USNRDL-TR-789 11 August 1964

Contract No. CDM-SR-59-54 Subtask 1113A

DESIGN CRITERIA FOR ROOF WASHDOWN

Phase II. Fallout Removal Studies on Typical Roofing Surfaces for Three Size Ranges of Particles (44 to 88 μ , 88 to 177 μ , and 590 to 1190 μ).

by R. H. Heiskell W. S. Kehrer N. J. Vella

. 🕈

AD 609413

5

.

2. 5 3 7 3.66 4.675 7012

U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY

SAN FRANCISCO · CALIFORNIA · 94135

Enclarate (1. PV

TECHNICAL DEVELOPMENTS BRANCH R. R. Soule, Head

CHEMICAL TECHNOLOGY DIVISION N. E. Ballou, Acting Head

ADMINISTRATIVE INFORMATION

The work reported was part of a project prepared for the Office of Civil Defense, Department of the Army-OSA, under Contract No. CDM-SR-59-54, Subtask 1113A.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

OCD REVIEW NOTICE

This report has been reviewed in the Office of Civil Defense and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense.

ABSTRACT

Fallout simulant particles ranging in size from 44 to 88, 88 to 177 and 590 to 1190 μ were deposited at a rate of approximately 2 grams/ min/ft² for a period of 30 min on selected typical roof sections 48 ft long by 8 ft wide, to determine the effect of water flow rate. slope. and surface type on washdown effectiveness. A residual mass of less than 10 % of the 590 to 1190 μ particles was obtained on aluminum shingles, composition shingles, roll roofing, corrugated metal and fiberglass epoxy laminated roof with a maximum of 3.5 gallons of water per minute per foot of roof width (gpm/ft) at a slope of 1:8 or greater. Thirty-five to forty-five percent of the 88 to 177 µ particles was retained on the corrugated metal at this same slope with a water flow of 3.5 gpm/ft of width. A residual of 5 % or less was obtained on roll roofing at a slope of 1:8 or greater with a water flow of 3.5 gpm/ft of width with both the 88 to 177 and the 590 to 1190 μ particles. With the same two particle sizes, a residual of 5 % or less was obtained on a fiberglass epoxy laminated roof with a maximum water flow of 1.0 gpm/ft of width at a slope of 1:12 or greater.

PREFACE

Extensive lacoratory studies have been carried out to develop design criteria for roof washdown systems. Following studies of the basic mechanism of transporting particles in small-scale experiments, full-size roof planes were constructed. Typical roofing surfaces were installed on these planes to study washdown effectiveness in removing a wide range of fallout particle sizes.

Removal studies on particles ranging in size from 177 to 590 μ were reported previously in Reference 1. Removal effectiveness on 44 to 177 μ and 590 to 1190 μ diameter particles is discussed in this report.

A complete roof washdown design, based on the design criteria described here and in previous reports, will be developed and presented with cost estimates in a forth-coming report.

CONTENTS

~

×

ABSTRACT
PREFACE
CHAPTER 1 INTRODUCTION
CHAPTER 2 TEST EQUIPMENT AND SURFACES. 3 2.1 Test Plane. 3 2.2 The Water System. 4 2.3 Fallout Disperser. 4
CHAPTER 3 EXPERIMENTAL PROCEDURES
CHAPTER 4 RESULTS AND DISCUSSION
CHAPTER 5 CONCLUSIONS
REFERENCES
APPENDIX A SIEVE ANALYSES
APPENDIX B TABULATED DATA ON WASHDOWN EFFECTIVENESS FOR ROOFING SURFACES
FTOURES
 Test Plane Raised to a 1:4 Slope. Individual Disperser Modified with Side Baffles Fallout Dispersers with Polyethylene Deflector Curtains
Mounted Above a Test Plane
Aluminum Shingles, Installation II

FIGURES	(cont'd)	
5.	Effectiveness of Removal of Particle Size E From	_
,	Composition Shingles, Installation II	16
6.	Effectiveness of Removal of Particle Size E From	
7	Fiberglass Epoxy Surface.	17
(•	Effectiveness of Nemoval of Particle Size E From Poll Poofing	• 0
8.	ROLL ROOLING	10
••	Composted Galvanized Steel	10
9.	Effectiveness of Removal of Particle Size B From	-7
	Aluminum Shingles. Installation II.	20
10.	Effectiveness of Removal of Particle Size B From	
	Composition Shingles, Installation II	21
11.	Effectiveness of Removal of Particle Size B From	
	Fiberglass Epoxy Surface	22
12.	Effectiveness of Removal of Particle Size B From	
	Roll Roofing.	23
73.	Effectiveness of Removal of Particle Size B From	പ .
ղհ	Corrugated Galvanized Steel	24
9 T-T-	Composition Shingles. Installations I and II	26
15.	Effectiveness of Removal of Particle Size C From	20
	Composition Shingles, Installations I and II	27
16.	Effectiveness of Removal of Particle Size E From	- •
	Aluminum Shingles, Installations I and II	28
17.	Effectiveness of Removal of Particle Size C From	
- 0	Aluminum Shingles, Installations I and II	29
10.	Minimum Water Required to Obtain 10 % Residual With	
10	Size B Particles	31
17.	Size C Particles	20
20.	Minimum Water Required to Obtain 10 % Residual With	76
	Size E Particles.	33
21.	Minimum Water Required to Obtain 5 \$ Residual With	
	Size B Particles	34
22.	Minimum Water Required to Obtain 5 \$ Residual With	
	Size C Particles	35
23.	Minimum Water Required to Obtain 5 % Residual With	_ /
a .	Size & Particles	36
C4.	Minimum water required to Obtain 1 p residual on	5 77
Δ.1	Chemilative Screen Analyses of All Particle Sizes	21
	Ammunite Alan and An UTT THEALE ATERS ! ! ! !	~
TABLES		
1.	Washdown Removal Efficiency With Size A Particles (44	
	to 88 μ) Mass Median Diameter - 62 μ	8
A.1	Sieve Analyses of All Particle Sizes	39

TABLES ((Cont 'd))
----------	-----------	---

B.1	Tabulation of Test Data - Surface - Aluminum Shingle.
	Installation II
B.2	Tabulation of Test Data - Surface - Composition Shingle.
	Installation II
B.3	Tabulation of Test Data - Curface - Fiberglass 44
B.4	Tabulation of Test Data - Surface - Roll Roofing 46
B.5	Tabulation of Test Data - Surface - Corrugated Galvanized
	Steel
B.6	Tabulation of Test Data - Surface - Aluminum Shingle.
210	Installation T
B.7	Tabulation of Test Data - Surface - Aluminum Shingles.
201	Installation II
в.8	Tabulation of Test Data - Surface - Composition
5.0	Shingle. Installation I
B .9	Tabulation of Test Data - Surface - Composition
5.7	Shingles, Installation II
B. 10	Tabulation of Test Data - Surface - Aluminum Shingles.
2010	Installation T
B.11	Tabulation of Test Data - Surface - Avurinum Shingles.
2115	Installation II
B.12	Tabulation of Test Data - Surface - Composition
2124	Shingle, Installation T.
B.13	Tabulation of Test Data - Surface - Composition
2.23	Shingle, Installation II
B.14	Tabulation of Test Data - Surface - Fiberglass
B.15	Tabulation of Test Data - Surface - Roll Roofing
B.16	Tabulation of Test Data - Surface - Corrugated
	Galvanized Steel

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

ALL SALLAND TO THE LOOK OF THE SALAND DE TO HALL ALL ALL SALAND STREET

Full-scale roof washdown studies were initiated at Camp Parks, Pleasanton, Calif., to provide design data for an operational washdown system. Phase I of these studies, Fallout Removal Studies on Typical Roofing Surfaces for the 177 to 350 μ and 350 to 590 μ particle size range, was reported in Reference 1. This present report, Phase II, gives the results of comparable tests on the 88 to 177 μ and 590 to 1190 μ particle size ranges and a limited number of tests on the 44 to 88 μ size particles.

1.2 OBJECTIVE

To obtain the data required to develop engineering and performance specifications for complete operational roof washdown systems for existing and new construction.

The specific objective of the studies covered by this report is to determine washdown effectiveness in removing fallout particles of specific size ranges from typical roofing surfaces at various slopes and water flow rates.

1.3 APPROACH

The washdown effectiveness in removing simulated fallout particles from typical roofing surfaces was studied under various conditions to determine the optimum water flow rate and surface slope. Non-radioactive silica particles were used and the removal effectiveness was determined by gravimetric analytical methods. The test parameters included:

1. Test Surfaces: Aluminum shingles, composition shingles, fiberglass epoxy laminate, roll roofing, and corrugated metal roofing.

2. Water Flow rates:* Maximum, 7 gpm/ft of width; minimum, 0.5 gpm/ft of width.

3. Surface Slopes: 1:24 (1 ft vertical to 24 ft horizontal); 1:12; 1:8; 1:6; and 1:4.

4. Fallout simulant particle sizes. To simplify these series of studies, the following five particle size ranges were selected.

Size	Diameter µ	Mass Median Diameter** µ	U.S. Bu. of Stds. Sieve No.
A	44 to 88	63	325 to 170
B	88 to 177	112	170 to 80
C	177 to 350	262	80 to 45
D	350 to 590	450	45 to 30
Ε	590 to 1190	910	30 to 16

Studies on sizes C and D were reported in Phase I report (Ref. 1) and tests using sizes A, B and E are presented in this report. Sieve analyses of the five sizes studied are given in Appendix A.

5. The simulant particles were deposited at a rate of approximately 2 grams/min/ft².

 * All water flow rates in this report are given in gallons per minute per foot of roof width and will be abbreviated as gpm/ft.
 **These were obtained from a plot of Sieve Analyses (Appendix A).

CHAPTER 2

TEST EQUIPMENT AND SURFACES

A brief description of the test equipment and surfaces is given in this section. For a more detailed description, see References 1 and 2.

At the completion of Phase I of these studies (Ref. 1), the aluminum shingles and composition shingles had become badly dented and worn and were replaced with new shingles which were obtained from the same source as the original materials. In order to differentiate between the original and replacement surfaces, the surfaces used during Phase I are called Installation I and the replacement surfaces used during Phase II are called Installation II. A series of runs with the same test conditions using particle sizes C and E simulant was made on both installations for comparison of the percent residual remaining on the two surfaces. Any differences in results would then be due to slight variations in the surfaces of the roofing materials and the installation.

2.1 TEST PLANE

The test surfaces were supported by rigid frames and were mounted on two tilt planes, each 24 ft wide by 48 ft long. The planes could be individually adjusted to any slope from 0 to 1:4 (Fig. 1) by a hydraulic system. Each plane was divided into three sections, to give a total of six testing areas each 8 ft wide by 48 ft long, with a different roofing surface on each of 5 sections. The sixth section was not used in Phase II studies.

The five surfaces studied in Phase II were:

1. Aluminum shingles* - commercial interlocking roofing.

a. Installation I - Original surface used in Phase I studies - comparison tests made with Installation II.

*Mfg. by Aluminum Lock Shingle Co., Oakland, Calif.

b. Installation II - New surface installed for Phase II test.

2. Composition shingles - commercial roofing shingles. Installation I was replaced with installation II at the same time as the aluminum shingles test surface.

3. Fiberglass epoxy laminate - One sheet of fiberglass bonded to a plywood base with an epoxy laminating resin, covered with a brush coat of the laminating resin after the first coat had cured.*

4. Roll roofing - 90 lb mineral paper applied on a mop-tarred plywood base.

5. Corrugated galvanized steel - 2-1/2-in. corrugations with 1/2 in. trough depth.

2.2 THE WATER SYSTEM

A recirculating water system was used for these tests. This system consisted of a settling and filtration tank and piping for returning the water to the test surfaces (Reference 1). The washdown water was pumped from the tanks to pipe headers located across the 8-ft width at the top of each test surface. Flooding type nozzles** were used in the headers to create a continuous film of water on the surfaces.

2.3 FALLOUT DISPERSER

The fallout dispersal system consisted of 18 individual dispersers mounted over each of the two tilt planes at a height of approximately 24 ft above the test surfaces. During operation, a continuously metered amount of the particles was fed to the individual nozzles, where an air stream picked them up and blasted them against a deflector plate (Reference 2).

However, when the air pressure to the individual nozzles was held constant, the distribution patterns on the test surfaces varied when

* Construction details are given in Ref. 1. **"K" series nozzles, manufactured by Spraying Systems, Inc. the different size particles were dispersed. Accordingly, the following air pressures to the nozzles were experimentally determined as being required to give approximately equivalent distribution patterns for each of the particle sizes.

Size A - 30 psi B - 20 psi C - 15 psi D - 15 psi E - 10 psi

The lower air pressure gave uniform coverage of the test surfaces with the larger particle sizes (C, D, and E) when 18 in. wide taffles were mounted at about 60° angles to the horizontal on all four sides of the 4 ft by 4 ft plywood backing panels of each disperser (Fig. 2). The higher air pressure was required on the small size particles (A and B) to give wider distribution and prevent high concentrations directly under the individual dispersers. To prevent excessive dispersion of the fine particles beyond the test surfaces at the higher air pressures, curtains were hung on the outside edge of the individual dispersers that were above the outer edges of the tilt planes. Polyethylene curtains 4 ft wide by 10 ft long (Fig. 3) on each of these dispersers proved to be the most satisfactory of the wide variety of sizes and methods of attachment that were tested.

CHAPTER 3

EXPERIMENTAL PROCEDURES

In all the washdown effectiveness studies, a fallout dispersal period of 30 min at a fallout rate of approximately 2 grams/min/ft² was used. This rate and the total amount deposited were used because they represent an extreme case which greatly exceeds the maximum that would be expected from a land surface nuclear detonation. The fallout dispersal was started after the washdown water was turned on, and the test surfaces were completely wetted. The washdown water flowed during the 30 min dispersal period and for an additional 30 min after the cessation of fallout. The particles removed from each test surface during this 1-hr period were collected in a 325-mesh sieve (Ref. 1). After the washdown period the sieves were replaced with clean ones, and the residual fallout simulant on the surfaces was removed by careful flushing with a garden hose.

The dry weight of the simulant fallout particles collected in the sieves was obtained by multiplication of the net wet weight of the particles by a ratio that was constant for each particle size. This net wet weight was obtained prior to the studies by submerging the sieves and contents in water, allowing them to drain for exactly 10 minutes, and then weighing them and subtracting the weight of the sieves. The ratio of the net wet weight to the dry weight of the particles was determined in calibration runs to be 1.25 for the 590 to 1190 μ particles (Size E), and 1.27 for both the 88 to 177 μ particles (Size B) and the 44 to 88 μ particles (Size A).

CHAPTER 4

RESULTS AND DISCUSSION

4.1 REMOVAL OF SIZE B AND E FALLOUT PARTICLES

The washdown effectiveness results for five surfaces at the various slopes with different water flow rates are plotted as percent residual vs water flow rate, and are shown in Figs. 4 through 8 for Size E particles (590 to 1190 μ), and Figs. 9 through 13 for Size B particles (88 to 177 μ). The tabulated results are given in Appendix B.

t,

Corrugated galvanized steel showed the highest percentage of residual mass remaining of the 5 surfaces tested. A flow of at least 3 gpm/ft of width was required on this surface, at a 1:8 slope, to reduce the residual mass of Size E particles to less than 10 %. At slopes of 1:6 and 1:4, however, a flow rate of 1.5 gpm/ft of width was sufficient to reduce the residual to less than 10 %. With Size B particles on the corrugated, the residual mass was approximately 25 to 30 % of the total deposit with a flow of 7 gpm/ft of width at all three slopes studied. The high residual with the fine particles is due to the fallout s teking to the crest of the corrugations, whereas the larger particles roll off. It should also be noted for this surface that the effect of slope on residual is very small. In other words, increasing the slope from 1:8 to 1:4 has little effect on the removal effectiveness.

A flow rate of approximately 2 gpm/ft of width is sufficient to give 10 % or less residual on all the other surfaces except the aluminum shingle surface at a 1:8 or higher slope. The aluminum shingles at a slope of 1:8 required a flow of 3.5 gpm/ft of width to reduce the Size E particle residual to 10 %, while the same flow at the same slope removed only 70 % of the Size B particles. The washdown was more effective on the fiberglass epoxy surface than on any of the other surfaces. A flow rate of 2 gpm/ft of width gave a 99 % removal of the Size B particles at slopes of 1:6 or higher and 1 % removal of the Size B particles at a slope of 1:8 or higher.

4.2 REMOVAL OF SIZE A FAILOUT PARTICLES

The limited number of tests conducted using Size A particles (44-88 μ) are given in Table 1. The flow rates in Table 1 were selected as sufficient to give less than 10 % residual.

No definite conclusions were drawn from the test data for Size A particles because too few tests were run. Generally, however, the

DABLE 1

Washdown Removal Efficiency with Size A Particles (44 to 88 μ) Mass Median Diameter - 62 μ

	1:4 Slope		1:8 Slope		1:24 Slope	
	Residual	Flow Rate gpm/ft#	Residual	Flow Rate gpm/ft*	Residual (%)	Flow Rate gpm/ft#
Aluminum Shingles (Installation II)	4.2	3.0	10.5	5.3	•	
Composition Shingles (Installation II)	10.3	3.0	9.1	5.0		
Fiberglass Epoxy Isminate Roll Roofing	0.7 4.0	2.0 3.0	0.5 8.2	2.0	4.4 15.6	2.0
Corrugated Steel	56.1	2.0				•

"Flow rate in gallons per minute per foot of width.

Solition in

Ser.

percentage of residual mass was slightly higher than for Size B particles for a given set of conditions.

4.3 VARIATIONS IN ROOFING INSTALLATIONS

The comparison of two separate installations of aluminum shingles and composition shingles are shown in Figs. 14 through 17 for Size C and Size E particles. This is given to show how the washdown effectiveness may vary between new and used (or well weathered) installations of the same roofing surface. Composition shingles, Installation II, retained a smaller percentage of both particle Sizes C and E than Installation I at all slopes (Figs. 14 and 15). Aluminum shingles, Installation II, however, gave a lower percentage residual at the 1:4 slope only. At the 1:6 and 1:8 slope this trend showed a reversal in most cases (Figs. 16 and 17). The variations in removal results are due to slight variations in the surfaces of the roofing material and the installation. The variations between the two surfaces serves to point out the importance of using a sizable safety factor in designing an operational washdown system.

4.4 APPLICATION OF RESULTS

Win Wins

It is assumed by the authors that a 10 % residual mass on the roof (reduction factor (R.F.) of 10) is the maximum amount that should be acceptable; that less than 5 % residual is desirable (R.F. of 20); and that a 1 % or less residual (R.F. of 100) should be the design objective.

In order to determine the minimum water flow required to obtain these percent residuals for the various test surfaces and slopes, data taken from Figs. 4 through 17 was plotted in Figs. 18 through 24. Figures 18-20 show the minimum water flow required to obtain 10 \$ residual of the fallout particles on the test surfaces with the particle sizes tested at the slopes shown. Figures 21 through 23 show the minimum water flow required for 5 \$ residual mass, and Fig. 24 the minimum water flow required to obtain 1 \$ residual. Points on the graphs are shown where data was obtained. The absence of a point indicates that the percent residual was higher than the specified amount for the test conditions or that no test was made with that particular set of conditions.

CHAPTER 5

CONCLUSIONS

5.1 CONCLUSIONS

A slope of at least 1:8 is required on aluminum and composition shingles, and a water flow rate of at least 3.4 and 2.1 gpm/ft of width, respectively, are required to reduce the Size E particle residual to less than 10 %. A flow rate of 5.8 and 5.0 gpm/ft of width is required on the aluminum and composition shingles, respectively, to reduce the particle Size B residual to less than 10 %.

Ten percent residual can be accomplished on the roll roofing at a slope as low as 1:12, with a flow of 3.1 gpm/ft of width for the Size E particles and 3.5 gpm/ft of width for the Size B particles.

The fiberglass-reinforced epoxy roof required a flow rate of only 1.5 gpm/ft of width to give 10 % residual at slopes as low as 1:24 with both particle sizes.

The Size E particles can be reduced to less than 10 % on corrugated metal with a flow of 3 gpm/ft of width or less, at slopes of 1:8 or higher. The Size B particles, however, gave a residual of 24 % at a slope of 1:4 with a flow of 7 gpm/ft of width.

5.2 RECOMMENDATIONS

It is recommended that (1) studies be made of methods of applying the washdown water to the roof through the use of special nozzles and placement of same, (2) a comparative cost study be made of the roof washdown countermeasure vs roof shielding required to provide the same dosage reduction in the interior of a building.

۹.

Fig. 1 Test Plane Raised to a 1:4 Slope

Fig. 2 Individual Disperser Modified with Side Baffles

Fig. 3 Fallout Dispersers with Polyethylene Deflector Curtains Mounted Above a Test Plane

14

autor allowers

....

i.

Fig. 4

15

• ×**●**

•

.

Fig. 5

3

ويتعاديهم والمعالية

ł,

Fig. 6

Fig. 7

.

Fig. 8

Fig. 9

and the second of the state of the second second

esta.

i,

Fig. 10

21

۰.

Assess the

Fig. 11

•••

. . .

Fig. 12

Fig. 13

.

Figs. 14-17 Washdown Effectiveness on New and Weathered Roofing Surfaces

.

•**

Fig. 14

Fig. 15

•

ŧ,

Fig. 16

i.

Fig. 17

29

•

.

ł

31

an an an an an an an an an

Fig. 20

33

•.

Pig. 21

Fig. 22

:

Fig. 23

ř,

t

.

Fig. 24

37

· ·

REFERENCES

- R. H. Heiskell, W. S. Kehrer, N. J. Vella, G. Brown, LCDR USN (Ret). Design Criteria for Roof Washdown System. Phase 1. Fallout Removal Studies on Typical Roofing Surfaces for Two Size Ranges of Particles (177-350 μ and 350-590 μ), U. S. Naval Radiological Defense Laboratory Technical Report, USNRDL-TR-672, July 18, 1963.
- 2. W. S. Kehrer. A Disperser for Depositing Simulated Dry Fallout Material on Large Roof Surfaces. U. S. Naval Radiological Defense Laboratory Technical Report, USNRDL-TR-609, December 13, 1962.

APPENDIX A

SIEVE ANALYSES

Particle Size E 590-1190 µ

U. S. Sieve No.	щ	*	≴ Cumulative Wt.
16	1190	5.85	5.85
18	1000	15.98	21.83
20	890	41.28	63.11
25	710	18.43	81.54
30	590	6 .6 0	88.14
35	500	3.83	91.97
40	420	2.32	94.29
45	350	1.88	96.17
Pan	0	3.77	99-9
Mass	Median D	iameter 9	10 µ

U. S. Sieve No.	μ	\$	≰ Cumulative Wt.
25	710	0.2	0.2
30	590	1.1	1.3
35	500	13.8	15.1
40	420	39.4	54.5
45	350	39.4	93.4
•Pan	0	5.6	99.5

ł.

t

Particle Size D 350-590 µ

Mass Median Diameter 450 μ

Particle Size C 177-350 μ

U. S. Sieve No.	μ	5	¢ Cumulative Wt.
45	350	2.0	2.0
50	297	12.5	14.5
80	177	81.1	95.6
100	147	2.8	98.4
200	74	1.3	99.7
Pan	0	0.2	99.9

Mass Median Diameter 262 μ

Particle Size A 44-88 µ

U.S. No.	Sieve	μ	96	≴ Cumulative Wt
140		104	0.1	0.1
170		88	4.2	4.3
200		74	6.6	10.9
230		61	50.8	61.7
270		53	10.1	71.8
325		<u>4</u> 4	21.3	93.1
Pan		0	7.0	100.0
	Mass	Median	Diameter	63 μ

88-177 u	Particle Size 88-177 u	B
----------	---------------------------	---

No.	μ	*	∳ Cumulative Wt.
70	208	1.1	1.1
80	174	2.6	3.7
120	124	30.0	33.7
140	104	42.2	75.9
170	88	13.9	89.8
230	61	9.6	99.4
Pan	Ó	0.5	99.5

Mass Median Diameter 112 μ

. .

Fig. A.1 Screen Analyses of Simulated Particle Sizes

BE THIN IS ANTIC

. .

APPENDIX B

TABULATED DATA ON WASHDOWN EFFECTIVENESS FOR ROOFING SURFACES

1

41

٠,

Surface - Aluminum Shingle, Installation II Particle Size - 88-177 μ Surface Dimension - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout period plus 30 min after fallout period

Run No.	Water Flow	Fallout	Deposited	Resi	dual
	gal/min/ft	Total Grams	Gm/min/ft ²	Grams	Percent
		Slop	e 1:8*	<u> </u>	
A-58 A-28 A-59 A-56 A-40	1.0 3.0 5.3 5.3 5.45	22,365 21,096 27,257 18,358 25,057 Av	1.94 1.83 2.37 1.59 <u>2.17</u> e. 1.98	16,321 7,808 4,032 1,856 3,099	73.0 37.0 14.8 10.1 12.4
		Slop	<u>e 1:6</u>		
A-43 A-42 A-41	1.0 3.0 5.5	20,507 25,895 20,417 Av	1.78 2.25 <u>1.77</u> e. 1.93	12,629 2,556 1,130	61.6 9.9 5.5
		Slop	e 1:4		
A-31 A-29 A-30	1.0 3.0 5.3	20,665 20,417 21,005 Av	1.79 1.77 <u>1.87</u> e. 1.79	1,492 564 405	7.2 2.8 1.9

"No runs made at slope of less than 1:8.

Surface - Composition Shingle - Installation II Particle Size - 88-177 μ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

Run No.	Water Flow	Fallou	it Deposited	Resi	dual
	gal/min/ft	Total Grams	Gm/min/ft ²	Grams	Percent
		Slope	1:8		
A-58 A-28 A-27 A-56 A-59 A-40	1.0 1.0 3.0 5.0 5.0 5.0	23,836 23,628 20,074 19,377 24,387 25,779	2.07 2.05 1.74 1.68 2.12 <u>2.23</u> re. 1.98	8,262 7,556 2,712 1,947 2,407 2,327	34.7 32.0 13.5 10.0 9.9 9.0
		Slope	1:6		
A-43 A-42 A-41	1.0 3.0 5.3	24,556 26,775 21,071 An	2.13 2.32 <u>1.82</u> re. 2.09	5,564 2,010 1,150	22.7 7.5 5.5
		Slope	1:4		
A-29 A-30 A-31	1.0 3.0 4.9	24,485 21,388 20,776	2.12 1.85 <u>1.80</u> re. 1.92	3,252 1,286 1,127	13.3 6.0 5.4
No runs	made with slope	of less than 1	8		

43

٠.

Surface - Fiberglass Particle Size - 88-177 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition: 2 grams/min/sq ft for 30 min Washdown Period: During fallout and for 30 min after fallout period

÷.

And the second sec

Run No.	Water Flow	Fallout	Deposited	Residual	
	gal/min/ft	Total Grams	Gm/min/ft ²	Grams	Percent
		Slope 1:	24		
C-73 C-74 C-71 C-101	0.5 1.0 2.0 4.0	22,788 21,725 24,668 19,133	1.98 1.89 2.14 <u>1.66</u>	4,724 2,257 2,144 186	20.7 10.4 8.7 1.0
		Av	re. 1.92		
		Slope 1:	12		
C-78 C-79 C-75 C-76	0.5 1.0 2.0 4.0	28,832 22,901 21,906 24,317	2.50 1.99 1.90 2.11	1,917 151 84 73	6.6 0.7 0.4 0.3
. *		Av	re. 2.13		
		Slope 1:	8		
C-46 C-44 C-55 C-57 C-58 C-56 C-43 C-53 C-53 C-47	0.5 1.0 1.0 1.0 2.0 2.0 4.0 4.0	24,674 23,044 21,460 18,381 18,856 17,929 24,969 20,894 22,008 28,409	2.14 2.00 1.86 1.60 1.64 1.56 2.17 1.81 1.91 2.47	249 113 68 45 45 91 68 91 73 45	1.0 0.5 0.3 0.2 0.5 0.5 0.3 0.4 0.3 0.2
			<u> </u>		
		<u>Slope 1</u> :	0		
C-59 C-58 C-60	0.5 2.0 4.0	21,091 20,273 19,118	1.83 1.76 <u>1.66</u>	265 171 80	1.3 0.8 0.4
Continued		Ave	1.75		

Run No.	Water Flow	Fallout	Fallout Deposited		
	gal/min/ft	Total Grams	Gm/min/ft ²	Grams	Percent
		Slope	1:4		
C-49 C-50 C-51 C-81 C-82 C-61 C-52	0.5 1.0 2.0 2.0 2.0 4.0 4.0	25,693 14,850 20,056 19,303 18,635 18,971 19,446	2.23 1.29 1.74 1.68 1.62 1.63 <u>1.69</u>	136 45 90 84 61 46 46	0.5 0.3 0.4 0.4 0.3 0.2 0.2
			Ave. 1.70		

TABLE B.3 (cont'd)

Surface - Roll Roofing Particle Size - 88-177 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

Run No.	Water Flow	Fallout Deposited		Res	idual
	gal/min/ft	Total Grams	Gm/min/ft ²	Grams	Percent
		Slope	1:24		
C-101 C-71 C-74 C-72	1.0 2.0 4.0 5.5	23,193 25,344 21,996 28,473 Ave	2.01 2.20 1.91 <u>2.47</u> . 2.15	12,191 12,441 5,265 4,342	52.6 49.1 23.9 15.2
		Slope	1:12		
C-78 C-75 C-77 C-79 C-76	1.0 2.0 4.0 4.0 5.5	31,048 22,400 26,118 23,352 25,575 Ave	2.69 1.94 2.27 2.03 <u>2.21</u> . 2.23	7,506 3,657 3,436 2,028 1,512	24.2 16.3 13.2 8.7 5.9
		Slope	1:8		
C-89 C-44 C-55 C-57 C-56 C-45 C-53 C-46 C-90	1.0 1.0 1.0 2.0 2.0 4.0 5.5 5.5	20,712 26,553 24,539 22,491 21,822 31,329 24,788 28,567 20,713	1.80 2.30 2.13 1.95 1.89 2.72 2.15 2.48 1.80	3,599 4,165 3,690 3,363 2,535 2,467 838 611 385	17.3 15.7 15.0 15.0 11.6 7.9 3.4 2.1 1.9
Continued	L	Ave	. 2.14		

Run No.	Water Flow	Fallout	Fallout Deposited		dual
	gal/min/ft	Total Grams	Gm/min/ft ²	Grams	Percent
		Slop	e_1:6		
C-59 C-58 C-83 C-80 C-60	1.0 2.0 2.0 4.0 5.5	25,400 24,361 25,547 21,840 23,399	2.20 2.11 2.22 1.90 <u>2.03</u> Ave. 2.09	2,865 1,927 1,167 425 286	11.3 7.9 4.6 1.9 1.2
		Slop	e 1:4		
C-49 C-50 C-81 C-82 C-61 C-52	1.0 2.0 4.0 4.0 5.5 5.5	29,019 17,384 20,862 20,216 23,522 23,387	2.52 1.51 1.81 1.75 2.04 <u>2.03</u> Ave. 1.94	1,380 452 330 194 365 320	4.8 2.6 1.6 1.0 1.6 1.4

TABLE B.4 (Cont'd)

Surface - Corrugated Galvanized Steel Particle Size - 88-177 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

Run No.	Water Flow	Fallout Deposited		Residual	
	gal/min/ft	Total Grams	Gm/min/ft ²	Grams	Percent
		<u>51</u>	ope 1:8		
C-57 C-55 C-89 C-56 C-54 C-53 C-90 C-47 C-84 C-45	1.0 1.0 2.0 2.0 3.0 3.4 5.0 7.0 7.0	20,653 22,215 17,997 20,110 25,113 22,633 17,521 28,614 21,415 21,391 27,866	1.79 1.93 1.56 1.75 2.18 1.96 1.52 2.48 1.86 1.86 2.42	12,775 13,590 10,300 11,123 13,681 11,258 8,127 12,292 8,557 6,496 6,995	61.9 61.2 57.2 55.3 54.5 49.7 46.4 43.0 40.0 30.0 25.1
		Ave.	1.85		
		<u>S1</u>	ope 1:6		
C-60 C-80 C-58 C-83 C-59	1.0 1.4 2.0 5.0 7.0	20,856 21,215 22,521 22,818 23,180	1.81 1.84 1.95 1.98 2.01	12,096 11,092 11,700 8,647 6,700	58.0 52.3 52.0 37.9 28.9
		Ave.	1.92		
		8	Lope 1:4		
C-52 C-81 C-51 C-50 C-82 C-49	0.8 1.4 1.9 3.0 5.0 7.0	21,649 19,490 22,049 16,388 19,117 26,372 Ave.	1.88 1.69 1.91 1.42 1.66 <u>2.29</u> 1.81	10,715 9,100 8,444 6,202 6,225 6,316	49.5 46.7 38.3 37.8 32.6 23.9

Surface - Aluminum Shingle, Installation I Particle size - 177-350 μ Surface Dimensions - 7.5 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

Run	No. Wa	ter Flow	Fallou	it Dep	osited	Res	Ldual
	ga	l/min/ft	Total Gra	ms g	m/min/ft ²	Grams	Percent
The	following	results wer	e extracte	d fro	m Table B.2	2, Ref. 2.	•
			Slo	pe l:	<u>8</u>		
119 117 116 111		1.95 3.0 4.0 5.1	26,243 27,616 24,265 23,896		2.43 2.56 2.25 <u>2.21</u>	1,989 1,262 838 536	7.6 4.6 3.5 2.2
				Ave.	2.38		
			Slo	pe 1:	<u>6</u>		
231 128 129 232		1.0 2.0 3.0 5.0	21,953 22,455 23,830 22,433		2.03 2.08 2.21 2.08	2,022 1,084 771 369	9.2 4.8 3.2 1.6
				Ave.	2.10		
			<u>S10</u>	pe 1:	<u>4</u>		
126 125 124 123 121		1.0 2.0 3.0 4.0 5.5	20,075 22,757 17,619 21,104 22,388	A.v.o.	1.86 2.11 1.63 1.95 <u>2.07</u>	1,195 637 425 358 391	6.0 2.8 2.4 1.7 1.7
				ave.	1.92		

•
•

Surface - Aluminum Shingles, Installation II
Particle size - $177-350 \mu$
Surface Dimensions - 8 ft wide by 48 ft long
Fallout Deposition - 2 grams/min/sq ft for 30 min
Washdown Period - During fallout plus 30 min after fallout period

Withour Providence

Run No.	Water Flow	Fallout De	eposited	Resid	dual	
	gal/min/ft	Total Grams	gm/min/ft ²	Grams	Percent	
		Slope	1:8			
A-23 A-21-A A-22	1.0 3.0 5.3	28,126 27,641 31,430 Ave	2.44 2.34 <u>2.73</u> . 2.50	17,916 4,571 1,945	63.7 16.5 6.2	
		Slope :	1:6			
A-24 A-25	1.0 5.3	17,794 23,101	1.55 2.01	7,002 500	39.4 2.2	
		Ave	. 1.78			
		Slope	1:4			
A-17 A-18 A-19 A-20	1.0 2.0 4.0 5.3	38,475 35,337 29,896 28,119 Ave	3.34 3.11 2.59 <u>2.47</u> . 2.88	1,418 514 168 156	3.7 1.5 0.6 0.6	

No runs made with slope of less than 1:8.

Surface - Composition Shingle, Installation I Particle Size - 177-350 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Period - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

Run No.	No.	Water Flow	Fallout	Fallout Deposited		Residual	
	gal/min/ft		Total Grams	gm/min/ft ²	Grams	Percent	
The	follow	ing results w	ere extracted f	from Table B.	3, Ref.]	L.	
			Slope	1:8			
230 115 117 118		1.0 1.95 3.5 4.5	20,969 24,310 25,975 25,840	1.80 2.11 2.25 2.24	4,312 2,670 2,514 2,491	20.6 11.0 9.7 9.6	
			Ave	e. 2.10			
			Slope	1:6			
128 232 131 132		1.0 2.0 3.5 4.5	20,266 20,423 21,461 21,930	1.76 1.77 1.86 <u>1.90</u>	2,927 2,190 1,933 1,821	14.4 10.7 9.0 8.3	
			Ave	e. 1.82			
			Slope	1:4			
125 234 122 121		1.0 2.0 3.5 4.5	21,025 22,980 22,523 21,763	1.82 1.99 1.95 <u>1.89</u>	2,726 2,033 1,553 1,553	13.0 8.8 6.9 7.1	
			Ave	e. 1.91			

ŧ

Surface - Composition Shingles, Installation II Particle Size - 177-350 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

No.

à

		Slope	1:8		
A-21-A A-22 A-23	1.0 3.0 5.0	26,820 31,326 2 7, 298	2.33 2.72 2. <u>37</u>	3,537 2,146 1,455	13.2 6.9 5.3
		Ave.	2.47		
		Slope	1:6		
A-25 A-24	1.0 5.3	20,864 17,814	1.81 <u>1.55</u>	2,307 833	11.1 4.7
		Ave.	1.68		
		Slope	1:4		
А-20 А-18 Л-19	1.0 2.0 4.0	24,154 34,655 28,343	2.13 3.05 7.46	1,732 1,575 1,117	7.2 4.5 3.9
		Ave.	2.55		

1

Surface - Aluminum Shingles, Installation I Particle Size - 590-1190 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

Run No.	Water Flow	Fallout		Resid	dual
	gal/min/ft	Total Grams	$gm/min/ft^2$	Grams	Percent
че на селоти и селоти На селоти и с		Slop	e 1:8		
366 365 364 363	1.0 2.0 4.0 5.6	23,690 21,811 19,751 17,420 Av	2.06 1.89 1.71 <u>1.51</u> re. 1.79	8,523 4,086 1,075 453	36.0 18 .7 5.4 2.6
		Slop	<u>e 1:6</u>		
359 360 361 362	1.0 2.0 4.0 5.6	19,366 24,743 23,611 24,404	1.68 2.15 2.05 2.12	5,263 4,856 781 306	27.2 19.6 3.3 1.3
		Ave	2.00		
		Slop	<u>e 1:4</u>		
358 357 356A 356B 356 355	1.0 2.0 4.0 4.0 4.0 5.5	21,652 23,441 23,928 21,267 29,010 19,977 Ave	1.88 2.03 2.08 1.85 2.52 <u>1.73</u>	4,380 2,071 566 350 396 147	20.2 8.8 2.4 1.6 1.4 0.7

No runs made with slope of less than 1:8.

Surface - Aluminum Shingles, Installation II Particle Size 590 - 1190 μ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 gms/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

#Sterre

Run No.	Water Flow	Fallout I	Deposited	Res	iduel
	gal/min/ft	Total Grams	gm/min/ft ²	Grams	Percent
		Slope	<u>e 1:8</u>		
A-10 A-11 A-12 A-13	1.0 2.0 4.0 5.3	24,639 27,904 23,599 27.83	2.14 2.43 2.05 2.42	15,878 7,369 1,958 1,166	64.4 26.4 8.3 4.2
		Ave	2.26		
		Slope	: 1:6		
A-9 A-8 A-7 A-6	1.0 2.0 4.0 5.0	24,041 26,157 23,999 25,796	2.09 2.27 2.08 2.24	7,436 2,705 656 453	30.9 10.3 2.7 1.8
		Ave	2.17		
		Slepe	1:4		
A-4 A-3 A-2 A-5 A-1 A-14	1.0 2.0 4.0 4.0 5.3 5.3	23,701 21,574 18,754 23,102 20,826 22,445	2.06 1.87 1.62 2.01 1.81 1.95	2,003 985 237 215 181 102	8.5 4.6 1.3 0.9 0.9 0.5
		Ave	. 1.89		

No runs made with slope of less than 1:8.

Surface - Composition Shingle, Installation I Particle Size - 590-1190 µ Surface Limensions - 8 ft wide by 48 ft long Deposition Rate - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout

Run No.		Water Flow	Fallout	Deposited	Residual	
		gal/min/ft	Total Grams	gm/min/ft ²	Grams	Percent
			Slope	1:8		
366 365 364 363		1.0 2.0 4.0 5.0	24,007 21,019 19,276 16,662 Ave	2.08 1.82 1.67 <u>1.45</u> 2. 1.7 5	13,322 3,090 2,366 2,366	55.5 14.7 12.3 14.2
			Slope	<u>21:6</u>		
359 360 361 362		1.0 2.0 4.0 5.0	19,140 24,743 23,214 24,030 Ave.	1.66 2.15 2.01 <u>2.09</u> 1.98	7,482 4,856 2,818 3,022	39.1 19.6 12.1 12.6
			Slope	1:4		
358 357 356 356 356	B	1.0 2.0 4.0 4.0 4.5	13,473 23,237 25,439 18,556 19,603	1.60 2.02 2.21 1.61 <u>1.70</u>	3,747 3,362 3,271 1,913 1,301	20.3 14.8 12.9 10.3 6.6
			ί.vc	1.83		

No runs made with slope of less than 1:8.

Run No.	Water Flow	Fallout I	Deposited	Residual	
and and the second s	gal/min/ft	Total Grams	gm/min/ft ²	Grams	Percent
		Slope	<u>e 1:8</u>		
A-10 A-11 A-16 A-12 A-13	1.0 2.0 3.0 4.0 4.8	23,962 26,712 22,898 22,027 25,739	2.08 2.32 1.97 1.91 2.23	6,271 2,886 1,743 1,619 1,687	26.2 10.8 7.6 7.4 6.6
		Ave	. 2.11		
		Slop	<u>e 1:6</u>		
A-9 A-8 A-7 A-6	1.0 2.0 4.0 5.0	23,034 24,754 22,276 25,082	2.00 2.15 1.93 2.18	5,422 1,834 804 9 3 9	23.5 7.4 3.6 3.7
		Ave	. 2.06		
		Slop	e 1:4		
A-4 A-3 A-5 A-2 A-1 A-14	1.0 2.0 4.0 4.0 4.5 4.6	22,648 19,479 22,525 18,314 19,909 22,456	1.97 1.69 1.96 1.59 1.73 <u>1.95</u>	3,248 486 555 283 407 441	14.3 2.5 2.5 1.5 2.0 2.0
		Ave	. 1.82		

Surface - Composition Shingle, Installation II Particle Size - 590-1190 u

No runs made at slope of less than 1:8.

Surface - Fiberglass Particle Size - 590-1190 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

de.

Run No.	Water Flow	Fallout	t Deposited	Re	Residual		
	gal/min/ît	Total Grams	gm/min/ft ²	Grams	Percent		
		Slope	e 1:24				
C-21 C-22 C-23 C-24	0.5 1.0 2.0 4.0	23,249 21,211 24,131 26,056	2.02 1.84 2.09 2.26	ז' 228 4,267 1,7''+ 328	61.2 20.1 7.3 1.3		
		Ave	e. 2.05				
		Slop	<u>= 1:1</u> 2				
C-20 C-19 C-18 C-17	0.5 1.0 2.0 4.0	23,340 21,517 23,045 20,391	2.03 1.87 2.00 1.80	5,309 1,132 306 125	22.7 5.3 1.3 0.6		
		Ave	1.92				
		Sloj	pe 1:8				
C-13 C-14 C-10	0.5 2.0 4.0	21,200 15,812 19,463	1.84 1.37 1.69	2,671 113 79	12.3 0.7 0.4		
		Ave	e. 1.63				
		Slo	<u>pe 1:6</u>				
C-8 C-6 C-7 C-9	0.5 1.0 .0 4.0	19,038 18,042 20,351 22,298	1.65 1.57 1.77 <u>1.94</u>	1,098 170 102 102	5.8 0.9 0.5 0.5		
Continued		Ave	e. 1.73				

Run No.	Water Flow gal/min/ft	Fallout Deposited		Residual	
		Total Grams	gm/min/ft ²	Grams	Percent
		Slope	<u>= 1:4</u>		
C-4 C-5 C-2 C-1	0.5 1.0 2.0 4.0	24,969 21,619 29,610 23,848	2.17 1.88 2.57 2.07	283 102 125 45	1.1 0.5 0.4 0.2
		Av	re. 2.17		

TABLE B.14 (Cont'd)

ĥe

Surface - Roll Roofing Particle Size - 590-1190 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

Run No.	Water Flow gal/min/ft	Fallout Deposited		Rea	Residual		
		Total Grams	gm/min/ft ²	Grams	Percent		
		Slo	pe 1:24				
C-21 C-22 C-23 C-24	1.0 2.0 4.0 5.5	24,493 22,411 25,421 27,640	2.12 1.95 2.21 2.40	23,621 17,057 6,485 2,999	96.4 76.1 25.5 10.8		
			Ave. 2.17				
		Slo	ope 1:12				
C-20 C-19 C-18 C-17	1.0 2.0 4.0 5.5	24,607 23,883 25,105 21,981	2.14 2.07 2.18 <u>1.91</u>	8,931 2,728 1,505 600	36.3 11.4 6.0 2.7		
			Ave. 2.07				
		Slo	ope 1:8				
C-13 C-12 C-14 C-16 C-10	1.0 2.0 4.0 4.0 5.5	24,075 24,894 17,567 25,953 21,075	2.09 2.16 1.52 2.25 <u>1.83</u>	3,407 1,551 532 758 226	14.2 6.2 3.0 2.9 1.1		
			Ave. 1.97				
		Slo	ope 1:6				
C-7 C-6 C-8 C-9 Continue	1.0 2.0 4.0 5.5 d	21,302 18,642 21,596 23,984	1.85 1.62 1.87 <u>2.08</u> Ave. 1.85	1,743 1,007 294 192	8.2 5.4 1.4 0.8		

Run No.	Water Flow gal/min/ft	Fallout Deposited		Residual	
		Total Grams	gm/min/ft ²	Grams	Percent
		Slope 1	:4		
C-25 C-3 C-4 C-2 C-5 C-33 C-1 C-21 C-26	1.0 2.0 2.0 2.0 2.0 4.0 4.0 5.5 5.5	25,274 22,751 26,146 30,277 23,045 25,048 24,460 21,562 24,312	2.19 1.97 2.27 2.63 2.00 2.17 2.12 1.87 2.11	1,256 634 611 690 521 260 136 170 147	5.0 2.8 2.3 2.3 2.3 1.0 0.6 0.8 0.6
		Ave	. 2.15		

TABLE B.15 (cont'd)

Surface - Corrugated Galvanized Steel Particle Size - 590-1190 µ Surface Dimensions - 8 ft wide by 48 ft long Fallout Deposition - 2 grams/min/sq ft for 30 min Washdown Period - During fallout plus 30 min after fallout period

Run No.	Water Flow gal/min/ft	Fallout Deposited		Residual		
		Total Grams	gm/min/ft ²	Grams	Percent	
		<u>S1</u>	ope 1:8			_
C-37 C-13 C-38 C-14 C-29 C-39 C-39 C-16 C-40 C-10	1.0 2.0 2.0 2.0 4.0 7.0 7.0	24,913 21,630 24,857 16,186 24,754 24,619 25,285 20,770 19,966	2.16 1.88 2.16 1.40 2.15 2.09 2.19 1.80 1.73	4,924 3,690 3,328 1,687 2,388 2,015 1,731 1,347 1,098	19.8 17.1 13.4 10.4 9.6 8.2 6.8 6.5 5.5	
		A	ve. 1.95			
		<u>S1</u>	ope 1:6			
C-6 C-7 C-8 C-34 C-9 C-32	1.0 2.0 4.0 7.0 7.0 7.0	17,046 20,690 19,921 27,027 23,147 27,120	1.48 1.80 1.73 2.35 2.01 <u>2.25</u>	2,320 1,754 1,302 1,437 1,177 1,143	13.6 8.5 6.5 5.3 5.1 4.2	
		A	ve. 1.94			
		<u>51</u>	ope 1:4			
C-J; C-5 C-3 C-2 C-1	1.0 2.0 2.0 4.0 7.0	24,448 21,323 21,019 28,523 22,423	2.12 1.85 1.82 2.48 <u>1.95</u> .ve. 2.04	2,705 1,301 1,064 1,913 917	11.1 6.1 5.1 6.7 4.1	
No. muno.	mede et elone	of less than 1				-

OCD LIST

...

INITIAL DISTRIBUTION

Copies

ş

NAVY

..... • •

1	Chief, Bureau of Ships (Codes 320-364A)
2	Chief, Bureau of Ships (Code 210L)
1	Chief, Bureau of Ships (Code 203)
1	Chief of Naval Research (Code 104)
1	Chief of Naval Operations (Op-07T10)
1	Chief of Naval Operations (Op-75)
1	Chief, Bureau of Neval Weapons (Code RRRE-4)
1	Chief, Bureau of Medicine & Surgery
1	Chief, Bureau of Supplies and Accounts (Code L12)
2	Chief, Bureau of Yards and Docks (Code 74,C-400)
2	CO-Dir., Naval Civil Engineering Laboratory
1	Chief of Naval Personnel (Code Pers M12)
1	Comm., Marine Corps Landing Force Development Activities
1	Supt. Naval Postgraduate School, Monterey
1	Naval Research Laboratory
1	CO, Civil Engineering Corps Officers School
	ARMY
3 .	Army Library, Civil Defense Unit
1	Ass't Secretary of the Army (R&D)
2	CO, Army Nuclear Defense Laboratory (Lib., Donnert)
1	Dir., Army Materials Research Agency (Weeks)
3	Dir., Ballistic Research Laboratory (Lib., Allen, Ethridge)
1	CG, Tank Automotive Command (Brooks)
1	CO, Office of Special Weapons Dev., Fort Bliss
60	Office of Civil Defense (Ass't Dir. of Rsch)
l	Office of Civil Defense (Buchanan)
	AIR FORCE

1

Air Force Institute of Technology

OTHER DOD ACTIVITIES

2	Dir., Defense Atomic Support Agency (Lib., Daniel)					
2	Office of Emergency Planning (R&D)					
1	Protective Structures Development Center (Lib.)					
1	Armed Forces Radiobiology Research Institute					
20	Defense Documentation Center					
	AEC ACTIVITIES AND OTHERS					
1	AEC, Division of Biology and Medicine (Deal)					
1	Aeronautical Laboratories Experiment Station					
2	Brookhaven National Laboratory (Lib., Match)					
1	Conesco, Inc. (Satter)					
1	Edgerton, Germeshausen, and Grier (Burson)					
1	ITT Research Foundation (Sevin)					

- 1 Kansas State University (Kimel)
- Lockheed Missiles & Space Division 1
- Los Alamos Scientific Laboratory (Lib.) 1
- 1
- National Academy of Sciences (Park) National Bureau of Standards (Lib., Hubbell, Eisenhauer, Berger) 4 NASA, Scientific & Technology Information Div. (SAK/DL) 1
- No. Carolina State University (Doggett) 1
- 4 Oak Ridge National Lab. (Auxier, Zobel, Blizard, Info Ctr.)
- Ottawa University, Kansas (Spencer) 1
- Pennyslvania State University (Foderaro) Radiation Research Associates (Wells) 1
- 1
- Research Triangle Institute (Lib., Parsons) 2
- Robt. A. Taft Sanitary Engineering Center (Dir.) 1
- 2 Stanford Research Institute (Lib., Miller)
- Technical Operations Inc. (Clarke) 1
- Technical Research Group (Aronson) 1
- United Nuclear Corporation (Kalos) 1
- University of Illinois (Chilton) University of Virginia (Williamson) 1
- 1
- Jniversity of Maryland (Silvermann) 1
- U.S. Public Health Service, Rockville, Md. 1
- Division of Technical Extension, Oak Ridge 25

USNRDL

40

Technical Information Division

DISTRIBUTION DATE: 30 December 1964
<pre>ina- Naval Radiological Defense Laboratory in Washdren. USNEDL-TR-789 USNEDL-TR-789 DESIGN CRITERIA FOR ROOF WASHDGWN. Phase II. USNEDL-TR-789 DESIGN CRITERIA FOR ROOF WASHDGWN. Phase II. PEALlout Removal Studies on Typical Roofing Sur- Fallout Removal Studies on Typical Roofing Sur- faces for Three Size Ranges of Particles (44 to 88 µ, 88 to 177 µ, and 590 to 1190 µ)., by R. H. Heiskell, W. S. Kehrer, and N. J. Vella II. August 1964 68 p. tables illus. 2 refs. II. August 1964 68 p. tables illus. 2 refs. III. Vella II. August 1964 68 p. tables illus. 2 refs. III. Vella, N. J. Fallout similant particles ranging in size from U4 to 88, 88 to 177 and 590 to 1190 µ were deposited at a rate of approximately 2 grams/ min/ft⁶ for a period of 30 min on '' selected typical roof sections '' use to by 8 ft ung by 8 ft vide, to (over)</pre>	<pre>vash- determine the effect of vater flow rate, slope, and surface type on valuable up particles was obtained on aluminum shingles, composition shingles, rol max- roofing, corrugated metal and fiberglass epony laminated roof with a max- if) at imme of 3.5 gallons of vater per minute per foot of roof with (grm/ri e 88 a slope of 1:3 or greater. Thirty-five to forty-five per cent of the slope of 1:7 µ particles was retained on the corrugated metal at this same s with a water flow of 3.5 grm/ri of width. A residual of 5% or less vas obtained on roll roofing at a slope of 1:8 or greater with a water flo with the same two particle sites, a residual of 5% or less was obtaine max/fit of width with both the 80 to 177 and the 590 to 1190 µ particles. With the same two particle sites, a residual of 5% or less was obtaine a floreglass epoxy laminated roof with a maximum water flow of 1.0 gr of width at a slope of 1:12 or greater.</pre>	
<pre>Naval Radiological Defense Laboratory USNRDL-TR-769 DESIGN CRITERIA FOR ROOF WASHDOWN. Phase II USNRDL-TR-769 DESIGN CRITERIA FOR ROOF WASHDOWN. Phase II Fallout Removal Studies on Typical Roofing Sur- Fallout Removal Studies on Typical Roofing Sur- faces for Three Size Ranges of Particles (44 to 68 u, 68 to 177 u, and 590 to 1190 u)., by R. H. Fallout Removal Studies on Typical Roofing Sur- 68 u, 68 p. tables 11lus. 2 refs. II. Heiskell, W. S. Kehrer, and N. J. Vella UNCLASSIFIED II. August 1964 68 p. tables 11lus. 2 refs. Fallout simulant particles ranging in size from 44 to 88, 68 to 177 and 590 to 1190 u vere v. Fallout simulant particles ranging in size from 44 to 88, 68 to 177 and 590 to 1190 u vere v. from 44 to 88, 88 to 177 and 590 to 1190 u vere v. from 44 to 88, 88 to 177 and 590 to 1190 u vere v. from 44 to 88, 88 to 177 and 590 to 1190 u vere v. from 44 to 88, 88 to 177 and 590 to 1190 u vere v. from 44 to 88, 88 to 177 and 590 to 1190 u vere v. from 44 to 88, 88 to 177 and 590 to 1190 u vere v. from 44 to 88 k ft long by 8 ft vide, to v. full to 100 k vide, to v. full long by 8 ft vide, to v. full long by 8 ft vide, to v. foren for long by 8 ft vide, to v. for long by 8 ft vide, to v. for long v. for a period of 30 min on v. for long v. for long v. for long by 8 ft vide, to v. for long v. for long</pre>	determine the effect of vater flow rate, slope, and surface type on down effectiveness. A residual mass of less than 10% of the 550 to particles was obtained on aluminum shingles, composition shingles, roofing, corrugated metal and fiberglass epoxy laminated roof with a immu of 3.5 gallons of water per minute per foot of roof with $(grm/a \ slope of 1.3)$ a slope of 1.8 or greater. Thirty-five to forty-five per cont of the to 177 µ particles was retained on the corrugated metal at this same with a water flow of 3.5 grm/ft of width. A residual of 5% or less i coltained on roll roofing at a slope of 1.8 or greater with a water f 3.5 grm/ft of the 8 to 177 and the 590 to 1190 µ particle sizes, a residual of 5% or less was obtain a fiberglase epoxy laminated roof with a maximum water flow of 1.0 g of width at a slope of 1.12 or greater.	UNCLASS