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SUMMARY

Tuis report is concerned with special problems which arise in
connection with calculations of the transport properties of nartially
ionized monatomic gases. The most serious problem concerns the lack of
agreement of the usual thermal conductivity expression in tze limit of
full-ionization with other results derived explicitly for <ris case.

It is shown that satisfactory agreement can be obtained irn =his limit if
one uses the third rather than the second approximation in —he Chapman-
Enskog theory. Expressions for the fourth and lor - apprcximations to
the thermal conductivity, the thermal diffusion ¢ fficien:, and the
ordinary diffusion coefficient of multicomponent xases are Zerived.

The viscosity of this mixture is considered to the second srtroximation.
It is shown that the thermal diffusicn plays a very importzn: role in an
ionized gas. DMNeglect of this effect can cause the therma® =»:nductivity
to be seriously overestimated. An expression is presented ~hich approxi-
mates the effect of the thermal diffusinn on the thermal corniuctivity.
The charged particle cross-section is considered with the s:reened
Coulomb potential. Cross-sections derived with this potenzial should be
accurate for denser plasmas that can be accurately considereZ with the
usual Debye cut-off crcss-section. Convergence of the higher approxi-
mation is checked by applying the formulac to the calculaticn of the
properties cf several special mixtures where the mclecules <bey the

Coulomb and other inverse-power interaction potentials.
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1. INTRODUCTION

In the past seveial years there has been increased reliance on
comruted rather than measured values of transport properties of gases.
This has come about because of difficulties in measuring these coeffi-
cients with any accuracy at the higher temperatiures presently of interest.
The calculations start from potentials of interacticn between rmolecules,
usually determined from moiecular beam scattering experiments, and use
thecretical or approximate formulas for the computaticns. The theoreti-
cal methods are nsually the first or second approximations in the Chaprman-
Enskog theory [Chapman and Cowling, 1952; Hirschfelder, Curtiss and Bird,
196&]*)._ The approximate formulas [Wilke, 1950: Mascn and Saxena, 1958:
Brokaw, 1958] are usually d=rived from the theoretical formulas by making
certain approxinations. The approximations are ultimately justified by
comparison of calculations made with the resulting formulas with those
made with the theoretical formulas. The agreement is fairly gced for

most low temperature gases.

Both the theoretical and approximate formul.s have been aprlied
racently to the calculation of properties of dissociatring hydrogen
[Vanderslice et al, 1962] and nitrogen and oxygen [Yun et al, 1062].

Later these formulas have been applied to gases in which ionization is
also important. Eastlund [1G53] calculated the transport prorerties of
partly ionized cesium vapor at temperatures up to 17000° K. Yos [1963]
extended the computations of the properties of nydrogen, nitrogen, oxygen
and air into the ionization regime. Fay [1962] has suggested an approxi-
mate mixture rule which was used by Camac, Fay, Feinberg ard Kemp [19063]
to compute the properties of argon in the ionized regiocn. Other results

and references are given in Pallone and vun Tassell [1963] and Antye [1064].

A defect of the formulas used in the calculatioas mentioned ¢ ove is
"+ lack of a priori agreement of the thermal conductivity in the limit
of complete ionizatjon with the results of Spitzer and HHrm '1953] or

Iandshoff [1951] for the fully ionized plasma. This defect has been

»*
)These two bonks will hereafter be denoted by CC and MIGL
respectively.




realized by each of the suthors and they have modified their fcormulas to
obtain proper agreement in the fully ionized limit. Thus Fay [1962] and
Yos [1963] adjust the value of the charged particle (Coulomb) cross-
section in their approximate formulas to obtain agreement. Eastlund
[1963], who used the theoretical formulas of MIGL, insercs some constants
%0 insure the proper limiting values. Though the results of these cal-
culations should then be accurate for very low or very high degrees of
ionization, there is no certainty that they will be accurate in the
intermediate partially ionized -egion. The probable accuracy can only

be determined by comparison of calculations of a number of car2s with
resul s from rigorous theoretical formulas which -ive the correct results

at low and high ionization wiihout any ad hoc adjustment of constants.
The nature of this diffieulty has appareacly also been realized by
ntye [1964], who used the the ‘etical formulas cf MIGL to compute che

transport coefficients of partially icaized argen. We will see later

£

{and first) approxi-

+nat these formulas, which are really just the second
~atiscn to the exact sclutions, need to be extended to higher approximations
to obtain acci-ate values of the thermal conduct’vity (and viscusity) for

vartially ionized gsses.

This report will be concerned explicitly with the calculation of
+ransrort properties of partially and multicly ionized mcnatomic gaces,
though scme of the formulas can rrobsbly be used with success for poly-
atomic and dissociit:.ng gases. 1In this report exrressions for the thermal
ccnductivity, thermal diffusicn and the multi-comrorent diffusicn cceffi-
cients of monatomic gas mixtures will be extended o the fourth approxi-
mation in the Chapman-Enskeg tneory. The viscosity «ill be extended to
-he second approximation This level of approximation has been considered
rreviously only fcr the binary 7as mixture [Mas:n, 1957a; Saxena and
Joshi, 1963] After scme discussion of the charged yarticle cross-
sections these expres.ions will be applied to the electron-singly charged
‘fon rlasma. We will sce here that it 1s necessary to use at least the
third approximation for some <f the transport troperties for the fully
ionized gas. The viscosity also is in error by at least 159 if only the

first approximation is used. At this point we can examine the coavergence

-2 .
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of the approximations for several other

some simple mixtures., I- 3 later buper these expressions will be applied
to the calculation of the transport

lonized argon plasma.

inverse-power potentials for

rroperties of singly and multiply




2. HIGHER APPROXIMATIONS IN THE CHAPMAN-ENSKOG THEORY

In this section the general expressions for the transport properties
for multicomponent monatozmic gases will be extended to higher approxima-
tions. Since the basic theory is already well covered in the books of
Chapman and Cowling [1952] and Hirschfelder, Curtiss and Bird [1964],
only & cursory review will te givern in this section. The general formu-
lation of the latter reference will be followed in this report, as will

*)

ecquations taken directly from that book.

the majority of their notaticz. Tho numbers in brackets will refer to

The starting point for %re Chapman-Enskog theory is the multicoempo-
nent Boltzmann equation for <he distributicn function of the 1th species

[f.(}‘,?i,t)] (7.1-25,10.1-5]

r 3, X ¥, o
i.,5. 1,1, _=. J (£1f'-f.f.)g -bdbded3 v
3t i ar m, > U I G s O J
i J=1
v
\" 3
=Z gs‘(f'if:j-fifj) du(gij,x)gijsin)(d)(ded v,
J=1 (2.1)
The right side of this egua*lcn represents the rate of change of fi due

Y

to collisions (or encounters. between the ith species and itself and the
other v-1 specles of the gss. It has been written here in two equivalent
forms. Either form may be us=d when collisions are being treated classi-
cally, but only the second is valid when quantum mechanics is used. The
general theory follows in the same way for either case. The quantum
rzechanical formulation is us2d most often in treating electron-atom
collisions where the differerzial cross-section @ is obtained in terms

iJ
of partial wave phase shift:.

*
)A 1list of symhols is given on page vii.

«
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W2 note that this equation makes no provision for either chemical
reactions or excitation of internal degrees of freedom during a collision.
The theory is then strictly applicable to non-reacting monatomic gases
with no internal degrees of freedom. The rare gases at temperatures
below about SOOOOK .and above those temperatures where quantum degeneracy
is important come closest to fulfilling these requirements. When iconiza-
tion takes place the theory is no longer strictly applicable since chemical
reaction and excitation of electronic states are important processes ta-
king place during collisions. However, only & very small percentage of
the collisions involve excitation or chemical reaction, so it appecrs
Justifiable to neglect these efrects. Except in the case of the thermal
conductivity, neglect of these effects has been successful for lower
temperature polyatomic gases where rctational and vibrational interunal
states are important. [Further consideration will be given to the effect
of chemical reaction and électronic‘excitation on this coefficient in a
later section.

We should note here another assumriion implicit in the use of the
Bolizmann equation. It is assumed, namely, that it is possitle to repre-
sent encounters adequately within the Tramework of this equation. It
kas long been recognized that the Bol:izzmann collision term is valid for
close encounters among charged particles, i.e. {.r those for which the

impact parameter bt 1is of the order of the mean distance of closest

approach
ziz e2
by = S (2.2)

here written for the encounter of two rarticles of absolute charge
Zie and Zje . For more distant encounters, where the impact parameter

is of the order of or greater than the Debye length

2 kT

4% = ———r
hueafnizi

(2.3)")

*
)This definition of the Debye length allows for : plete screening
by iuns as well as by electrons.
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the Fokker-Planck collision operator is valid. This latter form has beenr
used by Cohen, Spitzer and Routely [1650], &nd Spitzer and Hirm [1953] to
derive certain of the transrort prcperties of fully-ionized plasmas.
Grad [1960, 196la, 1961b] ras discussed in some detail the problem of the
collision term for charged rarticles and concliuded that, at least to

dominant order, i.e. to order inp , where A~ d/b the Fokker-Planck

’
part of the collision terr zay be replaced by the Bgltzmann term if inte-
grations over the impact rarameter b are cut off at the Debye length.
In cases where fn A >> 1 +this approach is satisfaclory, because the
neglected terms are of order unity. However, a large number of plasmas
which are presently being s<udied do not satisfy this criterion. For
example; cesium vapor at 1 mm and SOOOOK would be about 9094 ionized
with dwl.llxlo-S em, n_~ 9.6xlolh/cc and A~ 5 . Argon at 1 atm

and lSOOOoK has about

n_~ 9.6xlol’*/cc and A~ 3

74 jonization with d~1.42<107° cm .

. Thus we see that terms of crder unity
should really be includcd in considerations of the charged particle
interactions for these cas=s. In u remarkable pape:r Kihara and Aono
[1963] have accomplishe? ‘ust this step, neglecting only terms of order
A-e or smeller. Their metrnod appears rather difficult teo apply without
going into considerable dezail, but we can use an apprroaimate treatment
which, for the cases considered by Kihera, Aono and Itikawa [1963] cives
almost the same results. Irn place of the Coulomb rotential, for small
angles of deflection we will use the spherically symmetric shielded
potential. This potential tas been considered earlier by Liboff [1959]

and Kihara [1959]. Furtner details will be given in Section 3.

2.1 Review of the Charman-Znskog Method

The first step in the Chapman-Enskog theory is to assume that each

distribution function can ze written in the form

_ o]
£,0= 00 (14 + ) (2.4)
where fgol turns ocut t¢ e the Boltzmann distribution [7.3-13]
T
0l L n (=L exp [om, (5.-3)%/2k1] . (2.5]
i i\ 2mkT B i1 0

-6 -




Here o, ,m, and v, are, respectively, the number density, the mass,

aad the velocity of the ith species, 35 1s the mean gas velocity and
the T is the gas temperature. Upon substituticn of (2.5) in the Boltz-
mann equation {2.1), it is found that the perturbaiion function -9y must

be of the form [7.3-29, 35,36,37]

o, = A(W)F - 22T 5 (u)@F- 32T 2
or
v
.j‘ - -
+nz el (W) ¥4, (2.6)
31

wvhere 35 will be defined in Section 2.2

The problem of determining the distribution function, and hence the
transport properties, has now been reduced to one of determining the

scalars A1 5 B1 and Ci which are functisns of the magnitude of the

reduced velocity 'ﬁ = /5%; 51 where V,=v,-v. . The next step is to

i 11770
expand each of these scalar functions in & series of Sonine {or associ-
ated Taguerre) polynomisls of wf [(7.3-57]. The Ai and Cg functions
are expanded in terms of polynomials of order 3/2 and the B, in
" polynomials of order 5/2 [7.3-61],
t-1
Ay () ’Z 4m Sl;/e (wf)
n=0
t-1 .
B3) =) by, 52y (D) (2.7)
m=0
£.1
k hk \
C?’ €y z ms§/2 (w’i‘
m=0

The number of terms retained in these series (if.e. £-1) will be called

*
the level of approximetion. ) Usually one or two terms are sufficient

*
)This conventicn agrees with Chapter 7 of MIGL but disagrees with
Chapter 8 of that b~ =.

-7 -




to give accurate results for the transport ccefficients. This is

fertunate because the formulas beccme juite ccmplicated at only the

seccnd approximation. We will see later that it is necessary to use at
least the third appreximation when cemputing the thermal conductivity and
thermal diffusion ccefficient of partially ionized gases, though the

second approximation =rrears to be quite adegquate for the cther properties.
we will now proceed tc develop the formulas for the transport ccefficients.

zz2in free use will te mzde of equaticons already given in MIGL.

2.2 Diffusion Coefficienis

The general ex:ressi-n for the diffusicn velcecity of the 1ith

sracies relative tc ‘he —ass average velocity is given by [7.4-3] I
<V >———L -nd J a—l-m—nri-a-—_:-g (2.8)
2J 11 or
Jzéi
D1J and D? are trhe multicomponent diffusion and the thermal
diffusion ccefficients, rescectively. d. 1is the sum of the concentra-

J

ticn, pressure and exterrzl driving forces for diffusion [7.3-27},

; v
i =§_(21>+(3_“3%\5M-(“ﬁ> £3,.) o
J a; n n o / a‘; op mJ J o £ £

(2.9)
where Ei !s the externzl force acting on the (th species of the gas.
In terms of the coofficients of expansicn of the distribution funeticn
r2.7), the diffusion coe:ficients are given by [7.4-8,9]
pn 5
D, = 5o [ Ut (2.10)
n.m )
T i1 [2KT
= — oll
P1= TN, fic (2.11)

We can now examine in some detail the sclution of the equaticns for

tae higher approximations o the multicompcnent diffusion coefficient.




The formula for this coefficient to the first approximation has already
been given in MIGL, and the same genexral procedure will be followed as
vas used there.

Lk

The ccefficients cko

(7.3-75)

are determined from the set of Lv equations

v
S’ [?nc hk ml hk | om2 hk

w3 nk) gk 3[BT o
13 %30 P Qg %1t Yy o0 T Yy °43] St RN (8,-51n 8¢
J=1 (2.12)

vhere m=0,1,2,3 (for the fourth approximation) and 1=1,2,3-v . The
soluticn of these equations may be obtained with the aid of Cremer's
rule [Hildebrand, 1952) as the ratio of two 2v x 2v determinants.
The denominator is the determinant of the coefficients Qﬁﬁ', and the
numerator involves the coefficients with one colwm replaced ty the
right-hand side of Eg. (2.12). A more convenient form, equivalent to
that obtainea with Cresmer's rule, has been introduced in MIGL. Before
proceeding to the explicit expression, it is convenient to define new
elements different from those used in MIGL. In this way the number of
opefations performed in the calculation of the various coefficients will

be materially reduced. We let

mm' EhT; Qmm'
Uy =\ My

' (2.13)
rhk= _277_1111 =')J_-(5
10 KT ih~ ik

and the sclution for the fourth approximation to the multicomponent
diffusion ccefficients is then




] hk
a0 1S 1 s | g3 Ieg
== | I I | —
10, 11, 12 13
qy layy lagy laglo
I | I | —
3emy, ERT 1 20 , 21, 22, 23
(el = Zam s\, @ 1q] 9y L9y ey lagy 1o (2.14)
|
s | I | —
30 31 32 33
%JI %JI %Jt %Jl 0
| | | | —
B4 | o] o | o |Jo

vhere |q| 1is the determinant formed from the numerator by deleting

the last row and last cclumn. {For convenience of notation the symbol
t

qf? represents & blccx of elements with both 1 and Jj ranging frcem
1 to v .) To obtain the first, second and third approximations to

Dij we simply delete all g "blocks” except those with m=m'=0¢m,
a'S 1ym,m'S 2 rescvectively, from both the numeratcer and dencminetor.
t

sefore proceeding tc explicit formulas for the q?? elexents, we
can easlly derive the form of the thermal diffusicn coefficient. For the

fourth approximaticn the a are soluticns of the L4v equations [7.3-75]

iQ
amoa + lea + Qm2a + Qm3a | = - R
13740 HgTa1  iyge o tipg3)l T T im

l5ni SRT
vhere 1i-1,2,~v , and ==0,1,2,3 . Here Rim= T f—a- 6lm . Ve
i

cah solve for a as in the previous case and write the thermal diffu-

i0
sion coefficient as

- 10 -




~00 0l ¢ 02 03
%Jl 1y |9y lqjlo
l l l | —
10 l 11 l 12 l 13 l n
Gy Ty P9y P4y I Yy
—_— | | | | —
[DT] _ 15 Zmik'f 0 l 21 l 22 l 23 l 0 (2.15)
' T T Iq] Gy P Yyt 935 1 9y :
' | l l | —
qu | qu | a7 | ng | o
| l l | —
8, 5y | o] o | o |o
1 To obtain the third and second spproximations to the thermal diffusion

coefficient we simply delete all blocks containing qT? with, respec-
tively, m or m'=3 and m or m'22 . In the first approximation
T

Di is identically zero.

The general expression for the determinant elements occurring in
the above relations is [7.3-71]

mm' - ~ 2
| Y -‘\4 {mtw 5320 5 TS5 (1, ¢
£=l
1 3/2 ‘w2 J/z (w‘?)]u} (2.16)
Here the S& (w2) are the Sonine polynomials of w2 mentioned earlier

3/2
and defined it [7 3-57). The 2xpressions in brackets are defined in

(7.3-43]. These "bracket integrals” can be reduced to & simpler form in
terms of the integrals [8.2-8]

o0

2 (g g)* . L(g+l) §‘ -72 2543 (z)( )a
13 "1 e tlee-(-08 8 &

To

(2.17)

(‘)(s) =2r)o,()- cos® x) stny & = 21'5(1- cos? x)bdb
(2.18)
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Here UiJ(X) is the differential cross -section, y {8 the angle of
deflection during a collision, and y2 =1/2 (uljg /kT) oMy being the
reduced mass of the two species 1 and J .

General formulas for this reduction have been given in CC. GSome of
the explicit formulas are given in CC and MIGL. Other: have teen derived
from the work of Mason [1957a]. Relations for obtaining the bracket
expressions from his work are collected in the appendix. With the aid
of these formulas.and aftcr some algebraic manipulaticon, the fcllowing

expressions for the q?? elements mey be derived:

v
500 00 _ 5y Ry 10 .8\ L 2 (3,1)* fﬂ?
1y~ 1y \'m 137" L

S
~1m m
£ -
- “J"Egi (1-8, ) (2.192)
' o\3/2 v 3/2
447 i\m } 3727 1z 5Ny 157%5s
: =1 (myrmy)”
(2.19b)
0 (%) a1 '
3/2 v 1/2
AN (ﬁ) E 0 2 O
1] 1\ =, L (mi+mﬁ)5 2" g | VU1 e
(1 1)* 2. (1,2)* 2 (1 3)
l: (6’“ +5m ) Q" 15w a0 w1, :] ¥
(2,2)* ,
+ (6ij+53£) hmjmgﬂiﬂ (2.19d)
5/2 v 5/2
02 - 8n /fi \_‘ nﬁmb T 0 -5 ) .
9 4 1K m, {:_ (m,+ '7”" ig 13 34
. (L,1)*» 21 (1 2)* (1 3) -
(38 Q 2 + ey ) (2.19¢)
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2
m,
iy - (E‘;) )y (2.19¢)
S/2 v 3/2
m, n
qili 28y (Et/\ sz_‘ﬂ? LY’ {(613'515)
vl P (m1+m£) J

2 (1,3)* 2 _(1,4)*
¥OT my 8,70 - 30m) 8 ]+

+

®15%050) }hmeﬁngf,e)*' lémeinif,B){]:} (2.19g)

m
qﬁ = (‘“") ay (2.19n)

22 ™
$u 2

2 .02 2, (1,3)*
(LoD +13 T 32 -
g \LoomgrL33m) a

- QIOmi.‘ Q(i"h)* + 93m2ﬂ(l’5}* . Ehmgm? Q(3;3)*] +

P 17 PPy
2., 2, (2,2)
+ (81J+6,jt} Emea (’tmf‘]mi) Qil -
3 4,(2,3)* 2,h)%
- l12m =) Qil’ ™, 80me§ Q§E J} (2.191)




#

7/2 v 7/2
S fl T i oo ( )
R ATy, L (g R 17 32
=1 ‘BT
(2,4)%
[‘1(1)% nﬁ’l)* - _1_%9 QS’E)* . 2752(1 3% 109;2’1‘ ]} (2.19))
30 1\J c3 ;
4y '( 1/ (2.19k)

b

n 7/2 v 5/2
I3 gy [ 2 W 2 Jis 5. ) -
1J = o0 \3 —ﬁ")g 5T, 1578

J P! (m:L to,

lb/ (l 1) 63 (]_ 2)*

+ 81 (::x +on, %) g & )30 160mf,ﬂg’h) + 60m fQS 5)] +

L

+(8,,%8,,) am [éj 2{22)* _0(23)% | 1og (2 K ]‘]
£ 2 £ i j

g i £
2
n_ (L 3
Uyt \m, ) 93 (2.19m)

S N
' [1—;“55 (122-':23 + 252mf~12 5 (1 1)*
31& (120* T 750m§m§ ¥ 175m£) S, 2 3 2 (“5‘m3+217m ) 0 (l 3
- % mf (198m§ + 3@lm§) Qii‘”t)* + 615m1; Qgiﬁ)* . Eli)ml; 922,6)*

(3,3)* (3 L)
+ lOEJJmI Qii, lQOm'j " Q :]+
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ij Jl) [—g (&n + Ymi) ij,g)* =

-18mm (8m2+21m)ﬂ(23) + 500m @3 o{24)*
"z %4y )
i 3 (2,5)
240 @) o2 )]} | (2.190)
32 _ _4) 23
Uy (mi 943 (2.190)

: 7/2 v :
qu . ( i) z 1/2
a, (m,+ )13 u 13'553) )

105 €
[‘3 (J.J.a':xJ + lOBO’nJm£ + 1L3hmjmb' + lOSm ) Q(l l)*

567 4
- m (l20m + 2‘32m§m + 35. ) Q(l 2)*
44 2 4
+ (b4om, + 2700m°m> 4y all,3)
18 7, m, Ome + 651‘“2 Dy ™.
J15 L 2 2y (1,4)
5 my (59 + 301a.) Qiﬁ’ L 332 m (2omJ + b1y ) Q<l %

6 (1,6)%
, 0 + 560133 Qiz 8mJ ; (lOm? + 27::15) Q§3,3)* i

24 (3 h)* 24
1080111J , Qi ¢ 720mjmi :iz’s)*. +

18 ~
(8,) +3,,) [—lgm (8n +1L8mj +21m:‘; Q§§’2)*-

g 3 2 2 (2 *
162m »3)
62n,n; (80 + 722) n° Om (88m2 F 22~m‘) a(e b)x

) (25 \
2160mm) 02 8"0.””?6)**6’*“‘“"1(&“‘]}

(2.19p)
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2.3 Energy Flow and Thermal Conductivity

The gene,al expression for the energy flux in a monatomic, non-

feacting gas with rc internal degrees of freedom is given by [7.4-3C]

oo

Y
q = RTZ nj<?J>- '—_.-nkTT (2.20)
=1

or 51 4 J J J
The first term in this expression represents the translational enthalpy
carried by each species as it diffuses relative to the mass-average
velocity of the gas mixture. The last term represents & coupling between
diffusion forces and heat flow. It is conventicnal to eliminate the
explicit occurrence of EJ in this expression by using the formula for

the diffusion velocity /2.3) which can be rewritten in the following form

Y - nio <.-‘yfi > pD? a
y mJDin = 5 - - (DJ,=0) (2.21)
= J n n miT or Y

In order to eliminate the d, from (2.20) we can consider (2.21) as a

J

-
set of linear equaticns to be solved for the unknowns dj . Defining

Eij as an element of the inverse of the matrix whcse general element is
mJDij we can write a Yormal solution for EJ as
3 PR
3 -2 ) 0 AT
dJ-nQLEJini< Z_ e (2.22)
i=1 i=l
Then we have
v T Yy T
- [.d E..,n,D
e R I I e 1
/., n.m n /. /[ nm, i
g1 94 J=1 171 J
v v T.7
e )y iy
a nmm, -
s J 13 9dr
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The energy flux then becomes

v vV g ﬁT
g=2m§"l-§e§"iLL,l<v>_1§ (2.23)
2 /L Su /| n,m, J J 3=
J=1 i=1 )

where the coefficlent cf thermal conductivity is given by

Vv E DTﬁT
SRRE P2 (220
4 i

J=1

Since no chemical reactions or internal transport of energy are considered
"in this expression, this A 1is often called the frozen thermal conduc-
tivity and 1s sometimes denoted by kf .

The solution above for 4 has been called a formal solution since

J

no explicit formula has been given for finding the inverse matrix EF in

terms of the elements qf?' . In actual calculations the diffusicn coef-
ficients Dij will be calculated and then £ = (D g)'l [written herc
in matrix form] msy be found from a standard algorithm. If the calcu-
lations are done on a computer such as the IBM 709C, which is used for
, such calculatiqns at Stanford, then there is generally a library proce-

dure available which can te used to acecmplish the inversion.

Expressions for ﬁz and DiJ wvere given in the last section. '

is given in terms of *the expansion ccefficients of the scalar funetion
4233
A (W) vy [7.4-33]

v
| 5 ZRT
A' = - I; k Z nj\-? &Jl (2.25)
J
Jz
where a8 is obtained ¢ -om the equations (7.3-33] already given in

hBS
connection with the thermel diffusion ¢oefficients. We can solve for

the aj] Just as in that section, X' then being given by a sum of

such expressions. The final result is
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| l | |
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| | | |
o nJ/JEQI o | o] o

This is the formula for X' 1in the fourth approximation, and to

obtain the third -r second approximation we simply delete the blocks

involving q??. with, respectively, m or m'=3 and m or m' >2.

This is the same rrescrirtion as given in the section on the diffusion
coefficients. Troutle arises when we attempt tc obtain a first approxi-
mation bty deleting alsc the q??"s involving m or m'=l , for then
the determinant in the nuzmerator vanishes. This is equivalent to

retaining only the first term in the expansion of A (wi) . We can

i
define a first approximztion to the thermal conductivity as that obtained
when we keep cnly the seccnd term in the expansicn of Ai(wi)' (See

Eq. (2.7).] The formula for the first approximation can then be obtained

frem (2.26) by deleting all q blocks except those with m=m'=l .

Muckenfuss and Curtiss [1958] have shcwn that the first approxi-
mation obtained in this way is identical with the total thermal conduc-

tivity to the second aprrcximaticn. This arises in part because in the

first approximation [Df]l=0 s0 [k]lz[k']l . From irreversible thermo-
dynamics it is always true that » < X' and they show that the difference
i1s sufficient to make "32 = {A’l. The complete formula to the second

approximetion is then
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nlﬁjhl s nv/fhv 0

This form is considerably simpler than the one given earlier for the
second approximation and is usually used in "rigorous” calculations of
the thermal ccnductivity. We will see later that this approximaticn gives
answvers which are much too low for the fully ionized gas, and presumably
also for the partially ionized gas. It is necessary “hen to go to the
third approximation for accurate values of this coefficient. Unfortu-
nately no reduction similar to the above exists at present for the third

or higher approximations.

The form {2.23) of the heat flux is most coavenient when the thermal
conductivity is defined as the coefficient of the temperature gradient in
the expression for the flux wnen no diffusion is taking place. In (2.23)
we recognize )\ as the true thermal conductivity. However, (2.23) is
really a mixed type of expression in that the heat flux is given in terms
of a force, the temperature gradient, and other fluxes. If we wish to
compute the tctal heat flux at a pcint in the gas and are not concerned
with the "true” thermal conductivity, then this expression is often
not the most ccnvenient form. It is often more practical to write the
expressicn for the heat flux from the outset solely in terms of the
forces d *) and JT/3r . This is the convention followed in irre-

J
versible thermcdynamics.

To write the heat flux in terms of forces we use Eq. (2.8) to

eliminate the number fluxes from (2.20). After some manipulation we

arrive at
v v ) T v T
2 D h,D
A e L mhD,, - okl =— |, - [ 2 +) 21|
P J 17171 nJmJ J T e
J=1 1=1 1=1 T
1£) (2.28)

* -
)EJ actually has the dimensions of L 4 bvi 1t is convenient to
refer to it as a force.




vhere hi is the total enthalpy of the ith species (see below). The
disadvantage cof this form may be seen if we try to find the usual coef-
ficient of thermal conductivity. To do so we must set the diffusion

fluxes equal to zero im (2.8), solve for the diffusion forces d, , and

- J
eliminate the dJ in (2.28) with the resultant expressions. Clearly
(2.23) and (2.24) are more convenient forms for this Turpose, even

though they require finding the inverse of Dm .

The formulas above for the energy or heat flux vector apply still
cnly to a non-reacting, mcnatomic gas with nc internal degrees of
freedom. Neglecting the effect of the chemical reacticns on the distri-
bgtion functions fi , thelr only effect is to add an energy of formation
h; to the iranslational enthalpy carried by each srecies as it diffuses
relative to the mean gas mction. Thus we replace 5/2 kT in {2.23) b

[(5/2)(kT/mJ)+h3]m and bring it inside the summaticn over J ,

v
Z -—-+h nm <V>-2E (2.29)
= JJ J Sr

In this expression the seccnd term multiplying the diffusion velocities
in (2.23) has teen dropped. Calculations show this term tc bte negligible

cczprared to the first temm.

Butler and Brokaw [1457; also, Brokaw, 19A0] have carried out a
reduction of (2.29) in the case of chemical equilibrium to give & much

sizpler form

p S8 | . (2.30)

1=- (lf et 3
r

To derive this relation they neglect thermal diffusicn =2nd use only the
first approximation to the diffusion coefficients. We will see later
that the latter can be in error up to almost a factoer of 2 in the ionized
gas. Also the thermal d:iffusion does play an important role when free
_ectrcns are present and ~robtabtly cannoct be neglected in this case. It
=hus arpears that, even if chemical eg:ilibrium did exist, the formula

tich they derive would not be applicable to the partially ionized gas.

- 20 -




It seems best, then, toleave the expression for the heat flow in the form
of (2.23), which is also more general than the expression they derive
since it applies equally to situations with chemical ncn-equilibrium.

The monatomic gases are generally considered tc be without internal
degrees of freedoun for purposes of calrulstions of thermal conductivity.
For argon, for example, at temperatures below about lSOOOOK this turns
out to be a very good approximation. Results of Drellishak, Knopp,
and Cambel [1963] show that at about this temperature the population of
the excited states is sufficient to cause the atom partition function to
begin to deviate from the unexcited value of 1 . Similar deviations
would be expected for alkali metal vapors at a much lower temperature.
When electronic excitation becomes important, the possibility of heat
transport by excited states must be considered. A similar problem arises
in polyatomic gases at lower temperatures where energy transport by ro-
tational and vibrational states must be considered. This latter case
has been handled with moderate success by the Eucken factor, which is

an approximate correcticn to account for this form of energy transvport.

The first step in allowing for excitation of electronic states is
to rowrite (2.29) as

v
?{aanh <¥>-2 & (2.29g)
g4 J 5
=1
where the total enthalpy of each species hj now includes the transla-
_ tional enthalpy (5/2)(k/mJ)T , the energy of formation hg , and the
i energy stored in excited electronic states. In practice, the energy of

formation (reactive energy) will probably swamp the other two forms.

Now because excited species can diffuse relative to the unexcited

species, thus transporting emergy o - :citation, a correction must
generally be applied to the coeffic’ent of thermal conductivity. For
polyatomic gases this correction tak?s the form of an Eucken-type
correction [Mason and Monchick, 1962; Hirschfelder, 1957a,b]. How-
ever, Hirschfelder has pointed out that the diffusion coefficient for
an electronically excited atom through atoms in the ground state is

- 21 -




probably very small. He arrives at this conclusion from estimates of
the collision diameter for excited species. For example, argon in the
first excited state wculd have a collision diameter about 3 times that
of the ground state. Mason, Vanderslice and Yos {1959] have pointed out
that the diffusion cross-section would be further reduced because of
rescnance exchénge collisicns which can occur with atoms in the ground
state. It seems likely, then, that we can neglect altogether the effent
or excited electronic states on the coefficient of thermal conductivity

of monatomic gases.

2.4 Viscosity

In terms of the coefficients of expansion of Bi(wi) [see Eq. (1.7)],
the viscosity is given by (7.4-20]
v

l!
T]:Ex{T z anJO (2-31)

J=1

Since the ccavergence of the series for the viscosity is “ypically gquite
rerid, we will consider only the second aprroximaticn. The eguations to

sclve for b, are [7.3-76]
.jv

v

~00 ~0
Z [Qi.jb,jo * Qi:,ijJl]z - Rip =9y

=1

v
~10 11
) [Qisb.ao ' Qubjl] "¢

3=1

(2.32)

where 1=1,2,-v .

Tne solution to these equations can be cbtained just as it was for
A" occurring in the thermal conductivity. As before we define new
determinant elements to simplify calculations

&= Ll g (2.33)

Uy KT iy
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L

aud arrive at the formula

~00 | 0l
qu l qij l nNm
! |
['112 = - -g- Jg,m_a:_'? | g o (2.34)
! !
nJ ' 0 l 0

To obtain the first approximation from this expression we delete the
blocks with m c¢cr m'=l . The general expression for the determinant

elements is [7.3-T1]

r 2 [ S5/p (47) i s5/2 wf)]u :

I=1
o i o) )
with
AR AR W T (2.36)

As for the determinant elements occurring in the expressions fcr the
other transport ccefficients, these may be written entirely in terms of
the a(47)* {ntegrals. Making use of the formulas given in MIGL and
in Saxena and Joshi [1963] we find

~00 i
qij..&n( J)E ——-———7-1ro { 3 U (aij-aﬂ)mj+

£=1

s om) agf’z) (8, 4% .u)} (2.37z)
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2V 3/2
"~ m n.m
01 _ 1 £ 2 Ji .
qu ) 8n1(mﬂ> ! (m,+m )S = nvig \Bid 8J£)
S B
o (3 D a2 (2,2)% 5 (2,3)%)]
m, (.3 Qiﬁ lbﬂu / tm, (613+63£) 7913 S Bgig >J
(2.37b)
~10  [®3\~01
% = (%)qid (2.37¢)
2 v /2
£30 By LR, 2
q,. = &n <—>Z : ms (5, -5, ) -
1j 1\m, L (m1+mz)772 12 Y'0137 32
. {}% m'j (lhOm? + 2&5m§) Qgi’l)* - 98mjm§ Q§;’2)* +
2 (1,3)* 2 (3,3)*
+ 61+me£ Qii + 2kam£ Qiﬁ ] +
+ (5, 45, ) 1 m (lS&m2 + 1h7mﬂ) Q(2,2)* - 56m3 9(2’3)* +
13 327186 "7 T iy ¢ 1g
+ hom3 a{@r+)* (2.374)
L iz :

2.5 Electrical Properties

The equations and properties given in the previous sections are
sufficient to completely specify the mass (or number), morentum, and
energy fluxes in a mixture of monatomic gases. Tt is worthwhile to
exarine the special form which these eguations take when electrons and
ions are precent and when there is an external electric field.*) In
this way we will derive an explicit expression for the electrical con-
ductivity. Without loss of generality we can consider for the moment a

mixture without concentration or pressure gradients. Equation (2.9) for

»
)No magnetic fields are considered in the present treatment.
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L 3
the diffusion forces becomes

Y
n,m 5
& o ....J_J. - - X {
dy = - o oy YJ o X, (2.38)
k=1
Let species 1 be the electron, species 2 through { be ioas, each
with charge eZi » and the remaining v-{ vparticles be neutral. Then

the erternal forces are

xlzer
5(’1 S ezii:’ 2<1<¢ (2.39)
}(i =0 1>

and

Vv {31
L

}: nkXk = - nleE + ek niZi = Q
k=1 i=2
o o)
since, for a neutral plasms, n, = Z:; niZi . The diffusion forcec are
i=2
ook
1~ nkT
d, = n,Z ek
R 25158

Using these expressions ia Eq. {2 8) the electro.. and ion contributions

to the current are

*)
d, is really not a force. 3See footnote on page 19.

J




=

ﬁi eﬁr
- » ne’E 1 JT
Jl en, 1 ST nJmJDlJZJ + mlT =
J=2

- (2.41)

Ji = en, < Vi> Zi * TR nlmIDiI - njmjsziJ alar ol
i® or
J=2
ik JF B

The electrical conductivity is defined as .ne ccefficient of E

in the expression for the total current,

r
€ n
9 = owy Z n.jmJZJDlJ + nlzanJDJl - ZJi nimiZiD,ji (2.42)
j=2 L {=2
1£)
Now m, << m_, so we can examine this expression for terms of various
Y
crders of mlfvj . The diffusion ccefficients Dij are of order
1/2 1/2 1/2
s D a (1/ / ). ;
( . mJ/mimJ) S0 15 (1,ml ), Djla (1, m’ ) Thus the
first term in this expression is of order mJ‘mi/e ;, the second of
crder mi/g and the third of crder ngJ/ . Except in cases of large
o

Z, , only the first term is important and we make the approximation

1%
»
18

2 Q
~ €“n
0= o ji, njmJZJDlj (2.422a)
J=2

The coefficient of the temperature gradient in (2.41) is alsc of

interest. The complete expression is

T T :

D Zz.D
el _l-i_u (2.43)

T|m m

1 322 J

and to highest order in the masses,
- eﬁi

a = Ta, (2.42a)

e

o




For the heat flux in the presence of an electric field we start wit
Eq. (2.28) and again neglect concentration and pressure gradients.

Using Eqs. (2.40) for the diffusion forces, (2.28) becomes

e (e B s B
4 =112k MM z Bltgllng = m /”
i=2
-
v 5r v h ﬁr\
- - n,m 5;1 m,h D —J eﬁ - [ A' +§z -3—1 EE
+ \pPKT 3] 171713 m'J T ,/8;
J=2 §=_ =)
(2.4k)
Let
5 B0
Kf = \! +Z T—- (2.‘45)
i=1
and denote the coefficient of the electric field by B8
2 Y o,
Pae o o0y i PPy v/ Bl o5 | -
3=2 1=2 J
1£
v T
D
n 1
—_— — é
kT nlmlz mithil o (2.46)

i=2

Again we examine the crder of the variocus tenns in these expressions.

In (2.45) ve would be termrted to say that Wra m 1/2

that all of these terms except for the cne corresponding tc the electrcns

and hfx(l/mi) e

can be neglected. However, if chemical reactions are pcssible — and
ionization or recombination arce always possible when electrons are

present — then h, mnight also iuclude a very large icnizatica energy.

i
Only in the case of a flow situation sc rapid that the chemical compo-

sition is essentially frozen would this type of reduction by order in

mass be permissible withcut more careful examination of each hi . With

this reservation in mind we go ahead and make the reduction to get

K' = X'+

o

ﬁi E (2.45a)




Tte reduction of (2.46) follows in the same manner with the above noted
rsfgrvation. The first term is cf order mJ/ml , the second of order
=7, and the fourth of crder ‘/ . In the terms involving the ther-
:;l diffusion ceoefficient, the electron term is still dominant. The
simnlified form of (2.46) is

£ .
£n A e (2.46a)
e J_é I m,

nﬂ\n

B..

The erpressions for the heat and current flow in the presence of
the electric field are ncw

~,

J=ct+al

¢ get the true thermal conductivity K , we set 3:0 and solve for E

K = ek' , € =1- (2.48)

The mcdificaticn cof these expyressions to include concertration and
rressure diffusicn forces follows in a straightforward manner from

a2

(2.9). The complete formulas will not be given “ere.
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3. APPLICATIONS

We are now in a positicn to compute the tran.rort properties tc the
fourth approximation for all except the viscosity, and this to the seccnid
approximation. We note that the complexity of the formulas is increased
manifold with each increase In level cf ap:roximation. Further, each

added level requires the ccmrutaticn of a kinetic cress-section Q(E

for a new ( , and two new integrals, T 029(2,5)* , for each lower
value of ¢ . Before attextting tc calculate the properties of a resal
mixture then, it is important to have an idea of the level of approxi-
mation necessary to cbtailn reasonably accurate results. For the laws

of force effective in low texmperature gas nmixtures, the seccnd approxi-
matioa for the thermal conductivity is quite adequate and the thermal
diffusion is usually ignorel. For the ordinary diftusion ccefficient

and the viscosity, the firs< approximaticn is accurate encugh. These zre

[(Yaanl

Just the levels of approximation for which expressions are given Ian MTSL.

In the case of a partizlly icnized plasma there are several forces
operative between the varic.s cvairs of particles, and it is difficult
to examine the convergence T-r this mixture without scme carticular zas
in mind. We can, however, examine the convergence of the limiting case
of a fully~-ionized binary z=3, since cnly crne fcorce law is needed here.
This special case has alrezZy been treated with various simplifying
assumptions by several other wcrxers, and we can ccmpare their results
with those obtained with the expressicons cof this report. Befcre pro-
ceeding to this example, we 3hculd examine the charged particle inter-
acticn with the idea of re*=ining higher crder terms in the cross-
section. In the first sectlcn,expressions fcr the cross-secticns
necessary for up to the fourth epproximaticn will be developed following
the method used by Liboff [1359]. In the present repcrt only the domi-
nant log term In these cross-sections will be used, since the effect of
the higher order term cf order unity depends cn the temperature and
charged particle density. Zence its effect on the transport prorerties
must be judged in particuler cases.




Two methods for calculating the properties of the binary plasma
suggest themselves. One would be to consider the special form that the
general expressions taxe in this case, and to neglect terms of low order
in the mass ratic to simp.ify the calculations. Landshoff [1949, 1351]
has essentially used this method, starting from the somewhat different
but equivalent formulation of CC for the binary gas. In the present
case it was decided nct to consider the reductiors; rossible in special
cases. Rather, ‘he formulas were programzed for a computer in their most
general form and special cases were computed with this general program.
The program has been written in Subalgol, a version of Balgol developed
at Stanford for the IBM 709C. As input tc the program it is necessary
0 specify the masses and number densities cf each srecies, and pre-

cedures for computing the various cross-sections.

After the resuits for the binary plasma have been compared with
those freom other scurces, convergence will bte examined for three cther

pecial mixtures. Consideration of these cases is fruitful in two ways.
Mcst important, it demonstrates the range of rates of convergence which
can be expected for reel gas mixtures. Alsc, it «ffers a check on the
expregsions of Section 1 and their translaticn to the computer progranm.
In scme of the cases to be considered the resulis may be compared with
the exact answer: in cther cases the rate cf ccnvergence has been

derived by different methods.

(WY
Pt

Charged Particle Cross-Sezstions

The usual procedure for the charged rarticle cress-section is te

take the Coulomb law of interaction

| (3.1)

as valid up tc a finite distance, either the Debye length d [Grad,
1961b] or the interelectron distance h:n:}/B fcc, p. 1791, and to
neglect all interactions bey-ni this 2istance, From the discussion of
Secticon II, it is roparent that for a large variety of plasmas the next

higher order term beyond the dominant. &zx/bo wvheré x=d or h,

-3 -
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should be considered. Tnis could tLe accomplished w'th the usual cut-off
procedure, but a more realistic method would be to use the Coulomb poten-

tial for close enccunters and a
e-r/d

for the mcre distant encounters.

necessary integrals with this me

shielded Coulomb potential

(3.2)

iboff [1959] has evaluated some of the

thod. We can follow his method to com-

pute the additional integrals necessary for the level of approximation

considered here. Later some of

more exact results of Kihara, Ao

The cross-section integral
Qig)(g) = 2r | (1- cos? x)b

the first to be computed using t
second with the shielded potenti
bo << L <<d vwhere bO and d
the Coulomb potential the angle

parameter b by

2-
cos Y =
x +1
where
S u 82
*=2b2——1‘1§'
2.2 . e
i

Substituting this form intc the

i=3,4 we get

2
x

(3)
o} tn(1433) -

3r 2
= --2- (Td)

tn(140)- 3

Al . 2 (ra)?

37

the results wiil pe compared with the
no and Itikawa [1963].

of (2.18) is separated into two parts
ok
db + 2w'§‘(1- cos? y)pav

he Cculomb potential (3.1) and the
al (3.2).
are defined in (2.2) and (2.3).

of deflection is related tc the impact

L 1is some distance satisfying

For

(3.3)

cross-section integral for the cases

x§(2x§+1)
x§+l)2

4 6 3

2 %t3 %tE

X "3 .3

(xo+1)

2

(3.4)

QN

)
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with
2
.. ZiZ e
1l
3 Hyy8 ¢
and
x| =
C 14
Now the uverage value of x is
2L <“- ”1 s&» ~ i
<xy> = = SeE>1 (3.5)
i ;) 0

(2)( ) and neglect terms of order l/xg or less.

sO we can expand Qc

Q§3)(g) s 3r ('rd)e &(%\) - %
- s (3.6)
Qib)(g) o (1d)2 | o (%) - g

For the shielded potential Liboff [1959] has shown that

X = T <§> (3.7)

vhere Kl is the modified Bessel function of the seccond kind. Making
the small angle approximation sin y~ we arrive finally at
(3) I \2 5 L 1
= 1d!} -n = e = - +n
5c JW( d, d > Y n 2
(3.8)

(1) (3)
W' = 3 e

Letting
1 2
_ 3 uizs
Y= TRT
and
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the cross-sections are (including those obtained by Liboff)

2»— -
b

Q(l)=lnr(_0.> ﬂﬂ(bﬂ)-%-yh’m?

y i 0 i

2 N

b
.Q(2)=8ﬂ-;9 w(§>-1-7+&19
= ° 4 (3.9)
0 7 |
= 12w (;—) ﬂn(%g)-3~7+2r2
.
() [o(g)- 50 oee

*
We now need the average cross-sections UQQ(E’S) given by (2.17),

which can be rewritten in the form

o2 (2,s)* 2(g+1) é‘m -y .s+1.(z) |
Q e TR, (y)a .
RETRY " (s+1)1[2241-(-1) %] T (3.10)

Inserting the expressions for Q( )(y) we arrive at integrals of the
form {c=constant)

gEﬂ( o c] o ydy = “(s)[y(s) -c + /n( B (3.11)

5-1

where for s integer the Psi-function v¥(s)= -7+X % where 7=O.5'(72-
n=1

is Euler's constant. This first integral may be evaluated bty integration

by parts or located in Bierens de Haan [1957]. The general expressions

for the average cross-sections are

8-1
2. (g,8)*  bm(s-1)1 2 1 _ 1
n'*’ =l§—-§—sﬂ! b %A-2-27+Z = (3.12)

-33 -



- s-l -
2.(2,8)* lom(s-1)1 .2 , 1
mo Q = S'fl ! bO gﬂA - 1 0= 27 + g ;
L n=1 N
B 5=-1 )
2.(3,8)*x 1em(s-1)1 .2, 7 T f1
TR = S i b A - g - 2)‘+L_J = (3.12)
_ a=1 J
2, (b;s)*  16m(s-1)1 .21, oo 1
@ S SO TN M T A H)
L n=1 _
where
4kTd 2d
193¢

We now have the cross-sections necessary for the calculation of the
traasport properties of mixtures of charged particles to the levels of
arrroximation considered in Section 2. To dominant order, i.e. when
inA>> 1, these results, using a screened Coulocmb potential, agree with
those obtained by using the unscreened potential together with a cut-off
of the integrals at the Debye length. We can now compare some of these
ex>ressions with those cbtained by the more exact methoed of Kihara,

Acoo and Ititawa [1963]. They examine in detail several phenomena in a
tizary plasma and obtain expressicns equivalent to the average cross-

(E;S)* R
with Z=s=1 or 2 . For the case ¢f relaxation

gsections ﬂu2n
btetween electron and ion temperatures (f=s=1) they obtain the same

excression as in (3.12) with a different screening constant

2 KT
4° = (3.13)
2 lnrnee2

wvhere ne is the number density of the electrons. This is equivalent
to neglecting the shielding by the ions in the earlier definition of

the Debye length (2.3). For the cases of attenuation of low frequency
osciliations and diffusion across a magnetic field (¢=s=1) they obtain
a screening constant between (3.13) and (2.3), thus indicating that
screening by ions is only partially effective. For the cases of the re-
laxation of an anisotropic distribution of ion velocities, and of thermal

coaductivity across a strong magnetic field (£=8=2) they agaia obtain

T




tu. same result as in (2.12) with the effective screening constant
between (3.13) and (2.3). Thus, in thcse cases where ccmrarison is
possible, we see that the results cbtained with the shielded potential
are very close to the mcre exact results.

A difficulty in the above treatment arises in very dense plasmas
when the Debye length d <turns out to be less than the interelectron
distance h . Thus argcn at 1 atm pressure and lSOOOOK has only
about five electrons in a Debye sphere. In this case the ccncept of the
Debye length as a shielding distance is lcst. The rractice adopted in CCand
Cohen et al [1950] is tc uee the cut-off prccedure with the distance h
rather than d . This aprears tc be the only alternative with the
present state of the thecry.

3.2 Binary Electron-Icn Plasma

This case has already been considered by several authcrs. The most
accurate and detailed work seems to be that of Landshoff [1249, 1951] and
Cohen et al {1950) and Spitzer and Harm [1953]. Landshcff used a reduced
form of the Chapman-Insiog method out to the fifth approximaticn (in
the notation cf this report) for the properties in the absence of a
magnetic field. Spitzer and co-workers derived tneir results by a nu-
merical analysis of Zg. (2.1) with a Fokker-Planck rather than a Boltz-
mann collision term. 3Beth treatments consider 2 plasma with no mean
velocity, neutral in the large, and with no pressure gradients. They
assume further that the ions have a Maxwellian velceity distribution
and hence do not contribute to the heat and current fluxes. This assump-
tion also reduces the number of terms in the linear equaticus which

result from the Charman-Enskog method used ty Landshoff.

The results for the electron-singly charged ion plasma are generally
presented as the coefficients of Zgs. (2.47) for the current and heat

fluxes,

(3.14)
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red

The results of Spitzer and HHirm for these coefficients can be written

as follows:

g
8
(@ o]

2
5
>

m ee én A
3/2
a = 0.4155 & H3
m e fnA
(3.15)
romy /2
B = 1.890k kT

5/2
k.(KT)

K' = 2.2878 == —

Jme e n A

As before the true thermal conductivity is obtained by setting the

current equal to zero. They obtained

K=¢eK' (=x) , € = 0.4189 (3.16)

Landshoff [1951] obtained equations of the same form as the above with
slightly different numerical coefficients in his fifth spproximation.

His results will be presented later.

To approximate the model used by these workers with the computer
program, we can perform the zalculations for various ion/electron mass
ratios. The more massive the ion, the smaller will be its average
velocity and the less will be its contribution to the transpu:t proper-
ties. Landshoff neglected the icn velocity in rerforming the integraticrns
over the impact parameter. Further, to agree with these authors, we need
to consider only terms of dominant order. The same definition of 4
must also be used, since this has been taken slightly differently in the
papers referred %o above.

Examination of the expressions (2.14), (2.15), (2.26) and (2.34) for

l») T
913 ’ Di »

A' and 7 in conjunction with formulas (2.42a), (2.43a),

*
' )In a binary mixture D is dencted by O fcllowing MTGL.

i, 1]
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(2.45a) and §2.h6a) shows that the coefficients must be of the same

form as those of Spitzer and HHErm with a different numericel ccefficient
depending on the level cof approximation and on the ion/electron mass
ratio. The varfous approximations will be given in the tables to follow
after divisior by some standard quantity. Tables 1 and 2 give the
resu'ts frcm the calculations of the thermal conductivities K' and X
after division by the first approximation to the electron thermal coen-

ductivity. The latter may be determined from

[R] _75 k ¥T kT

= { »
1 6 JE T czﬂ‘z’e)*

2 (2,2)» .
with m &', as given in (3.12). The results of tne other authors,

(3.17)

who essentially neglect terms of order (m.e/mi)l/2 , are given in the
last cclumn marked o« . The level cf the approximation in the notaticn
of this report is given in the first column. Since the results of
'Spitzer are essentially exact to dominant order, Lhey are given as the
infinite aprroximation. We may note here that the first and second
approxizmations of Marshall [1958] agree exsctly with those of Landshoff
{1951] after ‘he correction by Vaughn-Williams and Haas [1961] is made.
The first approximation as derived by Chapman [1954] also agrees with
+hese results, but his remark that the higher approximations should in-
cerv2se his resuluis by a factor of about 1.4 1is not in agreement. An

explicit formula for the third approximation to the binary plasma thermal

ccnductivity has also Leen deri2d by Inshennik [1962]. Fer ~Jmi/me=h2.9
he says that his formula gives {k]3=0.7hl {Ae] , which also agrees with

the results of this repert.

The first and second approximaticns tc the viscosity, after division
by the first aprroximaticn to the ion viscosity, are given irn Table 3.

The first approximati-n to the ion viscosity is given by

2 TmkT
iy =% 5153 3

S
with the average cross-section T oen(z") given in equation (3.12)
Iu Tables & — € are listed the other coefficients, s.te-~ division by the

corresncnéing result of Spitzer and Hirm.
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TABLE 1. HIGHER APPROXIMATIONS FCR XK' FOR THE FULLY-IONIZED
PLASMA WITH IONS OF SINGLE CHARGE. [K‘}d/[ke]l
mi/me = 1836 10“ 1@6 108 %
m=1 0.3242 0.3127 0.30k2 | 0.3033 0.3032x
m=2 1.4838 1.4737 1.4655 | 1.46LE 1.h6ukyx
m = 3 1.7461 1.734%0 1.7239 | 1.7228 1.7227x
m o= L 1.7591 1.7471 1.7369 | 1.7358 1.7336x
m= S ' 1.7321x
m= 1.7301%
x Londsheff [1951]
Snitzer and HHrm [1953] ]

TABLE 2. HIZHFR APPROXIMATICHNS TO THE THERMAL CONDUCTIVITY
K (=\) FOR A FULLY-ICNIZED PLAS.A WITH ICNS OF
» s r ’/f
SINGLE CHARGE. ‘K]d Lxe]l
T
. g T
m /m = 1836 10" 10° 165 »
i e
n=1 0.3242 °.3127 | ©.3ck2 | 0.3033 C.3030x
m= 2 203242 0.3127 0.30k2 | 0.30323 5.3032%
m = 3 2.7397 0.7269 D.716€ | 0.7155 5.7155x
mo= b4 0.7L0k4 C.7275 ~.7172 | 0.7161 0.7160x
n=75 0.7183x
m=» 0.72L7*

1 Key as for Table 1.

TABLE 3. HIGFER APPRONIVATIONS TO THE VISCOSITY n FCR A
FULLY ICNIZZD PLASMA WITH ICNS OF SiNCLE CHARGE.
[“]m/[“tll

| B L 6 8

- /m = 1836 10 10 10

i’ e

m= 1 0.958> 0.9812 0.9931 | 0.9998
m= 2 1.0851 1.121k 1.1485 | 1.1514




TARLE 4.

HIGHFR APPROXIMATIONS TO THE ELECTRICAL CONDUCTIVITY

FOR A FULLY-IONIZED PLASMA WITH IONS OF SINGLE
CHARGE. [0l /lolgp pypm

A
Key as for Table 1.

mi/me = 1836 10° :{ 106 108 ®

. 1
m=l 0.50F" 0. 5064 0.5064 | 0.5064 0.506kx
m= 2 0.9773 0.9782 0.9784 | o0.9784 C.9784x
m=3 0.9863 0.9872 0.9874 { 0.987k .o87Lx
m = b 0.9933 0.9943 | 0.9945 | 0.99L5 | 0.993ux
m=5 ~Lo05hx
m=® 1.0%

TABLE 5. HIGHER APPROXIMATIONS TO A& FOR A FULLY-IONIZED
T C » T Y
PLASMA WITH ITONS OF SINGLE CHARGE. LS]m/ \s]SPITZER
m,/m_ = 1836 10" 106 1@8 %
i ¢
1
i
m=1 0.3958 0.3957 0.3957 | £.3957 C.3957x
m= 2 1.0096 1.2102 1.0103 | 1.010 1.0103x
m=2 0.9903 0.99C9 0.9910 | €.951C 2.9909x
m=54 0.9983 0.99C9 0.999C | C.99%C 0.9977x
m=5 0.9987x
m= 1.0%
Key as for Table 1. i

TABLE 6. HIGHEL APPROXIMATIONS TO & FOR A FULLY-IONIZED
PLASMA WITH IONS OF SINGLE CHARGE. (al_

m/m = 1837 10" 10° 108 P

i’ e

m=1 0 0 0 0 0

m=2 1.1168 1.1181 1.1134 | 1.118% 1.1284x
m= 3 0.9971 0.9980 35.9982 | 0.9982 C.9¥81x
m= k& 1.0085 1.0094 1.00096 | 1.0095 1.0077x
m=5 1.0950x
ma= o 1.0%
Key as for Table 1.
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TABLE 7. HIGHER APPROXIMATIONS TO THE THERMAL CONDUCTIVITY
A' TFOK A FULLY-IONIZED PLASMA WITH IONS OF

]
SINGLE CHARGE. [x }m/[xe}l

l
m, /a, = 1837 10* 10° 108

m=1 0.3242 0.3127 0.30k2 | 0.3033
m= 2 0.6064 0.5891 C.5868 | 0.5859
m= 3 0.9627 0.9499 0.9397 | 0.9386
m=4 0.9668 0.07"1 0.9437 | 0.9k26

In 211 of the results we note that, for any level of approximat’on,
tze coefficients are fairly inderendent cf the icn/electron mass ratic.
In the worst case, that of the viscosity, the difference is only abcut
"4 between the viscosity of a hydrogen plasma and the hypothetical
tiasas whose Ion has 108 times the i 35 of the electron. The corres-
rcading difference for the thermal conductivity is about 4% , and less
<zan 1% for the cther coefficients! Ve thus have rigorous support for
the simple arguments which shcw that we may neglect the electrons when
ccoputing viscosity, and neglect the ions (but not the electron-icn

interacticn) when ccmputing the cther ccefficients.

We can ncw exemine the convergence of the Chapman-Enskeg formul=s
£:r the varicus ccefficients. In nc case dces the first approximetic-
give a satisfactory answer. The second approximation to o and B
agrees within a few per cent with the higher approximations, but it Is
zecessary to go to the third approximation for satisfactory results for
¥ and @ . Since the third approximaticn has not teen worked ocut fror
tne viscosity, we cannot cay with certainty how much the second arproxi-
=ation differs from the true result. From study of the rate of con-
vergence zad of the other ccefficients !t would appesr that the seccnd
arproximaticn would agree within 2 few per cent with the true value.

’ o0y

We noted earlier that the form (Z.22) of the heat flux expressicn,
wvhich was used in this secticn tc afford 2 comrariscon with the results of

other authers, Is not the most convenieat form for computation of th
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thermal conductivity of multi-component mixtures. In subsequent calcu-
lations the other form (2.23) will be used, sc it is worthwhile to
compute the contribution of the second term of (2.24) to the total
thermal conductivity foer the fully ionized gas. This is done in Table ~
vhere [l']m is given, again after division by the first approximatiocn
to the electron thermal conductivity. We note that the thermal conduc-
tivity would be seriously overestimated if we neglected the second term
of (2.24). This term is proportional to the thermal diffusion coeffi-
cier s, and is normally taken as negligible. They are still quite
small in this case, but the denominator contains the term mimJ , whicrh
is also small when both 1 and |J refer to the electron. Thle conclu-
sion is that the contribution of the second term of (2.24), negligible
for ordinary gas mixtures, is definitely not negligible for ionized
gases. From the arguments given abrve, we can probably anproximate (2.2.)

with good accuracy for the partially ilonized case by

(D )
A= a s B —1-1-—- (3.19)
1‘“1
where the subscript 1 refers tc the electron. In the special case ¢f

a binary ionized mixture,

By = Doy //

L™ V3™

are non-vanishing. But alsc

= = n
~ but D22-O SO Ell 0 and only E s and N
T T
Dl=-D2 and nl.n2 .so
T.2
( (0y)
k 12 ~ k 1
=A' = '-L——-_— /"“t’}
A “n nlm1m2 (“12 Ey) =M -5 ey (3.27)
nymyu0, 5

This approximation for the case of more than 2 species will be examined

in a subsequent paper for partially ionized argon.
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3.3 Mixtures of Isctopes; Lorernizian Gas; Quasi-Lorentzian Gas.

As another apriication of the formulas derived in Section 2, we
can consider three :-ecial gas mixtures. The mixture of isctopes <of the
same element, which will suppcsedly have the same force between mole-
eules and nearly the same mass is the first case tc be ccnsidered. e
will teke the masse: 7~ be egual so the results ~ill be the same as for
the pure gas, excert ..at the additinnal ccefficient of self diffusicn
will be considered. The thermal diffusicn coefficient vanishes identi-
cally for this mixture. For the Lorentzian gas, in whilc: one comrcrnen
of the binary mixture is taken tc have very small mass and concentre-
ticn, there are exact results with which to compare the Chapman-Ensxo

arrroximations. Ornly the diffusion ccefficients will be cconsidered here.

| The last mixture tc te considered will ke that of the quasi-Lorentzian
| gas, & binery mixture of a heavy and a light comporent, the former of
which is in small ccncentration. For this mixture Mason [1957b] dis-
ccvered the exact result for the binary diffusicn ccefficient. He has
also considered these mixtures for certain of the inverse pcwer pcren-

zials using the Chzr=an and Cowling formulation for the binary mixzture.
For the inverse -ower potential
-5
@ = dr ' (3.21)

the cross-secticns -ake the form [8.2-4]

) 2/8
2 ala Ll o ( 3 \
TTUZQ(L’D) - br{g+l) - (%) Ms+2- g)-ﬁ"g}‘(fﬁ;
_-‘ 1 ..’ ;- - _ ;,(; l )
(s+1)1(2¢-1-(-1)°] (3.22)
where
Au)(é) d 3 {1- C<)s£x)y0dy0 (3.23)
with
. 5 1/8
Yo © 5d
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Here. A(‘)(b) is a pure number depending only on & . The Coulomb case

(8=1) has been considered earlier in a somewhat different formulation.
In this section we will consider only terms of dominant order for this
case. The case for 56=2 for (=1,2 has been worked ocut exactly by

Eliason, Stogryn and Hirschfelder [1956] irn terms of sine integrals. We

" also need the cross-sections for (=3,4 for the level of approximation

considered in this report. These can be worked ocut by the same method
as used by Eliason et al. The results for all of the A(E)(a) are

Ay oL g [si(am) - 2s1(m)]

ol

A@ oy - . T (s1(sm) - 2si(am)]

(3.24)
A(3)(2) = - % - %g [8i(er) - 2Si{wr) + Si(6mw) - 251(3m)!
Ay o . T [s1(8m) - usi(em)]
where Si(x) 1is the sine integral
Si(x) = §¥ Sig 2 4z (3.25)

These expressions may be evaluated with the help of the sine integral

tables [F.W.A.,1940). The results a-e given in Table 8.

N

TABLE 8. THE QUANTITIES A )(2) OF EQ. (3.23) FCR £=1,2,3,h.

£ =1 i =2 7 =3 7 - L

A(‘)(a) = 0.397601 0.527842 0.712619 0.812981

The case for B5=3 has also been considered by Eliason et al with
an approximate technique due to M~tt-Smith. The A(Z)(3) are written

as a series
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el £
A(z)(ﬁ) _ o2/ z °°Z (1) (ﬁ)(g;:%‘sm) (3.26)

p=C un=1
with the Dp as pure numbers derending only on & . They have been
evaluated by Eliason et al for o up to 4 . Their table, which evi-
derntly contains 2Dp rather than the Dp that they indicate, is re-
rrcduced here in Table 9 after divisiou by 2 . The values deteruined
fer A(l)(3) are given ia Table 10 to four figures though, because of
the slow convergence of this series, they are probably accurate only

cut to three places.

TABL. 9. THE COEFFICIENTS Dp FOR THE SERIES (3.26).

D=O p=l p=2 p=3 p:h

Dp = 0.12719 0.062L435 0.005095 -0.00141 1 0.001585

)
TABLE 10. THE QUANTITIES A<"(3) OF EQ. (3.23) FOR £=1,2,3,bk.

£ -1 BI=1D 2 =3 i = b

A(i)(3) = 0.3116 0.3535 0.h472k 0.503k

A3 the last force law we can ccnsider the gas composed of hard-
stheres of diameter ¢ . This i{s a special case of the inverse power
2/(148), 2 | nyg
case may be treated quite simply with the theory of Section 2 by letting
Q(i’s)*=l for all £ and s .

pctential where we take the linit of 5— with d

The results for the mixture of isotopes or mechanically similar
molecules are given in Tables 11 and 12. The ratio of higher to the
first approximation for the viscosity and thermal conductivity are given

in Table 11 for 5=1,2,3,4 and = . The case of 5&=4 {1s known zs
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Maxwellian molecules and gives the exact result in the first approxima-
tion to all ccefficients. This case was nct computed (though it would be
a gcod check on the accufacy of tr- program) but is merely listed for
reference. Because of the exact result in the first approximation when

5=4 we might exp=ct the convergeunce to be poorest for S=1 or B=z=x .

We see from the table that 5»=1 do~s indeed give the slowest convergence.

TABLE 11. HIGHER APPROXIMATIONS FOR THE THERMAL. CONDUCTIVITY AND
VISCOSITY OF A MIXTURE OF ISOTOPES FOR THE INVERSE
POVER POTENTIAL.

(M]/ (A (nl/(n],
m= 2 m= 3
) 1.02272 1.02483 1.01486
4 1.0 1.0 1.0
3 1.C0269 1.00274 1.00172
2 1.02500 1.025¢8 1.01579
1 1.25000 1.26hL4 1.15169

We should note that, because of the vanishing c¢f the thermal diffusion
coefficlent for this case, the first and second approximations must be
identical, even without the results of Muckenfuss and Curtiss [1958]
(See Section 2.3). For this reason two terms in the Scnine polynomial
expansion generally are called the first approximation t¢ the thermal
conductivity. This convention is followed in Table 1l1.

In Table 12 are listed the self-diffusinr ccefficients for the
same values of & as well us for others which have been worked out by

Mason [1957b]. Here again the slowest convergence is found for =1 .
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it is necessary to use successively smaller ratios of these quantities
in the computations until the coefficients appear to have reached their
limiting values. Ratios of nl/n2 or ml/m2 which are smaller or
larger than a certain size will cause exponent over- or undsrflow in
+he computer when certain cf the determinant elements are evaluated,
thus leading to unkncwn inaccuracies in thr final results. Fortunately,
convergence of the formulas occurred for ratios which the program could

safely handle.

The results for Lorentzian gés are presented in Tables 13 and 1k.
Also listed are the mass and anumber ratios necessary to assure that the
various approximations had converged to thelr Lorertzian values, and some
results taken from Mason [1957b].

“TABLE 13. HIGHER APPROXIMATIONS C THE DIFFUSION CCEFFICIENTS
OF A LORENTZIAN GAS FOR INVERSE PCWER POTENRTIALS.

[Dlelm/[olell
m=2 m =3 m=4 exact nl/n2 ml/m2
% 1.0833 1.1068 1.1165 1.13177 1@'5 10'5
12 1.039+ 1.048* 1.05624 o) 0
10 1.032% 1.039% 1.04528 0 0
8 1.023# 1.027* 1.03120 0 0
6 1.010% 1.012% . 1.01373 0 0
L 1.0 1.0 1.0 1.0 0 0
3| 1019 | 10131 | 10135 | 1o1m3 | 1077 | 107®
2 1.1250 1.1302 1.1312 1.13177 1977 10'6
1] 32500 | 3.3906 | 3.505 | 3.39531 10 | 107®
* Taken from Msson [1957b].

- 47 -




TABLE 14. HIGHER APPROXIMATIONS TO THE THERMAL DIFFUSION RATIO
' POR A LORENTZIAN GAS FOR INVERSE POWER PCTENTIALS.

[k'I‘]rz/[k'I‘]exact

= o 2 n=3] n=bk [ojo, [o/m
i
» |0.7692 0.8941 | 0.9388 1072 107
12 | 0.8Lox 0.939* 0.968% 0 0
10 | 0.865+ 0.9LkT* 0.972% 0 0
i 8 |0.889 0.959% | 0.979*% 0 0
6 |0.928¢ 0.975* 0.998* 0 0
b | 1.0 1.0 1.0 0 o
3 11.058% | 1.0135 | 1.005k 1077 107°
2 |1.1111 1.0133 | 1.0043 1077 10'5
1 | 0.7692 1.0138 | 1.0012 1070 107

*  Taken frcm Masoa [1957b].

We note that the error in the first approximation to the diffusion
ccefficient for this mixture is very large, but that the second approxi-
=zzion is quite close to the true value. The rate of convergence of

the thermal diffusion ratic is quite slow for this case. Again the
inverse single pcwer rotential demonstrates the slowest convergence.
Fortunately this case cannct cccur in rractice since electrons and ions
st be present in nearly equal lensities at any point except near the
tcundaries in a real plasma. Note that the so-called Lerentzian gas

for the fully-icnized plasma [see e.g. Spitcer and Hirm, 1953] takes the

limit ml/m210 but retains n Thus the ions are at rest, but

=n,. .
ihe electrons and ions are preieni in equal densities.

For the quasi-Lorentzian mixture Mason [1957b] nas discovered
tzat all approximations give the exact result for the binary diffusion
coefficient. As a check on the computer program we verifled that we
cculd dupliicate this result for the cases 5=%,3,2,1 . Agreement was
achieved out to better than six significant figures with the mass ratics

listed in Table 15. The results for the thermal diffusion ratio are
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also given in this table.

No exact result exists for this coefficient.

TAHLE 15. HIGHER APPROXIMATIONS TO THE THERMAL DIFFUSION RATIO
FOR THE QUASI-LORENTZIAN GAS WITH THE INVERSE POWER
POTENTIAL. [kT]m/[kT]l

m= 3 m= 4 nl/n2 :n,l/m2
<5 4
o 1.0455 1.0515 10 10
12 1.031% 1.034* 0 0
10 1.028# 1.031» 0 0
8 1.023% 1.026# 0 0
6 1.016* 1.017* 0 0
4 1.0 1.0 0 0
3 0.9839 0.9827 1077 106
2 1.0909 | 1.1098 1077 108
1 1.1360 1.17k2 1077 106
* Taken from Mason [1957b].

We note again the slowest convergence for the Coulomb potential, though

again this case cannct exist in practice,

The rate of convergence for

this mixture is considerably better than for the Lorentzian gas.
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L. DOISCUSSION AND CON‘LUSIONS

In this repcrt the usual Chapman-Enskcg formulation of the *ransport
ororerties of multicomponent mixtures has been extended to higher
aprroximations. The expressions derived are, strictly sreaking, arpli-
cable only to non-reacting mconatomic gases with no internal degrees of
freedom. However, with the -xcerntion of the thermal conductivity, they
can prcbably be used with su . :ss for gases in which reacticns are
taxing place and even ior polyatomlc gases. The correcticns necessary

or the thermal transpcrt In monatomic gases were given in Section 2.3.

We saw in Secticn 3.2 that it is necessary to use at least the

third approximation to cbtain accurate results r the thermal conducti-
vity and thermal diffusion ccefficients of ionfzed gases. The seccnd
aspreximations to the viscosity and te the diffusicn ccefficient cof th
electrcns appear to give guite accurate results. The thecretical re-
lations are quite complicated in this level of arrroximation and it
would be worthwhile tc derive simpler exvrescion. which arrroximate the
exact 'esults. The accuracy of any arpproximate relaticns can only te
*udged by the agreement /or lack ~f agreement) with the accurate resul%s
cbtained with the expressions given here. For extensive calculaticas of

e properties of gases it would arprear preferatle tc use the full ex-

c?
P

cressions. In spite of ccmplexity of the fermulas, actual computaticns
rroceed quite rapidly cn a typical c¢cmputer. For example, the coefficie “sfar
argon at one atmospilere have been comruted from L?‘“O to 22000 K in

steps of lOOOOh in only about l-minute run time cn the IBM 7090,

These computations were performed with the general Balgoel crogram men-
tioned earlier and the time in~ludes that necessary to compute scme of
the average cross-secticons. Icnized argon is a relatively simrple mixture
cf only three ccmpconents, and somewhat longer time wculd be required for

a mere comrlicated mixture.

Ancther difficulty in usins- the general exrressions arises because
2N

Sty

oot all of the nverage crcss-sections  mo o necessary for the
third approximation have been wcrked cut for the potentlals of inter-

action between species ia more complicated mixtures. Even in argon we
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are limited to the third approximation because the integrals necessary
for the fourth approximetion have not been calculated for the exponential
potential which is used for the atom-atom and atom-ion elastic inter-
action. Here again the presence of high-speed computers should make it
possible to carry through rapidly the cross-section calculations for
various potentials. This 1s not done for the argon case because the
thir? approximation is felt to be adequate. In cases where the cross-
sections are lacking for even the third approximaticn it would certainly
be worthwhile to set up a general program to compute the necessary

cross-gections.

One additional problem not completely resclved concerns the proper
charged-particle-cross section. When ¢» A >> 1, then the Coulomb
potential with the Debye cut-off is adeguate. VWhen A2 >>1 but
¢n A > 1 then a more accurate methcd must be used. The best method at
present appears to be that of Kihara and Aono [1963]. Because of the
complexity of their method, the simple screened potential was used in
this report. Where comparison was possible, the results agree very well
with those of Kihara, Aono and Itikawa [1963]. It appears that no
adequate theory has yet been given for the Coulomb cross-section when

the inter-electron distance beccrmes greater than the Debye length.
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APPENDIX

In this appendix reletions will be given for obtaining the bracket
expressions fram the article of Mason [1957a]. Also presented are tu.
bracket expressions which are not available in either MIGL or Mason's
article. We should note first that both editions of MIGL [1954, 1964]
contain & misprint in Eq. [7.A-S]. The right hand side of this relaticn
should be multiplied by 8 .

Mason [1957a] has derived the higher spproximations for the trans-
port properties of binary gas mixtures with the formulaticn of Chapman
and Cowling [1952]. However, he does not use exactly the same expres-
sions that they present, so some cross-checking of formulas btetween his
article and Section 9.8 of that book 1s necessary to obtain the bracket
expressions. The final translation formulas are, replacing 1 by 1
and 2 by J 1in the expressions of Mascnm,

{ﬁi;ﬁis‘;}z (”f”u \Jﬁﬂ; ?-J:_-lm &y (m'>0) (A.1)
s (o, +n L
(W s3/e(w2) W 3/E(WE)} ;,ERT (-m—i;;i) mfjan'm, (m,m'> 0)
(A.2)
(e .
3/2(W2) B/E(Wz)}ij JT E§E31> ™ ot (m>0>nm')

(4.3)

These same relations may also be used to derive from Mason [1954] some

of the bracket expressions given in MIGL.

™o of the bracket expressions necessary for the third and fourth
approximations in the MIGL formulation are not given in either that book
or in Mason [1957a). They msy be derived from relations given in CC
(p. 157, Fq. (1)]; see also the remarks in Section 9.5 of CC] and the
bracket expressions elready obtained.
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The resultis are

2

B kT ™ 2 35 o(1,2)% 21 (L,2)x
[wi"ff’ /2(W2)] \J/-‘z;—_qﬁ Wjj[‘é UGy - 2 My

(mi+mj)’

v 6a(Lr3) } (A.4)

3
”2 kT M 2 105 .(1,1)* _
W83y = - 8% — 772 ™4 [‘Is "1
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