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SUMMARY 

This report is concerned with special problems which arise in 

connection with calculations of the transport properties of partially 

ionized monatomic gases. The most serious problem concerns the lack of 

agreement of the usual thermal conductivity expression In the limit of 

full-ionization with other results derived explicitly for this case. 

It is shown that satisfactory agreement can be obtained in this limit if 

one uses the third rather than the second approximation in ".he Chapman- 

Enskog theory .  Expressions for the fourth and lo- • apprcxi.rations to 

the thermal conductivity, the thermal diffusion c efficient, and the 

ordinary diffusion coefficient of multicomponent j^ases are derived. 

The viscosity of this mixture is considered to the second approximation. 

It is shown that the thermal diffusion plays a very importar.- role in an 

ionized gas. Neglect of this effect can cause the therma1 conductivity 

to be seriously overestimated. An expression is presented vhich approxi- 

mates the effect of the thermal diffusion on the thermal conductivity. 

The charged particle cross-section is considered with the 3?reened 

Coulomb potential. Cross-sections derived with this potential should be 

accurate for denser plasmas that can be accurately considered with the 

usual Debye cut-off cross-section. Convergence of the higher approxi- 

mation is checked by applying the formulas to the calculation of the 

properties of several special mixtures where the molecules cbey the 

Coulomb and other inverse-nower interaction potentials. 
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■V V ci 
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Al' Bi' cl ("i' 
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^2 

7 

b 
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impact parameter 
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for the Coulomb potential 5 

Debye length for screening by electrons 
Rlone 3U 
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ij 

ij 
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k 

36 
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hk pT rhk 
im \j  kT  Aim 

hk 
R. right hand side of equations to be 

hk solved for a^ c^, b^ 
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S (VC) Sonine polynomials of order n 7 
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v. velocity of i-th species k 
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i \ 2kT i 
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X external force on the i-th species        k 

1 2 
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y -"-vf- 32 
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a coefficient of öT/dr in expression 
for total electrical current 26 
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1.  INTRODUCTION 

In the past several years there has been increased reliance on 

computed rather than measured values of transport properties of gases. 

This has come about because of difficulties in measuring these coeffi- 

cients with any accuracy at the higher temperatures presently of interest. 

The calculations start from potentials of interaction between molecules, 

usually determined from molecular beam scattering experiments, and use 

theoretical or approximate formulas for the computations. The theoreti- 

cal methods are usually the first or second approx-mations in the Chapman- 

Enskog theory [Chapman and Cowling, 1952; Hirschfelder, Curtiss and Eird/ 

1964] '. The approximate formulas [Wilke, 1950: Mason and Saxena, 1958: 

Brokaw, 1953] are usually derived from the theoretical formulas by making 

certain approxijjations. The approximations are ultimately justified by 

comparison of calculations made with the resulting formulas with thoje 

made with the theoretical formulas. The agreement is fairly good for 

most low temperature gases. 

Both the theoretical and approximate formulas have been applied 

recently to the calculation of properties of dissociating hydrogen 

[Vanderslice et ai, 1?62] and nitrogen and oxygen [Yun et al, 1^62]. 

Later these formulas have been applied to gases in which ionisaticn is 

also important.  Eastlund [19531 calculated the transport procerties of 

partly ionized cesium vapor at temperatures up to 10000 K. Yos [I963J 

extended the computations of the properties of hydrogen, nitrogen, oxygen 

and air into the ionization regime. Fay [1962] has suggested an approxi- 

mate mixture rule which was used by Camac, Fay, Feinberg  and Kemp fl^bS] 

to compute the properties of argon in the ionized region. Other results 

and references are given in Pallone and van Tassell [1963] and Ahtye [196M 

A defect of the formulas used in the calculations mentioned t jve is 

*'.t lack of a priori agreement of the thermal conductivity in the limit 

of complete ionization with the results of Spitzer and Härm r1953] or 

Landshoff [1951] for the fully ionized plasma. This defect has been 

    

'These two books will hereafter be denoted by CC and MTGL 
respectively. 
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realized by each of the authors and they have modified their formulas to 

obtain proper agreement in the fully ionized limit. Thus Fay [196?] and 

YDS [1963] adjust the value of the charged particle (Coulomb) cross- 

section in their approximate formulas to obtain agreement. Eastlund 

[1963], who used the theoretical formulas of MTGL, inserts some constants 

to insure the proper limiting values. Though the results of these cal- 

culations should then be accurate for very low or very high degrees of 

ionization, there is no certainty that they will be accurate in the 

intermediate partially ionized -egion. The probable accuracy can only 

be determined by compp.rison of calculations of a number of caFss with 

resul s from rigorous theoretical formulas which "ive the correct results 

at low and high ionization without any ad hoc adjustment of constants. 

The nature of thiii difficulty has apparently also been realized by 

Ahtye [I96&], who used the the    -etical formulas of MTGL to compute .he 

transport coefficients of partially ionized argon. We will see lat^r 

that these formulas, which are really Just the second fand first) approxi- 

mation to the exact solutions, need to be extended to higher approximations 

to obtain accurate values of the thermal conductivity (and viscosity) for 

partially ionized gases. 

This report will be concerned explicitly with the calculation of 

transport properties of partially and multiply ionized monatomic gases, 

though some of the formulas can probably be used with success for poly- 

atomic and dissociating gases.  In this report express ions for the thermal 

conductivity, thermal diffusion and the multi-component diffusion coeffi- 

cients of monatomic gas mixtures will be extended to the fourth approxi- 

mation in the Chapman-EnsRCR theory. The viscosity will be extended to 

'he second approximation  This level of approximation has been considered 

previously only for the binary ~as mixture [Mason, 1957a; Saxena and 

Joshl, 1963]  After some discussion of the charged Tarticle cross- 

sections these exprer-dons will be applied to the electron-singly charged 

ion plasma. We will see here that it is necessary to use at least the 

third approximation for some of the transport properties for the fully 

ionized gas. The viscosity also is in error by at least 15^ if only the 

first approximation Is used. At this point we can examine the convergence 

- 2 - 



of the approxl^tion. for several other Inverse.pover potentials for 

«» »I^le mixtures. Ir . later M*r these expreasloos vlU be applied 

to the calculation of the transport properties of singly and multiply 
Ionized argon plasma. 

- 3 - 



2. HIGHER APPROXIMATIONS IN THE CHAPMAN-ENSKOG THEORY 

In this section the general expressions for the transport propertier. 

for nultlcomponent monatosic gases will he extended to higher approxima- 

tions. Since the basic theory is already well covered in the books of 

Chapman and Cowling [1952] and Hirschfelder, Curtiss and Bird [196h], 

only a cursory review will he given in this section. The general formu- 

lation of the latter reference will be followed in this renort, as will 
*) 

the najority of their notation. ' The numbers in brackets will refer to 

equations taken directly from that book. 

The starting point for the Chapman-Enskog theory is the multicompo- 

nent Boltzmann equation for the distribution function of the ith species 

[f,(r,v .t)]  [7.1-25,10.1-5] 
1   1 

df. _    dt.     t,     it,    r-'  CC * - 
1  ■• • ^-+ =: • ^ =1J J (flfrfifj)gij-MM£d VJ at i   ** 

4»! 
■ 1 -*- 

'I N^WJ  öiJ^iJ^)giJSinXdXd€d^ 
•5=1 (2.1) 

The right side of this equation represents the rate of change of f. due 

to collisions (or encounters' between the ith species and itself and the 

other v-1 species of the gas.  It has been written here in two equivalent 

forms. Either form may be used when collisions are being treated classi- 

cally, but only the second is valid when quantum mechanics is used. The 

general theory follows in the same way for either case. The quantum 

mechanical formulation is used most often in treating electron-atom 

collisions where the differential cross-section 0.. is obtained in terms 

of partial wave phase shift3. 

"*1  'A list of symbols is given on page vii. 
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Vi note that this equation makes no provision for either chemical 

reactions or excitation of Internal degrees of freedom during a collision. 

The theory is then strictly applicable to non-reacting monatomic gases 

with no internal degrees of freedom. The rare gases at temperatures 

belov about 5000 K and above those temperatures where quantum degeneracy 

is important come closest to fulfilling these requirements. Wien ioniza- 

tlon takes place the theory is no longer strictly applicable since chemical 

reaction and excitation of electronic states are Important processes ta- 

king place during collisions. However, only a very small percentage of 

the collisions involve excitation or chemical reaction, so it appears 

Justifiable to neglect these effects. Except in the case of the thermal 

conductivity, neglect of these effects has been successful for lower 

temperature polyatomic gases where rotational and vibrational internal 

states are important. Purthtr consideration will be given to the effect 

of chemical reaction and electronic excitation on this coefficient in a 

later section. 

We should note here another assumption implicit in the use of the 

Boltzmann equation. It is assumed, namely, that it is possible to repre- 

sent encounters adequately within the framework of this equation. It 

has long been recognized that the Boltzmann collision term is valid for 

close encounters among charged particles, i.e. f^r those for which the 

impact parameter b Is of the order of the mean distance of closest 

approach 

Z Z ec 

b s f J 
0   2kT 

(2.2) 

here written for the encounter of two particles of absolute charge 

Z,e and Z e . for more distant encounters, where the impact paran 
■^       J 

is of the order of or greater than the Debye length 

kT 

1 

(2.3) 

   

'This definition of the Debye length allows for 
by lyns as well as by electrons. 
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the Fokker-Planck collision operator is valid. This latter form has heer. 

used by Cohen, Spitzer and Routelj [1950], and Spitzer and Härm [1953] to 

derive certain of the transport properties of fully-ionized plasmas. 

Grad [i960, 196la, 1961b] ras discussed in some detail the problem of the 

collision term for charged particles and concluded Lhat, at least to 

dominant order, i.e. to order &n h ,    where A~ d/b , the Fokker-Planck 

part of the collision terrr na.y be replaced by the Boltzmann term if inte- 

grations over the impact parameter b are cut off at the Debye length. 

In cases where ^n A » 1 this approach is satisfactory, because the 

neglected terms are of order unity. However, a large number of plasmas 

which are presently being studied do not satisfy this criterion. For 

example, cesium vapor at 1 sm and 5ö00 K would be about 90%    ionized 
5 l^i 

with d~l. 11x10  cm ,  n ~ 9.6x10 /cc and A~ 5 . Argon at 1 atm 

and 15000OK has about 6C^ ionization with d~i.^2<lC~ cm , 

n ~ 9.6x10 /cc and A~ 3o . Thus we see that terms of order unity 
e 
should really be included in considerations of the charged particle 

interactions for these cases. In a remarkable paper Kihara and Aono 

I1963] have accomplished Just this step, neglecting only terms of order 

A   or smeller. Their method appears rather difficult to apply without 

going into considerable detail, but we can use an approximate treatment 

which, for the cases considered by Kihara, Aono and Itikawa [1963I, fives 

almost the same res-alts.  In place of the Coulomb potential, for small 

angles of deflection we will use the spherically symmetric shielded 

potential. This potential has been considered earlier by Liboff [1959] 

and Kihara [1959]. Further details will be given in Section 3- 

2.1 Review of the CharTan-Snskog Method 

The first step in the Chapman-Enskog theory is to assume that each 

distribution function can be written in the form 

^ = fJ^Cl-Hp^ -) (2.10 

where f:   turns out to be the Boltzmann distribution [7-3-13] 

/m    \3/2 

A0]--\\^)       exp [-Vvv/MTJ       . (2.5) 
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Here a.^m  and v. sure, respectively, the number density, the mass. 

aad the velocity of the ith species, v  is the mean gas velocity and 

the T is the gas temperature. Upon substitution of (2.5) in the Boltz- 

mann equation (2.1), it is found that the perturbation function q?  must 

be of the form [7-3-29, 35,36,37) 

% * VVV —r1 - B.tw.Kw.v.- ? w? ?) : ^r + 1
   1 1 i  dr    1 1  i i 3 i    ^ 

+ n 

V 

(2.6) 

J»l 

where d  will be defined in Section 2.2 . 

The problem of determining the distribution function, and hence the 

transport properties, has now been reduced to one of determining the 

scalars A , B. and C^ which are functions of the magnitude of the 

reduced velocity W, = l-rrrz  V. where V, «v. -v_ 
1 V dXl     1 1  1  u 

The next step is to 

expand each of these scalar functions in a series of Sonine (or associ- 

ated Lagucrre) polynomials of WT [7.3-5?]. The A  and C^ functions 

are expanded in terms of polynomials of order  3/2 and the B  in 

polynomials of order 5/2 [7-3-61], 

1-1 

Ai(Wi)a)~ AiM^/2(^ 
m=0 

1-1 

(2.7) 

msQ 

S-l 

t-i-l-Z^^ 
m=0 

The number of terms retained in these series (i.e. 5-1) will be called 
*) 

the level of approximation.   Usually one or two terms are sufficient 

n This convention agrees with Chapter 7 of MTGL but dlsasrees with 
Chapter 8 of that book 
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to give accurate results for the transport coefficients. This is 

fortunate because the formulas become quite complicated at only the 

second approximation. We will see later that it. is necessary to use at 

least the third approximation when computing the thermal conductivity and 

thermal diffusion coefficient of partially ionized gases, though the 

second approximation appears to be quite adequate for the other properties, 

Ve will now proceed tc develop the formulas for the transport coefficients. 

Again free use will be made of equations already given in NfTGL. 

2.2 Diffusion Coefficients 

The general expression for the diffusion velocity of the ith 

species relative to the -ass average velocity is given by [7.^-3] 

i  =^0 Z. ViJ J ' V*.  i ^ (2.8) 

JA 

D   and D. are the multicomponent diffusion and the thermal 

diffusion coefficients, respectively, d  is the sum of the concentra- 
J 

tion, pressure and external driving forces for diffusion [7.3-2?], 

br 

'n4 

n 

m, .LnUD-Xi iiii 
pp 

■J       i=l 
(2.9) 

where X  /S the external force acting on the ith  species of the gas. 

In terras of the coefficients of expansion of the distribution function 

(2.?), the diffusion coe-'ficients are given by    [7-^-8,9] 

pn. 
D flkf „ji 

IJ 2nin \ mi  i: 
(2.10) 

n.m. 
T _ ^Tl   /2kT 
i ' 2    \j m.    aiC 

(2.11) 

We can now examine in some detail the solution of the equations for 

the higher approximations to the multicomponent diffusion coefficient. 

5 



The formula for this coefficient to the firat approximation has already 

been given in MXGL,  and the same general procedure will be folloved as 

«as used there. 

hk 
The coefficients c'  are determined from the set of kv   equations 

[7.3-75] 

J«l L 

'kO 

hk  „ml hk  „m2 hk  „m3 hk 
cjo + Qij cji + QiJ CJ2 + Qlj CJ3 

Rhk a5 3  » /s    _5    )5 
im " 2\j m1 

voik    lh; mC 

(2.1?) 

where 10*0,1,2,3 (for the fourth approximation) and 1=1,2,3-'^ • The 

solution of these equations .nay be obtained with the aid of Cramer' s 

rule [flildebrand, 1952] as the ratio of two 2v x 2v determinants. 
■jnm' 

The denominator is the determinant of the coefficients Q  , and the 

numerator involves the coefficients with one coluian replaced by the 

right-hand side of Eq. (2.12). A more convenient form, equivalent to 

that obtained with Cramer's rule, has been Introduced In MTGL. Before 

proceeding to the explicit expression, it is convenient to define new 

elements different from those used in MTGL. In this way the number of 

operations performed In the calculation of the various coefficients will 

be materially reduced. We let 

mm' 0mm 
^iJ 

hk 
r10 

l2mi 
"J kT 

hk 
Ri0 

(2.13) 

'ih-5ik) 

and the solution for the fourth approximation to the multicomponent 

diffusion coefficients Is then 

- 9 



a ; 

-00 

10 
11J 

Oi 

a/, I q 11 

20 i 21 

„30 I J1 

hi 

02 

%, i <1 
12 

22 

32 

n03 |rhk qij !ric 

13 

<]  1 ° 

.33 
'ij'0 

0 I 0 

(2.1U) 

vhere  lq|  is the deteminant fonned from the numerator by deleting 

the last row and last column. (For convenience of notation the symbol 
mm' 

q.  represents a blcck of elements vith both i and j ranging from 

1 to v .) To obtain the first, second and third approximations to 

D   ve simply delete all q "blocks" except those vith m=n,=05m, 

m'S Ijm^ia'^ 2 respectively, from both the numerator and denominator. 

mm' 
xiefore proceeding to explicit formulas for the q.   elements, ve 

can easilj derive the form of the thermal diffusion coefficient. For the 

fourth approximation the a   are solutions of the hv    equations [7-3-75] 
iu 

V 

I 
J=l 

Q^a  + Q^a  + Q^a  + Q
n3a 

ij JO   ij jl  ^U J2  ^ij j3 im 

vhere Ul,2,-v , and m-0,1,2,3 ■ Here R, =  -j— p^ In We 

can solve for a   as in the previous case and vrite the thermal diffu- 

sion coefficient as 
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^ täk -r 

-00 02 4] 0 

10 ii 12 tl ni 

20 21 
hi 

22 
qii 0 

^ 4] 41 0 

j 

6ij0j 
0 0 0 0 

(2.15) 

To obtain the third and second approximations to the thermal diffusion 

coefficient we simply delete all blocks containing q,   with, respec- 

tively, m or m'=3 and m or m'i 2 . In the first approximation 
T 

D. is identically' zero. 

The general expression for the determinant elements occurring in 

the above relations is f7.3-7l] 

mm'       Z2^ 
^IJ    %'" kT -   nil Rif*iJCV3/ s(wf) , Vva (^u * 

^Vv^^'V^^1 
ii 

(2.16) 

Here the S-zArf)    are the Soaine polynomials of 'v  mentioned earlier 

and defined in [7.3-57I. The expressions in brackets are defined in 

[1-3-^3].    These "bracket integrals" can be reduced to a simpler form in 

terns of the integrals [8.2-8] 

ir a2 ail>a)* 
ij    ij (3+i)i[2i+i-(-in d 1J 

(2.17) 

f- Q^g) » 2T J ^ijCxKl- cos* x) Bin x dx = 27r \ (1- cos"* x)t>^ 

(2.18) 
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Here    <j    (x)    is the differential cross-section,    x    i8 ^he angle of 

deflection during a collision,  and    y -l/2 (ti. .g /kT)  ,    n        being the 
•*■ J ^ J 

reduced mass of the two species    1    and    J  . 

General formulas for this reduction have been given in CC.    Some of 

the explicit formulas are given in CC and MTGL.    Others have Lten derived 

from the work of Mason  [1957a]«    Relations for obtaining the bracket 

expressions from his vork are collected in the appendix.    With the aid 

of these formulas and after some algebraic manipulation,  the following 

expressions for the    q. .      elements may be derived: 

im?.!)'1'1'* 

vm m 
- n-4^ (1-5, J 

n (5^-8. J l^m    -ij    Ji' 

J    m, W 
(2.19a) 

01 
qlJ = 

v            3/2 
\      if 

10 
hi' &)% 

TT cr 
ii 

5 0(1,1)* cJ1'2)* 

(2.19b) 

(2.19c) 

.3/2    v        n    1/2 
1V      V^        i i 2 11 = 8n.( -i (SlJ-8jP 

5  /Äm2.c 2,  „(1.1)* is.^f1'2)*..,^,^'1»3'* 

+ ^ij^ji' ^Vi?,2)* 

02 /^ 
5/2    v 

r—i  n „in, \       i £ 
5/2 

8nii^     z„ TTTT-v? Taii (V6ji) 
J/
    i=l (ral"rai) 

(2.19d} 

(2.19e) 
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q?0 
m .   1/ ^ (2.19f) 

A12 P  /aif/2vVi3/2 
= 8n      -i \    J^J  1 \*t I    L (m +ni ) 

2 r 

iU^K,^)*.^^?   ?)   (v,% ri-'i' "u 

* 5T 4 ^'3). . 30m? ^U. 

+ ^IJ^Ji' 

'm. 
n21     (Ll 1     12 

-s ■ -. &r t ^ J/        ^     (m^) 
972 TT a. ,< 'L (5     -5     1 

■ i I (.^ + ^/t t 35 ^ n'^)- . 

(2.19g) 

(2.19h) 

-^4 (E^ + 35ffif)^)*+i^(1:^+133 2^(1,3) 
2 "i   ^--5^^/  »^ 

- ^ i1'"* * ^L1,5" * ^K ^3'3); 

* (Bij+sji) 7m,m    (im^Tnif)  nH'2)* 

112» =3 ?.[*'»• + 8C,,.3    (2,M« 
(2.191) 
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03 
,    »7/2   v 7/2 
M  v id. 

-»-\ 

30 M 1 \    03 

v7/2   v 'n. 
a13 = 8n    (-i 

1J        i V^J i^i (Kifffli) 

m5/2 

''    972^Li(V6Ji) 

(2.19J) 

(2.19k) 

105   /,« 2 c  2..{1,1)*    63  /r 2 . 2,_(1,2)*   . 
"32 (l8niJ+5mPnii       - T (9mj+5ai)aii 

+ 81 (.W) a^3)* . l6oA(i^)* + 6om^^^ 
J      i      ii £  li £  ii 

+ (8irsj£! Ti 2    ii ii ii1 (2.19X) 

13 
hi 

4] 
K\1/2t - 3/2 

1 \ m. j / .   /_.   ... ai/2        if V  iJ    M 
^   ki {rr^y 

(2.19m) 

i5t <12taj + 252^x * -:5^,nL 

. i ** (198n
2.30^, ^'"• t &^ „u.5)'. 2^ .;^'-. 

J  i     ii 
2 2     (3.i|)* i2o"K nu 

IU 
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- 2iO .,«3 n(2.5)* 

^■B)^ 
33     „    /0lV/af      nmV2 r 

I      U 

- ^g 4 (lao^ + 25^ + 35^) fl(i,2)* + 

i'    u 

(2.19n) 

(2.190) 

- 18^ „a.«* + 5^ „(1,7). + ^y (    , + (3>3) 

- ^^K flu',)" * ^K nii'5); 

+ (81J + BJi)   [^ -j«, << - M^2 + 2^) nt^)* . 

- 16^ (4.2 . ^2, n(2.3). + 3 (8ama ,        a     (a(, 

■ aä0ojn/ nu 5)* * a^V/ nu 6)*+ ^3 n(4''*!; 

(2.19p) 
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2.3 Epergy Flow and Thermal Conductivity 

The geneA*al expression for the energy flux in a monatomic, non- 

reacting gas with re internal degrees of freedom is given by [7^-3C] 

v v 

q = -I kT ) n4 < y.> - X' — - nkT > -=— D: d, (2.20) 

J=l J=l J J 

The first term in this expression represents the transnational enthalpy 

carried by each species as it diffuses relative to the mass-average 

velocity of the gas mixture. The last term represents a coupling between 

diffusion forces and heat flow. It is conventional to eliminate the 

explicit occurrence of d  in this expression by using the formula for 
w 

the diffusion velocity (2.8) which can be rewritten in the following form 

V < 7i > , 0DI  ar 
T miDi^i= ± 2 x   + -r~ ^ (D^=0)      (2-21) 

In order to eliminate the d  from (2.20) we can consider (2.21) as a 

set of linear equations to be solved for the unknowns d, . Defining 

E   as an element of the inverse of the matrix whose general element is 

m D   ve can wr^te a formal solution for d  as 
■j ■*• j j 

v v     T 

a* = "^ )  E^.n. <V >+-f- )    E„ — — (2.22 ? L Vi < vi > t A A ^ 
i=l " ' 1=1     i 0r 

Then we have 

v  T-* v  v      T 
r^ D.d.     ,„ r-. r^ E.,n,D 

/_, n m     n  ^L Z_.  n«m'    i 

J«! J J       J=l 1=1   J J 

v  v    T T . v^ A E,,DtD4 ^ 

i=l J=l  J 1 J ör 

- 16 - 



*i The energy flux then becomes 

^i^y 
j-i 

5 n /, n. 

V   E..DJ 

1=1 l21! 
n  < V, > - X — (2.23) 

where the coefficient cf thermal conductivity is given by 

X = X" + i* 
n /_,    n1mi 

i«l 

T T 
DID1 

(2.24) 

Since no chemical reactions or internal transport of energy are considered 

'in this expression, this X is often called the frozen thermal conduc- 

tivity and is sometimes denoted by X . 

The solution above for d  has been called a formal solution since 
V 

no explicit formula has been given for finding the inverse matrix £ in 

terms of the elements q   . In actual calculations the diffusion coef- 
-1 

ficients D   vill be calculated and then £ = (JE? üj)   [written here 

in matrix form] may be found from a standard algorithm. If the calcu- 

lations are done on a computer such as the IBM 7090, which is used for 

such calculations at Stanford, then there is generally a library proce- 

dure available which can be used to accomplish the inversion. 

Expressions for D  and D were given in the last section. X' 

is given in terms of the expansion coefficients of the scalar function 

A1(Wi) by [7>-33] 

v 

X' = - a (2.25) 

a .  is obtained f om the equations i7«3-33l already given in where 

connection with the therrae.1 diffusion coefficients. We can solve for 

the a.M Just as in that section, X' then being given by a sum of 

such expressions. The final result is 
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LA J^ - 
75k v 27n:f 

00 

10 

20 

30 

01 . 02 I 03 

n 

21 

12 | 13 

.31 
1J 

nJ^mJ 

22 

U 

u; !-J 

^1 o 

32 i „33 
liJ 

(2.26) 

This is the formula for X'  in the fourth approximation, and to 

obtain the third or second approximation we simply delete the blocks 

involving q. .  vlth, respectively, m or m'=3 and m or m1 > 2 . 

This is the same prescription as given in the section on the diffusion 

coefficients. Trouble arises when we attempt to obtain a first approxi- 
mm' 

mation by deleting alsc the q,. . ' s involving m or m' =1 , for then 

the determinant in the numerator vanishes. This is equivalent to 

retaining only the first term in the expansion of A (W ) . We can 

define a first approximation to the thermal conductivity as that obtained 

when we keep only the second term in the expansion of A (W ).  [See 

Eq. (2.?).] The formula for the first approximation can then be obtained 

from (2.26) by deleting all q blocks except those with m^m*=1 . 

Muckenfuss and Curtiss [1958] have shewn that the first approxi- 

mation obtained in this way is identical with the total thermal conduc- 

tivity to the second approximation. This arises in part because in the 

first approximation [D.J *0 so [x],=[X']  .  From irreversible thermo- 

dynamics it is always true that X < X'  and they show that the difference 

Is sufficient to make ^ ]_ = [XL.  The complete formula to the second 

approximation is then 
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[XL » [xj. 75k>/?ffkT 

11 

11 

II 
llv 

11 

t^ATn^  -  nv/>rmv 

tx. 

n 

0 

(2.27) 

This form is considerably simpler than the one given earlier for the 

second approxisation and is usually used in "rigoroue" calculations of 

the thermal conductivity. We will see later that this approximation gives 

answers which are much too low for the fully ionized gas, and presuaably 

also for the partially ionized gas. It is necessary then to go to the 

third approxiaatlon for accurate values of this coefficient. Unfortu- 

nately no reduction similar to the above exists at present for the third 

or higher approximations. 

The form (2.23) of the heat flux is most convenient vhen the thermal 

conductivity is defined as the coefficient of the temperature gradient in 

the expression for the flux vnen no diffusion is taking place. In (2.23) 

we recognize X as the true thermal conductivity. However, (2.23) is 

really a mixed type of expression in that the heat flux is given in terms 

of a force, the temperature gradient, and other fluxes. If we wish to 

compute the total heat ilux at a point in the gas and are not concerned 

with the "true" thermal conductivity, then this expression is often 

not the most convenient form. It is often more practical to write ehe 

expression for the heat flux from the outset solely in terms of the 

-'     and dr/dr . This Is the convention followed in irre- forces 
J 

versible thermodynamics. 

To write the heat flux in terms of forces we use Eq. (2.8) to 

eliminate the number fluxes from (2.20). After some manipulation we 

arrive at 

I 
J-l 

- nj A mi 
i»l 
1/J 

i ij     nfj V X" 

v   T 

'J  actually has the dimensions of 
w 

refer to It as a force. 

-1 

(2.28) 

but it is convenient to 
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where h  Is the total enthalpy of the 1th species (see below). The 

disadvantage of this form aay be seen if we try to find the usual coef- 

ficient of thermal conductivity. To do so  we must set the diffusion 

fluxes equal to zero in (2.8), solve for the diffusion forces d. , and 

eliminate the d  in (2.28) with the resultant expressions. Clearly 
J 

(2.23) and (2.24) are more convenient forms for this purpose, even 

though they require finding the inverse of Dm. 

The formulas above for the energy or heat flux vector apply still 

only to a non-reacting, mcnatomic gas with no internal degrees of 

freedom. Neglecting the effect of the chemical reactions on the distri- 

bution functions f , their only effect is to add an energy of formation 

hT to the translational enthalpy carried by each species as it diffuses 

relative to the mean gas motion. Thus we replace 5/2  kT in (2.23) ^y 

[(5/2)(kT/m )+h Jm  and bring it inside the summation over j , 
J     J   J 

In this expression the second term multiplying the diffusion velocities 

in (2.23) has been dropped. Calculations show this term to be negligible 

compared to the first term. 

Butler and Brokaw [1957; also, Brokaw, i960] have carried out a 

reduction of (2.29) In the case of chemical equilibrium to give a much 

simpler form 

or 

To derive this relation they neglect thermal diffusion and use only the 

first approximation to the diffusion coefficients. Ve will see later 

that the latter can be in error up to almost a factor of 2 in the ionized 

gas. Also the thermal diffusion does play an Important role when free 

electrons are present and probably cannot be neglected in this case.  It 

thus appears that, even if chemical eq-'illbrium did exist, the formula 

which they derive would not be applicable to the partially ionized gas. 
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It seems best, then, to leave the expression for the heat flow in the form 

of (2.2$),  which is also more general than the expression they derive 

since it applies equally to situations with chemical non-equilibrium. 

The monatomie gases are generally considered to be without internal 

degrees of freedou for purposes of calculations of thermal conductivity. 

For argon, for example, at temperatures below about 15000 K   this turns 

out to be a very good approximation. Results of Drellishak, Knopp, 

and Cambel [1963] show that at about this temperature the population of 

the excited states is sufficient to cause the atom partition function to 

begin to deviate from the unexcited value of 1 . Similar deviations 

would be expected for alkali metal vapors at a much lower temperature. 

When electronic excitation becomes important, the possibility of heat 

transport by excited states must be considered. A similar problem arises 

in polyatomic gases at lower temperatures where energy transport by ro- 

tational and vibrational states must be considered. This latter case 

has been handled with moderate success by the Eucken factor, which is 

an approximate correction to account for this form of energy transport. 

The first step in allowing for excitation of electronic states is 

to rewrite (2.29) as 

v 

where the total enthalpy of each species h  now includes the transla- 
n 

tional enthalpy (5/2)(k/m )T , the energy of formation h , and the 
u J 

energy stored in excited electronic states. In practice, the energy of 

formation (reactive energy) will probably swamp the other two forms. 

Now because excited species can diffuse relative to the unexcited 

species, thus transporting energy of c rcitation, a correction must 

generally be applied to the coefficient of thermal conductivity. For 

polyatomic gases this correction tak";.3 the form of an Eucken-type 

correction [Kason and Monchlck, 1962; Hirschfelder, 1957a,b].   How- 

ever, Hirschfelder has pointed out that the diffusion coefficient for 

an electronically excited atom through atoms in the ground state is 
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probably very small. He arrives at this conclusion from estimates of 

the collision diameter for excited species. For example, argon in the 

first excited state would have a collision diameter about 3 times that 

of the ground state. Mason, Vanderslice and Yos [1959) have pointed out 

that the diffusion cross-section would be further reduced because of 

resonance exchange collisions which can occur with atoms in the ground 

state. It seems likely, then, that we can neglect altogether the effect 

of excited electronic states on the coefficient of thermal conductivity 

of aonatomic gases. 

2.h    Viscosity 

In terms of the coefficients of expansion of B.(W ) [see Eq. (l.y)], 

the viscosity is given by [7.^-20] 

(2.31) 

Since the convergence of the series for the viscosity is typically quite 

rapid, we will consider only the second approximation. The equations to 

solve for b   are il-S-lS] 

J-l 

QiJbJO + Qirjl - " Ri0 = 5ni 

(2.32) 

y 
where 1=1,2,-v 

^ij JO  "ij Jl 

Tne solution to these equations can be obtained Just as it was for 

X1 occurring in the thermal conductivity. As before we define new 

determinant elements to simplify calculations 

"mm' 
q 

2im 
1 ^mm' 

ij  \ kT  -ij (2.33) 
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aud arrive at the formula 

J m 

[Til 
5 v^T 

2 = _ 2 "RT 

A01 

"11 

0 

n/mi 

"10 0 

aj 
0 

(2.3M 

To obtain the first approximation from this expression we delete the 

blocks with m cr m1*! . The general expression for the determinant 

elements Is [7.3-71] 

+ 8 H M/2 ^ ■■ ^;a ^i \ (2.35) 

J 

with 

Wl = WlWi ' 3 '^ I 
(2.36) 

As for the determinant elements occurring in the expressions for the 

other transport coefficients, these may be written entirely in terms of 
{e  s)# 

the H      integrals. Making use of the formulas given in f-fTGL and 

in Saxena and Joshi [1963] ve find 

v    1/2       r 

^ ^i *u2)* (6lJ^i) 

- 23 
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qoS8„j?fy_vf   TO?ii(8ij,jf) ■u /ti (»i^)' 

(2.37b) 

"io   Wroi /o ^ \ 

^1      3a    /^ffj^^^.-B 
J/ iti K+ini) 72 "uii lwij ' ji- 

i m, (iW: + 2l5ni2>i nf1'1^ - 98m mf n^'2)* + 
6    .1  v .1 £■     it .1 i    li J J i U 

+ am^ o^3)* + si,  2 n(3,3)* 
J i li        J i Ü 

1  /.cj 2  ,>,- 2x .(2,2)*  .. 3 .,(2,3)* , 
TT m,(154111. + l47ni.) ü. /   '    -  pom ü./   + 

i   ü (2.37d) 

2.5 Electrical Properties 

The equations and properties given in the previous sections are 

sufficient to completely specify the mass (or numberj, momentum, and 

energy fluxes in a mixture of monatomic gases.  It is worthwhile to 

examine the special form which these equations take when electrons and 
*) ions are present and when there is an external electric field.   In 

this way we will derive an explicit expression for the electrical con- 

ductivity. Without loss of generality we can consider for the moment a 

oixture without concentration or pressure gradients.  Equation (2.9) for 

_  

No magnetic fields are considered In the present treatment. 
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♦) the dlffusloii forces     becomes 

J nkTp 
J k«l 

(2.38) 

Let specie^    1    be the electron,  species    2    through    £    be ions,  each 

vith cnarge    eZ    ,  and the remaining    v-^    particles be neutral.    Then 

the external forces are 

X.. = » eE 

X1 = eZiE 2 < 1 < C (2.39) 

x1 = 0 i > ? 

and 

k=l 

njl   = ~ n eE + eE   )    n.Z.  = 0 

i=2 

^ •) 
since,  for a neutral plasma,    n    =    >    n Z    .    The diffusion forces   are 

i=2 

a-eE 
d    *-±~- 

1        nkT 

r. 
diM   ni n.Z.eE 

nkT 

i > ? 

2 < i < C 

,'2.1*0) 

Using these expressions in Eq.   (2 8) the electro., and ion contributions 

to the current are 

d      is really not a force.    See footnote on page   19. 
J 
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h' en   < V   > - ne^    V _    7        eDi ^r 
■psr i njmJDlJZJ + ZT ^ 

J=2 

J.   = en,  < V^ Z. 
Ill 

Z^e E 
n1m1Dil 

(2.U) 

n.m.Z.D, , 
J J j iJ 

J=2 
JA 

7-ieDI ar 

The electrical conductivity is defined as  „he coefficient of    E 

in the expression for the total current. 

n \  J arrr   /   <; n .n 
—'   I   ' =2l 

)    n.ra.Z.D, 

1=2 
J 

J= 
i^J 

(2.1+2) 

Now   m.  « m^    so we can examine this expression for terras of various 

orders of   m., T» 
1'   J 

The diffusion coefficients    D  j    are of order 

(u,.+m /m^ )1/2    so      D1 a (l/ra72)     ,      Da (l/m^2)   .      Thus the 

1/2 
first term in this expression is of order      ".Z™-,       >  the second of 

1/2 1/2    J 

order    HL and the third of order    Z^ia .     Except  In cases of large 

Z.  ,  only the first term is important and we make the approximation 

2 

J=2 

(2.i+2a) 

The coefficient of the temperature gradient in (2.U1) is also of 

interest. The complete expression is 

a 

T 

m. 
J=2 

(2.1*3) 

and to highest order in the masses, 

T 
eDi •*•  i 

a = Tm, (2.43a) 
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Tor  the heat flux In the presence of an electric field we start with 

Eq. (2.28) and again neglect concentration and pressure gradients. 

Using Eqs. (2,ko)  for the diffusion forces, (2.28) becomes 

^ir nlml 
1=2 

-lhiDil " ^ i- 

2\1 hl f ^\ 
• )      -£= n^m, )    rn.h D. 4 - -* 
U  \&^    J •) ^     1 1 ij      m    / 
J=2  x 1,1 J/_ 

eE 

v T \ 

ä  r '■* 

Let 

Kc = X«  + i^ 
(2.Mi) 

(2.45) 

i=l 

and denote the coefficient of the electric field by ß 

r 

ß-e< 
pkT J j I 1 1 IJ  /_,  i i ij I   m 

5 

I pkT 1 1 Z_i  1 1 11  at, 
\      1-2 

(2.^6) 

Again we examine the order of the various terms in these expressions. 
T  l/2 

In (2.45) ve would be tempted to say that ^ a m   and h£r(l/m.) sc 

that all of these terras except for the one corresponding to the electrons 

can be neglected. However, if chemical reactions are possible - and 

ionization or recombina^icn are always possible when electrons are 

present - then h  might also include a very large ionization energy. 

Only In the case of a flow situation so rapid that the chemical compo- 

sition is essentially frozen would this type of reduction by order in 

mass be permissible without more careful examination of each h . With 

this reservation in mind we go ahead and make the reduction to get 

2^ 1 
(2.45a) 
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The reduction of (2.^6)  follows in the same matiner with the above noted 
1/2 

reservation.    The first tens is of order    ra,/31/     >  the second of order 
1 in 1/2 j    -1- 

z?     ,  and the fourth of order    a/      .    In the terms Involving the ther- 
J 1 

^al diffusion coefficient,  the electron term is still dominant.    The 

simplified form of (2.U6)  is 

s=i£2   \    n.D     +_J (2.1.6a) 
2    P    ;_.      J  J  lj n^ 

J=2 

The expressions for the heat and current flow in the presence of 

the electric  field are now 

J = aE + 3 ~ 
a? 

(2.47) 

Tc get the true thermal conductivity K , we set J=0 and solve for E 

tc get 

K = cK'  ,   e = 1 - 2|r (2.U8) 

The modification of these expressions to include concentration and 

pressure diffusion forces follows in a straightforward manner from 

(2.9)'    The complete formulas will not be given here. 
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3- APPLICATIONS 

We are now in a position to compute the transport properties to the 

fourth approximation for all except the viscosity, and this to ^he seconi 

approximation. We note that the complexity of the formulas is increased 

manifold with each increase in level of approximation. Farther, each 
(i ] 

added level requires the ccnputation of a kinetic cross-section Q 
2 {i  s) * 

for a nev £  ,  and two new integrals, W a Ü , for each lower 

value of £  . Before attempting to calculate the properties of a real 

mixture then, it is important to have an idea of the level of approxi- 

mation necessary to obtain reasonably accurate results.  For the laws 

of force effective in low temperature gas mixtures, the second approxi- 

mation for the thermal conductivity is quite adequate and the thermal 

diffusion is usually ignore!. For the ordinary diffusion coefficient 

and the viscosity, the first approximation is accurate- enough. These are 

just the levels of approximation for which expressions are given In MT3L. 

In the case of a partially ionized plasma there are several forces 

operative between the various pairs of particles, and it is  difficult 

to examine the convergence for this mixture without some particular gas 

in mind. We can, however, examine the convergence of the limiting ca^e 

of a fully-ionized binary ras, since only one force law is needed here. 

This special case has already been treated with various simplifying 

assumptions by several other workers, and we can compare their result" 

with those obtained with the expressions of this report. Before pro- 

ceeding to this example, we should examine the charged particle inter- 

action with the idea of retaining higher order terms in the cross- 

section. In the first section,expressions for the cross-sections 

necessary for up to the fourth approximation will be developed following 

the method used by Liboff [17391'     In the present report only the domi- 

nant log term in these cross-sections will be used, since the effect of 

the higher order term of order unity depends on the temperature and 

charged particle density. Hence its effect on the transport properties 

must be Judged in particular cases. 
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Two methods for calculating the properties of the binary plasma 

suggest themselves. One would be to consider the special form that the 

general expressions take in this  case, and to neglect terms of lov order 

in the mass ratio to simplify the calculations, Landshoff [19^9, 1951J 

has essentially used this method, starting from the somewhat different 

but equivalent formulation of CC for the binary gas.  In the present 

case It was decided not to consider the reductioni possible in special . 

cases. Rather, the formulas were programmed for a computer in their most 

general form and special cases were computed with this general program. 

The program has been written in Subalgol, a version of Balgol developed 

at Stanford for the IBM 7090. As input to the program it is necessary 

to specify the masses and number densities of each species, and pro- 

cedures for computing the various cross-sections. 

After the results for the binary plasma have been compared with 

those fror;: other sources, convergence will be examined for three other 

special mixtures. Consideration of these cases is fruitful in two ways. 

Most important, it demonstrates the range of rates of convergence which 

can be expected for real gas mixtures. Also, it cffers a check on the 

expressions of Section 1 and their translation to the computer program. 

In some of the cases to be considered the results may be compared with 

the exact answer; in other cases the rate of convergence has been 

derived by different methods. 

3.1 Charged Particle Cross-Sections 

The usual procedure for the charged particle cross-section is to 

take the Coulomb law of interact ■'on 

Z Z e2 

as valid up to a finite distance, either the Debye length d [Grad, 

196ib] or the interelectrcn distance h=n' ' ^ [CC, p. 179], and to 

neglect all interactions beyond this distance.  From the discussion of 

Section II, It is "^parent that for a large variety of plasmas the next 

higher order terra beyond the dominant Sn x/b  where x-d or h , 
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should be considered. This could be acconplishud v'th the usual cut-off 

procedure, but a more realistic method would be to use the Coulomb poten- 

tial for close encounters and a shielded Coulomb potential 

2 
2.Z,e 

for the more distant encounters. Liboff [1959] has evaluated some of the 

necessary Integrals with this method. We can follow his method to com- 

pute the additional integrals necessary for the level of approximation 

considered here. Later some of the results '.fill oe compared with the 

more exact results of Kihara, Aono and Itlkawa [1963]. 

The cross-section Integral of (2.l8)ls separated into two parts 

^Ms)  = 2fM (1- cosi x)bdb + 27r \ (i- cos1 x)bdb  , 

1 

the first to be computed using the Coulomb potential (3-1) and the 

second with the shielded potential (3-2). L is some distance satisfying 

b « L « d where b  and d are defined in (2.2) and (2.3)-  For 

the Coulomb potential the angle of deflection is related to the impact 

parameter b by 

2 xf-1 
cos x = -p— 

x +1 
(3.3) 

where 

1 2 
2 ^11 

x » 2b ' ^ 

1 J 

Substituting this form into the cross-section integral for the cases 

i*3fk   we get 

Q(3) - Ä (td)8 
c * 

^ * 2fr (xd)2 

2 x!(2x2+l) 

^l+xo) ^ 3 ; 2 :,2 ix^iy 

' ^+ 6   2+ 3 

V   30    {&? 

(3.^) 
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vith 

T = 

Zi^l 
2 ^Jg d 

and 

0  Td 

Now the average value of x„ i 
0 

2    ij 2L 
= 2 ~ » 1 

bo 
(3-5) 

(i) 2 so we can expand    Q      (g)    and neglect terns of order    l/x-    or less. 

Qp^g) = 37r (ad)2 

Q^)(g) = 47r(Td)2 

gfd 
'2L 
ltd 

2 
3 

(3.6) 

2L 
\Td/     6 

For the shielded potential Liboff [1959]  has shown that 

--.(I) 
where rL     is the modified Bessel function of the second kind, 

the small angle approxi.TAtion sin x"^ we  arrive finally at 

(3-7) 

Making 

Q^) a 3^ (Td)
2 

M = it Q(3) 
sc   3 sc 

Letting 

1    ^ 

"if ö u. 4S 

kT 

and 

- 7 -4- 0n 2 

(3.8) 
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0        2kT 

the croes-sectlons are (including those obtained by Liboff) 

2 

«(1)-Mp2, 

«(2).8r(j2 

Q(3).l^(j2 

^.iferfl0 

felf^l- I - r *««2 

fa I ^ ) - 1 - r + fc ? 

fef^j -1-r +ftia 

f)-I- — 

(3.9) 

2 f^ s)* 
We now need the average crosa-sections rr o Ü given by (2.17), 

which can be rewritten in the form 

TO 2 n(-«»s)* 2(i+l) 
iJiJ (s+l)l[2i+l-(-l)J] 

e-yys+1Q^f(y)dy        (s.io) 

1^)l Inserting the expressions for   Q    '(y)    we arrive at integrals of the 

form    (c=constant) 

ft wfe -c y3'1«-^ = r(s) t(s) - c + fol(~- 

s-i 

(3.11) 

where for s integer the Psi-function t(s)= -?,+/ - where >=0.5772~ 

n=l 

is Euler's constant. This first integral may be evaluated by integration 

by parts or located in Bierens de Haan [1957]. The general expressions 

for the average cross-sections are 

s-l , 

n»l 

^-'•-isMl i (3.12) 
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K« 8-1         "1 

„V*")'. I2$$i „* ^ A "   x   • - ^ (i) 
^ a-l      J 
"^ S-l          "j 

„afl(3.s,. . 11^ b. 
^A 

7 
" t - 

Q=l 
— 3-1         -1 

^(k;s)*-^Hi^ ^A 
h 

' 3 " ^1% 
_ n=l 

(3.12) 

where 

2d 

b0 

We now have the cross-sections necessary for the calculation of the 

transport properties of mixtures of charged particles to the levels of 

approximation considered in Section 2. To dominant order, i.e. when 

2« A » 1 , these results, using a screened Coulomb potential, agree with 

those obtained by using the unscreened potential together with a cut-off 

of the integrals at the Debye length. We can now compare some of these 

expressions with those obtained by the more exact method of Kihara, 

Aono and ItiKawa [1963]. They examine in detail several phenomena in a 

binary plasma and obtain expressions equivalent to the average cross- 
2 (i  s)* 

sections TO n   '  with i=s=l or 2 . For the case of relaxation 

between electron and ion temperatures (i=s=l) they obtain the saire 

expression as in (3.12) with a different screening constant 

d kT 

kwa.  e* 
e 

(3.13) 

where n  is the number density of the electrons. This is equivalent 

to neglecting the shielding by the ions in the earlier definition of 

the Debye length (2.3). For the cases of attenuation of low frequency 

oscillations and diffusion across a magnetic field (|=s=l) they obtain 

a screening constant between (3*13) and (2.3)* thus indicating that 

screening by ions is only partially effective. Fo- the cases of the re- 

laxation of an an Isotropie distribution of ion velocities, and of thermal 

conductivity across a strong magnetic field (i»8«2) they again obtain 
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m 

tuw same result as in (2.12) with the effective screening ccrstant 

between (3«15) and (2.3)- Thus, in these cases where comparison is 

possihle^ we see that the results obtained with the shielded potential 

are very close to the sore exact results. 

A difficulty in the above treatment arises in very dense plasmas 

when the Debye length d turns out to be less than the interelectrcn 

distance h . Thus argon at 1 atra pressure and 15000 K has only 

about five electrons in a Debye sphere. In this case the concept of the 

Debye length as a shielding distance is lost. The practice adopted in CC and 

Cohen et al [1950] is to uee the cut-off procedure with the distance h 

rather than d . This appears to be the only alternative with the 

present state of the theory. 

3.2 Binary Electron»Icn Plasma 

This case has already been considered by several authors. The most 

accurate and detailed work seems to be that of Landshoff [19^9* 1951] and 

Cohen et al [1950] and Spitzer and Härm [1953]- Landshoff used a reduced 

form of the Chapman-Snskog method out to the fifth approximation (in 

the notation of this report) for the properties in the absence of a 

magnetic field. Spitzer and co-workers derived their results by a nu- 

merical analysis of Eq. (2.1) with a Fokker-Planck rather than a Boltz- 

mann collision term. Both treatments consider a plasma with no mean 

velocity, neutral in the large, and with no pressure gradients. They 

assume further that the ions have a Maxwellian velocity distribution 

and hence do not contribute to the heat and current fluxes. This assump- 

tion also reduces the number of terms in the linear equations which 

result from the Chapman-Enskog method used ty Landshoff. 

The results for the electron-singly charged ion plasma are generally 

presented as the coefficients of "qs. (2.47) for the current and heat 

fluxes. 

a; 

dr 

(3.1U) 
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The results of Spitzer and Härm for these coefficients can be written 

as follovs: 

o = 0.5908 (kT ,3/2 

•Jm   e   Äi 

a = C.U155 
k(kT) 3/2 

^"e3 fa A 

(3.15) 

ß = 
fkT)5/2 

1.8904 —Äi  
Vm eJ ^n A 

K' = 2.2873^=^- 

5/2 

vm e £n A 

As before the true thermal conductivity is obtained by setting the 

current equal to zero. They obtained 

K = cK' (=X)  ,   € = 0.^189 (3.16) 

Landshoff [1951] obtained equations of the sasae form  as the above with 

slightly different numerical coefficients in his fifth approximation. 

His results will be presented later. 

To approximate the model used by these workers with the computer 

program, we can perform the calculations for various ion/electron mass 

ratios. The more massive the ion, the smaller will be its average 

velocity and the less will be its contribution to the transpoxt proper- 

ties. Landshoff neglected the ion velocity in performing the integrations 

over the impact parameter. Further, to agree with these authors, we need 

to consider only terms of dominant order. The same definition of A 

must also be used, since this has been taken slightly differently in the 

papers referred to above. 

Examination of the expressions (2.Ik),   (2.15), (2.26) and (2.3*0 for 
♦)   T 

D   , D, > X' and r\    in conjunction with formulas (2.h2a),   (2.^3a), 
1 J i 

l In a binary mixture    D        is denoted by    D. ,    following    MTGL 
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(2.U5a) and (2.46a) shovs that the coeffi<lents must be of the same 

form as those of Spitzer and HHrm with a different numerical coefficient 

depending on the level of approximation and on the Ion/electron mass 

ratio. The various apprcxiiuations will  be given in the tables to follow 

after division by some standard quantity. Tables 1 and 2 give the 

reau-lts from the calculations of the thermal conductivities K' and K 

after division by the first approximation to the electron thermal con- 

ductivity. The latter say be determined from 

i' & sir * S^- 
(3-17) 

2 f2 2)* 
with 77ü'ß /    as given in (3« 12). The results of the other authors. 

1/2 
who essentially neglect terms of order (m /m ) '  , are given in the 

last column marked *>  . The level of the approximation in the notation 

of this report is given in the first column. Since the results of 

Spitzer are essentially exact to dominant order, t-iey are given as the 

infinite approximation. We may note here that the first and second 

approxxmations of Marshall [1958] agree exactly with those of Landrhoff 

[1951] after the correction by Vaughn-Williams and Haas [1961] is made. 

The first approximation as derived by Chapman [195M also agrees with 

these results, but his remark that the higher approximations should ln- 

crvise his results by a factor of about l.k    is not in agreement. An 

explicit formula for the third approximation to the binary plasma thermal 

conductivity has also been deri'-'id by Inshennik [1962]. For \m n =^2.9 

he says that his formula gives [X] =0.7^1 [X 3 , which also agrees with 
3       ® 

the results of this report. 

The first and second approximations to the viscosity, after division 

by the first approximation to the ion viscosity, are given In Table 3- 

The first approximati -n to the ion viscosity Is given by 

r ,   5  xjimkl 
{3.18) 

0 (o  ■*) * 
with the average cross-section w a ü    *   '       given In equation (3.12) 

lu Tables k - C  are listed the other coefficients, Pxte- division by the 

corresponding result of Spitzer and Härm. 
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TABUS 1.  HIGHER APPROXIMATIONS FOR K'  FOR THE FULLY-IONIZED 
PLASMA WITH IONS OF SINGLE CHARGE.  [K*]_/[X ], 

nr  el 

«i/me 3 1836 wk 
106 ic8 

50 

m - 1 0.32^2 0.3127 0.3C42 0.3033 0.3032X 

m = 2 1.4838 1.4737 1.4655 1.4646 1.46^4x 

m = 3 I.7U61 1.73^0 1-7239 1.7228 1.7227X 

m = h 1.7591 1.7471 1.7369 1.7358 1.7336x 

m « 5 I.7321X 

m = M 1.7301* 

x    Lind si 10ff [1951 ] 

*    Spitz« ?r and Win 1 [1953] 

TAELE HIGHER APPROXIMATIONS THE THERMAL CONDUCTIVITY 
K (=X) FOR A FULLY-1 ONI ZED PLASMA 
SINGLE CHARGE.  [K]_/[X ], 

ar     el 

OF 

mih-e = I836 
0 

10 108 
■n 

m = 1 0.3242 D.3127 o.3:42 0.3033 0.3032X 

m = 2 C.3242 0.3127 0.3042 0.3033 C.3032X 

m = 3 0.7397 0.7269 0.7166 0.7155 0.7155x 

31  =  4 0.7404 C.7275 0.7172 0.7161 0.7l60x 

ni = 5 0.7183X 

a = 00 0.7247* 

Key as f Dr Table 1 

TABLE 3.     HIGHER APPROXIMATIONS TO THE VISCOSITY    r\    FDR A 
FULLY IONIZED PLASMA WITH  IONS OF SINGLE CHARGE. 

i^ - 
1836            l-:11 

1 
iO6 108 

m - 1 

m = 2 

0.958:- 

1.0851 

0.9812 

1.121^ 

0.9981 

1.1485 

0.9998 

1.1514 
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TABLE k.    KLtäEA  APPROXIMATIONS TO TKE ELECTRICAL CONDUCTIVITY 
FOR A FULLY-IONIZED PLASMA WITH IONS OF SINGLE 
CHARGE. io]J[a]S}>11!ZER 

Iri/Tne " 1836 10* 10« 108 
CO 

m » 1 OÖO^' 0-5064 0.506U 0.5064 0.5064x 

m * 2 0-9^73 0.9782 0.9781+ 0.9784 C.9784x 

m = 3 O.9863 0.9872 0.9874 0.9874 \9874x 

m  *  k 0.9933 0.99^3 0.9945 0.9945 0.9934x 

m s 5 0.9954x 

ni = oo 

1 

l.o* 

Key as f( or Table 1. 

TABLE 5.  HIGHER APPROXIMATIONS TO ß FOR A FJLLY-IONIZED 
PLASMA WITH IONS OF SINGLE CHARGE.  [p] /[ßL nr ■SPI rnVTV 

mi/mc = I836 iou 106 1c8 so 

m = 1 0.3958 0.3957 0.3957 0.3957 0.3957x 

m - 2 i.0096 1.01C2 1.0103 1.0103 1.0103X 

0,3 0.9903 0.9909 0.9910 0.991c 0.9909X 

m = 4 Ö.9983 0.9929 0.9990 0.9990 0.9977X 

m = 5 0.9987X 

n = w 1.0* 

Key as f or Table 1. 

TABLE 6. HIGHER APPROXIMATIONS TO a FOR A FULLY-IONIZED 
PLASMA WITH IONS OF SINGLE CHARGE,  [a] 

mi/me = 1837 10" 10« 108 
00 

m » 1 0 0 0 0 0 

m = 2 1.1168 1.1181 1.1134 1.1184 l.ll84x 

m = 3 0.9971 0.9900 0.9982 0.9982 C.998IX 

m = 4 1.0085 1.0094 I.0096 I.0096 1.0O77X 

a « 5 1.C050X 

IB  s   co 1.0* 

* Key as f or Table 1. 
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TABLE 7. HIGHER APPROXIMATIONS TO THE THERMAL CONDUCTIVITY 
X1  FOR A FULLY-IONIZED PLASMA WITH IONS OF 
SINGLE CHARGE.  U'] /[X 1 

itf  el 

Vme = 1837 iok 106 108     1 

j  m x 1 0.32^2 0.3127 0.30^2 0.3Q33    i 

m = 2 O.606U 0.5891 0.5868 0.5859   i 

|   m = 3 O.9627 0.9499 0.9357 0.9386   | 

m = U 
1    .... .   _ 

O.9668 o.r11 0.9^37 0.9^26   1 

In all of tho results we note that, for any level of approximation, 

the coefficients are fairly independent of the ion/electron mass rati;. 

In the worst cas«?, that of the viscosity, the difference is only about 

"«I between the viscosity of a hydrogen plasma and the hypothetical 

plasm whose ion has 10  tiaes the n.  >& of the electron. The corres- 

ponding difference for thf. thermal conductivity is about hi, ,  and less 

than 1$ for the other coefficients! We thus have rigorous support for 

the simple arguments which show that ve say neglect the electrons when 

ccapv.ting viscosity, and neglect the ions (but not the electron-ion 

interaction) when computing the other coefficients. 

We can now examine the convergence of the Chapman-Enskog formulas 

fcr the various coefficients.  In no case does the first approximation 

give a satisfactory answer. The second approximation to a and ß 

agrees within a few per cent with the higher approximations, but it is 

necessary to go to the third approximation for satisfactory results for 

K and a , Since the third approximation has not been worked out for 

the viscosity, we cannot ray with certainty how much the second approxi- 

=atirm differs from the true result.  From study of the rate of con- 

vergence and of the other coefficients it would apper.r that the second 

approximation would agree within a few per cent with the true value. 

We noted earlier that the form (2.2o) of the heat flux expressicn, 

which was used in this section to afford a ccraparison with the results of 

other authors, is not the most convenient form for computation of the 
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thermal conductivity of multl-component mixtures. In subsequent calcu- 

lations the other form (£.23) will be used, sc It is worthwhile to 

conpute the contribution of the second term of {2.2k)  to the total 

theraal conductivity for the fully ionized gas. This is done in Table 7 

where [X1]  is given, again after division by the first approximation 

to the electron thermal conductivity. We note that the thermal conduc- 

tivity would be seriously overestimated if we neglected the second term 

of (2.2*0. This term is proportional to the thermal diffusion coeffi- 

dects, and is normally taken as negligible. They are still quite 

small in this case, but the denominator contains the terra mm , which 

Is also small when both i and ,j refer to the electron. The conclu- 

sion is that the contribution of the second term of {2.2h),  negligible 

for ordinary gas mixtures, is definitely not negligible for Ionized 

gases. From the arguments given abrve, we can probably approximate {2.2'-) 

with good accuracy for the partially ionized case by 

n    2 
Vi 

(3-19) 

where the subscript 1 refers to the electron.  In the special case of 

a binary ionized mixture, 

E  = D 
11   22 

"/ 

Vi 

•ai"1! 

D m 
12 2 

*22m2 

but    Dp2=0    s0    Ell=0 and orlly Eip and E?i are norl-van:ishirig-    But alsc 
T     T D^-D^    and    ^^    so 

T 2 

x.x«  4  pfcfüÜiL (E  +E   ) rx. .£]s X " X      +      n    B^mg    U12+E21} - X        n 2 

i^f 
(3.20) 

This approximation for the case of more than    2 species will be examined 

in a subsequent paper for partially ionized argon. 
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3.3 Mixtures of Isctopes; Lorer.izian Gas; Quasi-LorentzIan Gas. 

As another application of the formulas derived in Section 2, we 

can consider three special gas mixtures. The mixture of isotopes of the 

same element, which will supposedly have the same force between mole- 

cules and nearly the same mass is the first case to be considered.  *e 

will take the masses to be equal so the results will be the same as for 

the pure gas, excep* ...at the additional coefficient of self diffusion 

will be considered  The thermal diffusion coefficient vanishes identi- 

cally for this mixture.  For the Lorentzian gas, in whiCi, one compcnen- 

of the binary mixture is taken to have very small mass and concentra- 

tion, there are exact results with which to compare the Chapman-Enskog 

approximations. Only the diffusion coefficients will be considered here. 

The last mixture to te considered will be that of the quasi-Lorentzian 

gas, a binary mixture of a heavy and a light component, the former of 

which is in small concentration.  For this mixture Mason [1957b] dis- 

covered the exact result for the binary diffusion coefficient. He has 

also considered these mixtures for certain of the inverse power poten- 

tials using the Chapman and Geling formulation for the binary mixture. 

For the inverse -ever potential 

-Ö qp = dr 

the cross-sections take the form [8.3-M 

(3.21) 

Tr*2nU'S)* ^■trji+l] 

where 

^DlÄ-M-D-M \kT 

Mf8^.!,./^, 
(3.22) 

^(6)  --   \  (1-  co3ix)yndy. (3-23) 

with 

'0 
= b 2 ^ij5 

bd 

1/8 
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Here- A^ '(5) is a pure number depending only on 6 . The Coulomb case 

(S-l) has been considered earlier in a somewhat different formulation. 

In this section we will consider only terms of dominant order for this 

case. The case for 6=2 for £-1,2    has been worked out exactly by 

ELiason, Stqgryn and Hirschfelder [1956] in terms of sine integrals. We 

also need the cross-sections for £=3,1*-    for the level of approximation 

considered in this report. These can be worked out by the same method 
ft) 

as used by Eliason et al. The results for all of the A  (2) are 

A(:L)(2) - - | -f [Si(2r) - 2Si(7r)] 

A(2)(2) = - $ iSiikTr)  -  2Sl(27r)] 

A(3)(2) = - | - Jf fsi(2Tr) - 2Si(7r) + 81(6*-) - 2Si(37r)1 

A(M(2) = - ^ [Sl(87r) - 4Si(27r)] 

where Si(x) is the sine integral 

(3-24) 

Si(x) 
sin dZ (3-25) 

These expressions may be evaluated with the help of the sine integral 

tables [F.W.A.,19^0]. The results a~e given in Table 8. 

(f) 
TABLES. THE QUANTITIES A^ '(2) OF EQ. (3-23) FOR i=l,2,3,J+. 

ii = 1 1 = 2 i = 3 I = h 

A(l)(2) = 0.397601 0.5270+3 0.712619 0.812921 

The case for 5=3 has also been considered by Eliason et al with 
(i) 

an approximate technique due to f-'^tt-Smith. The Av '(3) are written 

as a series 
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p=0  n=l 
^n+1{i){i pp+2bn-2j 

(3.26) 

vith the Dp as pure numbers depending only on 6 . They have been 

evaluated by Eliason et al for p up to k  ,    Their table, which evi- 

dently contains 2Dp rather than the Dp that they indicate, is re- 

produced here in Table 9 after division by 2 . The values detemined 

fcr A^(3) are given in Table 10 to four figures though, because of 

the slow convergence of this series, they are probably accurate only 

out to three places. 

TABLu  9. THE COEFFICIEHTS Dp FOR THE SERIES (3-26). 

p = 0 P = 1 p = 2 0 = 3 p = k 

Dp = 0.12719 O.062U35 0.005095 -0.00141 O.C01585 

TABLE 10. THE QUANTITIES A(i'(3) OF EQ. (3.23) FOR i-1,2,3^. 

= k 

A^(3) = 0.3116 0.3535 0.h72k 0.5034 

As the last force law we can consider the gas composed of hard- 

spheres of diameter a  . This is a special case of the inverse power 

potential where we take the Unit of 8-*« with d '    -»a . This 

case may be treated quite simply with the theory of Section 2 by letting 

ÜK*'  '  =1 for all i and s . 

The results for the mixture of isotopes or mechanically similar 

molecules are given in Tables 11 and 12. The ratio of higher to the 

first approximation for the viscosity and thermal conductivity are given 

in Table 11 for 5=1,2,3,4 and « . The case of 5=4 is known as 
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Maxvelllan molecules and gives the exact result In the first approxiraa- 

ti.oa to all coefficients. This case was not computed (though it would be 

a good check on the accuracy of the program) but is merely listed for 

reference. Because of the exact result in the first approximation when 

5*4 we might expect the convergence to be poorest for 5=1 or 8=^ , 

We see from the table that 5=1 des indeed give the slowest, convergence, 

TABLE 11. HIGHER APPROXIMATIONS FOR THE THERMAL CONDUCTIVITY AND 
VISCOSITY OF A MIXTURE OF ISOTOPES FOR THE INVERSE 
mm  R)TEOTIAL. 

[x]m/[x]1 hVhljL 

09 

m = 2 m = 3 

1.02272 1.02483 1.01486 

k 1.0 7    r\ l.o 

3 1.00269 1.00274 1.oc172 

2 1.02500 1.02503 1.01579 

1 1.25000. 1.264U 1.15169 

We should note that, because of the vanishing of the thermal diffusion 

coefficient for this case, the first and second approximations must be 

identical, even without the results of Muckenfuss and Curtiss [1958] 

(See Section 2.3)« For this reason two terms in the Sonine polynomial 

expansion generally are called the first approximation to the themal 

conductivity. This convention is followed in Table 11. 

In Table 12 are listed the self-dlffusinr coefficients for the 

saoe values of 5 as well as for others which have been worked out by 

Mason [1957h]' Here again the slowest convergence is found for 8=1 . 
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it ia uecessary to use successively smaller ratios of these quantities 

In the computations until the coefficients appear to have reached their 

lialtlng values. Ratios of r^/n  or m./fflp which are smaller or 

larger than a certain size will cause exponent over- or underflow in 

the computer when certain of the determinant elements are evaluated, 

thus leading to unknown inaccuracies in th^- final results. Fortunately, 

convergence of the formulas occurred for ratios which the program could 

safely handle. 

The results for Lorentzian gas are presented in Tables 13 and Ik. 

Also listed are the mass and number ratios necessary to assure that the 

various approximations had converged to their Lorertzian values, and some 

results taken from Mason [1957b]. 

TABLE 13.    HIGHER APPROXIMATIONS .'0 THE DIFFUSION OOEFFICIENTS 
OF A LORENTZIAN GAS FOR INVERSE POWER POTENTIALS. 

m » 2 m = 3 m - k exact nl/n2 

r ■■ - ■ — 

Vm2 

ay 1.0835 1.1068 1.1165 1.13177 IC"5 IO"5 

12 1.039^ 1.048* 1.05624 n Ü 

10 1.032* 1.039* 1.04528 0 0 

8 1.023* 1.027* 1.03120 0 0 

6 1.010* 1.012* ■ 1.01373 0 0 

k 

3 

1.0 

1.0119 

1.0 

1.0131 

1.0 

1.0135 

1.0 

1.01373 

0 

10-7 

0 

io"6 

2 1.1250 1.1302 1.1312 1.13177 10-7 io"6 

1 3.2500 3.3906 3.J9^5 3.39531 io-6 w-6 

« Taken from Mason [195" 7b]. 
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TAHLE Ik.     HIGHER APPROXIMATIONS TO THE THEPaMAL DIFFUSION RATIO 
K)R A LORENTZIAN GAS FOR IN\EFSE POWER FCTENTIALS. 

^V^1 exact 

i 
m = 2 m = 3 m = k Vn2 \,a'i   i 

SO 0.7692 O.89U 0.9388 IC'5 1c-5 

12 0.8^9* 0.939* 0.968* 0 0        1 
10 0.865* 0.9^7* 0.972* 0 0          j 

8 O.889* 0.959* 0.979* 0 *o        1 
6 0.928- 0.975* 0.998* 0 0       i 

k i.O 1.0 1.0 0 0        1 

3 1.0588 1.0135 1.005U 
—'7 

10   l 10'° 

2 1.1111 1.0133 1.00^3 
-7 

10   ' 
-6 

10 

1 O.7692 1.0138 
1 :  

1.0012 io-6 IO'6      1 

*  Taken from Masoa [1957b] 

We note that the error in the first approximation to the diffusion 

coefficient for this mixture is very large, but that the second approxi- 

:^:ion is quite close to the true value. The rate of convergence of 

the thermal diffusion ratio is quite slow for this case. Again the 

inverse single power potential demonstrates the slowest convergence. 

Fortunately this case cannot occur in practice since electrons and ions 

rust be present in nearly equal densities at any point except near the 

tcuadaries in a real plasma. Note that the so-called Lorentzlac gas 

fcr the fully-ionized plasma [see e.g. Spitzer and HSrm, 19531 takes the 

limit nL/m ^0 but retains n =n . Thus the ions are at rest, but 

the electrons and ions are present in equal densities. 

For the quasi-Lorentzian mixture Mason [1957b] has discovered 

that all approximations give the exact result for the binary diffusion 

coefficient. As a check on the computer program we verified that we 

could duplicate this result for the cases 6=«,3,2,1 . Agreement was 

achieved out to better than six significant figures with the mass ratios 

listed in Table 15. The results for the thermal diffusion ratio are 

1+8 - 



alao given in this table.  No exact result  exists for this coefficient, 

TABLE 15.  HIGHER APPROXIMATIONS TO THE THERMAL DIFFUSION RATIO 
FOR THE QUA3I-L0REOTZIAN GAS WITH THE INVERSE POWER 
POTEmAL.  ^y^3! 

m » 3 m " k al/a2 v^ 
M 1.0455 1.0515 IG'5 10* 
1? 1.031* 1.034* 0 0 
10 1.028* I.03I* 0 0 
8 1.023* 1.026* 0 0 
6 1.016* 1.017* 0 0 
k 1.0 1.0 0 0 
3 0.9839 0.9827 10-7 

106 

2 1.0909 1.1098 xo-7 106 

1 1.1360 1.1742 10-7 
106 

♦   T aken from Mason t1957b1 . 

We note again the slowest convergence for the Coulomb potential, though 

again this case cannot exist in practice. The rate of convergence for 

this mixture is considerably better than for the Lorentzian gas. 
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k.     DISCUSSION AND CONCLUSIONS 

In this report the usual Chapman-Enskog formulation of the transport 

properties of multicomponent mixtures has been extended to higher 

approximations. The expressions derived are, strictly speaking, appli- 

cable only to non-reacting monatomic gases with no internal degrees of 

freedom. However, with the -xception of the thermal conductivity, they 

can probably be used with su' • --ss for gases in which reactions are 

taking place and even for polyatomic gases. The corrections necessary 

for the thermal transport in monatomic gases were given in Section 2.3. 

We saw in Section 3-2 that it is necessary to use at least the 

third approximation to obtain accurate results for the thermal conducti- 

vity and thermal diffusion coefficients of ionized gases. The second 

approximations to the viscosity and to the diffusion coefficient cf the 

electrons appear to give quite accurate results.  The theoretical re- 

lations are quite complicated in this level of approximation and it 

would be worthwhile to derive simpler expression- which approximate the 

exact results. The accuracy of any approximate relations can only be 

judged by the agreement (or lack of agreement) with the accurate results 

obtained with the expression? given here.  For extensive calculations of 

the properties of gases it would appear preferable to use the full ex- 

pressions. In spite of complexity of the formulas, actual computations 

rroceed quite rapidly on a typical computer.  For example,the ooefficie "sfcr 
o       o 

argon at one atmosphere have been computed from UOOC to 22000 K in 

steps of 1000 K in only about 1-minute run time on the IBM 709". 

These computations were performed with the general Balgol program men- 

tioned earlier and the time includes that necessary to compute seme of 

the average cross-sections.  Ionised argon is a relatively simple mixture 

of only three components, and somewhat longer time would be required for 

a more complicated mixture. 

.Another difficulty in using the general expressions arises because 

all of the average crcss-secti; WO necessary fur the 

third approximation have been worked out for the potentials of inter- 

action between species in more complicated mixtures. Even in argon we 
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are Haited! to the third approxlmtion because the integrals necessary 

for the fourth approximation h?.ve not been calculated for the exponential 

potential which Is used for the atom-atom and atom-ion elastic inter- 

action. Here again the presence of high-speed computers should make it 

possible to carry through rapidly the cross-section calculations for 

various potentials. This is not done for  the argon case because the 

third approximation is felt to be adequate.  In cases where the cross- 

sections are lacking for even the third approximation it would certainly 

be worthwhile to set up a general program to compute the necessary 

cross-sections. 

One additional problem not completely resolved concerns the proper 

charged-particle-cross section. When fa A » I ,    then the Coulomb 
p 

potential with the Debye cut-off is adequate. When A » 1 but 

^ A ^ 1 then a more accurate method must be used. The best method at 

present appears to be that of Kihara and Aono [1963]. Because of the 

complexity of their method, the simple screened potential was used in 

this report. Where comparison was possible, the results agree very well 

with those of Kihara, Aono and Itikawa [1963]-  It appears that no 

adequate theory has yet been given for the Coulomb cross-section when 

the inter-electron distance becomes greater than the Debye length. 
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APPEIOIX 

In this appendix relations will be given for obtainlrig the bracket 

txpressions flrcia the article of Mason [1957a]. Also presented are tvj 

bracket expressions which are not available in either RTGL or Mason's 

article. We should note first that both editions of MTGL [195^ 196M 

contain a misprint in Eq. [?.A-5]. The right hand side of this relation 

should be laultiplied by 8 . 

Mason [l957a} has derived the higher approxiznations for the trans- 

port properties of binary gas mixtures with the formulation of Chapman 

wad. Cowling [1952]. However, he does not use exactly the same expres- 

sions that they present, so some cross-checking of formulas between his 

article ami Section 9*8 of that book is necessary to obtain the bracket 

expressions. The final translation formulas are, replacing 1 by .1 

and 2 by j  in the expressions of Mason, 

•I'-J 

r m. +D, 

^2^^1
S3/2^^1J %:¥ i^j  -iVin'    ^> 0) 

(A.2) 

rrj 

[WlS3/2(V'V3/2(VJij -v   TT   Um 
Wifrm' (ni > 0 > m' ) 

(A.3) 

These same relations may also be used to derive from Mason [195M some 

of the bracket expressions given in JfTGL. 

Tvo of the bracket expressions necessary for the third and fourth 

approximations in the MTGL formulation are not given in either that book 

or in Mason [1957a]- They msy be derived from relations given in CC 

[p. 157, F4. (1)]; see also the remarks in Section 9.5 of CC] and the 

bracket expressions already obtained. 

- 55 - 



The results are 

[¥H/2(WJ)! 
ij 

sS 
m. 

^^?7i^[ 
35 0(1,1)*   21 n(l,2)* + 

+ s^'V 
ij 

(A.4) 

^VW^IJ = -8 fkT        mi 

^^/Tä^ 
105 oC1»1)* 
T5 "ij 

m nH'2)* ^ ^^3)*. loa(iM* 
-T"ij U ij 

(A.5) 
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