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ABSTRACT 

Several materials undergo vransitions from a semiconducting 

to a metallic state at a critical temperature.    Previous theoretical 

attempts to understand such transitions have been generally quali- 

tative and have not been able to account for all the specific experi- 

mental results. 

In this work,  an explanation of serniconductor-to-metal transi- 

tions is presented using a band model.    It is shown thermodynamically 

that the energy gap of a semiconductor closes down significantly with 

the number of excited carriers if the gap has a large pressure coef- 

ficient,   as is found in several of these materials.    This shrinkage of 

the energy gap is due to explicit variation of the crystalline volume. 

There may also be a constant volume carrier concentration dependence 

of the gap,   which cannot be evaluated thermodynamically. 

Two specific models are discussed.    If the energy gap arises 

from the spUtting of the first Brillouin zone by an antifen omagnetic 

exchange interaction,  the gap will decrease linearly wich the number 

of free carriers.    The relationship is demonstrated by means of a 

one-dimensional model,  a three-dimensional tight binding model,  and 

a virtual crystal approximation.    In all three cases,  the same result 

is obtained.    An analogous situation occurs if the energy gap is due 

to a crystalline structure distortion to lower symmetry.    In par- 

ticular,  the pairing of ions in a one-dimensional crystal is analyzed. 

The relationship between gap and f^ee carrier concentration is de- 

rived for the two cases of a contact interaction and a Mathieu inter- 



action.    The results found are quite simijar to those when the gap 

is caused by antiferromagnetism. 

These relationships,  together with the application of Fermi- 

Dirac statistics to the conduction electrons,   en-ibie us to eaicuiate 

the electrical conductivity as a function of temperature m two opposing 

limits, the effective mass approximation and the limit of narrow bands 

B is found in both cases that a singular increase in the carrier con- 

centration,  and thus the conductivity,   occurs at a given temperature. 

This leads to the disappearance of the energy gap,  and therefore to 

a semicoaductof-to-metal transition. 

The transition temperature is evaluated in terms of the zero 

temperature energy gap,    A number of results,   relating experimentally 

measurable quantities such as the pressure coefficient?  sf the transi- 

tion temperature and energy gap,  are derived. 

The experimental results dealing with the crystals which 

exhibit scvsiconductor-to-metal transitions are presented,  and the 

predictions of the theory are tested.    Very good agreement is obtained. 

The theory, taken together with the available experimental 

information,  is used to suggest possible band schemes for each of 

the material« under investigation.    It is found thai the crystalline 

symmetry in every case is compatible with an energy gap which arises 

from either a pairing of cations or antiferromagnetism. 

Finally, the effects on the theory of spin-disorder scattering, 

polaren formation,  and non-stoichiometry are discussed quantitatively. 



Chapter I 

INTRODUCTION 

A.    Transrion Metal Oxides which are Insulators at all 

Temperatures 

The transition metal oxides provide a striking example of the 

Inadequacy of simple band theory when an attempt is made to predict 

the electrical transport properties of cr/stals.    Mcst of these oxidea 

are insulators [ 1] .   despite the apparent presence of a partially filled 

3d band.    The materials which remain non-conducting at all tempera- 

tures shall be referred to as the NiO class.    These include NiO,  MnO, 

and Fe^O^    The experimental situation lias been reviewed by Morinf2l 

and by Jcnker and van Houten [3] , the only information of direct inter- 

est to us here is that,  where the magnetic structure has been deter- 

mined,  these oxides are all antiferromagnetic,  and they are insulating 

both beiow and above the Neel temperature.    We %ref  however,   inter- 

ested in discufcs^ng the proposed theoretical models. 

Many attempts have been made to explain the non-conducting 

nature of these materials.    DeBoer and Verwey [ 1] assumed that the 

movement of electrons between neighboring cations is impeded by a 

high potential barrier.    Thus the 3d eiectrons are essentially localized, 

c onductivity being possible only via tuimeling of electrons through the 

barriers.    Verwey [4] later extended the model(   showing that the 

activation energy was due to the ionization of the cations. 

Heikes and Johnston [5] noted that the observed ionization energies 



are not large enough to account for the measured activation energies of 

the NiO class, which are of the order of 0. 5 eV.    They suggested that 

the activation energy should he associated with the mobility,  rather 

than with the carrier concentration.    The activation energy in this theory 

arises from Landau trapping [61,  which occurs when an electron is 

locallfted around a lattice point in a polar crystal long enough to cause 

a deformation of the crystal.    The electron is then able to jorm a bound 

state with the potential well due to the polatiatation.    Heikes and Johnston 

ascribe the conductivity to a hopping or diffusion of electrons from one 

site to a neighboring site, which will occur when the lattice polarization 

around both is momentarily the same. 

Yamashita and Kurosawa [7] attempted to work out the theory, 

starting with a HeiUer-London approach.    Tiey found it necessary to 

assume that the electrons are Iccalized around the cations,  and were 

then able to show that the electrons could be trapped by the resulting 

lattice polarisation,  and that conductivity could occur by means of equal- 

site hopping.    However,  no reason was given for the localization in 

the first place. 

Anderson [8] ,  liking up a suggestion of Mott [9],  put the theory 

on a somewhat firmer footing ty pointing out that the localization could 

be due to the large correlation energy we should expect in a low density 

system.    Anderson called U the energy necessary to remove one 

electron from a given cation and pat it on another cation wh    h is far 

away.    U is thus an intra-ionic Coulomb integral,  and can be estimated 

from the iree cation ionization energi   ».    Anderson approximates U as 

&f the order of 10 eV,  although there are reasons to believe thir; is too 



high.     If U is largei" than half the bandwidth,   it outweighs the kinetic 

energy loss which co üd be accomplished by spreading through the 

crystal,  and the electrons would remain localized     Although this argu- 

ment appears to justify the procedure of Yamashita and Kurosawa,   it, 

toOjis only a self-consistent hypothesis,   since the presence of many 

free electrons would reduce U significantly by means of screening       Thus, 

the large order of magnitude given by Anderson for U is accurate only 

when the electrons are known to be localized,   and it is possible f JT a 

metallic state to be self-consistently lower in total energy. 

Holstein [iOj has applied the theory of polaron formation of 

Fröhlich [II] to the situation in the transition metal oxides.    A polaron 

is <. bound state of an     ectron and its associated lattice deformation 

which can be treated as a quasiparticle moving through the crystal . 

Holstein considered in particular the "small" polaron,   whose dirnen- 

sic. s are of the order of a lattice constant.    The polaron will be "small" 

if the electronic bandwidth is much leas than the maximum binding 

energy of the polaron,   a constant which is proportional to th^ square of 

the strength of the electron-phonon interaction.    Holstein found that at 

low temperatures there is sufficient overlap to form a polaron band 

through which the electron,   together with its lattice deformation,   can 

move.    An unfilled polaron band carries a current which decreases 

exponentially with increasing temperature.    Since the width of the 

polaron band is also an exponentially decreasing function of tempera- 

ture,  and since the polaron states have a finite lifetime,   eventually 

the point is  reached when the bandwidth is smaller than the uncertainty 

m energy associated with the lifetime,  and the bands lose their physical 

meaning.     Above this temperature,   estimated by Holstein as half the 

- 
i 



Debye temperature,  conduction occurs when the interaction 01 phonons 

with the deformation potential causes ionic rearrangements at neigh- 

boring sites,  enabling the polaror to jump from one to the other.    This 

mechanism is just thermally activated hopping of polarons. 

An entirely ditferent approach was suggested by Slater [12] . 

He retained the band picture and suggested that the antiferromagnetic 

ordering can bring about an extra band splitting.    Slaters argument 

goes as follows:   According to the Hartree-Fock approximation,  an 

electron will be repeJled much less strongly by electrons with parallel 

spins than by those with antiparallel spins.    Since the crystal is anti- 

ferromagnetic,   each electron feels a potential which has the periodicity 

of the superlattice rather than that of the lattice.    Such a potential will 

split the first Briüouin zone in half,   each half containing l/Z N V states 

for each direction of spin,  where N is the concentration of cations per 

unit volume and V is the volume of the crystal.    Thus even when there 

is one electron per cation,   the first zone could in principle be filled, 

the second empty.    Two difficulties with this theory immediately 

emerge.    The 3d band should be highly degenerate,  particularly for 

cutrc lattices,   such as MnO and CoO,  and Slater doe? not attempt to 

show how such crystals,   containing 5 and 7 3d electrons per cation, 

respectively,   can have anything but a partially filled valence band, 

even with the antiferromagnetic splitting.    Furthermore,  Slater gives 

no explanation of the non-conductivity of the NiO class of materials 

above the Neel temperature. 

Recently,   Hubbard [13] considered another band approach whicte 

removed the latter objection.    Hubbard showed that electronic corre- 



iation could result in the splitting of a narrow band into two sub-bands, 

änalügous to the spiittmg due to exchange energy in Slater?s model, 

but independent of the magnetic ordering of the system.     Thus the 

crystals,   if insulating at T = 0,   should remain insulating,   even above 

the Neei temperature.     This correlation splitting is essentially a 

manifestation of the Anderson effect [8] ,   in that it represents a partial 

localization. 

B.    Transition Metal Oxides which Exhib t Insulator-to-Metal Transitions 

The lack of electrical conductivity is not the only enigma pro- 

vided by the transition metal oxides.    Another subclass,   referred to 

here as the V^O^ class,   consists of several oxides of vanadium and 

titanium,  which are non-conducting at low temperatures,   but undergo 

a transition to a metallic state above a critical temperature.    These 

are the materials with which we are concerned in this work. 

The first hint of unusual behavior in this class of oxides came 

when Perakis [14J discovered that the magnetic Susceptibilities of VO, 

and V2®3 each went through a sharp transition at a given t-mperature. 

Anderson [15] found a specific heat anomaly in V-,0, in the vicinity of 

1 50  K,   with a latent heat of approximately 700 calories per mole 

measured over a 20  K temperature interval.    Foex f 16] investigated 

the electrical properties of Vp^V  and discovered a sharp increase of 

a factor of 10    m conductivity at the temperature of the specific heat 

anomaly.    He also reported a volume contraction at the same point, 

FoHx and Loriers [17] found a transition m Ti-.CX at aboit 4?50K,   the 

electrical conductivity jumping by a factor of 10,     Jaffray and Dumas [18 

verified the transition m V^^v  and alsa reported an msuiator-to-metal 



trannition as well as a »m&U contraction in volume in VO_ at the tem- z 

perature of the magnetic susceptibility anomaly,    Pearson [19] noted 

an absorption edge of 0. 15 eV in a sample of powdered Ti^O, in KBr, 

but did not obtain a break in the conductivity cu?ve«    He did find that 

the conductivity as well as the lattice constints were rapidly changing 

in the vicinity of 500oK, 

The situation with regard to the electrical properties of the 

lower oxides of titanium and vanadium was resolved by the work of 

Morin [20],  who performed measurements of conductivity as a function 

of temperature on single crystals of Ti^Oy V O      TiO,  VO, and VO,. 

His results are given in Fig.  1-1.    As can be seen, all these materials 

with the exception of TiO are semiconducting at low temper  tares,  but 

undergo a transition to the metallic state at a given temperature,  which 

we shall call T  . o 

The experimental situation since Morin's work has been reviewed 

m great detail by Felnleib [21],  and we shall at this point mention 

only three important discoveries of recent years.    Yahia and Fred- 

erikse [22] were able to measure the Hall coefficient in Ti?Ov and 

found that the Hall activation energy was virtually the same as the con- 

ductivity activation energy.    Abrahams [23] performed neutron dif- 

fraction experiments on Ti20^,  and determined that it was antlferro- 

magnetic with a small moment of 0.2 Bohr magnetons per cation, 

the Neel temperature being in the vicinity of the semiconductor-to-metal 

transition.    Most recently,   Feinleib [24] performed optical measure- 

ments on single crystals of stoichiometric,   semiconducting V  O  ,  and 
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observed an absorption edge at approximately 0. 1 eV. 

The first attempt at an explanation of the sharp discontimmles 

in conductivity was given by Morln [20].  who adapted the theory of 

Slater [12] .    If these materials were semiconducting due to a band 

splitting arising from antiferrornagnetism,  then a transition to the 

metallic state would be expected at the Neel temperature. 

Callaway [25] made the Slater-Morin model a little more quanti- 

tative by studying the energy band structure of a body-centered cubic 

antiferromagnet.    Considering only the first Fourier component of 

the exchange potential, a major simplification, he found that an in- 

sulating state exists whenever an interaction parameter (proportional 

to the effective mass,  to the strength of the exchange potential, and 

to the square of the lattice constant) is sufficiently large.    Neither 

Callaway nor Morln discussed the nature of the semiconductor-to- 

metal transition beyond noting that the band gap should disappear at 

the Neel temperatur«* 

There are three difficulties with the Slater-Morin theory, 

outside of the fact that it has never been quantitatively applied to the 

oxides of titanium and vanadium.    Firstly,  the existence of antiferro- 

magnetism has been demonstrated only in Ti203?   and even Is that 

material the antiferromagnetic moment is extremely small.    Secondly, 

no model for the structure of the degenerate 3d bands has been pre- 

sented which explains how Ti^.  V^, and VCX, can be semiconduct- 

ing even with the antiferromagnetic splitting.    Finally, It has not 

been proven that the energy gap must vanish with the disappearance 

of long-range order* it is conceivable that thy large amount of short 



range order present until two or three times the Neel temperature is 

sufficient to maintain the effective double periodicity seen by th# 

slowly moving Jd electrons,  and thus maintain an energy gap. 

A different approach to the problem was presented by Mott [26], 

who proposed that there would be a sharp transition from an insulating 

to a conducting state at a critical value of the lattice parameter,   R 
c 

Mott argued that a free electron and a free hole attract each other with 

a Coulomb potential,   V{r) ^ -e  A r ,  and form a bound state,   similar 

to an exciton,   from which neither can participate in conduction.   However, 

if a large number of free carriers exist,   the attraction between an electron 

and a hole is a screened Coulomb potential,   V(r) s -e   e  ^r/cr.    When   q 

becomes sufficiently large,   this potential becomes too weak for the 

formation of bound states,   and a discontinuous increase in the number 

of free carriers brings about a transition to the metallic state, 

Mctt [27] assumed Fermi-Thomas screening,  and roughly estimated 

R     as 
c 

R    -  z   —4- 2. 1 A 
m   /m 

where   z   is the number of 3d electro is per cation,   g is the dielectric 

constant,  and m    is the effective mass of an electron in the conduction 

band,    Mott did not attempt to apply quantitatively his theory to the 

vanadium and titanium oxides,   but it is possible that a crystalline con- 

traction at a given temperature could indeed lower the lattice param- 

eters in such a way as to bring about a transition to the metallic state. 

Since there is evidence of phase transformations at or near T    in all W: o 

four materials which undergo semiconductor-to-metal trans;tions; 
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it is po»iibi« that this model appliet.    However, the temperature 

variation ol the lattice constast» often produces changes greater than 

those which occur during the phase transformation,  but in the    ppos'te 

direction.    Furthermore,  the expression derived for R    should favor 

metallic conductivity in VO,  where 1^3,  QVer that in TiO.  where 

s =2, the lattice parameters and ionic radii of the two crystals being 

roughly the same.    Actually,  the reverse is the case.   TiO being 

the metal at all temperatures.    Other objections to this theory wil: 

be presented in Chapter VI. 

Goodenough [28] accepted Mott's hypothesis of a critical cation 

separation, and proposed that,  due to the anisotropy of 3d orbitals 

and complex crystalline structures,  localUed and collective electrons 

could be present simultaneously in a given crystal.    By considering 

the entire class of transition metal oxides,  he was able to estimate 

R   fc 2. 9 A.    Noting that the lattice parameters in the V00, class 

are smaller than Rc,  Goodenough [29] suggested that,  due to direct 

cation-cation interaction,  all would-be conduction electrons could be 

trapped in homopolar bonds at low temperatures.   Above a critical 

temperature,  the free energy associated with a metailic state may 

become lower than that of the bonding state,  because of the extra 

entropy associated with the continuum of electronic states in the metal- 

lic phase,  and a transition would then occur,    Goodenough [30] did 

apply his hypothesis to the oxides of vanadium and titanium, and was 

able to account for many of the previously unexplained symmetry 

changes.    However,  the theory does not lend itself to quantitative in- 

vestigation,  and has other difficulties which will be detailed in 



Chapter VI. 

Two recent theoretical discussions are quite relevant,  aUfcough. 

neither has been applied to the ^2°^ cia8S of materials.    Kohn [31] 

'evelopcd a characterization of the insulating state, which essentiäijy 

makes quantitative part of Mottfs original proposal [9] .    Kohn con- 

sidered a ring of hydrogen atoms,  and shewed that if the separaten 

between nearest neighbors is sufficiently large,  one can express each 

wave function as a sum of localized functions which do not overlap, 

and such wave functions correspond to an insulating system.    Kchn also 

investigated the Mott transition [27] by considering a ferromagnetic 

simple cubic array of hydrogen atoms.    If the potential between a 

spin-up hole and a spin-down electron were a Coulomb attraction,  an 

insulating spin-wave state is lowest,   independent of the weakness of 

the interaction.    However,  lor a delta function interaction,  a cr tica 

strength exists,  below which only a continuum of states,  characteriz» 

ing a metal,   is    present.    Thus,  an insuiator-to-metai transition can 

occur at a critical value of the lattice parameter. 

Hubbard [32] extended his own theory of correlations in narrow 

bands,  and found that at a critical ratio of the bandwidth ,   E. ,  tö t^ 

intraionic correlation energy,   U; 

v 'a 
the energy gap due to correlation has shrunk to zero,  and a semicon- 

ductor-to-metal transition occurs.    However,  the energy gap slirinks 

continuously as the ratio of E,   tc U increases,   so that slightly below 

the critical value,  the material has an inf rutesimal band gap,  wh?le 



just above the transition point, the density of states at the Fermi 

surface is negiigiKy »mali,  so that the material is a poor metal. 

This type of transition is unlikely to be responsible for a change in 

conductivity of a factor of l(r at T  ,  as is found in V^CL and VO. 
o 2   3 

It is possible that Hubbard's neglect of interactions of electrons on 

different ions camouflaged the sharpness of the transition,  but until 

worked out explicitly, this remains a speculation.    If the nature of 

the disappearance of the energy gap is as Hubbard has found, then 

Mctt's hypothesis of a sharp increase in the number of carriers is 

incorrect. 

U is clear that all theories of «ssulator-to-metal transitions 

have serious deficiencies when applied to the V^O   class of materials. 

In this work,  we shall attempt to present a model which overcomes 

the objections discussed above.    We shall retain the band picture, 

and assume the non-condu ting state of these materials is that of a 

normal semiconductor,  having a filled valence band separated from 

an empty conduction band by an energy gap.    In Chapter II,  we shall 

show how such a gap can arise in the transition metal oxides from 

antiferromagnetism and also from a crystalline structure distortion 

to lower symmetry.    It will be demonstrated that in these two cases 

the energy gap will shrink as carriers are excited across it, and the 

decrease in the gap will be quantitatively estimated.    A thermodynamic 

argument will be presented to relate this decrease to the observed 

pressure coefficient of the gap.    In Chapter III,  the theory of con- 

ductivity will be worked out in two limits, the effective mass approxi- 

mation and the limit of narrow bands.    We shall demonstrate that a 
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sharp semicondüCtor-to = metäJ trans.r on occurs,  and calculate the 

transition temperature in terms o£ observable quantities»    In Chap- 

ter IV,  the theory of Chapters II and III will be applied to the expeti- 

mental data on the oxides of titanium and vanadium.    Certain rela- 

tionships predicted by the theory will be critically termed quantüaf ve y 

Chapter V will consist of suggested energy band models for the 

materials investigated,   based on a combination of the experimenta] 

data available and the predictions of the theory.    Finally,  in Chap- 

ter VI, we shall discuss the effects of spin-disorder scattering and 

broadening,  polaron format'on,  and non-sroichiometry,  as well as 

demonstrate additional inconsistencies with some of the other models 

which have been presented. 
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Chapter II 

DEPENDENCE OF ENERGY GAP ON 

CARRIER CONCENTRATION 

A.    General Hypothesis 

Consider an intrinsic semiconiuctor for which the top of the 

valence band is separated from the bottom cf the conduction band by an 

energy gap,  E  .    In general,  E    depends on the concentratcn of carriers 
ft B 

in the conduction band»  n,  and on the temperature,   T; 

E    = E  {n, T). 
8        g 

At low temperatures,  the concentration of carriers is aisc snsaii,  and 

we can write: 

E    - E      - aT - ßn g ^o 

dE BE 
where E o is the gap at T = 0,  a 2-<-yJ^ )   , and ß 5~(~5~k)T ■    Although 

the term linear in T is respon    jie for the major part of the decrease 

in band gap at very low temperatures,  it does not contribute to the 

semiconductor-to-metal transition and therefore will be dropped.    In 

Appendix A,  we shall show that only a small error is introduced into 

the calculation by ignoring this term.    We are left with: 

E    ^ E      - ßn (2, li g        go ^  •   ' 

which is our fundamental relation.    The remainder of this chapter will 
# 

be devoted to demonstrating the applicability of Eq.  (2.1) in two 

particular situations,   where the energy gap is due to antiferrom^g- 

netism and where the gap ari?es from a crystalhne structure distortion 
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to lower symmetry.    We shall evaluate ß for both of these cases,   £.nd 

show that Eq.   (2. 1) remains valid as  n  becomes relatively large. 

B.    Thermodynamic Argument 

In this section,  we shall present a thermodynamic cclcuiatior. 

of the change in energy gap cf a semiconductor with the concentration 

of excited carriers.    This will provide us with a general expression 

for ß in Eq.   (_. I).    The first part of this argument follows closely a 

recent paper by Figielski [33] . 

The differential form of the Gibbs* free energy for a system 

where the number of particles may vary is; 

dG «-SdT + V dP+E u. dN. (2.25 
3     J      } 

i h 
where N. is the number of particles in the j      phase and u. is the 

th 
chemical potential of the j      phase.    Treating electrons in the valence 

and conduction bands as different phases and ignoring inner orbital8; 

we can write; 

$u.dN. =IA    dN    + \i    dN    . (2.3) 
J    )       J        c       c      rv       v 

For an intrinsic semiconductor,  N    + N    = constant,  and {2. 3) becomes; 

Zp. dN. = fa.    -»   )dN (2.4) 
J    3      J c       v 

where  N  is the number of carriers. 

Since * p« «  =  a vrft ft »   (2.2) and (2.4) give; 

,SV, 1   ^V, ,d^c, ^^v. ,,   .. 
(rN,P. T *T(1T}P,T ' iTV   n. T  - {irp)n,T U'^ 

where n =   N/V is the concentration of carriers.    The chemical 



potential. ^  must bt calculated from ihm relation; 

n v- /     p^m H-wm-Z) m 
-ae 

where n^ is the concentration of electrons in the valence band,  p   (E) is 

the density of states in the valence band,   and f (x) - |eX+ if1.     Thechermcal 

potential ^^ ,  is determined from an entirely analogous relation.    It is 

clear that at T ^ 0, ^ = E^ and ßc = E^  where E^ is the energy of the top 

o( the valence band and £_ is the energy of the bottom of the conduction 

band.    In general,  ^c'i*v i» the change in free eneigy when an electron is 

removed from the valence band and placed m the conduction band.    It can 

be shown that p^^ differs    rom Ec-Ev by small terms propordonal to kT, 

which we can essentially neglect.    Substituting this result in |2. 5): 

i   By d\ aE
v ^E 

where E    = E    - E   is the energy gap. 

Using the thermodynamic relations; 

d Eö 
8 EÄ a v a E 

^^.T = ^W^T ^^P.T + ^V, T 
and: 

Ö E .     8 E 

where  i is the isothermal compressibility,  we find: 

8 E ,      3 E 8 £ 

Thus,  (2.6) and (2.7) yield: 

n 

ÖE j     dE    2 BE 



We express the energy gap lor varying carrier canceniration 

and pressure as: 

Thus: 

E    = E       - ßn - vP. {2  ^■ 
g 8° 

SE 

TF^n.T^ 

Substituting (2. 10) in {Z.B): 

3 E 2        ö E 
a. 

But also from (2.9),  we see: 

3E 
(^)P|T = -ß. (2.12; 

Combining {2. 11) and (2. 12): 

2 SE 

This is the general thermodynamic expression for  p.    The first term 

on the right represents the contribution to ß resulting from changes 

in the volume of the crystal.    This term can be evaluated easily from 

the experimentally measurable quantities, v» «.  and i8 alwayp posi- 

tive.     The other contribution to ß is an explicit dependence of the gap 

on carrier concentration at constant volume,  and can have either sign 

This thermodynamic argument shows that whenever there is a 

pressure dependence of the energy gap of a semiconductor,  the gap 

must also depend on carrier concentration.    Since the pressure co- 

efficients of the gap in V00. and VO,  tv^o of the materials with which 

we are especially concerned,  are anomalously large,   we expect a 
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rt-iätively large decrease oi gap with carrier concentration in these 

materials»    But this argumenr demonstrates only that E    depends 
ft 

on the number of excited carriers.    It does not say anything about the 

validity of Eq.   (2. 1) as n  becomes fairly l^rge,   nor does it indicate 

the microscopic reasons for such a variation m energy gap.    Therefor« 

we now turn to specific models for which we can calculate expressions 

for E    as a function of n.    These calculations will provide us also 
g 

with expressions for ß which can be tested experimentally. 

C.    Antiferromagnetism 

Consider an antiferromagnetlc crystal which can be described 

by Bloch wave functions.    Assume that the crystal is an insulator at 

T ^ 0 because of the splitting of the first Brillouin zone by the doubly- 

periodic exchange potential.    In other words,   we have an empty con- 

duction band which begins a distance E    above the filled valence band, 

with E    being a measure of the exchange energy»    The lower band 
ft 

refers to wave functions whose amplitudes are large at the sublattice 

positions of the electron under consideration,   whereas the upper band 

wave functions have large amplitudes at the positions of the sublattice 

of opposite spin.    As the temperature is increased from T - 0,  the 

upper band becomes thermally populated.    When an electron is 

excited across the energy gapt  the net magnetization on either sub- 

lattice decreases,  and thus the gap decreases with increasing con- 

centration of carriers.    Thus a relationship like Eq.   (2. 1) can be ex- 

pected to hold.    In this section,   we shall determine for how large   n 

Eq.   (2. 1) remains valid and also calculate the value of  ß.    We shall 
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begin with a one-dimensional model,   since it can be solved in terms 

of simple band parameters and the solution exhibits quantitatively 

the points discussed above.     We shall then repeat the calculation lor 

the case of a three-dimensional face-centered cubic crystal (such as 

VO) using the approximation of tight binding.    Finally,  we shall 

evaluate ß in the limit opposite to that of elementary Bloch theory, 

employing a virtual crystal approximation 

1.    One-Dimensional Model 

Consider a one-dimensional antiferromagnetic crystal,  with N 

ions spaced a/2 apart.    Assume each ion contains one electron outside 

the core and take the ion at the origin to have spin up.    The exchange 

potential has periodicity a,  and thus the first Brillouin zone is 

-ir/a «k < tr/a.    In accordance with L. C.A.O. theory,  the Bloch wave 

functions are: 

-1/2 
*,&,*) r (|!) c.Jk)   Z e1Kn    a(x - na)  a 

1 2 11 n 

,^x'1 /, »   T   ik(n+V2)a    r       ,       K    .- 
+ (j) c2lM  Xe a[x-(n+^)a]ß 

N   " '* ikna 
■4>„ik.x) = (=-) c10{k)   Z e a(x - na) a 

(2.141 

1 /? 
fNi    ' ...   ~   ik(n+l/2)a^r      .   i 1 wl H ^F C22^   ■ a[x-(n t-)aj ß . 

Assuming the ionic functions do not overlap,   the secular equation is; 

det  IH      (k) - E     6       i - 0 (2. 15) 
mn mn 

where: 
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L«t: 

Hn(k) ^r   co.kna / dxafx-na) HCx) aCx) 

H^Ck) s   J coskna / dx 4x - (n + |)a] HCx) a(x - |a) 

Hi2{k) H^^k) Tco» k(n = ^)a / dx a(x - na) H(x) a(x-ia: 

«n ^ /dxa(x -na) H(x) a(x) 

Än - / a[x - (n + |)a] H(x) a(x - |aj 

ßn   5/ dx a(x - na) H(x> a{x - ^a) . 

With these definitions,  and assuming nearest-neighbor interactions 

only,   (2, 15) becomes: 

O = 

eo-E 

^cos^ka 

2ßo cos ^ ka 

E2 - (e   + o)E + c c   ^ 4ß2 cos2 i ka 

where we have dropped the subscript  o.    Solving the secular equation? 

ka 

{2.16} mm . J 
1 * a    .     il *i j A Aa        2 1 

« ^ g / ^ - i Z        Z       2 1. 

Consider an electron with spin down; thus «   > o .    Also, 

consider the narrow band case, where  ß «   Ic  - a I .    Then (2. 16) may 

be written: 



E  (k) - c  + 

E  (k) * c   - 
v 

4p    cos   *Ka 

-—T~rr~ 

A*1 2 ! u 4ß    cos    - ka 

where E  (k) refers to the conduction band.   E  (k) to the valence band, c v 

From (2. 17),  we can immediately write down the important band 

parameters: 

Energy Gap - E    = e  - o 

Band Width s 4p27{a   - a ) = 4p2/E 

* 2 2 
Effective Masst  m   =m, =m   =2fi  /E^    • 

(2.18) 

In the one-dimensional case,  the energy gap is exactly the difference 

in exchange energy between a spin up and a spin down electron. 

Evaluating the wave functions corresponding to electrons in 

the valence and conduction bands,  we obtain.- 

/ 1 - 

c 

2ß    cos    p ka 
 —r~ 
(e  - e } 

1 
20 cos j ka 

—'«rr^ 

S4i      S 
V 

Equations (2. 19) lead to: 

E. 

g 

s S 
Z       V 

Eb 

g 
- j+ W-'    cos    s-k a 

1 
2ß cos ? k a 

2        2 ! 2ß    cos   =■ ka 

(«   - a) 
r 

19) 

20} 



Equations (2. 20) can be used to give us some insight into 

antiferromagnetism      If the bandwidth is small compared to the band 

gap,   then the average spin on each subiattice will be close to 4   1/2, 

and neutron diffraction experiments should show an antiierromagnetic 

moment near one Bohr magneton    per cation      However,   as the band- 

width gets to be of the order of magnitude of the energy gap,   much 

lower values for the subiattice magnetization can be obtained. 

In connection with this,   it is useful t    investigate the exact 

solution.   (2. 16),   rather than the narrow band approximation,   (Z   17). 

Although the energy gap remains exactly   E    =    a - a ,   independent 
g 

of the bandwidth,   the general solution for   E,     is; 
b 

E 7    I f7 

E 
g 

Hence,  as   ß   approaches    E   ,   the real bandwidth is smaller than the 
g 

value given by {Z   18).    When   0 = E   /4 .   E.   - 0. 21 E    :   when   6 = E 
g b g ' g s 

E.   =  1.6 E    . 
s g 

The exact solution,   (Z. 16),   can be most simply discussed 

lii terms of the parameter  6 ,  defined by; 
j 
I i 

46 cos -  ka 
tan B = ^ . 

a - a 

The exact solutions for 4/ . 4f      < B   >    ,  and   <S   >      can be 
c      v z    c ' z   v 

expressed: 

*c 

col,T 
B sm -^r- 

< S     >       S   -^5-     COS   6 
z   c        2 

/ sin 

\ CoS 

Q   \ 
T \ 

0   1 

z    v 
1 

«'■»g-Pii   iwmrmmm 



iiius,   the average vai of   S     at the bottom of the conduction 

band is always exactly However,   at thi? top of the conduction 

Oang; 

S   > = -4- l + Ibß' 

(a a)' 

1/2 

As the ratio of bandwidth to band gap increases,   the average value 

of   S      at the top of the conducting band decreases monotonicaily. 

When   Et  = 0   21 E    ,   <S   > = 0.34.   when E,   = i.6E    ,   <S   > - 0.09 
b g z b g '        z 

It is clear that the average values of   S      in the valence band are 

just the negatives of those in the conduction band in the one-dimensional 

case. 

At   T = 0,  the valence band is exactly filled,   the conduction 

band completely empty.     Thus,   the magnetization of the sublattice 

where the spins are down at T = 0 is given by the sum of <S   > - - z 

over ail points in k-space; 

Y -.    i cos Öj fi 
B 

Clearly,   as the bands get wider,   the total magnetization on 

each sublattice decreases considerably      In the  limit where the 

bands are much wider than the gap,   the average   sublattice magnet 

ization goes to zero.      In other words,   the antiierromagnetism 
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aecomes undefettabie when the exchange enersr/ is rnuch smaller 

than the overlap between nearest neighbors.     We shall return to 

thlr point later. 

Calculating from (2.20) the change La spin as an electron is 

excited across the energy gap: 

2Eb 2 1 ii S   (k) = 1 —=— cos   x- ka 
z                    E 2 

g 

- 1 - |c- (i + cos ka) . (2, 1 

Integrating (2.21) to find the net change in spin when n  electrons 

have been excited across the gap: 

s /a 

AS(n)=-    / dk[I  - ~  (1 i- coskai] 

N  {i      E    l      E 

since n/N =  1 - ka/w.    Expanding |2.22| in powers of n; 

g 

The first term is the major contribution,   not only because n/fl is 

usually small,   but also because we are considering the situation 

where E*   «  E   , 

The assumpcion is now made,   in view of the fact that the 

energy gap is a direct measure of the exchange energy [see (2. 18)1 , 

that E    can be expressed in the form: 
g 
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E    ^ *4^ n-(nfl   - 1)U -g - m nß xn0 P-24) 

where n^ i» the number of down spins and U is an average exchange 

integral.    What (2.24) says is that the exchange energy ^s porpc?t cnal 

to the number of pairs of parallel spins, the assumption here is that 

each electron sees the spins of all the other electrons In the band,  a 

hypothesis consistent with the spirit of band uieory.    We can evaluate 

U by noting that at T  - 0: 

U = 2N Ego/[N/2 (N/2 - 1)] 

« 8 E    / N. 
go 

Thus (2.24) becomet 

4E 

8 
o ,   2 

■jr(n; - n0) (2.25) 

Since  <S    > = (n     - nc,)/2N and N = n     + n3,  where n     is the numbet of zap c p a 

up spins,   {2.23) and (2.25) show: 

AE    - -4E      [ n Ei      2 , ^j  ft     , n , 3 

go l N     t.     o      N H1+^ 
(2.26; 

E,      2 
-    AIT      frt-i-STr    .n. 

s g 
..] 

.23, since N " O(I0     )  » 1.    Equation (2.26) indicates that the energy gap 

will close down linearly with rumber of excited carriers fo^ quite a 

large range of n.    In the limit of narrow bands,  all terms of higher 

order in n  are negligibly small.    Furthermore,  even when the band 

width is of the order of the gap,  the first correction term is an order 

of magnitude smaller than th*» linear term up to values of n/N - 0. 3. 
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This result tetids to justify the use of < q.aticn (2. I) In later chapters, 

From (2.26),  the value of ß for a one-dimensional antiferromagne! 

is: 

ß=4E    /N. (2.27) 
go 

2      Three-dimensional Model 

Mach of the calculatior» of the three-dimensional model is 

entirely analogous to that ol the one-dimensional problem.    We return 

to the use of  n and  N  as concentrations of excited carriers and cations, 

respectivelv,  and consider th3 case of a face-centered cub.'  lattice 

of magnetic ions with spins antiparallel in alternating (HD-planes. 

We shall assume that there is one 3d electron per cation outside the 

core and that this eleoron can be descrbed by a non-degenerate 

Wannier function due to a slight distortion of the lattice.    This As a 

good representatioi» of the situation in VO.    However,  the calculaion 

is virtually unchanged by taking another structure,   such as corundum, 

or by choosing a larger number of 3d electrons per ration in a degenerate 

band.    In the case described,   energy gaps due to the exchange potential 

appear at the surfaces of t^he reduced part of the Lrst  Bnllouin zone. 

Thus,  if we take a cation of spin up at the origin and one of spin down 

at p* = (HO)  a,   energy gaps appear at the planes k • p" = ±it/2.    In 

three dimensions,   it does not necessarily follow that there is a real 

energy gap in the density of states,  and these materials m principle 

could exhibit semimetaliic rather than sem conducting behavior.    It 

lr clear that when overlap is small compared to the exchange energy. 



the bands will be narrow and a real gap will occur.    But this is not a 

necessary condition for the existence of ä gap.    Consider a non- 

magnetic crystal with no exchange potential,   and assume that E(k) 

has been calculated for the 'double-sized) first Brillouin zone.    When 

the exchange potential is turned on,  this zone is split into two.    If 

the original energy levels in the outer half of the large zone were 

higher than those in the inner half cif the zone,  then a gap exists even 

for a relatively small exchange energy.    Such a situation could occur 

for the asymmetric 3d electrons in a low symmetry lattice,  as well 

as in special highly symmetrical lattices,   such as body centered cubic. 

We shall discuss this furtli-ir in Appendix B,  where attempts at energy 

band calculations will be summarized,. 

The L. C.A, O.  calculation proceeds ai-. in the one-dimensional 

case.    As before,  we take one 3d electron per cation.    Let If    be the o 

positions of the ions whose :\d electrons have spin up at T - 0,  and 

let Rß be the positions where the 3d e!e   .rons have spin down.    Tht 

the Bioch wave functions are: 

Ut. R 
1     4 

w 

>en 

^Äil« jlr =.,   J.  t       G Mf - Rjc 
» 

Then: 

+   /ff^i     .jp e M?- ^)ß   • (2.28: 

ftl^tSl-^klA^Wlc^kl.O ,2.2,) 

where: 
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H      ih) =    t    COS k ■   R      f df ii   : fi H      C ?l ji    ( f* - R    ) 
mn1   '      ^    ~ m = n mn m m 

rn 

A      (k) =    Z    cos k* '   R       f df |i   i r^ !*(?*- R^l * 6
m« 

mn o m 

m 

taking an ion of type   n  at the origin.    Let the origin be the site of ä 

spin up ion,  and let r = p. be the positions oi the nearest-neighbor 

spin down ions.    Then,   in the nearest-neghbor approximation: 

H, ,(k) = c     + c ,   5 cos k •   p 
11 0 '    i 

CC O i     i 

H1?(k) = H21(k) = ßj ?  COB ?-   p' 

where  p*.*   are the positions of the noa resr=neighbor spin up ions,   and 

c    = / dF^fTj H     (T) ji( n 
o e c 

c     = / dT[L('r -"p) H^^J r) M.^ f  - 7) 
o pp 

c j = / dr^(7 - p5 Hß3(T;Hi f*- P - S ) 

ß, - / diniC? - ^) H0^ > r   ^   ~ - p - p) , 

We do not know where in k-spac»1 the top of the valence band 

and the bottom of the conduction band .-ITP.     From our previous dis- 

cussion it is reasonable to assume fha4 these points are both gomf - 

where on the planes k - "p   ^ ±Tr/2.      Howpver,  this is noi necessar dy 

the case.    For simplicity,   we shall assasse the simplest situa^on: 

the conduction band minimum and the valence band maximum both 
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are at R > cj.    Since we are usmg this calculation prirnarüv to evaluate 

ihm average change in spin as electrons are excited across the gap. 

and since only the zeroth order change will turn out to be significant 

in the evaluation of P. no error is introduced at this point.    The 

calculation has been repeated using more physical assumption* about 

the band extrema [conduction band minimum at k = ^- (110),  valence 

band maximum at k = -j- (U 1)], and it was found that only the higher 

order terms are affected.    Near k = 0,  in the (III) direction,  the 

secular equation (2,29) can be written: 

o = 

c    * a .{h >|k2a2) - E o        1 3 

4    2   2 ßjte -|kV) 

ft  /i     4 .2  2. ß1(6 - y k a  ) 

i ^   /z      8^22,      „ 

(2.30) 

As before, we consider an electron with spin down and assume that the 

bands are narrow compared to the gap.    Then the solution of (2. 30) is; 

36ß 
E    = a     + 6c, + co 1 e     - c o o 

1 r 8 
— + L - 3 « i 

16ß 

a     - e o        o 

;       1 k2a2 

E    = a     + be . v        o I 
w 

r 8 m I6ß^ 
(2.31) 

3"1  a     - e a     - a o        o o o 
— }**** 

Equations (2. 31) show that the assumptions about the band extrema are 

self-consistent only if a , is negative and a . is positive.    The band gap 

is then: 

ma *(an ^«J + M«,  - «,) + 72 ß,/U     - a    ) goo 11 loo 

The corresponding wave functions are: 



4,    s 
" c 

18 
1  - 

o o 

1 ?     ■> 

60, 
(1 

c     - a 
o o 

'i        IT 

^ k   a    / 

* 

60. 

- a 
o o 

f k a   i 

Hi 
1 - 

i A    2 
(C      -  ö     i 

O ö 

T      o     o 

Equations (2.32) lead to: 
f 9    x "J 

■H   Z / C 

36p4 

o o 

U 
4    3   9 

^S 
36ß' 

/v = -I + 
Z'  V 

c      - c 
(1 - 

4 v2 21 (5 ^ a   ). 

(2.33 

Thus: 

i S  {k) = 1 - 
z 

72ß 
1 320? 

(c     - a   )        (a     - e    J 
o o o o' 

2   2 k a 

r N (n) 

'0 

dC 
[  I- 

2 
72ßt 32P 

+ — 1 

s^5     {Q A .r?7?     . i ir-k a 

o o o Q 

t 
N 

72ßt 
32(6^ ̂ 5/3^1 ß2 

(a     , a    )' 
o        o o        o 

^H    n n''l     12.34. 

using the same assumption about the form of E    as m the one 
8 

dimensional calculation; 

n 4E 

g       N^ P       v (2.35 

where   V  is the total volume of the crystal.     From (2, 34; and (2. 351    *, 



obtain the result: 

£  = E    + &m 
i        iö g 

. E      .3p ^ f I 72ß' 1 n + 32C6B
2)5/3a2 frf 5/3. fc

go     "Tf-   * I * "-       TU J a + — T  ^  J n       I 
(e     - c    ) (a     - a    r 

o         o o       o 

(2.361 

Equation (2. 36) «how« that ß in (2. 1) i« a constant,  independent of n, 

to *i*hin terms of the order of the square of the small quantity, 

PJ/^Q - «g)«      The large coefficients of these terms should not be 

disturbing,   since in Appendix B we show that the bandwidth is greater 

than 12 ß,  f  while the band gap is considerably smaller than (a    - a   ) 
o        o 

2 / A   2 Thus,  the value oi 72. ßl   / {&o - cO     is a good deal less than half the 

square öf the ratio of bandwidth to band gap,  which we expect to be 

itself small in the materials under consideration      Therefore,   equation 

(I. I) will remain valid over a relatively large range of   n ,    The 

narrower the bands are,  the larger the range of   n   for which (2, 1) 

holds.    From (2. %h}i  the value of   p   is: 

M«^' (2.37) 

Comparing (2, 3?) with the result of the one-dimensional calculation, 

{Z-. 27),   shows that the valu^ of   ß   i- the same.    Note that in the limit 

of narrow bands,   a^ ^ "^ = ßj  - 0, and (2. 37) is -xact within the 

validity of (2. 35). 
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3.    Virtual Crystal Approximation 

We shall recalculate  ß using an entirely different model but 

maintaining the spirit of the Kartree-Fock approximation.    We ccm- 

sid'jr metallic ions with spins ordered antiferromagneticaiiy 

at T = 0.    Let an ion with spin down be called type A3  a spin-up ion 

type B.    Consider the sublattice where ail spins are down when perfect 

order exists.    In the vicinity of an A ion?   an electron with spin up sees 

a potential V^.  whereas a spin-down electron sees V'      Simiiarly 

V„ and V     are the potentials la the vicinity of a B ion seen by a spin up 
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and a spin-down electron respectiveJy.    B is clear that ~r ^ ~ V    and 

V*   - ¥„,    For simplicity,  we shall take the case of one 3d electron 

per cation.    Since N is the total density of cations,  the density on 

each sublattice i§ N/2, 

The average potential seen by an electron with spin up cm ihe 

sublattice under consideraticn is: 

4^AVA+nBV;) i2. 38 

where n. is the number of A ions on the su&lattice,  nR is the number ul 

B ions.    Siniilarly, for a spin-down electron: 

= N(nAVA^BVA^ 
fö.3fj 

The a-^erage exchange energy is then just the difference between (2.38. 

and (2. 39), or: 

x    ex /     N     A        B       A A 
12.40, 

For perfect order,  n     ~ N/2,  n- - 0?  and; 

<Vex>T-0 = Vl-V;- 

For complete disorder,  nA " "g = N/4'  An^ 

/ V     > - 0 . 
\    ex / 

Since n    + n     ' N/2, and the number of intrinsic carriers is just the 
A       B 

number of ions with spin up on the sublattice,   (2.40) can be written: 



U w« atiurae that the esergy gap is proportio^tl to the average exchange 

«aergy. as was lound m (2. 18)#  then (2,41) becoreesi 

E
g-V

l"4n/NK »-^ 
Thu» ß s 4 Ego/H, exactly the «aitie as found m equations (2.2?) and 

it, 31) tor one 3d electros per cation*    It is clear that If there are  z  Jd 

electrons per cation filling the valence band, the result for  0 in the 

above approximatlojis would be; 

go 

D.    Crystalliae Äructure lÄstortion 

The emttence of amiierromagnetlsm Is not a necessary condition 

for the applicability of (2. lh    The relation can alao be shown to be 

appropriate when an energy gap Is caused by a crystal structure dis- 

tortion to lower symmetry.    This type of gap can arise from an energy 

gain dae is    hernical binding — the lower band may be thought of as a 

bonding ba        tue upper an antibondittg band.    Excitation of an electron 

across the c     rgy gap decreases the gap because the excited electron 

no longer contributes to the chemical bincÜEg.    Thus the situation is 

analogous to the case of an antlferromagnetic crystal dealt with in 

section C.    However, the evaluation of p is more difficult when the 

gap is caused by crystalline distortion.    In this section, we shall cal- 

culate expressions for ß, using simple one-dimensional models,  but 

employing as much as possible the physical properties of the vanadium 

oxide-s to which we expect the theory to apply. 



1=    Delt^-tußctisn interaction 

Consider a one-dimensional crysta.} w th two cations per unit 

cell at low temperatiire.    Once again    *P shall examine ^he ease of on. 

3d electron per cation m a non-degener^   band, the case of mtgri 

rone eat rations of 3d elections m degen. rate bands is estirely analo^ 

gOus. 

In accordance with these assumptions,  we plac e ions at positions 

1  - Z€u, 
Xj?   S(^—^ -la 

- Zee 
A^ I a 

Here  €  i© a parameter which ranges from 0 to 1/2,  and reHects thtf 

zero temperature deviation from the monicmrc s^tuaton; the e . are 
i 
J 

parameters which take on values from  I to 0 and indicate how the ^mümts 

change positions with increasing temperature.    In th*? case under con- 

sideration,   e . = I for all j at T = 0?   and a        0 for all j  at high tem= 

perature.    The crystal is semicondut i„ng due to the extra band gap 

brought about by the distortion from one cation per unit celL    Each of 

the assumed conditions is true for V^O      which undergoes a structure 

change from monoclinic to trigonal at the temperature of the semi- 

conductor-to-metal transition. 

To begin with,  the simplest interaction we can wr.te down   s 

a delta-function potential; 

V(x).V     >   {fi^cj 
I - Z€a 

-i)a]   *  9(  x  -  f 
1   - Zf 

J i a £ 

This is essentially the situation m wh.ch the Coulomb mrerAct.cn m 
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very •trongly screened, which is not too far from the case where 

an extremely high dentity of free electrons exists.    When the c . are 

independent of j,  VCx) is p«ricdic and we can solve Schrod nger's 

equation exactly; when the a , depend on j,   Bioch states are no longer 

eigenstates, and the problem   cannot be solved exactly.    Consequently, 

let us assume a    = c  for all j.    Then Schrodinger's equation may be 

written: 

-1^" +Vo  f [«<*-» + 6(x- ja >b)]^  =E4> (2.43) 

whcrj b a (1 _ 2€e)a/2. 

Thus: 

M = A sinyx + B cos y^ (ü  r x < b) 

*Hx) = A1 sin yx + B' cos yx        (b € x < a) 

2 2 
where y    = 2 m E/fi'     Bloch's theorem gives: 

U-44) 

s /„^        ikx 

where: 

Then: 

(x) = e—Mkx) ^m 

^(kx) =4Mx fua)] . 

ikh (2-46) 

But from (2.44) and (2.46): 
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4^(0) -ii(0) s B 

4>{b) a A sin yb + B cos ^b s A1 sin ^ b + B: cos ^ b 

5 e       jifkb) 

4;{a) = A' sin^ya + B' cos ya - B eika 

i2.47: 

Integrating (2,43) from 0' to 0 + : 

^•(0+) - ^'(0") = 2X^,0) ^ 2XB f2,48 

where X " m Vo/ft   .    Similarly,   integrating (2.43) from b* to b+; 

^{(b  ) - ^«(b*) = 2Xi-(b) s 2X(A sm^b 4 B cos yb]. i:2.49j 

From (2.44),  we see: 

^'(x) = A Y cos Y« - B v  sin vx 

4if(x) = A« Y cas YX - B* Y sin YX 

(0 *x < b) 

(b« x < a) 

(2.50) 

while from (2.45): 

#»lxl =:e"lka4;*(x + a). 

Comb.ning (2.48),   (2.49),   (2.50),  <mQ (2. 51): 

■•■■ I If *4 

YA - e [A'Y cos Ya - B^  sin Ya] = 2XB 

A'Y cosYb - B'Y  sinYb - AY  cu* yb + By   sm Yb 

= 2X[A sin Yb  - B cos Ybj . 

The secular equation is obtained from (2.47) and (2. 52): 

'2.5 

[2.52; 

0 = 

sin Yb 

0 

ika 
Y c 

cos y b 

ika 

sin Yb 

s in Y a 

- cos Yb | 

- cos Ya I 

-2X e 
Ika 

Y cos Ya \ sm Ya 

2X sin Yb + Y cos Yb Ik cos yh ~ y sm yh y coayh ysinyb 

^4X   el asinvbsinY(a-b)+4YXeikacosYa+2Y2elkacosYa-Y2{i+c2ikaL (2. Si 
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Solving (2, S3) for cos ka! 

2X . .  2X2 

co«ka s GOS^JII + —- sinva # —j- gin\b sinv(a -b). (2. 54) 

Fo.     teater clarity, let K = ka. y -y*,  z - Xa; recill 

*€  = (a - 2b)/2a.    Then (2.54) becomes: 

1 

co» K  * COB y + Zz *lny # 2r 
y 

(2,55) 

Equation (2. 55) gives the energy band structure of the crystal.    We 

•till have two parameters at our discretion,  the strength of the inter- 

action,   z,  »nd the amount of distortion,   e.    Since we wish to apply 

the theory to narrow band materials,  we must choose z relatively 

large.    A good choice for € is c ^  0.01?  the distortion present in V O  . 

The energy band structure at T = \) (a  = 1) is plotted in Fig.  II-1, for 

z » -60.  c = 0.009.    As can be seen, the bands are narrow.    Li this 

case,  the relevant energy gap is narrow also,  as we might expect 

in V203*    A8 e  decreases.   the gap shrinks,    in Fig.   II-2.  the band 

structure is plotted for c   =2/3; Fig.  0-3 shows E(k) for a   * 1/1. 

Clearly,  the gap must vanish as a  goes to sero. 

It Is important to demonstrate that c  decreases with inc-easing 

carrier concentration,    in the distorted state,  the wave functions of 

electrons jr. the valence /bonding) band have larger amplitudes in 

the region where the cations are closely spaced,  whereas those of 

electrons in the conduction (antibonding) band have larger amplitudes 

in the region of wide spacing.    Thus,   excitation of an electron across 

the gap removes charge density from the closely  spaced region. 
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FIG   n-l     ENERGY   AS A FUNCTION  OF k. 

z = -60;   €= 009,   a M 
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FIG. n-2     ENERGY   AS A  FUNCTION  OF  k 
z =-60;  €= .009; a = 2/3 
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FfG   n-3      ENEr --   AS A   FUNCTION   OF   k 

2 =-60; € - 009,   a = i/3 



Consider a hydroger- molecule.    With boih electrons in bonding orbi- 

tal»,  the equilibrium distance between the hydrogen ions is 0. 74 A, 

when one electron is removed,  we are left with the hydrogen molecular 

ion,  H_f for which the equilibrium distance is  1.06 A.    The ions thus 

move apart as an electron is removed from a bonding orbital.   Of 

course,  the hydrogen molecule is made up of ions and electrons which 

interact by means of a Coulomb potential,   rather than the delta- 

function potential with which we are dealing.    Conceivably cnis could 

make an important difference.    Consequently,   the hydrogen molecule 

analogy is analyzed in Appendix C using delta-function interactions.    It 

ts found that the equilibrium distance of "H." is 0. 76 of that for "H^*, 

which is roughly the same as the 0. 70 ratio for the real molecules. 

We conclude that c  decreases with increasing concentration of free 

carriers.    It is clear that e  vanishes a/ter N/2 carriers are excited, 

since the charge density between all the cations is the same,  and thup 

the cations must be equally spaced.    Thus  c   decreases from 1 to 0 £8 

n Increases from 0 to N/2.    We shall assume the simplest possible 

behavior for a ,  the linear relationship: 

a   ^ 1 - 2n/N . (2.56) 

The resul   of an involved calculation,   to first order in i»/N.  is: 

E    = 3.3 (J -3. 1 n/N). 

The value of ß   is thus; 

ß = 3, 1 Ego/N. (2.57) 

It is worthwhile also to calculate 0 when the bands are narrow 
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i 

f 
§ 

compared tö the energy gap.     For this purpose,   we mvestigated the 

case where z =  -tt € ^Q   lb      The band structure is shown m 

Figs    IM through IU7 tor   a = 1,   2/3 f   1/3,  and   0 .    It can be 

seen how the energy gap shunks to zero with decreasing   a ,  while 

the valence and conduction bands become wider and m&m tewa; l|| 

each other.    The result for the variation of   E      is: 

E    ^  15, 2 0  ^ 3.7 n/N) 

Hencei 

go (i- 5-s) 

In general, ß was found to be insensitive to changes in the bandwidth 

for a constant band gap; however, ß was sensitive to changes m the 

gap,   varying from  16 E     /N   for narrow gaps to 4. ^ £     M   for the 
B - gO' 

widest gaps investigated. 

Figures 11^4 through II-7 can give us some insight into the 

nature of the distortion.    Figure II-7 shows the band structure for 

the imdistorted situation,  where there is no gap,  but rather a half- 

filled band      The distortion can be looked at as the band generalUation 

of the Jahn-Teller effect.     When the bands are wide,  a Jahn-Teiler 

distortion would just introduce a small gap at the ends of the reduced 

first Bnllouin sone,   resulting m only a small gam in electrosic 

energy      This gam would quickly be overcome by the loss m strain 

energy,  and the distortion most likely would be sufficiently small so 

that a real gap in three dimensions would not occur.    However,  ir. the 

narrow band case,   the distortion has an effect en all peists in 

k-space,    lowering the energy of tne entire val« tencc- 
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Wm 1-4   ENERGY   ÄS A  FUNCTION OF k. 

z = -6; € = OJ5; a=l. 
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FIG 1-5     ENERGY  ÄS  A   FUNCTION   C 

z=-6;   € tÖ-li;   m * 2/3 
W  k 
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FIG.  n-6    ENERGY    AS   A   FUNCTION   OF   k, 

z=-6;   € =015;  a* 1/3. 
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FiG  n-7    ENERGY   AS   A  FUNCTION   OF k 

z =-6. €=0.15. GNO. 
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8 rr. a - V 0 „ 
S   = ^      , COS     X      s   s       CO.S X 

l^-Z a      o        o a      o n n 

p „   cm a 

Then (2.61) can be written; 

^"(z) + [ff | s cos Zz] +(z) = 0 . (2. 62) 

Equation (2. 62) is just a form of Mathieu's equation,   the eigenvalues 

of which have been tabulated [34] .    Take s^  = 100,  and for simplicity 

assume that sufficient electrons are present to fill the lowest two 

bands,   leaving all higher bands completely empty.    Set   fc   = 0.0J. 

the correct value for V-O   .    A long calculation shows: 

E    = 0. 30[]      ^J^l  . g L N    J 

Hence; 

p = 3.5 E     /N. (2.63) 
go 

For a Mathieu interaction;   the value of ß depends somewhat 

on the number of electrons present and strongly on the amount of 

distortion t.    It was found that ß increases for decreasing c.    In 

many ways,   the Mathieu interaction is inferior to the delta-Junction 

interaction for our purposes.    The Mathieu potential is a very weak 

attraction^   and at high temperature actually vanishes,   leaving the 

free electron Schrodinger's equation.     This results in a band struc- 

ture where the bands are wide and thn gap is narrow,  just the opposite 

of the physical situation tu which we want to apply these  results.     A* 



low temperatures,   this could be remedied by using extrtrineiy larg« 

values lor so;  howevei ,   no tables of Mathieu functions exist for 

s > 100,   so such calculations are not practical at present. 
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Chapter III 

CALCULATION OF CONDUCTIVITY AS A 

FUNCTION OF TEMPERATURE 

The electrical conductivity of a semiconductor can be expressed: 

«r = n evi (3. 1) 

where  n  is the concentration of excited carriers,   e  is the electronic 

charge,   and y.   is the mobility of the carriers.    In this chapter,   we 

shall assume that Eq.   (2. 1) is applicable,  and calculate   n as a function 

of temperature.    We shall evaluate n(T) in two opposing limits,   the 

effective mass approximation and the limit of narrow bands. 

Let us take the bottom of the conduction band as the zero point 

of energy. The px-obabihty that a state w;th energy E will be occupied 

by an electron is given by the Fermi function: 

f  (E) =    „       *   . (3.2) e E-E^ 

kT . e +1 

Clesily,  the probability that a state is occupied by a hole is: 

fh(E) - 1 - fe(E) 

E^-E Y 

e +   J 

(3.3) 

Let p   (E) be the numbe-   of states per unit volume between energies E 

and E + dE.     TheUj   t ^mg (3.2),   the concent ration of electrons in the 

conduction band,   n,   is given by; 
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JQ  . 

e +    1 

dEpJE)-^-^     ' (3-4) 
F 

Similarly,  defining p (E) as the density of states in the valence band, 

and using (3. 3): 

p*   /       8 dEpv(E)     E^.g (3.5) 
00 —pf 

e +   1 

where p is the concentration of holes in the valence band.    For an 

intrinsic semiconductor,  the condition of neutrality requires n = p. 

This condition determines the Fermi energy,   E^. 
r 

A,    Effective Mass Approximation 

We first consider the situation where the valence and 

conduction band structure can be well-represented by ellipsoidal 

constant-energy surfaces.    We can then define density-of-states 

effective masses,  m      for electrons,  m,    for holes: e *       h 

m    = M{m. m? m^) ' 

where m., m_, m, are the principal values of the effective mass 

tensor,  and M is the number of equivalent extrema.    The densities 

of states are now given by: 

,       2m     3/2     . /„ 
Pr{E)=-4(—^) El/* (3.6) 

C 2lfZ     fiZ 

j        2.m.     3/2 , /_ 
p   (E) • -i-  {—f ) {-E    - E)l/Z (3. 7) 

2f2       fi2 g 
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Equations (3.6) and (3. 7) are always true near the band extrema. 

However,   for large values of m    and m.,   they probably do not re- 

main valid for a very large range of energy.    The effective mass 

approximation assumes that these relations remain applicabJa for 

all values of E which have finite probability of occupation at the 

temperature under consideration.    Thus,  the effective mass approxi- 

mation is a good one whenever jEJ» kT,   and m  is not too large. 

In view of (3.6) and (3.7),   (3.4) and (3.5) yield: 

1        2^e    3/2 

2ir2       tT 

i A 
dE E-E, 

e   kT       f   1 

(3.8) 

J       2mh   i^ 

1^   fi" 

1 /2 
(-E^-E)17" 

dE 

-QC^ 

kT 
+   1 

(3.9) 

We first consider the case where   |E - E„ ! » kT.  and Boltzmann 
t 

statistics apply.    Then,  the exponentials in the denominators are 

much greater than unity,  and (3.8) and (3,9) become: 

n = 
j       2mekT   3/2 F     roe 

kT 

Zrt' 

1/2     -x 
dx x  '     e 

1   ,2mekT
1

3'/j     kf 
—~ 1 e = i< 

Trfi 
(3.10) 

p-ii 
,      2mLkT 3/2 
i   /       n      , 

E^+E 

kT 

Ttfi* 
(3. ID 
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The condition of neutrality gives: 

Er E„    E F t I?        g 
3/2   JT 3/2     "FT "kf 

n» c        - mt       e 
e u 

or: 

^ .   3kT ,     mh 
(3.12) 

Defining m    as the geometric mean of m    and m,,   (3. 10) yields: 

£ 

1 ,2m*kT.3/2     '2kT 

Letting A £ (2m* kT/trfi2)3'2/4,   (3. 13) becomes: 

£ 

Ä T3/2        2kT n = A T '      e 

(3.13) 

(3.14) 

Substituting (2. 1) into (3. 14): 

.„3/2    -JkY   iFrn 

n = A T  '      e e 

Equation (3. 15) can be solved explicitly.    Let: 

(3.15) 

T £     exp 

! 

BAT 1/2 

2k 

E 

~   e iir 

L  ai  I AT3/2   e 
n 

(3.16) 

(3.17) 

Substituting (3. 16) and (3. 17) into (3. 15),  we are left with the simple 

equation: 

71= r*. (3,18) 

The solution of (3, 18) can be written: 
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T 

?2   = T =^(T) . (3. 19) 

Equation (3, 19) gives   n as a function of temperature.    The function 

^(r),  which can be called the infinitely repeating exponential,   is a 

function which will recur often during thiy analysis.    I* is not dis- 

cussed anywhere in applied mathematics literature,  and has some 

unusual properties which are worth detailing at this time.    Its be- 

havicr is shown in Fig.   IIl-l.     r|   slowly rises  from 0 to  e  as   T 

1/e 1/e increases from 0 to e  '     = 1,445.    However,  at the poi'it   r - e  ' ' 

an essential singularity exists and  T) increases without lirrit.    Not 

only does   T| blow up at this point,  but all its derivatives are infinite 

also.    Such a singularity in n(T) completely eliminates the band gap, 

and brings about i? first-order semiconductor-to-metal transition      We 

can determine the transition temperature eaaily,     ^t the point of singularity, 

J /e 
T    = e       ,  and equat on {3. 16) yields: 

E 
Zs° . I 

pA „1/2   _     2kTo 

Let: 

fkTo       -* • <3-20' 

U      [eßA}   T 
o 

R= e     k     ^   *A   ' 

Thi'n (3.20) becomes: 



FiG. BH 

0,5        T 

THE FLNCT10N   ^(r) 

1,5 
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R 
R 

Q R 
Q = Rw =  R =  n{R) (3.21) 

Elquatlon (3.21) gives the transition temperature,   V  ,   in 

terms of the band parameters,  E     , ß.   m        A transition always go 

occurs in this case,   since R <   1,  and thus (3.21) always has a solu- 

tion.    Using Boltzmann statistics,  the number of carriers grows 

without limit at the transition temperature.    We shall be interested 

in the ratio E     /kT  *   which ran be expressed; go'       o r 

E , j 
_S2 = Qln (^) = n(R) in{^) . (3.22) 

In Chapter II [see equations (2.27),   (2.37),   and (2.42)],  we 

fr'..nd that for an energy gap arising from antiferromagnetism: 

M 4 E    /N . (3.23) 
go 

In equations (2.57).   (2.58),  and (2.63).  we saw that (3.23) is also 

a good approximation when the gap is due to a crystalline structure 

distortion.    Let us write' 

ß ^4(1 4 6)E    /N (3.24) 
go 

where   6 vanishes in the CP.SC of antiferromagnetism,  and is small, 

probably between -1/4 and 1/4,  in the case of crystalline distortion. 

Then the parameter In (l/R),  which determines E     /kT   ,  becomes: gc 

'     ,                            .,            m*E        3/2   2 
in(4)  = 2(1 -f 8r[^ ( gB2)       J     . C   25) 

The quantity in brackets in (3.25) is essentially a measure of the 
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Täfio of the band gap to the band width,    [in fact,  using (2, 18),  from 

the one-dimensional theory of antiferromagnetism:  ln{^j = 

«2 2    E       3 

^-T (1 + 6)    (-J^)   . ]     E     /kT    is plotted as a function of ln(l/R) in 
4^ ^   '   go   o 

Fig. III-2. For narrow bands, ln(l/R) is large, and E /kT is a 0 go       o 

slowly-varying function of R.    Boltzmann statistics are valid for 

roughly Eg0AT0  > 2. 

The important point is that a semiconductor-to-metal transi- 

tion can occur in a simple way in a band theory.    The resulting be- 

havior of In s as a function of l/T is shown in Fig.  III-3 for reason- 

id 
able values of £      and m  . 

go 

Just before the transition,   ??= e.    Thus,  from {3. 17),  at this 

point" 

E 

n{T  ) = e A T:/Ä  e 0     . (3.26) o o 

But it can be seen from (3. 15) that (3. 26) implies: 

n(To) ^ 2kTo/ß. (3.27) 

Substituting (3.24) into (3,27): 

n(T  ) , E       -1 

-ir- " T~rs ^   • «3.28) 
2(1 + o) o 

From Fig.  iiI-2,  we see that for the narxow band situation with 

which we are nost concerned,   E    /kT    >  5.    Equation (3.28) then 

shows that the maximum value of n/N before the transition is; 

(?f)    ,    <   0. 1 (3.29) H max 
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FIG. ffl-3   CONDUCTIVITY AS A  FUNCTION OF  TEMPERATURE 
EFFECTIVE  MASS  APPROXIMATION-BOLTZMANN 
STATISTICS. 



Equation (3. 29) is a very important result,   since it shows that oui" 

use of (2, 1) for all  n  up to the transition was valid.    Furtherrrore, 

if n/N had approached unity before the transition,  the value of the 

effective mass approximation in arriving at (3.8) and 0.9) would 

have been brought into question.    If E     /kT    is small,  and (3.29) » T go        o 

does not hold,   Boltzmann statistics do not apply and Fermi statistics 

must be used. 

When Boltzmann statistics are invalid,  we must return to 

equations (3.8) and (3.9).    We may write these: 

, 2m      3/2 E 
n = I7 {~W)    Ti/t{™) {3-30) 

5 2m     3/2 Er + E 

P=^2    C-p*) F^C-^r-I) (3.31) 

where: 

jr 

_, x '     dx 

In an approximation valid up to y - +2,  or just before the 

system becomes completely degenerate,  Ehrenberg [35] has shown 

that F,/2iyj can be written: 

' 1 + 4 e   7 

ThJs approximation will be valid until the Fermi energy is well into 

the conduction band,   so that we can think of (3.32) as exact in all 

normal situations involving semiconductors.    Then the condition of 

neutrality gives,   from (3.30),   (3.31},  and (3.32); 
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* t , , .!ErtE
8'AT 

(3.33) 

totir^r m *  ||*    ^^1    ',    Th# «olutioft of U. 33) i«: 

♦   i  4 —^—-)    + M e   * T / i T (3.34) 

c^^cesf ration ot electrons in the conduction band ie then: 

K = I 
Zm   kT   3/2 

1 

1 + 4 e ̂ v^ (3. 35) 

F«r f&e ca»e m    s m.   = m  ,   (3. 35) becomes: e a 

= AT3/2e"kT 

i     -E /2kT 
1 + T e     6 

4 

(3.36) 

Tfe*» differs from the Boltzmaan expression,   (3. 14),  only by a factor 

of [ I ♦ exp(-E /2kT)/4J '  ,  which is very nearly unity for all ordinary 

temperatures unless the energy gap is extremely small. 

Combining equations (2. 1) and (3. 36): 

n - AT3/2  e 

o        B 
kT    IFTn 

~ ZkT     2kT 1 +? e e 
n 

(3.37) 

Equation (3,37) can be solved analytically only when the initial energy 

gap is much larger than kT for all temperatures under consideration, 

in that case,  let: 

«°     P*,      PAT
3//2

 /E80     T 

r* r   /i     kT      IFT TFT,, flTTA l       e .,  sa, 



59 

58 

Equation (3,37) then becomes; 

r ^ T 

/I = T v =   T =^(T) (3.39) 

where n. is defined as in equation (3. 17).    Thus a transition still occurs 

with Fermi statistics, 

Just before the transition,  ft ~ e.    Thus the concentration of 

carriers at the point of transition is the same as the Boltzmann result 

in terms of T  : 

n(To) =2kTc/p. (3.27) 

But for Fermi statistics,   a different value for T    is obtained.    The o 
l/e transxtioii temperature occurs when T = e       ,  which yields the condition: 

epAT1/2     -E     /2kT o go7 < 

1 + In [ 1 - k ^Zh 
TTT   e 

2ßAT '    e o 
1 = 2k 

ßAT1'2e 

E    /2k T go' 

(3.40) 

Equation (3.40) can be solved graphically for T   .    However,   it can be 

seen that Fermi statistics tend to raise the transition temperature. 

Since exp(-E    /2kT  ) is a small parameter,  an expansion of (3.40) to 

first order gives: 

go 
eßAT1/2 2kT o o        e 

^k    = e +   ? (3.41) 

Ignoring the relatively small second term on the right of (3.41),   we 

recapture the Boltzmann relation for T  ,   equation (3.20).    The presence 
o 

of the small positive addition to the right-hand side increases T    by a 
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smaii amount.    Equation (J.E7) then shows that slightly more carriers 

have been excited at the point of transition than had been when Boitzraann 

statistics were used. 

In the case where the electron and hole effective masses differ, 

Ml*   1,   and we must modify equations (3.38) and (3.41).    These become: 

go     Pn 

N-AT '    e e  — g g-—■—      (3.42) 
TO     ßrt go 

,   i-M "zkT rrr, (M-I)
2
   iSr & 

and: 

,1/Z 

E 
g' 

eßAT /'"        2kT ..    ... 
o o       e (3 - M) 

-     2k 
a e +     S   JZ*  * (3,43) 

Equation (3.43) shows that the transition temperature can be a 

sensitive function of the mass asymmetry,   M.    When the electron 

effective mass is about twice the hole effective mass,   T    is approxi- 

mately the same as for the Boltzmann case.    For greater ratios of 

m    to m, j  the transition temperature is lowered,   but this lowering is 

small for normal values of M.    As an example, when E      is 6kT.  and 

the electron effective mass is 100 times the hole effective mass,   T 
o 

will be decreased by roughly  15%.    On the other hand,  a large effective 

mass for holes relative to that for electrons tends to increase T    some- 
o 

what more sharply.    When E      is 6kT  .  and m,   is 100 m  ,  T    in- r go o h e       o 

creases by about 50%.    It is important to bear in mind that (3.43) is 

valid only for values of E      greater than approximately 4kT   . 

When E      is not this large relative to kT   ,  we must return to go ö o 
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equation (3.38),    We cannot solve (3.38) analytically,  but we can solve 

for the transition temperature.    Using (^23): 

E 
go 

3 kT 

d In n 1 + 4 e 
i     r go       /       N 

2     " '   ~ g 
dT go 2n 

1 _ kT   ^ 

and. 

In   3    i-   kT M     '    1J In ß   - kT       N 
o 

(3.44) 

1  + -j- e      6 

4 

From (3.44),  we see that the transition occurs when: 

E . 

^^-.^e"2"'    ■'«, ,3.45) 

11 we let: 

-E     /2kT 
e go o 

D=   e 

then equation (3,45) becomes: 

Q- B^- B   ö -^(B) , (3.46) 

Equation (3. 46) can be used to find T    when the energy gap is small. 

A major effect of Fermi statistics is the cutting off of the con- 

ductivity anomaly at very high   n.    This can easily be seen from (3. 35). 

The maximum value for  n  at the transition temperature,   after the 
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transition,   is: 

2m   kT      3/2 
n=( V-2^ i3-47> 

fffr 

whereas with Boltzmann statistics,   n  grew without limit after the 

transition.    Such ü cut-off is characteristic of Fermi statistics. 

Using (3.27) and (3.47)#  we obtain the jump in carrier concentra- 

tion at the transition temperature: 

2mhkTo    3/2      NkTo 

TT n go 

This result,  as well as (3.47),  is physically meaningful only if the value 

of n  given by (3.47) is significantly less than N,   since the effective 

mass approxin »tion must remain valid in order to use (3.35).    If n  in 

(3.47) is greater than N,   cleaiiy there can be no more than N carriers 

per unit volume in the conduction band,  and the jump in n at T    is 

]U5i: 

An = N(]   - KT  /2E     ) . o'      go 

This tells us nothing about the jump in conductivity,   since the mobility 

will change considerably upon transition from a semiconducting to a 

rnetaliic state.    However,  this result will enable us to calculate the 

mobilities before and after the transition from experimental measure- 

ments of the conductivity. 

B,    Narrow Band Limit 

The transition metal oxides which exhibit semiconductor-to- 

metaJ transitions are characterized by extremely narrow 3d bands. 
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For such materials, the effective masses of electrons and holes are 

so large that it is not meaningful to use the approximations in section A. 

The physical situation is probably closer to the extreme limit of delta 

function bands.    We shall here derive an expression for nlT) in this 

limit.    We assume one 3d electron per cation, although any number 

can be treated analogously. 

We return to equations (3.4) and (3.5) for n and p,  but now use 

the narrow band densities of states: 

p  (E) - N6(E) (3.48) c 

p   (E) = N 6(E + E ) . (3.49) v g 

Substituting (3.48) and (3.49) in (3.4) and (3.5).   respectively: 

N 
n -EF/kT 

e      ^ +1 

(3.50) 

F   s 
kT e +   ' 

The condition of neutrality leads to: 

E     - ~ 1/2 E  . F 8 

Hence, the concentration, of free carriers is given by: 

N n =    E 72ET—' 
e   g + 1   . 

Putting (Z. 1) into (3.52): 

(3.52) 

H  = 'E    /2kT     .ßnT2kT     - (3-53> 

e   * e + 1   . 
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Uaing the general expression for ß.  equation (3,24).   (3.53) becomes: 

I = IT   /%kf   -gn/ikT "" (3'54) 

e   «0 e +1 

First,  we assume £      » kT for all ordinary temperatures.    This 
go 

i* equivalent to the Boltzmann limit.    Then,  letting: 

y s E    /2 kT , y go' 

equation (3. 54) can be written: 

With the substitutions: 

Z = x ey 

Ws exp[4(l + 6) y e^] , 

this equation becomes: 

nr * 
Z = WZ = W   W =??(W), (3.55) 

Oice again, we find a transition to the metallic state.    The 

l/e transition occurs at W    = e f   »  where: 

I 

4(l + o)ey    =e      ^le o t 

',4(l+6^yo 

(3.56) 

Equation (3.56) gives E   VkT    as a function of 6.    The solution go       o 
l 

is plotted in Fig. in-4.    It can be seen that E    /kT   is not a ri   'dlv 
go       o ' 

varying function of  5 over the range of interest.    It is important to 

note that 6 is a constant for each material.    Thus E    AT   will also 
go'      o 
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be constant.    This can be expressed as: 

d In E d In T 
go o 

where X is any external parameter,   su.h as pressure.    Equation (3.57) 
I 

can be tested experimentally,  and is an important prediction of this 

n 
theory.    In the event the energy gap is of antiferromagnetic origin, 

l 
6 = 0.    Then (3. 56) becomes: 

r 
1   ! 4ey 

?e 
4ey    =| e     J . (3.58) o 

Hence: 

E o 

cf2 a  7-40 • (3.59) 
o 

Equation (3. 59) is true whatever the material,  provided it is anti- 

ferromagnetism which was responsible for the energy gap.    Just before 

the transition,   Z = e.   At this point,  x    = e^    y^ = 0.067.    Thus the 

concentration of carriers in the conduction sand at the transition point 

is- 

|  =0.067 . (3.60) 

This small a value of n justifies the use of (E. 1) throughout the semi- 

ronducting region. 

The approximation E   » kT need not have been made in the 

narrow band case.    The general equation,   (3.54) can be solved exactly 

for the transition temperature,   T  .    In terms of x and y,   (3. 54) be- 

c jmes: 

where we have set 6 = 0 to investigate the antiferromagnetic situation. 



v n-K - i, b   ■ for y: 

1 i   -  X 7   T^R 

The transition occurs when dy/dx = 0,   or when; 

1  - 4x 1 - x 
3-rrr_T* In ___  . J3.63) 

o o o 

The solution xo (3.63) is x.   = 0,08,  which corresponds to y    = 3=55. 

Hence,  the complete Fermi solution is: 

E_ 
=   7. :o . (3.64) 

As in the eflect.ve mass approximation.   Fermi statistics tend to raise 

the transition temperature somewhat. 

The solution to equation (3.6') is shown in Fig,   III-5.    The part 

of the curve for x   > 1/4 is unphysjcal.   Since the energy gap becomes 

negative. 

Analysis shows that the final result,   (3,64),   is independent of 

the number of 3d electrons per cation. 

The case of a Gaussian broadening about delta function bands 

can be soived analytically for Boltzmann statistics,   which is a good 

approximation if the spread is small.    Let  X, be the parameter which 

measures the root mean-square deviation in E,    Then,   for one 3d 

electron per cation,  we write the densities of states: 

_E2 

P   (E) = e ,».65 

(E4E  )2 

Pvm  ^   Ne X (3.66) 
/ir V 
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Ati are assuming roth bands are broadpned similarly.    This can be 

generalized easüy by taking different values of X for each band. 

In the Boltzmann limit,   (3.8) becomes: 

. E E       ^F . 
N     i ^     -rr +Fr -FT ) 

n ^^~ e dE 
m 

-oo 

= N e e 

Similarly,   (3.9) can be written: 

Er+E 
F     S 
kT 

X2 

4k
2T2 

p = N e 

The condition of neutrality gives: 

E    - - 1/2 E . F g 

Thus,   (3,67) shows: 

,2 

(3.67> 

(3, fa8) 

"T"^- 
^ ^ ^    4ki'T 2kT n - N e e 

Subsi.tut.ng (2, r and (3,23;,   and us ng the previous definitions of  x 

and y,   (3,691 becomes; 

2 

i3.69* 

x      e 4k2T2        yf?.4x/ 
(3.70) 

Ti we lei 

ZZz 
7_ y        4k  T Z=   x e7   e 

—~2—2 
Ws  exp[4ye"y e41""1^] 



equation (3. 70) tan be wiittem 

Z - WZ S W   W =?HW) . (3,71 

—        ' /e The transition occurs at W = e       ,   where: 

The solution of equation (3.72) is: 

E 
pP = 2 In R T,^) (3.73) 

o 

where: 

InR S   {4e[ I + (I1iT_)2]}^ . 
o 

To second-order in the small quantity,   K/2kT   ,   (3.73) yields: 
O 

E .2-1 2 -1 
^2 .2[4eCl+-4-r)]     ??{e3cp[4ecl4-4^)]      }. (3.74) 
K   o 4k£TÄ 4k2T" o o 

It can thus be seen that introducing a smad spread to the bands tends 

to raise E    /kT    somewhat.    This means that the transition occurs 

af a slightly lower femperature than in the zero bandwidth case,   as 

one mjght intuitively expect.    For K/E      -O.CH,   E    /kl    -^7.40.  the 
go go'       o * 

same value as when k = 0: for X/E      = 0.05.   E     /kT    = 7  44. 
go go        o 

Wlien ^/E      becomes much larger than 0. 05,   not only does 

the approximation in (3. 74) begin to lose validity,  but also we must 

s:art to take into account the effective lowering of the -^a) band gap 

due to the finite   bandwidth       The parameter X is approximately 1/5 



the band width,   so that we may write the rafso of the band width to the 

band gap 

Band Width   _ 5X 
BahH" Gap E      - 5X 

When the bands are about hall as wide as the energy gap,   then E     /RTQ 

7, 51 .    When the band width and energy gap are roughly the same. 

solution of (3. 73} shows that; 

E 
pp   s 7.84 . (3.75 

o 

We must bear in mind that {3. 73) is valid only for extremely narrow 

bandss   so that we cannot allow K to become very large.    Nevertheless, 

when the band width and the band gap are both small in absolute mag- 

nitude (e.g.   of the order of 0.05 eV?    equation (3,75) could have meaning. 

In the case of antiferromagnet.sm,   the theory presented here 

gives 3 behavior for the variation ot sublattice magnetization with 

temperature wMch differs considerably from that calculated using the 

ordinary molecular field model of am Jt -r   magnetism.    We can evaiuaie 

the subiatnce magnetization in the narrow band limit,  using equations 

iZ.ZO),   {2,22J5  and (3. 55).    Equaücn tZ. 20},  which g.ves the average 

value of sp^n i.n the va.ence band,   provides the magnetization at T = 0: 

M0(O)     g i^ N < Sz> 

r •/* 
"b ^g^    N|     j dk[4*IE-(l tcoska)) 

11    JO 8° 

-lU-^)g^BN (3.76 
8° 
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whare U^{0) i* the magnetization at T - 0 on the eublÄttice where the 

spin i§ primarUy down,  g is the spectroscopic splitting factor,  and 

^B ^ efi/2mc is the Bohr magneton.    In the limit E^ " 0,  Mß/0) Js 

just the value obtained by the molecular field treatment of antJferro- 

magnetism.    Tot all finite band widths,  however,   Ma(0) is reduced 

in magnitude. 

&}uations (2.22) and (3.76) give the sublattice magnetization 

as a function of the number of free carriers: 

Mß(n)^BN[(l-^XM-^)+^L    ^1X]. (3.771 
go go 

Finally,  equations (3.55) and (3.77) can be used to calculate M   as a 

function of temperature: 

r EK ? E.      sinrTrx(y)l 
Mpm   .g^BN{cl-.E2.)[^+x(y)]+^-    L i} {3.78 

go go 

where y - Ego/2kT as before, and x(y| is given by (3. 55).    Equation 

(3. 78) is valid only when E.   « E     . 

We shall investigate the sublattice magnetization for two cases, 

Eb      0,  t'h      -*rrew band limit,  and E^ = E    /#, just about the upper 

limit for the use of (2.20) and (2.22).    When E^^ ^ 0,  the magnetization 

is given by: 

M  (T)-g^BN[-l + x(y)] . (3.79 

When E,   B E    /4,  the magnetization is: 

M  m -g^BN[.| + x{yl] . (3,80 
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From (3, 79) and (3.80),  the ratios of M^T) to the magnetization at 
P 

T s 0 are: 

MJT) 

urm = i'2 x(y) 

P {3.8!) 

M (T) 8 

Evaluating (3.81), we find that the ratios remain very close to unity 

from TO until T * 0, 7 T   ,    As T is increased above this point,  the 

ratio begins to fall off,   until just below T^.,  where; 
N3 

M (T-) 

TO50-87 (Eb=0 

P 
(3.82) 

W
P »g-  -  0.82 (E,       E    /4) . Mg|uj o        go' 

At T   ,   the sublattice magnetizations drop sharply from the values 

given by (3  82) to zero.    This behavior for M JT)/Mß(0) contrasts 

with the Brillouin curve obtained using the molecular field theory of 

antiferromagnetism in that it remains higher at low temperatures and 

then drops to zero at Tj,. much more drastically.    As the bands get 

wider,  the ratio Mfl{T)/Mfl(0] approaches the molecular field behavior 

more closely; however,  as we have seen   the magnitude of Ma(0) is 

greauy reduced from the zero band width,  and thus the molecular 

field ca§e. 



Chapter IV 

COMPARISON OF THEORY WITH EXPERIMENTAL RESULTS 

In this chapter, we shall present the results of experiments 

performed on the four materials known to exhibit semiconductor-to- 

metal transitions, and compare the results to the predictions of the 

theory given in Chapters II and IIL 

A.    V?Oj 

V?0. will be of primary interest to us since it is the material 

which has been studied experimentally in the greatest detail.    At room 

temperature,  V-O, has corundum structure, with rhombohedral 

symmetry.    The lattice parameters are most easily expressed in terms 

of a hexagonal unit cell,  consisting of 6 molecules.    As measured by 

Warekois [36] at 300 K, the hexagonal c-axis,  cH = 14.00 A, whereas 

the basal plane lattice parameter, a-, • 4,95 A,    The c-axis contracts 

with increasing temperature as: 

—^J! = .5.8 X 10"6 ^K)"1 

while the a-axis expands as: 

d In a 
11 = 22.9 X ID"6 ^K)"1 

dT 

Thus the thermal expansion coefficient is: 

i-^^choxio"6^)-1. 
öT 

In the vicinity of 150 K,  a phase transformation occurs.    At 

lower temperatures,  V-O, has monoclinic symmetry.    As also 
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measured by Warekois [36] at 77 Kä  the monocjinic unit cell,   con- 

sisting of 12 molecules,   can be expressed as: 

a = 8. 57 A 

b ^ 4.98 A 

c - 13.88 Ä 

p - 91.6°. 

A simplified diagram of both structures of V?0   is shown in Fig.  IV-i, 

The monoclinic distortion can be thought of as a shifting of 

pairs of cations in the hexagonal basal plane towards one another,   re- 

sulting in an effective tilting of the c-axis.    From the above data at 

770K, the parameter C,  defined in Chapter n,  can be evaluated as; 

c sin {ß - TT/Z) 

I2~ 3.Q323 A 
€  ^ a "    2.86 A 

t 0.011 . 

Dilatometric data by Foex [16] showed that there is a sharp 

contraction of volume at the transition temperature.    Recent experi- 

ments by Minomoru and Nagasaki [37] have shown that this contraction 

is about 3. 5%. 

The presence of antiferromagnetism has never been established 

in V?0,-    Carr and Foner [38] measured XB   and Xa  with respect to 

the c-axis,  and found both components the same order of magnitude 

and essentially constant down to 4 K.     Paoletti and Pickart [39] per- 

formed neutron diffraction experiments which placed an upper limit 

on the antiferromagnetic moment of 0.5 Bohr magneton    per cation. 
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Abrahams [23j was able to detect antilerromagnetism in Ti  O    by 

means of neutron diffraction,  and found a moment of 0, 2 Bohr 

magneton    per cationr   so antiferromagnetibm is certainly not as 

yet ruled out.    Wucher [40]  and later Teramshi and Terama [4  ] 

have interpreted their magnetic susceptibility measurements to infer 

that V^O^ is antiferromagnetic clear through the transition,   up 

until the vicinity of 5250K; we shall refer to this point as the high* 

temperature transition. 

Transport measurements on V^O    have been done by manv 

workers.    Foex [16] found that at the same temperature as the dilate- 

metric anomoly,  there was a semiconductur-to-metal transition.    Be- 

low the transition temperature,  the resistivity increased exponent_al]v 

with ]/T?   the activation energy bemg 0=20 eV4    Above the trans^ on 

and up to the high-temperature anomaly at 5250K,  the resistivity 

increased Unearly with T,  and was metal-like.    There was a jump 

m conductivity of a factor of 10    at the transition.    Foex found that 

above 52 5  K:  tht- resistivity decreased exponentially once agam.  with 

an activation energy of 0. 04 eV. 

Moan's experiments [20] (se.- Fig,  T-l) confirmed most of 

Foex s resuits.    In Morin s samples,   th»- jump in conductivity was 

al».. a factor of 10   .  and his measured activation energy in t he semi- 

conducting region was 0. 17 eV.    MacWUIlan [42] prepared a number 

of samples of stoichiometry varying ^rom V„0_   nn to V„0,   „rJ  and 

found virtually identical conductivity behavior for all samples.    The 

activation energy was 0= 13 eVf   independent of the composition. 

Recently,   Feinleib[2l] performed measurements on single crystals 
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of V^O*,  found to be within 0. 3% of stoithiOttietry,    He found a jump 
I 

of 10    in conductivity at the transition ttrnperature^  measured to 

be: 

T    - 1520K , (4. I o 

The magnitude of the activation energy varied from 0. 12 to 0, 18 eV. 

Other electrical conductivity work ha« been done on V^O^  by 

Austin [43] ,  and by Goodman [44] .    All experiments confirm that a 

sem4conductor-to-metal transition occurs with To near or at 152  K5 

6      8 
that it is a sharp transition with jumps in «■ of 10  -10 , that above T 

the behavior is metaliic,  and that below T   the conductivity is 

thermally activated,  with activation energy in the range 0. U to 

0.20 eV,    These results show that V-O^ is a material to which the 

theory developed in Chapters 11 and HI may be appiicable, and they 

provide the value of T  ,  equation (4. 1),    Where there is a choice,,  we 

shall use the results of Feinleib [21],   since his data were taken on 

single crystals,  and his material was closest to stoichicmetric.    The 

values obtained for the activation energy conceivably could give us 

some infortnaticn about the size of the energy gap.    In particular,  if 

the mobiUty were independent of temperature,   our previous results 

would give I 

# ^ n e ^ 

E 4n 
2^?(1 '^) 

w    e (4.2] 
o 

Since we '   ve shown that n/N does not become very large 

before the transition,   (4,2) would impiyj 
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EA - V2 ■ '<• J» 

However,  it is unrealistic to assume a temperature-independem 

mobility.    For example,   if polar scatteiing Is important,   then the 

mobility would be thermally activated,   giving a negauve contributlcn 

to the measured activation energy of approximately k  Q       where @ 

is the Debye temperature.    Since the Debye temperature is m the 

vicinity of 500  K [15] ,   this would modify (4. 3) to give: 

E.   S E     /2 - 0.04 eV. A go 

Other types of scattering may be present,   such as spin-disorder 

scattering or impurity effects.    Also,  if polaron formation is im- 

portant as we ex|-ect in the case of narrow bands,   there may be a 

polaron contribution to the apparent activation energy.    In general, 

the most we can say is: 

EÄ      E     /2 + E (4  4. A go' x it.-*, 

where E    contams ail contributions besides that of the energy gap, 

and may depend on the particular sample being investigated.    Only if 

lattice scattering dominates can E    be negative,  all other coirribu» 

tions are positive or zero.    Xi we assume E    is pcs.tive,  the meas- 

ured range of activation energies of 0. .     eV to 0.20 eV g-ves us an 

upper limit for E 

E   <0.22 eV go 4.5 

In order to find the exact value of E     ,   Feinleib [24] per- 

formed optical experiments on V?0. at temperatures above and below 

the transition.    No transmission was observed in the room temperature 
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metallic region between ft, Qb eV and 6 eV.    However,  la the semi- 

conducting region,  at 77   K,   transmission was obtained berween 

0. 1 eV and 0, 4 eV.    The transmission changed by several orders of 

map,iitude in this range,  and clearly indicated the presence of an 

absorption edge at approximately 0, 1 eV.    Since at 770K,   T      l/Z T 

and we have shown that n/N is negligible at this point,  this val 

can be taken as E      for V,0 
go 2   3 

E      = 0. 10 eV . 
go 

From (4.1) and (4. 6),  we find: 

:4, 6; 

E o 

FF   =  7-6 (4.7) o 

For VjOjj,  we expect the narrow band analysis of section 111B 

to be appropriate.    If the energy gap m V^^ were of antiferromag^ 

netic origin,  equation (3. 59) should apply.    The result,   (4.7),  agrees 

with this well within experimental error.    If the gap were due to a 

crystalline distortion, then as we have seen,   (3.59) still remains 

approximately true.    We can then use the experimental  result (4. 7l 

to evaluate   ß.    This can be done directly from (3.56K   or from 

Fig,  in-4.    The result is: 

M4,4Ego/N. =4.8 

There is no evidence that V^ is antiferromagnetic.    The presence 

of a phase transformation of the correct type at T   is strong evidence 

that the gap arises from a crystalline distortion.    If so    the theory 

of Chapters II and III would account for the phase transformation as 

well as for the sermconductor-to-metal transition.    We can gain 
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further insight into the nature of the transition from the result of 

the thermodynamic argument in section II B: 

2 8E 

^V-'T^'v.T- '.-3. 

Feinleib [21] has measured the total pressure coefficient. \  ,t 
W 

dE 

BE BE 

" " CT^ln, T " (irSI)p?T  dP* '4-9 

Assuming Boltzmann statistics apply,  the concentration of 

carriers is; 

E 

„ -„       '2kT 
n^noe = 14.10) 

Recall: 

Eg ~Ego " ßn ->P- (2.9i 

Substituting (2.9) into (4. 10): 

£ 

2kT     2kT    2kT n - n    e e e 

Thus: 

Solving (4. 12) for * 

{4,1 

-^n   _ -v g       dn 
dP  "  n2kT   +  n2kTZP- 14.12) 

dP; 

dn   _ rry 
3P  S  2kT -nF" t4-13» 

But from (2, 9*: 
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~i£ M -y ' P Jir- (4.14) 

Substituting (4. 13) and (4. 14) into (4, 9h 

At T - 132  K.   Feinleib r^easure«^F = E.2 x I0~6 eV bar"1.    Hence, 

from (4, 15): 

^ * 1.8 X 10"6 eV bar'1. |4. 16) 

Unfortunately,  the isothermal ccmpressibility has not been 

measured for V^,    But the value /( = 0. 58  x 10"6 bar'1 has been 

found for the very simJar materials Fe^ and FeTiO- [45],  and 

the compressibility of V203 will undoubtedly not be much different. 

Using this value for K in equation (2, 13| yields: 

3.6 E ö ij 

Thus the measured value for S,  equation (4.8),  is almost entirely 

accounted for by the variation of E   due to explicit volume changes. 

In fact, with just a very slight band spread,   such as that due to spin 

disorder broadening (see Chapter VI),  this variation alone is suf- 

ficient to obtain the experimental value (4.7).    This result,  taken 

together with the measurement of a finite volume change at T    by 

Minomura and Nagasaki [37],  is another indication that the transition 

i8 due to crystalline structure effects rather than antiferromagnetism. 

No matter what the cause of the gap,  the theory predicts 

that the ratio Eao/kTo will remain constant.    We have expressed 

this as: 

/"-0    ■— ......   ^»..otouv. .. c   ii<iv<r    € Jtui t-SStJU 
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d In E d In T 

d^r  =   dx   • ^-^ 

In order to test equation (3. 57),   Feinlelb [21] varied both 

Ego &nd To by aPP1ying hydrostatic pressure and uniaxial stress. 

His results were as follows.    The transition temperature varied with 

pressure as: 

d In T 
—^  =  - 2.6xl0-5bar^ (4,18, 

where P is the hydrostatic pressure.    With uniaxial stress appj'ed 

parallel to the corundum structure's b-axis,  the relation between 

transition temperature and stress was determined to be: 

d In To 5 ^ 
jg— = -2.8 x 10      bar'" (4, 19, 

where S is the stress.    With stress applied along the c-axis,  the 

uniaxial stress coefficient was at least an order of magnitude smaller: 

d in To 

—gg-^.     < 0.3x10"    bar-1. (4,20) 

The pressure and uniaxial stress coeffic ents for the energy gap were 

determined from the stress dependence of the activation energy for 

electrical conductivity.    These results can be expressed,   in the 

case of hydrostatic pressure,  as: 

d In E 
dp

g0 ^-2.2 XlO^bar'1 (4.21) 

whereas with uniaxial stress along the b-axis! 

d In E ei 
—gg-12   .  O.OxIO^bar-1 . (4.22l 

In Chapter VL   we show that the pressure coefficient of conit.butions 
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to the activation energy from polaron effects and non-stoichiometry 

«6        -1 are of tae order of 10   ' bar"  , and thus these contributions do not 

affect the results (4.21) and {4.22). 

A comparison of (4.21) with (4. 18) and (4.22) with (4,19) 

shows that equation (3. 5") is indee T. satisfied within experimental 

error.    Thus the two major predictions of the theory,  equations (3. 5?) 

and (3.59) are verified by Feinleib's results.    There is no a priori 

reason for the validity of (3. 57) and (3. 59), and no other model here- 

tofore suggested predicts these relations.    Therefore the agreement 

with experiment must be considered as good evidence for the applica- 

bility of the model of Chapters II and III. 

The anisotropy in variation of T    with uniaxial stress found 

in (4. 19) and (4. 20)  provides still another indication that it is crystal 

structure changes which bring about the energy gap.    The distortion 

which doubles the number of cations in each unit cell is entirely 

in the basal plane of the corundum structure.    Therefore the varia- 

tions of E      and T   with stress applied along the c-axis should not 

be very great, as is borne out by (4. 20).    However,  the changes in 

E      and T    with stress applied along the a-axls or b-axis are go o e 

strikingly large,  as we would expect. 

Feinleib [21] also investigated the high-temperature anomaly, 

measuring resistivity vs. temperature from 300 K to 800oK.    He 

found that resistivity increases 'nearly with temperature with the 

same slope both below and abo  e the high-temperature transition. 

However,  in the vicinity of 550  K,  the resistivity undergoes a rather 

sharp anomalous increase.    In the region T    <  T <  500 K, the 
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measured resistivity can be expressed: 

PL(T) = 45 3 X 10"4 ohm-cm   (0. 51 + 0, 49 T/T  h (4. 23] 

If we write for the total resistivity up to 800oK: 

P(T)5  PL(T) + pA{T) ^4.24: 

where PL(T) is an extrapolation of (4.23),  and PA(T) is the anomalous 

resistivity,  then PA(T) is a function which is zero up to 500oK, then 

sharply rises to a value of 12 X 10~4 ohm-cm by 600oK, above which 

temperature it remains constant.    Such behavior for p , (T) bears a 
A 

striking resemblance to the spin-disorder resistivity calculated by 

De Gennes and Friedel [46],  and therefore suggests a magnetic order- 

ing temperature of 600oK.    As we have mentioned,   Wucher [40] and 

Teranlshi and Terama [41] have concluded that this is the Neel teas- 

perature of y^O^.    We shall return to this point later. 

B.    VO 

The experimental results for VO are quite similar to those for 

^^    VO has ^cubic) rock sait structure above T s 1260K.    At this 

teni^-rature. there is a crystalline structure distortion to orthorhombic 

symmetry.    The exact low temperature crystal structure has not as 

yet been reported»    Little is known about the magnetic properties of 

VO as well.    Neutron diffraction and magnetic susceptibility measure- 

ments have not been performed. 

What we do Khow about VO is its electrical properties.    Moim [20] 

isee Fig. I-1) found that there is a sharp semiconductor-to-metai 

transition at: 
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T    S1260K. (4.25) 

The jump in conductivity at T   was measured to be a factor of 10  . o 

Below T . the activation energy was EA ~ 0. 14 eV.   Above T  , the 
O - A o 

resistivity increases linearly with T and is metal-like.   It can be seen 

from Fig.  1-1 that the electrical properties of VO greatly resemble 

those of V.O.. 

Austin [43] has performed pressure experiments on VO,  and 

has observed the effects of qua si-hydrostatic pressure on the electrical 

properties of single crystals of variable composition.    From meas- 

urements of resistivity as a function of pressure at 940K> Austin ob- 

tained: 

dE g 
^ S .2.9 X lO"5 eV bar-1. (4. 26) 

Since no direct measurement of the energy gap h^s been made in the 

case of VO, we cannot do more than assume the gap is the same as 

that of V203 as a first approximation, and perform a self-consistent 

calculation using (2. 13) and (3. 56) to ob*ain a better value.    Thus, we 

begin with; 

mgo = 0. 10eV. (4.27:= 

We use this value to calculate the contribution to ß   of the volume term 

in (2. 13).    In the case of VgO^, this term was sufficient to give the 

correct ratio oi E     to T  .   If VO is completely analogous to V.O,, 

as Fig, I-i suggests, we should obtain good results in this mannet. 

From (4.26): 

y_ - 2,9 X 10-6 eV bar"1 . 
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Using (4,15): 

14.28) \ ^ 2.7 X 10~6 eV bar"1. 

Fo    the isothermal compressibiiitY,  the best value available 

is that for ZnO [45]: 

X = 0.78 xiCT6 bar"1 . (4_ 29: 

Substituting (4.28) and (4.29) into (2. 13).  we can evaluate the 

contribution due to explicit voiume changes as: 

6.9 E 

P B—IT6- • (4.3o; 

Using this value for  ß in the generaJ expression for narrow bands, 

equation (3.56),  we find: 

# = 8.9. _.,_, 
o 

But (4,111 implies that Ego - 0. iO eV.   as was assumed in (4.27f.    Thus 

we see that this assumption is se.f-c-nslstent,   and that,  just as for 

V203.  the volume term in |2. 13/ and narrow band theory give the 

correct ratio of E      to T  , 
go o 

However,  now we can use Austin s results for dT  /dP to check 

the validüy cf (3.57).    This reiationskip provides an important test 

of the thecry.    From (4. 26) and (4. 27     we can express Austin^ 

measurements on the pressure variaUon of the energy gap as: 

d In £ 
—^   »  -29 X ID'6 bar'1. H. 32) 

As we mentioned before5  we shall show   n Chapter VI that the pressure 

coefficients of contribuUons tc EA from pciaron effects and non- 

stcichiometry are of the order of IQ'6 bar'%   so that (4. 32) probah.y 

; 
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does represent only the variation of the energy gap. 

At 94   Kt   Austin found: 

dT 
^?=  -3xI0-3oK bar'1, 

Hence: 

(4. 33) 

Compariaon of (4, 32) with (4.33) demonstrates that (3.57) is satisifed 

Within experimental error. 

y j conclude that it appears likely that the energy gap in VO 

arises from a crystalline structure distortion and has a value of about 

0. "0 eV# approximately th    same as tha" of V.O,.    The lower transi- 

tion temperature of VO seems to be due to a greater change la volume 

at T  .    This is reflecved in a larger vaxue for ß   in equation (2. I). 

Outside of the slightly lower transition temperature,  the behavior of 

VO and v203 seems identical. 

c.  vo2 

The crystalline structure of V02 is relatively simple and well- 

known.    Above T = 340oK,  the structure is tha* ?* rstUe,  the cations 

occupying the positions of a body-centered tetragonal lattice.    Below 

340  K,  the symmetry is monoclinic,  the structure being that of MoO . 

The low temperature phase is just a distorted rutile structure - 

the cations which in the rutile phase were collinear and separated by 

2.87 A#  are slightly non-collinear and spaced alternately 2.65 A and 

3. 12 A apart [471 .    This is an almost classic example of the model 

of section HD- the unit cell is doubled by a distortion of the lattice 
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in one dimension# alternate cations paiFing^    The paTameterf»  defined 

in IID,  is: 

1       2.65 Ä 
fi       5. 77 A 

= 0.04 . 

The details of the transformation have been smdled by MLncmura and 

Nagasaki [37] .    They find that at T   the n cnoc^ mc a=a.*is coatracts 

from 5.77 Ä to 5.70 Ä, twice the rutiJe sti   cture's c-ax.s; aimv - 

taneously,  the monocUnic b~axls expands from 4.50 A *o 4.54 A,  tfc^ 

r-arile a-axis, while the monoclinic r-axis contracts from 5.39 A to 

5.24 A 2//3 cf the rutile a-axis.    They found no measurable tctai vCium? 

change at the transition pcintj  just a change ^n *he sicpe   thermal expan- 

sion coefficient),    Thev concluded that ihe t ransformaticn was of second 

order,    Jrffray and Dumas [ 18] measured a voiume contraction of 

0.08% on powdered yO?, which is consistent With the lattice constant 

measurements of M*nomura and Nagasaki.     In any event,  the volume 

change ^s more than an order of magntude smaiier than that which occurs 

in V2Or 

Magnetic susceptibility data have been t^ken on VO^ by Rudorff 

et al [48] and by Kawakubo and Nakaga «^a [49] .    Both sets of experiments 

found susceptibility independent of temperature both above and jeiow 

340CK# with a jump in "»     at 340oK of a factor cf roughly 7.    They con- 

clude that the low temperature susceptibility can be accounted for by 

temperature independent paramagnetism,  £.nd that there is no evidence 

for ant ferromagnetism.    Similarly,   Kasptr [50] found BO magnetic 

scattering in neutron diffraction measurements below  340 K. 
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The eltctrical conductivity behavior of VO, *as also studied 

by Morin [20] (see Fig.  I-l)#  who found a sharp senriconductor-lo- 

metal transition at: 

\0-- T6^340VK {4,34) 

the temperature at which the phase transformation takes place.    Below 

To'  tlie activation energy was 0. 13 eV.    The jump in conductivity 

at To was a factor of 10  .    Neuman,  l^awson, and Brown [51] found 

IH same value for T^. but obtained a jump in  r  at T    of 10   and an 

activation energy of 0.44 eV, 

The energy gap has not as yet been measured.    The narrow 

band limit appears to have given good results in the cases of V?0, and 

VO: we expect it should be at least as appropriate for VO»,  since the 

cations are v , which are smaller m spatial extent than are V 

44 
and V    ,    It can be concluded that the cause for the higher transition 

temperature in V02 is most likely a larger value for E    .    This can 

be easily explained by the four times larger    alue obtained for the 

distortion parameter € in the case of VO,, which should certainly 

produce a much larger gap.    In our analysis of section II D, we found 

that using a delta function potential,  the larger the initial gap5  the 

larger the value obtained for  ß.      The most reasonable conclusion is 

that the final E    /kT^ ratio for V02 is probably somewhat larger than 

it is for VgO».    As a rough estimate, we shall take: 

E      - 10 kT go o 

- 0.3 eV . 

Pressure measurements on V02 have been carried out by 

i 



Minomura and Nagasaki [37] and by Neuman et a], [51] -    Minomura and 

Nagasaki measured the variation of T    with pressure and found: 

i4¥35| 

This is a very small value and contrasts striKingly with the pressure 

coefficients of V^   and VO [see (4. 18U  {41i9)ä and (4.33 )]ä which 

are an order of magnitude larger.    Neuman et a] could not find a shuit 

of T    with pressures up to 6 kilobars within the 0. 5 K scatter in T o o 

itself.    Thus they find a still smaller value for I In T /dP than is given 

in (4. 35). 

Neuman et al also measured the change in activation energy 

with pressure.    Their experiments show: 

dE - 
-r—   =   - 5.0 X 10*    eV bar     . (4,36) 

From their measured value of E.   - 0.44 eV,   (4,36) yields: 

d In E 'A ,   , „ .„-6 
dP~ = - I. 1 K 10      var 

This is also an order of magnitude sma^er than the values for V  O. 

and VO,  given in equations (4, 22|,   (4« 121,  and (4,33).    However»  in 

this case we cannot use (4.36) to evaluate d In E    /dP in order to go/ 

compare with (4, 35) and check the validity ol (3.57).    For equation 

(4.4) gives! 

dEA dE dE 

~dP"   = 1 -#   + "dT   ' {4#37) 

In the cases of V_0- and VO.  the measured values of dE./dP were 2   3 A 

so large that we could neglect dE /dP in (4. 36;.    As we mentioned 

previously,   we show in Chapiter VI that dE /dP is normally of the 



order of 10" eV/Wf.    But, in the case of VCX,  this is just the 

order of magnitude measured for dEA/dP in (4. 36*.    A further com- 

plication in the results of Neuman et al is the extremely high value 

found for E^.    Since we expect E     * 0. 3 eV,   (4.4) shows that 

Ex ~0- 3 eV,  much larger than in V203 or VO.    Therefore,  for VO 

we can only use (3. 57) and (4. 35) to conclude: 

din E 
-     dfig0  = - 1.4 X lO"6 bar"1 . (4.38) 

Using the approximate value,  E     * 0. 3 eV,   (4.38) shews: 

dE 
-^1?"    - 4 y   0'7 eVbar"* . 

We can use this approximation and equation (2.13) to calculate the 

contribution to  ß from volume change«. Since the volume change at 

the transition is so small in VOn,  we expect this term also to be very 

small.    Taking for the compressibility the value measured [45] fot 

the rather similar material,  TiO,# X ~ 0. 59 K 10      bar"1,  equation 

(E. 13) givest 

ß = 0.05Ego/N-OEgo/3n.v>T. 

Therefore,  the contribution due to expiitJt changes in volume is 

negJigible,  as we expected.    The transition in VOp seems to be due to 

a crystalline distortion with little or nc accompanying volume change. 

Thus hydrostatic pressure is actually a poor variable to use in the 

study of this material.    It should be much more advisable to study the 

changes in electrical conductivity with uniaxial stress. 
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fc    3 

In crystal structure,   Ti^O^ appears to resemble V^O    con- 

siderabiy.    Pearson [19| studied TUO    from 360 K to 650oK and found 

o 
that the structure was that of corundum,  as in V,0,.    At 300 K, the 

lattice parameters are cH = 13, 64 As  a„ = 5. 15 A,    The c-ax»s ex- 

pands and the a-axis contracts with increasing temperature,   sJowjy. 

except in the neighborhood of 450-550  K,    At 650  K,  the lattice 

parameters of Ti-CX and V,0^ are virtually the same.    Abrahams [23] 

examined the structure of Ti-O, down to 4.2   K and found the lattice 

constants to be within 0. 5% of those at 300 K.    Thus there is no phase 

transformation in Ti-CX,  and the symmetry is rhombohedral at all 

temperatures.    The only region resembKng an anomalous one Is the 

range 450-550  K,  where the thermal expansion parameters sharply 

increase. 

The magnetic structure of Ti-O   is kn">wn unambiguously, 

Abrahams [23] performed neutron diffraction experiments over the 

♦emperature range 1*4  K.   to 711   K and found that antlferromagnensm 

was present until a Neel temperature in the vicinity of 600  K.    The 

magnetic structure was monociinic   strikingly resembing the lew 

temperature crystal structure of V?0^.    Abrahams determined that 

the c-axis pairs were antiferromagneUcaily aligned,  whereas the basal 

plane spins were all parallel.    The spins were perpendic xlar to the 

c-axis,  thus reducing the symmetry to raonocUnic.    The magnitude 

of the antiierromagnetic moment was about 0.2 Bohr magneton    per 

cation. 

Pearson [If] and Foex and Wucher [52] have measured magnetic 
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found a jump in conductivity of a factor cf 40 at about 550 K,  approxi- 

mateiy the experimental Neel temperature.    The variation m T 

is unique to Ti^O ,  and prevents us from deciding on an exact value 

for T   .    The most we can say is: 
o 

T    =:450-550OK. (4.41) 
o 

Since there is no crystaliine diStortJon in the case of T»,^» 

it must   be the antiferromagnetism which Is responsible for the energy 

gap.    Thus the theory of section n C is applicable.    We must also 

decide whether the effective mass approximation or the narrow band 

limit is more appropriate.    TheoreticaIIyt  we expect the bands to be 

wider in Ti-O- than in V O-,  since the overlap between Ti        ions 

+++ 
should be significantly greater than that between the smaller V        ions. 

Furthermore,  the c-axis pairs are 3% closer in TUO      which would 

tend to increase the overlap^  and hence the band width,  in the t    band, 

which we shall show in Chapter V is the band of interest in the case of 

Ti70-,.    Experimentally,  the presence cf antiferromagne ;sm with 
far J 

such a small moment as 0,2 ji_ per cation is an indicatien of some 

degree of band width, as we noted in the d scussion foliowi.ig equations 

(2.2O1. Application of the exact one-dlmenelonal theory of 

ectlon II C shows that a band width equal to three times 

the energy gap leads to a sublattlce magnetization of 0,2 MB 

per cation.  [We would expect In three dimensions that 

a smaller band width to band gap ratio could suffice for 

the same sublattlce magnetization, since the density of 

states In the center of the Prlllouln zone (low spin region) 

Is far greater compared to that at the zone edges than 

In the one-dlmenslonal case,]  A band tfldth considerably 

wider than the energy gap would seem to preclude use of 

the narrow band limit. 
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An additicmai point U the Jo* value of E^ found m equation 

H, mi  a. compared *ith the E    > 0. 6 eV in V?03,    We can take » 

^8 evxdence that polaron effects are net as .mpo.tant la T^O^ as   n 

V203f  as we SMU dxscuss is Chapter VI.    But this xs stiii one mor. 

mdicauon that the bands are relatively wide in Ti^.      Finally. 

we note from our discussion of the Jahn-Teller effect  in 

section II D that a leek of observable crystalline 

distortion is a wide band characteristic.     Thus we  con- 

clude that it is probably more accurate tc use the effective mass 

approximation than the narrow band limit for TUO-. 

Unfortunately, the presence of an extra parameter,  m*.  affords 
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am     ^ greater degree of freedom in the calculation of the transition 

temperature in tiu» case thmn in ths narrow band limit.    Frcderikse [53] 

measured the effective mass of the bottom öf the lowest 3d band in 

TiO,, and obtained: 

* 

"HT - 25 • (4.42; 

We shall use this v»lue as the best available approximation, noting 

that the ratios of nearest neighbor cation-cation and c»tion-ani©n 

distances to cationic radii, probably the best single measures of over- 

lap available, are virtually the same in TiO_ and Ti?0..    Using (4. 39) 

for Ego' the solutiori oi equations (3.22) and (3.23) is: 

St . 0.6. 
o 

This shows that Boltzmann statistics are invalid,  as might be ex- 

pected with such a small energy gap.    The general Fermi equations, 

(3.37) and (3.46) must be used.    In the case of Ti^O^.  tluj solution 

of (3.37) and (3.46),   using (4.39) and (4.42),  is: 

E o 

W    =   lt4' (4.43) 
o 

Equations (4.39) and (4,43) predict for the transition temperature: 

To=490OK- (4.44) 

A comparison of (4.44) with (4.41) «hows that this value is within 

the experimental range. 

For this solution, the jump in carrier concentration at the 

transition is much smaller than those for the oxides of vanadium. 



Furthermore,  the wider bands of TigO^ should give a larger value 

for the mobility in the semiconducting state =    These points should 

be reflected in the larger conductivity in the semiconducting region 

and a srnailar jump in conductivity at the transition in the case of 

Ti^Oj.    As can be seen in Fig.  l~l,  this is indeed the experimental 

Situation.    Connected with this, however,  is the fact that, for this 

solution,  a large percentage of the available carriers have been ex- 

cited before the transition.    This probably means that the effective 

mass approximation begins to break down below T  ,  and that (3.6) and 
o 

(3.7) should be modified by introducing the details of the band struc- 

ture.    One possible way around this is to aiiow the effective mass in 

13. 35) to depend on temperature.    If we add to the effective mass a 

small negative contribution linear in T,  we fmd that the sharpness cl 

the transition disappears,  and the transition to the metallic sta'e 

takes place over a small range of temperature.    But tiüs is just the 

peculiar characteristic of the transition in Ti^O, whch we noted 

previously.    Furthermore,  small devlaticns from sto.chiometry could 

now cause large variations in t .  and this may be the explanation cf 

the wide range cf experimental values cf f s  as given in (4.4!;. 
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MODELS FOR BAND STRUCTURE 

In thi» chapter,  we take the resulti of Chapter TV,  togelhe 

what is known about the »tructure of the various materials,   and try 

tj piece together the approximate band structure of each.    Since some 

critical information is missing about every one of these material», 

the band models presented here contain seme guesswork.    But they 

arc all consistent with both the symmetry and the electrical properties 

of the crystals. 

As we discuss in detail in Appendix B, littJe information can be 

gained from actual band structure calculations.    For the sake of this 

chapterä  we are prii.\arily Interested In the bands ü  «s^ng from the over- 

Jap of the 3d wave functions of the magnetic ions.    We shall use the 

point of view presented in Appendix B to discuss these bands.    In short, 

we begin with the tight b'nding approximation,  taking the ton^c wave 

functions tc approximate the WarmJer funcitons of the crystal.    We aisc 

adopt the outlook of Anderson [8] ,  in which the Wannler functions 

iccaiized around the cations contain contriluUons due to overiap between 

the cat ons and ail the Kgands.    These functions are primarily 3d ionic 

electron Orbitals,  but they contain finite amplitudes on the surrounding 

anions.    For example, for a cation at the Gngin: 

Mm 

w>«-re R,   ate the pes tons of ^he cxygen itns.    For oar purposes, 

r  s p.nabl^s us to proceed by ignoring the anions,  assuming that they are 
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taken into account in some effective way t\ using functions such as 

(5. 1),    Functions of the form (5. 1) can have finite overlap even when 

the cation wave functions 4*, At - R    ) have negliffible overlap,  sinre 

they can have finite amplitude on the same anion.    We shall label the 

functions (5. 1) by the type of ionic orbital of which they mainly consist. 

We first note that since the ligands are large oxygen ions and 

are doubly charged,  the octahedral crystal field is undoubtedly veiy 

large,  and accordingly we expect a large separation of the t      and e 

bands.    Experimentally,  this splitting seems to be of the order of 

i. 5 eV or »nore.    In these materials,  where the 3d bands are rela- 

tively very narrow,   this means that we can neglect the interaction 

between ♦       and e    bands.    For all the transition metal oxides,   each 
2j g 

cation is surrounded by an octahedral array of 0      ligands.    The 

negative charge clouds of the e    orbitals are directed at these nega- 

tive ligands,  and therefore the e    orbitals have a higher electrostatic 

energy than do the t-,    orbitals,  which are directed between the ligands. 

Thus the t_    bands are lower than the e    bands.    Since none of the 
2g g 

oxides of titanium and vanadium have more than 6 3d electrons,  we 

need not consider the e    bands at all. 
g 

The t      banc's contain 6N states per unit volume,  which are 
2g 

not split any further by a pure cubic field.    Tetragonal and trigonal 

fields split tha t„    band into two 8ub-bandss  one with a concentration 
2g 

of 2 states per cation,  the other with 4 stares per cation.    Monoclinic 

fields produce three sub-bands with 2 states per cation in each.    The 

presence of antiferromagnetism or of a urn" cell which consists of 

two cations can bring about a splitting in half of all the t      bands. 
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A.    V203 

For the corundum phase of V?0,,  the trigonal field will split 

the t_    band into a i    and a t    band.    The t    band is associated with 2g o ± o 

ürbitals directed al     | the c-axis,  the t    band with orbitals pri- 

mariiy in the basal plane.    Below 150  K,  the crystal has monoclinic 

syinmetry,  and the t    band is split into two sub-bands,  which we shall 

call the t    band and the t,   band.    The c-axis pairs form the closest 

cation-cation distances,  and these cations are in octahedral arrays 

of anions which share a common face.    We should therefore expect 

a relatively large bonding-antibonding spiitUng of the t   band.    The 

monoclinic distortion, as we have demonstrated in Chapter IV leads to 

the pairing of cations in the basal plane,  albeit with a somewhat 

larger cation-cation distance than along u e c-axis.    Thus the bonding- 

antibonding splitting of the t    and fe.   bands is relatively small.    We 

infer that the t    bonding band is lowest for V^O  ,  and that it is stpa- 

rated from the t    antibonding band by an energy E  ,.    The t    bonding 

band is next lowest,  and it is separated from the t    antibonding band 

by an energy E   ..    We assume «he situation is as given in Fig. 

V-Ha).    Since the narrow band limit appeared to give good results for 

V^O,,  we have drawn the bands as quite narrow,  and thus there is no 

overlap.    We shall give an order-of-magnitude estimate of the band 

width below.    Each of the six sub-band» contains one state per cation. 

Thus,  for V+O ,  with two 3d electrons per V        ion,  the bottom two 

bands are exactly filled at T = 0,  while the top four bands are com- 

pletely empty.    The material is thus a narrow baud semiconductor with 

Of 
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an energy gap E We determined in Chapter IV that E   ,  - 0. 10 eV = gi f gl 

The theory presented there shows that at T    =  i50oKr  a phas? trans- 

formation OCCUFS due to the breaking up of the basal plane pairs, 

changing the crystal structure to tae higher symmetry rhombohedral 

phase. 

As a very rough estimate,  we can use equations {2, 18| to 

determine the band widths for V^O-,    Since these equations were ob- 

tained from a one-dimensional model,  we must consider these esti- 

mates as order-of-magnitude approximations at best.    From (2, 18): 

2fj2 

\''-TT' (5.2) 
m a 

For the t    bands,  the lattice parameter of interest is the c-axis pair o r 

distance of Z. 70 A,  which yields: 

{EJ     ~0.03eV. (5.3) 
o 

» 
For the t    bands,  a ^2.88 A,   giving: 

(El)      ~0.02eV. (5.4) 
± 

We have used for the effective mass the value calculated in sec- 
♦ 

fon VT-E for the semiccnducung state of VnOnt     -   70. 6 2    3m 
o o From 150  K to 600  K,  the situation is now as shown in Fig. 

V-I(b),    In this temperature range,  V^O    Is a metal,  the t    band being 

1/4 filled.   Thus T    is also the temperature at which a semiconductor- o 

to-metal transition occurs,  as is experimentally observed.    However, 

the theory of Chapters 11 and 111 now can b« applied to the energy gap 

E      netween the t    bonding and the t    an^itcnding bands.     The application 
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of the final results of Chapter III is not immediately obvious in this 

case,   sine e there are now electrons present in the gap between the 

two bands of interest.    The situation is analogous to that of a normal 

semiconductor containing a large percentage of impurities.    However 

note that we are concerned with the therrna]  excitation of electrons 

from the t    - ß band to the t    - c band,   for it is this excitation which o o 

reduces the bonding and thus tends to close down th    gap.    The cor 

centration of electrons in the t     - c   band is still given by (3. 50), 

and the concentration of holes in the t    * p band is given by (3. 51;, 

with E    - E  ^.    But now the position of the Fermi level depends on 

the intermediate partially-filled band,    Ii this band is approximately 

half-way between the t    - ß and the t    - c  bands,   E^ = -E  /Z.  and 
o o Eg 

the final result,   (3.64),   follows exactly as in Chapter III.    If the 

intermediate band is nearer one or the other t    band,   the theory must o 

be modÄfied somewhat.    Equation (2. I) should be generalized to: 

E    - E      - ß    n - ß    p 
g go        n "p ^ 

s:nce  n and pare no longer equal.    The results of Chapter II indicate 

that Pn * ßp *§ •    With thl*8 modification,  it can be shown that (3.64) 

remains approximately true,   even when the intermediate band is 

very close to one of the t    bands. 
o 

Thus another transition is predicted at a temperature T.    ~ 

7E ,/k,  at which point E  , shrinks to zero,  leavsne one t,    band 1/3 
gl g2 6 2g ' 

fi.ied.    The behavior,   of course,  is still metallic,  and no striking 

change ^n conductivity will be observed at T .    However,   this transition 

changes the shape of the Fermi surface and could account for an 
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anomalous resistivity change such as the high temperature transition 

discuuaed in Chapter IV.    From the temperature of this anomaly. 

T   - 600  K»  we can estimate: 

E , - 0. 4 eV . 

Recall that the anomaly in resistivity at T   resembled the 

additional resistivity due to »pin-disorder scattering [see the dis- 

cussion following equation (4.23)] .    If V-O    is antiferromagnetic at 

T - 0,  then antiferromagnetism would contribute to the t    band split- 

ting.    In particular,  the antiparallel spin arrangement of c-axis 

pairs is juit the magnetic configuration found by Abrahams [23] in 

Ti-CK.    We would expect the same spin configuration in V O   as in 

the structurally similar Ti_0^,   so this is a reasonable hypothesis. 

Then the theory predicts the breakdown of long-range order {i.e.   the 

Neel point) to occur at T   - 600  K,  and the high temperature anomaly 

of V?0    is easily explained.    We shall return to this point when we 

consider spin-disorder scattering resistivity in Chapter VI. 

B.    Ti203 

In the case of Ti^O-,   which has corundum structure at all 
i.       J 

temperatures,   the trigonal field results in a splitting of the t,    band 

into t    and t    sub-bands.    Experimentally as well as theoretically, 

the t    band turns out to have lower energy than the t    band [54].    Since 

the structure of Ti?0-, below 500 K is the same as that of V O^ between 

o o '50  K and 600  K,  we might expect similar band schemes in these 

temperature ranges.    However,  as we demonstrated in Chapter IV. 

the bands in Ti_0    are much wider than those in V  O        The same 



estimate which led to (5. 3) and (5,4) can be used with the values 
« 

""dr   -25,    a = 2. 59 A to calculate the band widths in Ti^O,: m 2    3 

(E^   - 0. 10 eV. (5.5) 
o 

We know the energy gap due to the antilerromagnetism of c-axis 

pairs is 0. 06 eV,    Thus the ratio of band w^dth to band gap is drasti- 

cally different in Ti^O^ and V^O^.    Note that the cation separation in 

the basal plane,  which determines the bandwidth   in (5.2) is con- 

siderably larger in Ti^CL (3.02 A) than in V  O, (2.88 A),   whereas the 

separation of the c-axis pairs is in the opposite order for the two 

materials.    Thus (5.2) estimates the t    bandwidth  for Ti-C. as: 

CEb)ti*-0.06 eV . (5.6) 

The band scheme for Ti.^O. below T    is given in Fig.  V-2(a). 

Since ihere is only one 3d electron present per cation,  the t    -ß banc. f 

which corresponds to electrons primarily with spins on their own 

subla'ttce (analogous to the bonding bands -n V00,)I   is exactly fillecl 
&.    3 

while all higher t^    bands are complete"'/ empty.    In this temperature 

range,   TipO, is therefore a semiconductor,  with a gap of E    = 0.06 eV. 

brought about by c-axis antiferromagnetism.    The theory then pre- 

dicts a semiconductor-to-metal transition at about T    - 500K.    Above 
o 

500  K;   the band situation is given in Fig.  V-2(b).    In this range,  the 

t       bands are 1/6 filled,  and the material is metallic. 
2g 

The details of the band structure presented here offer an 

alternative explanation for the spread-out nature oi the transition in 

Ti-jO-.    This is the effect on the transition of the probable overlap of 
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the t^ band with the t    - e   (conduction; band.    Since the transition 

in Ti^O-j does not occur until the conduction band is relatively weil 

thermally populated,  the significant change in density-of-states due 

to the t^ band will clearly be important. 

It should be noted that the main difference between Ti   O    and 

^2^3 T'S t^e num^er ö^ 3d electrons present per cation,    V  0    would 

be semiconducting up until the high-temperature transition were it not 

for the additional 3d electron on each V+   * ion.    Then the conduct v'y 

would greatly resemble that of Ti203,   despite the smaller gap and 

wider bands of the latter.    Further evidence for this picture will be 

given in Chapter VL 

C.    VO and TiO 

Beicw  iZb  K,   VO undergoes a distortion to orthorhombk 

symmetry,   so that the t^    bonding and antibonding bands are each 

sp.it into three sub-bands,  which we cai; t  ,  t   .  t   .    The exact low 

*emperature structure J s as yet unknown,   so that we cannot make 

any statement about the relative positions of these sub-bands.     We 

arbitrarily take the orthorhombic lattice parameters to be smallest 

along the x-axis,   largest along the z-axs.    in the case of VO,   we 

expect the bands to be wider than in V  O      but probably not so ws.de 

as \n Ti^Oy   since the V      icn is smaller in extent than is the Ti 

.on,    Whether or not there is overlap between the sub-bands is 

rrelevant in VO,   as long a«, there is a real gap between the t    bonding 

and the t^ antibending bands      From experiment,   we know that this 

gap exists and is about 0. 10 eV.    The band structure of VO below 



126 °K ts sketched in Fig. V -3(a). There are three 3d electrons per 

cation, and l!lo the lower three sub-bands are just filled, while the 

upper three sub-banda are completely empty. Thus VO ia a semi-

conductor, whose gap of 0. 10 eV ie brought about by a crystalline 

difttortion. The theory pred:Ch a transition at T = 126°K to the 
0 

situation as shown in Fig. V -3(b). 

t
28 

band and is mt:.:.allic. 

Above T , VO haa a 1/2 fllled 
0 

Nl'lte that TiO retains r'.Ck salt structure down to at least 

4°K. The presence of anti!erromagnetism ha1J not ~een established, 

but since TiO cc_,!'\taina only two 3d electrons per Ti++ ion, it must 

exhibit metallic behavior at all temperatures. As can be seen from 

the reRults of Morin's work [zo] (see Fig. I-!), this is the case down 

tcJ at teast l. 5°K. 

The rutile phase .::>f V0
2 

has tetragonal symmetry, and splits 

tht• t., band mto a t sub-band with 4 Jtatea per cation and a t band 
~g a c 

w;th Z states per cation. Since c ia considerably smaller than a 

in rutae VO.,, we expect the t band to be well below the t band. At 
~ c a 

low temperatures, the c ryatal undergoea a diatortion to monoclinic 

symmetry, the c -axle cations of the rutile structure pairing and 

pucker-ing somewhat. This monoclinic diatortion baa two effecta. 

The t band h split into aub-banda, whlch we shall call the t 
1 

and a a 

the ta2 bands. But, more important, the t band is aplit into bonding 
c 

a~d ant:bonding sub-banda by the pairing along the .~raxis, which is 

a cLuaic example of the theory of cry•ti\lllne distortion given in 
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section II D. The distortion par'imeter E: is rather large, which tends 

to bring about a large energy gap, estimated in Chapter IV to be 

0, 3 eV. The band structure below T = 340°K is outiine·! in Fig. 
0 

V -4(a). Since there is just one 3d electron per v++++ ion, the t - 13 c 

~Jand is completely filleci, and all higl:.er bands art' c:mpty. The theory 

predicts a trar.aformation at T to rutile structure. c 
0 Above 340 K, 

the band structure is given in Fig. '/-4(b). It can be seen that thf\ t c 

band is 1/2. filled, resulting in a semiconductor-to-metal transition 

at 340°K, as is observed. 
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Chapter VI 

DLSCUSSION 

A.    The Metallic State of V..O, 
Z    3 

Prima.rily because of the exhaustive work of Feinleib [21] , 

much more is known about ^O    than about any of the other materials 

which exhibit semiconductor-to-metal transitions.    Therefore,  much 

can be gained by considering V„0, in more detaU. 

In view of the recent accurate measurements of the lattice 

parameter changes at the transition [37] , we shall recalculate the 

latent heat of transformation and the Fermi energy from Feinleib's 

pressure measurements [21] ,    The Clausius-Clapeyron equation gives: 

AV dTo 

3 
I 

mole 
,035 x 30,8 -^L- x 1520K 

3.86 xlö~9     K     cm 

dyne 

e 
mole * molecule 

a 1020-^-  =  Q.044—4V    , >.. (6. 

We can use the value of latent heat to approximate the Feimi energy, 

as was done by Feinleib [55] .    \^ assume no spin changes occur at 

the transition.    The difference in free energy between the semi- 

conducting and metallic states at the transition point can then be 

expressed: 

0 ^ AG = AE - T    (AS ,     , + AS, ) 
o        electronic lattice 

,   TT2 k2 T2 

«AE-^ g™.^-   - kTo - (6.2) 
F 



According to the model we presented in Chapter V,   two 3d electrons 

per V203 molecule (one 3d electron per cation) contribute to the 

metallic band.    Setting AE in (6.2) equal to half the value of the 

latent heat per molecule found in fS. 1),  we obtain: 

ir- kc" T£ 

F      m   ,. 0 

F       L"- Zk^T o 

» 0. 09 ev . (6. 3 

This is a reasonable magnitude for £_,  consistent with the 

orders of magnitude assumed in Chapter V for the band parameters 

in V^O,.    With this value for EF,  tlse band width in *:he metallic state 

can be estimated as EL~ 0. 18 eV,    Note that E    - 7 kT  ,   so that ^h^ 

usual statistical approximations are valid. 

We can now use (6. 3) to calculate the effective mass oi eiet - 

trons in the metallic state.    In the effective mass approximation for 

metals [56]: 

E„  - -*i   (3,2N)2/3 . 
2m 

Hence: 

m_  -   hi.  (ll* N) 1/3 

m        2m       " "EF 

-50. (6.5) 

This order of magnitude effective mass is roughly wh^t we would ex- 

pect for V^O^.    We caa approximate the effective mass in the 

metallic state in a     eher way,  to check (fc. 5).    Feinieib [57] has estimate* 

the plasma frequency from optical data on the metaiuc state of V' O- as: 

»p » 1.2 eV . 



But from the usual expression for the plasma frequency [58]: 

as 4yK e8" 

e 45 . 

This i» in agreement with the approximation (b. 5), 

We can now use this value for the effective mass to calculate 

the relaxation time in the metallic state.    From (4.22).  we get for 

the conductivity just above the transition: 

•■(T^) = 4.6 X iO3 ohm'1 cm'1 . (6.6; 

Hence,  the mobility is: 

= 0. 72 cm  /volt-sec. (6.7) 

The relaxation time,  in view of (6. 5),  is: 

f = i 55 x 2^- 
e m 

= 2.0 x 10'14 sec. (6.8) 

This is a typical magnitude of relaxation time for a good metal.    It 

is clear that the difference in mobility between metallic V  O, and 

metal« such as copper is solely due to the large effective mass in 

V^O.^.    This means that the carriers are moving much more siowly 

than they are in copper.    Thus,  although the average time between 

collisions,   (6-8),   ig the same for V^O    and copper,  the average 

distance between collisions,   or mean free path»   is much lower for 
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V5Ot.    Using (6. 3),   we evaluate the velocity of carriers at the 

Fermi surface as: 

 F 
Up   - J 

rn 

= 0.03 X 10 ' cm/sec . (6,9) 

From (6= 8) and (6. 9),  we find for the mean free path; 

A = T uF 

- 6 A . (6. 10; 

] 
Therefore,  the mean free path is about 2 j lattice constants in 

"V'CX.  as opposed to about 100 lattice constants in copper,    All these 

values are consistent with the picture of a partially filled narrow 

band resulting in the observed metallic conductivity.    However,   we 

are approaching a borderline situation,   since if the mean free path 

gel^ much below one lattice constant,   the carriers are essenliaily 

localized and the bands can be considered to be washed out. 

As the temperature is increased above T  ,  kT increases. F o 

until at 600  K,  it is almost half the Fermi energy,  as given by 

(6. 3).    At this pointj   the statistical variations in Fermi energy 

begin to become important,,  and we are entering another borderline 

region.    But here the high temperature transition helps retain metallic 

behavior.    For at T   - 600  K,  the t#- ß and the t9- a bands merge, 

and above this temperature,   there is essentially one relatively wide 

t.    band,   1/3 filled.    This means that the number of free electrons 2g 
contributing to the metallic conductivity has doubled.    Assuming the 
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effective mass remains the fame, the dcmbling of N icrvsa to in- s 

crease the Fermi energy to: 

EF = 0. 14 eV. (6.11) 

We conclude that the experimental data on V-jCL above 150  K can be 

satisfactorily explained by the model presented In Chapters IV and 

V,    However,  the bands can probably not get much narrower and 

stül maiatain metallic conductivity.    We shall add one more support- 

ing argument in section B,  where we consider spin-d'aorder scat- 

tering, 

B.    Spin-Disorder Scattering 

The theory of spin-disorder scattering has been given by 

De Gennes and Friede! [46] .    There are two main effects of this 

type of scattering,  which we completely ignored in Chapter III. 

Firstly, there is a contribution to the resistivity,  which is small 

when the spins are highly ordered (i.e.  below T^),  but adds a term 

independent of temperature after long range order disappears. 

Secondly,  there is the effect of the broadening of the bands due to 

spin disorder.    This broadening will affect the relations developed 

between E      and T   , go o 

If our hypothesis about V.O, presented in Chapter V is 

correct, we can calculate the spin-disorder resistivity above T.. 

600 K,  and compare it to the experimental jump in resistivity at 

T^ measured by Feinleib [El]   [see discussion below equation (4.24)1 . 

We first apply the theory of sections II C and III B to esti- 

mate the antiferromagnetic energy gap from T.r.    Since we expect 



narrow band theory to be applicabie,   equation (3. S9) is the appropr ate 

relation for E     ,  and we find- 
go 

E      -- 0. 4 eV f6.   2' 
go 

as we already estimated in Chapter V (where we referred to this gap 

as E  „).    The energy gap is due to the coherent scattering ariSmg 

from the exchange potential.    But it is the incoherent scattefrng 

caused by this aazxie potential which gives rise to the spin-disorder 

resistivity.    Using the Born approximation and the extreme simplf ca- 

tions of spherical energy surfaces and quasi-free electrons, tho 

spin-disordei resistivity above T-, can easily be calculated in terms 

of the energy gap. 

Under the assumption of quasi-free electrons,   the energy 

gap can be expressed as twice the Fourier component of the exchange 

potential: 

where k  -   k' is twice the Fermi momentum,  k™«    For the case of 

V^O , using the value for E      calculated in equation (6. 12): 

VrA - 0.2 eV . [b. 14] kx' 

For spherical energy surfaces,  the resistivity can be expressed [59] ; 

Pso « 3
j£   2       / / dÜ dW   jVj- i 2   {i - cos 8) . (6. IS) 

Ibv fi e1" v    N 

Performing the integrations,   (6. I?) can be written: 

2 

Re    N E„ F 
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But for the high temperature phaae of V»0-f using (6, §),   (6, ll)f 

and (6. 14),  equ&tioB (ft, lb) give» for the «pin-disörder resistivityJ 

-4 
pSß - 12 X 10      ohm-cm. {6. IT) 

This is just Ihe value of pAT) measured by Feisüeib for the A-nomalous 

reiistivity ir.crc^se in ^2®% a^ove ^00 id    Ajthou|h th« value« of 

Fermi energy aad of the effective mass used in (6, 16} arc just rsugh 

approximationss they can both be arrived at by two different mcth^i« 

and ws thus do not expect too muck variation«    Therefore, the agree- 

ment between theory and experiment can be considered quite good. 

However,  we cannot prove the existence of antiferromagnetism in 

V O^ by such arguments,  since the agreement could be accidental. 

If V?0   were non-magnetic at all temperaturesf  there wo\ild 

be a contribution to yesistivity from the spin-disorder scattering. 

in order to estimate this contribution froiTj (6. 15), we must use the 

w o o 
appropriate values of Ep,  N, and m    for the range 150  K < T < 600  K, 

and we nust approximate VWi iß some way.    One possibil*^ is to 

assume that the exchange energy is the same for V^O    as for Ti?Ov 

Thei« we can us ft the value of £      in Ti-O» to obtain: go 2   3 

V>r, s 0, 03 eV . 

Evaluating (6. 15) ia this case gives: 

-4 
pen s 1.4 K !0      ohm-cm. |6, IH) 

But the temperature independent part of rte metallic resistivity as 

measured by Feinleib [21] and given in (4. 23) '*»: 

ß-r s   .      & '>-£ x il1      öhm-cm. 



Thu« (6. 18) shows that spin-disorder fu atleting could accoynt (if 

almost Z/i ol the temperature independent pa?f oi the resistivity 

above T  .    The remaining 1/3 could be due to the etfects of im- o 

purities,  imperfections^   orä  as we shall see in section C,  polaren 

formatJOR.    Clearly,   spin-disorder resistivity,  being of the order 

given by (6. 18),   is completely negligible in the seTniconducting 

region. 

It i" also invftortant to eetimate the amount of broadening 

of the band» brought about by spin-disorder.    Us^ng the same assump- 

tions as in equation (6. 13),  the perturbing potentia] due to spin 

disorder can be expressed as half the change in energy gap: 

{^ 19; 

Us^ng equation (2.42) for the change m energy gap,  we obtain ircm 

(6. 19): 

»6.2C 

/v S  = i (E      - E ) . pert/      £      go        g 

pert,/       N       go 

Thus,  the ;nean square deviation in energy due to spin disorder Ls: 

b.Z 

Equation (6.21) shows that the elfec* cf spin-disorder broadening   a 

similar to the modiflcaticms brought about by a Gaussian spread 

around delta function bands in the nar ro* band limit,   except thai 

the spread is no longer con&'ant,  but depends or. the amount of spin 

disorder,  and thus on  n.    We rave already worked out the case ""■£ a 

Gaussian spread m deta;* in section III B.    Usang (6. 2!; as the valur 

for X m equation (3* 70),  we obtain: 



I 5 0 

x.e-^2*2^^ (6>22) 

Solving (6,22) give •i 

E 
pf2  ^ 7*6 . (6. 23) 

o 

Thu«#   spin-disorder broÄdening lowers the transition temperature 

somewhat, as we would expect. 

G,    Polaren Effects 

A second effect which has no* been considered thus far is 

polaron formation.    It is clear from the extremely narrow band 

widths that only ^small" polarons are involved in these materials, 

Holstein [10] has calculated the conductivity in the two cases where 

transport occurs in a polaron band and where an electron hops to a 

neighboring site.    Cone  ction in a polaron band, which should domi- 

nate at very low temperatures, is characterized by an exponential 

decrease with increasing temperature.    This is certainly not the 

situation in the oxides of vanadium and titanium.    For thermally 

activated hopping, the experimentaily observed temperatu- e de- 

pendence is obtained.    The activation energy in the temperature 

range where polaron hopping is the dominant mode of conduction 

is [10]: 

■ w 

/Ir     \ -  K i        tffcP   "   COS  k) ,.    . .. 
^pol^T     /     —2  (6-24) 

where K is a constant depending on the mats of the ions and the 

strength of the electron-phonon interaction,  and us,   are the optical 



::o 

phonon frequencies. As"uming a narrow·-b.t.nd vibrational spectrum 

(E~nstein model), which is a good approxima~:on (or optical phonons; 

we obtain from (6. 24 ): 

(6. zs: 

Although the mean phonon frequency can be expected to increase 

somewhat with pressure, the likelihood ls emal! tl-.at it would chang(" 

sufficiently to account for the decrease ln activatlon enel"gy by a factor 

of~. at pressures of 20 kllobars, as measured by Feinleib [21] for 

V 
2

0
3 

and by Austin [ 43] for V 20 3 and VO. Thus it is unlikely that 

thermally activated hopping of JX>larons is the maJOr contributor to .,he 

< orductivity. 

However, we <:an estimate t~.e ron~ r·t.ut .. on of polaron effect& to 

the prt~ssurc cocffici,~nt of the total act.vat.<>n energy from (6. 25). 

F:q\la.tion (6. ~~5) ~mplics: 

d 1 n ( EA) 1 2 d 1 n w po _ o 
----.a-'P'__.__ . - --'""d1'- . 

But Gruneisen's relctLon [ 60] ehowa: 

d ln w 
0 

<rTrlV 
a ---pIt c 

v 

(6. 26) 

(6.27) 

where a is the thermal expansion coefficient, p ia the density. IC. is the 

isothermal compressibility, and c it the specific heat at conatant 
v 

vohme. Solving (6. 27) {or the presauu. codficient of w : 
0 

dIn w 
0 

··-crp- = (b. Z8) 
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The value« appropriate w> V.CK are m  * 40 X 10"6 fm*1* c    ^ 6.7 X 
6 'v 

10   dyne-cm/g-.0K, and p ^ 5# 0 g/cm3.   &ibftituting in f^MI, we find: 

(6.291 

Combining (6*26) and (6.29): 

d In (E.)    . 
A pol -6        -1 

— gp g- -   - -2,4 X 10      bar   " . (6.30) 

Comparing (6.30) to (4.21) and (4,22), we see that the coatribu- 

tion to the pressure coefficießt from polaron effect» if an order of mag- 

nitude »mailer than the total observed value.    We were therefore justified 

in neglectiag polaron effect» in the ea»e of V^.   A «imilar comparison 

for VO shows that the poiaron contribution is a negligibie part of {4.3;:), 

However,  for YO^  this i» not the case.    As we pointed cut in section 

IV C, the polaren coatributien to (4.361 la quite significant.    In (4.36), 

we found: 

dE 
r   s -S^^lO^eVbar"1. -^^n 

Uemg |S. If),   (4. 35),  and cur estimate of E     - 04 3 eV, we conclude; 

f ~^F --2ax 10"    eVbat'1 . {t^Z) 

Putting (6. 31) and (6. 32| into (4. 37): 

dE 

Since E   ~ C.3 eV,  (6.33) show»? 

din £ 
M*-   . 1,0 X lösbar"1 . 

Evaluating (6.2S) for VO,, we obtaiix: 
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' '   !       S  - 2.E X JO~bbai^ . (6.35; 

A comparison öf (6. 34) aad (6. 35) shows that polar on effects could be 

respoasible entirely for the E   obtained by Neumann et al [51] in VO?, 

We expected V07 to be the material with the narrowest bands of those 

we considered.    Consequentlyj  we would expect the largest polaron 

effects in VO».   It is significant that the value of E    - 0. 3 eV for VO 

was indeed largest.    For V^O,, which should have slightly wider bands 

than VO, hasf  E   - 0, 07 eV to 0. 15 eY*    For VOr  E   ~ Qrl eV.  similat 
Ex x 

to V-O,.    Finally, for Ti_0„,  where the effective mass approximation 

was found to give better results than the narrow band limit,   (4.40) shows 

that E   "O.Ol eV.     It seems reasonable to conclude that polaron affects 

are responsible for at least a iitrge part of E    in these materials. 

It is worth noting that the decrease in resistivity as a function 

of pressure in NiCX  CoO,  Cu08  and MnO,  as measured by Minomura 

and Drickamer [61]=, are conäiderablv less sharp than they are in V^O- 

and VO.    For the former materials,,  the calculated changes in it    with 

pressure by means of (6,28) can completely account for the experi- 

mental pressure coefficients of E..    Thus.  lor these transition metal 

oxides,  the model of conduction by means of polaron hopping may indeed 

apply.    Since we would expect the bands to be still narrower in these 

materials than in V^O,,  which was,  as we have seen,  almost a border- 

line case,  it is not surprising that they are non-conducting at all 

temperatures. 

Polaron effects can also manifest themselves in the metallic 

region.    For example,   if there were a weak activation energy,   so th&t 
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resiitlvity were of th% form: 

A 

P * T eK1 

then the activation energy would contribute to the temperature Inde- 

pendent term in (4.23).   At we «howed in (6. 18), »pin-di»order acat- 

tering could account for at mo«t Z/l of this term.    It is possible that 

polaron effects are responsible for the remaining 1/3. 

D.   Effects of Non-Stoichiometry 

It is also important to consider the effects of deviations from 

stoichiometry. both is the form of impurities and imperfections, par- 

ticularly in the materials under consideration,  which are difficult to 

obtmm la their pure form.    For simplicity,  we shall consider the case 

where there is a given number,  N.»  of donor levels per unit volume. 

Tke case where acceptor levels are present follows analogously =    Let 

n, be the concentration of intrinsic carriers excited into the conduction 

band.    At extremely low temperatures,  it is possible to have electrons 

partly trapped on the donor sites; however,  such temperatures arc not 

reached in practice,  so we shall ignore this region.    At higher tem- 

peratures, the donors become completely ionieed,  and saturated ex- 

trinsic conductivity dominate».    Here the concentration of carriers in 

the conduction band is given byj 

_    -E /2kT 

d 

In this temperature region,  the conductivity will not vary strongly with 
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i 

I 
i 

temperature,  but will vary with composition.    As the temperature is 

increasedj  a. becoines comparable with N .,   and the general expres- 

sion for n must be used: 

4n 2     1/2 
N   [l + (lf_l)        ]. 

a 
(6,37) 

At stiil higher temperatures,  intrinsic conductivity dominates,  and n 

can be approximated by: 

•E /2kT      , r l 
n - N e 16.38) + tNd- 

Iix this region,  conductivity- v/'li exhibit an exponential temperature de- 

pendence,  but be nearly independent of composition.    In order to 

determine the extent of the intrinsic region,  the experiments of 

MacMillan [42] are particularly useful.    MacMillan obtained V^O, 

samples by reducing ^O- in hydrogen at different temperatures.    He 

was thus able to vary the composition from V^O«  Qn to V^O,  n _    In 
&    tit yv 2    -5» Ü4 

measurements down to 100  K,   it was found that conductivity,  activa- 

tion energy, and transition temperature were ail independent of com- 

position      This is strong evidence that conductivity is primarily 

intrinsic in this temperature range,  and that equation (6. 38) should be 

used to evaluate n. 

The effect of donor and acceptor levels on the theory can now 

be determined.    Equation B.61) must be modified in the following way: 

yd - 4x) -1       . 
x=[e ^1] + I Xd 

where x , «  Nj/N,    We are dealing with concentrations of impurities 

such that N, « N,  and thus x ,   « 1.    Solution of equation (6,39) showß 

;6.39) 
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that the tranaition U moved only slightly; x   is decreased and y    is 
o ■ o 

increased.    The fractional increase in y    is Z. 8 x „  or 2. 8 N^N. 
o d d 

Ihus donor levels decrease the transition temperature,   A sirniiar cal- 

culation performed in the next section,  shows that acceptor 

levels also tend to decrease T  ,  in the same proportion as do donor«. 

Since the experimental results quoted in Chapter FV seern to 

be in the intrinsic conductivity region,  the observed activation energies 

must still contain contributions of 1/2 E  ,    Then,   since the solution 
8 

of (6,39} maintains the proportionality of E     to T  ,  equation (3.5?) 

remains valid for small amounts of aon-stoichic    ^try. 

A major effect of small deviations from stoichiornetry is the 

contribution of the corresponding scattering to the mobility.    The 

mobility due to scattering by ionised impurities is given by the Conwell- 

Weisskopf formula [62]: 

-    3/2 

'InCiw- ) I 

where K and Tj are constants which depend on the number of impurities 

and the dielectric constant of the material.    Thus,  if impurity scat- 

tering dominates,  (6,40) shows that the contribution to the observed 

activation energy iss 

(EA)   .1^+—^1      , (6.41) 

TI 

Since the number of impurities is small,   Tj « T,  and the first 

term of (6.41) is the important one.    The activation energy due to 
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ionized impnirities is thus small and somewhat temperature dependent. 

Since there is no pressure def endence of the activation energy given 

by (6.41),   ionized imputity scattering cannot account for the pressure 

variation of the observed activation energies in Y^O ,   VOt  or VO^. 

Furthermore,  we were justified in neglecting In Chapter IV the 

pressure dependence of the contributions to EA from this type of 

scattering. 

Scattering by neutral impurities or by dislocations are tem- 

perature independent, and are small except at very low tempera- 

tures [63] .    Thus there is no contribution to E   from these sources. 

As we already pointed out, the transition temperatures observed 

in the oxides of vanadium do not seem to change with small deviations 

from stoichiometry.    However,  the measured T    in Ti-O    does seem 
u i    3 

tr vary,  although the fact that the transition is not very sharp makes 

it difficult to decide on an exact value for T    in this case.    It appears 

that the effects of non-stoichiometry can be important only in TüO,, 

Some supporting evidence for such a conclusion comes from the work 

of Yahia and Frederikse [22],  who found that the Hall nnobiiity in 

Ti^O, obeys a Conwell-Weisskopf law below   ,?5(X K.    Between 200  K 

and 450  K,   polar scattering appears to predominate.    All this is 

consistent with the idea that the relatively wide bands of Ti?0- cause 

polaron effects to be negligible,  whereas :;n the narrow bands of V  O 5 

VO,  and VO.J,  polaron effects are quite important. 

E,    The V   O  -Ti  O    System 

The models for V_0, and Ti-O, presented in Chapters TV and 

V taken together with the discussion of non-stoichiometrv in section 
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VI-D enable us to mak« predictious abovt the electrical conductivity 

properties of the V^^Ti^ «yate;   .   Sub.titution of Ti+++ for V^+ 

introduce« hole« in the valence band,  »ince a Ti^+ ion ha« only one 

3d electron and coneequently acts like an acceptor. 

Let x^ bo the fractional amount of Ti"^ introduced into a 

cryetai of V^.    Tau« ^ = N^/N, where N^ i« the concentration of 

acceptors.    In general, we know: 

p - n = N 

2 np s n. 

so that: 

! 4nE    1/2 

In the narrow band limit,  (6.42) becomes: 

4       -E /2kT  1/2 
x ^xa[ 1 + (1^  e     g )        ] 

x a 
(6.43) 

where x s p/N i8 the fractional amount of holes in the valence band. 

For small x^ « 1,  equation (6.43) becomes: 

"•£» /2KX      | 
x=e     S +Ixa (4.441 j 

which is the relation for acceptors analogous to (6. 38).    Introduction 
j 

of (2. 1^ into (6.44) gives; 

^(1-4*)      1 
*     e +IX* (6.45) 

| 

where y = Ego/2kT a» aefore.    The seluüon of (6. 45) shows that a 

small percentage of acceptors lowers the tr»B«itl©a temperature by a 



small amount.    For example,  when 1% Ti        is introduced into V^O,, 

the transition temperature determined by (6.45) decreases by 3%. 

The approximation leading to (6.45) is viuicJ in the eise of V.,(X up 

until 2% Ti        cone;  itration. 

As x    gets large,  we must return to the general teiationr 
mm 

lb. 43).    When N    » n ,   (6.43) can be wnUen: 
a        i 

3       -EA/kT 

a     x. x - x    4- —   e      * . (6.46) 
a 

Introduction oi (2. 1) into (6.46) yields: 

-2y[l-4(x-x  )] 
x ^ x    + ~    e *     . (6.47) ax a 

Using the notation: 

x  (x - x  ) X_    a a 
— _—™— 

2v 

T « exp[|X   e2V] 
a 

equation (6.47) becomes: 

Y 
X =- YX - Y  Y =^CY) . (6.48) 

The iransition occurs at: 

A -*_/4e 
'      (e     a       ). (6.49) 

For values of x   where (6.47) is valid.   (6.49) shows that the transution 

temperature is extremely low.    For x    - 0. I,  the transition occurs at 

y    = 33,   or,   in the case of V.,0,?   at a temperature,   T   = 18  IT.    Thus, 

aubstitution of 10% or more Ti        for V        m V^O^ lowers the transition 
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temperature sufficiently to produce metallic behavior at almost all 

normal temperature*.    We found that for 2% or less Ti*+f m the crystal, 

the transition temperature is ehanged only slightly-    When between 

2% and 10% Ti        i« introduced into ^20y  *5 are in aR intermediate 

region,  and the general expression,   {6.43)#  must be used without 

further approximations.    It can be shown that the predicted transition 

temperature begins to drop sharply when the Ti++T concentration ex- 

ceeds 8%. 

Since we have considered only the extreme narrow band limit, 

we can solve only for the transition temperature,  at which point the 

two bands overlap.    We cannot fin:? out if the large number of holes 

present in the valence bard at low temperature are sufficient to pro- 

duce a metal even below the transition point,   since the zero width 

bands cannot give metallic behavior.    The Fermi energy in this limit 

approaches the valence band as: 

EF = Ev ^ kT In i 
a 

for 0. 1 < xa <   l.     Since E^. cannot get lower than the top of the valence 

band, the holes can never become degenerate.    But thi» is only be- 

cause of the zero bandwidth assumption.    Since we have some idea of 

the effective mass of carriers in V203 from the discussion m sections 

A and 1,  we can look at the effective mass approximation to investigate 

the degeneracy of the val#nce band holes. 

In the effective mas« approximation,  metallic behavior sets 

in s*nen: 

,     2m    kT   3/2 

9fi 



For grearpr acceptor concentration, 'h* Fermi energy is beiow 

top of the vaience band. Using the value of m /m 50? estirnatt 

in section A for metaiiic V^O^.   wc find: 

N I  . 50 X9 * ^0'4 ,3/2      , T     3/2   .      N 
\    - 4 ( X^4~^ ) x    T~ ; '' 7(51X48 

. 10 li- )3/Z N . (6.§0) 

Thus,  for Ti concentrations of 19% cr more,   metaiiic behavior 

should occur at aii temperatures.     At T - 100 'K,  the holes m the 

valence band will be degenerate tor concentrations of Ti        greater 

than 6%. 

MacMiIlan [42j studied    ie Ti,   ^ll     \®% system in detail, 
+ 4-+ 

He found that substittiion of Ti in V,0     n small amoxints nono- 

tonically depressed the transition tempeiature.    This effect was 

measured for concentrations up to 2%?  and If just as predicted above, 

MacMiIlan also measured conductivity as a function of temperature 

for 10% and 50% Ti"^1" concentrations.    For 10% Ti   '+,  the con- 

o ductivity was metaiiic below !00  K,   decreased slowly about a factor 

P o 
of 10    as the temperature was raised to !40  K.  and then increased 

to its previous value somewhat more sharply.     This is what is pre- 

dicted by (6. 50) for a concentration of 6%.   and thus indicates that 

an effective mass of 70 free electron masses for holes in ^-,0 

in the semiconducting state is more appropriate than the value of 

50 used in (b. 50).    Since m   /m s 50 was the value estimated for 

metaiiic V'-O*,  we should expect a larger rn  /m tor the narrower 
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bands of the sernicenducting »täte. 

For S0% Ti concentr4iion,   MacMiilan found a tcmperatur«- 

irfdependent metallle condactivit/, just as we would predict from the 

above theory.    In this case, the t    - ß band la half-füled. a 

F, Thermaiiy Activated Hopping Theories 

Sotnt authors [64] have suggested that the origin of the con- 

ductivity in the semiconducting state is thermally activated electron 

hopping.    Then the observed activation energy should be totally associ- 

ated with the mobility, and the concentration of carriers should be 

temperature independent.    There is now much experimental evidence 

against this hypothesis.    The direct measurement of the energy gap 

in ^2*^3 ^ Feinieib [24] and the measurement of the Hali coefficient 

in Ti?0, by Yahia and Frederikse [22] strongly indicate the presence 

of a normal semiconducting energy gap with thermal activation of 

free carriers.    Furthermote,  a theory which ascribes conduction 

to a diffusion of charge predicts an increase in activation energy with 

pressure [5, 65] .    Such an increase has been observed by Young et al.[65] 

m CoO.  CuO,  and Cu20.    However,  in the cases of V C»      VO.  VO , 

and Ti?0.j,  the activation energy decreases with pressure [2lj 43, 51] . 

G. Theories which Postulate a Critical Lattice Parameter 

The theory of Mott [4, 26, 27] assumes that there exists a criti- 

cal lattice constant,   R ,  above which there is insufficient overlap to 

obtain physically meani«gful bands-.    Mott suggested that materials 

whose lattice parameters exceed R^ must be non-conducting, and all 

U 



the electrons have to be considered as In-r aiized on individual ions 

rather than spread throughout the cryate.1.    One immediate difficulty 

with theories based on this hypothesis is the explanation of the con« 

ductivity below the transition,    II thermally activated hopping li con- 

sidered to be the conduction mechanism below T   ,  ail the objections 

of the previous section apply.    It is hard to think oi any other model 

employing localized electrons which can account for the considerable 

(e- * 10 ohm-cm) conductivity in the insulating states of VO, and Ti^O-^. 

Other objections emerge from the details of the transition in TipO^ 

and in VO,.    At T    in Ti?0-.a  the c-axis actually expands.    Thus, 

the nearest neighbor catioa distance is larger above T   than it is 

below T   ,    This is difficult to reconcile with the idea of a critical 
o 

lattice spacing being exceeded at low temperatures but not at high 

temperatures.    Furthermorej   below T    in VO«,   the c-axis cations r o «« 

pair up.    Thus,  the nearest neighbor carion distance is much smaller 

in the non-conducting state than it is in the conductiug state.    But also, 

the linear thermal expansion is such that at vety high temperatures 

all cation-cation distances are greater than the distance betv een 

the more-separated c-axis cations at low temperature*.    Thus,   even 

a theery based on an average ü    also geems to fail. 

As a final point,  the transport properties of the Ti,   V^yt   ^.O^ 

system,   discussed in section E,  are not consistent with a theory which 

ascribes the transition to a critical value of the lattice parameter. 

In particular^   TiVO,,   which has a structure with lattice constants 

very close to V^O,,   is metallic even below 150  K,   where both V203 

and Ti^O, are semiconducting. 
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H,    Theories which Ascribe Lack of Conductivity to Direct 

Catian-Cation lateraction 

Göödetiough [28,29, 30] his pöstiüated that direct interactions 

between cations lead to the formation of homopolar bonds,  and there- 

fore a non-conducting state can occur if all the 3d electrons are used 

up in such bonds.    As with Mott's theory,  models baeed on this 

principle have great difficulty in explaining the low temperature con- 

ductivity and its behavior under pressure.    There is also some inde- 

pendent experimental evidence which seems to contradict this particular 

hypothesis.    In VO^, the pairing of the c-axis cations is not in a 

straight line, but the pairs are puckered below T^; yet in the high 

temperature rutiie structure,  all these cations are collinear.    If 

cation-cation interaction was the dominant reason for the pairing, 

it is hard to see why the V ions would not move directly towards 

one another.    A more serious objection is the lack of anisotropy in 

conductivity of V O^ between 150 K and 600°K.    Goodenough's 

theory predicts that the conductivity should be almost entirely in 

the basal plane in this temperature range, the t    electrons being tied 

up in homopoiar bonds along the c-axis4    As Feinleib [El] has shown, 

this is not in agreement with experiment. 
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Appendix A 

CORRECTION FOR THE «T CON mBUTION 

TO THE ENERGY GAP 

In section IIA,   we wrote for the energy gap: 

E    ~ E       - e T - ßn f A. 11 g go 

where E^^ is the gap at T = 0,   aa-fi B ß T)  .   and ß £-(S E /l R)   . 

In our fundamental equation,-   (2. i),  we dropped the term linear in 

T,    In this appendix,   we shall show that this omission does not leat 

to any serious errors in the evaluation of conductivity as a function 

of temperature,   which was carried out in Chapter III. 

We shall calculate the effects of the term -c T in the case o: 

V203"    Consequent'y*   we can specialize to the regions where the 

narrow band limit is applicable and Boltzmann statistics are valid. 

Then,   equation (3. 52) in the Boltzmann limit becomes: 

-E  /2kT 
n s N e      g 

From equation (A. I): 

dE 

(A.!) 

  „          ^T 
dn * p " c   d^T                                                                                    (A. 3) 

dE 
 £ _      _       A dn 
dT " " ö   " P dT '                                                                               (A.4) 

But,   equation (A. 2} shows; 

dn r  .   %    , I dE 

3T ^n[{
2^75    -2kT   d^ J- CA.5) 

Using equation (A.4) in (A. 5); 
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E 

Solving equation (A, 6) for dn/dT; 

E 

dn n      'T   *  ü 

Substituting (A. 7) into (A( 3),  we find: 

ffg ^ e  2kT - ßn ..   .. 
WPS   g   ■"-r-"  ■ CA.S) 

We nnay rewrite (A. 8) as: 

+  a 

dE 

dn 
g , r   w c T    2kT - ßn   i 

8 

Thus,  the fractional error in equation (2. 1) is just: 

ö T      r 2kT      , 1 

§ 

For the cases of V^O^ and VO,  when we evaluated ß from 

thernsodynamics,  we found that virtually the entire contribution to   ß 

came from the term which gave the change in energy gap due to 

changing volume.    We can assume that the same will be true in 

evaluating  a t    A thermodynamic argument [66] ,   similar to that which 

led to equation (2. 13),  gives: 

x   8K aE 

where  X is the thermal coefficient of volume expansion, and  K is the 

isothermal compressibility«    Since we are taking the entire contri- 

bution to e   to be the first term,  we have: 
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c  " - *~ {A. 10) 

where ^ =  . (i E^/B P)^  aS defined in equation (2. 10). 

For VzOy  we use the experimental values given in section 

IV A: 

\ = 40.Q  X 1Q'6  ^K)'1 

K = 0.58 X 10'6 bar'1 

V ^ J.8 X 10~6 eV bar*1 

Then!   (A. 10) yields; 

a = -1.2 xlO'4 eVj^K. (A.:. 

Thus,  from (A. 9),  the correction to  ß near the transition temperature 

is of the order of 2% .    Thus,  the dropping of the term in c T in 

equation (2, 1) introduces an error of the order of a few per cent.. 

which is certainly negligible.    Note that since  a   is negative in V«©,, 

equation (A. 9) shows that 3  is slightly reduced.    This implies that 

the calculated ratio of E      to kT    obtaired in Chapter IV should be a go o r 

few per rent lower.    Thus the transition temperature is increased 

a small amount,  as we would expect,  having introduced a slight in- 

crease,  linear In temperature,  to the gap. 

/ 
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Äpp«tidlx B 

ENERGY BAND CALCULATIONS 

The spreading of localised ionic energy levels into energy 

bands is a consequance of the overlap between the wave functions 

corresponding to the ions which make up the crystal.    We can easily 

ihow by perturbation theory that as long as there is some overlap, 

there must be somfc spreading of the localized levels,  and thus a 

finite band width.    U would be most desirable to be able to determine 

the energy band structure of given materials from first principles, 

but to date such calculations are long, laborious,  and grossly in 

error.    This has been particularly true in the case of transition 

metal compounds,  where,  for example,  careful energy band calcula- 

tions on NiO have led to conclusions that one of the best known in- 

sulators is a good metal [67] or that it forms a crystal consisting of 

neutral adorns [68].   One of the reasons for the general worthlessness 

of such calculations seems to be the inability to obtain correctly even 

order of magnitude estimation of overlap.    Better results have been 

acquired for the oand structure of crystals when overlap is treated 

as an experimental parameter. 

What we are really interested in finding out is whether,  in 

the real three-dimensional case,  the exchange splitting in antiferro- 

magnetic crystals or the splitting due to lower symmetry in distorted 

crystals is sufficient to produce true energy gaps in the densiHes of 

states.    In an attempt to ascertain some information about this,  we 
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shall outl.ne an enfefgy band calculation for VO.    We shall consider 

the rock salt phas*   of VO,  assume the crystal is an antiferromagnet, 

and trv to determine how strong the exchange energy must be to 

obtain a true energy gap.    The reason for choosing VO,  although 

we do not believe VO to be antiferromagnetic,   is purely the simplic ry 

of its structure: a Similar calculation for corundum Ti20, would be 

much more difficult.    However,  we expect that the orders of magni- 

tude involved will be about the same in all the oxides of titanium and 

vanadium. 

We shall adopt the point of view of the tight binding approxi- 

mation, in which the Wannier functions of the crystal are approxi- 

mated by the ionic functions of the component cations and anions. 

However,   we shall make a further approximation,   consistent with 

the spir.t of the peiturbation theory described by Anderson [8j .    We 

shall take as the Wannier functions of the cations the V      wave func- 

tions plus a small part of the wave functions at the surrounding oxygen 

sites.    Then we shall use these wave functions to calculate the 

cation-cation overlap.    By this method,  we can neglect the anions 

after it is dec ded what percentage of O      wave function to add to the 

V      function at each ration site.    As has been observed by Andeison [8] 

this method eliminates the distinction between direct cation*cation 

overlap and indirect cation-anion-cation overlap. 

In an attempt to iearn something about the real problem,   we 

first look at a very sample model,  a linear ch^.in of alternating V 

and 0" ' ions.    For further simplicity.   We shall deal with only one 

state from each ion.    Actually,  there should be three states making 
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up ihm t^ triplet.    We plac# V'M' ions with spin down at x ^ (4n-l)a, 
++ 

and V      ions with spin up at x = (4n t l)a.    The O' 

at x * Ena. 

ions are then put 

First,  we neglect the O"" ions completely.    There are Vfi 

ions at x -t a.    Let ?£ (a 0 0).   Th- wave functions are: 

♦p(r + p) »ya F(}? + p|)ß 

where F(r) is the appropriate radial function.    Applying Schrodinger's 

equation,  we obtain the secular equation; 

■ JE 

0 S 

iZß cos 2ka 

2ß cos 2ka 

a   - E 
(B.2) 

where: 

=  /dr*   Cr^fl H      {rU   || -f) 

s  = / d? $p C ? + p) Hßß( r} #ß( r + p| 

/dr#*(?.^)KÄA(r)4,fl(?+^) s ß%   ' m* 

Solving (B. 2|; 

M± s a  4- a        I t&   - e . 2 
T~ ~ / ^^"^r + *#*•  -:«" 2ka . (B.3) 

This solves the problem In iera« of the physical quantities s  and a, 

and the non-physical quantity,  ß, which is the effective cation-cation 

overlap.    Since c  and a  are intraiom:: integrals,  they can be evaluated 

from the Hartree-Fock lomc wave factions.   However,   we must find 



a way of approximating a. 

i.++ 
We uow redo the game problem,   only takmg this time as the 

wave functions the above functions plus a smali part of the O"" 

functions.    Then we can use perturbation theory to second order, 

-P 

.,++ 
neglecting all öuc the physical V^-O" overlap,  tu evaluate both 

the mixing parameter and the effective caUon^aüon overlap,   ß. 

Let- 

^(r + p) » <Mr -f-p) + t|# (r) + $ (? + 2p) I . 

The secular equation for this problem is, to first order in € : 

a  +3e(y +v- -eV +S') 2[6^  ^v^jcos Eka 

(B.4} 

wj\ere: 

2[c^   ^ Y  i] CBi 2ka Q # ^et\ ♦ Y') + €2{a ' + 

i (B. 5 

e f) I 

Y » /df #3 C?*p) Hi?* it 

Y»»/ i?#* CT-p| HCr. 4* (r-2p> 
0-,2 

c*^/ dr ^ 0} H(r)4, (T) 
O"', J O", I 

*'*!&$* {r-2p)Hf?i^ Cf-tpl 
0    P 2 O"", 2 

Solving equation (B. 5),  we obtain: 

r 

E = 

2-2 
o  +2ev  + f1?» + lLX_cos2 2ka 

e   - e 

2-2 
c    f 2CY   -€2ä-'   -lO^     cos2 

I. 
c  - a 2ka 

(B.6; 
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where a s s ' + P 
?: ?»3fff£.    Comparing (B. 6l to {'B, 3),  wm see that 

with the choice: 

we obtain: 

.2 

N    + a 1 

The sign of Ö can usually bt? determined by physical considerations. 

The result, {B. 7K   is quite reasonable.    It states that the effective 

cation-cation overlap is proportional to the product cf two cation» 

anion-cation overlaps, which is what we would physically expect. 

Note that there is always a splitting of the two bands,  equal to  |G   - e |, 

the exchange energys   in this simple model.    This is characteristic 

of one-dimensionai modeis.  as we saw in Chapter II. 

With the result (B. 7),  we can calculate the important overlap 

parameter ß from the Hartree-Fock wave functions for the V      ion [69] 

and the O" ion [70] .    These Hartree-Fo;     lunctions are: 

F       Cr)^ro.ö78e-ö*71r4 8. 5?. e"3'4lr + 1. 66 e"1'38rl r2 

F      .; i ? :     : . 74 e ^ i9, 8 e # 37. 9e i- i9. 3 e r     • 

{B.8) 

The potendai V        was obtained by extrapolation from Brown's 

[71] calculations for Ne and F', tne potentials being adjusted by 

scaling both ionic radii to the ionic radius of 0*~.    From Pauling [72] t 
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O"' 

w " 1.36 A 
F" 

TN^    " ^^ A . 

The extrapolat^cn was imeary  by neceSS:fv=    The best analytic 

expression for the potential obtained is: 

Vo..(HSf[..42,-0'^ + 4.,8c-l.e3r + 0]90e.I7.3r_2] ^^ 

From Watson [691,  we cet for thp av^ra^ ^^i ^i«,* ++ i     j* get iur me average id electron energy in V     • 

Eav = - 2. 23 Ry.   ^ .30. 3 eV . (B   j^ 

Watson [70] ri«j as the 2p electron energy is O"- 

o^ S   ~   _I63 Ry^ _2a2 y J03 eV _ fB   .-.. 

CaKaway [73] g.yes as the expression for the change in the 

Hartreo-Feck energy when the spin of one electron is reversed: 

E.x   r7[F2'3d'3dM F^Sd^d)]. 

Using the values calculated by Watson [69] for V*"1": 

Eex el:(Kfe69 + 0'4J7) %. 

= 0.15 Ry.   m l=9 eV . 

From (B. 10) and (B. 12|,  we get: 

a   ^ 2.31 Ry.   s 3J ev . 

e   ^ 2. 15 Ry.   = 20 eV . 

Only v   rema n.-j to fee evaluated. 

(B.121 

(B.13) 
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We know from the usual tight binding approxiinations [74] i 

Y* / dFf       if; W{f) #       1?-^) (B414^ 
V o'" 5 

where W{f i ig the difference between the one-electron crystalline 

potential and the potential of an isolated V++ ion,  and p*. ~ (001)a is 

the posiC^n of a nearest neighbor oxygen ion.    We shall make the 

following assumptions about W( ?): 

I)     W(F)=0 Cr<a/g) 

iij   Wf?} - V(F)        tt >a/Z) 

where V(fi is the anion potential centered on the nearest neighbors. 

Hence: 

WIFI V 
0 

_cr - 
■^ 

5 V 
O" 

_m (r >f! 

f i - 

F 
o" 

m 
m l -'A i 

i#r
6 • #s| 

- i 

. ß F        it') 

sin §* COS r (B. 15) 

F 

_    F        (rj 
15        V^ 

^ hen CB* ^4} becomes* 

_     T F       W?        |t')F     +(r} 
«   m 3^5      I J- f     O O'" V ^ " TT    | (tr [— _™.^—__  cos 9 sine sin8! cos" 4)1 

Jan space 

3^5        / ^ { i ' TT dT   [same integrand) . (B. 16) 
y sphere : t < Z 



We shali uae pic.ate sphefoidal coordinates,   with foci a? F = 0    H* 

Then (B. 16) can be written: 

^  J/5a      I . 2       ^ i 
y e -____     i d^cos   4>    I      dT]    |      dt F        (rs)V        (p,) P      . fr) 

J0 Xl        /| 0 o~ V ++■ 

„2 2        2 2 2        11    1/2 ?        ?       ^   o    , /-T 

ra 
ra ra 

3/5a I 2        I I 
4tr'        J d* cos   4>     /      dti    / d|     [same integrand] 

where: 

t + r- . r - r* 

Thus: 

X^/ITTJ; r^|/C.n);       r
2 . ri2 = a2 |TJ ^ 

tn the ca^ öi VO,  ^ - 2.04 A = 4.0 a.u.    The integrals are all eie- 

mei^ary,  be- ng of itic form /  dx xn e'ax.    After a long,  laborious 

calcuiati^nf  we efetala from {B. 17): 

t   - KQb Ry. 

Thus,   from {B. 7) and (B, III* 

ß s ±0.0 \38 Ry.   = ±0, 19 eV . (B. 18) 

Equation (B. IS) gives the effective value of cation-cation over- 

lap in VCX    We must stül perform the band calculation for the VO 

structure.    This is extremely lengthy,  and we shall just outline it.    In 

obtammg (B. 18;,   w»   u^cd only one state,   $    =   /IS/Zity z F(r)#   of the 

t2.g ^ipä«*.     Wt   muä   also considet the other two degenerate states; 
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♦? *   /i| XE Fit) 

ay 
*3 9   /^ »y F{r) 

Introduce tve notation; 

/  d? ^( I . R.) W( r - Rj) fn( f - R) e 

(B. 19) 

wv ^ ^ ^^ - ^ W^- *v v?' %l • 
All off-diagonal elements a        =0,    The diagonal elements are equal. mn B i      » 

and we have called them a^ - * 2% =ö=e.    Restricting the over- 

lap integrals to nearest neighbors only,  we find: 

SU<Rx2
! ^22'V = B33(VM * 

Pl!( V^H'V^ ^22( V =P22(RxI'^33<Rxy> = 833<R«I^' 

Slfice the potential W( r) is negative everywhere, we can conclude 

from the definitions,   {B. 19),  that p  > 0,  ß* < 0.    We now introduce 

the spin dependence, which implies a distinction between the potentials 

for a spin-up and a spin-down electron,   Wc  and W^.     This leads to 

the introduction of the quantities c#  S,  ß1,  ßH for the "excited" band. 

The secular equation is a 6 X 6 determinant,  which is quite com- 

plicated and not worth reproducing here.    Since we are really inter- 

ested in just the antiferromagneUr splitting,  we set ßw * 0,   which 

essentially factors the secular determinant into *hree equivalent Z X2 

sub-determinants.    For almplicity, we also make the assumptions 



*1 *= 

p = ß5   ß'   - p%  which are undoubtedly quite accurate within our rang 

of error.    The secular equation is now simoly: 

e +2pcosCk   -k  )a + 2ß?[cos(k   *k  )a     2ßcos(k +k  ^+iS*fcesÖ   -k mm v yz XEL 

0 s 

x      y    J 

2ßcos(k   +k  la + Eß^cosCk   -k  )a 
V      z 

tcssffe   -k  )al 
x    y    J 

e +2ßcos(k   "k )a 
X       z 

f       ^ 

+ cosCk   - k  )al 
x      v    * *2ß=[co8(k   -k  )a+cösff i        ' y       z- 

-kyia] -E 

Noting from (B. 12) and (B. 18) that  iß!,   iß' !   « !a  - c |  ,  the solu- 

tion of {B.20) can be expressed; 

(B.20. 

E    - * 2p costk    - k  )a + 2ß, [cosfk    + k  )a + cos(k    + k  )al x        z x       y y        z    J 

- -   r      2 2 " 
* fa   -a)      14ß    cos   {k    + k  )a * 40!i:rccs(k    - k  )a x        z i x        y 

+ cos(k    - k   )a] 2 + 4P p' cosfk    * k  )a [cos (k    - k  )a 
r        * x        z     *■ x        y 

+ COB ,k    - k   lal } 
y        z    J J 

E    = c 
v i  * 2p cos(k    - k  )a + Zß'fcosCk    + k  )a + cos(k    + k  )al 

ÄZ 'xy yz* 

- (e   - c {same expression as  :n curly brackets above} 

{B.Z 

with both the valence and conduction bands three-fold degenerate. 

Since VO has three 3d electrons per cation,  the valence band in trus 

approximation will be completely filled and the conduction band com- 

pletely empty provided that E    and E    do not overlap. 

Frcm (B. 21),   the top of the valence band occurs at the two 
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pömti in the fit-it Brilloxiin zone: 

IT" | !1.-1,1) 
{B.2E) 

r- i (-M.-i), 

At these pc4nt#; 

(Ev Wx = S  + 2ß + 4 Iß» { . (B. 23) 

Ö is much more difficult to find the bottom of the conduction 

barsd,   mtmm there is no point in k-sp^ce where the terms in E    are 
c 

individually minimized. 

Up until Ifeii point,  we have been completely general.    It is 

now necessary to put in values for ß,   ß',   c ,   S  in order to proceed. 

However,   note that the bottom of the conduction band must be higher 

than: 

IE)    -    >  .   .2ß~4ißM - IE2..* 16(ß!)2^16ß!ß'{ 
cmm ^ f        'f  ' 

e   - c 

ThuSj there is always an energy gap if; 

(C -S) >4ß + 8|ßiH-liä±Ü£lll!   . {BtZi) 

&   - a 

In order to evaluate ßf, we use the relationship found by 

Fletcher [75] for the ratio of the same overlap integrals in the case 

of the 3d electrons of metailic nickelr 

V  a »0.297 

Equation (B. Ift| then yields: 

|ä' ^ -0,041 Ry,   .- -0.06 eV . (B.25) 

g 

!'■■»»■■_ ..^«i^'.WlllWiMi 



We can now use (B. It),   (B. 18).   and CB.ISi to test equation (B,24; 

We find: 

a   ~ a 

Thus equation (B. 24) is satisfied,  and the true energy gap is at 

least 0. 5 e V. 

We can also easily obtain an upper limit for the band width. 

From {B,2i;,  it is clear that: 

< 4ß + 8 iß' I + liß | 2 |ß{ j) 
a   - c 

<     .4 eV . 

In order to find the real values of E    and K,  we must locate 

the conduction band minimum.    Smce   ß >   Iß'I.   the mimmum OCCUTS 

near the p.anes.  kx = Kz± it/*.    Minimizing the other terms subject 

to this constiaint,   it can be seen that the bottom of the conduction 

band is bi the vicinity of the twelve pcints equivalent to: 

4a    ^ ''   3} * 

The conduction band minimum is approximately: 

f2 

Comparing (B.ZÖ) to (6.231,  we conclude: 

a 

CE^L  .    =- c - 40 - 4 jß* I + 3^— C mm - a   ~ t \B.Zbi 

E    MC   - 2) .4ß-4iß'| +liält 
8 o   - c 

-0.9 eV . IB,271 



150 

It is clear from (B.21); 

%^*^-m ^-rw 
* 1.0 eV . (B.28) 

It is also useful to calculate the effective ma  ses.    The effective 

mass of holes in the valence band is easily determined from (B4 21). 

It is found that the band is extremely anisotropic near the maximum; 

the diagonalised effective mass tensor can be expressed^   in units 

of the free electron mass: 

m, =4;  m. ^ I0i  m, = 90. 
c 3 (3,29) 

Defining a Mdensity-of-statesn effective mass as: 

*     * 
>2 m3 m*=  Uim* m* trs*)1/3 

(B.29) shows: 

m* s 31. (B.30) 

The final results,  {B,27) and (B. 28),  are each about a factor 

of 5 greater than we expected from the experimental observations 

in Chapters IV and V,    This is undoubtedly due to proportional over- 

estimates of the importeuit band parameters {a   - c ), ß,  and ß*.    Such 

overestimates are a general characteristic of band calculations.    The 

explanation may be in covaiency effects,  most of which are neg» 

lected in this type of calculation,  or it may be due to a serious deriva- 

tion of the ionic wave functions in the crysi  - from those of the iso- 

lated ions.    Note that the effective mass value,  given by (B. 30) is 

quite reasonable for VO. 



Appendix C 

HYDROGEN MC3I.ECULE AND MOLECULAR ION 

WITH DELTA. FUNCTION INTERACTIONS 

In secucn U D.  we solved the problem of a ene-diinensumal 

crystal wi*h fwo cations per unit cell,  the cations attracting the 3d 

electrons by means c£ a delta-function mteracUon.    We demonstrated 

that,  when there la one 3d electron per cation,   such a crystal will 

be semiconducting due to the doubUng of the periodicity arising from 

the pairing of cauons.    As we showed in section 0 D,   excitation of 

an electron across this energy gap tends to decrease the gap.    How- 

ever,   it is not obv^cus that such excitation also tends to increase 

the average distance between the clcseJy^spaced cations. 

in ordet ta demonstT.te the dectease of crystalLne distortion 

as electrons move frcm bonding to antbonding bands,  we used an 

analogy relating to the hydrogen molecule and the hydrogen molecular 

ion.    With both electrons in an ^ motecule in bonding Orbitals,  the 

equilibrium distance between the two H+ ions is 0. 74 A [76] .    g one 

of the two electrons ^s placed in an antl-bcndmg orbital,  the molecule 

is no longer bound,   and thf equilibrium distance becomes infinite. 

In the band situation,  it is more reasonable to look at one electron 

being taken out of a bonding orbxtai and put into an antibonding orbital 

in another unit ceil.    Thus,  we should compare the H,, equilibrium 

distarce with tha* cf an H! mclecular ion,  whose H+ ions are  ^.06 Ä 

apart [77] .    Therefore,   the H+ Ions move apart a factor of I, 43 when 

an elec>rcn is mmoved from a bonding orbital. 
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However, the first cas* worked cut in section II D is for 

electrons attracted to the cations by delta-function interactions,  which 

are essentially infiniteiy screened Catjiomb interactions,  and are 

very different from pure Goaiomb potentials as can be seen from the 

work of Kohn [S|J discassed in Chapter I,    Therefore,  it is important 

to see if the hydrogen rroiecule analogy holds up if the electrons are 

attracted to the H    lesi by means of a delta-function potentiaL    Such 

a calculation is the purpose of this appendix. 

Consider an "H^" molecular ion,   with the follov-ing Hamiltonian 

dx 
H " * fm   TI   ' V 6(x) " V 6(x - X) 4 ^ (c. || 

where X > 0 is the distance between the H   ions.    Take the zero 

energy at e  /X.    Then Schrodmger's equation can be written: 

of 

H <Hx| = E+<Mxi • {C.Z) 

The true energy is: 

2 

+      X 1^.^/ 

Let; 

ps^ 
k =   i 

i f      n 

For x - (-», 0).  equations (C. 1) and (C.2i give: 

4,H(x) - k2 ^(x) ^ 0 # (C^) 

Solving (C.4),  and applying the boundary condition at x = -oo: 

kx 
fixl ^ A e      . {Ct5) 

Similarly,  for x = (0, X),  the solution of equation (C.2) is: 
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Finally,  in the region x * (X.«),  the solution 01: (C.2),  using the 

boundary condiUon at x = oc,  is: 

/^ \    _    i       _ "ItX 
(C.7) 

(C.8) 

(C.9) 

$(x) = D e 

From (C. 5) and (C.6|,   continuity at x = 0 implies.' 

A = B + C . 

Similarly,  from (C. 6) and (C. 7).   continuity at x = X yields^ 

B e2kX - D + C . 

Integrating (C.4) from x = 0" to x = 0+: 

where: 

^ 2mV 

nz 

Similarly,  integration of {C.4) from x = X" to x ^ X+ implies: 

rex4) - rex') = - ^{x). (c.n) 

Using {C.5),   {C,6).  and (C.7),  equations (C. 10) and (C. 11) yield: 

D.C + Be2k^D. cai5| 

Solving (C.8L   {C.9)s   (C. 1Z),  and (C. 13): 

B=3r   e-2kxD 
Zk 

„ IC.14) 

s.H^Jif D 2kT| 
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uations (C. H) have IL non-trivial solution onJy if: 

11   e i (2k - ti) , (CIS) 

Let s = 2k - t|.    Then (C* IS) can be written; 

e s *^ {C.16) 

Let c = e j,    Then {C. 16) becomes: 

Let Ms ^/t^a ; N = e    .    Equation (C. 17) is now expressed: 

±M
 = 

NM
^ tea«) 

There are thus two solutions to Schrodinger's equation.    Taking the 

positive sign of fG, 18)f  we find: 

M ^ NM = N " e TJCN) . (C. i9) 

The golution (C. 19) corresponds to: 

1 

k=|[l ^ 3   ' '    ^(N)] 

E+ = - K[ I + ei^Ca0)]   -. (C.20) 

2        2 
where K s m V /2lS   .    The negative sign in {C, 18) yields- 

MOM«*!    . (C.21) 

The solution of (C.2i) is clearly: 

g 
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which corresponds to: 

k = 0 

E.  = 0 . 

Hence,  this solution does not produce a bound state.    There is one 

and only one bound state,  given by (C. 20),    From (C. 3),   the total 

«nergy of tl^s state is: 

The equUibnum dUlance,  Xo.  is relatively close to X ^ 0.    Note that 

in the vicinity of X = 0.   (C. 20) implies: 

E+^4K::^X). ,C_23 

Nov.,   consider the «^- mi   ecule,   witb the Hamiltoman: 

* 2 

.V6(x2, .V6(x2-X).V6(xrx2)+^. (c.245 

Schrodinget's equation is: 

Ho*{xI.x2l.E4i(xi.x2) {C425) 

Smce the BI^« molecular ion had only one bound state,  we know th. 

the solution of {C.24) and |C*aSl    neglecting the electron-elect 

interaction,  is: 

ai 

ron 

Ft^m(C.5l#   'Co?,  ar.dCC,")f  using equations (C. 8),   (C. 9),   (C. 12), 
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and (C. 13), wm find: 

r 
kx 

m . . Ü^JlL e^   #  ^_-L e-fc* 
^ 

(-at.O) 

(o, X) (C.27) 

■kx 

L 
(X, Ot5j 

Taking into account the electron-electron interaction,  the solution of 

{C.24) and {C.25) is: 

2 
E = 2E+ + ^ + E' (C.28) 

where: 

v/   dxi ${x)r 
E's- »oe 

» 
[/       dx  {♦(x)!4 

-ac- 

Neat X = 0,   (C.27) and (C.29) give: 

E'* 2K(J --nX) , 

For larg« X.   (C.27) and (€.29) show; 

E* - 2K . 

(C.30) 

(C.31) 

Analogous to the case of the real hydrogen molecule,  the 

electron-e^ctron interaction is relatively independent of the distance 

between the H   ion«,  and hence doesn't affect the calculation of 

equilibrium distance in a major way.    Using (C.30) and (C.3I),   (C.23) 

yields- 

(C,29) 



IS? 

6K( l '"^x 
E -  i 

{X ^0) 

(X - *) . 

(C.32) 

Comparing (€.23} *ith (C.32},   we see that for the "H,," molecuJe. 

the equilibrium tiiatance is: 

oo , X    = 0.7fc X 
o o (0,33 

Equation (C. 33) f^hows that removal of an electron from a bonding 

orbital in "H^" increases the separaten of the ions by a factor of 

1.32,   very close to the value in the real case.    Hence,  the hydrogen 

molecule analogy used in section II D remains valid for delta- 

function interactions. 
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