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LUNAR-SOLAR PERTURBATIONS OF THE ORBIT OF AN EARTH SATELLITE 

Introduction 

Shortly after the launching of Able-3 (1959 delta), Y. Kozal of the 

Smithsonian Astrophyslcal Observatory predicted that the lifetime of this highly 

eccentric satellite would be greatly shortened by the influence of the moon. To 

confirm this prediction, the following simplifiéd^analysis of /the/lunar-solar 

perturbations has been made. It is assumed that the Kepler ellipse of the satellite 

is perturbed only by the sun and moon, ignoring, for the moment, the perturbations 

of the orbit by the earth's oblateness and atmosphere. It is also assumed that the 

angular velocities of the sun and moon are small enough compared to the angular 

velocity of the satellite/that we may/consider the sun and moon fixed during one 

revolution of the satellite. This simplifying assun^tion makes possible the integration 

of the instantaneous rate of change of the orbital elements over one revolution 

of the satellite to obtain the change in orbital elements per revolution The magnitude 

of the error made by holding the disturbing body fixed is estimated. The results 

are applied to the orbit of^(L959 delta). //, ^ ^ 

The Changes in the Orbital Elements 

We start with Moulton's equations* giving the rate of change of the orbital 

elements of the instantaneous osculating ellipse when the perturbing acceleration 

has a radial component R, a transverse component S in the plane of the instantaneous 

ellipse, and a component W normal to the plane. The rates of change of the se^u-major 

axis, a, and the eccentricity, e, are affected only by the in-plane components R and 

S. 

* Moulton, An Introduction to Celestial Mechanics, Second Revised Edition, pp.2j04-4Q5. 
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The rates are- 

da 2e sin v vk 2a 
— = - n + - S 

dt n \Zl-e2’ 

(1) 
nr 

and 

^ r~? de yl-e 

dt 

sin v ^ . 7]2' 
R + 

na 

1-e 

2 
na e 

2 /-, 2\ a (1-e ) 
- r S, (2) 

where n is the satellite's mean angular motion, r is the radial distance of the 

satellite from the center of the sarth, and v is the true anomaly of the satellite's 

orbit• From the definition of perigee, 

q = a (l-e), 

we obtain for the rate of change of perigee, 

_ (l-er 

dt n \/l-e2' 

(- sin v) R + -CO- - - cos v) S 

1 + e cos v 

(3) 

The orbital inclination i, the nodeA, and the argument of perigee u) (all measured 

relative to the plane of motion of the disturbing body) change at the rates 

di __ r cos (œ + v) w 

,, 2 F' 
dt na vl-e 

(4) 

dfL 

dt 

r sin (cu + v) 

na2 \Jl-e sin i 
7 (5) 
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and 

à® _ ^ àA 7l-e^ — t= — cos i- 
dt dt nae 

R cos V - S 2 -f e cos y 

1 + e cos V 
sin V 

The components of the disturbing acceleration , are 

R » GMjj s 
+ aD -3] [ C0S ^ C0S U + E'*'n ^ S'i‘n U COS ^ 

S “ GMjj 

and 

1_1_ 
3 3 

p VJ L 
cos v sin u + sin y cos u cos i 

W = - GMjj aQ sin y sin i 1_ 
3 3 

p V 

where G 

«D 
u 

0) 

0 

aD 

i 

r 

the universal gravitational constant 

the mass of the disturbing body (sun or moon) 

œ + V 

argument of perigee 

distance from the satellite to the disturbing body 

distance between the earth and the disturbing body 

inclination of the satellite's orbit to the plane of the 
body 

angle between the line of nodes and aD 

* 

(6) 

(8) 

(9) 

disturbing 

Moulton, page 340. 
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These symbols are further clarified by reference to Figure 1 in which the plane 

of motion of the disturbing body is taken as the x-y plane. We shall assume that 

aD is a constant. In other words, the orbits of the moon and apparent sun are 

assumed circular. If r is always small compared to a^, the accelerations can be 

expanded in powers of . Then equations (?), (8) and (9) become, to first order, 
D 

R = KD r ( 1 + 3 cos 2 ¿), (lO) 

cos r sin u - sin y cos u cos i'j , (ll) 

and W = - 6 r cos sin i sin y, 

where 9( is the angle between r and aD, and 

S = - 6 K, r cos 

(12) 
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Figure 1 

node. 

distance from earth to disturbing body, D. 

distance from satellite to disturbing body, 

distance from earth to satellite, 

argument of perigee. 

inclination of satellite's orbital plane to the orbital plane of the 
disturbing body. 

angle between r and aD. 

angular position of the disturbing body, relative to the node. 
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The change in any orbital element e after one revolution of the satellite can now 
be determined by using the relation 

,2 dv 
dt = h = na (13) 

for the angular momentum h per unit mass in a Kepler orbit. Calling Ae the change 

in any orbital element per revolution, we obtain, 

Ae = 

2jt 

de r_ 
dt h dv. (14) 

V = 0 

During a single revolution the path of the satellite is taken to be that of the 

unperturbed Kepler ellipse, so wherever a and e appear, they are treated as constants 

Since the integration is to be carried out over the true anomaly v, we use the Kepler 

a. (l — e^) 
equation r = -and rewrite equations (lO), (ll) and (12) as 

1 + e cosv 

R = 2KDr 

1 + 3 

2 cos i sin 2r (sin 2 cjd cos 2 v + sin 2 v cos 2 co) 

+ I ccs^y - sin2y cos^i \iCOB œ cos v + sin2 sin^ 

2 sin en cos cd sin veos y 

2 2 ■f sin r cos i 

(15) 

S = - 3¾ 

(cos2r - sln2r cos2i) ^sin2o) cos2v + sin2v cos 2œJ 

+ sin 2 y cos i 
2 2 2 î- 1 _ 2 f c°s <jj cos v + sin cd sin v 

■2 sinv cos v sinco coso) 

(16) 
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and 

W ..SK¿r.in.l .ln r |0M r (c0‘ “ 0°a y ' al” “ ,in r) 
+ Bln r cob 1 (sin cu cob v + cos cu sin v) 

> • (17) 

Since the angular velocity of the satellite ia usually large conpared to the angular 

velocity of the disturbing body, ve assume that r is constant during the time it takes 

for the satellite to make one revolution shout the earth. Then integrals of the type 

(14) can be evaluated easily. The results are 

Aa 

Aq - 15 ^ 
e Jl - e2 

sin 2 y cos 2 cu cos 1 - 
f 

sin 2 cujcos2r * sin2y cos2i 

(1Ö) 

(19) 

Ae 

I 

Al 

“i*' 

6 Kpn sin i sin r 

~71rrr~ 
5e sin cu cos cu Sin y cos 1 + cos y 1 e2(l-5 cob2cu) • (^0) 

aa » -f Vsln y 

n2 fc? 

5e sin cu cos cu cos y + sin y cos i (l-e )cos cu +(1 + 4e ) sin J(l-« 
2--- - . . I ,. 2\—2 _ . /, . i. - 2\ _j_2 . i I 

and 

Acu cos i AH 
yiT' 

j 

2 2 
1-3 T côè i-10 sin y coa y ain cd coa cocoa i 

+ (5 sin2 cd • 4) (coa2r - aln2r coa^í) 
(22) 

If, now, ve let y take values from zero to 2«, ve see how the orbital elements 

change as a function of the time of month or year* 
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Error due to Neglecting the Motion of the Disturbing Body 

To estimate the error we have made by taking r constant, let ns consider 

the special case of co-planar motion of the satellite and the disturbing body 

(i = 0). Let us take the node at perigee, so that m = 0. Then equation (19) for 

the change in perigee per revolution becomes simply 

15 K_ arte v/l-e21* 

Aq0 = -g- sin 2y , (23) 
n 

where we have used the subscript zero to indicate that the disturbing body is held 

fixed. Now let us evaluate Aq when the disturbing body is moving by taking 

r = ro + V 

where n^ is the angular velocity of the disturbing body. Equation (l4) for Aq will 

contain integrals of the form: 

1 -/ sin V, cos Sy,sin 2y) dv , (24) 

where f stands for $oiäe function. 
W£ replace (Jos 2y and sin 2y by their Taylor expansions: 

COS 2r = cos 2r - 2n,t sin 2f + .. 
o a 0 

sin 2y = sin 2yo + 2n^t cos 2r0 + ....... 

and retain only the first two terms. Our integral now contains the two variables: 

V, the true anomaly, and t, the time. These may be related through the eccentric 

anomaly E via the relations 

E - e sin E 
t = 

n 
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dv = 
1-e cos E dE 

and 

sin y = 

cos V = 

sin E 
1-e cos E 

cos E -e 
1-e cos E 

Our integral is now of the form 

1 * J ?(ro > E' sin cos E)dE, 

»her« P „tend, for some new function. This tjre of Integral Is readily evaluated and 
yields for Aq. 

Aq. = Aq. + /a_\ 

=.2 vCT" ^ 
3/2 

30 en 

sin 2r 

cos 2r (¾) 
+ 45e + 58e2 + 17e3^ 

or 

Aq 
15KDnae 

sin 2y 
n ^-)3/2 Van / ; 

2n 
cos 2y 
__j. 
sin 2r 

4.(1-6)(4 + 4^e + 58e 2+ 17p3^ 

150 (l+e) Jl-e2' 

which shows that the additional term, contributed by the motion of the disturbing 

dy, is of the order of (^t) on the average. Since is usually less than 0.1, 

this term contributes less fcan 3 per cent error. D 
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An Example 

Let us determine the effect of solar-lunar perturhations on the perigee height 

of 1959 delta during the first month of its lifetime. Assuming that the orbital 

elements do not change significantly over this period, we may average equation (19) 

over one month to obtain for the average value of Aq (due to the moon) 

ajte 

sin 2cu sin i 

2 n 

where the subscript m indicates that the disturbing body is the moon. With a = 15,000 

nautical miles, e = .76, i = 41.5; and co = 10.4°, we obtain 

Aq = - .061 nautical miles per revolution, 
m 

Since the satellite made about 60 revolutions in the first month, perigee dropped 

by about 3.7 nautical miles during that time as a result of the moon's perturbing 

force. 

The sun's influence, on the other hand, tends, at first, to raise perigee. 

Relative to the sun's plane, the argument of perigee started at 2,7 ; the orbital 

Inclination was 40.3°, and y was about 40°. Tie initial change in perigee per 

revolution, determined from equation (19) is therefore 

AqQ K +.26 nautical mile per revolution. 

At the end of one month 

Aq = +.14 nautical mile per revolution, 
s 

* 
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Eventually, the aun will move to such an angular position that AqQ will be negative. 

The average effect over a year is a lowering of perigee. This is true of both solar 

and lunar effects so long as sine 2a>s and sine 2iom are positive. 

Pigure 2, showing Aq.,s and for the first month, agrees with the results of 

STL's numerical integration program for satellite orbits. By summing equation (19) 

over the proper number of revolutions, (talcing into account the change in œ and i), 

we have determined the behavior of perigee height as a function of time during 

the four months following launch. The decreasing trend of the curve and the osc?il¬ 

lations around this trend show the proper behavior upon comparison with a similar 

curve obtained from the numerical integration program. 
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