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On the Prebability Distribution of X modulo n
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Ccrnell University
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ABSTRACT

If X is a non-negative discrete random variable with probability generat-

ing function qc(t) then

P(X mod n = Z) n_1 • i
n----W z

i=O i

where wOoWlp,'",Wn.1 exe the nth roots of unity. The form of this distribu-

tion is illustrated for the Poisson case, Qx(t) = exp (l-t).
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The probability distribution of Zn = X modulo n is pertinent in problems

where a total of X items is portioned into lots of n items each, leaving a

remainder of Z items. A problem of similar nature arises in computing the

probability distribution o2 the "excess over the boundary" or "end effects"

in sequential tests of hypotheses where the experimental observations are pro-

duced in lots of size n instead of singly. In this case, if the random vari-

able X denotes the terminal sample size for a sequential test in which the

observations are taken singly then, unless X mod n = 0, there will be an ex-

cess of n - Zn observations. In its simplest form this piobleia also arises

in genetic linkage analysis; if X denotes the number of chromosomal cross-

overs occuring between two linked heterozygous loci then the gamaetic frequen-

* cies are determined by the probability distribution of X mod 2.

If Qx(t) is the probability generating function for X,

(1)Qx(t) I tx P(x x)
x=O

then

n-1 Q(Wi)

(2) P[X mod n = z -n Z
i=O W i

where WO, w 1,''.,wn.1 are the nth roots of unity.

* Biometrics Unit, Cornell University, Ithaca, New York
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Lewna: If w0, go,wn-1 are the nti roots of unity then

n-i

JuaO

The lemwa follows directly from the representation %,w 1 ,. ,wn)

= Xig2*,..gn-l) where g is a primitive ntb root of unity*, for then

n-I n-I

Applying the lemma to (2) then gives

UI si n10 n-1

J=O Wi D= k=O J=O

k=O

P(X mod n = z)

* This proof of the le a was called to our attention by B. L. Raktoe.



The factorial moments of Zn may be computed from the prcbability generat-

ing function

i='O

In particular the mean value of Zn is given by

n-i

i=l

Thus, if X were sample size in a sequential experiment as mentioned earlier,

with sequential lots of n observations each the expected excess over the boundary

would be

* n-i

n*.z~) Q: ~(1) 2
n i=l

Poisson variable modulc n. To illustrate an explicit form of the distribution

of Zn we coija.der the case

Qx(t) = e~mXlt

Using standard trigonometric identities with the nth roots of unity represented

by

2klkTr-
Wk COG o + i sin e k=O,l," n-1kn n1



and noting that W0 = 1 and that the reciprocal of a root of unity Wk is its

coMplex conjugate Un-k, we obtain for n even

P(Zm1 -. 2 e~a + 2eýX Icos(X sin zOBePIZ2ý7z) I n
k=l

.e2% X-(l-cos s in( sin + 7)+sin(X sin

2m) sin VI

and for n odd

m Cos2klT
P[Z 2 +I=Z) =: [l+2e-X Jcos(X sin --k' z.--)e i

k=l

2Wnk 2Mk 2s1k 2wk)

flml -(l-cos .-",-) sin(% sin -. ý- + -ME-)+ sin(x siB (Z +, .) = n -1 -- n 2
2 k=l. sini

In the limit, as X - =, these reduce to

n-1

If the limit is taken as n - w then Zn of course is distributed as X.
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