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AESTRACT

If X is a non-negative discrete random variable with probability generat-

ing function Qx(t) then

=0 [

P(Xmod n = z) =

nil Qx (wi)
i= wi

vhere W ,w,,* W _, exe the n*® roots of unity. The form of this distribu-

tion is illustrated for the Poisson case, Qx(t) = exp A(1-t).
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The probability distribution of__Z_n = X modulo n 1s pertinént in problems
wvhere a total of X items is partioned into lots of n items each, leaving a
remainder of Zn'items. A problem of siqilar pature arises in computing the
probability distribution of the "excess over the boundary” or "end effects”
in sequential tests of hypotheses where the experirental observations are pro-
duced in lots of size n instead of singly. In this case, if the random vari-
able X denotes the terminal sample size for a sequential test in which the
observations are taken singly then, unless X mod n = O, theire will be an ex-
cesg of n - Zn observations. In its simplest form this problem also arieecs
in genetic linkage analysis; if X denotes the number of chromosomal cross-
overe occuring between two linked heterozygous loci then the gawetic frequen-~
cies are determined by the probability distribution of X mod 2.

If Qx(t) is the probability generating function for X,

(1) Q (t) = Y & Px=x} ,
x=0
then
n-1
(w,)
(2) MXuodn=z) =2 3 szi
1=0 %1

where Wh,Wys®*tsW, o &re the n*® roots of unity.

# Biometrics Unit, Cornell University, Ithaca, New York




Lerma: If Wos* oW, ) are the n'? roots of unity then

Zwrno for 1=1,2,°°°*,n-1 .

The lemma follows directly from the representation {wo,wl, o0 ’wn-l}

= {1,£,£2,+++,82°1} vnere g is a primitive n'® root of unity#, for then

n-l n‘:l n
z wJ ’ ! l-g ©
J=0 J=0

Applying the lemma to (2) then gives

n-l Dwl o nel
1 v %ley) - 2 Z _ 1 z Kn-+v
17 ox-sme s ool [3) o]
=0 ¥ v=0 k=0 3=0

= 2P{X=kn+ z}
k=0

= P{X mod n = z} .

# This proof of the lemma was called to our attention by B. L. Raktoe.



The factorial woments of Zn may be computed from the prcbability generat-

ing function

n n=1 .,
(1) ap (1) = & Zwift Q(w,) .
i=0

In particular the mean value of Zn is glven by
ne-l w
] < B=1 z e
Q'Z.n(l) 2 * 1"“’1 Qx(wi) )
i=1
Thus, if X were sample size in a sequential experiment as mentioned earlier,

with sequential lots of n observations each the expected excess over the boundary

weuld be

a[1-qz (0)] - an(l) =22

Poisson variable modulc n. To illustrate an explicit form of the distribution

of Zn we couglider the case

Using standard trigonometric identities with the n'® roots of unity represented

by

T :
W, = cos -Ef-+ i sin 2%_ =e 1 , k=0,1,°**,n-1



and noting that wo = 1 and that the reciprocal of a root of unity wk is its

complex conjugate un—k’ we obtain for n even

T el Tk
I X CO8 o
P{Zm'*z]"%[l-'e +2e)‘2cos(7\ sin—-z%)e m]
k=1
a1 Tk Tk, T ™
Bz ) neloe~2h . z e-).(l-cos —E)[ sin(A sin — + —)+sin() sin =) ]
“2om 2 T
k=1 sin =5
and for n odd
m kT
A COS —=m=
p{z 21" =z} = L [1+2e =A cos(\ sin -252 -z %E)e n ]
k=1
n-1 -l(l-cos —2;2‘-) sin(k sin 2n + —-—)+ sin(k sin =—- 2‘17k
E(Zopy) = 5= ) ¢ [ "‘121,31 ]
k=1 81D ==

In the limit, as A < «, these reduce to

If the limit is taken as n -~ @ then Zn of course is distributed as X.
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