and a strength Y = 2,76 kb do not differ very materially
except at late times. The difference is sufficient however to
cause a drastic differcnce in spall bechaviour. The elastic-
plastic case (Y = 2,76 kb) showed 3 spalls at radii of 7.55,
5.70 and 3.90 cm. respectively, while the hydrodynamic case
(Y20) showed scveral spalls, the outermost occuring at a radius
of 83.55 em. Great care is neccessary in interpreting spall results
from finite difference calculations, since these depend to some
extent on the choice of mesh size and artiificial viscosity co-

efficients. The avove results should be regarded as preliminary.

In Fig. 7 is plotted the cavity radius vs. time for
Y =0 and Y= 2,78 kb, The cavity radius grows somewhat more
slowly when material strength is included. The cavity radius
at 20 microscconds was computed to be 2.68 cm, which might be
compared Qith the final cavity radius of about 2.95 cm found in

the experiment. It is clear that the cavity grows for times in
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excess of 100 microseconds, which is long compared to the time

required for the initial shock to reach the outside boundary of

the aluminum (about 15 microseconds).

Preliminary results using the two-dimensional finite
difference method for the end-on impact of a finite length
aluminum cylinder on a smooth wall (or symmetry planc) are shown
in Figs. 8 and 9. The material constants for the oluminum were

identical to thosc used above.

In Fig. 8 arc shown deformed material coordinates at
various stages during the motion, while in Fig. 9 arce shown cor-
responding isometric (Lagrangian) plots of the hydrostatic pres-
sure. The effccts of lateral recleasc waves arc clearly observ-

able.
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Appendix A

One Dimensional Finite Difference Equations

A.l Equations of Motion

Consider only discrete points in space finite
distances A » apart and denote the initial coordinate of
the j® such point x; .

times finite increments At apart, and denote the n¥  such

Similarly, consider only discrete

. n . PR .
time t". We are then concerned with positions and accelerations

of these points at these times,

Ax;, )
} L YR 8Xisna +— denoting by x? and aJ." the

) : J
= J Jti X

position and acceleration of the
.j“ point at the n™ time. Other quantities, such as pressure,
density, stresses,etc.,are averaged over the intervals Ax and
denoted by Fﬁzk , -PJ:%. yetc. We suppose that quantities

vary so slowly that linear interpolation is justified,e.g.,

w.i':u‘ = é ( w.i:c t u}j.) A.l
and similarly in time
w ;0'/; - 5': ( w;-ﬂ . w; ) A2

Such linear interpolation is in accord with the approximations

involved in the finite difference analogs to partial derivatives

correct to second order,i.e.,

n n
Y | Wi = Yin A3
% T - i
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naelly n-i/y
A S S ¥ Ak
at t neth ¢ "=

Simplifying the notation, the momentum equation will

be written

1 3o +9) ¢
" P e ) oo
jo
where we have written a=a", o = -efx, ¢ =e~t”’ety and

where body forces have been temporarily omitted. Applying the

above principles, thc finite difference form is

o - TSn) + (¥ = Fitn)
Y

n

n n n n ol
f-'"'x (XJH X, / + fj"’x ( g A

A.6
n n
o) o B O
n n & N (x" + X . )
PJ.'«("J,. *"J) t Pien (% J-1
The velocity and coordinate are given by
-, n+'t -t "
o ulT L (at™™ e ") a; AT
# Y,
x'f" = x " + tn'l U?*l A.8
J J J
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It is simplest to take the continuity equation in integral

form, whence

A+l mj"/’_
.PJ*’/x - (x nol) of _ ( B rfﬁ)d A9
J

Jri

where
’ o ( /)c( /
. = : = p .
ml"l,_ ( xhl) J ./O.M'/L

is a constant for each mesh point.

A.2 Artificial Viscosity

In order to link the width of shock zones to the mesh
size, the artificinl viscosity cocfficients arc set proportional

to the mesh size, so that the artificial viscosity becomes

g e g (e xrer ()[Rl -3 NE)]
for (ﬁ?} >0

o " O o (5] <o

F
. nel ”n
where _f ) a ( P.h"; . f‘,‘,,/;)
LIUR nel n
f 4t ( -PJ”/:. o PJ'”:.)
The sound speed does not change very rapidly so that the use of
n - .
N in this equation docs not introduce any difficulties.
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A.3 Fluid Constitutive Equation

Several equation of state options are available. It
is convenient to deal with a fluid separately. If the flow is

isentropic, an equation in the form

Lo fe) A.11

fitted to the isentrope suffices. For more general motions, the

relation

P LP v EALP AL 12

where f, and f, will be expressed in terms of 7 = (P './%)/f
f'z kO?{’f ‘(,7-’-}(1721-...}

fr = he { | + h,7 + h, 71 + --"}

is combined with the energy equation, which in finite difference

form is

nel " 1 net —f o
£J9M‘_ B zj"" *a ('Pj"’ Te e, 7’-/"'; h"’s) iole
where

é__.P - 1_ (f\”" B f\"" )
P (.Pjou‘ +f>j.,ux) :

Heat conduction and energy source terms have been temporarily

omitted. Substituting A.12 at ¢! into A.13 provides an ex-

plicit cquation for the internal energy

n 1 nel # AP
nel - Z.iﬂl,~ + i(‘{l.l'o"; te Jo'l ?J'V‘ + 7J,,,‘) "ﬁ‘i A.l4
J"" 4 nel AP
S ’ - fl J’Ux .—P_].
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The pressure can then be found from equation A.12 and 0O =ep

¢ = 0 . The sound speed is given by

(C ?“) i o {(f ;;l J:: * 53:':( ) "y -\M. ’)3:'4; Jo Jrg } A.15

Jevy .PJ""

where

f’a%é = ko("?}{/* lk,7 +3k‘72+...}

(
f’a% = ho(1=g){h+2hag +3hpTe }

A.4 Elastic Perfectly Plastic Constitutive Equation

The stretching deviator is

2 ( neth n#'/;) ‘P.
netly % (
(‘d'),-., ’ L ,J *3 P A.16
L4 lﬂ ;
" ,m J") ( b 4 i + X )

and the elastic stress deviator becomes

dyx ayx)" neity Aev, o 1x L XY

.t - (.t }Jw‘ + 2 At GJ’,,‘ ( d jJ*"t A.17

where we will take the shear modulus to depend on compression

RS AR SR S A

For X = | or 3, the yield condition reduces to
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A.18
Then ’ J
2 2 d;»)"? I X
1f H S 7 (ot )J*"x - et
2 g2 dpx )" dyx 2
If I > 2y (et‘)jw‘_ = Sqngt™ . 3V
Y 3 [dyx
Then (p = :t' -t = 5 (et ) A.19
and the deviator stress work is simply
dyx )" d;x)"”
2 t /. + (t/
A g 2 4 ( }J‘u/1 nel n A.20

P j*"z + P J’"/x

This is used in computing the pressure below. For o=2 a more
elaborate procedure is required. We compute the =z component of

stretching and stress deviators

ne'h ..
d = . +
(A },ju/L -3 P A.21
4 (7). 2t G (W A.22
e B (e A * Jey J+ s .

These equations are, of course only valid if the material is
elastic. When the material is plastic it is necessary to solve
the set of simultaneous equations for the unknown stress compo-
nents and proportionality factor ¥ . Due to the quadratic form
of the yield condition, this cannot be done explicitly. Instead,
a forward differencing scheme used by Wilkins and Girouxf and

+

Maenchen and Sack'is used. Referring to the frplanc representation,
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we consider an elastic stress
state 1 at t”, and usc cquations
A.16, A.17, A.21 and A.22 (o
compute a new elastic stress

tnol

state 2 at . The second

norient is then computed using

5 A S (:t‘}‘}

Then it

Use (dtx)'HD - :tx (dt /'HI = =z A.23

e Je /R Je'h

since the material is still elastic. However,
) ¥ 2
il 8 I > 3 Y
the material has become plastic as shown in the diagram. Ap-

proximately the correct yield stress is achicved by using

(" J.,, / ot (:tl/JM= /%—Z’ et’ A.24

which in eifect computces the stress state at point 3 on the
yield surface on a radius vector from state 2. The procedure

is only valid when the change in Lode's angle is small. It

might be noted that when o« = | or 3, the symmetry condition
, Z
:tY = zt limits the attainavle stress states to the

straight line AA' in the diagram above, and the procedure given

for finding the stress deviators for this case does not involve
dy z
ol

d
this approximation. Then ¢ = Z,t and
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A t nelly

ot = o ({0 Bl AW )
A.25

e fleel e e |

Finally the hydrostatic pressure is found as for a
fluid, but including the deviator stress work in the energy

equation A.l4

n ' nel " _‘A_f d
8 ?0' = 6)‘0:1 + 2- ('{lj'l/‘. *e j,l& /J'll‘ %",& 4 A 8 A 26
Jey f el Af i
T2 e P

dyx
The pressure is found from equation A.12 and 0 = ,p - .t
The elastic sound spced may be taken as 1.5 times the value

given in equation A.15

A.5 High Explosive Constitutive Equation

In order to force the dctonation front to move at the
proper velocity the following scheme is adopted. The time at

which burning is initiated in a particular mesh will be
0 x5 © %
J.O’/I_ - D Ao 27

where x; is the initial position of the detonation point (the

detonation is considered to be initiated to the left, or smallest
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‘x; ), and D 1is the detonation wave velocity. In orde. to

spread the detonation front over several meshes, a burn fraction

is defined as

F*™ =90 for t*'s tt

Je "y JHlh

F.M' - D ( tp;u - tb } for tnol > t b

Jeta B Ax° Jri,

where O s F ¢ | , and B, is a constant which determines the

thickness of the shock front. If we now take

P’”‘ P F"' ( f’ net " 5"" f; nol) A.29

el jem Jevy Jerg Jey '

the pressure is maintained zero until the precomputed detonation
time, and rises smoothly until F= 1. Since F =1 for all times
thereafter, equation A.29 provides the correct equation of state

of the explosion products for the subsequent motion.

Solving equation A.29 together with the energy equation

A.13 for a fluid provides the equation for the internal energy

P 1 ar nel " Py ™ AP
8“‘ = Ei"‘{ ta ( i, Jie * Fion * Hiv * Fi ) P* A.30
Jorg | - ""F net f net 4p *
2 J.O'Ix b 8 j,u‘ F

The pressure is then found from equation A.29.

Choosing a polytropic law to describe isentropes and
using the Mie-Grueneisen assumption to generalise to other nearby

states, f, and f, can be expressed as

m




p
ho= X A.31

f

Tp
where X , 8 and ¥ are material constants. For the simple poly-

tropic gas, the expression for the sound speed, equation A.l5,

reduces simply to

nel

(C nn)" = Y L).ﬂ. A.32
J,q‘ Fﬂol

e
Other more claborate forms for § and £, may, of course, be used

if deemed necessarvy.

A.6 Energy Checks
r

It is often desirable to study momen tum and energy of
individual meshes, or summed over portions or the whole of the
material in the problem. The finite difference expressions be-
low are collected for convenience, and are incorporated in a

special subroutine only when required for diagnostic purposes.

The mass in a mesh is given by

HJ-,,& k' L F A.33
where kK'= | for X = |
k!= m for X =12
k' = Ji w for X =3
Thus the momentum in a mesh is
asth u ?"" + U ‘?'”‘ A.34
H a M. ( o ¢t J
JO'I‘ J'”‘ 1
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The kinetic energy is

nev,

ety nell b 8
L M Ui+ Uj 7 A.35
Jets 2 Jere ’

while the i&ternal energy is

E ™™ i}
=
Jeily 2

5 .h+l + E ”

. A.30
’v’.w/1 ( YN J iy )

It is useful to sum kinetic and internal energy over the mate-

rial. Then if energy is conserved

Bk epn) - Sk v €10

FRIL FE 1N Jelita

A.37

= wn*l& - &ﬂ'”&

where X7 "*"™ is the surface work done from time %7 to time

thol ney,

(for example by a surface pressure) and & is the
nonmechanical energy addition in this time interval (for example,
chemical energy in an explosive). This provides a very useful

check on the calculation.

It is sometimes useful, in studying a particular motion
in detail, to consider the energy distribution in various modes.

tﬂ"

Considering the time interval t” to in each case, the

spherical elastic stress work done in a mesh is

0. Ne'a { ael

) 2p
Pa) e EJ"”‘L - a HJ"’; ( ‘Pj'”" + epj’”‘. ) ‘Pl A, 38

while the spherical viscous stress work is

¢ neda —' nel » =7
A 'E Jou, = 3 ’h"ioul ( "J"”‘ + "J'NQ .P:I. A.39
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The plastic stress work can be estimated in a manner
consistent with the forward differencing scheme used in the con-
stitutive equationf Referring to the diagram in Section A.4,
note that the plastic stretching deviator is related to the in-
crement in stress between states 2 and 3, i.e.,

:tq _ :ta

d , a _ :
Jat = 72 e A.40

I'he plastic stress work per unit mass is thus approximately

dZ | d,a d,a | dia d,a)dia
- b= = t - t t
Pé P St Pal 1Gpatf (; 3 )a A.41

where summation is implied over the index a . Using equation

A.24 this becomes

=
‘. M | H — ’} ‘t. ‘t‘
rg 26G p 4t {/})" A3 A.42

Since state 3 is at yield, the second moment of the stress tensor

at 3 is % Y' . In finite difference form the plastic work

done is therefore

d_ rety ﬁ Nj*”x 'i! r j!‘ 77 A.43
AETN . — SR 4 .
| 4 Je A G ”"l( nel " ﬁ H
J*"; fj’u; ‘PJ'O"

The total deviator stress work is

e mh d A.bb
A°E " = M, A%
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and the elastic deviator stress work is simply the difference

between equations A.44 and A.43.

A.7 Boundary Conditions

Boundaries and interfaces require no special treatment
other than to supply the appropriate quantities on either side of

the boundary or interface in the momentum equation A.6.

For a fixed surface quantities a, ¥, P and ¢ in the
mesh outside the fixed surface are set equal to the corresponding

quantities in the mesh inside the boundary. Furthermore we set

) S » .x?®
X 1ot *r = % Il

where J is the boundary index, solving for the appropriate »”
outside the boundary. The acceleration and velocity are then
n

) [} . .
zero and x'; is computed to be equal to x, , as required.

For a free surface, quantities o, %, P and ¢ in the
mesh outside the free surface are set equal to zero while ax”
outside the boundary is found as above. If a surface pressure
is to be introduced, set ¢ = ;P(f,) where ;p is sup-

plied as input either as an analytic fit or in tabular form.

For an internal interface between different materials,
no special provisions are required while the materials on either
side of the interface are in contact. However, when the stress
at the interface, (% (o ;:,L + 0';:,',*) where T is the interface
index), exceeds the tensile fracture stress of the bonding, two

free surfaces are formed. It is then necessary to store
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additional values of x and u for the second surface and apply the
free surface conditions when computing the separate accelFrations

. |
of each surface. If at a later time the surfaces attempt to cross,

nel

i.e., >
(i.e. > £

ne

i where J- and J+ refer to the

left and right hand free surfaces respectively) the positions
and velocities of the two surfaces are set equal and the inter-
face is treated as unseparated once more. Subsequent separation
of the interface will then occur at zero stress. Actually a
small (nonzero) separation stress is used to prevent undesirable
separation and contact when the interface stress oscillates
about zero. Fractures at the interior of a material are treated

in precisely the same way.

A.8 Stability Criterion

The stability criterion is used to compute A4t 2

used to advance the calculation on the following time cycle. The
expression is evaluated for each mesh and the minimum is used for
advancing the calculation. Using a backward time centering, the

stability criterion becomes

Y x !lﬂ - x Aol
MiN(at ;") e e T A4
’ YU (1eaB ) et [ui - u

In this expression it is tacitly assumed that the velocities at

j and jei will remain the same on the next cycle.

The expression, equation A.45, has been found to be
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adequate for most purposes. Experience has shown that even if
large velocity discontinuities are introduced initially, as for
example at the interface between colliding materials, the com-
putation remains stable and the discontinuity is smoothed to the
normal shock width of 3 or 4 meshes within 3 or 4 cycles. How-
ever, if an initial pressure discontinuity is introduced, the
calculation becomes unstable if equation A.45 is used. A heuris-
tic argument suggests the following explanation. A velocity dis-
continuity acts immediately to strengthen the stability criterion
through the velocity gradient term in the denominator of equation
A.45. A pressure discontinuity, however, does not affect the
stability criterion until a later cycle when the pressure dis-
continuity has accelerated the mesh points concerned. A scheme

[} §
to overcome this limitation has been suggested.

Instead of computing the stability criterion at the con-
clusion of the calculations for a particular cycle, the stability
criterion is computed just after computing the acceleration
(equation A.6) but before computing velocity (equation A.7). A
forward time centering is used. Moving the entire expression

backwards one step in time, we write

nel
eV, 4 x

£m = A.46
4 (1+28,)c" + 48* [au~n|

where Ax"' = xJI] - 3” , etc., and the spatial index is hence-
forth omitted. The essential difference between equations A.45

and A.46 is in the centering of the Ax and 4u terms. We may
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anticipate that As "' and Au™" yill differ materially
from Asx" and 4u" "™ if the acceleration gradient is high.
Such an acceleration gradient would result frum a large pres-
sure discontinuity. The sonic velocity ¢ by comparison does
not change drastically even with large changes in pressure so
that it is sufficient to use ¢”. At this point in the calcu-
lation the velocities and position are not yet available at

n+!l and n+ s respective:y, However, a good estimate is

u ;Ml,_ = u ;-U; . A t nelly q;
A47
ne) n Nelly n il

since At will not be expectcd to vary too drastically from

cycle to cycle.

Inserting equations A.47 into A.46 and investigating
limiti..2 solutions for large and small values of Aa" leads to

the sufficient condition

oaw(at52 ) = K ann/fl128)cy,
J A48

w482 s1)laus] o /(48°41) sx" [2a0] }

where Ax "> 3" -x!, etc.
FEY J

A constant K is inserted as a convenience for strength-
ening the stability criterion artificiaily if this should be

desirable.



Appendix B

Two-Dimensional Finite Difference Equations

B.1 Equations of Motion

/
. Consider discrete points in space formed by the

interscction ol material coordinate lines distances Ax and
Az apart. Similarly, consider only discrete times finite
increments At apart. We use threce indices to denote values of

quantitics at the intersection of the i(*™ 2z material coordinate
”n

bJ
Quantities such as pressurc,

and J““x matcrial coordinate at the n® time, c.g. a

Jei

density, stress, eltc. are av-

erazed over the meshes formed

by the finite difference grid,

_ and arc denoted by
e
z etc.

n
Piv'ﬁ' jp'l,_

L.

L=l L %

While quantities are indexed in this way in the com-
puter, in writing down the finite difference equations it is

more convenient to use the notation shown in the sketch.

Suppose that quantities vary so slowly in time that
lincar interpolation is justified ,i.e.,

ne!

poro= 3 (e e wS) o

and similarly in space. Such linear interpolation is in accord
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with the approximations involved in the finite difference ana-
logs to partial derivatives, correct to second order, i.e. for

time derivatives at 0

nelly n-tYy
a_w__ = u/o - WO B.2

t ne lly

Qv

t n-tiy

Finite difference analogs to spatial derivative are obtained by
the use of Green's Transformation. For quantities which are av-
eraged over the meshes, Green's Transformation applied to the

circuit A B C D gives the gradients at 0

e

- —,ﬁ {'}’,(Z. -2,) + Y (za-2) + ¥s(2,7%) w‘r(""-'z’)}

%

O

&
“o

B.3

YT A RO e

where A is the area of the quadrilateral A B C D.

The momentum equations, tempcvrarily omitting body

forces, become

L L
4 T pix TP Iz P
B.4




where we use equations B.3 to represent the derivative terms
and the equations are centered at 0 in space at t" in time.
The term (pPA ) appearing in these equations is required at O,
but p and A are quantities averaged over the meshes. The sim-

plest solution is to use

{fﬂ),'i'(ﬂn""ﬂﬁt"'f:ﬁ:*ﬁﬁq-) B.5

For cases where areas of severe distortion must be handled as
realistically as possible, it is better to use the more accurate

but much lengthier relation

(pA), = (pA' + R A+ P A +P A)

B.6
A - Y { (a =) 25 ~20) = (% -xo ) 24 -z,j}

is the arca of triangle A O D etc. We have used equation B.5.

The last terms on the right of equations B.4 also re-
quirce interpolation. A variety of interpolation schemes are

possible, we have used

!f | ﬂa A ”
e r(vE vl oyl oyl 5.7

where A and m are the areas and masses of the meshes, defined

later. This allows a relatively simple treatment at boundaries.

54



The velocities and coordinates of cell vertices, using

equation B.1l, are given by

O Y T

o o

B.3
W = (W) ot e at) ()
and
x s x4 Bt (u"):w1
B.9
2™ = z7 4 ot ™™ (u‘)mux
[~

B.2 Continuity Equation

The continuity equation is taken in integral form. The
; , L X-/
volume of mesh 3 is given within a factor (2 ﬂ,’ Dy
n_ oC~f -~/
Vy, = A (x) * Ay (*a) B.10
where A, and A, arc the arcas of the triangles B F C and
B 0 C respectively at time t”
[
pos 3 {(z-2e)xe-x0) = (xc-xo)z0-20) ]
Jove L.
{
Au = 3 {(ZB -ZOIXC -J(o) - (Zc"zolxa "Xo)}

55



and x, and x, are the centroids of the triangles B F C and

B O C respectively at time ¢t”

X, = j"("a t Xp ot "c)
B.12
’ .
The continuity equation is
n_ My
P V7 B.13

where my 1is a constant for cach mesh, cvaluated at time t°
° o) X! ° . a-l}
my = o5 [ A" ()T 4 AL (x2) 514
\

The area of mesh 3 is simply

A" = A, + Au B.15

B.3 Stretching and Spin

The components of the stretching deviator and spin

tensor are given by

o ut 1 qpr T 1P
‘d . a—; 43‘-’?— d = )z +3P

B.16
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Interpolation in botb space and time is required in the finitc
difference analogs to the velocity gradient terms. Applying
Green's Theorem to the circuit B F C 0 and using lincar inter-

polation, we get

: ! n+l n net _n
i “2(AT ) {(‘”" ) EMEEAEEAELY

B.17
.-
nel n net .
= - X - -
L R, [Py
nel n nel n
ettt
which is centered at 3 and time ¢t "*2 . Also
é Z Pn”—F. B18
P- At”"/‘ asl n ’
P p

B.4  Artificial Viscosity

In order to link the width of shock zones to the mesh
size, the artificial viscosity coefficients are set proportional
to the mesh size. The bulk viscosity becomes, with all quantitics

centered at 3
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7».:,: .P"'{E;/WC"{PE/ ,,[3’ /W/)%O/]l}

£ B.19
for }; >0
mol A
9 =0 for % <0

The deviator viscous stresses take the form
2
! - ", - [d Ny
(J?")m . Pnﬂ{a’ 5 cn(ddnyl’z_[ps = (d") ] }

G - pm B BT en(an s [3, 57 (] ne

(J?z;}"ﬂ : .Pn”{84 T " (dd"‘)""‘l_ [BJ . (Jd 17'”,"]2}

where
X = Max(xO;xODx’I x‘) -Mm‘(x°lx0 ) XF, x‘)

7 = Max(Zo, Zy z,, zc) - M,-,,_(z,,za,z,, z¢)
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4ot d, zz . i . q
and 9 ¥ and - arce sct equal to zero when the corresponding
stretehing deviators are positive. These expressions are not
properly centered, but since the density and sonic velocity do

not change rapidly, this does not introduce any difficulties.

The work done by the viscous stresses in the time in-

terval At

neil/y, 5 .
i iven by

AYOZ = 3 ( 3" . 7’")/%) B.21

‘_A_f ) + (‘Pnu - Pn}
£* (p™' s )7

for the spherical part, and

where

A;E = 4t [(d7~-}”"+ (‘7”7'][2 (.un}""’z . (Jalzz)nHQ]

ne! n
P

[l eplater (4

B.22

3| (“%"/5’3 (e o))

for the deviator part.
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B.5 Stress Deviator

When the material is elastic, the stress deviators
are found from the stretching deviators by the differential equa-

tions

d , 3
== - 2w tTT - 5 g U™

a:t - w,z(:tll_:ltzl - Z G ddXZ

é}; B.23

4 z2

fry 2 wrz It*F =26 U™

The differential terms on the left are set into finite differcce
form using equation B.2, while the other stress terms on the left
. [}

must be interpolated to t’"’“‘using equation B.l. This leads

to the implicit sct of equations

(:txx net (:t.. as At w"{{:t"j”' +(:txz/n} - 24t 6 4o

C'tn.)ml -<:txjn+ liAt sz{(:thy'm,; (:t")"— (,dt:j"*’-(:izy? .
= 24t Gd°

(:tzz):n' _(‘;tlg)" + At w*t {(:Itu)"*' *(:' xz)”} = 24t C ‘,‘;lzz
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P nel.
where all quantities except stresses are centered at t -

"
If we choose the time increment At"* ™™ sufficiently

small so that
' . 2
(at™™ wxx "h )" < ' B.25

then these equations may be expressed in a relatively simple ex-
plicit form. The condition B.25 implies that the rotation from
t” to t"*" is small. Since the spin is the angular velo-

city, the rotation in time A4t "*"* g
AP = AtTH yrr e B. 26

Defining

I netl
2™ = 248t" G ()"

d; %2 nell aeth (4 neih
A% = 24t G RS B.27

Aqtz'& = 2 Atmdg th"x (dd,,)mu\

e

where we take the shear modulus as a function of compression %

G‘?,{l*'},?-r}u?l-f"'} B.28
we find that equations B.24 solved for the stress deviators at

time t "*'  become approximately

61



"t‘" =(:tx-)" ” A:t’" = ZA¢[{jtn)"+ 3." Z]:tn}

w7 (47) e 2T 209 ) d ol

n n n 1 ,dyz2
dixz dyxx dy X2 dyxx 1 pdyxe  [g z2)? 1 A%
- (14)" 2t - A¢{(et}+zﬂei - (&%) 240

It is readily seen that in each equation the second
term on the right represents the stress increment duce to stretch-

ing, while the last term represents that duc to a small rotation.

These equations are, of coursec, only valid when the
material remains clastic. When the material is plastic, only
the clastic stretching should appear in the above equations,
and it is necessary to solve the set of simultancous cquations
for the unknown siress componcnts and proportionality factor 4°
A method of forward differencing used by Wilkins and Giroux,’and
tlaecnchen and Sack*is uscd., Consider an elastic stress state at
time t" . If we were to transform to principal coordinates,
this stress state could be plotted in the T planc representa-

tion as point 1, say (see diagram on next page).
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2

planc.

T -2 fe)e () () (i) )

o~

Then if 11
o ne+!
Use (,t”)

(i7"

(:tz-,_) n+l

since the material is

I >

However ifl

The second moment is

2
s;)’x

dt XX

2 2
57

the material has become plastic as shown in the diagram.

Equations B.20 to B.2Y arc uscd

to compute a new clastic stress
state at t"Y . Transforming
to a new sct of principal co-
ordinates(which arec in general
rotated with respect to the

[revious ones) we can again

represent this state in the JT

B.30

B.31

still elastic.

Ap-

proximately the correct yield stress is achieved by using
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B.32

which in ecffect computes the stress state at point 3 on the yield
surface on a radius vector from state 2. The proceedure is only
valid when the change in Lode's angle is small. Due to the ro-
tation of the principal axes, the principal stress components
must be found before Lode's angle may be determined. We have

for principal stress deviators
t fa,xx  dyaz d dyzz)d dyxz)d’ ,
. ;{,t‘ ¢ It z/(,t" -4ty (i) } B.33

where a = |,2 respectively when the upper or lower sign is

used. The angles of the principal axes with respect to the X
coordinate axis are

:tXI _ :lta

4y x2
Y 4

B.34

Ba = arctan
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and Lode's angle is given by

Jt' - dt1

e e

Y = arctan /3 o, 4 B. 35
e + ot

Note that principal components and directions are not

required except optionally for diagnostic purposes.

Finally the deviator stress work is given by

{[(:t:.)om (‘t"7 J[Z(‘d"}"”‘ ‘J"/"”‘]

""g

a‘e - f,.,.

P[0 () T ) )]

ey eyl 2w ]

B.6 Pressure

The pressure is taken as a functicn of the thermody-

namic state in the form

P = Lip + & L(P B.37
where in terms of # = (p -R)/P

fl. ko?{l+ k,7 *k171*"'}

J(L. ho {I-}h,? +h‘7l+...}
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while the encrgy equation in finite diffcrence form is
A4p d d
nel n { n+| o
E 8T s (P ep) SN e A 008 1 8T B3

where ZVZOO‘ is given f[ollowing cquaiion B.2l. Solving cquation

B.37 and B.38 for &

ne ya) e d
£ b (4 '+,p")7£ + A8+ L8 + AE

,_}L‘{anﬂ%

B.39

£n+l -

The pressure can then be found from equation B.37. Tnen ihe

total stress components are given by

txx - :txx + J7rr _ {q’ . 7/}

tzz . :tzz B ,'7:1 __(t'o +7}

B.40
xz dy x2Z od xx
R Tl

tx! _ tYY = ZJt"" -~ jtz' + zd?/"’ + J?zr.

The bulk modulus K is obtained by differentiating equation B.37
with respect to p at constant entropy. Assuming that Poisson's

ratio remains near 1/3, a good expression for the clastic sound

speed is ¢ = /I-S‘KZD whence

(Cnﬂ}‘- - /55 ( é_}.." nﬂ* 5.” Joa_é »w+ )(I'MI.P,,,} B.41
pnn Paf af ﬂ’”_’




where

P-g?{' = k, { 1+ 2k p + 3hkapts - }(,-7}

féa?f: = ho{‘n «2hp + Ihypts o pi-7)

B.7 Energy Checks

It is often desirable to study momentum and energy of
individual meshes, or summed over portions or the whole of the
materiai in the problem. The finite difference exnressions be-
low are collected for convenience, and are incorporated in a

special subroutine only when required for diagnostic purposes.
The mass of mesh 3 is given by
o=1
My, = (2m) 7 m, B.42

Thus the momentum components in mesh 3 are approximately

x "' = x ne'h
H™ My u”
B.43
z M _ z Ny
while the kinetic energy components are
a
nev, € x hth
K' k] = 2 MI ( u J )
B.44
2 nety 1 M ( uz n,c/‘}i !
K 3 2 k } 3 (
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N P —

where in equations B.43 and B.44 we interpolate the velocity com-

ponents as

]

The internaL'energy is
E“”."‘ 1] M (£n4l -~ gn) 6
3 a 3 3 ¥ ] B04

It is useful to sum kinetic and internal energy over the mate-

rial. Then if energy is conserved

(k" s k*r E)"™ = T [K*+ K=+E)"
“J

6J
e gt B.47
wvhere #” "% is the surface work done from time t” to

time t"* (for example by a surface pressure) and Qe
is the nonmechanical energy addition in this time interval (for

example, chemical energy in an explosive). This provides a very

useful check on the calculation.

It is very simple to f£ind the energy dissipation in
various modes during the time interval t" to t"* . The spher-

ical elastic stress work is

P eV, 2 »el " ﬁf
ADBE , = 3 My (P, * &Py P, B.48

while the spherical and deviator viscous stress work are given by
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B.49

nelfly

d d
AJETYE = M, 56

The plastic stress work is, as for the one dimensional case,

. I M 2y ot
AEDS = — { [=— - B.50
Pl G, ‘(f’J'*HPJ) I jf— ?

The total deviator stress work is

LN

y
\ M, A°& B.51

A‘E

and the elastic deviator stress work is simply the difference

between equations B. 51 and B.50.

B.8 Boundary Conditions

Boundaries and interfaces require no special treatment
other than to supply the appropriate quantities in the meshes
surrounding a boundary or interface point in the momentum equa-
tions B.4. |

For a fixed surface along which the material may slide,

xx t t % 3

normal stresses ¢t and

, densities p,areas ind masses
A and m in the meshes outside the boundary are set equal to the
values in the corresponding meshes inside the boundary, while
txz

the shear stresses are reflected antisymmetrically. It is

also necessary to supply the coordinates of mesh vertices outside
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the boundary. If A C is the
boundary, we require coordinates
of point D outside the boundary
which is a reflection of point

B inside the boundary. The

equations are

' & 1

B.52

Zp = ‘—;-{24; zy * %5 (zZa-Zg +2) - 24z Xiz (Xa - 2%y +,¢‘)}

where " a
Xpgz = Xpa=~Xe , Zze ™ Za-Z , A= Xg * 240

For a free surface, the stresses and densities are sect
equal to zero in the meshes outside the boundary. To prevent
difficulties with zeros in the denominators of terms in equation
B.7 ,A,mX,and z for the cells outside the boundary are treated
as for a fixed surface. If a surface pressure is to be intro-
duced, set t""e t*™= - ;P(*) where ;p (t) is sup-

plied as input either as an analytic fit or in tabular form.

Corners require no special consideration, except that

X, , Z, are used in place of

a - X, Z, to find the position

| of point D outside the boundary
' (and similarly for point C).
Values in the corner mesh out-

side the boundaries (mesh 4 in the diagram) may be obtained
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either by appLying the proper boundary condition along A O to
find values in mesh 1, and subsequently applying the proper
boundary condition along B D to find values in meshes 3 and 4,
or by applying the proper boundary conditions along B O to find
values in mesh 3, subsequently applying the proper boundary con-
ditions along A C to find values in meshes 1 and 4. 1In either

case identical results are obtained. Reentrant corners are gen-

A erally formed by the meeting of
‘2 N two free surfaces, and it is un-
8 2 : b necessary to find values of x
-3 -4 ; and z at points C and D (in the
c == diagram) by equation B.52.

However no harm is done if equation B.52 is used, and it is more

convenient to retain complete generality at all boundary points.

Interfaces between different materials require no spe-
cial provisions while the materials remain in contact without
sliding. Sliding interfaces and separated interfaces require
individual treatment, as do internal fractures. These can be

incorporated as required.

B.9 Stability Criterion

ned
The stability criterion is used to compute At i

which is used to advance the calculation on the following time

cycle. Using a backward time centering
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K/A™
(1+28,)c"™ + 48/~ I(.P./f’)w,"

where the minimum is taken over all meshes. A constant K 1is

MIN (At"’") = B.53
J

inserted as a convenience for strengthening the stability cri-

terion artificially if tbis should be desirable.



Appendix C

Evaluation of Constitutive Equation Constants

The constitutive equations appearing in Section III
have been specialised to specific classes of materials, by mak-
ing assumptions that the materials are perfect fluids or com-
pressible elastic-perfectly plastic solids. The assumption was

made (equation 3.6) that the spherical part took the form

p = filp + & f(P) c.1

where f; and f, were left as arbitrary functions, although it
was intimated that power series expansions could be used. It
is not necessary to limit ourselves to the form of equation C.1,

and it is quite feasible to use a more general expression

P=f(ﬂ,£) C.2

although the convenient explicit finite difference scheme for
finding the internal energy and pressure outlined in Apendices
A and B, which is made possible by the form of equation C.1l,must
be abandoned, and replaced by an iteration scheme. It was found
that an iteration scheme often required more than three itera-
tions to assure accuracy, Aand it has been deemed preferable to
express the spherical relation in the form of equation C.l where-

ever possible,

The present appendix is concerned with evaluating some

special forms of the functions £ and {;for some restricted cases,
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and is thus much more specialised and restricted Lhan the
material in the body of the report. The functions are developed
for a solid or fluid from measured Hugoniot data using the
Mie-Grueneisen equation. For a gas, the functions are developed
from measured Chapman-Jouguet isentropes by somewhat similar
means. These approaches should be reasonably accurate up to
moderately high pressures, such as those encountered in
solid-explosive systems. Other means of evaluating the spheri-

cal constitutive equation could, of course, be substituted.

Cel Solid or Fluid

Hugoniots (loci of states attainable in a single shock
compression from the normal state) have been evaluated for a
wide variety of materials from experimental determinations of
shock and particle veloci‘iesuby means of the Rankine-Hugoniot

rclations

12
77 Tul

[Pl = p [w][U] c.3

[e] - ]f:

where p = (p -_p,)/p , ( )o refers to the state ahead of

the shock, [ ] refers to the jump in variables across the
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shock, and U 1is the shock velocity ( [u] = U - wu, ).

Results are often fitted to the power series.
/
P“.-.k.7(l+k,'7 +k;7:+'--) C.4

where the normal state is taken at p, = 0 .

For moderate compressions it is found experimentally'"

that the shock velocity is a linear function of particle velocity

U = ¢ + s u @5

where ¢ is the bulk sound speed and s is a parameter (the ma-:
terial ahead of the shock is taken to be stationary, wug, = O )
so that equations C.3 a and b become
L_fcy

(1 -sp)?

Expanding to the form of equation C.4, we obtain immediately

P C.6

k)= pct k/+ 2s k ‘= 35° C.7

Terms in k, and higher need not be retained since the linear
relation, equation C.5,is not valid except when » is small,
(This follows directly from equation C.6, for we note that

P =™ <o when 7 = /s , a physically unreasonable
situation. Since § is gencrally found to lie between 1 and 2
for most materials, equations C.6 and C.7 must be limited to

compressions of perhaps 0.1.)

Note that the coefficient kg, represents the



adiabatic bulk modulus of the material at zero pressure.

The Murnaghan equation

P = A {(f,)! - 1) c.8

has occasionally been used to fit experimental shock Hugoniots!‘

Expanding to the form of equation C.7 we obtain
K.« AE k'= £(F+1) k' =d(£+1)f+2) c.9

where again higher order terms need not be retained.

It might bc noted that the assumption of a linear
Hookean material with Lamé constants A and u leads via finite
strain theory to a relation between the pressure and volumetric

strain“'
p = -(I-lg)/x3e(7\+,&/u} C.10

where p = p, (1 -lé}J"

which is easily expanded into the form of equation C.7, whence

k' =(x+3n)  k'=%A ki = 235/s4 c.11

The above relations provide a direct means of compari-
son of experimental data fitted to the different empirical ex-
pressions, and allow the data to be easily put into the form of
equation C.7, which is used as a basis for the following dis-

cussion.
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The Hugoniot data is generalised by making the as-

sumption that the pressure offset of a state from the Hugoniot

is proportional to the energy density offset '
(p-ru) = Zp(E- &) C.12
where ¥ is the Gruneisen ratio. Py (P)and &4 (j’) are

available from equations C.7 and C.3c, while ¥ ( p) has been

evaluated approximately for numerous metals in the form'

Ye 5, ( 1+ %9+ 9%+ %, 9%+ ) Cs13
The thermodynamic relation at zero pressure should be noted
k,’ a
7 . S
. L Cp C.1l4

where o is the volumetric thermal expansion coefficient and <y
is the specific heat at constant pressurc. For moderate com-
pressions, it seems to be sufficiently accurate to take ¥ = &,

constant.

Equation C.12 can easily be put into the form of equa-

tion C.1,whence

fo = Pw - )'P &y
C.15
hh= Tp
Inserting equations C.3 and C.13 for p, , 8,, and ¥ allows

these functions to be put in the rorm of power series in p

{,* k.?(l* ‘(,7 *k‘7‘.,. J?Jf...) C.16
fr= h, (l +h.? +h17‘+ h,7’+'-' )
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ko = ko' ho = £o %

k, = k' - 1% hy = 1 +7,

k= k' = 2% (b + k) hy = 1+ +7,

ky = k' =2 % (hs b+ k') hy =1+ 7 + 7, +7,
etc.

For a solid, the deviator part of the constitutive
equation depends on the shear modulus which was also expressed
as a power series in the compression. The variation in shear
modulus is considered in another report.’7Since velocity of lon-

gitudinal elastic waves is given by

ce »/(K+ $a6)/p C.17

the error in elastic wave velocity due to an error in & is only

ACO .A_G./ -! -5 +2
<o & G (a G ) C.18
a
or for Poisson's ratio near 3 , %9 o gL ——GG : Also,

the error in stress deviator is proportional to the error in G,
but in the presence of a pressure component, the error in the
total stress is smaller than this. For moderate compressions,

it is tberefore probably sufficient to take & as a constant,
Jones has investigated the variation in & on the basis of several
assumptions, and has discussed means of finding higher order

. ¥ 7
terms in a series expansion for G .
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B Nonideal Gas

The spherical constitutive equation for a gas must
take a different form from that for a solid since in the latter
the density is nonzero at zero pressure, and pressures may be-

come negative (or tensile).

We consider only a gas in which a known isentrope may

be fitted by a polytropic law

p. = Ap” C.19
where /. = P,jz_p is a constant evaluated at a known point.
This approach is applicable to a simple description of gaseous
explosion products{‘ Chapman-Jouguet isentropes have been meas-
ured for some explosives, p, and p, are then the (J pressure

and density respectively.,

The isentrope given by equation C.19 can be expanded
to cover nearby states by again assuming that the pressure off-

set is proportional to the energy density offset.”

(P-p.) = Yp (& -&) Gl
In this case &; is the internal energy on the isentrope, given
by

/ P
Z0s -fp;d[;.r/ T A(B-1) c.21

Equation C.20 can then be put into the form

p = 4 + &4 C.22
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where

fp = P ~¥pli = Kp

£ = ¥

where we have substituted from equations C.19 and C.21, and

where

X = p,ﬁ"r(l-p__r‘;) C.23
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Figure 1 Continued

Stress Profiles at 6 and 8 microseconds
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Figure 1 Concluded
Stress Profiles at 10 and 12 microseconds
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