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Introduction 

To con^-rve power and increase the accuracy to which a oreteribed 

phase shift may be set, digital rather than the usual continuously 

variable type phase shifters have been suggested for use in phased micro- 

wave antenna arrrys. Various schemes have been suggested including the 

use of magnetically saturated toroida xn rectangular waveguides in which 

the phase can be shifted digitally by the reversal of the magnetization in 

the toroid through the application of a current pulse.  Many of these 

arrangements suffer from the disadvantage that not all of the ferrite is 

effective xn producing differential phase shift since only a portion is in 

the region of circular polarization» 

Ferrite toroids in round waveguides utilizing the circular TE mode 

seem to be the natural microwave structure for such non-reciprocal phase 

shifters for several reasons' . First, it is possible to place all of 

the ferriüe in a region cf circular polarization so that the entire vol- 

ume of material is then effective in producing non-reciproeal phase shift. 

Secondly it is possible to make narrow transverse cuts through such a 

structure without introducing significant reflection so that a number of 

these sections nwy be cascaded to allow d.Co insulation between them. 

Thirdly, such transverse cuts may be used for the introduction of v.-ires 

to carry the switching current to the toroids.. Finally, a thin wire may 

be introduced along the waveguide axis without appreciably changing the 

fields. The ferrite magnetization could then be switched by a current 

flowing along this wire. Transverse cuts in thxs center conductor can 

(1) 
The use of the TE . mode in conjunction with circumferentially magnet- 

ized ferrite tubes inserted in circular cylindrical guides appears to 
have been suggested first by A. G. Fox, So E» Miller and Mc T. Weiss, 
"Behavior and Application of Ferntes in the ffilcrowave Region", Bell 
Sys. Tech. J.3 Vol.. 3^, pp. 5-103, Jan. 1955. The use of such struc- 
tures as digital phase shifters was proposed by the second author while 
he was at Lincoln Laboratories» see" Solid State Research, Lxncoln 
Laboratories, Mass. Inst, of Techn-, No. 1= Section IV Q,   pp. ~3, 1963. 



also be made without disturbing the modn. 

The usual ndcrowave ferrite materials nay not be suitable for ouch 

application since they will require desirable switching, as well as good 

microwave properties. Such materials are under investigation at this is 

xvell as other laboratories, 

A theoretical investigation is presented here of the node structure 

and the differential phase shift per unit length for the circular cylin- 

drical guide containing a coaxial ferrite tube, VJhile it is recognized 

that in practice the ferrite toroid \d.ll be of finite length and the 

ferrite will not necessarily be completely magnetically saturated it is 

expected that this study will yield useful design data such as the dif- 

ferential phase shift, optimum toroid placement and dimensions. 



Theory 

We will first consider wsve propagation in a circular cylindrical 

guide completely filled with ferrite magnetized in the circumferential 

or 0 - direction.    The rcmrletely filled guide is treated only to study 

the character of the eif-enfu net ions and their eigenvalues and it is not 

expected (duo to the difficulty of synthesizing   a uniform circumferential 

magu3tizing  field) that such an arrangement will have practical utility. 

The analysis will then be extended to more complex structures such as 

tubes or rods of ferrate placed coaxially within circular cylindrical 

guides, 

A ferrite magnetized in the direction of the 0 - coordinate may be 

characterized by the permeability tensor 

where 

1+X      0      jx 

0       10 

0      1+X 

v c      ^M YH 

(YH)2-^ 

coYM 

(7H)2-<? 

(1) 

(2) 

and   Y   is  the gyromagnetic ratio,    M   the magnetisation and    H   the 

magnetizing field.    We will restrict our attention to those TE modes that 

exhibit rotational symmetry.    Assuming time and axial variations of the 

form    e^'     and    •='~:''0'% respectively, we find that the only non-vanishing 

component of the electric field    E^   must satisfy the differential equation 

dcEj     .  dE l^tl^tfk2+£      i 
or r       ^ 

(3) 
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where    r    is the radial coordinate and 

a'  - ßx/H + X) 

k2 = öÄi g ^' - ß2 (ii) 
o 

Ä' - [(1 + X)2 - x2J/(l + X) 

The components of the magnetic field are given by 

f~- ^0 + ^ r dr ^ ^> 
ro ^o 

'3 
ro Y0 

where 

(5) 

Y2 * tA   [(l+X)2-x23 • A A (6) o o o 

We seek solutions to (3) subject to the boundary condition 

E^ - 0,       r - b (7) 

where    b    is the inner radius of the guide. 

Equation (3) is recognized as Tricomi's form of the Confluent Hyper- 

(2) geometric equation      .   We may thus construct solutions using Humbert's 

or Whittakor's notation or other forms of the Confluent Hypergeometric 

functions^.    Since the tabulation of th^se functions and their eigen- 

values is not complete it was decided to construct solutions that relate 

directly to Bessel and Neumann functions.    This was prompted by the fact 

that as a'  goes to zero (3) reduces to Bessel's equation.    Further, as a1 

^'Bateman Compendia, McGraw-nill 1953, Vol. 1, p. 251. 

^'Morse, P. M, and Feshbach, H., Methods of Theoretical Physics, 
McGraw-Hill 1953,  Vol. 1, pps. 6OI4-619. 



is proportional to the product ßx we have that the eigenvalues must reduce 

to those of the Bessel functions, both at cut-off ,8 = 0, end 25 x goes 

to 0, i.e., as the ferrite material js allowed to become Isotropie. Thus 

constructing solutions B.(a|kr) and H-Cajkr) not only facilitated the 

computational work but also aided in physical interpretation. 

Thus 

B^Ojx) - J^x),   H^Ojx) - I-yx) (8) 

where x » kr. 

These functions are given by 

and 

where 

Bl(a5x) ■ pio v 
p+l 

V2 & " (a &
P*1^/^2HP^) (9) 

ao = 1/2,        ^ = -0/3 

^(c^ = |{[r + In ^f)]  B1(a:x) - --1 a 

(lJ-a")x     l+a£ 

+ nio dn+2 xn+1 > 

(10) 
V2 = - (adn+1

+dn)/n(n+2) - [l/n + l/(n+2)]an 

do = - l/(l+a2), d1 - - a/(l+a2), d2 - (Y - In2 - l/2)/2 

a » a"/k 



Figures 1 through h show  the functions B..(ajx), ^(a^x) and their der- 

ivatives as a function of x with a as a parauater (-2 < a < 10j 

<x < 10). The solution to equation (3) mav thus be written in the form 

E^ » AB1 (a^x) + BH1 (ajx) (11) 

where A and B are constants. However, E, must be bounded at the 
' 0 

origin thus B c 0  The boundary conditions (7) then gives 

B1  (ajx0) - 0 (12) 

Huere x0 " kb. The eigenvalues of (12) will be denoted by p.. (a) where 

the p. (0) correspond to the eigenvalues of J.(x) * 0. Figure 5 shows 

the functional dependence of -he first three eigenvalues p1 -(a), p  (a) 

and p. (a) on a. 

To calculate the propagation constant at given cc   and given ferrite 

parameters we use relations (ii), eliminate ß    to obtain 

0 A e b^i x2(o) 
xl (a) 2         .       -   0 (13) 

0 l+[a(l+x)/x]2     l+adil+4/x2 

Superposition of the curves generated by (13) on the family of curves 

PT     ia)f give> ^or aW 0^e value of   m, the two sets of values (a,x) that 

simultaneously satisfy the required conditions (12) and (13).    Then,   using 

(4), » i may calculatfc the propagation constants, i.e., 

It is clear that the curves generated by   (13) are symmetric about 

a = 0 and the curves p.     (a) are not.    Thus the propagation constants   ß 

and   ß     calculated from their points of intersection differ.    We observe 
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that as w is decreased the guide is 'cut-off in one direction before the 

other and the ordinate of (13) approaches p,  (0), Also, since the slope of 
x tin 

p.     (a) at a = 0 is necativo and the slope of (13) is zero at a « 0 - we see 

that just prior to   'cut      T» for both directions of propagation there are 

two intersections of (13) with p.     (a) for    a   positive and therefore two 

dirtinct modes for bhe same direction of propagation become possible.    These 

then coalesce as    ro   is further reduced and complete cut-off is finally- 

reached.    The directions of propagation are not identified as forward and 

reverse since, for    a   positive, ßb may be positive or negative depending on 

the sign of (1 + x)A,  i.e., 

co ^   [('rU)2 + WH]1^- (1 + x)/x  ^ 0. (15) 

We can no:; treat the case of a circumferentially magnetized ferrite tube 

mounted coaxially within a circular cylindrical guide.  (We again restrict 

ourselves to considering the rotationally symmetric TE modes). Let the inner 

and outer radii of i-.ho forrito tube be a and b, respectively, and let d 

be the guide radius, A cross-section of the guide will then show three regions, 

namely, an inner region filled by some Isotropie dielectric, the middle region 

containing the ferrite, and an outer region again containing an Isotropie 

dielectric, these regions and related quantities will be identified using the 

Roman numerals I, II and III for the inner, middle and outer regions. 

We can now write the following expressions for the electric field com- 

oonents 

i ~- EI w) e"jPiZ 

uj1 - [^(ajkr) + CH^ajkr)] e'^ll7, (16) 

E0II = iWJl(kor) +DNi(kor)J e'^UlZ 



where 

r ' A e - ß2 (i7) 

and where    S-, E _, E
'TTT?    ^   and    ü   are constants.    The dielectric constant 

of the regions not cuntaining ferrite was taken to be that nf the ferrite. 

This may, in fact, be desirable in practice besides simplifying  the calculations 

somewhat» 

Application of the boundary conditions and eliminating the constants yields 

the transcendental equation 

wnere 

and 

P^CajTx) = Ll-aTx+ tx B'CajTx.^Caj TX)]/^« 

F (a; TX) - '   ^a t>: + TxH^(aj rxj/B-Za; TX)J/A' 

F^CajT*) »TJ Zo(Ty)/21(Ty) 

Z0(Ty) - J0(Ty) N^y) - ^(y) ^(ry) 

Zl(Ty) = Jl(Ty) Nl(y) - Jl(y) Nl(Ty) 

where    T   may ts^e on the subscripts    1   and   2, and 

^ - a/d,     T2 » b/d 

and 

x = kd, y = k0d 



^lao 

We  have also 

y   = x {x^[a(l*x)j2Cl-.A')}/x2^ (19) 

Solutions of toe  tran^ondental equatior. will yield the eigenvalues as a 

function of    a - the intersection of these carves with (19) will then,  as 

before,  allow the connutatlcn oi  the propagation constants and the dif- 

ferential phase shift of this stracture. 

As a sample, and because these results were used in cilcalations to be 

presented below,   the forrr: that the fiele- components take for the ferrite 

tube in contact vdth the guide vail is given. 

For    0 < r < a   we have 

^ - J, Cyr/b)/^ ery) 

-ja)^ b HJ = y ^(yrAV^^ry) (20) 

-j(öüo b HJ = jax (1 * x) J1(yrA)/x J^ry) 

and for    a < r < b = d 

-j.xMb H2    - {[b/r - axj  F(a^xrA)  + - F«Cajxr/b))/^ (21) 

*«%- HJ
X
 = {[axCl+xVx - xbAl +X)rJ F(a;xr/b) * x ./(I  - x). 

r!(a;xr/b)J/,d'   , 

where the prijnes indicate eifferentiation w.r.t. xr/b. 
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Reaults and Discussion 

As was to be expected for the case of the completely filled guide the 

curves (Fig. 5) displaying the behavior of the eigenvalues as a function of 

a    are not syranetric about the ordlnate since the magnetic intensities in 

the regions where circular polarization occurs differ, being somewhat stronger 

nearer the center of the guide.    Therefore, even for the completely filled 

guide a differential phase shift is obtained.    This is in contrast to the case 

of the completely filled rectangular guide. 

Figures 6 and 7 show the results of calculations performed on the trans- 

cendental equation (18).    That is,  they show the behavior of the    eigenvalues 

as a function of    a   for the two limit cases, the ferrite tube collapsed into 

a central rod and the tube in contact with the guide wall.    These calculations 

were made taking the values    X = 0   and   x   ■ .2, i.e.,  the magnetizing field 

H was taken to be zero and   XM/co   was given a representative value of one 

fifth.    The lowest order eigenvalue was calculated for various values of t 

where    T = a/d - thus    T   indicates the fraction of the guide cross-section 

filled with ferrite^    In the limit as    T  approaches zero or unity these 

CUA/es approach those for the guide filled completely by an isot-opic dielectric 

or the ferrite.    The dielectric constant for both the ferrite and the dielectric 

regions was taten to be nine. 

One would expect that in the partially filled guide the differential phase 

shift would increase over that of the comple-'-^ly filled guide as,  in this 

case, only one region where circular polarization occurs is contained within 

the ferrite region.    Further,  one expects that as    T   increases the dif- 

ferentialy phase shift increases until    T   is such that about half the guide 

section is filled whereafter it would decrease until it matches  the value 



for the coraoletely filled /raide. Thus, one exacts the slope or the 

eigenvalue curvos tc be the largest (negatively) 'men T is ^ bout one 

h^lf.  rhi;j is indeed true lor a small but ac a increases ne^stively 

this no Ion er holds and the curves take a dounturn such that in this range 

the differential phase shift is less than it trould be for the conrlot^ly 

filled guide. l/nDn we rave P.  ferrite tube in contact with the f^uida -rll 

this effect is oven more pronounced (Fig, 7) and v;e see tust for oven small 

a the slopes of the eigenvalue curves are equal to or less than that for 

the completely filled guide.  Of "ourse^ for the latter case where the guide 

contains little ferrite ( T _► 1.) we expect the eigenvalues curves to 

become almost symmetric about the ordinate since the differential phase shift 

«ill become vanishingly smell. 

An explanation that would account for the downturn in the eigenvalue 

curve for a large and negative is that the field muso be expelled from 

the ferrite in this region. To determine if in fact this occurs tue com- 

ponents of the electric and magnetic field were computed for this case 

using (20) and (::1) ior t« .2 and 3^(0) = 6, 20, 30 and 10  in (13). 

These values of x ,(0) inserted into (13) assured that the intersection 

points of (11) with the eigenvalue curve for x =  .2  fell at suitable points, 

^art is, before, en, and öfter the downturn. The results cf these calcula- 

tions, presented in Figure 3, clearly show that the fields are exnelled as 

a increase.- negatively - until at xn(0) equal to about hO  the greater nart 

of the energy is transported for this direction of propagation in the isotro- 

pic region.  Thu:, for this ease tne magnetic fields are relatively wea.-c 

throughout the region of circular polarization lying within the ferrite and 

consequently the anisotropic rhiracter of toe medium has a smaller effect on 

the propagation constant fcr this direction of rropagetion. 
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The region of a lar^e and negative holds, in fact, but modest interest 

since operation in this region would yield decreasing values of differential 

phase shift. Thus the character of the eigenvalue curves for a above the 

downtown is of primary interest. 

Figure 9 presents a typical curve of the differential phase shift as a 

function of T. Again, the explanation of the unexpected result that the 

naximujn differential phase shift occurs for the completely filled guide lies 

in the fact that the fields show a preference for the isotronic over the 

anisotropic region. He note that when the guide is about two thirds filled 

with ferrite (T= ,,36) the effect introduced 'ay  the region of circular 

polarization near the guide is exactly counterbalanced by the effect felt 

due to the ferrite approaching the region of circular polarisation near the 

guide axis. 

The final calculations presented here were made to observe the changes 

in the differential phase shift for a thin tube of ferrite into the guide 

for various values of the tube mean radius. The computations were made for 

a ferrite tube of thickness one tenth the guide radius, the parameters X 

and x    again being 0 and .2, respectively, while the remaining guide 

narameters were selected such that x (0) - 6. The calculations of the dif- 

ferential phase shift variation with mean tube radius are shown in Figure 10. 

This graph clearly demonstrates that the differential phase shift increases 

until the ferrite tube contains a region of circular polarization then 

decreases, passes through zero, and decreases to a negative maximum when I'CVB 

tube encloses the region circularly polarized in the opposite sense. The 

fact that the maximum differential phase shift is trie greater for the region 

of polarization nearer the guide axis confirms that the ma ^tic intensity is 

the greater there. 
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Even though the results for the thin tube may be arrived at through 

perturbation theory the exact solution allows the extension of the cal- 

culation to thick tubes and to the investigation of the effect of higher 

order modes which may yield greatly increased differential phase shift. 



CD 

CD 

O 







6 

o 



11 



♦ x 

/-*«■» 

r"   / 

X,- 0 
K -   2 
r = o/d 

/ ^                         >*^——^ 

^ 
3 

4 \\s vvv 
a 

.•• ♦ 
^    V v    ^'^^ _y" 

2 \ \   'sN^ 
I^■ \   *v      ^r^^f.o *' 

1 

■ 

-3 -( 0 
FIG. 6 



lx 
JC -  0 

K  =  .2 

e = 9 
r = o/b 

-2 0 
FjG. 7 

a 
8 





T 

(&-0-)b 
K s .2 
X   s   0 
T   =   Q/b 

-FERRiTE 

-I 

- 2 

r 

FIG. 9 




