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V;L-TR-6U-IO7 

ABSTRACT 

One- and two-space dimensional finite-difference schemes for the Legrangian 
numerical solution of problems in the motion of solids, including material 
strength, are presented. Two-dimensional rectangular cartesian or cylindri- 
cally symmetric problems may be handled. Results of sample calculations are 
appended to illustrate the effect of material strength. 
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SECTION I 

INTRODUCTION 

Solutions of problems in one- and two-dimensional 

(rectangular cartesian or c)lindrically symmetric) fluid flow 

have been obtained by numerical integration using high speed 

digital computers.  Such metiiods have been used widely to solve 

problems of dynamic deformation of solids due to high speed im- 

pact or due to detonation of high explosives.  The assumption 

implicit in such an approach is that material strength may be 

neglected in comparison with the high pressures attending such 

motions. 

Experimental evidence on craters resulting from very 

high velocity particle impact, and on the response of plates 

impacting at high velocity,indicates that material strength 

does influence the behaviour, even at high pressures and strain 

rates.  An attempt has been made to incorporate material strength 

in a two-dimensional Lagrangian numerical integration scheme. 

During the course of this study, two similar studies were re- 

ported.  The present work is essentially similar to that of 

Wilkins and Giroux in most essential features.  The scheme of 

Maenchen and Sack is based on a different method of obtaining 

finite difference analogs. 

The relevant differential equations have been 



collected»  These are developed into finite difference equa- 

tions by the application of Green's Transformation.  Results 

of a few sample calculations are included to demonstrate some 

of the qualitative effects of material strength. 



SECTION II 

DIFFERENTIAL EQUATIONS 

2.1 Tensor Equations 

The governing equations are the differential equations 

following frorp the principles of conservation of mass, momentum 
S 

and energy.  From the principle of conservation of mass follows 

the continuity equation 

p dv  =   f0 dM 2.1 

where p       is the density of the deformed volume element of ma- 

terial öl v , and  o  the initial density of the undeformed 

volume element of material d \/ •  The differential form of the 

continuity equation is also useful. 

p   +   p ell   =   0 2.2 

■.here the superimposed dot denotes the material derivative, and 

d-   is the stretching tensor defined by d i j = W^ jj.  Here 

W   = X    is the velocity and the comma denotes the covar- 

iant derivative. 

The equation of motion follows from the principle of 

conservation of momentum 

7 



/>a * -■ ff 

t *   o 

k +    ^A-J 

2.3 

where o * U  is the acceleration,   *    the extrinsic 

(e.g. gravity) force and  t    is the (symmetric) stress tensor. 

The principle of energy conservation and the definition 

of internal energy lead to the energy equation 

f'   ■   t"" <m   - 
A-k   * />« 2-4 

where 8.    is the internal energy per unit mass, /»  is the 

heat flux vector and Q    the (chemical or other) energy supply 

per unit mass.  It is more convenient to resolve the first term 

on the right, representing the stress work, into spherical and 

deviatoric parts. Writing 

tt    -     i t\   St       *   -O 2.5 

where the superscripted d    denotes the deviator, and similarly 

for d J,  , we have 



t''" du  -   j   t'l  <iJ     +   '**"- 'ci. 2.6 
km     J    <■   j «•»» 

Writing P ' ~ ^3   t?    where p     is the pressure, and using the 

differential form of the continuity equation, the energy equa- 

tion takes the form 

fi - PJ  *'t- Ukm *h\k  *  a 2.7 

These equations are supplemented by the constitutive 

equation, describing the material behaviour, and the boundary 

conditions, which are described later. 

2.2  Two-Dimensional Equations in Physical Components 

The tensor equations are expanded in terms of 

physical components for rectangular and cylindrical polar co- 

ordinates for two independent space variables. 

In two independent space variables, we consider rec- 

tangular symmetry, with no variation in quantities along the y 

axis, and cylindrical symmetry with no variation in quantities 

in the tangential, or 9      direction.  The physical equations 



for both cases may be written down simultaneously by writing x. 

and u in place of  r and 0    lor the cylindrical polar case, 

and defining o< =  /  for rectangular, c* = 2  for cylindri- 

cal symmetry. 

The equations of motion become 

P* -    ft a* 
<rt_ xt yy 

\ 

f ex. - pf 
XX . Z2 

. Ill' + AL. . 
Jx Zz 

(*->) 

1 ^ 3C 

)   2.8 

/ 

The  velocity gradient     u^ ■.     has physical  components 

Bx. 0 

U «,b 

dz. 

0 

da? 

M u 
2.9 

v 

where a    , b   take on successive values x , u , 2. and it is im- 

material whether indices are written as subscripts or superscripts 

since the coordinates are orthogonal. 

The differential form of the continuity equation be- 

comes, directly 



p ~- - r { 
du 

id*. d 
2.10 

In order to expand the energy equation we require the 

physical components of the stretching deviator 

Ui d':   - i ^i s 

}        2.11 

*-     * 

Thus we have physical components 

i (*b) 

hi*    L £ 
he 3 J> 0 x  [ 3z        3*   / 

0 

32L     "  3    p 

and the energy equation becomes 

2.12 

rn u fp *fi£ * U («-O-jya 2.13 

<i: 
where the deviator stress work f> £       may be writt en 



2.14 

2.15 

Since material particles will be followed in the 

computation, the velocities and accelerations are simply 

given by       ^ w 
u' - ft U*    *     ft 

hi' .      ^ü* 

2.3 One-Dimensional Equation^ in Physical Componc ;l:s 

The tensor equations are expanded in terms of phys- 

ical components for rectangular, cylindrical, and spherical 

polar coordinates with variation only in the X or radial di- 

rection.  Proceeding similarly as in the two-dimensional case, 

further defining^ - ? for spherical symmetry. Then the equa- 

tion of motion reduces to 

There is no rotacion, and the above stress components 

are principal components, which is expressed by use of a single 

superscript.  Off-diagonal stretching components also disappear, 

and 

8 



= [ IT ;   0   ;   0] 
r ^u 2.17 

The energy equation reduces to 

where the deviator stress work is 



SECTION III 

CONSTITUTIVE EQUATION 

3ol Compressible Fluid 

We first discuss the constitutive equation of a fluid, 

which cannot support a shear stress while at rest.  The total 

stress tj    entering the conservation equations may be expressed 

in terms of a thermodynamic (elastic) pressure ep     , a dissi- 

pative (viscous) pressure  a.  , and a viscous stress ueviator a.. 

t; - -(,F - f)*! - M 3.1 

The viscous stress tensor must be Isotropie.  Taking the vis- 

cous stress proportional to the stretchings, we have the follow- 

ing form 

^ = X <C S;     *   2^  dj 3.2 

where A  and u.    are here used as viscosity coefficients. 

Then 

"^ S J t- * iX   +   &) <*2 3.3 

10 



and for the deviator 

Using Equations 3.2 and 3.3 this reduces to 

where  ö( •    is the previously defined stretching deviator. 

The viscosity coefficients may be "real" coefficients, 

representing the viscous behaviour of the material, if these can 

be evaluated.  More usually artificial viscosity coefficients are 

used with specific properties to aid in maintaining stability of 

''he finite difference calculation without unduly affecting the 

solution.  These will be discussed later. 

The thermodynamic pressure 6p is related to the 

thermodynamic state ( f>f £ ). This relation will be taken in 

the form of power series in the compression ^ « if'feJ/P 

er - f, if)   +   £ fJf) 

/, - K  ? ( I   +    k, ?    +   k> f*   +  ■■■ } 3.6 

A similar enuation of state is used for explosion product gases, 

but with different forms of the functions f, and f7. 

u 



3.2 Elastic Perfectly Plastic Material 

3»2.1 Tensor Equations 

For a compressible material which is able to support 

a shear stress while at rest, it is necessary to add a non- 

dissipative (elastic) stress deviator to the previous expression 

for the total stress. 

»I "   -(.r*f)SJ  * (ti * Jfj) 3.7 

The thermodynamic pressure and viscous stresses will be formu- 

lated as in the case of a fluid. Here we will consider the 

elastic stress deviator. 

Making the usual assumptions of plasticity theory, 

modified to include large compressions, viz:- 

a) The stretching can be expressed as the sum of the 

elastic and plastic stretchings. 

b) The spherical stretching (dilatation) is entirely 

elastic and recoverable, which is equivalent to assuming 

JL-    ~  O 3.9 

c) The elastic stress deviator is limited by the von 

Mises yield condition 

12 



(p*l!-jyx£o 3.10 

where IT »  #f • et .^ is the second moment of the stress 

deviator, and  Y   is a material constant.  It is easily seen 

that  y  is the yield stress in a uniaxial stress tensile test. 

d)  The plastic stretching is orthogonal to the yield 

surface, leading to the flow rule 

«*• s / TlJ 3.11 

where JT  is an undetermined proportionality constant.  For 

von Mises yield criterion, this reduces directly to 

A '/if' 3.12 Jl 

In view of the fact that we have assumed dt * Ö , we may also 

write the stretching deviator on the left hand side of this 

equation. 

e)  The usual assumption of a linear relation between 

elastic stress rate and stretching must be modified to allow 

for finite compression.  The usual assumption of an Isotropie 

linear elastic mediui.i is expressed in Hooke' s Law 

t; - x d: s;  * 2^ äj 3.13 

13 



where X    and ^M are now used as elasticiLy (Lame) consiiants, 

and the superimposed Lriangle denotes objective stress rale. 

Resolving this expression into spherical and deviatoric parts 

as was done for the viscous stress tensor, 

- P    '   (*  +   Jy"J   <*L 

3.14 

We now make the special assumption that the elastic deviatoric 

strain, which is limiLed in effect by the yield condition, always 

remains small.  We arc then concerned only with small deviations 

from a hydrostatic state, and make the assumption that the ma- 

terial remains Isotropie.  We thus generalize the above equa- 

tions by writing 

p   *    -  K  ± 
P 

P 
3.15 

J 

where K , the bulk modulus, and  Cj  , the shear modulus, are 

taken Lo be functions of the thermodynamic state [ P,  <-/* 

II is of course more convenient to use the integrated version 

oT Equation 3.13a, that is Equation 3.6, for the spherical part. 

U 



The equations accessary to determine Lhc elnstie stress 

deviator Cror.i Lhe stretching deviator arc thereLore 

dl       =  „^ ^   f  o ^,       (decoraposition) 

E  ^ I yJ 

(elastic relation) 

3. L6 

J    ' (; if Id   criterion) 

W  ?Zj (flow rule) 

In the next two sections the second and third 

equations ot the above set will be expanded into physical 

components.  The first and fourth equations pose no difficulty. 

').2.2.   Two-Diincnsioaa I Equations in Physical CorapononLs 

Expanding the second moment of the stress deviator in 

the two-dimensional case, the nonzero terms are 

ff - 2 ftt-A Uff * irf* U" tt-}«i y 2.    V1 

3.17 

15 



where use has been made of the fact that the trace of a 

deviator vanishes. 

The definition of objective stress rate is 

' £ Ü = J f U t'J   -  ur\r 
atrj   -  isir   -t «lx Lr 3.18 

where uT;.- is the spin tensor defined as uA; = Un .-T . Refer- 

ring to the physical components of the velocity gradient given 

previously, the only nonzero component is 

du"      au* 
Uf 

XX 3.19 

so that the physical components of the objective stress rate 

for both rectangular and cylindrical coordinates are 

it ft V 

4x  «« 
:t 

zr* 

- Z u/ xx d.n.-*. 
e1. = 2 G y 

it 
«r"(Jt" - t't"j «2 6.^ XX 

= 26^" 
6 

>  3-20 

It is unnecessary to refer to principal directions in 

order to determine the stress deviator.  If principal components 

16 



and directions are needed, for example, to apply a fracture 

criterion, these can be found very simply. We note that the 

stress deviator matrix is 

6 , »h 
e1 

0 
d,   XX 

0 

s e 
l o S 

^.»x 

so that one principal direction is the  y   direction with 

principal component 
Jj. yy and the other two principal 

components nre found by diagonalizing its cofactor 

where  a - /^ Z  respectively. 

Components of the unit vectors corresponding to these principal 

values are then given by 

N: - 
Jiif-UT - (T^T 

3.22 

N? * 
e L '   #t 

Trrrn-1 

Mt"-tt*) -iH'V 

17 



These components are direction cosines of the principal direc- 

tions.  It is easily seen that the angles between the principal 

directions and the x axis are 

(9a =  arc* an     ~    *  3.23 
" J. x x 

where the two values of  et   from equation 3,21 are used. 

3.2.3 One-Dimensional Equations in Physical Components 

In one dimension, the cquaLions arc somewhat simpler 

due to the nbsence of rotation.  The yield condition reduces to 

i- {y)x + iuY)x * {Uxr * f xi 
J.24 

while the elastic relation becomes 

For Lhe rectangular («=>/) and spherical (« » 3) 

cases, uhe symmetry of the motion leads to considerable simplifi- 

cation.  Since 

.V -  .V 3.26 

18 



and Lhe condition 

er * 't' * .Jt'  = Ö 3.27 

the yield condition immediately reduces to 

s = | (.'rj'   «   |y ' 3.28 

li: is therefore unnecessary to  refer to Lnc rest of equations 

3.16 when the material is at yield.  When Lhe material is clas- 

tic, equation 3.25 suffices to determine et  . 

For the cylindrical case ( oc « 2. ) such simplification 

is not possible.  It is thus necessary to solve the whole svs- 

tem of equations 3.16.  The elastic relation in physical com- 

ponents becomes 

&*    it'u* 
tt +  Z^---      = ZCU" 3.29 

dt 
-   1(* *cX 

It is unnecessary to use the second relatiun above,  using the 

dk y 
property that the trace of a deviator vanishes to eliminate tf* 

from the yield ccidition, 

19 



a- *f(.vr t ;r .t. (rr) * / y1 
3.30 

3.2.4 Geometrical Representation of Stress 

If the stress devlator is referred to principal axes, 

which in the one-dimensional case coincide with the coordinate 

axes, the shear components vanish.  It is then possible to plot 

the stress state in a three dimensional rectangular coordinate 
t 

system.  The condition that the trace of the stress deviator 

vanishes, equation 3.27, defines a plane, called the TT  plane, 

with a normal which has direction cosines ( /(/J*      '/yf    typ)' 

The yield condition, equation 

3.24 defines a sphere of radius 

v J /    .  Thus all attainable 

stress deviator states are lim- 

ited to the 77 plane in a domain 

within a yield circle of radius 

/j /      o  It is convenient 

T^ to rotate the coordinate system 

so that the yield circle is in 

the plane of the paper, and to 

use polar coordinates to deter- 

mine any given stress state P 

in this plane. 

'i 

2C 



dl* 

r 

4** 

■ci 

It is immediately evident from 

equation 3.24 that the radius 

vector is given by/jf .  The an- 

gle between the radius vector, 

and the line formed by the inter- 

section of the TT  plane and the 

f -  f   coordinate plane is 

given by 

arci*n (- ^ /TV 3.31 

where w, y  w. x 
2V - 7 " -'t J*  K 

is Lode's variable.,  Using equation 3.27, this reduces simply to 

«^» 

f arc far» / J   f V 
-«^ _ ^» 

3.32 

It is clear that  JT , ifS   and  ö are sufficient to define 

any elastic stress state. 

21 



SECTION IV 

STABILITY 

4.1 Artificial Viscosity 

Discontinuities or shocks may develop in solutions to 

the motion of perfect compressible fluids and solids.  Such dis- 

continuities lead to instabilities in the finite difference cal- 

culation.  This problem is avoided by rendering the solution 

smooth and continuous everywhere by the introduction of artifi- 

cial viscosity, so formulated that solutions are only affected 

in areas of very high gradients, i.e.,in shock zones.  Follow- 

ing von Neumann and Richtmyer we choose a bulk viscosity coef- 

ficient dependent on the dilatation so that the viscous stress 

is negligible in areas of moderate gradient, i.e., 

(*♦ V, ^uj  -  ~    t>,x j>    clt 4.1 

in equation 3.3, where ^ is a constant with dimensions of 

length.  In some problems it is found desirable tc include a 

linear viscous coefficient. Following Landshoff this is for- 

mulated as 

22 



where ^x also  has dimensions of length, and c is the sonic ve- 

locity of the medium.  The viscous pressure can therefore be 

written, with the use of the continuity equation, as 

ßX 

Since only compression shocks are possible, <b    is  set equal to 

zero when J>   * 0 

Experience has shown that equivoluminal oscillations 

may occur in two-dimensional finite difference schemes, and a 

variety of artifices have been adopted to strengthen the viscous 

stress in the direction of maximum velocity gradient.  This can 

be done elegantly by introducing a viscous stress deviator in a 

way analogous to the introduction of the viscous pressure above. 

"Vj - - V/ C^V1 - ^/>c^;; 4.4 

Again, the viscous stress may be unnecessary on expansion, 

and may be set equal to zero when clj    >   0. 

There is no difficulty in expanding equation 4.4 

into three equations in physical components for the two-dimensional 

case.  In the one-dimensional case it is sufficient to retain 

only the bulk viscosity. 

23 



4.2  Stability Criterion 

The conditional stability of second order finite dif- 

ference equations is well known.  In the finite difference 

scheme, quantities are sampled at discrete intervals in space 

( Aoc   ,     A a:    ) and time (At  ),     The time increment cannot 

be chosen arbitrarily.  If the time increment is too large, 

disturbances with wave  lengths of the order of the mesh size 

tend to grow without bound.  A variational analysis of the one 

dimensional finite difference equations (Appendix A) in which 

solutions are sought in the form 

<       ~ ikx * at 
a u   -    d u0   G 4.5 

etc.   suggests  that  a  sufficient condition  for  stability  is 

 Ax.  
At  '  (1 + lAJc   r   4V M"l 4-6 

Deviator viscous stresses have been omitted in this development, 

since they are in general smaller than the spherical viscous 

terms.  No difficulty has been encountered on this account, pre- 

sumably because equation 4.6 is somewhat more stringent than 

the necessary condition« 

A complete stability analysis has not been carried out 

for the two-dimensional finite difference equations (Appendix B). 

However, an analogous form of stability criterion has been found 

useful.  Note that in one dimension the continuity equation 

can be written (equation 2.2) 

24 



Au £ 
A*      ~   ~     ? 4j7 

Taking /ft as a measure of mesh size, where ft  is the area of 

a mesh, equation 4.6 becomes 

Despite the fact that //T is not a good approximation to the 

mesh size for a highly distorted mesh, the use of this equation 

has not, so far, led to any stability problems.  This presum- 

ably arises from the fact that the error in the numerator 

partially offsets the error in the denominator. 

25 



SECTION V 

FINITE-DIFFERENCE ANALOGS 

The differential equations given in the previous 

section are to be integrated numerically.  The derivative 

terms are replaced by finite difference analogs to produce 

a set of algebraic equations which are solved in a stepwise 

manner to produce the desired solution.  The principal dif- 

ficulty concerns the choice of finite difference analogs 

to the partial derivatives. 

In one space dimension centered difference ex- 

pressions correct to second order will be used.  In two 

space dimensions, a variety of difference analogs, presum- 

ably of the same order of approximation, have appeared in 

the literature.  Some of these have been compared in another 

report. Here short derivations of the analogs which were 

found to be most suitable are given.  Application of these 

to develop the complete finite difference equations in one 

and two space dimensions is postponed to the appendices. 

In one dimension, the usual approach is to use 

Taylor's expansion.  Consider an arbitrary quantity ^ 

varying with an independent variable x (which may represent 

time, or distance in one space dimension). We wish to find 

the gradient of (^ at a point 0 given values of j^ at neigh- 

boring points 1 and 2 finite distances from 0. Applying 

26 



Taylor's expansion, 

3.1 

Solving these for *-* , 

where  JJfa| « £ ( ^i ■•• ^/J - <«,   is a measure of the assym- 

metry of the mesh.  If the mesh is nearly symmetric the second 

order term is negligible, and if the mesh size is small, the 

higher order terms are negligible, and 

It is clear that the truncation error grows as the 

mesh becomes more asymmetric. 

Precisely the same reasoning has been used to con- 

struct a finite difference analog LO partial derivatives in 

two space dimensions.  Consider an arbitrary quantity W  vary- 

i j^— ^T in8 with two independent vari- 

ables x and z.     We wish to find 

the gradients of Uf  in the x and 

j  —   JI^ x  directions at point 0 given 
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values of jff    at four neighboring points 12 3 4 finite dis- 

tances from 0.  Applying Taylor's theorem we obtain four equa- 

tions of the type 

5.4 

Kolsky suggested solving this overdetermined system of equations 

by first solving for ( (£ - (/^) and ( i?x ~ ^ ) giving two 

equations 

(^-rJ - jt(x--*') + IS(*•-**) * *" 
5.5 

where the remainder terms again depend on the assymmetry of the 

mesh and the mesh size. Again, providing that the assymmetry 

and mesh size are both small, the remainder terms may be neg- 

lected in comparision with the first order terms.  Solving for 

r! - r* {(**- VJ*' -*>) - it -iCJ*' -**)} 

28 



where 

/, = f [f Z, - 2,/x. -*.)  ~ (zx -2.X X,  - Xjj] 

It is seen that A represents the area of the quadrilateral 

12 3 4. 

It is interesting to note that an identical result 

may be obtained in another way.  Green's Transformatier in 

two dimensions may be written 

/>,, da     -   f Ü n, ds 5.7 
/) 5 

where ft-^   is the unit exterior normal to the surface S en- 

closing an area A.  In component form this becomes 

h^ -in** - (ML* 
5 A 

5.8 

-{***■ IM" -iML* 
where the gradients have been averaged over the area A.  Apply- 

ing these relations to the quadrilateral 12 3 4 surrounding 

point 0, we find that the average gradients may be expressed as 

rf = ^[^^-^^nM^-fe^^;^^^-^ a 

5.9 

af - ^ ffk (*, -^ * ifc {*.-*>) + ICr. h -V + &(**"Vj 
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where (^  is the average of ^ over the side 1 2 etc. if we 

write 

the above equations 5.9 immediately reduce to the previous 

equation 5.6. 

Both forms (enuations 5.6 and 5.9) will be found use- 

ful in developing the finite difference equations in two space 

dimensions.  It is clear from their development, however, that 

the truncation error due to neglect of the higher order terms 

must depend on the asymimtry of the mesh.   The truncation error 

has been investigated in another report, and has been found to 

become comparable to the terms which are retained even for mod- 

erate distortions of the mesh. 
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SECTION VI 

RESULTS 

A few illustrative calculations are presented in this 

section.  While the results arc suggestive oi the role of mate- 

rial strength in plastic wave propagation, considerable work 

remains to be done, particularly on the representation of mate- 

rial properties, before quantitative information can be extracted 

Results using the one-dimensional finite difference 

method for the face-on impact of two aluminum plates are shown 

in Figs.l through A.  The configurations were chosen to cor- 

i 
respond to experimental data reported by Gurren,  The materi- 

al constants used were 

/.  =  2.78 gm cm3   Y - 2.7b kb 

k* = 764 kb h0  =3.4 73   fc=  286 kb 

k' = 1 014 ^ = 1.0 ft, = 5.86 

kx = -.236 Hl = 1.0 ^ = 8.44 

K, =  -.513        hj = 1.0    fi=       0.0 

Figure 1 shows print plots of stress profiles for a 

driver plate velocity of 1.9 Ion sec, while I-ig. 2 shows corre- 

sponding results when the yield stress is set to zero.  Figures 

3 and 4 show initial rear surface velocities of the target plate 

upon reflection of the stress wave as a function of target plate 

thickness (in terms of driver plate thickness), for driver plate 

velocities of 1.9 km sec and 1.2 km/sec respectively.  Also 

shown are experimental data of Curran, and results of the 
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hydrodynamic theory of Fowlcs. 

The computer solutions for zero strength {  Y   ~   0   ) 

fall well below Fowles'prediction.  This may be ascribed to dif- 

ferences in the fit to the hugoniot, and the fact that Fowles 

did not account for entropy changes, in so far as he used the 

hugoniot for the expansion instead of an isentrope.  The com- 

puter solutions including material strength fall well belcw the 

zero strength solutions, but not sufficiently to agree with the 

experimental data.  The remaining disagreement may well be due 

t3 an increase in yield strength with compression as suggested 

bv Curran. 

When material strength is included, it is seen from 

Fig. 1 that an elastic release wave with an amplitude of about 

15 kb moves into the compressed material behind the shock with 

the local elastic wave velocity.  The existence of a 15 kb 

elastic release wave, despite the fact that the yield stress is 

taken constant at 2 76 kb, can be explained by referring to 

Fig. 5 which shows a schematic of the clastic plastic constitu- 

tive relation neglecting hysteresis due to the entropy change in 

the shock.  On loading, a stress-strain path lying a distance 

VJ Y     above the hydrostatic curve is followed  (0 A B C in 

Fig. 5). On release of stress from state C, path C D E is fol- 

lowed, so that an elastic release wave of amplitude C D is gen- 

erated.  The amplitude of the elastic release wave is determined 
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by the slope of segment C D, relative to the slope of the hy- 

drostats.  The slope of C D is ( K ♦ ^ G ) while the slope 

of the hydrostat is (^).  Thus the relative slope depends on 

the shear modulus 6 .  At the same time the velocity of the 

elastic release wave is given by 

Thus, if the value of 6 is increased, the elastic wave amplitude 

is decreased but its velocity is increased.  Higher attenuation 

results from a larger elastic release wave amplitude, but also 

from a release wave of higher velocity.  Thus the two effects 

offset each other to some extent, and some variation in <» does 

not materially affect the results, as found by Jones. 

Once the elastic release wave has reached the loading 

shock, the shock amplitude is reduced.  As the reduced amplitude 

shock propagates, the material is now loaded to a lower stress 

(state B, Fig. 5).  When the release wave reaches this material, 

a new clastic release wave will appear (corresponding to segment 

B E, Fig. 5) and the attenuation process will be repeated. 

Results, using the one-dimensional finite difference 

method, for the response of an aluminum sphere 18 cm in diameter 

containing a concentric spherical cavity 3.4 cm in diameter fil- 

led with Pcntolite are shown in Fig. 6 (not all mesh points are 

plotted).  The configuration was chosen to correspond to experi- 
tr 

mental data obtained at the Ballistics Research Laboratory,  The 

33 



material constants for the aluminum were identical to those used 

above, while the material constants for the Pentolite were taken 

to be 

f. =  1.714 gm/cm3 /> =  2.333 gm/cm3 

Y = 1.77 p,   = 290.289 kb. 

P = 2.77 

D = 7.991 km/sec 

It can be seen that the results for zero strength 

( V« O ) and a strength Y =  2.76 kb do not differ very materially 

except at late times.  The difference is sufficient however to 

cause a drastic difference in spall behaviour.  The elastic- 

plastic case (/= 2.76 kb) showed 3 spalls at radii of 7.55, 

5.70 and 3.90 cm. respectively, while the hydrodynamic case 

(y»0) showed several spalls, the outermost occuring at a radius 

of 3.55 cm.  Great care is necessary in interpreting spall results 

from finite difference calculations, since these depend to some 

extent on the choice of mesh size and artificial viscosity co- 

efficients.  The auovc  results should be regarded as preliminary. 

In Fig. 7 is plotted the cavity radius vs. time for 

Y   = 0  and /= 2.78 kb.  The cavity radius grows somewhat more 

slowly when material strength is included.  The cavity radius 

at 20 microseconds was computed to be 2.68 cm, which might be 

compared with the final cavity radius of about 2.95 cm found in 

the experiment.  It is clear that the cavity grows for times in 
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excess of 100 microseconds^ which is lon^ compared to the time 

required for the initial shock to reach the outside boundary of 

the aluminum (about 13 microseconds). 

Preliminary results using the two-dimensional finite 

difference method for the end-on impact of a finite length 

aluminum cylinder on a smooth wall (or symmetry plane) arc shown 

in Figs. 8 and 9. The manorial constants for the aluminum were 

identical to those used above. 

In Fig. 8 arc shov/n deformed material coordinates aL 

various stages during the motion, while in Fig. 9 are shown cor- 

responding isometric (Lagrangian) plots of the hydrostatic pres- 

sure.  The effects of lateral release waves are clearly observ- 

able. 
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Appendix A 

One Dimensional Finite Difference Equations 

A. 1  Equations of Motion 

Consider only discrete points in space finite 

distances A oc      apart and denote the initial coordinate of 

the j ** such point xj  .  Similarly, consider only discrete 

times finite increments At    apart, and denote the n **• such 

time tn• We are then concerned with positions and accelerations 

of these points at these times, 

 1 £-£* , *2l*h   , ^ denoting by x f and af  the 
X J J 

J'l J J+l 
position and acceleration of the 

j *• point at the n ^ time.  Other quantities, such as pressure, 

density, stresses ,etc.,are averaged over the intervals Ax  and 

denoted by p n   , ßj*u     »etc. We suppose that quantities 

vary so slowly that linear interpolation is justified.eug., 

and similarly in time 

yp - i (C + V) A-2 

Such linear interpolation is in accord with the approximations 

involved in the finite difference analogs to partial derivatives 

correct to second order,i.eu> 

y _  VU   - jf^ A.3 
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~    = ^  A.4 

Simplifying the notation, the momentum equation will 

be written 

where we have written a = a * , <r • ~ et* ; $ - e^ ~e* and 

whore body forces have been temporarily omitted. Applying the 

above principles, the finite difference form is 

a?  -   - I 'J 

M"^ - 

x . 
„♦;        »» . f w*^ .. » ♦'/i 

J J ./ 

A.6 

The velocity and coordinate are given by 

u^. x i- zi At     * + At    V aj A'7 

x ■ +       At U A.8 
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It is simplest to take the continuity equation in integral 

form, whence 

mi^ 
Jj+V*   ~        I     n.i   \* /„"+']* A•9 «r - i-r) 

where 

rr) i^ s f(*Lr ~ ( *;')*} fj*". 

is a constant for each mesh point. 

A»2  Artificial Viscosity 

In order to link the width of shock zones to the mesh 

size, the artificial viscosity coefficients are set proportional 

to the mesh size, so that the artificial viscosity becomes 

tor  ^>0 

The sound -.peed does not change very rapidly so that the use of 

C ; ,/     in this equation docs not introduce any difficulties. 
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A.3  Fluid Constitutive EquaLJon 

Several equation of state options are available. It 

is convenient to deal with a fluid separately. If the flow is 

isentropic, an equation in the form 

ep - Uf) A-11 

fitted to the isentrope suffices.  For more general motions, the 

relation 

e/>* i{ip)   *     * hi?) A.12 

where /, and f-x  will be expressed in terms of »7 » (P'Jo)/F 

h  *   **      {  I +   b.?    +  hi?1 +     ■    } 

is combined with the energy equation, which in finite difference 

form is 

where 

Heat conduction and energy source terms have been temporarily 

omitted. Substituting A.12 at t **' into A.13 provides an ex- 

plicit equation for the internal energy 
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The pressure can then be found from equation A.12 and C s ej0 

(P   *   0 .     The sound speed is given by 

where 

fä    *    k.(l-7jfl*lkl?   W/r^V   •■  ] 

A.4  Elastic Perfectly Plastic Constitutive Equation 

The stretching deviator is 

m ̂ (<:+*:j~(*r + *fJ    3 f ~    +  T   TT A. 16 

and the elastic stress deviator becomes 

where we will take the shear modulus to depend on compression 

For  ä « ) or 3, the yield condition reduces to 
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Then 

If 

If 

Then 

A.13 

Jj.« 

ilt')j..,x 
= Sy* i** ■ 3 y 

<P - y -u* * Hit') A.19 

and the deviator stress work is simply 

Ad£ i ^ A.20 

This is used in computing the pressure below.  For <*« 2. a more 

elaborate procedure is required.  We compute the z component of 

stretching and stress deviators 

(n:: 
'r -ly)*  + 2 At**"* G^ (U2/- 

n + i/x 

"X 

A.21 

A.22 

These equations are, of course only valid if the material is 

elastic. When the material is plastic it is necessary to solve 

the set of simultaneous equations for the unknown stress compo- 

nents and proportionality factor f    .  Due to the quadratic form 

of the yield condition, this cannot be done explicitly.  Instead, 

a forward differencing scheme used by Wilkins and Giroux, and 

Maenchen and Sack is used.  Referring to the /T"plane representation, 
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we consider an elastic FLrosr. 

state 1 at t , and use equations 

A,16, A.17, A.21 and A.22 to 

compute a new elastic stress 

state 2 at t n«-! The second 

Then ii 

n 

n 

moment is then computed using 

$ } r 

Use 
U4 /j^i,^ 

't* A.23 

since the material is still elastic.  However, 

if    IF  > j yv 

the material has become plastic as shown in the diagram. Ap- 

proximately the correct yield stress is achieved by using 

A.24 

which in effect computes the stress state at point 3 on the 

yield surface on a radius vector from state 2.  The procedure 

is only valid when the change in Lode's angle is small.  It 

might be noted that when  « * /  or 3, the symmetry condition 

/  =  _t      limits the attainable stress states to the 

straight line AA' in the diagram above, and the procedure given 

for finding the stress deviators for this case does not involve 

this approximation.  Then (p ~ 2.9l    + 9i-     and 
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A'£ - ^V \P'K -w^Hn:: *(*):::) 
A.25 

+ {irj::*(rij{z(n::*M;:)j 
Finally the hydrostatic pressure is found as for a 

fluid, but including the deviator stress work in the energy 

equation A.14 

^•"^ . 17^—Tfi  A-26 

The pressure is found from equation A.12 and C - fp  - #* 

The elastic sound speed may be taken as /\7s    times the value 

given in equation A.15 

A.5  High Explosive Constitutive Equation 

In order to force the detonation front to move at the 

proper velocity the following scheme is adopted.  The time at 

which burning is initiated in a particular mesh will be 

*; - ^ 

^ =  D  A-27 

where x* is the initial position of the detonation point (the 

detonation is considered to be initiated to the left, or smallest 
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x*     ), and O   is ehe detonation wave velocity.  In orde^ to 

spread the detonation front over several meshes, a burn fraction 

is defined as 

F. #/  
s Ö for  C   i t. 

A.28 

Cl - dbf*'" - CJ    ^  ^">C 
where 0  S  F  4   I     , and B,. is a constant which determines the 

thickness of the shock front.  If we now take 

^;;; - ^:;M^ * ^ /^.J A. 29 

the pressure is maintained zero until the precomputed detonation 

time, and rises smoothly until F= 1. Since F- 1  for all times 

thereafter, equation A.29 provides the correct equation of state 

of the explosion products for the subsequent motion. 

Solving equation A.29 together with the energy equation 

A.13 for a fluid provides the equation for the internal energy 

£"♦' . £;♦* ^ ^ (f ^ f;^ f '^ * TJ*^ * fj*^ /  "ß1  A<30 

The pressure is then found from equation A.29. 

Choosing a polytropic law to describe isentropes and 

using the Mie-Grueneisen assumption to generalise to other nearby 

states, /, and fx can be expressed as 
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Ao31 

k   Ä Tjo 

where A" , ^3 and ^ are material constants.  For the simple poly- 

tropic gas, the expression for the sound speed, equation A.15, 

reduces simply to 

»»♦1 

K'J •** j*^ A. 32 
0 "♦• 

Other more elaborate forms for /, and /x may, of course, be used 

if deemed necessary. 
« 

A.6  Energy Checks 
f 

It is often desirable to study momentum and energy of 

individual meshes, or summed over portions or the whole of the 

material in the problem.  The finite difference expressions be- 

low are collected for convenience, and are incorporated in a 

special subroutine only when required .for diagnostic purposes. 

The mass in a mesh is given by 

where 

MJ*'K 
m k' m ̂ '4 

A'= ; for oc = 1 

k'»  tr for OC -X 

k'- ±ir for o(   - 3 

A.33 

Thus the momentum in a mesh is 

•♦"' . ü **"*   \ A. 34 
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The kinetic energy is 

*    ' f ^V.   "'      J  j       A. 35 

while the internal energy is 

£ ^"x -    i    M.      I   i"1     +    £*     ) A.36 

It is useful to sum kinetic and internal energy over the mate- 

rial.  Then if energy is conserved 

A.37 

where jyS9**"*'    is the surface work done from time tn to  time 

t *    (for example l>y a surface pressure) and ^?  x is the 

nonmechanical energy addition in this time interval (for example, 

chemical energy in an explosive). This provides a ver> useful 

check on the calculation. 

It is sometimes useful, in studying a particular motion 

in detail, to consider the energy distribution in various modes. 

Considering the time interval t to   f*     in each case, the 

spherical elastic stress work done in a mesh is 

*.EJ.'.*    ■   » "i.%{'Pj^   * 'Pu.,J   /* A-38 

while the spherical viscous stress work is 
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The plastic stress work can be estimated in a ihanner 

consistent with the forward  differencing scheme used in ,the con- 
4 

stitutive equation.  Referring to the diagram in Section A.4, 

note that the plastic stretching deviator is related to the in- 

crement in stress between states 2 and 3, i.e., 

^    "   IT  J—t  A-40 

The plastic stress work per unit mass is thus approximately 

where summation is implied over the index a .  Using equation 

A. 24 this becomes 

Since state 3 is at yield, the second moment of the stress tensor 

at 3 is j X   .In finite difference form the plastic work 

done is therefore 

The total deviator stress work is 

A.43 

A dE ^    -    M. tL   A
JZ A.44 
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and the elastic deviator stress work is simply the difference 

between equations A.44 and A.43. 

A.7  Boundary Conditions 

Boundaries and interfaces require no special treatment 

other than to supply the appropriate quantities on either side of 

the boundary or interface in the momentum equation A.6. 

For a fixed surface quantities tr, &,  p  and (^ in the 

mesh outside the fixed surface are set equal to the corresponding 

quantities iu the mesh inside the boundary.  Furthermore we set 

where 7 is the boundary index, solving for the appropriate x" 

outside the boundary.  The acceleration and velocity are then 

zero and x**    is computed to be equal to x.*   , as required. 

For a free surface, quantities r, y,, p and ^ in the 

mesh outside the free surface are set equal to zero while x.* 

outside the boundary is found as above.  If a surface pressure 

is to be Introduced,  set <rm   xpi*) where ^p        is sup- 

plied as input either as an analytic fit or in tabular form. 

For an internal interface between different materials, 

no special provisions are required while the materials on either 

side of the interface are in contact. However, when the stress 

at the Interface, {\  (** }*!,   +  ^j-l/^ ) where J" is the interface 

index), exceeds the tensile fracture stress of the bonding, two 

free surfaces are formed.  It is then necessary to store 
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additional values of x  and u for the second surface and ajbply the 

free surface conditions when computing the separate acceIterations 

of each surface.  If at a later time the surfaces attempt to cross, 

(i.e. x "*'  > 3c **"'        where J"- and JV refer to the 

left and right hand free surfaces respectively) the positions 

and velocities of the two surfaces are set equal and the inter- 

face is treated as unseparated once more.  Subsequent separation 

of the interface will then occur at zero stress. Actually a 

small (nonzero) separation stress is used to prevent undesirable 

separation and contact when the interface stress oscillates 

about zero.  Fractures at the interior of a material are treated 

in precisely the same way. 

A.8  Stability Criterion 

The stability criterion is used to compute «At 

used to advance Hie calculation on the following time cycle. The 

expression is evaluated for each mesh and the minimum is used for 

advancing the calculation.  Using a backward time centering, the 

stability criterion becomes 

In this expression it is tacitly assumed that the velocities at 

j and Ui will remain the same on the next cycle. 

The expression, equation A.45, has been found to be 
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adequate for most purposes.  Experience has shown that even if 

large velocity discontinuities are introduced initially, as for 

example at the interface between colliding materials, the com- 

putation remains stable and the discontinuity is smoothed to the 

normal shock width of 3 or 4 meshes within 3 or 4 cycles.  How- 

ever, if an initial pressure discontinuity is introduced, the 

calculation becomes unstable if equation A.45 is used. A heuris- 

tic argument suggests the following explanation. A velocity dis- 

continuity acts immediately to strengthen the stability criterion 

through the velocity gradient term in the denominator of equation 

A.43. A pressure discontinuity, however, does not affect the 

stability criterion until a later cycle when the pressure dis- 

continuity has accelerated the mesh points concerned. A scheme 

to overcome this limitation has been suggested. 

Instead of computing the stability criterion at the con- 

clusion of the calculations for a particular cycle, the stability 

criterion is computed just after computing the acceleration 

(equation A.6) but before computing velocity ^equation A.7). A 

forward time centering is used. Moving the entire expression 

backwards one step in time, we write 

Ax At****    s  _ 1 ■        A.46 

where ^x"*' • x ?;• - >c V , etc., and the spatial index is hence- 

forth omitted. The essential difference between equations A.45 

and A.46 is in the centering of the Ax  and Au   terms. We may 
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anticipate that ^3«'**'  and 25un*,/*' will differ materially 

from  ^ix"   and ^u""  if the acceleration gradient is high. 

Such an acceleration gradient would result from a large pres- 

sure discontinuity.  The sonic velocity c   by comparison does 

not change drastically even with large changes in pressure so 

that it is sufficient to use c". At this point in the calcu- 

lation the velocities and position are not yet available at 

n*( and n*'/». respectively.  However, a good estimate is 

u"^ = w"-'7* ^ At**"*  a," 
"       * A.47 

since At will not be expected to vary too drastically from 

cycle to cycle. 

Inserting equations A.47 into A.46 and investigating 

limiting solutions for large and small values of Aa" leads to 

the sufficient condition 

j A.^8 

^a^HJI^u-^/ * /(4Vti; A>C- r^rj 

where  Ax1*» x .'•  -K?, etc. 

A constant K is inserted as a convenience for strength- 

ening the stability criterion artificially if this should be 

desirable. 
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Appendix B 

Two-Dimensional Finite Difference Equations 

B.l  Equations of Motion 

Consider discrete points in space formed by the 

intersection oi" material coordinate lines distances Aoc   and 

Az apart.  Similarly, consider only discrete times finite 

increments At apart.  We use three indices to denote values of 

quantities at the intersection of the i* z.    material coordinate 

J and i  JC material coordinate at the n*    time, e.g. a * ? 

x , Quantities such as pressure, 

density, stress, etc. are av- 

eraged over the meshes formed 

by the finite difference grid, 

and are denoted by p 

etc. 

While quantities are indexed in this way in the com- 

puter, in writing down the finite difference equations it is 

more convenient to use the notation shown in the sketch. 

Suppose that quantities vary so slowly in time that 

linear interpolation is justified ,i.e., 

icr - Ut'" ' ^ B.l 

and similarly in space.  Such linear interpolation is in accord 

52 



v/ith the approximations involved in the finite difference ana- 

logs to partial derivatives, correct to second order, i.e. for 

time derivatives at 0 

} i t ',*",• -  t *'"*■ 

Finite difference analogs to spatial derivative are obtained by 

the use of Green's Transformation.  For quantities which are av- 

eraged over the meshes, Green's Transformation applied to the 

circuit A B C D gives the gradients at 0 

B.3 

where A  is  the  area of  the  quadrilateral A B C D. 

The momentum equations,   temporarily omitting  body 

forces,   become 

K .    1    Li     +    l    IL Ax-,)    I L 

B.4 

a « . iAL'\ L ill1 +(a.,; t KZ 

f>   3* f   S*. K     '   ß 3C 
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where we use equations B.3 to represent the derivative terms 

and the equations are centered at 0 in space at t" in time. 

The term (ßA )  appearing in these equations is required at 0, 

hut p  and fl are quantities averaged over the meshes.  The sim- 

plest solution is to use 

For cases where areas of severe distortion must be handled as 

realistically as possible, it is better to use the more accurate 

but much lengthier relation 

B.6 

/?; - i{ (** '**x ** -**) - (*» -xoX*-* '*oj} 

is the area of triangle A 0 D etc. We have used equation B.5. 

The last terms on the right of equations B.4 also re- 

quire interpolation.  A variety of interpolation schemes are 

possible, we have used 

ß-iivJ.*ip.%*v>%*v*4ti)       B.7 

where /) and m are the areas and masses of the meshes, defined 

later. This allows a relatively simple treatment at boundaries. 
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The velocities and coordinates of cell vertices, using 

equation ß.l, are given by 

B.Ü 

MT - ("'K'" - ii*t""'.M'-"'){*v: 

and 

x x;2   i     At       *  (W A o o \.   / 0 

B.9 

n + l ...  i • m-*f/-       >' \ I*''* 

o 0 

B.2  ConLinuity Equation 

The continuity equation is taken in integral form.  The 

volume of mesh 3 is given within a factor [2 It) by 

where AL    and /|M are the areas of the triangles B F C and 

B 0 C respectively at  time i 

D.ll 

/?ue i ff2« -zo/^ - ^J - f^-z-/^ -**)} 
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and x^     and xu  are the centroids of the triangles B F C and 

B 0 C respectively at time t n 

*<- =   j ( xa     +    XF     +    *<) 

B.12 

^« J f^tf  *     Xo      +      xc  ) 

The continuity equation is 

P 

m 

3      /« B.13 

where m^    is a constant for each mesh, evaluated at time t 

,d = jo/ ^ /?,.' (x^j0"'   +   /?J (**)*''} B.14 

Hie area of mesh 3 is simply 

B.3  Stretching and Spin 

The components of the stretching deviator and spin 

tensor are given by 

B.16 
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InLcrpolaCion in botb space and time is required in Lhe finite 

difference analogs to the velocity gradient terms.  Applying 

Green's Theorem to the circuit B F C 0 and using linear inter- 

polation, we get 

-i^-U*-"'*2-'-*''''-2'")} 
B.17 

which is centered at 3 and time  f "*,/». . Also 

i> 2   / />*" " F 

P At»'"'    I   f"   +  f 
B.18 

B.4  Artificial Viscosity 

In order to link the width of shock zones to the mesh 

size, the artificial viscosity coefficients are set proportional 

to the mesh size.  The bulk viscosity becomes, with all quantities 

centered at 3 
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A 

t-. f-'fl/^c-ffl   *[B.  /^(ßj]1} 

for      J    >0 
B.19 

n*S 
for 7 < ^ 

The deviator viscous sLresses take the form 

(VT' - /"f^ 5 c-i'ä-r-b z Cd-nT] 
where 

X       s 

z   * Ma*{z.t  ztl*Ff *e) -   Min.(z0tza)z^ze) 
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and 4. " and   cy "    arc set equal to zero when the corresponding o 

stretching deviators are positive.  These expressions are not 

properly centered, but since the density and sonic velocity do 

not change rapidly, this does not introduce any difficulties. 

The work done by  the viscous stresses in the time in- 

terval At is given by 

for the spherical part, and 

B.22 

for the deviator part 
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B«5  Stress Deviator 

When the material is elastic, the stress deviators 

are found from the stretching deviators by the differential equa- 

tions 

ami- J I     X   X Jtrl, 

B.23 a 

^"4 2 ur« it**    * 2 G a** 

Tlie differential terms on the Inft are set into finite differccc 

form using equation B.2, while the other stress terms on the left 

must be interpolated to  t"*  using equation B.l. This leads 

to the implicit set of equations 

(rT' -irr* iM "iiit-r* fir ~ (itT-frf)«. 
=  ZAtG'd 

24 

J 1** 

(UT -iit'f+ *< *" {fr"r *(*'T}   - 2*tc *" 
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where all quantities except stresses are centered at t 

If we choose the time increment At sufficiently 

small so that 

(At""*     ur**  "*"*)  * « / B.25 

then these equations may be expressed in a relatively simple ex- 

plicit form.  The condition B.25 implies that the rotation from 

t       to      t ,,*, is small.  Since the spin is the angular velo- 

city, the rotation in time At**"      is 

Af    '   At ur**       * B#26 

Defining 

aä
tt**   "   2. At*'"* a*"** I'd"") 

*yx  . lAt"'" a""*iU**rH 
B.27 

4~    *   2 At** G^l'd") rt*»x 

where we take the shear modulus as a function of compression ^ 

we find that equations B.24 solved for the stress deviators at 

time t become approximately 
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it- .&")" * Ar' + Z4tl(tt'i\ -i Ait-} 

tr - (a")' + rt" - * A(P Ifi'T* -A 't") B.29 

r -(".ff <■ tit"- A<t>{irT*irt"-(rT-i*'''t"] 

It is readil}' seen Chat in each equaLion Lhe second 

term on the right represents the stress increment due to stretch- 

ing, while the last term represents that due to a small rotation 

'fliese equations are, nC course, only valid when the 

material remains elastic. When the material is plastic, only 

the elastic stretching should appear in the above equations, 

and it is necessary to solve the set of simultaTCOus equations 

for the unknov/n stress components and proportionality factor 3 

A method of forward differencing used by Wilkins and Giroux, and 

Maenchen and Sack is used.  Consider an elastic stress state at 

time t" .  If we were to transform to principal coordinates, 

this stress state could be plotted in the 77"  plane representa- 

tion as point 1, say (see diagram on next page). 
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Equations B.26 Uo B.2ij arc used 

to compute a new elastic stress 

state at t "*''   .    Transforming 

to a new set of principal co- 

ordinates (which are in general 

rotated with respect to the 

previous ones) we can again 

represent this state in the 77 

plane.  The second moment is 

B.30 

Then  if 

Use 

zr ^ jy 

[trj n+) dl xx 

ItfT'  - U 

[T) 
n+l 

**. 

B.31 

-   tt e L 
rr 

since the material is still elastic. 

However if  U > T ' 

the material has become plastic as shown in the diagram.  Ap- 

proximately the correct yield stress is achieved by using 
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{:t") 
nti x K 

itt") 
oti 

B.32 

1X1 
/»♦'      /f /    d .  *■* 

which in effect computes the stress state at point 3 on the yield 

surface on a radius vector from state 2.  The proceedure is only 

valid when the change in Lode's angle is small. Due to the ro- 

tation of the principal axes, the principal stress components 

must be found before Lode's angle may be determined. We have 

for principal stress deviators 

where a * /, 2 respectively when the upper or lower sign is 

used. The angles of the principal axes with respect to the K 

coordinate axis are 

1      '  •!  B.34 ^a « arc tan   e   d 
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and Lode's angle  is given by 

^   s   arc tar*   /J 
T^ TT" B-35 

Note that principal components and directions are not 

required except optionally for diagnostic purposes. 

Finally the deviator stress work is given by 

j      «/     ^ 

+[{',rr\ cxTpfrT*('<*")'*]  B.36 

*l(ttT*(U'T]l*('d"n]} 

B.6      Pressure 

The pressure is taken as a function of the thermody- 

namic state in the form 

eP   *    lip)     *     i    Klf) B.37 

where in terms of   *f *   (f "Jo)//* 

f,    • k* ?   i   l  +     k'7    ^ ^ 7 x t • • • j 

k   *     ho       {   I   +   b^     ****'!''+'" ) 
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while Lhe energy equation in liniLe diflerence form is 

where A/>/ßl  is given following equation B.21.  Solving equation 

B.37 and Bo 33 for S"*' 

r1 tt'-i (y UP") % * *°J - *£ ' A£      B.33 

B.39 

The pressure can then be found from equation B.37. Then the 

total stress components are given by 

t- - ;t" * v" -a» ^; 
B.40 

t** - tyy =  i\t*' + it*' + 2Y' + V" 

Tlie bulk modulus K is obtained by differentiating equation B.37 

with respect to ß   at constant entropy. Assuming that Poisson's 

ratio remains near 1/3, a good expression for the elastic sound 

speed is c * //• 5" K/p ' whence 

,/)*■/ 
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where 

^#   '   ^ f  '*   i'<'7  +3','?l+   ■■   }(''*J if 

ff* .   h.jh, +^7 * JAJ?
l
+    ■■}[>-?) 

B.7  Energy Checks 

It is often desirable to study momentum and energy of 

individual meshes, or summed over portions or the whole of the 

material in the problem.  The finite difference expressions be- 

low are collected for convenience, and are incorporated in a 

special subroutine only when required for diagnostic purposes. 

The mass of mesh 3 is given by 

N3 = (xrr)*'' "»j B.42 

Thus the momentum components in mesh 3 are approximately 

w«-;^ -  M,  «« v 

»**.      -   M    ,MZ   "*•"* 

B.43 

while the kinetic energy components are 

B.44 
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where in equations B.43 and B.A4 we interpolate the velocity com- 

ponents as 

U,   '   W*   *"•  * "' * "*■> B.45 

The internal, energy is 

It is useful to sum kinetic and internal energy over the mate- 

rial.  Then if energy is conserved 

Z(K'. K'.E)"* - E IK'* K* *E)""K 

B.47 

where  t/* m* is the surface work done from time  t *  to 

time t H* (for example by a surface pressure) and ^c 

is the nonmechanical energy addition in this time interval (for 

example, chemical energy in an explosive). This provides a very 

useful check on the calculation. 

It is very simple to find the energy dissipation in 

various modes during the time interval t    to     t "*'       . The spher- 

ical elastic stress work is 

*e£  a      m    *   MJ  {eP ,     + *Pi J J>x B.48 

while the spherical and deviator viscous stress work are given by 
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B.49 

The plastic stress work is, as for the one dimensional case, 

B.50 

The total deviator stress work is 

A4B  p  - M,    AJ€ B.51 

and the elastic deviator stress work is simply the difference 

between equations B. 51 and B.50. 

B.8  Boundary Conditions 

Boundaries and interfaces require no special treatment 

other than to supply the appropriate quantities in the meshes 

surrounding a boundary or interface point in the momentum equa- 

tions B.4. 

For a fixed surface along which the material may slide, 

normal stresses t "*    and  t   , densities ^, areas md masses 

h   and m in the meshes outside the boundary are set equal to the 

values in the corresponding meshes inside the boundary, while 

the shear stresses t*x   are reflected antisymmetrically-  It is 

also necessary to supply the coordinates of mesh vertices outside 
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the boundary.  If A C is the 

boundary, we require coordinates 

of point D outside the boundary 

which is a reflection of point 

B inside the boundary. The 

equations are 

X*   *    *"/**** **    "    Z^ I**-*****)     - X*Z Z*zLZ*  ' ***   **<)} 
B.52 

2o' * {Z*2 Z« ***(**-**+*c)    ' Zfii *■*(**-**** "*)} 

where 

For a free surface, the stresses and densities are set 

equal to zero in the meshes outside the boundary.  To prevent 

difficulties with zeros in the denominators of terms in equation 

B.7 , ^ , m^ and z for the cells outside the boundary are treated 

as for a fixed surface.  If a surface pressure is to be intro- 

duced,   set  t*"« t"» ~ iJ0 (*' where iP (*) is sup- 

plied as input either as an analytic fit or in tabular form. 

Corners require no special consideration, except that 

x0 , z0 are used in place of 

3^, 2e   to find the position 

of point D outside the boundary 

(and similarly for point C). 

_ _ _ _ .„„ Values in the comer mesh out- 

side the boundaries (mesh 4 in the diagram) may be obtained 
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X 

0 
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-f   1 
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 1 

-J D 

either by applying the proper boundary condition along A 0 to 

find values in rneSh 1, and subsequently applying the proper 

boundary condition along B D to find values in meshes 3 and 4, 

or by applying the proper boundary conditions along B 0 to find 

values in mesh 3, subsequently applying the proper boundary con- 

ditions along A C to find values in meshes 1 and 4.  In either 

case identical results are obtained. Reentrant corners are gen- 

erally formed by the meeting of 

two free surfaces, and it is un- 

necessary to find values of ■* 

and 2 at points C and D (in the 

c- diagram) by equation BoS2. 

However no harm Is done if equation B.52 is used, and it is more 

convenient to retain complete generality at all boundary points. 

Interfaces between different materials require no spe- 

cial provisions while the materials remain in contact without 

sliding. Sliding interfaces and separated interfaces require 

individual treatment, as do internal fractures. These can be 

incorporated as required. 

B.9  Stability Criterion 

The stability criterion is used to compute At  J A 

which is used to advance the calculation on the following time 

cycle. Using a backward time centering 
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where the minimum is taken over all meshes <> A constant K is 

inserted as a convenience for strengthening the stability cri- 

terion artificially if this should be desirable. 

72 



Appendix C 

Evaluation of Constitutive Equation Constants 

The constitutive equations appearing in Section III 

have been specialised to specific classes of materials, by mak- 

ing assumptions that the materials are perfect fluids or com- 

pressible elastic-perfectly plastic solids. The assumption was 

made (equation 3.6) that the spherical part took the form 

P   •   iip)   +   £■ L(f>) c.i 

where /, and fx  were left as arbitrary functions, although it 

was intimated that power series expansions could be used.  It 

is not necessary to limit ourselves to the form of equation 0.1, 

and it is quite feasible to use a more general expression 

although the convenient explicit finite difference scheme for 

finding the internal energy and pressure outlined in Apendices 

A and B, which is made possible by the form of equation C.I,must 

be abandoned, and replaced by an iteration scheme.  It was found 

that an iteration scheme often required more than three itera- 

tions to assure accuracy, and  it has been deemed preferable to 

express the spherical relation in the form of equation C.I where- 

ever possible. 

The present appendix is concerned with evaluating some 

special forms of the functions /j and /xfor some restricted cases, 
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and is thus much more specialised and restricted than the 

material in the body of the report.  The functions are developed 

for a solid or fluid from measured Hugoniot data using the 

Mie-Grueneisen equation.  For a gas, the functions are developed 

from measured Chapman-Jouguet isentropes by somewhat similar 

means. These approaches should be reasonably accurate up to 

moderately high pressures, such as those encountered in 

solid-explosive systems.  Other means of evaluating the spheri- 

cal constitutive equation could, of course, be substituted, 

C.l  Solid or Fluid 

Hugoniots (loci of states attainable in a single shock 

compression from the normal state) have been evaluated for a 

wide variety of materials from experimental determinations of 

shock and particle veloci ies by means of the Rankine-Hugoniot 

relations 

if]-    P.WLU] C.3 

LPl7 W 
3- fie 

where n m (p - p0)jp ,   { )o        refers to the state ahead of 

the shock,  £ J   refers to the jump in variables across the 
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shock, and U    is  the  shock velocity ( [U]    « U   -   u0 ). 

Results arc often fitted to the power series. 

P» * K'ji * * k.'?   * k'* 1* *   " ) C.4 

where the normal state is taken at pm f O   • 

For moderate compressions it is found experimentally * 

that the shock velocity is a linear function of particle velocity 

U    s    c   +   s   u. C.5 

where c is the bulk sound speed and s is a parameter (the ma-. 

terial ahead of the shock is taken to be stationary, u0 - O ) 

so that equations C.3 a and b  become 

r* c TT < % c-6 

Expanding to the form of equation C.4, we obtain immediately 

k,'. f0c
x k,'.   Is K'* 3sx C.7 

Terms in kj   and higher need not be retained since the linear 

relation, equation C.5,is not valid except when *? is small. 

(This follows directly from equation C.6, for we note that 

p   ~* «o     when   ^ -*-  1/5      , a physically unreasonable 

situation.  Since 5 is generally found to lie between 1 and 2 

for most materials, equations C.6 and C.7 must be limited to 

compressions of perhaps 0.1.) 

Note that the coefficient k'0   represents the 
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adiabatic bulk modulus of the material at zero pressure. 

The Murnaghan equation 

^H "  ^ {(ßj        '    *) C.8 

has occasionally been used to fit experimental shock Hugoniots. 

Expanding to the form of equation C.7 we obtain 

k'.-Af k/-   i(f.i) kJ-H' + W**)    c.9 

where again higher order terms need not be retained. 

It might be noted that the assumption of a linear 

Hookean material with Lame constants X and ii leads via finite 

strain theory to a relation between the pressure and volumetric 

_  . IT strain 

p - -(l-lf)      3e(X+fs*) CIO 

where j> * />0 [l -Xe) x 

which is easily expanded into the form of equation C.7, whence 

K'  * (* *&) k,' *  */*. ki * »^A* C.ll 

The above relations provide a direct means of compari- 

son of experimental data fitted to the different empirical ex- 

pressions, and allow the data to be easily put into the form of 

equation C.7, which is used as a basis for the following dis- 

cussion. 
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The Hugoniot data is generalised by making the as- 

sumption that the pressure offset of a state from the Hugoniot 

is proportional to the energy density offset 

ir>~ PH)   S   tß ( * ~ ** ) c.i2 

where ^ is the Gruneisen ratio.  pH fp)and      £H (ßJ are 

available from equations C.7 and C.3c, while Y (/> J    has been 

evaluated approximately for numerous metals in the form" 

The thermodynamic relation at zero pressure should be noted 

**    r^ c-14 

where o( is the volumetric thermal expansion coefficient and c_ 

is the specific heat at constant pressure. For moderate com- 

pressions, it seems to be sufficiently accurate to take 7 * Xo 

constant. 

Equation C.12 can easily be put into the form of equa- 

tion C.l,whence 

f, m  PH - * p ** 
C.15 

Inserting equations C.3 and C.13 for p^   , t,H    and It allows 

these functions to be put in the form of power series in 7 

/,« Kii** ^i * ^r* + kJ?
ji- ■■ j c-16 
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where 

k, -   k,' - i y0 /.,«/* y, 

kx -   kx'~ f *o/'»i * **') hx *  I * 7, +7,, 

k, '   k/ ~i Yoliix * A.k/* kx') fc,   - / ♦ y, ♦ ^ ^ ^ 

etc. 

For a solid, the deviator part of the constitutive 

equation depends on the shear modulus which was also expressed 

as a power series in the compression. The variation in shear 

/7 modulus is considered in another report. Since velocity of lon- 

gitudinal elastic waves is given by 

the error in elastic wave velocity due to an error in 6  is only 

-Ef s    T/(i *     ' c-18 

or for Poisson's ratio near J >  "3^ * 4    "Jj  •      Also, 

the error in stress deviator is proportional to the error in 6 , 

but in the presence of a pressure component, the error in the 

total stress is smaller than this. For moderate compressions, 

it is therefore probably sufficient to  take £ as a constant. 

Jones has investigated the variation in 6  on the basis of several 

assumptions, and has discussed means of finding higher order 

terms in a series expansion for 6 . 
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C,2  Nonideal Gas 

The spherical constitutive equation for a gas must 

take a different form from that for a solid since in the latter 

the density is nonzero at zero pressure, and pressures may be- 

come negative (or tensile). 

We consider only a gas in which a known isentrope may 

be fitted by a polytropic law 

r>i - ft?* c-19 

where A * /», .ß""  is a constant evaluated at a known point. 

This approach is applicable to a simple description of gaseous 

explosion products.  Chapman-Jouguet isentropes have been meas- 

ured for some explosives, p      and y>; are then the C7   pressure 

and density respectively. 

The isentrope given by equation C.19 can be expanded 

to cover nearby states by again assuming that the pressure off- 

set is proportional to the energy density offset. 

ir-Pi)  - 7f (£ -£i) c.20 

In this case £i   is the internal energy on the isentrope, given 

by 

Pi _ 
C.21 

Equation C.20 can then be put into the form 

p    *    j,    +   <r./x C.22 
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where 

where we have substituted from equations C.19 and C.21, and 

where 

r 
* *  P. f>.~Y (i- j^l) C.23 

80 



REFERENCES 

1. Herrmann, W., and Jones, A.H.  "Correlation of 

Hypervelocity Impact Data." Proceedings of the 

Fifth Hypervelocity Impact Symposium.  30 October 

1 November 1961, Denver, Colorado. 

2. Curran, D. R. "Nonhydrodynamic Attenuation of 

Shock Waves in Aluminum." Journal of Applied 

Physics, Vol. 34, p. 2677, 1963. 

3. Wilkins, M. L., and Giroux, R. Calculation of 

Elastic-Plastic Flow. UCRL-7322, April 1963. 

4. Maenchen, G., and Sack, S. The Tensor Code. 

UCRL 7316, April 1963. 

5. Truesdell, C, and Toupin, R. A. "The Classical 

Field Theories." Encyclopedia of Physics. 

Ed. S. Flügge, Vol. 3/1, pp. 226-793, 1960. 

6. Von Neumann, and Richtmyer. "A Method for the 

Numerical Calculation of Hydrodynamic Shocks." 

Journal of Applied Physics. Vol. 21, p. 232, 1950. 

/ 

i 

i 
i 

I 
i 

81 



7. Thomas, T. Y.  Plastic Flow and Fracture in Solids 

Academic Press, 1961. 

8. Hill, R. The Mathematical Theory of Plasticity. 

Oxford University Press, 1950. 

9. Landshoff, R.  A Numberical Method for Treating 

Fluid Flows in the Presence of Shocks. 

LA 1930, January 1955. 

10. Herrmann, W.  Comparison of Finite Difference 

Exprecsions Used in Lap.rangian Fluid Flow 

Calculations. AFWL TR 64-104. 

11. Koisky, H. G.  A Method for the Numerical Solution 

of Transient Hydrodynamic Shock Problems in Two 

Space Dimensions.  LA 1867, September 1954. 

12. Lemcke, B. Private communication. 

13. Rice, M. H., McQueen, R. G., and Walsh, J. M. 

"Compression of Solids by Strong Shock Waves." 

Solid State Physics, Vol. 6, pp. 1 - 63, 1958. 

82 



14. McQueen, R. G., and Marsh, S. P.  "Equation of 

State for Nineteen Metallic Elements from Shock 

Wave Measurements to Two Megabars." Journal of 

Applied Physics, Vol. 31, p. 1253, 1960. 

15. Fowles, G. R.  "Attenuation of the Shock Wave 

Produced in a Solid by a Flying Plate." Journal 

of Applied Physics, Vol. 31, p. 655, 1960. 

16. Birch. F.  "The Effect of Pressure Upon the 

Elastic Parameters of Isotropie Solids, According 

to Ilurnaghan's Theory of Finite Strains." 

Journal of Applied Physics, Vol. 9, p. 279, 19'8. 

17. Jones, A. H.  Variation of Elastic Moduli. 

AFWL TR 64-103. 

18. Fickett, W., and Wood, W. W.  "A Detonation Pro- 

duct Equation of State Obtained from Hydro- 

dynamic Data." The Physics of Fluids, Vol. 1, 

p. 528, 1958. 

19. Calvit, H. H., and Davids, N. Spherical Shock 

Waves in Solids. Penn. State University, 

Technical Report No. 2, July 1963. 

83 



__, ;  

  HM.MM.MH j  

• 
•    ••■•• 

— 

— 

i 

i 

i         : 

Ms 
;    I         ; 

. - ;| - >. - 

■ -.:. _H- 

. _ i _ U - 

Ii    ; 
--i-H- 

;j   j 

:|   : 

o 

i i 
• -K-H- 

... ~--- 

-- 

ij    ; 

■i   : 

;     i       j 

... 

  

j 

i 
j 

i j   : 
j  

| 

• — — ■■ — _ 

i .. 

\ 
i 
J 

;     : 

i 

__ 

-- 

- 

.-;    

| 

--;- — - 

j 

ii— 

i .^ 

• : • • ■ • 

• 

; 

... 

- 

i   i 
-- i -H- 

"":""■ 

—,_. 

i ■ ■ 

-i-i 
" 

....;.. —ir- 

" 
——. 

j ; 

• :   : 
■ 

f- 

1 

.. — "J-1- 4r ---4- 
|| 

— i-:-- 

• i 
i 

| 

"•;-- i—-■-- — 
. . I 

■1 : 

2 

o 

j ■ ? :    i*        :    : 
f   : j s 

Figure 1. Elastic-Plastic Plate Impact at Initial Velocity 
1.9 kra/sec. Stress Profiles at 2 and 4 micro- 
seconds 

8^ 



■               1 
1          i        ; 

i          I        i 
i          !        i 

1 

■1 
•   1 

• • ■ 
• 

— -- 

j 
> 

j 

""i" 

—-H ; 
j 

-" 
I 

1          1 

• 
1 

•r\ 
1 

r""T""i 
i         i       i 

- 

J 

1 
1 ■ 

 i. -- 

i         i       i 

1 

{ - 1 
 1 J 

: 

i         i 1 1   ;  

i ' 1 
1 

""1  

1 

|i 
1! 

s| • i 
  

: 

  

Ij •    1 1 

 1 
• i 

; 
i; 

i 

f\ 
■•VTV T" L  -- -- 

* 

i j; 

si 
; 

|i 
■*■ u u 

— 

j  r 

 
i  r   —_ 

i 

! 

< 

[ 
; ! 
: * 

. 

j 
i ■ 

•  

.  .. 

 i j 

• • 

; 

; 

—... 
; 
1 • * 

I 

■ 

i 

; 

, 
-- - i-_-_- 

i 

».„-,-_ 

: 

 Ji _._. 
"° 

-•'•—« 

a i 

l 
= 

Figure 1 Continued 

Stress Profiles at 6 and 8 microseconds 
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Figure 2 Continued 
Stress Profiles at 6 and 8 microseconds 
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