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A method of analysis of arbitrary cascades under conditions 

of ideal fluid flow is descri bed. The method is based on con

formal transformation, achieved experimentally through an elec

trical analogy. Tests were conducted to permit comparison of 

results obtained by this method with those of a previous ana

lytical solution and ·~,vi th NACA two dimensional cascade tests. 

Results indicate that the quick and inexpensive procedure of 

this method is applicable to engineering problems of cascade 

analysis. 

This work was conducted at the U. S. Naval Postgraduate 

School, Monterey, California. 
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1. I NTRODUCTiuN 

On e of the first steps in the aerodynamic desig n of an 

axial flm-.r turbomachine is the design of cascades v·hich produce 

desired deflections of the fluid as it passes through the ma

chine. Fundamental to the solution of this problem is the de

termination of the two dime nsiona l flow of an ideal fluid across 

cascades of compressor and turbine blades. An ideal fluid is 

here assumed to mean one that is homogeneous, continuous, incom

pressible, and inviscid. 

The development of a method which predicts the two dimen~ 

sional flow of an ideal fluid across any arbitrary cascade was 

the objective of this investigation. One m~asure of cascade 

performance is the fluid turning angle. More basic parameters 

are the cascade coefficient k defined in Section 5.1 and the 

relative zero lift angle ~Lo defined in Section 5.1 and ill us-

trated in Fig. 17. Of primary i n teres t v.' a s the effect of changes 

in cascade solidity and blade stagger on these indicators of cas

cade performance, but a preliminary test of the ability of this 

method to predict velocity distributiJn around the airfoils in 

cascade is also included. 

Considerable ingenuity has been exerted in previous work 

done on this problem, and many mathematical analyses exist of 

the two dimensional potential flow pas t infi nite cascades of 

airfoils. Some provide exact solutions for special shapes such 

as straight blades of zero thickness. See Ref s. 1 and 2. Some 

provide approxima te solutions for particular airfoil shapes and 
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ca s cade arrangements . See Refs . 3 and 4 . Finally in regard to 

the gen eral problem of arbitrary a i rfo il s i n cascade, there 

have been s everal attem~ts at a ma t hema t i c a l so lution. Th ese 

usual ly i nvolve i t eration methods. See Refs. 5 , 6, 7, and 8 . 

The labor i nvolved i n the appl ica t ion of these me thods is gr ea t ; 

and, for some ap pli ca t i ons, even modern high speed comput ers 

prove inadequate. Par t ic ul ar difficulty is encoun t ered with 

blades of high camber and cascad~ of high stagger angles. Hence 

the engineering applicatio n of these methods is limited. 

Theoretically, the me thod here investigated is based upon 

the conformal transforma t ion of an arbitrary cascade into a cir

cl e . This is accomplished experimentally, using electrical con

ducting paper. The flow of an ideal fluid is analytically knov~n 

about a circle. Through La Place's equation the flow can be de

t ermin ed about the cascade. 

To compare the results obtained by this analog method with 

tho se of a previous analytical study, the airfoil in cascade 

v•h i ch had been analyzed by Mutterperl and reported in Ref. 7 

wa s investigated. To determine the effect of solidity and stag

ge r upon turning angle, a blade more closely approximating those 

cur r ectly used in the gas turbine industry was desired. The 

NACA 65-(15)10 airfoil section was chosen for this reason and 

because its use permitted comparison v.'i th NACA t v·o dimensional 

ca s cade tests reported in Ref. 9. 

This work was conducted a t the U. S. Naval Postgraduate 

School, Monterey, California during the 1957 - 1958 school year. 

The au t hors wish t o ex press their appreciation to Professor 

M. H. Vavra and Professor T. H. Gawain of t he U. S. Naval Post-
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graduate School. This thesis project was conceived by Professor 

Vavra and is an outgrov·th of previous investigative work per

formed by Frofessors Vavra and Ga~·ain. The association with 

Professor Gawain who guided and assisted in the ~ork of this in

ves tigation was most re~arding. 
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2. TABLE JF SYMBOLS 

radius of circle in the picture plane, feet 

dis tance from origin of sources and sinks in picture 
plane, feet 

chord length, inches or feet 

airfoil section coefficient of lift 

dimensionless transformation parameter, defined by 
equation 3.27 

curren t , amperes 

indicates imaginary part in comp~ex number notation 

characteristic distance used in conformal transforma
tion, feet 

source strength in picture plane, feet squared per sec
ond 

dynamic head, pounds per square foot 

radius vector length in picture plane, feet 

tangential spacing between blades, inches or feet 

com~lex velocity potential function 

real axis, real plane 

imaginary axis, real plane 

complex coordinate, real plane 

potential, volts 

total current function, defined in Appendix A 

cascade coefficient, defined in Section ~. 1 

total resistance, ohms 1 7..---J£-~t,( .(,J:~-Lu ~~ 
z. 

~ressure coefficient=(~ ) 

velocity, feet per s~cond 
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~ 

; 
f 

rr 
t 

angle of fluid flow , degrees 

c(a absolute angle of atta ck 

c(m angl e of mean ve locity 

c{L a ng le of zero lift 
0 

r:{, cascade entranc e angle 

rf', cascade exi t angle 

([. 
l 

ideal approac h angle 

cascade stagger angle , degrees 

relative angle of zero lift, degrees 

b a 
complex coordinate in t he picture plane 

imaginary axis, picture plane 

angular coordinate, picture plane, degrees 

specific resistance! ohms 

real axis, picture plane 

resistivity, ohm-inches 

density, slugs per cubic foot 

solidity = 1 
'aspect ratio', defined by equation 3.13 

velocity potential function 

velocity stream function 

circulation, feet squared per second 

turning angle, degrees 

vortex strength, fee t squared per second 

percent poten t ial 

percen t curre nt quan t i ty 
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Subscripts: 

1 upstream of blade ro~ 

2 downstream of blade rov; 

a axial direction 

2 idea 1 

m mean 

s stagna tion 

t tangential direction 

L leading edge 

T trailing edge 

Superscri~ts: 

* indicates maximum value 
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3. ANALYSIS 

3.1 IDEAL FLUID FLO~ 

If, in a b-,•o dime nsional steady flo v;, there exists a veloc-

ity point function such that 

3.1 

the necessary and sufficient co ndition for this to be potential 

f lov· is that 

V'xV==O 3.2 

v·hich means that 

V=-\Jrp 3.3 

But, if further, the density of this flov · be constant, continu-

ity requires that 

3.4 

If both 3.3 and 3.4 are satisfied; then the potential is a plane 

harmonic function such that 

3.5 

~hich is LaPlace's equation. 

Correspondingly in this theoretical, two dimensional fluid 

floVt: there is a stream function for ~·hich 

3.6 
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Trajectories of constant p are orthogona l to trajecto r i es of 

constant If . 
Ana lagous to this theoretica l , tv.·o d i mensiona 1 flu i d f lov· 

is th e fl ow of a steady current i n a th i n , f lat sh eet of uni

form conduc t ivi ty. De tails of t he a nalogy are con t a ined in A~

pendix A. On th e s hee t the e lectric potential E, anala gous to 

p , can be represented by 

3.7 

Similarly, introduction of a t o ta l curren t function l results in 

Trajectories of constan t E are orthogonal t o t rajectories of 

constant l. 

3.2 CONFORMAL TRANSFORl'/lATI ON 

3.8 

Various flows of a n ideal fluid are analytically known a

bout certain simple domains such as a circle. LaPlace's equa

tion, which characterizes such a perfect fluid flow, remains in

variant 'for any conformal transformation. Hence, if an arbitrary 

shape can be conformally transformed into a suitable circle, the 

flow of an ideal fluid about the arbitrary shape can be deter

mined. 

The theory of conformal transformation with the aid of an 

electric tank is discussed in Ref. 10. In general the whole re

gion between two arbitrarily specified closed curves is not trans

formable into the whole reg ion between two other arbitrarily 

specified closed curves. Tr an s f ormation can be accomplished, 
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however, if t~ere exists a f~nction, in the picture plane , of 

th e r eal plane complex variable 2 such that for every assigned 

va l ue of the variable the function has a defin i te value or sy s

tem of value s and also a definit e derivat ive . 

The a r b i trary s hape transf ormed i n th is i nvestigation con

sis t s of a n i nf i nite c a sc ade of equally spaced compres so r 

blades of the same s hape and orienta t ion. 

Imagine a conducti ng shee t of uniform conductivity, infin

ite in extent in t wo dime nsions, Fig. l, in which t he blades 

are areas of infini t e resistance (cu t outs from the sheet). With 

a potential E* imposed on a line parallel to the axis of the 

cascade and located infinitely far ahead of the cascade and a 

zero potential imposed on a similar line located infinitely far 

behind the·cascade, corresponding points on each of the blades 

have equal potential. Immediately in front of the cascade a 

line connecting points of equal potential exhibits a shape that 

is strongly influenced by the geometry of the cascade; but with 

increasing separation from the cascade the influence diminishes 

rapidly, and at finite distances ahead of and behind the cascade 

these lines of constant potential are virtually straight and 

parallel to the axis of the cascade. Hence, the conditions at 

infinity may be closely approximated by imposing a voltage on 

the sheet through straight bus bars parallel to the axis of the 

cascade and a fini t e distance away. 

No generality is lost if a single strip of width s which in

cludes the space between two blade cutouts is considered, provid

ed that the boundaries or ed ges of the s t rip are lines of con

stant 1. Le t t he boundaries be ch ose n t o coi ncide wi t h portions 
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of the blade ~rofiles as shown in Fig. L. 

For the strip of conducting sheet 

R*i*=E* 3.9 

For points on this strip (from App endix A) 

£+ ~vi = fC2) 3.10 

Dividing both sides of 3.10 by 3.9 

4 'Nill be constant along the edge of the strip and C will vary 

f rom one on the front bus bar to zero on the after bus bar. Any 

poi nt on the strip can be located by coordinates x, y; butt and 

~ are continuous functions on the str~p and are definite at any 

poi nt. Optionally, then, any point may be designated by its co

ord inates or by the values of & and ~which characterize it. 

In s ymbols: 

c =c(x,y) ;(:x(c,~) 

and conversely 3.12 

On th e front part of the profile cut-out C will reach a maxi-

mum value at a point 1, and on the trailing part a minimum 

value at a point 2. Fig. 3 shows a typical plot of percent po

tential G vs. percent chord. The quantity C,- ~z. is one of 

the parameters used to accomplish transformation. 

In the region near the bus bars where lines of constantS 

are straigh t and parallel to the cascade, imagine two lines of 
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constant[ ; Ca and cb such that6a.-tb=C:,-c2. See Fig. 4. 

Imagine that the width of the conducting strip, s, is divided 

into n, equal parts, each measuring ~ . This same increment 
I 

of length is used to measure along the distance 1 between CQ 
and cb. dividing this distance into n~ = ~ parts. Lines of 

n, 
constant e drawn at these stations are separated by equal dis-

tances and represent equa 1 increments Ll0 . For c onveni enc e it 

is assumed in Fig. 4 that n, and nl. are integers. Lines of 

constant C and constant ~ drawn at these measured stations 

form an orthogonal grid of n,n1 squares over this portion of 

the strip. 

A similar conceptual procedure is valid at any position in 

the strip. Lines of constant G may be drawn such that 

cl -cj :. C, -C.z. . Let the distance between them, as measured 

along a line of constant 1, be divided into n~ segments of equal 

potential drop, At . The distance between the edges of the 

strip, as measured along a line of constant C , can then be di

vided into n, segments. A grid of orthogonal curvilinear co

ordinates results and the region consists of the same number 

~.n2 of curvilinear squares as before. 

Let there be a parameter T such that 

7: = c, - ~1.. 
s(- ~~ )~ 

3.13 

In the regions of the bus bars C varies linearly with 1; so 

3.14 

~ then reduces to the ratio t which might be considered an 

'aspect ratio' for the gridded section. lt represents the ra-
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tio of the number of squares along the strip to the number of 

squares across the strip. The quantity represents a unique and 

invariant characteristic of the geometry, and must be maintained 

in mapping to achieve conformal tran sforma tion. 

Conside r the denominator of the quantity ~. From the anal

ogy developed in Appendix A, at any point, 

In the region near the bus bars where 2• is constant across the 
X-

width of the strip 

3.16 

Multiplying both sides by s, the width of the strip, 

3.17 

Z ~ is the total current flowing in the strip between bus bars. 

Th e right side of the equation might be labeled the specific 

voltage drop of the strip. It represents the voltage drop be

tween two equipotential lines which form a square with lines of 

constant [that are s distance apart. Equations 3.15, 3.16, and 

3.17 m~y be used in non-dimensional form if each is divided by 

equation 3.9. 

Now consider the :s or picture plane of Fig. 4 with sources 

of equal strength the negative, real axis at -b and 
a.,. 

m on --
b 

and sinks of the same strength on the positive, real axis at +b 

and + at These sources and sinks create a complex function 
b 

in the ~ plane. See Appendix B: 
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r 
UJ = .m_ jln br-5 

zrr L b- 5 
3.18 

Any point in the picture plane can be located by coordinates yt' 

~ or by the values of p and¥ which characterize the point. 

Symbolically, 

and conversely 3.19 

1f=lf(s,~) 'fl=llJ~,lf) 

The circle I~~ : Q is a line of constant l.f . Sought is the 

conformal transformation of the strip of the real plane external 

to the blade cut-out onto the area of the picture plane outside 

the circle so that the cascade blade outline becomes the circum-

ference of the circle. j? is a minimum at a point 1 and a maxi-

mum at a point 2. The difference in potential R- rp, is 

m - CD - m h cosh r ± I 
T1. T1 - 1T cosh o - I 

_/ Jn cosh 't t I 
1T cosh o- I 

1{-P, 
m 

3.20 

3.21 

See Appendix B. It will be shown that the right side of eq. 3~21 

is the corresponding form of ~ for the picture plane. 

With reference to the strength term m in the denominator of 

eq. 3.21, recall that in two dimensional, unidirectional flow of 

an ideal fluid the uniform quantity rate of flow between stream

lines h distance apart is Vh, Fig. 5. Correspondingly for a 

point source from which flow emanates, a uniform quantity rate 

of flow crosses any simply connected curve enclosing the source. 

The velocity at any point is the gradient of p , that is V== ~~, 

13 



The change of p between two p c ountours which, with two 

s treamlines h distance apart, form a curvilinear square is 

This quantity might be dubbed the specific j? drop, 

analogous to specific voltage drop, but for fluid flow consid

erations i t is desi gnated a quant ity rate of flow, here repre

sented by m. 

To achieve conformal transf ormation between the z andS 

planes, the following condition is imposed 

p = k,- k:~.c 3.22 

where k, and k'J.. are arbitrary constants. 

It follows that CR- CA = kz (c, -c~) . 3.23 

Further, let m ee1 = kz.S-~X. 
00

• 3.24 

Then R-Pt. = ~~~C:.L 3.25 
-m 'l(;t 5(- c) "d /(. 00 

The consequence of equal ~ in the real and picture planes is 

this: for any area in the real plane bounded by lines of con

stant C and .Jr there is an area in the picture plane bounded by 

corresponding lines of constant p and~ . The 'aspect ratios' 

of the areas are the same. See Fig. 4. 

For every point G 
responding point ~, ~ 

, Jk in the real plane there is a cor

in the picture plane. Ae 
At 

ured in the real plane, and a corresponding ~~ 

can be meas-

can be calcu-

lated in the picture plane. These conditions are sufficient to 

establish the existence of a function of a complex variable which 

relates the two planes conformally. An analytical expression of 

this function is not de termined nor required. 
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Definition of 0 in the 5 plane uniquely determines 

the location of the sources and sinks. Eq. 3.21 is solved giv

ing 
1Tt.' 

cosh r = e + I 
efl't'- I 

3.26 

Further, the periodicity of the mapping function is such that 

each strip of width s in the infinite cascade is mapped on to 

thi s same area in the picture plane; so the result is truly a 

map of the infinite cascade. Fig. 6 indicates the location of 

corresponding points on the two planes. 

Reference to eqs. 3.23, 3.24 and 3.25 indicates that only 

three quantities need oe measured in the real plane to accom-

plish the transformation. These are e,-Cz. '(-~~)QO, s. 
Other measurable quantities might perhaps be used, but the a

bove listed parameters seem to be the ones most naturally, con

veniently, and accurately obtainable. They are sufficient to 

achieve transformation. 

The position of a point on the blade profile such as P in 

Fig. 6 may be expressed in terms of the measured value of C 
which characterizes it. Similarly the positio~ of a point on 

the circle such as P' in Fig. 6 may be expressed in terms of the 
. 

calculated value of T which characterizes it. Points P on the 

blade and P' on the circle which correspond have identical val-

ues of the parameter f , where f is defined by t1e expression 

c,-c f - rp- fl 
c,- c;. -

~-cp, 
3.27 

Each such point P' on the circle also has an angular co

ordinate $ as shown in Fig. 7. The coordinate 9 is related to 
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the parameter f by the expressi on 

8 = cos-' k osh a e - I 
m-(Zf -I) J 

L L1l't'(~f-l) + I 3.28 

This f ormul a is derived in Appe ndix B. 

3 .3 THE FLOW RELATl ONS 

Once t he t ra ns f orma t io n has been completed the flow in the 

picture plane can be modified t o correspond to various desired 

flow conditions in the real plane. This involves variation in 

the direction of the mean flow and variation in the circulation 

around the blade to satisfy the Kutta condition. 

The direction of t he mean flow may be changed by super

pos ition of a set of vortices ~ at the singularities in the 

pi c ~ure plane as shown in Fig. 7. The circulation around the 

air f oi l can be modified by superposition of a second set of 

vor t ice s r as indicated in the same figure. 

Th e Kutta condition states that the rear stagnation point 

of th e fluid flow abou t an airfoil with a sharp trailing edge 

occurs at the sharp trailing. edge. Therefore the rear stagna

t io n point in the picture plane must occur at the point on the 

c irc l e which corresponds to the trailing edge. This determines 

the strength of the circulation that must be imposed. 

At the desired angle of attack and with the Kutta condition 

satisfied, the veloci t y v5 a t every point on the circle may be 

calculated. Since t he co nf ormal transforma t ion has established 

the correspondence betwee n poi nts on t he bl ade in t he real plane 

and on the circle i n th e p i c ture pla ne, t he veloci t y Vz at each 
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poi nt on the blade is obtainable by mean s of the relat ion 

V ~ 
l = I;: I 

I t may fu r ther be shown 
.:!£ 

that~= ~f = 
d2 

( ~- 11) c, -5). 

3 .29 

3 . 30 

where is measured along the bl ade profile . See App endix B. 

It should be not ed that wh e n t r ansformation has been accomplished 

velocities of correspo ndi ng point s on the blade and circle are 

related by the factor 1;: I , which is a constant at any given 

point and is not a fu nction of angle of attack or circulation im-

posed upon the circle in the picture plane. 

The detailed anal ytical development of the ideal fluid flow 

in the picture plane is contained in Appendix C. What follows 

here is a descriptive summary of the procedure. The sources m 

placed in the picture plane to accomplish the conformal trans

formation create a 'straight through' fluid flow. This flow 

causes the front and rear stagnation points to occur on the cir-

cle at the ends of a diameter which lies along the real axis. 

See points 1 and 2 in Fig. 7. 

To develop an angle of attack of the fluid with the zero 

direction of the real axis, vortices of strength)\ are imposed 

upon the four point sources. For positive approach angles, coun-

ter-clockwise vortices of equal strength are placed at the source 

0: at5=-b and at the sink at~= b Clockwise vortices of 

the same strength are placed at the other source and sink. The 

mean approach angle the n becomes: 

I t _, A 
0\m = a.n m-

17 
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The front and rear stagnation points still occur at the ends of 

a diameter of the circle but the diameter makes an angle with 

the real axis 

8s = tan' (tan o(m tanh o) 3.32 

The flow is undeflected as it passes around th e circle ; so no 

net circulation or lift is present. 

To produce deflec tion and lift, vortices each of s tr ength 

-f- and of the same direc tion are placed at the so.urce and sink 

inside the circle. The strength and the direction of these 

vortices are those required to satisfy the Kutta condition; 

i.e. the rear stagnation point must be brought to the location 

on the circle which corresponds through mapping to the trailing 

edge of the airfoil. Vortices of the opposite direction must 

be placed at the source and sink outside the circle to insure 

that the stagnation streamline remains a circle of radius a. 

With sources and sinks m, and with vortices A and r_ 
z 

in place, the picture plane is complete. The velocity at any 

point on the circle is 

m is determined by rn = s(Va) = s(-~;) 00 3.34 

m is determined by eq. 3.31 once o(m is arbitrarily chosen. 

To satisfy the Kutta condition, let B= Br and v9 =0. The val

ue of 8T is determined by substituting the value of f.r in 

eq. 3.28. Solving eq. 3.33 then gives 

__r:_ J cos B.,. sln $r = tanO\m ~- s1nh r 
Zm 
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The picture plane is thus complete l y de termined . 3ee Fig . 7 . 

For subs equent work, formulas f or particular quantiti es 

relat i ng to the f l ow direction are develo ped. The cascad e en-

tra nce angle is 

3.36 

The cascade leavi ng a ngle is 

3 . 37 

The turning angle of t he f l uid a s i t passes t hrough the cascade 

is 

Of aerodynamic interest is t he ideal angle of a t tack. When the 

front stagnation point occurs at the point of the circle corres-

ponding to the leading edge of the airfoil 

o(l =o(, = 3.39 

The lift on any blade is developed from the elementary relation 

L = pVm I= ,c1l< q)GA 3.40 

jO is the density of the fluid and f\ is the projected area of 

the section a long the chard. The subscript X appearing in the 

above listed equa t ions indicates that the coefficient of lift 

and the dynamic head q may be based upon t he cascade entrance 

velocity V, , t he cascade leaving velocit y \lz , or the cascade 

mean velocity Vm · Each of the three coef f icients of lift has 

its reasons f or being used in the ana lysis of casc ade performance. 
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£1, , based upon Vm , permits an aerodynamic tie-in with single 

airfoil theory, ICj, , based upon V, is useful in cascade design 

because conditions upstream of the cascade are generally known. 

t:'i,z. based upon 'Vz , makes allov•ance for the deceleration of 

the flow as it passes through a compressor cascade. Ref. 11 

states that acutal cascade tests have shown that the drag-lift 

ratio reaches a minimum at an approximately constant value of 

In terms of the quantities determined by the previous e

quations, the coefficient of lift is 

,<, _ .Z cos" c/:x, ( c( ) i-x - rr c.os c<' m tan , - tanc(i 
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4. EQUIPMEt~T 

The equipment consis ted of th e specially designed ap paratus 

used to hold the two dimensional, co nducting paper, with appurte

nances to impose the po tential and complete the circuit. As soci

ated with this piece of equipment were various electrical in

struments necessary for po tentia l supply and measuremen t s. A 

list of the instruments with specifications, where applicable, 

is given in Table 1. 

A complete test setup is shown in Fig. 8. The figure shows 

the conducting paper, the working surface and the associated e

lectrical instruments. The remaining item is the profile tem

plate used as a guide in cutting the conducting paper. 

4.1 THE WORKING SURFACE 

Fig. 9 shows the original working surface which existed at 

the start of the investigation. lt was constructed of 3/4 inch 

plywood overlaid with 3/16 inch Masonite (rough surface toward 

the plywood) and was fitted with Birmingham 9age Number 25 copper 

bus bars, one inch wide and five feet long. These bus bars were 

positioned on the table parallel and 29.5 inches apart at their 

inside edges. They served as the electrodes for imposing a po

tential difference across the paper cascade. 

The paper was placed over the bus bars with its conducting 

(graphite) surface toward the Ma sonite. It was clamped as 

shown in Fig. 10. This method of clamping provided a tight, 

line contact between the bus bars and the paper. 
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This setup left the ends of the paper as unknown boundaries 

which were streamlines of the flov·. It was necessary to use an 

i t eration process t o de termine these boundaries. A first approx

imation v·as made by eye a nd the paper cut accordingl y. The suc

ceeding approximations were then obtained by flux plotting a 

streamline from experimentally determined constan t potential 

lines. These plots were made near the middle of the cascade to 

minimize effects of the previous boundaries. The cascade ends 

were then cut to this nev·ly determined streamline. This process 

of refinement v:as continued un t il the correction required became 

as small as the errors of measurement. 

In order to by-pass the time and labor consumed in obtaining 

these boundaries a second table ~as constructed. This table 

shov·n in Fig. 11, v•as similar to the original in its method of 

connecting electrodes to the conducting paper. The contact be

tween the electrodes and the paper was obtained by the same man

ner of clamping. The copper bus bars ~ere widened to 32 inches 

however, and maintained parallel to ± 0.003 inches in a three 

foot length. 

The table v:as lengthened to six feet overall vvith a foot 

and a half of each end hinged to the main, three foot section. 

V.'ith this provision, the paper v·as clamped to the table as in 

Figs. 10 and 12 and the ends were folded dO\"n under the main 

section thereby bringing the ends of the paper cascade together 

in a physical and therefore electrical contact. The cascade 

then had no beginning or end and was, in effect, infinite. 

Since cascades of varying solidity required various lengths 

of paper in order to come to contact at the joint, it vas neces-
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sary only to lengthen or shorten the bight of the paper at the 

hinges when securing the paper to the table prior to folding. 

Th e method of obtaining the el ectrical connection betwe en 

the e nds of the pap er cascade i s shown i n Fi g. 13. This method 

has th e dis advanta ge that the opera t or cannot see the actual 

connec t ion and mus t re ly upon the trueness of the hinges, ma

chined part s, e t c. To provide s ufficient con ta c t press ure a

long the j oi nt , C-cla mps were used outside the alumi num ba rs . 

4.2 THE CONDUC TI NG MEDIUM 

Type " L" Teledeltos paper was used as the conducti ng medi

um throughout the investigatio n. The specific resistance of 

this paper is given by the manufacturer as 4000 ohms , with an 

accuracy of ± 3 to ± 8 percent with the lower value of resist

ance along the length of the roll and t he higher value across 

the width of the roll. The quantity specific resistance, is 

defined and explained in Appendix D. The corresponding specif

ic resistance of the copper bus bars is clearly negligible in 

comparison with that of the paper. At the hinged ends of the 

table, and near the electrical joint on the under surface, where 

the bus bars are necessarily interrupted, the required conduc

tivity was secured by painting the paper on its ·conducting side 

with a special silver paint supplied by the manufac t ure r . The 

specific resistance of such pai nted areas is given by the manu

facturer as about one t o four ohms. While t his val ue is co nsid

erably higher' tha n that for th e copper bus bars, i t is sti ll 

negligible in compa rison wi th that of the pap er . Thus the c on

duc t ivi ty of ei ther th e bus bars or of the painted areas is es-
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sentially infinite in comparison with that of the paper. Each 

test setup required a new piece of paper making it a consumable 

i t em in the investigation. 

4.3 THE BLADE TE~WLATES 

The f ollowi ng pro f i les wer e selec t ed for i nves t i gation: 

a. The Mut terperl pr ofile, ordinates present ed i n 

Ref. 7 and lis t ed in Ta ble II 

b . A typica l compressor profile, the NACA 65-(15 )10 

section, ordinates presented in Ref. 9 and listed 

in Table I I I 

Coordinates of these profiles, scaled to the chord sizes used 

in this investigation, are presented in Tables IV and V. 

In order to transpose the coordinates to the paper in the 

proper geometry and to maintain accuracy, templates were used as 

cutting guides. They were made of 1/16 inch, oil hardening flat 

stock which was left in the spheroidized condition instead of 

being hardened, thus avoiding distortions. 

Tolerance from the tabulated coordinates was held to ~.005 

inches. Each template was checked dimensionally at fifteen dia

meters magnification on the Bausch and Lomb Contour Measuring 

Projector, Model 33-12-01, at the Supersonic Wind Tunnel of the 

U. S. Naval Postgraduate School. 

To position the templates for cutting on the cascade layout 

lines, three or more locator holes were drilled in each. These 

holes were spaced along a line parallel to the chord and off se t 

from i t . One of the holes wa s loca t ed at midchord . The s e p~o

files 3re s hown in Fi g . 14. 
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4.4 ELECTRICAL CIRCUITRY AND INSTRUMENTS 

The electrical circuitof the continuous cascade tab le and of 

the associated instruments for measuring percentage potential 

is shown in Fig. 15. The power supply used was a Hea thkit Bat

tery Eliminator, Model BE-4. The voltage output was maintained 

at about 11 volts in order to give a quicker and more definite 

response on the null meter. The null meter used was a General 

Electric OC Micro Ammeter, Type 00-71, Model A292AA1 of 10 mi

croamperes full scale deflection. At a 100 percent potential 

equal to about 11 volts, 0.01 percent potential was the minimum 

discernable change on this meter. The voltage divider, manu

factured by Electro-Measurements Inc., was a hexadecade type; 

Model RV622. Its linearity as cited by the manufacturer was 

z 0.0025 percent with an input resistance of 10,000 ohms. As 

mentioned above, 0.01 percent potential was the minimum detect

able change and therefore only the four higher decades of the 

voltage divider were used. The test probe or stylus was sup

plied with the General Electric Analog Field Plotter Kit. It 

was fitted with a shallow tapered needle from a drafting in

strument. 

The approximate derivative of the mapping function could 

be determined by graphical means or by direct measurement. The 

latter method was used. To accomplish this determination, the 

potential difference over a small distance was measured by a 

double electrical probe. This probe was adapted from a small 

bow compass by placing a second, insulated needle in the lead 
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receptacle and soldering both needles to hookup wires. The com

pass was adjusted to the smallest need le gap possible and l ocked 

i n position. This gap measured 0. 04 048 inches on the measuri ng 

pro j ec tor previousl y mentioned. The entire compass was finall y 

covered wi t h e l ec t rical insulating t ape . 

Fig . 16 s hows t he circui t s chematic for de t ermining the ap

proximate deri vative of the map ping f unction . The hook up wires 

from the probe were lead to a Leeds and Northrup Portable Pre

cision Potentiometer No. 8662, where t hey were connected to the 

E.M.F. binding posts. This ins trument has a range of from 0 to 

85 millivolts. The power supply was t wo six volt batteries con

nected in series to give approximately 12 volt s . Practically all 

stations on the profile gave voltage increments across the double 

probe which were within the range of the potentiometer at a bat

tery supply of about 12 volts. The voltage across the cascade 

(100 percent potential) was measured to the nearest 0.01 volts 

on a Weston DC Voltmeter, Model 45, having 0-15, 0-150 volts full 

scale deflection. 
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5. TEST PROGRAM AND PROCEDURE 

The test program was designed to show the effects of various 

geometric parameters upon the perf ormanc e of a cascade. The param

eters which define the geometry of two dimensional, rectilinear, 

infinite, cascades are the blade profile, the stagger angle~· 

and the solidity c/s. The quantities ~, c and s are illustrated 

in Fig. 17. 

5.1 DEFINITION OF TERMS 

The direction of the incoming flow may be specified in terms 

of the approach angle o(, , which is measured from a line perpen

dicular to the cascade . . 
An alternative parameter which is sometimes useful is the 

absolute angle of attack ~Q , which is defined as the angle be-

tween the mean flow direction and the direction of zero lift, 

Axis I. The mean flow angle oCm, depends both upon the inflow 

and outflow angles ~and c(, . The. angle of zero lift d'Lo , 

of the cascade is not initially known, since it depends on the 

entire cascade geometry in some complex manner, but it may be 

found from the results of the test measurements in any given 

case. Once o(uo has been determined, a convenient parameter for 

further analysis of the cascade is the relative angle of zero 

lift ~ , which is defined as the angle between the chord and 
t'Lo 

Axis I, the direction of zero lift of the profile in cascade. 

These various relations are shown in Fig. 17. 

The performance of a cascade may be expressed in terms of 
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any conveni e nt parameter which r e lat e s the inflow and outfl ow 

direc tion s . Among these are the turn i ng angle 8 and the l i ft 

coeff icients or The turn i ng angle <9 , repre-

sents the ne t cha nge i n direction of flow fro m i nl e t t o e xi t . 

The 1 if t c o e f f i c i en t s c 1 , tC i , a nd /C_t,_ represe nt the ra -

tio of the mean effective pres sure difference across the bl ade 

to some reference dynamic press ure . They differ only in t he ref

erence condition used: ~~ uses the mean velocity head, while 

...c;,, and .-c1 l. employ the inle t a nd outlet velocity heads re-

s p e c t i v e 1 y • A 11 three of t he s e c o e f f i c i en t s a r e c 1 o s e 1·/ r e 1 a t

ed to the turning angle, and the choice of parameters is large

ly a matter of convenience, although for a real fluid the quan

tity C,t2, appears to be an approxima·te criterion of blade 

s ta 11. 

It can be shown theoretically that for an isolated airfoil 

5.1 

Similarily, for a cascade of airfoils, it can be shown that 

5.2 

wh ere oCa = o{m - o{~o and K is the cascade coefficient which is a 

cons tant determined by cascade geometry. 

Th ere are two basic parameters, then, which completely de-

termine the performance of a given cascade in ideal fluid flow. 

The se are K and ~ 
\'"'L,o 

They have been calculated for the cas-

cades tested and are reported. 
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5.2 THE TEST PROGRAM 

The method used in this investigation require s that a sep

arate set of measurements be ma de for each cascade configuration 

tested, whereupon the effect of variations in i nf low direction 

can be determined analytically. This greatly reduces the amount 

of testing that is required; nevertheless, the testing procedure 

was necessarily painstaking, and due to the developmental nature 

of this investigation only a limited number of tests could be 

undertaken and analyzed in the time available for this study. 

The various combinations of blad~ profile, solidity and 

stagger angle which were investigated are summarized in Table VI 

and discussed below. 

The airfoil shape presented by Mutterperl in Ref. 7 was se

lected for the first series of tests. Published data on this 

profile had been determined analytically. Tests on the profile 

in this investigation included solidities of 1.0 and 1.5, both 

at a stagger angle of 45°. The latter case was not covered by 

Mutterperl in his report. 

The second series of tests was designed around a typical 

compressor profile at combinations of stagger angle and solidity 

characteristic of practical compressor geometry (based on the 

authors' experience with the Gas Turbine Division of General 

Electric during the 1957 Summer Field Trip from the U. S. Naval 

Postgraduate School). 

Two groups of tests were conducted using an NACA 65-(15)1 0 

profile at stagger angles of 20°, 25°, 30°, and 35°. One group 

used the six inch cho rd at a solidity r = 1.0 while the other 
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used the twelve inch chord at a- = 1.5. At least one check 

point for each test was available from the experimental data 

presented in Ref. 9 . 

One of the objec tives of this investigation was to demon

strate an extension of the method na mely, the determi nation of 

the velocity distributio n around a blade in cascade. Data for 

this demonstration was gathered during the test of NACA 65-(15) 

10 (12" chord) at cr = 1.5 and~ = 35°. Selectionaf this test 

provided the opportunity to compare results with those publish

ed in Ref. 9. 

5.3 PROCEDURE 

The procedure is perhaps best illustrated by following a 

typical cascade setup through to data collection. 

The first step of the procedure was preparation of the con

ducting paper for the table. The paper was supplied in rolls, 

34 inches wide and about 20 feet long. The working surface had 

been designed with the electrodes positioned to accommodate 

thi s width so it was necessary only to trim the paper to length. 

The length required varied with solidity for a given blade chord. 

For ~ = 1.0 and a six inch chord, 88 inches of paper were used. 

For the tests with ~ = 1.5 and the twelve inch chord, 92 in

ches were required. 

The paper was laid out flat on a smooth table and fastened 

without stretching by masking tape at intervals along the edges. 

The black (non-conducting) surface was exposed as the drawing 

surface for layout lines. 
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Fi g. 18 shows a sketch of the layout lines on a typ i ca l 

piece of paper. Fig. 19 shows the t emplate outline on one se t 

of th es e li nes. Included in thi s l atter sk etch are the refer

ence li nes nea r the leading and t raili ng edge s which were used 

to loca t e data poi nt s. 

The cascade cent er li ne was drawn first. The bes t re sul ts 

in keeping this line stra ig ht occured when using a chalkline of 

sewing thread and blackboard chalk. The line so obtained was 

then penciled in using a six f oot straight edge. Exact center

ing of this line on the paper was not necessary as the copper 

electrodes, being 32 inches apart, allowed some deviation. 

The cascade center line was used as the reference for lay

out of the selected spacing and stagger angles. Care was taken 

to locate the profiles so that the electrical joint would occur 

midway between adjacent blades along this reference line. In

stanc es of large stagger angle, where the seam passed through 

corresponding sections of the cutouts on each end of the paper, 

could be handled by the joining device. 

A drafting machine was utilized to construct the angular 

stagger and midchord lines shown in Figs. 18 and 19. 

In order to maintain accuracy in locating data poin~s, ref

erence lines were drawn on the three center profiles of the pa

per cascade. These lines were constructed perpendicular to the 

chord and extended to intersect the contour of the profile cut

outs as shown in Fig. 19. The interval along the chord of these 

lines was 1/40 inch for the six inch chord and 1/20 inch for the 

twelve inch chord. A jewelers' eyepiece 1 and 6H pencil, and the 

scale of the drafting machine arm were used to cons truc t t hese 
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lines. Only part of the profile was lined in this manner. Fif

teen lines were drawn at the trailing edge in all tests. The num

ber and position of the lines near the leading edge varied with 

the loca t io n of the front stagnation point. 

The paper was then removed to a Ma sonite surface for cutting 

out the profiles. ln this operation the template was located by 

means of the holes provided. Cutting proceeded from the tail 

and from the nose toward the midchord where the cuts met. The 

knife used for cutting was an "Xacto" using the blade having the 

straight cutting edge. The blade was honed to a shape illus

trated in Fig. 20 and stropped on a Ma sonite surface to remove 

all burs. In cutting, it was imperative to hold the knife so 

the cutting edge was at an angle of about 45° to the paper and 

to guide it in toward the template. All other methods of hold

ing and cutting either did not adhere to the profile shape or 

produced jagged edges. 

The ends of the paper were then folded to fit over the 

corner of the aluminum bars at the joint of the table. The fold 

line was marked on the non-conducting (black) surface so the pa

per was first folded to keep this line exposed as a guide. After 

this fold had been sharply creased, it was reversed to expose the 

conducting surface. 

Painting the bus bar extensions was the next step in the 

preparation of the paper cascade. To provide guidelines for this 

painting, the paper was marked while in its proper position on 

the working surface. A center line had· been scribed on the table 

during its construction. Bringing the cascade center line into 

coincidence with the scribed line properly positioned the paper 
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in one direction. Positioning in the other directi on was ac

compl ished by fitting the folds at each end of the pap er t o the 

right ang le co rner on their resp ec t ive p ~ rt s of the joining de

vice . This is shown i n cross s ection in Fig . 13, with th e paper 

joined . The e nd sectio ns of the paper were held by suitable 

weights on each end sec tion of t he table while the midd l e of t he 

paper was moved along the sc r ibe line of the main table s'ec t ion 

until t he bights of the paper over the hinges were equalized . 

Fig. 12 shows t he paper clamped in t his position. The guides 

for the bus bar extensions were then marked on the paper's con

ducting surface by pressing it down over the sharp inner edge of 

the ends of the.copper bus bars. 

The paper was then removed to the drawing surface and layed 

out flat with its conducting surface up. At each end of tre pa

per the painting guides were pencil lines which had been extend

ed along the bus bar impressions to the ends of the paper. 

Painting guides for the bights of the paper were obtained by pen

cil lines connecting the bus bar impressions at the ends of each 

bight. Scotch Brand Electric Tape was used as a masking tape. 

It was placed along the above lines on the side away from the 

paper edge and extended beyond the bus bar marks. The edges of 

the paper were then painted with the silver conducting paint a

long each of the masked areas. When the paint had set but not 

dried, the masking tape was removed. Unless this tape had been 

dusted lightly with blackboard chalk or some other dust, the 

graphite conducting medium wa s li able to pull away from t he pa

per during t ape removal. 

At th is point various re inf orcing sec t io ns of ta pe were ap-
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plied to the paper. This was especially needed when using the 

twelve inch profile cutouts. 

After the paint had dried, the pa pe r was aligned on the e x

t ended tabl e , non-co nducting surf ace up as when marking, and 

held. Th e electric a l tape was used in small piece s to hold the 

paper i n posi t io n by pl ac i ng i t a long the paper edge s behind t he 

contact li ne of t he elec t rodes and over blade cutouts no t used 

for data. The clamps were the n applied as shown in Figs . 10 and 

12. 

The ends of the paper s t icking through the slots of the a

luminum bars were cut off t o leave about 3/8 inch of paper ex

tending beyond the fold. A 3/8 inch wide strip of electrical 

tape applied to the cut edge of these ends was used to hold the 

fold over the corner of its respective bar. The relief in the 

movable bar gave room for the tape and at the joint itself only 

the two layers of paper, conducting sides together, remained. 

The table was turned over and the ends folded toward each 

other. The folds of the paper were joined simultaneously and a 

support under the two ends prevented their moving through their 

closest point of approach. The ends of the table were secured 

against the middle by bolts. Insulating paper was then slipped 

between the conducting paper and aluminum bar and pushed to the 

joint to prevent the curled cutout edges from contacting the a

luminum bars. C-clamps were applied to press the bars together 

and make a tight contact between the folds on the ends of the 

paper. 

The table was turned over and the circuit connected as in 

Fig. 15. 
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The data points were numbered from leading edge t o t r a i ling 

edg e. Stations every l/8 inch along the chord on the s i x inch 

pro f i l e were number ed consecut i vel y. Data points betwe en th ese 

lines were lett ered a, b, c, and d . The data co nsisted of th e 

value of ~ at t he l eading edg e , the poin ts near G, , and at 

the fifteen upper and lower poi nts near t he t railing ed ge . To 

obtain d~ a line perpe ndic ular to t he electrodes and t he ~, 

cascade cen t er line wa s drawn f rom t he electrode ahead of t he 

cascade. I t was marked at i nt ervals of one inch for five or six 

inches from the bus bar. Th e value of ~ was recorded for each 

of these points. All values of C. were read and recorded to 

0,01 percent po t ential. 

When obtaining t he derivative approximation 

necessary to use the circuit of Fig. 16. Percent potential 

could be obtained simultaneously by connecting the voltage di

vider with null meter and probe across the battery supply. 

The data in this test consisted of (j at various points a

round the profile edge, corresponding values of A£ in millivolts 

obtained from the precision potentiometer and total potential E* 

in volts. The double probe was positioned so that its interval 

between probes was centered about the point where Cj was obtain-

ed and with its needles just making contact at the edge of the 

profile. The value of A£ was read and recorded to the nearest 

.01 millivolt. 
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6. DEVELUPMENT OF RESULTS 

A sample of the data taken during these tests for the deter

mination of turn ing angles is pres ented in Table VII. A sample 

of the data taken for the determination of velocity is presented 

in Table VIII. Table IX contains the input quantities used for 

the determination of turning angles herein reported. 

Results of tests on th e cascade analyzed in Ref. 7 are pre

sented in Fig. 21 as a curve of coefficient of lift versus mean 

velocity direction. 

Results of tests made on the NACA 65-(15)10 airfoil are pre-

sented in Figs. 22 through 31. In Figs. 22 and 25 the values of 

turning angle for various blade stagger angles are plotted versus 

cascade entrance angle with lines of constant coefficient of lift 

~i, crossplotted. Fig. 22 is for a solidity of 1.0 and Fig. 25 

is for a solidity of 1.5. Figs. 23 and 26 contain, for a solid

ity of 1.0 and 1.5 respectively, curves of coefficient of lift ~i, 

for various blade stagger angles, as a function of cascade en-

trance angle. Figs. 24 and 27 show, for a solidity of 1.0 and 1.5 

respectively, curves of coefficient of lift £iz for various blade 

stagger angles, as a function of cascade entrance angle. Fig. 28 

is a plot of cascade coefficient K versus blade stagger angle ~ 

Fig. 29 is a plot of relative zero lift angle ~~0 versus blade 

stagger angle ~ . 

Figs. 30 and 31 contain the results of the test of this meth

od to predict velocity distribution about the NACA 65-(15)10 air

foil in cascade at s tagg er angles of 3~ and solidity of 1.5. The 

results are plotted as(~} versus percentage
1
distance along the 
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chord . 

The r ecord ed data necessary to de te r mi ne turning ang les 

and co eff i ci ents of lift for a given casca de (blade, stagger , 

and solid ity) co ns i st ed in part of readings of the percentage 

vol t age a t several stations of known location i n t he vicinity 

of G, ' Gz ' and c'f . Se e Tab le VII . Data were recorded fo r 

at least three bl ades i n each ca scade tes t, bu t fi nal va lues of 

this report are based on t he median blade for each case. These 

percentage readings near G, a nd G.z could be plotted versus 

distance along the chord to permit ut ilization of several volt-

age readings to insure greater accuracy in the determination of 

the values of{;,· and02.. -, See Fig. 32. 

Finding ~~ was a more difficult problem. Fig. 3 indicates 

that the curve of G versus percentage of the chord becomes tan

gent to the line representing 100% chord at the trailing edge. 

Determination of (;T, the point of tangency, by experimental 

measurement meant reliance upon a single potential reading be-

cause of the physical nature of the very sharp trailing edge. 

The method used i n this investigation to determine ~r more 

accurately involved obtaining an analytical curve of (; near the 

trailing edge of the airfoil. The form of the curve was that of 

potential flow around a straight sided wedge. The curve was ob

tained by fitting this form to several experimental points in a 

finite but small distance near the trailing edge. Curve fit t ing 

was accomplished by means of the method of least squares. The 

point of tangency Cr v,;as then determined analy t ically. Appen

dix E contains the de ta ils of th is curve fi tt i ng proced ure. 

The value of ~[ wa s obta i ned by plo tting. Near the bus 
'd-x 
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ba rs readings of G were plotted vers us perpendicular di stance 

from the bus bars. The slope of t his s traight line was ~~ . 

See Fig. 32. 

The determina t i on of the velocity at a po int on the blade 

required the measureme nt of L::t.£ at that point. A sample of 

recorded readings of 6 E: i s con t ained in Table VIII. These 

readings were converted to 6 C by means of the relation 
Al 

D.{; _ 6[ I 
7:T"- [ .. d where 6.1 

d is the separation of the double probe. Values of ~ are 
b.l 

also shown in Table VIII. Values of ~ were then obtained v, 
by means of the formula 

jh_ = ~ cos or. G- tanht tanc.G + Ar .smbt] v, A t Va L tone m m 5}.'1 6.2 

The NCR 102A electronic, digital computer of the U. S. Na-

val Postgraduate Schoo 1 was used to compute Cr , c(, , c[2 , c{z , 
JfL v, Machine assistance proved indispensible for the ex-and 

tensive calculations required by the many cascade combinations 

tested during this investigation. 

One program on the computer was used to determine ~T . In

put data consisted of twenty potential readings, ten from the 

upper surface on the airfoil near the trailing edge and ten from 

the lower surface near the trailing edge, together with their 

respective distances from the trailing edge and the value of p. 

See Appendix E. The computer solved for Cr . 
A second computer program was used to determine o(, , o(~ , 

and ~ 1 nput data consisted of e, , Ct , ci.J , Cr , s , and 

(-~.,.,· In addition, inputs of G and ~ were r equired for 

38 



each of the points at which velocity ratios jb_ 
v, were desired. 
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7. DISCUSSION 

7.1 GENERAL 

The discussion of this method for predicting the flow of an 

ideal fluid across any arbitrary cascade first examines the re

sults of the tests made on various cascades. The analysis of 

the results then provides the basis for a critique of the method 

and for suggested improvements in equipment and in technique. 

Possible applications of this method to other aspects of engi-

ne~ring are also suggested. 

7.2 RESULTS 

The geometric parameters which determine a cascade are the 

blade profile, the stagger angle, and the solidity. For a given 

cascade the quantities K and ~~ are the fundamental parameters 
r~o 

which were determined by this investigation for indicating the 

performance of a cascade over a wide range of mean velocity di-

rections. Turning angles were also calculated for each cascade. 

From this information other parameters•were calculated to 

permit cascade analysis from different viewpoints and to permit 

comparison with published reports. 

It first seemed appropriate to compare the results of the 

method herein discussed with a published analytical solution. 

Ref. 7 contains an analytical solution of potential flow across 

a given cascade of ~ = 1 and ~ = 45~ This report was used for 

comparative purposes because it contained coordinates for the 

profile used and because results were reported over a range of 
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directions of the mean velocity. The blade profile used is sim

ilar in camber and thickness to those presently found in compres

sors. The blade, however, has a trailing edge of zero thickness. 

The pointed trailing edge is diffic ult to duplicate exactly in 

the paper cutouts and would not be used in actual compressors. 

Reference to Fig. 21 indicates that the method of this paper ap

parently predicts coefficients of lift which are about 14% great

er than those contained in Ref. 7. The difference represents a

bout 5° in turning angle. This difference was greater than had 

been expected, but it is subsequently shown that this disparity 

can be reduced. Subsequent tests indicated that an increased 

error in turning angle resulted from tests on cascades with large 

stagger angles. The larger stagger angle cascades are more sus

ceptible to errors caused by the variation of specific resistance 

of the paper between width and length directions. Possible solu

tions to this problem are discussed later. 

Fig. 21 does indicate that the slopes of the curves of 

Ct vs. o( are almost the same. Calculations reveal that the 
t 

cascade of Ref. 7 has a coefficient K of .74 while the cascade 

coefficient determined by this method is .72. Thus if determi-

nation of the angle of zero lift were made separately, the turn-

ing angle predicted by this method would be within a fraction of 

a degree of the turning angles reported in Ref. 7. 

Fig. 21 indicates that increase of the solidity of this 

cascade to 1.5 changes the cascade coefficient to .49. The 1.5 

solidity cascade is not analyzed in Ref. 7. 

Ref. 9 is a report of systematic two dimensional cascade 

tests of NACA 65 series compressor blades. Cascades considered 
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t o be most typical of present compressor design were selected 

f rom the report for investigation by this method. 

The NACA t es t data was taken by vary ing cascade stagg er a n

gle. This was requ i r ed becaus e of the dif f i culty of varying t he 

direction of the approa ching velocity in the t wo dimensional 

wind tunnel. The method of th is report permits varia t io n of the 

direction of approaching velocity for constant cascade geomet r y. 

Comparison, then, was possible only at certain points, indicated 

in Figs. 22, 23, 25 and 26. 

It must be borne in mind that Ref. 9 is a report of tests 

performed using an actual fluid. The magnitude of the effect of 

viscosity is uncertain, .but one could ~ot expect results based 

on viscous fluid flow to be identical to those for ideal fluid 

flow. Comparison serves to indicate, nevertheless, that pre

dictions based upon ideal fluid flow are sufficiently close to 

measured values for air to be of value in actual cascade design. 

Figs. 22 and 25 give the results for the cascade of the 

NACA 65-(15)10 airfoils with ~= 1 and 1.5 respectively. The 

figures show that the relationship between turning angle and cas

cade entrance angle is almost a linear one, indicating that the 

exit angle remains nearly constant. For a given cascade en-

trance angle, turning angle is of course increased by decreasing 
~ 

the stagger angle. The effect of increasing solidity on turning 

angle (and therefore on the quantity U~t ) is small. Hence the 

cross plots indicate an appreciable reduction in with 

increase in solidity. These are all general results whi ch one 

would expect. 

The cascade designer wonders what represents optimum condi-
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tions and the extent of variation permissible for satisfactory 

perf ormance. The cross plotted va lues of £1, give an indica

t ion of the coefficient of lift a ssociated wi th a certain t ur n

ing angle . This i nfo rmation toge t her with the plot of idea l an

gle of at t ack helps to de note a n area of satisfactory operat ion 

based upon u~stream condi t io ns . However, for the decelera t i ng 

flow experienced in a compressor, information showing the extent 

of the range of operation for an optimum drag-lift ratio is de

sired. For th'is reason Figs. 24 and 27 have been presented. 

Ref. 11 says tests show that the drag-lift ratios of cascades 

varying from turbine to compressor types show a minimum at an 

approximately constant value of ~iz of about .8. For blades 

of the types generally used in cascades the drag coefficient is 

low and almost constant over a range which extends perhaps five 

degrees above and fifteen degrees below the minimum drag-lift 

ratio. These general criteria for determining range of opera

tion are indicated on Figs. 22 and 25. 

The effect of changing cascade stagger is apparent from 

Figs. 22 and 25. One would expect the spacing between lines of 

constant ~ to be more uniform than this test indicated. This 

variation is considered to be a manifestation of the experimen

tal error pf the method. For the whole series of tests the error 

is believed to be± 1°. A test program which included a wider 

range of stagger angles or which provided for smaller test in

crements in this same range would serve to assist in reducing 

this random error by permitting the application of statistical 

data smoothing techniques. 

There is again an indica t ion, particularly for the cascade 
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test at a- = l. 5 and ~ = 35° that the high stagger angle cas-

cade is subject to an additional error. The turning angles pre

dicted for this case seem to be greater than one would expect, 

considering the other three cascades. As in the 45° stagger an

gle cascade fi+st discussed, some of this differenc e is probably 

attributable to the paper. 

This particular cascade was also analyzed to see what value 

of GT would give results in agreement with the NACA report. 

The point on the blade cutout which had the value of G so de

termined was located on the upper side of the blade profile very 

near the trailing edge. This suggests that the real fluid in 

the NACA tests, under the influence of viscosity and adverse 

pressure gradient, separated from the airfoil at a point closely 

approximating this same location on the blade cutout. 

For the ~ = 1 cascade the predicted turning angles com

pare remarkably well with the NACA test points for a cascade en

trance angle d, = 45~ The comparison is not as close for the 

two NACA points plotted at a cascade approach angle ~~ = 30°. 

For ~ = 20° a line drawn between the two NACA test points at 

cl, = 30° and c(, = 45° would not have the same slope as the 

corresponding line produced by this method. The same thing is 

true to a lesser extent for ~ = 25°. These differences in 

slope are considered to be a consequence of viscosity. 

For the ~ = 1.5 cascade there is a somewhat larger differ

ence between predicted turning angles and reported NACA test re

sults, but the comparison is still close. Twelve inch chord 

blade templates were used for three of the four cascades of 

~ = 1.5. Only the ~ = 25° cascade was cut out using a six 
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inch template. The somewhat increased error due to bus bar 

l ocation for the larger template i s not di scernable; so use of 

t he larger blad e i s probably wa rranted for high solidity cas-

cades when the reduc tion in cu t out time and in labor are con-

sidered. A series of analys e s for various values of 

such as is contained in Appendix F for U = 1 and 

would permit approximate determination of the larges~ sized 

blade permissable for a given acceptable percentage error. 

Fi§. 28 presents a concise su~mary of the effects of solid

ity and stagger angle upon cascade performance. The variation 

of cascade coefficient K with changes in stagger angle are 

shown for each solidity. For purposes of approximate comparison 

values of K for a flat plate cascade having the same nominal 

value of solidity and stagger as· the actual cascade are also 

plotted and are seen to be quite similar. 

Another concise representation of cascade characteristics 

is contained in Fig. 29 which shows the effect of changing stag

ger angle upon the relative angle of zero lift ~0 • This pre

sentation amplifies and clearly shows the variation in the an-

gle of zero lift with changes in stagger angle. It suggests that 

a similar plot for a much larger number of tes~s would permit the 

determination of a smooth curve of ~Lo vs. ~. If the magnitude 

of random error were thus partially removed from the determina

tion of c[Lo , a more uniform spacing of the constant ~ lines 

in Figs. 22 and 25 would result and the error indicated in Fig. 

21 would be considerably reduced. Unfortunately time did not 

permit conducting the additional number of tests which would be 

required to determine this curve. 
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The curve of Fig. 31 , (-*.--) \S. t=-ercen t chord compa res favor-

ab l y wi th the NACA curve fpr a simila r cascade entrance angle. 

However, Fig. 31 is a smooth curve de t ermi ned from calculat io ns 

based upon raw data by means of a me t hod of lea s t squares de-

- veloped by Prof esso r Gawain. Before ex t ensive t es ts of ve loc-

ity could be underta ke n, th e double probe and perhaps the t ech

nique of 'ob t aining ~ f r eadings would require improvement . Fig . 

31 does indicate, hov:ever t hat t he velocity distribution can be 

determined by this method . 

7.3 ACCURACY 

The accuracy of the results obtained by this method of 

cascade analysis is a function of the approximations made and 

of the accuracy of the measured input data. The results are 

more sensitive to errors in some input quantities than to errors 

in others, and certain measured quantities can be determined 

more accurately than others. 

Table X gives an indication of the sensitivity of results 

to variation of input data. It lists the change in calculated 

turning angle caused by individually increasing each of the in

put quanti ties C, , Gz. , 5r , and ~~ by one percent of its 

measured value. This information was compiled for a cascade of 

the airfoil contained in Ref. 7 with ~ = 45° and a- = 1, but 

it is considered to be representative of the other blades and 

cascades tested. The table indicates that the results are par

ticularly sensitive to changes of Cz and Cr . It indica t es 

the desirabili t y of ob t aini ng the input measured val ues t o an 

accuracy of one part in te n t ho usa nd. 
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Many op e rations were required for each cascade layouti and 

every step h• d some effect on the value of the final measured 

quantit i es. Th e largest of the con s t r uction errors was due t o 

t he conducting med ium. The value of th e sp ecific resistanc e of 

this ma t eri a l wa s gi ve n by the ma nuf • cturer as 4000 ohms. Thi s 

value wa s speci : ied a cc urat e f r om z3 to ~8 percent wi th the 

lower value of r esis tance a l ong t he leng t h of the r ol l a nd the 

higher value across t he wid t h of t he roll. This varia t i on is 

explained by t he manner of ma nufac t uring. These errors were 

necessarily accepted as t he pa r t ic ular conducting medium used 

v·as basic to this investiga t ion. 

Wood v·as used for structural members of t he working sur

face. The position of the bus bars was held to the t o lerance 

mentioned in the equipment section, but the trueness of the 

joint depended upon the ability of the wood to maintain its di

mensions under continued use. It was found t hat after three or 

four tests, the table required cleaning because the graphite 

depocit on t he table caused a change in the conductivity of sub

sequent papers when not removed. 

In the layout of the cascade on the paper several sources 

of probable error "''ere encountered, such as dimensioning 9 con

structing layout and reference lines and setting stagger angles. 

These were subject to the same limits of error encountered in 

engineering drawings A reading glass and a jewelers' eyepiece 

were used to provide magnification for greater accura cy in la y

out. Dimensions could be held to a t olerance of .01 inch. 

Lines were maintained t o wid t hs of from f our to six thous a nd t hs 

of an inch and angles were ma i nt ai ned c orrec t to 10 mi nu t es of 

arc. 
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The templat es introduced a systematic error due to the 

tolerance of manufacture and a random error in the prqcess of 

posi tioning. The manufacturing to lerance was± 0.005 inches. 

The profile cutouts were maintained-to t heir r espective coordi

nates with a tolerance of about .010 inches. 

Reading and determinat ion errors of the instruments were 

encountered only with the null meter and with the probe. Since 

a zero reading or null was required on the meter prior to read

ing the voltage divider, detecting a null was reduced to detect

ing motion of the meter needle. The sensitivity of the instru

ments permitted reading potential on the voltage divider to one 

part in ten thousand. Readout was directly in percent poten

tial; so constancy of imposed voltage was not required. Errors 

~n probe location depended upon all previous dimensioning and 

construction of reference lines. With optical aids it was pos

sible to place the probe within the actual width of the pencil 

lines. Distance from the cutout edges of the profile could not 

be determined to comparable accuracy. However, the constant 

potential lines are normal to the cutout near the profile edge; 

so this distance is not as critical. 

The velocity distribution around the profile was determined 

to demonstrate in preliminary fashion one of the capabilities of 

the method. This involved measuring small changes in potential 

and dis~ance as a means of determining potential gradient. 

Tests were not conducted to determine the accuracy of these 

measurements nor the validity of the final results. Ref. 12 

states that for a liquid electrolyte it is possible to obtain 

an accuracy of two to five parts in a thousand with respect to 
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the theoretical value when using a double probe of five milli-

' meters separation. The method of de t ermining the error of such 

an ins trume nt wa s to rotate it around a point in the fie ld i n 

whic h case a si nu soidal variation s hould re su l t. 

It mig ht seem, wh e n first c onsidered, t ha t a comparis on of 

the pote nti31 readi ng s at corr e sponding points on adj acent pro

files would give an indic at ion of the overall accuracy ac tuall y 

obtained. However, t his i s not a definite criterion. In fact 

it was no t uncommon f or t he me a s ured potentials at correspond-

i ng points on adjacent pro f iles to differ by 2% without produc

ing a noticeable change in resul t s. The reason for this is that 

the quantities t and f which determine cohditions in the pic

ture plane contain ratios of differences between measured quan

t i t ies . The measured values of the various C'S could there-

fo re differ from profile to profile without necessarily affect

ing th e values of r and f 
A better indication of the overall accuracy actually ob-

tained in construction and measurement was the repeatability of 

r esults. Fig. 33 gives an indication of the degree of re~eat-

ab i lity of the method and procedure as finally evolved. The 

three layouts shown were distinct in every respect even to the 

use of Teledeltos paper from three separate rolls. 

The indication of repeatability does not, however, purport 

to show the accuracy of the method in its degree of approxima

tion to the true conditions for an infinite cascade. The bus 

bars were located a finite dista nce from the cascade and can on-

ly approximate the condi t io ns an i nfi nite dis t a nce away. Al-

though the error accepted wi t h th is a s s umpt i on cannot be deter-
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mined exactly with the present equipment, a close approximation 

of this error based on a cascade of flat plates is derived ana-

lytically in Appendix F. From the figure and the data in this 

appendix i t is evident that for the geometry selected, the er

ror introduced by the location of the bus bars is negligible. 

Only one cascade of flat plates was investigated, but the ana

lytic means is at hand for determining cases of different 

solidity and stagger angle. 

The effect of the foregoing limitations on the accuracy of 

K and ~ cannot presently be determined directly. Further 
\~o 

testing is needed to provide statistical data for determination 

of the error as well as means for its reduction. 

The closely related parameter of cascade performance C9 1 

when compared to published data, agreed within the limits of ~1°. 

7.4 CRITIQUE OF THE METHOD AND SUGGESTED IMPROVEMENTS 

The given conducting paper was taken as fundamental to this 

investigation. The scope of this work could not include a 

search for nor an evaluation of various conducting mediums. 

However, removal of the directional properties of the conducting 

medium and reduction of the variation ln its specific resistance 

should greatly improve the accuracy of the method. Perhaps the 

present type of conducting paper could be improved. Other con

ducting mediums may be available. Considerable work has been 

done in France and at Rensselaer Folytechnic Institute in this 

country with electrolytic tanks. See Refs. 12 and 13. A sol

id conducting medium is believed to be preferable for the meth

od herein described. The solid medium obviates such problems 
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a s leveling and polarization . The test set-up is much simpl er 

as only a single t emplate is r equi red f or all of the cascades 

usi ng that ai r fo i l. 

If after i nves tigation the t eledel t os pap er still proved 

to be t he best solid medium ava ilable, allowa nce fo r the di 

rectional properties could be made py use of a scale fact or . 

For the work reported here a scale factor correction of profile 

coordinates was not considered practical because of the range 

of variation of specific resistance in a given direction. Sum

marizing, even if directionality cannot be removed, variation 

of specific resistance in a given direction should be decreased. 

~ minor suggestion for increased ease in cascade layout is 

to change the black color of the backing side of the sheet to 

more clearly show-up the penciled layout lines. 

The layout table undoubtedly would be further modified if 

this method were to be used commercially. It is considered de

sirable to bring the meridional ends of the paper together to 

establish an electrically continuous sheet although the origi

nal flat table produced satisfactory results when the approxi

mate streamlines ~ere used as boundaries. The cascade test at 

U = 1.0 and ~ = 30° was done on the original table. If a 

paper v·ere used which was sufficiently long in the direction 

of the cascade axis the effect of straight-cut ends would prob

ably be small at the center blade cutouts. This would be par

ticularly true for the cascades of small stagger angle. 

If a table be constructed of desig0 similar to the one 

herein described, particular care should be taken to insure 

that the table hinges be di mensiona ll y true. Their trueness 
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also will require periodic checking because of the dependence of 

the electrical connection upon them. 

Perhaps a clip-board type of springed clamp could be design

ed for es tablishing electrical contact betwee n bus bars and pa

per. Such an arrangement could save time over the bolted clamp

ing system used for th ese tests. 

Another sugges tion for improvement is to design the layout 

table such that the bus bars as well as the paper would be elec

trically continuous. Although th e conductivity of both the cop

per bus bars and the silver painted areas on the paper is large 

relative to the paper, their conductance would improve the ap-

proximation of uniform conditions at large distances from the 

cascade. 

The method is dependent upon the technique of the operator. 

With an increasin~ number of cascades tested, the operator can 

be expected to improve in accuracy and increase in speed. The 

angle of holding the probe, the depth of probe penetration, the 

eyesight of the operator, and his ability to position the probe 

accurately are all personal factors which will affect the re

sults to a certain small degree. 

The statistical curve fitting technique for determining 

the value of Cr probably could be improved. There is a re

quirement for reduction of the random error. The method used 

in this report seemed attractive because of the similarity of 

its equations to those. for perfect fluid flow. It proved to be 

practical for solution. This same form perhaps could be modi

fied to allow for the curvature of the blade profile near the 

trailing edge. 
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This method of cascade analysis has the great advantage of 

being much less e xpensive than actua l cascade tests. The 

teledeltos paper is the principal consumable item. The t empla tes 

can be manufac tur ed without difficulty or excessi ve expense. 

The time saving of this method over other methods of cas-

cade analysis is considered to be one of its principal advan-

tages. With improvement in technique it was found that a typ ical 

cascade layout could be completed and measurements taken for de-

termination of turning angle in slightly more than one working 

day. This of course depended to some extent upon cascade geom

etry. Calculations of turning angles from the raw data were ac

complished in three to four hours and would be much faster on ne~

er digital computers. The use of the computer is not required 

for this method. It was used here principally to save time and 

thus permit the testing of a greater number of cascades. The 

measurements required for the determination of velocities at 60 

stations on the profile required an additional two hours. Cal

culating time to find these velocity ratios required approximate-. 
ly 20 minutes for each angle of mean velocity. 

Analyzing the method from another viewpoint, it experimen

tally accomplishes conformal transformation of an arbitrary cas-

cade onto a circle. When one considers the well known transfor-

mation which maps a circle into a cascade of flat plates, he 

might in one sense consider that this method determines an e-

quivalent flat plate cascade for any arbitrary cascade. The 

performance of a cascade of flat plates is defined theoretically 

by two parameters K and These quantities are determined 

in this me ~hod simply by making the measuremen ts required to 

find t and fr . 
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Th is me thod has greater capabi li ty, however, than simply 

t he de t ermi nat i on of these two pa r ame t ers . A point to point 

correspo ndence be tween blad e profile and c ircle is obtai ned 

which permits determi nation of t he local veloc ity ratio at an y 

point on the b lade profil e . 

In review, a method of cascade analysis has been developed. 

It was shown to be capable of predicting, with reasonable accur

acy, the turning angles of perf ect fluid flow across an arbi

trary cascade. Because of t he nature of the present conducting 

medium the accuracy seems somewhat poorer at large stagger an

gles but no limits of solidity or cambe~ are known to exist. 

The time required to accomplish the procedure is short enough 

to make the method suitable for engineering application. The 

method is not expensive. 

Extension of the method to the analysis of radial and con

ical (mixed flow) cascades is analytical once the basic trans

formation of a rectilinear cascade has been achieved. 

The method could be analytically supplemented to permit 

c~nsideration of viscous conditions. Some estimate of com

pressibility effects could be made using the Prandtl-Glauert 

method. 

The method of experimental conformal transformation used 

herein should be a valuable tool when applied to t he many other 

engineering problems which are characterized by LaPlace's equa

tion. Examples are problems in the theory of elasticity, in 

heat transfer, and in electric field theory. 
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8. CONCLUSIONS AND RECOfv11':1ENDATlONS 

The principal conclusions of this investigation are: 

The method herein described determines the ideal fluid 

flow, including turning angles and pressure distribution 

along the blades, for any two dimensional cascade. A 

practical technique, partly experimental and partly ana

lytical, of conformally transforming an arbitrary cascade 

to a corresponding circle is provided as the basis of the 

method. 

At its present state of development the method appears 

to determine turning angles to an overall accuracy of zl 0
, 

but further refinement can undoubtedly reduce this error. 

The cascade analysis is accomplished in approximately 

one v.•orking day and at nominal expense. 

No limitations in the method due to cascade geometry 

are known to exist. 

For further r~finement of the method it is recommend that: 

A more nearly homogeneous and isotropic conducting med

ium be used. 

Cascade layout and measurement procedures be mechanized. 

55 



9. REFERENCES AND BIBLIOGRAPHY 

Ref. 1: Durand, ~illiam F.: Aerodynamic Th eor y, Vol. II, 
Div. E, Reprinted ed., 1943. 

Ref. 2:. Weinig, Fri tz S.: Die Stromung urn die Schaufeln 
von Turbomaschi nen, Johann Ambrosius Barth (Leipzig) 
1935 - English translation printed by Code 338, Re
search and Standards Branch, Bureau of Ships, Navy 
Department, May 1946. 

Ref. 3: Collar, A. R.: The Flow of a Perfect Fluid through 
Cascades of Aerofoils. The Journal of the Royal 
Aeronautical Society, 1941, Vol. XLV, No. 365, 
pp 183-213. 

Ref. 4: Tyler, R. A.: The Available Theoretical Analyses of 
Two-Dimensional Cascade Flow. National Research Coun
cil of Canada. Aero Note AN-4, 1949. 

Ref. 5: Vazsonyi, Andrew: On the Aerodynamic Design of Axial 
Flow Compressors and Turbines. Journal of Applied 
Mechanics, 1948, Vol. 15, No. 1, pp 53-64. 

Ref. 6: Weinig, Fritz S.: New Approach to the Theory of Thin, 
Slightly Cambered Profiles. Journal of Applied Mech
anics, 1957, Vol. 24, No. 2, p 177. 

Ref. 7: Mutterperl, William: A Solution to the Direct and In
verse Potential Problems for Arbitrary Cascades of 
Airfoils. NACA ARR L4K22b, Dec. 1944. 

Ref. 8: Garrick, I. E.: On the Plane Potential Flow Past a 
Lattice of Arbitrary Airfoils. NACA Rep. No. 788, 1944. 

Ref. 9: Herrig, L. Joseph; Emery, James C.; and Erwin, John R.: 
Systematic Two-Dimensional Cascade Tests of NACA 65-
Series Compressor Blades at Low Speeds. NACA TN 3916, 
1957. 

Ref. 10: Bradfield, K. N. E., Hooker, S. G., and Southwell, R. B.: 
Conformal Transformation with the Aid of an Electrical 
Tank. Royal Society of London, Proceedings, 1937, 
Vol. 159 A, pp 315-346. 

Ref. 11: Shepard, D. G.: Principles of Turbomachinery, 1956, 
1st ed., The MacMillan Co., New York. 

Ref. 12: Malavard, L.: The Technique of Electric Analogies. 
Centre National de Recherche Scientifique. Transl. by 
Begue, Joseph and Brower, W. B., Jr., Rensselaer Poly
technique lnst., Issued as Rep. No. OSR-TN-54-299. 
Contract AF 18(600)499. 

56 



Ref. 13: Brower, W. B., Jr.: The Application of the El ectr ic 
Analogy to Two Dimensio nal Problems in Aeronautics. 
Rensselaer Polytec hnic Ins t. Rep. No. TR AE 54C6 , 
1953. Contract AF 18(600) 499 . · 

Bi bli ography of mater i al used as background but not ref erred 
to specifically i n t he t ext. 

Streeter, Victor L.: Fl uid Dynamics, 1948, lst ed. , McGraw
Hill Book Company, Inc. · 

Glauert, H.: Airfoil and Airscrew Theory, 1926, reprinted 
1943, lst ed., The Macmillan Company, New York. 

Dvvinnel, J. H.: Principles of Aerodynamics, 1949, lst ed., 
McGraw-Hill Book Company, Inc. 

Vavra, M. H.: Lecture Notes from Course in Gas Turbines, 
U. S. Naval Postgraduate School, Monterey, California. 

Karo, D.: Electrical Measurements and the Calculation of 
the Errors involved, Part I, 1950, MacDonald and Company, 
Ltd . , London . 

DeLella, Amelia, compiler,: Five Place Table of Natural 
Trigonometric Functions to Hundredths of a Degree, 1934, 
John Wiley and Sons, Inc., New York. 

Lamb, Sir Horace: Hydrodynamics, 1932, 6th ed., reprint, 
1945, Dover Publications, New York. 

57 



TABLE 1 

INSTRUMENTS 

1. Potential suppl y - Heathkit Battery Eliminator, Model BE-4. 

2. Null meter - General Electric DC Micro Ammeter, Type 
00-71, Model A29AA1, coil resista nce of 
1700 ohms, detecting sensitivity power 
on the order of 8 micro-micro watts. 

3. Voltage divider - Electro-Measurements Inc. Dekavider, Mod
el RV622, linearity of ±0.0025 percent, 
input resistance of 10,000 ohms, Serial 
13,049. 

4. Potentiometer - Leeds and Northrup Portable Precision 
Potentiometer, Number 8662, Serial 
1318768. 

5. Voltmeter - Weston DC Voltmeter, Model 45, Serial 
49400. 
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TABLE II 

AIRFOIL ORDINATES FROM NACA ARR . NU. L4K22b 

(Stations a nd ordinates in perc en t of ai r foil chord) 

Upper surface Lower s ur face 

Station Ordina t e S t a t ion Ordi nat e 

0 0 0 0 
.23 .97 .77 -.43 
.44 1.24 1.06 -.44 
.88 1.66 1.62 -.46 

2.03 2.63 2.97 -.37 
4.43 4.17 5 .57 -.13 
6.87 5.44 8.13 .18 
9.34 6.56 10.66 .48 

14.34 8.46 15.66 1.08 
19.38 9.98 20.62 1.64 
24.44 11.24 25. 56 2.16 
29.55 12.20 30.45 2.60 
34.64 12.90 35.36 2.96 
39.72 13.39 40.28 3.29 
44.82 13.64 45.18 3.58 
49.96 13.65 50.04 3.91 
55.07 13.37 54.93 4.23 
60.17 12.78 59.83 4.45 
65.26 11.92 64.74 4.68 
70.30 10.81 69.70 4.77 
75.32 9.53 74.68 4.67 
80.29 8. 04 79.71 4. 39 
85.23 6.40 84.77 3.94 
90.17 4.56 89.83 3.10 
95.10 2.57 94.90 1.89 

100 0 100 0 
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TABLE III 

ORDINATES FOR NACA 65-010 BASI C THICKNESS FORMS 

(Stat i ons and ordinates in perce nt of chord) 

St a t io n, x 

0 
.5 
.75 

1.25 
2.5 
5.0 
7.5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
L.E. radius 

Ordina t es, ± Y 

65(216 )-010 airfoil combi ned 
with y = 0.00!5x 

60 

0 
.752 
.890 

1.124 
1.571 
2.222 
2.709 
3.111 
3.746 
4.218 
4.570 
4.824 
4.982 
5.057 
5.029 
4.870 
4.570 
4.151 
3.627 
3.038 
2.451 
1.847 
1.251 

.749 

.354 

.150 

.666 



TABLE IV 

COORDir~ATES uF 6 '' and 12 11 NACA ARR NO. L4 K22b AIRFOILS 

6 " Cho rd (Stations and 
Upp er surf ace 

S t ~t io n , x Ordi n5te, y 

.0138 .0582 

.0264 . 0744 

.0528 .0996 

.1218 .1578 

.2658 . 2502 

.4122 .3264 

.5604 .3936 

.8604 . 5076 
1.1628 .5988 
1.4664 .6744 
1.7730 .7320 
2.0784 .7740 
2.3832 .8034 
2.6892 .8184-
2.9976 .8190 
3.3042 .8022 
3.6102 .7668 
3.9156 .7152 
4.2180 .6486 
4.5192 .5718 
4.8174 .4824 
5.1138 .3840 
5.4102 .2736 
5.7060 .1542 
6.0000 0 

ordi nat es in i nc hes) 
Lov1 er s urface 

St~tio n , x Ordigate, y 

.0462 - .0258 

.0636 - .0264 

.0972 -.0276 

.1782 -.0222 

.3342 -.0078 

.4878 +.0108 

.6396 .0288 

.9396 .0648 
1. 2372 . 0984 
1.5336 .1296 
1.8270 .1560 
2.1216 .1776 
2.4168 .1974 
2. 7108 . 2148 
3.0024 .2346 
3.2958 .2538 
3.5898 .2688 
3.8844 .2808 
4.1820 .2862 
4.4808 .2802 
4.7826 .2634 
5.C862 .2364 
5.3898 .1860 
5.6940 .1134 
6.0000 0 

61 



TAB LE IV (Cont . ) 

12 11 Chord (Stat i ons and 
Upper surface 

Station, x Ordi nat e , y 
0 0 

.0276 .1164 

.0528 .1488 

.1056 .1992 

.2436 .3156 

.5316 . 5004 

.8244 .6 ~28 
1.1208 .7872 
1.7208 1.0152 
2.3256 1.1976 
2.9328 1.3488 
3.5460 1.4640 
4.1568 1.~48 0 
4.7664 1.6068 
5.3784 1.6368 
5.9952 1.6380 
6.6084 1.6044 
7.2204 1.5336 
7.8312 1.4304 
8.4360 1.2972 
9.0384 1.1436 
9.6348 .9648 

10.2276 .7680 
10.8204 .5472 
11.4120 .3084 
12.0000 0 

ordi nat es in inches ) 
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Lower surfac e 
Station, x Ordi na t e , y 

0 0 
.0924 -.0516 
.1272 -.0528 
.1944 -.0552 
.3564 -.0444 
.6684 -.0156 
.9756 +.0216 

1.2792 .0576 
1.8792 .1296 
2.4744 .1968 
3.0672 .2592 
3.6540 .3120 
4.2432 .3552 
4.8336 .3948 
5.4216 .4296 
6.0048 .4692 
6.5916 .5076 
7.1796 .5376 
7.7688 .5616 
8.3640 .5724 
8.9616 .5604 
9.5652 .5268 

10.1724 .4728 
10.7796 .3720 
11.3880 .2268 
12.0000 0 



TABLE V 

COORDINATES OF 6 11 and 12 11 NACA 65- ( 15 )1 0 AIRFOILS 

6 11 Cho rd (Stations and 
Upper s urface 

Stat io n , x Ord inate, y 
0 0 

.0059 .0606 

.0181 . 0776 

.0438 .1079 

.1122 .1701 

.2558 . 2680 

.4033 .3465 

.5526 .4132 

.8544 . 5229 
1.1587 .6079 
1.4643 .6746 
1.7709 .7254 
2.0780 .7603 
2.3853 .7850 
2.6934 .7944 
3.0000 .7886 
3.3066 .7669 
3.6120 .7307 
3.9160 .6796 
4.2184 .6188 
4.5191 .5486 
4.8181 .4675 
5.1152 .3763 
5.4114 .2761 
5.7070 .1622 
6.0000 .0090 

LEADI NG EDGE RADIUS = 

ordi na t es i n inches) 
Lower s urface 

St a t i on , x Ordinate, y 
0 0 

.0541 -.0156 

.0719 -.0146 

.1062 - .0116 

.1878 -.0027 

.3442 +.0164 

.4967 .0351 

.6474 .0521 

.9456 .0828 
1.2413 .1085 
1.5356 .1309 
1.8291 .1494 
2.1220 .1667 
2.4147 .1789 
2.7672 .1911 
3.0000 .2042 
3.2934 .2186 
3.5880 .2332 
3.8840 .2474 
4.1816 .2560 
4.4809 . 2569 
4.7819 .2489 
5.0848 .2294 
5.3886 .1892 
5.6930 .1222 
6.0000 -.0090 

.03996 inches 
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TABLE V (Cont. ) 

12" Chord (S ta tio ns and 
Upper surface 

Station, x Ordi na t e , y 
0 0 

.0118 .1 213 

.0362 .1 553 

.0876 .2159 

.2245 .3401 

.5116 . 5359 

.8066 .6930 
1.1053 . 8264 
1.7088 1.0459 
2.3174 1.2158 
2.9287 1.3492 
3.5417 1.4507 
4.1559 1.5206 
4.7707 1.5700 
5.3868 1.5888 
6.0000 1.5771 
6.6131 1.5337 
7.2241 1.4614 
7.8321 1.3592 
8.4367 1.2375 
9.0382 1.0971 
9.6362 .9351 

10.2304 .7527 
10.8228 .5522 
11.4141 .3245 
12.0000 .0180 

ordina t es i n inches ) 
Lower surfa ce 

Station,. x Ordi nate, y 
0 0 

.1082 - . 0313 

.1438 - . 0293 

.2124 -.0233 

.3755 -.0053 

.6884 +.0328 

.9934 .0702 
1. 2947 .1042 
1.8911 .1655 
2.4826 .2172 
3.0713 .2618 
3.6583 .2989 
4.2440 .3334 
4. 8293 . 3578 
5.5344 .3822 
6.0000 .4083 

. 6. 5868 .4373 
7.1759 .4664 
7.7679 .4949 
8.3633 .5121 
8.9618 .5139 
9. 5638 . 4977 

10.1696 .4587 
10.7772 .3784 
11.3859 .2443 
12.0000 -.0180 

LEADING EDGE RADIUS = .07992 inches 
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A. Turning Angles: 

1. First series: 

TABLE VI 

TEST PROGRAM 

Profile - Mutt erperl (NACA ARR No. L4K22b) 
Tests (a) ?> = 450; <T = 1.0 

(b) ~ = 450; a-= 1.5 

2. Second series: 

Profile 
Tests -

- NACA 65- ( 15 )10 
Group one (six inch chord) 

(a) ~ = 20°; ~ = 1.0 
(b) ~ = 250; IJ' = 1. 0 
( c ) ~ = 300; 0" = 1. 0 
(d) ~ = 350; 0" = 1. 0 

Group two 
(a ~ = 20°; a- = 1.5 
(b ~ = 25°; (J- 1.5 . -

~~ ~ = 3C0; cr= 1.5 
(' = 35°; o-= 1.5 

~twleve inch chord) 
six inch chord) 
~twelve inch chord~ 
twelve inch chord 

B. Velocity Distribution: 

Profile- NACA 65-(15)10 (twelve inch chord) 
Test- ~ = 35°; a-= 1.5 
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TABLE VII 

SAMPLE DATA FOR TURNING ANGLE DETERMINATION 

Upp er Lower 
Surface Surface 

Stati?n C (Percent ) Station e (Percent) 

3b 71. 88 46 30.69 
c 71. 88 a 30.61 
d 71.89 b 30.55 

4 71.90 c 30.49 
4a 71.89 d 30.42 

b 71.88 47 30.37 
a 30.29 
b 30.24 

46 34.91 c 30.18 
a 34.70 d 30.12 
b 34.47 48 30.08 
c 34.26 a 30.03 
d 34.00 b 30.01 

47 33.77 c 29.99 
a 33.52 d 30.00 
b 33.28 49 30.18 
c 33.01 

( ~t: ) . d 32.76 
48 32.50 TX U) • 

a 32.20 6 U:~ ~n:~ eo:t) b 31.93 Station 
c 31.59 
d 31.24 0 98.53 

49 30.68 1 95.74 
Center Tail 30.52 2 92.97 

3 90.24 
4 87.58 
5 84.84 
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TABLE VIII 

SA~LE DATA AND INPUT VALUES FOR DETERMINATION OF VELOCITY RATIOS 

Upper Surface Lower Surface 

e A~ ~f c A~ 
A[ 

Percent AT 
Chord (P ercent) (Volts) (P ercent) (Percent) (Vol t.5) (P ercent) 
From L.E. 

0 68.38 67.84 14.17 
2.08 71.31 10.22 2.353 65.30 34.86 7.983 
4.17 71.75 3.58 0.824 63.67 29.33 6.752 
6.25 71.85 62.22 27.45 6.319 
8.33 71.75 2.57 0.592 61.00 22.97 5.288 

10.42 71.53 4.77 1.098 59 .85 21.70 4.995 
12.50 71.23 6.06 1.395 58.74 19.71 4.537 
16.67 70.40 8.91 2.051 56.71 19.29 4.441 
20.83 69.29 10.69 2.461 54.65 18.75 4.316 
25.00 67.99 13.14 3.025 52.81 18.70 4.305 
29.17 66.51 13.93 3.207 51.00 16.30 3.752 
33.33 64.88 15.76 3.628 49.26 16.23 3.736 
37.50 63.06 18.23 4.197 47.56 15.75 3.626 
41.67 61.21 18.43 4.243 45.95 16.25 3.741 
45.83 59.18 18.73 4.312 44.34 15.77 3.630 
50.00 57.15 20.31 4.675 42.74 15.77 3.630 
54.17 55.06 20.12 4.632 41.22 14.70 3.384 
58.33 52.98 19.64 4.521 39.81 13.15 3.027 
62.50 50.87 19.53 4.496 38.44 13.08 3.011 
66.67 48.81 18.30 4.213 37.14 12.17 2.802 
70.83 46.68 18.98 4.369 35.94 11.25 2.590 
75.00 44.57 19.40 4.466 34.79 11.54 2.657 
79.17 42.52 18.45 4.247 33.72 10.00 2.302 
83.33 40.39 18.34 4.222 32.77 9.22 2.122 
87.50 38.23 19.31 4.445 31.89 8.21 1.890 
91.67 36.10 20.55 4.731 31.05 6.80 1. 565 
93.75 34.91 20.02 4.609 30.69 5.94 1.367 
95.83 33.97 19.85 4.570 30.37 5.35 1.232 
97.92 32.50 20.70 4. 765 30.08 3.71 0.854 

Al. = . 0405 inches 
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TABLE IX 

INPUT VALUES FOR DETERMINATION OF TURNING ANGLES 

(J ~ c, Cz. Cr 
~e -» 5 

Degrees Percent Percen t Percent Percen t 1 o~bes J 

MUTTERPERL AIRFOIL 

1.0 45 61.86 39.42 40.29 2.870 6.00 
1.5 45 62.61 38.02 38.54 2.825 4.00 

NACA 65-(15)10 

1.0 20 61.65 40.54 40.63 3.060 6.00 
1.0 25 61. 14 . 40.32 40.50 3.072 6.00 
1.0 30 62.14 39.01 39.30 3.259 6.00 
1.0 35 62.34 40.82 41.26 2.882 6.00 

1.5 20 . 71.38 30.26 30.36 2.943 8.00 
1.5 25 61.63 39.70 39.83 3.019 4.00 
1.5 30 72.26 30.03 30.44 2.761 8.00 
1.5 35 71.90 29.99 30.49 2.761 8.00 
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TABLE X 

SENSITIVITY OF RESULTS TO VARIATION OF INPUT VALUES 

A8 6.8 
Quantit y Value AQuanti ty ~QlJaoii:t~ at oc"m= 35° ato(m= 60° 

Quantity 

C, 62.91 +6 .001 + . 012° +.026° 

Gz 38.58 +4 .001 +1.105° +.641° 

Cr 39.68 +4 . 001 -1.104 ° . -.647° 

-~ .001 .029° 
0 

30.80 +3 + +.016 
'dx 
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APPENDIX A 

THE ANALOGY 

In potential, two dimensional, ideal fluid flow there is a 

complex velocity potential w = cp + i?f such tha t the Cauchy

Riemann differential equations are satisfied 

it-=1t 
o.nd Al 

'oP --~ 
d7( - d_g 

Then the complex velocity may be written 

A2 

Considering the flow of a steady current in a flat sheet of uni
iu form resistance per unit square 1-' • , 

A3 

where ~n is the current line intensity. Let I be a total cur

rent function analagous on the sheet to the stream function in 

the ideal fluid flow such that 

l,-_ ~I and Zy 'JI --Tt; =~ A4 

It follows: 

v'di __ d£ 
dy - dX and v .li_ = ~£ 

dX 'Jy A5 

which indicates that E and I also satisfy the Cauchy-Riemann dif

ferential equations. Equations A5 may be used to obtain 

£ +tYJ = f(x.tz~) = f(2) , A6 
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or if we divide by the maximum potential 

c:::-"* - R~ · f 
L - 1'\ ~ , 

Hence we may list the following analogies: 

t Plane 

1 04 

'5 Plane 

U - 'd(J - l_t_ --rr - ~ Yl 

A7 

AS 

A9 



APPENDIX B 

DERIVATION OF EQUATIONS FOR CONFORh~L TRANSFOR~~TION 

This appendix develo ps the equations needed to achieve con

formal transformation of the cascade of blades in the z plane to 

the circle in the 5 plane. It also defines the quantity ~; 
which is important in later work for relating velocities in the 

picture plane to those in the real plane. 

Conformal transformation is possible between the real, z 

plane and the picture, 5 plane if there exists a function in 

the picture plane of the real plane complex variable z such 

that for every assigned value of the variable the function has a 

definite value or system of values and alio a definite derivative. 

The advantage of this definition is that it does not require the 

existence of an analytical expression of the function. 

It was shown in the main text that any point on the real 

plane may be designated by its coordinates x, y or by the values 

of e and ~ Vihich characterize it. See also Appendix A. Fur

thur, the parameter 7: = C,- (,} was shown to be the unique and 
.s (-if 00 

invariant quantity which must be maintained to achieve conform~l 

transformation. 

The basic potential relations for a point of strength m are 

p = zn; lnR. and Bl 

where m is real~ The point is called a source if m is positive 

and a sink if m is negative. R is the radial distance from the 

point and e is the angular coordinate with respect to the 

point as origin. 
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In the picture plane of Fig. 4, let sources of strength m 

be located on the real axis at S = -b t -~b and let sinks of 

equal strength be located on the real axis at~= b, O/b . 
Then the complex potential in the picture plane is 

B2 

Now any point in the picture plane can be designated by its coord

inates ~ , ft or by the values of fJ and 1f which characterize it. 

Combining the factors of eq. B2, 

u.r = ..m._ Ln b + 3 • ~ + &!b 
Z11' b-3 :5 - 0/b 

On the circle j;j = a. , 

·s [ · ~e J - m I aelael 9 + ae + %. + 0/b ur - -t n _..;....~~-~-:-::--'-----:-:::-----:-:~--;...=:;.~--
Z17' -aels [ a.ets + a.e-t$ _ o/a + a;p] 

and VIi th . % e'( 

ur = l!L.Ln co~h r tacos e 
~11' cosh 0 -a. c 0.5 e 

We may let a = 1, giving 

B3 

B4 

B5 

ur = .1!1. Ln c.osh r + cos e = ({) + i 1u B6 
Z1f cosh~- cos 9 r T 

which shows that the circle is a line of constant ~ . 

If 1 and 2 are the points indicated in Fig. 4 

({) _ m = J1Lln co~hr + J 
r1.. r, Zff' coshr- 1 B7 

By Appendix A, j) corresponds to ~ 

tion 

so we may impose the rela-

BB 
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where k, and k~ are arbitrary constants. It follov-!S that 

89 

and if m = s k (-de) 
2. ~X oo BlO 

then Bll 

This establishes the existance of a function rela t ing the z and 

) planes conformally. 

E:=s:~:~~t::::d:r ~iv:osh-'t::: = ij 812 
Knowing ~ , the locations of the sources and sinks in the pic

ture plane are determined. For any point P on the circle and a 

corresponding point P' on a blade profile, let there be a quan

tity f such that 

By substitution of eqs. 86 and 87 into eq. 813 we obtain 

L cosh~+cose £ cosh'lf+l f = ...L n co-56 r-cos$ + n cosht- I 
z Ln cosh r + I 

cosh'&'- 1 

and solving for co.s e : 

( co:shr +I 

C05 () :: C0-5h r \·a:>s h r - 1 )
f-1 

I 
(
cosh r + I )'f-l + / 
coshr-1 

= co.sho e -~ 
11't(Zf - 1) J J 

e17"7:(l.f- t) + I 

Bl3 

814 

815 

The derivative '*' is the operator which relates infin

itesimal vectors in the picture plane to corresponding vectors 

in the real plane, and vice versa. In particular, 
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v = d ur = d u.r 1 d s 1 = \/~ 1 d :s 1 t d 2 d:S dt dt 

but recalling our parameter f this may be v.'ritten, 

df 
v.., dt 

.;; df 

d'S 

816 

817 

Nov· V5 is knovvn in the picture plane and is· given by eq. C5 of 

Appendix C. 

The numerator of eq. 817 can be v-ritten as 

_9_£_ 'V l_4_l_1_ 
d2 ~[,-£1 

The denominator of eq. 817 can be written as 

££ -
d5 (cosh~r- cos2-e) ln cosh 1 +I 

c.osh1-l 
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APPENDIX C 

QERIVATION OF FLOW EQUATIONS 

This appendix derives the equations required to develop an 

arbitrary flow about the c ire le 151 = Q 

The sources and si nks used to accomplish t ra nsformation can 

be considered to create an axial flow velocity \/a such that 

m =Vas On the circle lSI= a this flow produces ave-

locity. From eq. 83 

The basic 

vortex of 

' ~ P ' 1 _ 2 Vas cosh r .s ~ n e RdB= ve-- 17 co.shZ~-cosze 

velocity and 

strength ]\_ 

P=fi.e 

stream potential relations for a point 

are 

and 1f =-A ln R , zrr 
where A is positive if counterclockwise. 

Cl 

C2 

If vortices of strength A and with direction indicated in 

Fig. 7 be placed in the picture plane in addition to the sources 

and sinks the resulting complex potential is 

and the corresponding velocity on the circle is 

\{; __ 2 \hs cosh~.sin9 + ~ -smhtcose 
9 - 17' cosh2?r-co529 rr coshZi-cos?..B 

If Va. = "; and Vt = ;;- , 
~= tanc£m = ;;} 
Va. 

C3 

C4 

C5 

Since the value of m is determined in the process of transforma-
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ti()n, from m = sk2(- ~)00 , the arbitrary choice of a mean veloc

ity direction O::m determines the strength A Then if ad-

diti)nal vortices of strength _r_ 
2 

and with direction indicated 

in Fig. 7 be placed in the picture p lane , the resulting velocity 

on the circle 1--'l = a is: 

IJ _ V. __ z V0 .s(cosh15itl8 -tancfm 5lnh'tcos9\ __ r_l .siH~z 0' j c6 ~1:-o. 
9

- 17' c.osh21-ccoZe 1 z17'rco5h -cosze · 
At th e point on the ci rcle where 8= er,V&=-0. So l ving for 

L, 
Zm 

,fas = tan c("m cos Br _ .,Jn 8r 
fj cosh "r sinh '0 

C7 

The circulation given by this equat io n i ns ures sa t isfac t ion of the 

Kutta condi t ion. 

The velocity triangle is now complete . 

ton oG = tonci"m + z£s cs 

ton c4 = ton c{m - z1is C9 
Vt 

ton(c{.-c[") = -/s ({.isj 
I +tan,2,cfm- aS 

=tanS. 

ClO 
_j 

1- Vet • I 

Of aerodynamic interest is the ideal angle of attack. At th is 

angle the front s t agna t ion poin t is at the leading edg e of t he 

a i r f o i 1 . I f \4 = Q for e:: 8~ e qua t ion C6 ma y be s o 1 v e d to g i v e , 

ton r£i = tanh a (cos ar- cos$~) 
Cll 

For the determination of lift coeff icients, 

Cl2 

From eqs. CB and C9 1 r = \kQ (tan c£, - t anc(.t ) . Cl3 
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Substituting and solving, 

,c1~ == Z ~~Vas (tan<£, - tan<Xl) Cl4 
):.;C 

but Vm = Va and m == Va.:s so, ,,<;1 =~ __§._ cV,fx (tone(.- tone£,) 
CO.S o( m -r. cosd"m IC a 1 .<. • 

Hence, 

;C,t = .?:_ cos-.,~~ (tan c£, - tano(.2..) . 
x a--' cos o( m 

Cl5 

111 



APPENDIX D 

DEFINITION AND EXPLANATION OF THE TERM "SPECIFIC RESISTANCE" 

Cons i der an el ement of the conduct i ng medium of length ~ 1 

a nd wid th D. W. Ass ume co ns t a nt t hickness h a nd resistivity .P . 
Le t ~V be t he po t en t ial drop along the leng th ~1 of the ele-

men t , a nd .6i be t he corresponding curren t . 

r-----'...___-~_i 
h 

I~ C1 V -----....! .. 1----r 
~ Vz 

Ohm's Law may be written in the form: 

AV/& = p .Ai/~A ={flh)(~~W) where llA= h(AW). 
The constant of proportionality flh is defined as t he 

specific resistance 1), of the conducting medium. Solving the 

above equation for this term: 

yolts ip. = ohms 
amp. in · 

The net resistance of the element may be wri tten: 

R. = AVfDz = v(~~w). 
Thus if the element is square ( L:\ 1 = D.W), i t s ne t resist-

ance R, will be numerically equal to the specific resis t ance V , 
of the medium, regardless of t he size of the square. 
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Let 

APPENDIX E 

DETERMINATI ON OF Gr 

El 

be the complex po tential for conditions symmetrical on the top 
I 

and bot tom of a v1edge, Fig. El , \A/here Pa = 1200 E2 
/- Ztr 

The sides of the wedge are two separate lines which join at the 

wedge vertex to form a single line bisecting the obtuse angle 

formed by the vertex . A 1 on g each 1 in e 4 = 0 ; so , 

E3 

Similarly let E4 

be the complex potential for conditions where a single line of 

constant 4 coincides with the top and bottom boundaries of the 
_L 

wedge. Here pi:>= -~ = ~ Pa. = p E5 
I zrr Pb 

and as above, cb = ±Br E6 

on the wedge profile. The + sign ii for the upper side of the 
~ . ' 

wedge and the - sign is for the lower side of the wedge. 

Superposition of these two complex potentials resultsin 

E7 

Let the wedge approximate the trailing edge of the airfoil 

being investigated. Let r be the straight line distance of a 

point on the profile from the trailing edge. With the trailing 

edge at the point r = 0, eq. E7 will result in G being zero at 

r = 0; so with the additi on of a constant, the resultant equation 

is1 EB 
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~ 

Desired is the determination of the constants Gr , A, B, 

a nd p, s uch that the cur ve of the above expression wi ll as c l ose

l y a s po ssible app roxima t e the measured va l ues of (: i n the 

neighborhood of the t raili ng edge of the ai rfoil and permi t de

termina t i on of CT. The constant p is determi ned by a p lo tt ing 

procedure described la t er in the appendix. The de te r mina t ion of 

c r is accomplished by the method of least squares wh ic h is 

mathematically expressed by making the sum of the squares of 

the deviations of the experimental points from the analytical 

curve a minimum: 

f:c. = L(Gi- CS =minimum. 

This requires that, 

The resulting set of equations is 

a,,Cr + o.,zA +a,., B = M, 
a;.,Cr + au. A + al! B = Mz 
OJ, cr + a3-' A + a-33 B =- M3 

where 

N 

Mz= ~ ~rtmci 
bq 

N 

l'0.3 = ~ £ ±nm Ct 
i=l 

and N is the number of experimental points. 

The matrix solution for G7' is obtained, yielding 
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For t his investigation a sketch of the trailing edge of the 

airfoil was drav,n to a scale ten times that of the 6 inch chord 

templates used. Straight line distances were measured on this 

sketch from the trailing edge of the airfoil to the locations a

long the top and bottom surface where potential readings were 

taken. A curve Y':as plotted of Cu. and [ 1 versus these distances 

r: See Fig. E2. From this curve the values of Cu. and ci V!ere ob

tained at equal values of r. On log-log coordinates ((:u..- {-i ) 

was plotted as a function of r. The slope of this straight line 

is the coefficient p. See Fig. E3. 
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Fig. El 

Complex potentials 
for Determining ~ 
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APP ENDIX F 

APP ROXIMATION OF THE ERROR DUE TO THE BUS BAR LOCATION 

In adapting equipment to provide the electrical analogy to 

flow through cascades, it wa s necessary to locate the bus bars 

a fi nit e distance from the cascade. Thus the loca tion of the 

bus bars introduced an error in the measured data. The deter-

mination of this error cannot readily be made when the airfoils 

of the cascade have camber and thickness. However, a good ap

proximation of the error may be found by considering a cascade 

of flat plates. 

Tests of this investigation v·ere conducted under conditions 

equivalent to straight through flm~· with no circulation. The 

same conditions may be achieved over a flat plate cascade by 

imposing a potential flow composed of sources and sinks onto the 

conformal map of the cascade. 

THE CASCADE OF FLAT PLATES 

Considering ~ = f(5) as a complex potential function, 

then 

gives the mapping function between a circle with the radius a 

in the 5 plane and a staggered lattice composed of straight 
, 

airfoils in the ~ plane (Fig. Fl). 

Fl 

The first term of the above equation can be considered as 

originating from sources and sinks of equal strength located as 

shown in the figure, while the second term originates from 
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vor tices of equal magnitude super imp os ed on the sour ces and 

si nks. The sense of the vo r t ices is s hown by the direction of 

the ar r ow s i n Fig . Fl. 

The spaci ng of the airfoils along the casc ade is a con

sta nt s and ~ if t he stagger angle of the blades . 

The parameter b is connected with the chord sp aci ng ratio. 

In order to establish the relation between them, it is necessary 

to calculate the chord. By settingd~ =0 for :S=~t.(~,Fig.FI) and 
d5 

which points correspond to the leading and 

trailing edges of the blade, it can be shown that 

..£.. = ~os ~ ln [c Yb• + %"cos~(? + I )'~ + z;b cos ~ l 
s "r [ 1-W J 

+sin~ tan-' [ % sin~ J 
~Vb~t -t Z/tJ'co1~ +I)~ J 

F2 

For any chosen stagger angle ~ , the solidity(]"'= c/s may be 

computed for various assumed values of b. By plotting these re

sults, it is possible to determine b graphically for any choice 

of (J . Table F I gives a set of such corresponding values for 

a ~ of 45°. 

In the present example the solidity was arbitrarily chosen 

as unity. The parameters of the cascade geometry are now fixed. 

In order to obtain the point to point relation between the , 
~ and ~ plane it was necessary to reduce equation Fl to its 

real and imaginary parts. After a simple but some~·hat lengthy 

calculation there is ob t ained the form, 
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' ' ' "r = X. -r l y = 5 cos 
0 z 17' 

~2tan~ tn t 

. ~(r- a?r)cos8+2a 5lnhr] + z[('fr. + r) sin eJ~ 
(f- a?r)cose-za stnh~ t 2 [Co;v. +r) sn18] 

Where 
1" 

and b = e . 

THE STRAIGHT THROUGH FLOW 

The complex potential function necessary to produce a 

straight through flov,, vdth no circulation is 

Fla 

F3 

where ~S represents the strength of the sources and sinks in 

the 5 plane. In the ~ plane VQ is the velocity at infini t y 

and s is the cascade spacing. The product Vao , therefore rep-

sents the quantity of flow passing between two adjacent blades. 

The deviation of the velocity along any streamline from the 

value Va is a measure of the error in locating the bus bars a 

finite distance from the cascade. If the ratio Vg-V..; along 
Va 

any streamline, at a position along the streamli ne corresponding 

t o t he location of the bus bars, is negligible then t he error due 

t o the bus bars' loca t ion is negligible. 
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Th e s tagnation s t r eamli ne was chosen for i nves t iga t i on as 

i t has the mos t radi cal changes in ve1oci ty and direc t i on. Cal

cula t ions f or t his stre amline in the 5 pl ane oc cur where 9= 0, 

rr and b > r ~ a Se tt ing Q = 1 for conveni ence, and placing 

8= TT, t he ma pping equation reduces t o : 

x'=-s cos~ t n[C-r -+Y-r) - 2c:os h ~l 
zrr L2cosha +(rt Vr)j ' 

Flb 

lf' = 5 Bin§ ln [cr- 1/Y') -2 s inh1] 
;!., 17' l_zs~nh r +(Y'- 1/r )] 

In order to facilita t e visualiza t ion of perpe ndicu la r dis tances 
, 

from the cascade ce nterline a simple ro t ation of axes i n the ~ 

plane is introduced, 

)- = x. + i y u.rheroe X= X'cos ~ - tj'stn ~ 

and ~ =- x' sin~+ ~'cos~-

The complex veloci t y in 

dw = Vx.' -l Vu' = d1l J 

t he 

dur 
d~ 

~ 
d~ 

'I 

1f plane 

F4 

is, 

F3a 

With t he selecti ons of 9=11', Q = 1. 00 and ~ = 45° which de te r

mines cr for this case, 

F3b 

Th e magni t ude of th is ratio does not change under a rotation 

of the axes. 

The val ue of f in the -' plane "''as varied from 1.0 to b. 

-;( This gave corresponding points i n the 0 or ')- plane from 
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equations Flb and F4 respectively. At the same time the ra

tio Ycr.- Vx v·as computed thr ough the use of equation F3b. 
Va. 

The values of 'X./s and corresponding values of Vg-V-r 
Va. 

for the s t agnation streamline of the casc ade are presented in 

Table FI I with r as th e argument. Fig. F3 provides a graphic 

display of the results. The cascade in the figure is drawn 

to scale. 

The working surface as finally evolved had bus bars located 

16 inches from the cascade centerline. Two sizes of profiles, 

6 and 12 inch chord, were used in the investigation. The 

solidity for the flat plate cascade has been selected as unity 

thereby limiting the values of the ratio x/s to 16/12 and 16/6. 

These two cases are shown in Fig. F3. 
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TABLE FI 

CORRESPONDING VALUES OF b and U at ~ = 45° 

b at ~ = 45° 

2.00 .6560 

1.95 .6739 

1.90 .6930 

1.85 .7133 

1.80 .7350 

1.75 .7586 

1.70 . 7837 

1.65 .8111 

1.60 .8413 

1.55 .8737 

1.50 .9100 

1.45 .9506 

1.40 .9966 

1.35 1.0491 

1.30 1.1107 

1.25 1.1846 

1.20 1.2765 

1.15 1.3969 

1.10 1.5699 

1.05 1.8716 

1.00 00 
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TABLE FII 

X. Va.- v}. a-- 1 . 0 a nd ~ = 0 
CORRESPONDING VALUES OF AND at = 45 s Va 

'r X Va-V:J: 
'"5 Va. 

1.02 ±.· 2959 . 9131 

1.04 ±.· 3061 . 8289 

1.06 ±.. 3155 . 7211 

1.08 ±.· 3274 . 6724 

1.10 ±.· 3394 .5993 

1.12 ±.. 3519 .5324 
~.3535 cascade edges 

1.14 ±.· 3650 .4793 

1.16 ±.· 3794 .4113 

1.18 ±.· 3948 .3537 

1.20 ±..4111 .3186 

1.22 .±.· 4345 .2636 

1.24 .±· 4503 .2227 

1.26 .±..4732 .1846 

1.28 ;t.4994 . 1505 

1.30 ±.· 5309 .1189 

1.32 .±.. 5684 . 0997 

1.34 ±.· 6190 .0639 

1.36 ±.· 6909 .0494 

1.38 ±.· 8220 . . 0168 

1.39 +.9743 .0055 
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9/91 - s;x 

Z1/91 = sjx 
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