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ERROR CONTROL THROUGH CODING

VOLUME IM. VARIABLE REDUNDANCY CODES

The main results of the research work on Variable Redundancy Codes fall
Into the following categories:

1. Classes of variable redundancy codes.

2. Implementation of variable redundancy codes.

3. Mode control of variable redundancy codes.

While special efforts were undertaken to Investigate each of the above cate-
gories in detail, the close relationships and interactions of the solutions to these
problems were inevitable. An ideal variable redundancy scheme must combine
efficient codes, simple implementation, and reliable mode control to form a
coherent system.

Before summarizing the results in each of the three categories, we shall
first introduce some basic terminology, notations, and conventions used through-
out the work reported here.

The generator polynomial of a cyclic (n, k) code C is denoted by g(x) of
degree r, where r = n - k. The natural code length n is the period of g(x), the

smallest integer, such that g(x) I x n + 1. The code Ch generated by h(x) = x n +

g(x)
is the dual code of C. A code polynomial is a multiple of g(x) with degree < n.
A code word or a code sequence corresponds to the coefficients of the code poly-
nomial in descending order.

A single shift-register stage is characterized by a unit delay between its
input and output terminals. The input-output relationship of a shift-register
circuit can be described by a transfer function In terms of the delay operator D.
Because of the ?high-order- firstI convention, D can be replaced by x- 1.



CLASSES OF VARIABLE REDUNDANCY CODES

Three classes of variable redundancy codes were developed:

1. DUAL CODES (REFERENCE: APPENDIX B)

The use of dual codes always gives two modes of operation. In one mode
the code generator is g(x) and in the other mode the code generator is h(x) =(xnI + 1) / g(x).

Because of the restriction g(x) h(x) = xn + 1, it is often not possible to find
g(x) such that both of the dual codes are optimum.

However, a number of efficient codes were found in each of the following
combinations:

A. g(x) and h(x) both generate burst-error-correcting codes: Reasonably
good codes can be obtained by splitting the factors of xn + 1 into two
disjoint parts.

B. g(x) and h(x) both generate independent-error-correcting codes:
A special case is when g(x) is a primitive irreducible polynomial of
degree m. Cg is a single-error-correcting code of length = 2 m - 1.
The dual Code Ch, on the other hand, is a (2m - 2- 1)-error-correcting,
2m - 2 -error-detecting code.

C. g(x) generates a burst-error-correcting code while h(x) generates an
independent-error-correcting code: A special case is when g(x) =
(x + 1) p (x), where p(x) is a primitive irreducible polynomial of degree
m. Cg is a burst-2 correcting code of length = 2 m - 1. The dual code
Ch is a (2 m - 2 - 1) -error-correcting code.

The main limitation to the use of dual codes as variable redundancy codes
is that the code is often too powerful in the high-redundancy mode. However,
because of the fact that little extra circuitry due to the additional mode of oper-
ation is needed in decoding (this will be clear in the next section on implemen-
tation), this class of codes remains as a distinctive possibility.
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2. PRODUCT CODES (REFERENCE: APPENDIX C)

The use of product codes gives two or more modes of operation. Let g(x)
be the generator polynomial of code C1 used in one mode; then the generator
polynomial of code C2 used in the other mode takes the form of gi(x) g2 (x).
Another factor may be added to form the generator of an even more powerful
code.

Many efficient product codes exist in each of the following combinations:

A, Burst-error-correcting product codes: A number of optimum burst-
error-correcting product codes can be constructed according to the
following theorem:

Theorem: Let g(x) = g, (x) g2 (x) be the generator polynomial of a burst-b
correcting code, and let r 2 be the degree of g2 (x). Then g, (x) generates a
burst-b I correcting code, where b, >- b - r 2 .

It is shown that, if the code generated by g(x) is optimum, the code gener-
ated by g, (x) is also optimum, provided that g, (x) has the same period as g(x).

B. Independent-error-correcting product codes: The class of Bose-
Chaudhuri-Hocquenghem codes can be immediately seen to be in the
exact form of product codes. For if g, (x) is the minimal polynomial
containing a, a 2 , ... , a 2 t1 as roots, where a is a primitive element
in GF (2m), then g, (x) generates a t1 - error-correcting code. The
code generated by g(x), the minimal polynomial containing a, a 2 , ... ,

a 2 t as roots, where t > tI , is a t - error-correcting code satisfying
g() = gi (x) g2 (x)

C. Multiple-burst-correcting product codes: The general BCH code over
GF (qm) where q s 2 can be used as product codes correcting multiple
bursts. The class of Reed-Solomon codes is a special case.

The class of product codes is believed to be the most promising among the
various classes of variable redundancy codes. Its major attraction lies in the
fact that efficient codes can be obtained over a wide range of redundancy
specifications.

3. VARIABLE LENGTH CODES: (REFERENCE: APPENDIX D)

Apart from the dual codes or product codes which have different natural
lengths, a shortened code can be regarded as a high-redundancy code in com-
parison with the original code. The error-correcting ability of shortened codes
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is often better than the original code up to a certain percentage of the original
length. The set of optimum burst-3 and burst-4 codes obtained by Elspas were
tested and some interesting shortened lengths with improved maximum bursts
are tabulated.

IMPLEMENTATION OF VARIABLE REDUNDANCY CODES

The main achievements in the study of the implementation of variable redun-
dancy codes include the analysis of basic building blocks and the development of
an improved decoder which consists of a minimum of n shift-register stages and
takes a minimum of n bits delay for decoding.

1. BASIC BUILDING BLOCKS (REFERENCE: APPENDICES A AND C)

A basic building block corresponding to g(x) is a shift register circuit de-
fined by the transfer function in the delay operator D,

t- = g* (D) + 1,
s

where t is the output sequence, s is the input sequence, and g* (D) = Dr  g (D-1)
is the recipiocal polynomial of g(D). The addition here is binary. Such a build-
ing block can be connected to perform multiplication (Figure 1) or division
(Figure 2), and is therefore essential to the shift-register circuits in general.

It is possible to combine building blocks corresponding to g, (x) and g2 (x) to
form a building block corresponding to g(x) = g, (x) - g2 (x). This is an important
concept concerning the implementation of product codes. Figure 3 shows such a
block connected as a division circuit. There are two desirable features in this
circuit:

A. The block is defined by the transfer function

t-= g*(D) 1= g*(D).g*(D)+ 1.

Therefore, by breaking the input at A, we have s2 = t2 = 0, and hence
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If we break the input at B, we have s= tI = 0, and hence

s2

B. When the block is connected as a division circuit, we have

s+ t+ m= 0.

where m is the input sequence. It follows that,

s1 + t 1 + (s+t 2 )+ (t+t 2 )+m

= s+t+m

= 0.

This means that the block corresponding to gl(x) behaves as if it were con-
nected as a division circuit by itself.

With the received sequence fed to the circuit, the shift-register contents of
both blocks tog, ther can be regarded as the error syndrome corresponding to
the code with g(x) as the generator. Simultaneously, the shift-register contents
of the block on the right can be regarded as the error syndrome corresponding
to the code with gl(x) as the generator.

Similar features can be obtained in the cases wherp three or more blocks
corresponding to different factors of g(x) are combine i. The versatility of the
combined circuit is ideal in the implementation and rr.ode control of product
codes.

2. AN IMPROVED DECODER (APPENDICES A, B, AND C)

As can be seen in Figure 4, this improved decoder contains two building
blocks corresponding to g(x) and h(x) respectively. The total number of shift-
register stages is n. These building blocks are connected in such a way that
the exact received sequence of n bits can be reproduced at the output after a
delay of n bits. In addition, a syndrom recognizing circuit is added which
provides the error correcting ability. For burst-error-correcting codes, the
recognizing circuit consists of an OR - gate and an AND - gate.
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input

o

h*(D) ! I NJ - .- output

N
0

g*(D) + I

N = o for the first n bits

N = I for the next n bits
Figure 4

This type of encoder is ideal for dual codes. For it is only necessary to
interchange the input and output connections of the two building blocks. Figure 5
shows such a realization.

For product codes, three or more blocks can be combined in this type of
decoder. With g(x) = gl (x) g2 (x), the block corresponding to g2 (x) is com-
bined with the block corresponding to h(x) in the low-redundancy mode to form

xn+ 1
a block corresponding to h1 (x) = g1 (x) I and Is combined with the block cor-

responding to gl (x) in the high-redundancy mode to form a block corresponding
to g(x).
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I I output
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g- (D) _ I a

51= I when g(x) Is the
generator

M = 2 when h(x) is the
generator

Figure 5

MODE CONTROL OF VARIABLE REDUNDANCY CODES

Five approaches were investigated in the mode control of variable redun-
dancy codes. They are all included in Appendix F.

1. EACH MESSAGE BLOCK CONTAINS A MODE INDICATION

It is shown that when a single bit is used to indicate the mode of the next
block, the protection of this bit is much stronger than an ordinary code poly-
nomial ff the percentage redundancy is low. Thus, the bit always gets strong pro-
tection in all modes of operation. This approach can be used for all classes of
variable redundancy codes, and is particularly suitable if the change of mode
occurs quite frequently.
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2. EVERY W TH MESSAGE BLOCK CONTAINS THE MODE INFORMATION

Extra hardware necessary to transform the mode information into actual

control may be expensive. The delay of w blocks in some cases may also be

undesirable.

3. USE AN INTERRUPT SEQUENCE FOR T'.-E INDICATION OF MODE

CHANGES

As a special case, such an interrupt sequence may consist of two parts:
The first part serves to identify the sequence (a run of ones for instance),
while the second part serves to establish synchronization with error protection
(a maximum length sequence for instance). This approach is independent of
the classes of codes used, and is appropriate if the change of mode does not
occur very frequently, particularly so if the code length is large.

4. USE A SPECIAL CODE WORD FOR THE INDICATION OF MODE CHANGES

Since the special code word must occupy the exact length of a block, there
is no synchronization problem in this case. Protection is obtained from the

code itself. This approach can be used for all classes of codes. It's appro-
priate if the change of mode does not occur very frequently, and if the delay of
n bits is acceptable.

5. NON-UNIFORM PARTITION OF THE BINARY SPACE

Two examples of different schemes were obtained with decoders com-
pletely worked out. Both are product codes with non-uniform partitions in the
binary space each of which is t(- be mapped into a unique code sequence. Dif-
ferent degrees of error protection are thereby obtained.

The evaluation of this type depends heavily on the code efficiency and hard-
ware complexity, and thus can only be investigated on an individual basis.

OTHER MISCELLANEOUS RESULTS

1. Some theorems of general interest were obtained. They are reported
in Appendices B, C, and E.

A
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Theorem: Let g(x) be the generator of C the cyclic code C of length n.
Then g* (x) generates an equivalent code of the same length with the same maxi-
mum number of correctible burst or independent errors.

Theorem: Let a be any element of GF (2m) of order e. Then the code con-
sisting of all vectors (g(x)) over the binary field for which

mo mo +s mo+2s mo+(d-2) s
a , a , ., . a

are roots of f(x) Is a Bose-Chaudhuri-Hocquenghem code with minimum distance
at least d, provided (s, e) = 1.

Theorem: For any linear code, it is impossible to detect errors from a
decoded message on which error-correction has been made.

2. Burst-Error-Correcting Codes generated from Multiplicative Cyclic
Groups were Studied (Reference: Appendix G).

Syndromes of all correctible errors in this case must be in the multiplica-
tive cyclic group containing polynomials relatively prime to the generator pol-
ynomial g(x) and with degree smaller than r. Let

g(x) = (x) ,

then the multiplicative cyclic group is obtained if the periods ei of gi (x) are
pairwise relatively prime.

It is shown that g(x) generates a burst-b-correcting code of this kind if and
.only if b :5 ri for all I, and the residues modulo g(x) of B1 e (x) are distinct.
Where Bi (x) ranges over all error patterns up to a burst of b, and e = I ei
is the period of g(x). 1

Some new codes were found this way with a computer program. They are
included in Appendix G.
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APPENDIX A

ON THE IMPLEMENTATION OF ERROR CORRECTING CODES

INTRODUCTION

The class of cyclic polynomial codes owes much of its popularity to the
simplicity of its implementation. Shift-register circuits takes advantage of the
cyclic structure of a code when properly connected and decodes with minimum
delay. However, different approaches using different mathematical tools some-
times tend to confuse engineers who are trying to analyze or design the imple-
mentation of error-correcting codes. Such as the polynomial approach used by
Peterson 17] and the matrix approach used by Meggitt [6]. Both investigate
the transition of shift-register contents when analyzing the decoding process,
although the syndromes are different.

It is shown in this report that, by analyzing the input-output relationships at
certain key points in the circuit, fundamental requirements of an encoding or de-
coding circuit can be satisfied without directly looking at the shift-register con-
tents. Many existing circuits can thus be seen to be equivalent, and some new
ones can be added to satisfy specific needs.

This analysis also leads to two improved error-correcting circuits which
are presented later in this report.

CYCUC ERROR-CORRECTING CODES

Let g(x) of degree r = n - k be the generator polynomial of a cyclic (n, k)
code Cg. A code word, represented in polynomial form, must be a multiple of
g(x). Also, g(x) Ix n + 1.

If the code Cg is capable of correcting a class of errors, (Ej (x)), we must
require each Ej to be identified by a unique error syndrome which is either the
residue of Ej modulo g(x) or some linear transformation of it which preserves
the one-to-one correspondence between the errors and the syndromes.

12



For cyclic codes, it is convenient to represent all the cyclicly shifted ver-
sions of a particular error Ei (x) by a single Ei(x), called an error pattern. The
syndromes of all shifted versions of the same error pattern Ei(x) fall in the
same "cycle sets" of period n, unless there exists n' such that xn ' Ei(x) Ei(x)
mod (xn + 1), in which case the period is the smallest such n' possible.

The error-correcting requirements of Cg can be written as follows:

For any two correctible error patterns Et(x) and Ej(x) such that Ej(x) €
xm Ej(x) mod (xn + 1), we have

k
x Ei(x) A Ej(x) mod g(x) (1)

or

k Ei(x) h(x) J E.(x) h(x) mod (x + 1) (2)

for all o - k - n - 1, where h(x) is defined by

n
g(x) h(x) = x + 1. (3)

This alternative form of (2) is sometimes useful.

SOME EQUIVALENT CIRCUITS

In order to use various types of shift-register circuits for encoding and de-
coding, some equivalent circuits are first investigated. Here the equivalence is
restricted to the input-output relationship only, and does not apply to the shift-
register contents in general.

An important "building bloclk' basic to an encoding or decoding circuit is
one with the input-output relationship defined by the equation:

r r
x t = s. g(x)+ sx (4)

where

r r-1
g(x) = x +g r X + ...+g 1 x+ 1 (5)

and s, t are sequences in the form of polynomials sent and received in the high-

order-first manner.

13



For the sake of convenience (4) can be written in the form of a transfer
function in x or in D:

t = g(x)+ = e (D)+ 1, (6)

S r
x

where D = x- 1 Is the delay operator and g*(x) xg1) xr is the reciprocal
polynomial of g(x). Appropriate number of bits must be considered in s and t
If (4) and (6) are interpreted as the polynomial of x. Abitrary number of bits
in s and t are related by (4) and (6) when they are interpreted in the form of
delay polynomials with x- 1 = D.

Figure A-1 shows two circuits with the same transfer function in (6). The
circuit of Figure A-1-A has mod 2 adders between shift-register stages while
the circuit of Figure A-1-B has no adders between stages (thus can sometimes
be replaced by tapped delay-.lines). As far as the input-output relationship is
concerned, these two circuits are interchangeable.

Figure A-2 shows the basic building block of Figure A-1 connected as a
multiplication circuit, since if the input is p(x) xr, we have

output = P(X) xr (g() + 1+1) = p(x) g(x) (7)

Figure A-3 shows a similar building block connected as a division circuit,
since if the input is p(x), we have s = output, and from (4),

r r
p(x) x = (s+t) x = s. g(x). (8)

t

[go Tg F .... - 1

(A) (B)

Figure A-I.
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t t

output outu

Figure A-2. Figure A-3.

Therefore,

output = s = xr p(x)/g(x) (9)

Let g(x) = gl(x) g2 (x), where r 1 and r 2 are degrees of gl(x) and g2 (x). Then
it is possible to obtain the building block with transfer function g(x)/xr + 1 from

two building blocks with gl(x) + 1 and 9 + 1 as transfer functions. This is
shown in Figure A-4. xrl xr2

S(x) g2 (x)-71-
2 '2

Figure A-4.
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Here we have:

tg 1 (x) +g 1.(x) _____

t = tl+t 2 = x (rXl() xr2

s 1xr + 2-) = g(x) + (10)

X r1+ r 2 '

which is the result desired.

With proper switching, the circuit of Figure A-4 can be connected to per-
form multiplication or division corresponding to gl(x), g2(x), or g(x) =
gl(x) g2 (x). The amount of complication introduced by putting two smaller
building blocks together is small, and is also independent of gl(x) and g2 (x),
which is a very desirable feature.

CLOSE-LOOP SOLUTIONS

A close-loop solution of the circuits shown in Figure A-1 is a sequence
existing when the input is directly connected to the output, i. e., when s = t.
From (4)

r r r
x . t = s- g(x)+sx x *s (11)

Since the period of all the roots of the characteristic function g(x) = 0 divides
n, s = t must have a period which divides n. (11) now becomes

s. g(x) 0 mod (,n+ 1) (12)

which means

s - 0 mod h(x) (13)

Therefore, the close-loop solution with s = t must be a sequence of period n
such that each complete cycle corresponds to a multiple of h(x). Conversely,
if s has period = n, and for each cycle s = 0 mod h(x), then s = t mod (xn + 1).

16



It is clear that r consecutive bits of the close-loop solution determine
uniquely the solution. In particular, if we have r - 1 zeroes follcwed by a "i",
then the first n bits of s = t must correspond to h(x), since h(x) is the only
non-zero polynomial which has degree no more than k, and is a multiple of h(x).
It is interesting to note that this particular close-loop solution can be obtained
by feeding a sequence of single "1" (followed by zeroes) to a division circuit.
The first n bits of xn/g(x) are apparently identical to that of (xn + 1) /g(x) = h(x).
The remainder of "1" may be considered as the input of the next cycle and thus
repeats with the same period of n.

The close-loop solution of a division circuit due to any input (followed by
zeroes) can be obtained by adding the individual close-loop solutions resulting
from the Itts!I in the input.

ENCODING CIRCUITS

For separable codes, a k-bit message m(x) is coded as:

C (x) = xr m(x) + r(x) (14)

where
r

r(x) =- x m(x) mod g(x) (15)

Figure A-5 shows an encoding circuit for separable codes. Switch K is at
"0" position for the first k bits when the information is loaded into the circuit.
Check bits r(x) is obtained after K is switched to the "1" position. This can
be seen from the fact that with K at position "0, we have a division circuit.
Thus if the input were Cm(x), instead of xr m(x), we must have s = 0 for the
last r bits since g(x) I Cm(x). It follows that t = Cm(x) for the last r bits.
Therefore, by switching K to "1" after xr m(x) is loaded into the circuit, both
s and t must be the same as if k is at position "0" and input = Cm(x). In the
meanwhile, r(x) is obtained by taking the last r bits of t.

17



input
T

t K 0

___ :output

Figure A-5.

ERROR SYNDROMES AND ERROR PATTERNS

The close-loop solution of a division circuit depends on the input only.
There are various equivalent circuits possible as long as (6) is satisfied. The
question is: can we always regard the shift-register contents as error syn-
dromes of the code Cg no matter which equivalent circuit is chosen?

The answer to the above question is affirmative. To show this, let s con-
sider the cases where a minimum number of r shift-register stages are present.
It can be seen that for any two distinct errors (either the same error pattern at
different positions or different error patterns at all possible positions), the cor-
responding shift-register contents must be different. For if the shift-register
contents are the same, the close-loop solution of period n must also be the
same. This implies Ej (x) h(x) = E (x) h(x) modulo (xn + 1), contradicting (2)
if El(x) and E (x) are two distinct correctible errors.

Note that after n bits of the received sequence is shifted into the division
circuit, the code word part (being a multiple of g(x)) leaves nothing in the shift-
register, ana error syndromes go through an error cycle corresponding to a
close-loop solution of the division circuit.

18



BURST ERROR SYNDROME DETECTION

Since it takes a complete received polynomial to determine the error syn-
drome, a minimum delay in decuding is n bits. It is therefore satisfactory if
the syndrome is recognized n - I bits after the first bit or error enters the
decoding circuit. Actually this often makes the syndrome detection circuit much
simpler. In case of b burst-error correcting codes, n - 1 bits after the first
bit of error enters the deoding circuit and at no other time, we have:

A. the next bit in s = t is a "1".

B. the contents of the first r - b shift-registers along the longest path
from input to output are all I1 0' s".

To demonstrate the above assertion, consider the close-loop solution cor-
responding to a single error xi. The coefficients of h (x) are ready to appear
after n - i - 1 shifts, and hence r - 1 zeroes have been observed in s = t at
this time. It follows that the shift-registers contain r - 1 zeroes and a "1" in
the last register at this time. Let's now look at any single error xi alone,
1 5 i-j --- b- 1. Aftern-1-ishifts, the correspondings' = t' due tox
has produced r - 1 - i + j zeroes. Thus the next bit in s' = t' must be a "0" ,

and the first r - 1 - i + j shift-registers along the longest path from input to
output must contain all zeroes. Since the circuit is linear, these syndromes
are additive. The proof is completed by pointing out the one to one correspond-
ence between syndromes and errors.

It is clear that the sequential decoding schemes used by Meggitt [6] and
Peterson [7] are equivalent since they use the equivalent circuits of Figure
A-1A and A-1B frr the building blocks.

Figures A-6 and A-7 are two decoding circuits for the optimum burst-3
code generated by

2 4+x+1

g(x) = (x + x + 1) (x + x + 1) (16)

The function of these decoding circuits is clear from the analysis of this
section. Note that the same logic circuit is used in both cases for the syndrome
detection. Such circuits are suitable for multi-mode operation if this is one of
the system's requirements.
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RECONSTRUCTION OF RECEIVED POLYNOMIAL

It is possible to use a k - stage feed-back shift-register circuit instead of
the n - stage buffer storage and thus reduce the total number of shift-register
stages from n + r to n. The "error-trapping" approach as described by
Rudolph and Mitchell [8] takes 2n bits of processing: These first n bits are the
loading cycle. The next n bits are the decode cycle during which errors are
kept out of the k - stage shift-register circuit. The original code word is ob-
tained after a delay of 2n bits if the error is correctible.

We shall show that it is not necessary to keep the errors from the k - stage
shift-register circuits as long as the received polynomial can be generated.
The corrected code word can be obtained after a delay of n-bits. This will be
demonstrated in the following in terms of the building blocks so that the use of
equivalent circuits becomes immediate.

Figure A-8 shows a burst-error correcting circuit where g(x) is the gen-
erator polynomial of degree r and h(x) = x n + 1/g(x) is of degree k. Switches
designated by N are at position "(Y' for the first n bits and at position "1" for

input
810'

+ N 0- output
Xk 12

1 I

N
0

g x)
xr

S

Figure A-8
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the remaining n bits. The input is an n bit sequence followed by n zeroes and
the output code word is obtained after n bits (the first n bits at the output are
the received message),

Let C' m(x) be the sum of the original code polynomial Cm (x) and an error
polynomial E(x). It is clear that, since the G-register is connected as a
division circuit, Cm (x) has no effect on the G-register contents at the e-nd of
n bits. After N is switched to position" 1", the G-register contents cor-
respond to syndromes going through their error cycles. The result of the last
Section therefore applies: n-1 bits after the first error bit enters the decoding
circuit, the syndrome can be recognized if the error is correctible.

Since the code word part Dm (x) is the close-loop solution of the H-register,

Cm (x) will start reappearing as part of the output after n bits. In the mean-
while, after a single error enters the decoding circuit, the next n - 1 bits in
both t and t' caused by the error bit are hk - 1, hk - 2, --- hl, ho, followed
by r - 1 zeroes. Apparently they cancel each other at s' and the output. If no
correction takes place, the next bit caused by the single error will be "0 Y" at t'
but will be "1" at t which means the following n - 1 bits again cancel each
other at s' and the single error would reappear as part of the output after a
delay of n bits. Since the circuit is linear, the effects of error bits on-the
output are additive. It follows that if the detection of r - b zeroes fails (an
uncorrectible error is detected), the received polynomial will reappear un-
altered at the output. The correctible burst errors are corrected sequentially
with the corresponding syndromes of each corrected error subtracted from the
G-register contents.

Figure A-9 shows a decoding circuit similar to the one in Figure A-8. The
difference is that, for the first n bits, the G-register is not closed to form a
division circuit. However, the H-register is connected as a multiplication cir-
cuit. Thus, s, the input to the G-register due to a received polynomial in the
first n-bit cycle C6n (x), is the first n bits of Cin (x) h(x). From Section 4,
we see that this is the same as if the G-r-.gister is connected as a division cir-
cuit with CIm (x) as the input. Since the circuit is the same as the one in
Figure A-8 during the second n-bit cycle, the overall performance is the same.

The circuit in Figure A-9 is somewhat similar to the "error trapping"
type decoding circuit of Mitchell.

Using the general combinational circuit in place of the zero detector as the
error syndrome recognizer, the decoding circuits of Figures A-8 and A-9 can
be used for any cyclic code in principle. The circuit in Figure A-10 is a
modified version of the circuit in Figure A-8.
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CONCLUSION

We have shown that, instead of studying the shift-register contents, it is
often convenient to study the input-output relationship of certain "building

blocks". The equivalence relations obtained may help to present a clearer
picture to those analyzing or designing the implementation of error-correcting
codes.

An improved decoding circuit using a total of n sbift register stages is
also presented. The corrected code word is obtained after a delay of n bits,
In comparison to 2n bits previously obtained in this type of decoding circuits.
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APPENDIX B

DUAL CODES VARIABLE REDUNDANCY CODES

INTRODUCTION

The theory of error-correcting codes has made a great deal of progress in
recent years. Many interesting codes have been shown by means of their
algebraic structures to possess various error-correcting (or detecting) capa-
bilities suitable for different kinds of channels, An important class of codes is
known as "cyclic codes!' which enables one to use simple shift-register circuits
with proper feed-back loops for encoding and decoding purposes.

There are situations when codes with different error-protecting capabilities
are desired for the communication between a pair of fixed terminals. This may
be either due to the existence of different classes of messages which demand
different protections, or due to the change of real channels through which
messages are transmitted.

While separate encoding and decoding circuits based independently on dif-
ferent codes are always possible, some sharing of facilities at both sending
and receiving ends is much more preferable. Such code combinations are
referred to as "variable-redundancy codes."

The class of dual codes falls naturally into the category of variable-
redundancy codes. With g (x)h (x) = xn - 1 where g(x) and h(x) are generating
polynomials of the dual codes and n is the code length, g(x) and h(x) may gen-
erate codes with rather different redundancies. Actually, g(x) and h(x) can be
chosen such that suitable different degrees of protection are obtained for
different modes of operation. The implementation of dual codes is particularly
interesting because of the possibility of using much of the same feed-back
shift-rcgister circuit in both encoding and decoding.

Because of its brevity, only binary codes are discussed throughout this
report and polynomials with coefficients in the binary field are used for the code
representation. Generalizations to cases with non-binary finite fields are
possible.
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BASIC CONSiDERATiONS

For a cyclic (n, k) code Cg with generator polynomial

r r-1
g(x) = x r-1 +... + a1x+ 1, r = n-k, (1)

we have g(x) Ix n + 1. The cyclic (n, r) code Ch generated by

+ k k-i
h(x) = x + x + b x +.. + b x+1 (2)

g(x) k-i I

is the dual code of Cg9

If g (x) is to possess any error-correcting ability at all, we must have n
as the period of g(x), i. e., the smallest integer such that g(x) Ixn + 1. The
same is true for h (x). The existence of n' < n such that g(x) Ixn' + 1 implies
that xn' + 1 is a code word, and, therefore, the minimum distance is only 2.
Such code cannot detect any set of all multiple independent errors up to a
number > 1. However, the code can still be used to detect all bursts of r
errors or less. The combination of correction and detection in different modes
of operation with dual codes can sometimes be very practical. The existence of
a feed-back channel, for instance, makes the error detection plus retrans-
mission rather attractive in the normal mode of operation. Powerful correcting
code, on the other hand, may be required when the other mode corresponds to
some kind of emergency, and thus no delay is permissible.

Since the relation g(x). h(x) = xn + 1 is a very strong restriction, it is not
always possible to find g(x) such that both C and Ch are minimum-redundancy
codes of their kinds for any given n and k. As a matter of fact, optimum C g
alone is sometimes not available. However, it is possible to choose g(x) for a
considerable range of n and k, such that efficient codes are obtained in both
modes. This becomes increasingly difficult as n increases. As a result, cases
with large n become less attractive.

Before we illustrate how g(x) and h(x) can be chosen to obtain C and C h
with different combinations of error-protecting capabilities, we need the
following basic theorems:

Theorem 1: Let g(x) be the generator of the cyclic code C g of length n,
thus g(x) Ixn + 1. Then g*(x), the reciprocal polynomial of g(x), generates an
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equivalent cyclic code C* with the same maximum burst in the burst-error-
protecting case and the same minimum distance in the independent-error-
protecting case:

Proofh Since g(x) Ixn + 1. the roots of g(x) must be members of the
multiplicative cyclic group containing all n'th roots of unity.

Since the in-v2r e of each root of g(x) must be in the cyclic group of n
elements, g* (x) Ixn + 1. Furthermore, if n is the period of g(x), it is also
the period of g* (x). For if the period of g* (n) is n' e n, then n' In, and hence,
n' < n. But then roots of g(x), being inverses of roots of g* (x), must be in
the cyclic group of n' elements. This means g(x) Ixn ' + 1, contradicting the
assumption that n > n' is the period of g(x).

The generator matrix of Cg can be written as

- g(x)

x g (x)

G= x2 g(x) (5)

k-1_x g(x)j

while the generator matrix of C* can be written as
g

k-1 *x g (x)

k-2 *x g (x)

G =(6)

x g (x)

g (x)

It can be immediately seen that G is the same as G with the order of
columns completely reversed. Since the same set of columns, as well as their
adjacency relationships are maintained in both G and G*, C and C must have

27



the same independent-error and burst-error-correcting capability. The only
requirement is that whenever E(x) is an error pattern to be corrected or de-
tected, so is E* (x).

Theorem 2 t : Let a be any element of GF (2
m ) of order e. Then the code

consisting of all vectors I f(x) } over the binary field for which

m 0 m +s m 0 +2s m + (d-2)s0 0 0 0
f a I a , ,. I a

are roots of f(x) is a Bose-Chaudhuri code with minimun distance at least d,
provided (s, e) = 1.

Proof: Let n be the code length and d > 2. Then, ( n

(mo0 + s) = 1, and asn = 1. It follows that elan, and therefore eIn, since

e In0+o e

(s, e) = 1. But a = 1, and (a = 1, which means that the order of
each of the above d-1 roots divides e, or n Ie. Since eIn, and n Ie, we have
n e.

The parity check matrix of the code can be written as

In / m\2 .. ,m.n- I1 o o 1 0

1 a In0+\ a /I --- cm+In-1

m + 2s m+2s)2 m+2s n-1o 1 01o 10

H = (7)

1 a m + (d-2)s ( 0 + (d-2)9)2 --- ( m o + (d-2)s)n-1

This generalization was pointed out by D. K. Ray-Chaudhuri of
IBM Research Center.
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The determinant of any sEt of d-1 columns of H is

111

mo 0 J2 
+  +  .. Jd) sj 1  sj 2  sjd1

s 1 ) 2  (s 2 ) 2  (sd-1)2

(a 1) d-2 d-2 d-2

L- (S 2  - (ii

(8)

Consider any two colunns corresponding to jx and iy We see that
sjx Sjy S~y - j)X

x= a Y implies a ) = 1, ore is(jy - ix), which is impossible

since(s,e) = 1, and j - j < n=e.

Since columns of (8) are all distinct, the van der Monde determinant never
vanishes and the minimum distance of the code is no less than d.

CHOICE OF Cg and Ch

Interesting dual codes eist with various combinations of burst-error-
correcting and independent-error-correcting capabilities.

A. BURST-ERROR-CORRECTING DUAL CODES:

Efficient burst-error-correcting dial codes are often possible by properly
splitting the factors of xn + 1. This can often be done by matching the right
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pairs of generator polynomials in a table of available efficient burst-error-
correcting codes. For example, consider n = 21; we have:

21 6 4 2 6 5 4 2 3 2
x +1=(x +x +x +x+) x +x +x +x +1) (x +x +1)

3(2 (9)

(x +x+1) (x +x+1) (x+ 1).

The code C generated byg

6 4 2
g(x) = (x + x + x + x+ 1) (x+ 1) (10)

is an efficient triple-burst-error-correcting code as listed in Table I of
Reference (6). The generator of the dual code

21
x 1 6 5 4 x2 3x23

h(x) = (x6 +x +x +x +1) (x3 +x + 1) (x 3 +x+ 1)g (x) 2(11)

(x + x+ 1)

is not listed in the same table. But we readily see that h (x), the reciprocal of
h(x), is listed. By theorem 1, the code Ch generated by h(x) is also an
efficient code. Some other burst-error-correcting dual codes found this way
are show, in the following table:

TABLE I

n r b g (x) k b h(x)

7 3 1 (13) 4 2 (15) (3)
15 6 3 (23) (7) 9 4 (31) (37) (3)

7 3 (23) (7) (3) 8 4 (31) (37)
21 5 1 (13) (7) 16 8 (127) (165) (15) (3)

6 2 (127) 15 7 (165) (13) (15) (7) (3)
6 2 (13) (7) (3) 15 7 (127) (165) (15)
7 3 (127) (3) 14 7 (165) (13) (15) (7)
8 3 (127) (7) 13 6 (165) (13) (15) (3)
8 4 (13) (15) (7) 13 5 (127) (165) (3)
9 4 (13) (15) (7) (3) 12 5 (127) (165)
9 4 (127) (7) (3) 12 6 (165) (13) (15)
10 4 (127) (13) (3) 11 5 (165) (15) (7)

* Polynomials are given in octal representation. For example,

6 x4 2
127 -1, 010,111- x + x + x + x + 1.
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The reciprocal polynomials g* (x) and h (x) also generaUt dual codes of
the same redundancies as those generated by g(x) and h(x). They are not
included in the above table.

B. INDEPENDENT-ERROR-CORRECTING DUAL CODES:

An interesting class of dual codes of Bose-Chaudhuri type can easily be
found. A special case is the following:

Let a be a primitive element of GF (2 m ) of order e = 2- 1, and let
g(x) = ml (x), the minimal polynomial containing a. Then for all m > 2, both
Cg and Ch has code length n = 2 m-1. Cg has a minimum distance of 3, and

Ch has a minimum distance at least 2 m This can be seen from the fact that
n m

____3_5 2-1
h(x) x- contains 3 , a , a a = 1, among its roots.g Wx

For cases in which Cg corrects more than single errors, more investi-
gation is necessary to determine the error-correcting capability of Ch. To
illustrate this, take a as a primitive element of GF (25). Here we list
elements of GF (25) as powers of a such that powers of the roots of the same
minimal polynomial are listed in the same row:

TABLE I

0 m° (x)

1 2 4 8 16 mI (x)

3 6 12 24 17 m3 (x)

5 10 20 9 18 m5 (x)

7 14 28 25 19 m7 (x)

11 22 13 26 21 In 1 1 (x)

15 30 29 27 23 m1 5 (x)
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Iet g(x) = m I M) - m3 (W. Since it has a, a 2 , 3, and 4 among its roots,
the minimum distance d of Cg is at least 3,

n

Consider h(x) x m (X ). Lx) m7 (X) Ml(X) Ms(x). If we

start with c 5 with a' 2, we see that a 5 , 7 a9 , all, a1 3, a 15 are roots of
h (x), indicating a minimum distance of 7. However, applying Theorem 2, a
much better combination of m'o and s' is found as m'o = 21 and s' = 5. Thus
h (x)is seen to havea 21 , Oc20 , a 3 1 = a0 , a5, c, a 15 a 2 0, a 2 5 , a 30 among
its roots, indicating a minimum distance d' of at least 10. Since a can be
chosen as any element of proper order, g(x) is usually not unique. In this case,
for instance, ml (x) may bechosen as x5 + x2 + 1, in which case we have

2 5 4 3 2g9x W (X5 + x (x +) x 4 x * x + () 12)

and

5 4 2 (x5 2 5 4 3h(x) - (x5 * x  *x +x* 1)( 'x +x x lfx +x " x • x*1)

5 3 (13)
(x 5- x + I) (x+ 1)

Independent-error-correcting (or detecting) dual codes of varous lengths
and minimum distances can be found In a similar manner. Some of them are
listed in the following table.

TABLE I

n rm s, g(x) k d' h (x)

7 3 1 1 m(l) 4 4 3 2m0, 3)
15 4 3 11 m(l) 11 8 3 12 m(O,3,5,7)

5 4 0 i m(o, 1) 10 7 3 12 m(3, 5,7)
31 5 3 111 m(1) 26 16 3 1 2 ni(O, 3,5, 7, 11, 15)

6 4 0 1 m(O, 1) 25 15 3 12 m(3,5,7, i1.15)
1 5 l m(1,3) 21 10j21 15 m(O,5,7,11,15)
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TABLE M1 (Continued)

n r d m s g(x) k d' rm s, h_(x)

63 6 3 1 1 m(l) 57 32 3 2 m(0,3,5,7,9,11,13,15,21,23,27,31)
7 4 0 1 m(0,1) 56 31 3 2 m(3,5,7,9,11,13,15,21,23,27,31)
12 5 1 1 m(1,3) 51 16 53 5 m(0,5,7,9,11,13,15,21,23,27,31)
13 6 0 1 m(0,1,3) 50 15 5 2 m(5,7,9,11,13,15,21,23,27,31)
18 7 1 1 m(1,3,5) 45 16 35 2 m(0,7,9,11,13,15,21,23,27,31)
19 8 0 1 Im(0, 1,3,5) 44 15 35 2 m(7, 9, 11, 13, 15,21,23,27,31)

* m (1 , i2.... ) is the minimum polynomial having all, ai2, .. as roots.

Thus, m(11,i2 .  =I (x) . mi (x)..., Note that m(x) is primitive

in this table.

C. BURST-ERROR AND INDEPENDENT-ERROR-CORRECTING DUAL CODES

It is possible to combine the techniques described in previous sections to
obtain a burst-error-correcting code Cg and an independent-error-correcting
dual code Ch. A special case is the class of double-adjacent-error-correcting
codes Cg of length 2 -ml. With g(x) = (1 + x) f(x) where f(x) is primitive, we
can identify it as g(x) = mo (x) • m, (x). The dual code generator h(x) has3 5 2 13
a , a * C 5 among its roots, and thus Ch is a Bose-Chaudhuri code with
minimum distance at least 2 m-1 -1.

Some other codes of this type found In the similar fashion are listed in the
following table.
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TABLE IV

n r b g(x) k d' m' s' ml(x) h(x)

15 5 2 (23) (3) 10 7 3 2 (23) (37) (31) (7)
6 3 (23)(7) 9 6 0 11 (37) (31) (3)
8 4 (23)(37) 7 4 0 7 (31)(7)(3)

21 5 1 (13) (7) 16 8 0 1 (127) (127) (165) (15) (3)
6 2 (13) (7) (3) 15 7 1 1 (127) (165) (15)
7 3 (127) (3) 14 5 3 2 (165) (15) (13) (7)
8 3 (127) (7) 13 6 0 5 (165) (15) (13) (3)

31 6 2 (45) (3) 25 15 3 2 (45) (75) (67) (57) (73) (51)
10 4 (45) (75) 21 10 21 5 (67) (57) (73) (51) (3)

51 8 3 (433) 43 20 0 11 (763) (763) (727) (471) (661) (637)
(7)(3)

10 4 (433) (7) 40 18 0 11 (763) (727) (471) (661) (637)
(3)

63 7 2 (103) (3) 56 31 3 2 (103) (127) (147) (111) (155) (133)
(165) (163) (141) (15) (13)
(7)

9 3 (147) (13) 54 22 38 11 (103) (127) (111) (155) (133)
(165) (163) (141) (15) (7) (3)

12 5 (103) (13) (15) 51 18 23 5 (127) (147) (111) (155) (133)
(165) (163) (141) (7) (3)

14 6 (103) (111) (7) 49 14 33 5 (127) (147) (155) (133) (165)
(163) (141) (15) (13) (3)

15 7 (103) (133) (13) 48 14 43 5 (127) (147) (111) (155) (165)
(163) (141) (15) (7) (3)

18 8 (103) (127) (111) 45 13 9 2 (147) (155) (133) (165) (163)
(141) (13) (15) (7) (3)

19 9 (103) (147) (141) (3) 44 11 42 8 (127) (111) (155) (133) (165)
_ _ (163) (13) (15) (7)
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IMPLEMENTATION OF DUAL CODES

Let Cg be a separable cyclic (n, k) code generated by g(x) of degree
r = n - k. Then a code word of Cg can be written as:

r
A(x) = x a(x) + r(x) (14)

where a(x) represents the k bit message vector and r(x) is the residue of
xr a(x) modulo g(x). Thus A(x) = o mod g(x).

In order to obtain the residue r(x) with respect to a message a(x), it is
possible to use (1) an r-stage shift-register with feed-back loops corresponding
to g(x), or (2) a k-stage shift-register with feed-back loops corresponding to

nx +1
h(x) = g ) 1 With proper gating, the r-stage shift-register with feed-back

loops corresponding to g(x) or h(x) alone can be used in the process of encoding
and decoding for both of the dual codes Cg and Ch. We shall assume that
k > r = n-k, and that an r-stage shift-register with feed-back loops cor-
responding to g(x) is used in the encoding and decoding circuitry. Code words
are sent and received in the high-order-first manner.

There are two types of shift-register feed-back circuits, and both can be
used for encoding or decoding purposes. The first type has feed-back loops
connected to the mod-2 adders between adjacent stages of the shift-register.
The feed-back loops correspond to the coefficients of g(x) with the high order
ones at the output end of the shift-register. (Figure B-1A). The second type
does not have mod-2 adders between stages, so the shift-register can often be
replaced by a tapped delay-line. The feed-back loops also correspond to
coefficients of g(x) with the high order ones at the input end of the shift-
register (Figure B-1B).
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Figure B-1 shows the above two types of encoding circuits capable of oper-
ating in two modes:

A. MODE 1:

Encoding of the (n, k) code Cg generated by g(x) of degree r = n-k. In this
special case g(x) = x3 + x + 1, with n = 7, k = 4, r = 3. The time control
at three switches is the same for both types:

Contact 1 and 3: 1
s t through kth bit-time until the last information bit is

in the register.

Contact 2 and 4: (k + I)th through nth bit-time.

Contact 6: 1st through nth bit-time.

B. MODE 2:

Encoding of the (n, r) code Ch generated by g' (x) = h(x) - + 1 of
4 2  g(x)

degreek. In this special case g'(x) = h(x) = x + + x + 1, orh'(x) =

g(x) = x3 + x+ 1, withn= 7, k= 4, r = 3. The time control at three
switches is the same for both types:

Contact 1 and 5: 1
s t through rth bit-time until the last information bit is

in the register.

Contact 2 and 6: (r + 1)th through nth bit-time.

Contact 3: 1st through nth bit-time.

Since both codes are separable, the information bits always go first directly
to the channel while the feed-back shift-register circuit is ready to generate the
check bits when the last information bit is in.

Figure B-2 shows the two types of decoding circuits capable of operating
in two modes.
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A. MODE 1:

3
Decoding of the (n, k) code Cg generated by g(x) = x + x + 1. Time control

at switches is the same for both types:

Contact 3: 1 st through kthbit-time.

Contact 4: (k + 1)th through nth bit-time.

Contact 1 and 6: 1st through nth bit-time.

B. MODE 2:

Decoding of the (n, r) code Ch generated by g' (x) = h(x) = x4 + x2 + x+ 1.
Time control at switches is again the same for both types:

Contact 5: 1 st through rth bit-time.

Contact 6: (r + 1)th through nth bit-time.

Contact 2 and 3: 1s t through nth bit-time.

The basic feed-back shift-register circuit is the same as the encoding cir-
cuit. Check bits based on the received information bits are generated and
compared with the received check bits. The difference can be identified as the
error syndrome. To show this, suppose that A(x) + E(x) is the received
polynomial where E(x) is the error polynomial. Let E(x) = Ek(x) + Er(x) with
Ek(x) containing the first k bits (high order terms of E(x) ) and with Er (x) con-
taining the last r bits of E(x). Since r is the degree of g(x), the syndrome of
E(x), which is the residue of E(x) mod g(x), is

re (x) =r k (x) + E (x), (15)

where

rk (x) Ek (x) mod g(x) (16)

It follows that

[xr a(x) + Ek (x)1 + [r(x) + E (x)]r

rk(x) + Er (x)= re(x) mod g(x). (17)

39



The syndromes are mapped into error patterns by a logic circuit. The
error pattern is then subtracted from the received polynomial to recover the
original code word.

Since the mapping between syndromes and error patterns is arbitrary, the
decoding circuits shown in Figure B-2 can be used for independent-error cor-
rection as well as burst-error correction.

CONCLUSIONS

The class of cyclic dual codes has been studied from the view-point of
variable-redundancy codes. It is possible to obtain dual codes with various

combinations of error protecting capabilities. The more interesting combi-
nations are: (1) burst-error-correcting dual codes, (2) independent-error-

correcting dual codes, and (3) burst-error-correcting and independent-error-

correcting dual codes. Many efficient dual codes exist in each of the above

three cases. Some of such codes with moderate lengths are tabulated.

The implementation of dual codes is based on the fact that it is possible to
use the same feed-back shift-register circuit for both of the dual codes either

when check bits are to be generated in encoding or when error syndromes are

to be generated in decoding. Two types of general-purpose encoding and decoding
circuits are shown to be applicable.
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APPENDIX C

CYCLIC PRODUCT CODES WITH VARIABLE REDUNDANCY

I. INTRODUCTION

Practical situations in military and commercial communications systems
often call for the transmission of messages with various degrees of urgency
and reliability requirements. To meet such needs with economy and efficiency,
one turns to coding techniques which employ a variable amount of redundancy
that is adjusted to suit the situation at hand. Two outstanding problems that
demand solutions in this area are, 1) the selection of suitable codes with
variable redundancy, 2) the determination of efficient methods of informing
the receiver of a mode change.

This paper is concerned with the first problem, that of selecting efficient,
variable redundancy, and easily implementable codes. In particular, a class
of codes, callea the cyclic product codes, are investigated in detail. A cyclic
product code is a cyclic code-pair that operates in a variable-redundancy mode.
The high-redundancy code is generated with the generator polynomial
g(x) = gl (x) g2 (x). The low-redundancy code is generated with the polynomial
gl (x) only. We shall assume that the period of gl (x) g2 (x) is the same as that
of gl (x). Several classes of cyclic product codes are constructed for the cor-
rection of independent errors, burst errors, and multiple bursts. They are all
implementable with relatively simple hardware.

All discussions in the paper concern binary codes, the extension to non-
binary cases is of a straight-forward nature in most cases; hence, it will not be
treated in detail. For a general discussion on cyclic codes, see Peterson [1].

II. CYCLIC PRODUCT CODES

Let gl (x) be the generator polynomial of a cyclic code and n be the period
of g, (x); then gl (x) divides xn + 1. Furthermore, if g, (x) divides xk + 1, k
is a multiple of n. For most cases of interest n is odd, and therefore, xn + 1

42



does not contain any repeated factors. As g, (x) g2 (x) has the same period n,
one may conclude that g2 (x) divides xn + 1 and g, (x) is relatively prime to

g2 (x).

A. OPTIMUM CYCLIC PRODUCT CODE FOR CORRECTION OF BURST
ERRORS

Suppose g(x) is a generator polynomial of a b-burst correcting code of
length n, the period of g(x); then for any two error patterns el (x) and e2 (x) that
are correctible

i

e1 (x)+x e2 (x) 0 (g(x)) (1)

implies

n
e X x+ (2)

where deg(el) < b - 1, deg (e 2 ) < b - 1.

The following theorem establishes a class of cyclic product codes for burst
errors,

Theorem I. Let g(x) = qo (x) q1 (x) be the generator polynomial of a
b - burst correcting code of length n, the period of g(x), and the degree of
q (x), Q, to be less than b. Then, q1 (x) is the generator pclynomial of a
bI - burst correcting code of length n1 , the period of q, (x), where b, > b - Q
and ni divides n.

Proof: ql (x) generates a code of length nj. Suppose this code does not
have the ability to correct all bI - burst errors, then there exists two error
patterns el (x) and e2 (x) such that

e (x) + xe 2 (x) - 0 (gl (x)) ()

and

e I (x)+ x e 2 (x) 0 (xn1+ )4(4)
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where nI divides n, deg (el) < 1 , and deg (e2 ) < b, if we multiply both sides

of (3) by qo,

q 0 [e (x) + XI e2 (x)] = 0 (g(x)). (5)

As deg (qo el)< b. + Q = b, and deg (qo e2) < b1 + Q = b, by the error
correcting properties of g (x) (5) implies

qo [e1 (x) + x e2 x) =0 (xn+ 1) (6)

As both qo el and qo e are bursts of maximum length b and 2b < n, it can
easily be shown that (63 implies

qo el = qo e2

and n divides i. Hence, el = e2 and n1 divide i. This is a contradiction to
our assumption of the existence of e1 and e2 that satisfies both (3) and (4). The
theorem therefore follows:

With the use of theorem I, one may take a b-burst correcting code and
obtain from it a b1 - burst correcting code by dropping a factor in the gener-
ating polynomial. The result is a pair of cyclic product codes that are suitable
for variable redundancy applications.

Elspas and Short [21 had studied the construction of burst-error codes
with minimum redundancy. For burst length b and r check bits their codes
have a length of n = 2r - b + 1-1. Tables of minimum redundancy code have
been presented for n up to 4095 and b up to four. These codes are very suit-
able for operating in the variable redundancy mode as cyclic product codes.

Example: the code generated by
2 2 3 4+x6 10 x12

g4 (x) = (1+x) (1+x+x 2 ) (x+x +x +x +x + )

corrects all bursts of four bits or less with n = 4095. By dropping some
factors we may obtain a burst-3 correcting code with

2 2 3 4 6+x0 10 12

g3 (x) (+x+x )(1+x +x +x +x +X +10
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or a burst - 2 correcting code with

3 4 6 10 12g2 (x) = (+x) (1+x+x3+x4+x +x +x

or a burst - 1 correcting code with

2 3 4 6 10 12gl(x)=(1+x +x +x +x +x +x ).

The fact that these codes do error-correction as claimed follows directly from
Theorem L We list in Table I a class of codes selected from Elspas and
Short [2]. Those codes listed are suitable cyclic product codes. It should be
noted that Theorem I could also be used to limit the amount of labor required
In searching for minimum redundancy codes in general.

TABLE I

CYCLIC PRODUCT CODES FOR BURST ERRORS

n r g (x) (Listing Powers with Units Coefficient for Each Factor)

1023 13 (01) (012) (0235, 10)
(01) (012) (012467,10)
(01) (012) (023458, 10)
(01) (012) (012369, 10)
(01) (012) (013469, 10)

4095 15 (01) (012) (0347, 12)
(01) (012) (012459, 12)
(01) (012) (034589, 12)
(01) (012) (01234589, 12)
(01) (012) (02346, 10, 12)
(01) (012) (02348, 10, 12)
(01) (012) (01478, 10, 12)
(01) (012) (0234678, 10, 12)
(01) (012) (01269, 10, 12)
(01) (012) (01246, 11, 12)
(01) (012) (0125789, 11, 12)
(01) (012) (0124, 10, 11, 12)
(01) (012) (012347, 10, 11, 12)
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B.- OTHER CYCLIC PRODUCT CODES FOR BURST-ERROR-CORRECTION

The Fire Codes [3] are defined by the generator polynomial

(xc + 1) p(x)

where p(x) is a polynomial of degree a b and period e, and c a 2 b - 1. This
code is capable of correcting a single burst of maximum length b with a block
length n which is L. C. M. (c, e). For most cases in practice, c is taken to be
2 b - 1 and p(x) chosen to be a primitive irreducible polynomial of degree b;
hence the block length is c(2b - 1).

It is relatively easy to see that the class of cyclic product codes may be
constructed by taking the pair

91 (x) g2 (x) = (x + 1) p (x)

g1 (x) = (Xcf + 1) p(x)

where c, divides c. The code generated with g, (x) alone will correct a
shorter burst. However, as it is longer than the normal length of a Fire code,
it is closer to optimality in redundancy.

Another way to generate a class of cyclic product codes is by applying
Theorem I This will be illustrated by the following pair of generator
polynomials:

7 6 4 3 5 2
gljx) = (x +x +x +x +x+ 1) (x +x + 1)

9 5 2

g 1 (x)g 2 (x)(x + 1) (x + x + 1)

Thus, gl (x) generates a code for correcting burst-3 which has a length of
9 x 31 = 279. g1 (x) g2 (x) generates a burst - 5 Fire code of length 279. It

should be noted that (x7 + 1) (x5 + x2 + 1) generates a burst - 4 Fire code of
length 217. Comparing with the result obtained in Il A by applying Theorem I,
it is clear that the most advantageous situation for applying Theorem I is when
the higher redundancy code of the pair is close to optimum.
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A third method to approach the cyclic product codes for burst correction
is to select a code pair with the same generator polynomials which give differ-
ent code lengths. This may be due to the difference in their natural lengths,
or can be a result of shortening the code, or both.

g(x) = (1 + x)2 p(x)

where

rn-I m
p(x)=Po + P x + - - - + p M - 1 xM 1 +PmX , m odd,

with PO= 0 if 1=1

Pi = 1 otherwise,

generates a class of optimum shortened cyclic burst - 3 codes of length 2 m - I
Ref. [4]. These same polynomials generate burst - 2 codes of lengths
2 (2

m - 1). The polynomial g, (x) = (1 + x) p (x) generates burst - 2 codes of
length 2 m - 1. Results on shortened codes as variable redundancy codes will
be reported separately.

C. CYCLIC PRODUCT CODES FOR CORRECTING INDEPENDENT ERRORS
AND MULTIPLE BURSTS

Independently, Bose-Chaudhuri [5] and Hocquenghem [6] had suggested
a very general class of cyclic codes for correcting independent errors. The
BCH codes are most conveniently described in terms of the finite field GF (2 m).
A t -error-correcting BCH code is generated by the polynomial g(x) such that

g(x ) = 0 1 = 1, 3, --- , 2t- 1

where a is a primitive root of GF (2m). The length of such a code is 2 m - 1.
The BCH codes are most suitable as cyclic product codes as we may, in
general, write

g(x) = LCM (m1 (x) m2 (x) --- m2t (x))

where mi (x) is the minimal polynomial of a i . As a special case of the general
BCH code over GF (qm), Reed and Solomon suggested a class of codes where
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the roots of the polynomial are not taken from the extension field, but from the
ground field itself. The RS code is of length 2m - 1, where the generator
bolynomial is

g(x) = (x - a) (x - a) --- (x - 2).

The RS code will have minimum distance d = 2t + 1 and will correct t inde-
pendent errors. The most useful way a RS code can be practiced, however, is
by using it as multiple-burst-correcting codes. For a t-error-correcting code
a tS code can correct t in-phase bursts of maximum length m in a code length
(2m - 1) m. For the same reason as in the case of BCH codes, the RS codes
are cyclic product codes in the sense that the more factors the generator poly-
nomial have, the more bursts the code can correct. It is also true that one
may use the multiple bursts structure to correct a single long burst. And
sometimes it is better than a Fire code of corresponding length.

As an illustration, a RS code with symbols from GF (27) and t = 4 could
correct all bursts of length 22 or less. Its length is 889. To obtain a RS code
of the same length but correcting a short burst, simply let t = 3, 2, 1, and we
obtain code for correcting b = 15, b = 8, b = 1, respectively.

III. IMPLEMENTATION OF CYCLIC PRODUCT CODES

A. GENERAL CONSIDERATIONS

Let gl (x) be the generator polynomial of a (n, kj) code C1 , and g(x) =

gl(x) g2 (x) be the generator polynomial of a (n, k) code C where the degree of
gl(x) is r1 = n - kl, and the degree of g(x) Is r = n - k. To illustrate the
implementation of the product codes, a specific example will be used throughout
this report for encoding and burst-error correcting. The cyclic product code-
pair operate in the following two modes:

(1) Mode 1: C1 is a (15, 11) code generated by

4
g 1 (x)=x +x+ 1,
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with
15

= 5 +1 11 8 7 X5 3 2
1 1  _ x +x +x + +x +x +x+.

This code corrects single errors.

(2) Mode 2: C is a (15, 9) code generated by

g(x) = g1 (x) g2 (x)

4 2=(x +x+1)(x +x+1)

with

15
h(x) = x + 1 9 X8 5 4 3g~) -x +x +x +x +x +1,

g(x)

This code corrects burst errors up to length = 3.

The above product code-pair has the property that both C and C are
optimum codes. Longer product codes with the same optimality property can
be obtained from Table I.

To implement a cyclic product code capable of operating in two or more
modes, we should take advantage of the properties of the product code so that
some sharing of the circuitry when operated in different modes is possible.
An immediate approach is to share the shift-registers in different modes and
switch the interconnection from one configuration to another to obtain a change
in its function required by the different mode of operation.

Figure C-1 shows two division circuits designed according to the above
philosophy. Switch M is at position "1" for Mode 1 and at position "2" for
Mode 2. Such division circuits can be parts of the encoding or decoding
circuitry.

It can be seen from the circuits of Figure C-1 that, because of an extra
mode of operation, some new mod-2 adders must be installed, and some mod-2
adders originally with two inputs now become mod-2 adders with three inputs.
Generally speaking, the complication thus introduced is roughly proportioned
to the degree of gl(x) or g(x). To apply this direct sharing approach to the type
of decoding circuits which uses a total of n shift-registers (second part of
Section 1I-C) introduces further complications and makes it rather uninteresting.
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Figure C-1
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A better approach, which is both practically more appealing and theo-
retically more interesting, is to combine the basic building blocks correspond-
ing to g, (x) and g2 (x) in obtaining the building block corresponding to g(x) =
g, (x) g2 (x). Such basic building blocks can be connected to make simple multi-
plication or division circuits, as well as various types of encoding and decoding
circuits in general. With proper switching elements in the circuits, different
modes of operation can be obtd.ined. The complication introduced due to mul-
tiple modes of operation can be kept at its minimum and is independent of the
sizes of g1(x) and g2 (x).

A "basic block' corresponding to g(x) here refers to a shift-register circuit

whose input and output sequence is related by the transfer fuction = 9(x)+ 1 =
S xr

g* (D) + 1 where x- = D is considered as a delay operator. See Ref. [7].

t2 +

-g;-) I+
2 1 1

S1

x 2
$ 2 M S

INPUT

K 0

OUTPUT

Figure 0-2
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Figure C-2 shows a general encoding circuit for any cyclic product code-

pair. The switches are controlled according to the following,

Mode 1: Generator polynomial = gp(x)

M = 1 for all n bits

K = 0 for the first k bits

i for the remaining rI bits

Mode 2: Generator polynomial = g(x) = gl(x) g2 (x)

Iv! 2 for all n bits

K = 0 for the first k bits

1 for the remaining r bits.

The code words obtained are separable. That is, a k -bit message m(x) is
coded into

C(x) = xr m(x) + r(x)

where

r(x) xr M(x) mod g(x)

has degree no more than r - 1.

Note that the relationship between s and t in Figure C-2 is described by the
following transfer function

t - g(x)+ 1 = g* (D) + 1
s r

x

where D = x- 1 is the delay operator and g* (D) is the reciprocal polynomial
of g(D).

Figure C-3 shows two encoding circuits for the specific cyclic product
code-pair described earlier.
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Figure C-3

C. DECODING CIRCUITS FOR BURST-ERROR-CORRECTING

Two types of decoding circuits for burst-error-correcting product codes
will be described in this section:

(1) The first type of decoding circuit contains an n-stage buffer storage
and a division circuit corresponding to g(x). The vector with shift-
register contents as components forms an error syndrome, which does
not necessarily correspond to the residue of the error polynomial
modulo g(x). The basic approach is the same as that of Peterson [11
and Meggitt [8].

In order that the circuit is capable of correcting burst errors in different
modes, the division circuit must contain individual building blocks correspond-
ing to gl(x) and g2 (x) so that one of them can be disconnected in the low-
redundancy mode. The syndromes should go through an error cycle and should
be recognized when the first bit of a correctible burst error is ready to leave
the n-stage buffer storage.

Figure C-4 shows two decoding circuits for the same product code with
g (x) = (x4 + x + 1) (x2 + x + 1). Note that since the difference in the maximum
correctible burst lengths is the same as the difference in the degrees of gen-
erator polynomials in two modes, the same zero-detecting circuit can be used
in both modes. This applies to all burst-error-correcting product codes which
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operate according to Theorem 1, such as those obtained from Table I. In gen-
oral, the zero detecting circuit may require a different set of input connections
in different modes.

In terms of matrix notation, the shift-register contents are syndromes in
the form of row vectors determined by multiplying the received vector (a code
vector plus an error vector) a d the transposed parity-check matrix:

S= (C+ E) HT = EHT

The parity-check matrix corresponding to the decoding circuit of Figure
C-4-A is

101101101101101

H =- - - - - - - - - - - - - -
a

0011010010101000001101001011 00

0 00 010 1 00 101011

and the parity-check matrix corresponding to the decoding circuit of Figure
C-4-B is

110110110110110

b 0 01 00 11 10 01 100 0
000100111001100

000100111001100 0 0 1 0 0 1 1 1 0 0 1 1 00

o00001001110011

(2) The second type of decoding circuits also contains a division circuit
corresponding to g(x). However, a k-stage shift-register circuit cor-
responding to h(x) = (xn + 1)/ g(x) takes the place of the n-stage buffer
storage. The decoded (or the original, in case of detecting an uncor-
rectible error) message is obtained after a delay of n bits instead of
2n bits in the error-trapping approach of Mitchell [91.
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To meet the need of two-mode operation. The decodiag circuit must con-
tain the building blocks corresponding to g, (x), g2 (x), and h(x) = (xn + 1)/
g(x) g2 (x). In the high-redundancy mode, the buiding blocks of g (x) and

g2 (x) are combined to form the equivalent block corresponding to g~x) =
g, (x) g2 x). In the low-redundancy mode, the building blocks of h(x) and g(x)
are combined to form the equivalent block corresponding to h1 (x) = (Xn+ 1)/gl(x).

Figures C-5 and C-6 are two decoding circuits for the specific example of
cyclic product code pair given earlier. All switches designated by M are at
position "I" for mode 1 and at position "2" for mode 2. All switches designated
by N are at position "0" for the first n bits and then at position "1" for the
remaining n bits in both modes. The relationship between sh and th in both
circuits is described by the transfer function

h 1() h(x) - g2  (x) +I

• k +( = xk+ r2)  +

in mode 1, and by

sh 2 xk

in mode 2. The relationship between s and t in both circuits is described

by the transfer function g g

- +1

in mode 1, and by

_g(x) g1 (x) g2 (x)
1 xr x (r, + r 2 )

in mode 2. The corresponding building blocks in Figures C-5 and C-6 are
equivalent and are hence interchangeable.
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These two decoding circuits operate on slightly different principles for

the first n bits. In both cases, however, the error syndrome is obtained at

the end of first n bits in the shift-register corresponding to the generator
polynomial. For the second n-bit cycle, both circuits are connected in such
a way that the received message can be regenerated. At the same time, the

syndromes go through their error cycle and are recognized when the first bit
of a correctible burst error is about to reappear at the output. By comple-
menting the next bit in the output and subtracting the corresponding syndrome
from the shift-register contents, the correctible errors are corrected se-
quentially. For more discussions, see Ref. [71.

D. DECODING CIRCUITS FOR INDEPENDENT-ERROR-CORRECTING

Each of the decoding circuits described previously (Figures C-4, C-5,
and C-6) can be used for independent-error-correction if a combinational
circuit is used for syndrome recognizer. However, this may be limited to
cases where the minimum distance of the code is relatively small. For codes
with larger distance the size of the combinational syndrome recognizer may
become prohibitively large.

For Bose-Chaudhuri-Hocquenghem codes, a cyclic decoder can be used.
This improved decoding procedure takes advantage of the cyclic property of
the code, and the errors are corrected sequentially at the output.

Let g(x) be the generator polynomial of a t-error-correcting code of
length 2m - 1 such that g(x) is the minimum polynomial containing, C, a 3 , a 5 ,
___, a 2 t - 1 as roots. Upon receiving a polynomial r(x), syndromes S1 =

r(a), S3 = r (a 3 ), ___, S2t - 1 = r (a 2 t - 1) can be used to obtain the elemen-
tary symmetric functions cr1 , (7 2- t The non-zero roots of the
polynomial

xt+ t- 1
T(x) = x 1x + --- + + t 1X+ t

represent the errors.

Instead of the previous exhaustive approach in finding the roots, the
following procedure is carried out: The polynomial is sequentially trans-
formed such that at i'th step, we have

t +) t i t -1 +_ +a (t -1) i X ti
(x=xo + ax +--a_ x+ota .

19 t
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Therefore, if (3 is a root of E(x), uait is a root of T{I) (x). Consider an error
at the J' th position, thus fP = aJ -1 After i = n - j + 1 transformations,
al+ J - = 0 = 1 becomes a root of En- i + I (x). By checking whether " 1" is a
root of (i) (x) at each~step, the bit in error can be corrected sequentially at
the output.

Figure C-7 shows a schematic block diagram of the cyclic decoding pro-
cedure. It can be seen that if the decoder is designed for the code with genera-
tor polynomial g(x) = gl(x) g2 (x), the low-redundancy mode of operation with
generator polynomial gl(x) requires essentially no change of the circuit. For
if gl(x) generates a t 1 - error-correcting code ui= o for i > t1 .

Figure C-8 shows another cyclic decoder for BCH codes. Here, the
transformed syndromes are fed directly to a combinational circuit which checks
the equivalent condition for "1" to be a root of XJ(i) (x). Again, little change is
necessary to make a decoding circuit corresponding to high-redundancy mode
work in the low-redundancy mode. The part of the combinational circuit which
checks the high order error greater than tl can be inactivated in the low-
redundancy mode. Whether this type of decoding circuit is suitable, again,
depends upon the size of the combinational circuit used.

For more discussions of cyclic decoding approach for BCH codes in gen-
eral, see Ref. [10] and [11].

CONCLUSION

This paper presents original results on the theory and implementation of
cyclic product codes, Various classes of codes are constructed for the
correction of burst errors, independent errors, and multiple bursts. De-
coding circuits with n - shift register stages, a theoretical minimum, are
presented for burst errors. An algebraic-cyclic procedure is suggested for
correction of independent errors and multiple bursts.
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APPENDIX D

ON VARIABLE LENGTH CODES AS
VARIABLE REDUNDANCY CODES

In order that a communication system can have more than a fixed amount
of error protection, different codes may be used in different modes of opera-
tion. Dual codes [71 and product codes [2] are two major classes studied
which offer variable redundancy code-pairs with minimum additional imple-
mentation. In both cases, the length of a message block is the same in differ-
ent modes; i.e., the periods of the generator polynomials used in different
modes are the same.

By allowing the block length to vary from one mode to another, some
interesting code combinations may be constructed. These will be investigated
in the following sections.

1. PRODUCT CODES WITH DIFFERENT NATURAL LENGTHS

Various code combinations are possible. Some of them are demonstrated

in the following examples:

Example 1: Let C1 be a Fire code generated by

g1 (x) = (x7 + 1) (x5 +x 2 + 1). (1)

Then C1 is a burst-4 correcting code of length nI = 217. This code can be
lengthened by multiplying an irreducible factor of degree four or higher [4].
The code C generated by

g(x) = gl(x) (x4 +x+ 1) (2)

is at least a burst-4 correcting code, but the length is n = 217 x 15 = 3255. C
is the low-redundancy code and C1 is the high-redundancy code.
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Example 2: Let C1 be the code generated by

gl(x) = x6 +x 3 +1 ,  (3)

Then C1 is a burst-3 correcting code of length n1 = 9. The code C generated by

g(x) = gl(x) (x 6 +x+ 1) (x6 +x 4 +x 2 +x+ 1) (x6 +x 5 +x 2 +x+ 1) (4)

is a Bose-Chaudhuri-Hocquenghem cod e of length n = 63 which corrects at least
four independent errors.

2. DUAL CODES WITH DIFFERENT NATURAL LENGTHS

We show the following example.

Example 3: Let C be the code generated by

g(x) =x 3 +x+1.

Then C is a single-error-correcting code of length n = 7. The code C' generated
by

x63+

h(x) X +1 (6)
x3+ x+ 1

is a BCH code of length n! = 63 which corrects at least 17 independent errors.
Therefore, C is the low-redundancy code in comparison with C'.

3. SHORTENED CODES

When some high degree coefficients are set to zero in a code polynomial,
they can be skipped in transmission. Such a shortened code can correct at least
the same maximum number of burst or independent errors. Since the same
generator polynomial is used, the number of check bits remains the same. The
shortened code therefore has more redundancy and more protection per bit.
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In many cases, shortened codes are capable of correcting more errors than

the original code [5]. The following tables show the lengths and the corre-

sponding maximum bursts of some of the shortened optimum codes [3]. Each

of these codes is somewhat longer than the Fire codes with the same maximum

burst and the number of check bits. The procedure used to determine the

lengths of these shortened codes is the same as that of Kasami' s [5].

TABLE I

OPTIMUM BURST - 3 CODES SHORTENED N(i) =>N(b=i)

g(x) r N(3) N(4) N(5) N(6) N(7)

447 8 93 16 -

2511 10 255 - 18 - -

14147 12 1023 - 74 18 -

15517 - 86 - -

12657 - - 22 -

11373 - 88 - -

11711 - - 21 -

45767 14 4095 - 445 - -

41367 938 281 93 19

45453 - 280 78 22

62333 - - 23

47613 - - 23

62113 1151 - - -

46063 947 - - -

53441 1443 - -

51425 - - 24

53625 - 341 - -
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TABLE II

OPTIMUM BUR.ST-4 CODES SHORTENED

g(x) r N(4) N(5) N(6)

11221 12 511 - 20

24251 13 1023 162 24

101051 15 4095 - 341

107521 809 -

174543 851

The generator polynomials are represented by the binary coefficients in
octal form. For instance, the 14 th line in Table I indicates that g(x) = > 46063
= >100,110,000,110,011 = > x1 4 + x1 + x1 0 + x 5 + x4 + x+ 1. The degree of
g(x) is 14. The code generated by g(x) is an optimum burst-3 correcting code
of length = 4095. When shortened to 947 bits, it becomes a burst-4 correcting
code. The lengths corresponding to bursts of 5, 6, and 7 are too short to be
interesting.

A pre-multiplying input circuit is used for the decoding of shortened codes
[6]. This circuit is switched out in the low-redundancy mode in which an
optimum burst-error correcting code is used.

4. COMBINATION OF SHORTENED CODES AND PRODUCT CODES

This possibility is demonstrated in the following example:

Example 4: Let Ci be the code generated by

g1 (x) = (1+x) (x5 +x 4 +x 3 +x 2 +1) (7)

Then C1 Is a burst-2 correcting code of length n1 = 31.
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The code C generated by

g(x) = g1 (x) (1 + x) (8)

corrects all 3-bursts up to the shortened length N(3) = 5 - 5 = 27. [1]
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APPENDIX E

ON DETECTING ERRORS AFTER CORRECTION*

There seems to be an oversight among the coding theorists that sometimes
one is able to detect the presence of errors in the received sequence after
error-correction has been performed on it. This has led to the design of sys-
tems that possess post-correction error-detecting features. (For example,
see reference [1]). The purpose of this note is to demonstrate that although
one could incorporate both error-correction and error-detection capabilities
Into a single code [21 it is never possible to detect errors Vfter error-correction
has been made on the received sequence. This Is a relatively simple point.
However, its importance points up the need of a short note to clarify the
situation.

Let us consider any linear code over a finite field. The codewords v satisfy

the equation:

vHT=0 (1)

where v is an n-tuple and H is the r by n parity-check matrix defining the code.
Denote r = v + e as the received sequence where e is the actual error vector.
The syndrome s may be computed through the relation

s = rHT = eHT (2)

We observe that for any fixed error-correction procedure one always subtracts
a correction sequence c from the received sequence, and that c is solely deter-
mined by the syndromes. Furthermore,

cHT = s (3)

From (2) and (3), we may conclude that

(r-c)HT = (v+e-c)HT

= vHT + (e - c)HT

0 (4)
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which means r-c, the received sequence after correction, is always a codeword.
Whether this codeword is the same as the sequence transmitted one would never
be able to find out short of retransmission.

Cyclic codes form a subclass of linear codes. The error-correction pro-
cedures for cyclic codes also perform, directly or indirectly, the same basic
function as discussed above. As a result the same conclusion holds.

REFERENCES

1. Bartee, T. C., and Schneider, D. L "An Electronic Decoder for 3ose-
Chaudhuri-Hocquenghem Error-Correcting Codes," IEEE Trans on
Information Theory, Vol. IT-8, No. 5, pp. S-17-24, September, 1962.

2. Peterson, W.W., "Error Correcting Codes," Wiley, 1961.

69



APPENDIX F

MODE CONTROL IN COMMUNICATIONS SYSTEMS

USING VARIABLE REDUNDANCY CODES

The idea of using variable redundancy codes in a communication system is
attractive. Such a system can operate in different modes offering various
degrees of error protection. The practicality of this idea, however, depends
on whether a good scheme in mode control can be found, and whether efficient
code combinations with efficient implementations can be worked out. The pur-
pose of this report is to investigate various ways of having the receiver operate
in the correct mode, the mode of the sender. Generally speaking, this would
imply some means of informing the receiver of the mode of operation. In some
special cases, it is possible to have the receiving end operate in such a way
that the knowledge of the mode of operation is unnecessary. Different degrees
of error protection In the latter approach are obtained by partitioning the code
space in a non-uniform fashion corresponding to two or more different codes.

Considering the price one pays for the multiple-mode operation in terms of
hardware and code efficiency, it appears that two modes would probably suffice
in most cases. Unless otherwise specified, we shall take a communication sys-
tem which operates in low-redundancy mode for ordinary messages and in high-
redundancy mode for special (command) messages as a standard model. Binary
cyclic codes will be used.

When an error in the mode control may result in a chain of erroneously
decoded messages, the error protection should be strong. Generally speaking,
sufficient flexibility in error control, reasonable complexity in hardware, and
efficiency in information transmission are among the basic requirements to all
schemes of mode control which will be considered in the following sections.

1. EACH MESSAGE BLOCK CONTAINS A -MODE INDICATION

If each message block contains one or several bits exclusively used for the
mode indication of the same block which is obtained without decoding, the pro-
tection of this mode indication must come from these bits. This apparently
results in a sacrifice of many bits if reasonable protection is to be obtained.
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A much more practical scheme is for a message block to contain a mode

indication of the next message block, A single information bit assigned for this

purpose thus gets the same protection as a regular code word. The question
which now arises Is - What happens to this bit if the message is erroneously
decoded?

To answer the above question, let n be the block length, and t be the mad-
mum number of correctible errors in the present mode of operation. Denote the
received polynomial by C0 (x); then

C (x) = C. (x) + E(x), (1)
1 I

where Ci (x) is the original code polynomial and E (x) is the error occurring
during transmission. If E (x) is an uncorrectible error, then C' (x) would be
erroneously decoded as C. (x), such that3

C' (x) = C. (x) + E' (x) (2)

where E' (x) is a correctible error. Let the decoding error be D (x), I. e.,

D (x) = Ci (x) + Cj (x), (3)

then both Cj (x) and D(x) must be code polynomials. From (1), (2), and (3),
we have

D(x) = E(x) + E' (x). (4)

It can be seen that, for most practical cases, t << n, and hence D (x) is likely to
contain many more zeroes than ones. Since D(x) is a code polynomial, so are
all its cyclic permutations. It follows that, even if a message is erroneously
decoded, a bit for mode indication still has a very high probability of being
correct. One may write the probability of an error in mode indication

2(t+ 1) (5)
error ind. code error n

as a rough estimate. This is a big improvement over the bit error probability
obtained if the bit is used to indicate the mode of operation of the same block.
The above analysis also applies to burst-error-correcting codes.

A very desirable feature is obtained when a cyclic product code-pair is
used for indicating the mode of the next message block. When the system is to
change from low-redundancy mode to high-redundancy mode, an erroneous
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mode indication does not cause any chain effect. For if C (x) is a code poly-
nomial in high-redundancy mode, it is also a code polynomial in low-redundancy
mode. Therefore, the mode indication bit is protected by the low redundancy
code and the probability of erroneous mode indication is unchanged. On the
other hand, changing from high-redundancy mode to low-redundancy mode, the
mode indication already gets more protection from the more powerful code
itself. The error propagation in mode indication is thus not serious.

If the probability of erroneous mode indication estimated in (5) is not satis-
factory, more bits may be used. This may lead to undesirable complications
in decoding, especially when these bits must be spaced to avoid burst errors.
An alternative method would be to use these extra bits for a better code. This
will result in an overall improvement in the performance of low-redundancy
mode.

2. EVERY W'th MESSAGE BLOCK CONTAINS

THE MODE INFORMATION

If the mode of operation is not to be changed throughout w blocks, then the
problem is essentially the same as that investigated in the last section. If a
mode change may occur anywhere within w blocks, every wtth block must convey
the information of every such change. This can be done by either giving the
exact block numbers at which a change of mode is to take place, or by giving the
run length of each mode between mode changes. Either mode can be used for
the protection of this information. The maximum allowable number of mode
changes within w blocks is determined from the number of information bits
available and the maximum number of bits required to indicate a single mode
change.

Although the above scheme of mode ontrol may be satisfactory in some
special cases, it has some major drawbacks in general:

A. Complicated hardware required to transform the mode information
into actual mode control.

B. A maximum delay of w message blocks at the sending end.

When the above problems are not serious, the use of this approach can
be considered.
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3. USE AN INTERRUPT SEQUENCE FOR THE

INDICATION OF MODE CHANGES

In order that a sequence of m bits can be used to interrupt the communica-
tion at any time a mode change is to take place, the following conditions must
be satisfied:

A. The distance between the interrupt sequence and its shifted versioDR
must be high to assure synchronization.

B. The distance between the m -bit interrupt sequence and any m con-
secutive bits in the code sequence must be large enough to avoid
possible confusion.

Although there are sequences with properties satisfying condition A, it is
rather difficult to meet condition B with these sequences alone. To amend such
difficulties, an interrupt sequence may consist of two parts: The first part is
a sequence satisfying condition B. This could be a sequence of ml ones for
instance, which can easily be ruLed out in the code word part. The second part
is a sequence satisfying condition A, such as a maximum length sequence. Thus
the first part serves to identify the interrupt sequence, and the second part
serves to establish synchronization with error protection.

Let's consider a chain of ml ones followed by a maximum length sequence
of m2 bits as follows: (m2 = 15 in this case)

s= 111 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 (6)

m2~+ 1Since a maximum length sequence of m2 bits has a binary distance of 2
between itself and any of its cyclically permuted versions, any one of the cycli-
cally permuted versions has the same property. By placing the longest run of
ones at the end of the sequence (a maximum run of four ones in this case), the
last few bits of the first part can be considered as part of the maximum length
sequence as well. This results in a largest minimum distance between the
sequence s and the shifted versions of s. In this case, synchronization is
guaranteed in the presence of three independent errors or less within a shift
of 15 bits.

The protection against an erroneous identification with the first part of the
sequence depends upon the partition of the code space. Usually the message
sequence is obtained by packing the m0-bit (m0 = 6, for instance, is possible)
character representations together. And therefore, by ruling out the m0 -bit
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character representation of all ones (or m0-1 ones as well for more protection),
confusion from the information part of the code word is well under control.
However, it is still possible to have a string of ones in the check bits of some
code word. To avoid the possible confusion due to the string of ones in the check
bits, ml must be considerably larger than r, the total number of check bits,
and r < m2 .

A possible working scheme is the following: After a string of ml ones is
recognized (with some allowable errors), the match of the maximum length
sequence is attempted over the range between the (mi - m 2 + 1)'th bit and the
(ml + 2m 2 )'th bit, counting from the first bit of the string of ones which match
the first part of t ' sequence.

The recognition of the interrupt sequence takes place prior to the decoding
process. It requires a buffer and a logic circuit (for instance, some inversion
gates and a threshold device). Part of the buffer storage in an ordinary decoder
can be used for this purpose as long as the recognition of the interrupt sequence
can be carried out before the information is shifted out of the buffer.

4. USE A SPECIAL CODE WORD FOR THE

INDICATION OF MODE CHANGES

The main difference between this method and the use of interrupt sequence
is that, with this method, the indication of mode changes is represented by a
regular code word, and thus gets its protection from the code. The sequence
must start from the beginning of a regular message block and last the whole
length of the block.

The code word in which the information consists of all k bits of ones, for
instance, is very suitable for the indication of change of mode. Again, a string
of ones can be conveniently ruled out in the character representation. Since a

number of characters are packed into k bits, the protection of this special code
word is much stronger than a regular code word. In the case of product codes
[21 where (x+ 1) 1 g(x) = g1 (x) g2 (x), a sequence of n ones could be the special
code word. For instance, let

6 5 2

g 1 ( = x6 +x +x +x+l (7)
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and

g(x) = (x3 + x + 1) g (x) (8)

be the generators of the product code-pair. The code generated by g(x) is a
burst-3 correcting code. The code word which contains all 63 bits of ones is
protected against four independent errors if the all-one sequence in a 6-bit
character representation is ruled out.

The recognition of the special code word can be easily carried out with the
similar circuit containing a threshold device and perhaps some inverters as
described before. Here we do not have the problem of synchronization.

5. NON-UNIFORM PARTITION OF THE BINARY SPACE

The whole encoding and decoding process can be considered as a classifica-
tion process. A number of disjoint partitions are first obtained. Each partition
is then mapped into a code word contained in the partition. Usually these parti-
tions are uniform in size and similar in their relationship to the code words they
map into. However, the partitions can be non-uniform and different protections
thus obtained. The trouble with this approach is that it is often difficult to find
a class of partitions with reasonably simple implementation. However, it is
attractive in the fact that in general no special bits, sequences, or code words
are exclusively used for mode indication. The information is conveyed in a
more subtle manner.

Two examples are shown below:

A. Let g, (x) be the generator polynomial of a t independent error (or a
b-burst) error detecting code, and let g(x) = g, (x) g2 (x) be the genera-
tor polynomial of a t-error (or b-burst) correcting code. A low-
redundancy code polynomial C2 (x) satisfies the following equations:

Cf (x) 0 mod g1 l(x), (9)

and

Cf(x) 0 mod g(x). (10)

A high-redundancy code polynomial rh (x) satisfies

Ch(x) 0 mod g(x). (11)
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In the process of decoding, the residues of a received sequence C (x) is

calculated mod g, (x) and mod g(x). If

C(x) 0 mod g1(x), (12)

and

C(x) PI 0 mod g(x), (13)

it is recognized as a low-redundancy code polynomial.

if

C(x) " 0 mod g1 (x), (14)

the error correction is carried out according to the code generated by g(x).

Figure F-1 shows a decoding circuit of an above scheme. Using the building
blocks [3] of gl(x) and g2(x), residue conditions of C(x) mod gl(x) and mod g(x)
can be checked at the same time. Note that since

t =t 1 + t2  (15)

and

s 8= 1  t2  (16)

we have

m+t+s=m+s +t =0 (17)

It follows that the contents of Gl-register behaves as if it were connected as a
division circuit.

Switch M is controlled by the zero detect signal of the Gl-register right after
the complete code word of n bits has entered the circuit. Switch M will stay at
position 1 if the detecting circuit finds the contents of Gl-register to be all
zeroes and will stay at position 2 if the detection of all zero fails.

The main disadvantage of this approach is that the low-redundancy codes
do not get any protection. It therefore can only be used when this situation is
acceptable. The high-redundancy codes get the protection against t errors.
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B. Another way to partition the n-dimensional binary space is as follows:
Let g!(x) and g(x) = gl(x) g2 (x) be the generators of a product code
pair. The high-redundancy code polynomials consist of multiples of
g(x) such that the first bit (coefficient of xn - 1) is a "1". The low-
redundancy code polynomials consist of multiples of gl(x) such that,
when decoded according to g(x), the first bit is a "(0e.

At the receiving end, syndromes with respect to both gl(x) and g(x) are
generated. A logic circuit is used to sense the first bit of the message based
on the code structure of g(x). This signal then switches the decoding circuit to
the proper mode of operation.

Since one bit is used for mode indication, this approach is somewhat similar
to that of Section 1. It is also similar to the approach discussed in Section 4,
especially when several modes are present and a number of special code words
are necessary.

Figure F-2 shows a decoding circuit for the product code pair:

g1 (x) = x + x+ 1, (18)

and

g(x) = (x4 + x+ 1) (x2 + X+ 1), (19)

where gl(x) corresponds to mode 1 and g(x) corresponds to mode 2.

After the n-bit (n = 15 here) received message enters the circuit, the M-set
output is obtained by triggering a sensing pulse which does not cause the register
contents to shift. Switch M is originally at position 2 and will stay there if the
M-set output is one (mode 2); it will switch to position 1 if the M-set output is
zero (mode 1). The main disadvantage of this approach is that the low-
redundancy code is not separable. Therefore, recovering the original code word
may not be sufficient.

6. CONCLUSION

Five approaches of mode control have been investigated in this report. Each
one may be used in some special cases to meet the system's requirements, such
as the reliability of mode indication, complexity of hardware to instrument mode
control, etc.
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When the change of mode occurs very often, the approach in which each
block contains the mode indication (Section 1) seems appropriate. On the other
hand, if the change of mode does not occur very often, the use of a special code
word (Section 4) or the use of an interrupt sequence (Section 3) seems better. The
use of interrupt sequence may be preferred when the code length is very long.
The approach of partitioning the n-dimensional binary space in a non-uniform
fashion (Section 5) may be considered when the one-to-one mapping between a
message and a code polynomial does not present any problem at both sending
and receiving ends.
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APPENDIX G

BURST-ERROR CYCUC CODES GENERATED

FROM CYCLIC GROUPS

Elspas and Short [1] has searched for optimum codes for burst errors.
His approach becomes very difficult to handle even by computers for b > 5. As
Fire Codes are relatively inefficient for short length, there exists a need for
knowing more codes in the area where n -< 4095 and r S 30 for practical
applications.

In this note we report a class of codes obtained through a limited search
with the aid of some theoretical guide lines. These codes are obtained from
the class where the error patterns are all relatively prime to the generator
polynomial. A method utilizing the structure of cyclic groups makes the search
very efficient and not time-consuming. The following lemmas provide the
necessary theoretical foundation of the procedure.

LEMMA 1

If ('p(qI), p(q2 )) = 1, then (ql' q2) = 1.

Proof: Suppose q, ql q0 , q2 = q'2 q0. Let the periods of q0 , q1 , q2 , q',
and q'2 be n0 , nj, n2 , n'1 and n'2 respectively. Then, nI Is divisible by
L. C. M. (no, n' ) and n2 is divisible by L, C. M. ( 0 , n'9 ). Hence no divides
both n1 and n2 . Furthermore nI 1 p(ql) and n2 J O(q2). Consequently, O(ql)
and 4 (q2) have a common factor n0 . Hence if (4(ql), P(q2) ) = 1, (ql, q2) = 1.

LEMMA 2

Let q = q, q2 ; then Q is cyclic if and only if

(1) Q1 is cyclic

Q2 is cyclic

(2) (04(q1), (q2) = 1,

where Q, QI, Q2 are multiplicative groups modulo q, ql, and q2 respectively.
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Proof: Suppose Q, is cyclic with primitive root a

Q2is cyclic with primitive root j

B3Y Lemmaa 1, (O(qp), 4O(q 2 )) = 1 implies (q1 , q2) =1. Then, there
exists

Y a (q 1)

Y~ (q 2)

and

Y=Z1 a+Z2 (,q2

where

Z, 0 (q 2)

-1(q 1)

Z 0O (q)2

-1 (c-2)

Furthermore,

(q 1)

~ ()(q 2)

and

Y6=1 (q) implies pq)1

Y 6 = q)implies (216

Hence

YA 1 (q, q2) implies L. C. M. ((q 1) (q2)

But

((q) (q 2)) =1

82



This means

6 = 4)(q 1) • 0 (q2 )

and Q is cyclic with primitive root V. Conversely, assuming Q is cyclic with
primitive root y,

suppose

Y 6 = 1 (q1 );

then 6 (q1), for y6 = 1 implies a 6 (q2 ) =- 1 (q2), which in turn implies
0,'  (q2 ) = (q2"

Hence, y is a primitive root of Q1. Similarly, v' is a primitive root of Q2 "

Suppose (O(q1), 0 (q2)) = d;

then
_ 1q(q) 4€1q 2)

L = L.C.M. (P(q), '(q2)) 5 d

But

4P(q) (q2)j L. Hence, they are equal and d = 1.

LEMMA 3

Q is cyclic if and only if
m

q = p1P2P3--Pm " Pi
where

Proof: For m = 0 this assertion follows directly from Lemma 2 by induction.
It is known that if the period of x modulo pi Is ni then the period of x modulo

p is 2k n where

2 k -< < 2 k + 1

For instance, see [21. Hence the Lemma follows.
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LEMMA 4

Let Q be cyclic and n be the period of x modulo q(x). Then, the set of
polynomials (B1 (x)) are in distinct cosets if and only if

(B 1(x))n

are distinct.

Proof: Let a be a primitive root of Q, then x = where m is the order of Q.
The group Q may be expanded into cosets with coset leaders

, 
( ,---a

In

Let B x) n 2

then
mn .m n

if and only if

1 2 = J2

Table I shows some burst-error-correcting codes with b - 5. The codes
were obtained by checking Lemma 4 with a computer program. All these
generator polynomials consist of two irreducible factors with a period less than
4000. More codes can be found in a similar manner which cover a larger range
of degrees, periods and number of factors of the generator polynomial.

The polynomials in Table I are represented by its binary coefficient in
octal form. For instance, 4115 -- 100,001,001,101 x 11 + x6 + x3 + x2 + 1.
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TABLE I

r q(x) b n

11 4115 5 279
7225
6117

13 31475 5 1143
23201
22133
23467
32123
21465
37215
35217
25207

14 61425 5 765
67423
43407
75257 6 153

15 145501 5 657
130021
155511
113557

16 255611 5 3069
223667
241063
361143
233677
273637
210301
355177
265047
301745
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TABLE I (Continued)

r q(x) b n

16 205027 5 3069
341163
335771
320231
343707 6 99
313715 6 231

18 1510155 6 4095
1313515 8 187
1643427 187

22 25256525 10 143
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