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ABSTRACT

Several materials undergo vransitions from a semiconducting
to a metallic state at a critical temperature. Previous theoretical
attempts to understand such transitions have been gererally guali-
tative and have not beer able to account for all the specific experi-
mental results,

In this work, an explanation of serniconductor-to-metal transi-
tions is presented using a band model. It is shown thermodynamically
that the energy gap of a semiconductor closes down significantly with
the number of excited carriers if the gap has a large pressure coef-
ficient, as is found in several of these materials. This shrinkage of
the energy gap is due to expiicit variation of the crystalline volume.,
There may also be a constant volume carrier concentration dependence
of the gap, which cannot be evaluated thermodynamicaliy.

Two specific models are discussed. If the energy gap arises
from the splitting of the first Brillouin zone by an antifer: omagnetic
exchange interaction, the gap will decrease linearly wirhh the number
of free carriers. The relationship is demonstrated by means of a
one-dimensional model, a three-dimensional tight binding model, and
a virtual crystal approximation, In ali three cases, the same resuli
is obtained. An analogous situation occurs if the energy gap is due
to a crystalline structure distortion to lower symmetry. In par-
ticular, the pairing of ions in a one-dimensional crystal is analyzed.
The relationship between gap and f.ee carrier concentration is de-

rived for the two cases of a contact interaction and a Mathieu inter~
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action. The results found are quite similar to those when the gap
is caused by antiferromagnetism.

These relationships, together with the applicaticn of Fermi-
Dirac statistics te the conduction electrons, enabie us to calculate
the electrical conductivity as a function of temperature in two opposing
limits, the effective mass approximation and the limit of narrow bands
It is found in both cases that a singular increase in the carrier con-
cerntiation, and thus the conductivity, occurs at a given temperature,
This leads to the disappearance of the energy gap, and therefore to
a semiconductor-to-metal transition,

The transition temperature is evaluated in terms of the zero
temyp..raiure energy gap. A number of results, relating cxperimentally
measurable quantit-es such as the pressure cceificieni: < *he transi-

t on temperature and energy gap, are derived.

The experimental results dealing with the crystals which
exhibit sc.niconductor-to-rmetal transitions are presented, and the
predictions of the theory are tested. Very good agreement is obtained.

The theory, taken together with the available experimental
aformation, :s used to suggest possible band schemes for each of
fhe materials under investigation. It is found tha: the crystalline
symmetry in every case is compatible with an energy gap which arises
from either a pairing of cations or antiferromagnetism.

Finally, the effects on the theory of spin-disorder scattering,

polaron formation, and non-stoichiometry are discussed quantitatively

T
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INTRODUCTION

A. Transi‘ion Metal Oxides which are Insulators at al}

Temperatures

The transition metal oxides provide a striking example of the
nadequacy of simple band theory when an atternpt 18 made to predict
the ejectrical transport properties of crystals. Mcast of these oxides
are ‘nsulators [1], despite the apparent presence of a partially filled
3d band. The materials which remain non-conducting at all tempera-

tures shall be referred to as the NiO class. These include NiO, MnQ,

and F6203, Tre experimental situation has been rcviewed by Morinf_z}
and by Jcnker and van Houten {3}; the orly information of airect inter-
est 1c us here is that, where the magnetic structure has been deter-
mined, these oxides are all antiferromagnetic, and they are insulating
etk beiow and above the Néel temperature. We are, however, inter-
ested ‘n discussing the proeposed theoretical models,

Many attempts have been made to explain the non-conducting
nature of these materials. DeBoer and Verwer [l] assumed that the
movement of electrons between neighboring cations is impeded bv a
high potential barrier. Thus the 3d eiectrons are essentially localized,
conductivity being possible only via tunneling of electrons through the
barriers. Verwey [4] iater extended the model, showing that the
activation energy was due to the ionization of the cations.

Heikes and Johnston [5] noted that the observed ionization energies

oo
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are not large enough to account for the measured activation energies of
the NiG class, which are of the order of 0.5 eV. They suggested that
the activation energy should be associated with the mobility, rather

than with the carrier concentration. The activation energy in this theory
arises from Lardau trapping [€], which occurs when an electron is
iocalized around a lattice point in a polar crystal long enough to cause

a deformation of the crystal. The electron is then able to 1orm a bound
state with the potential well due to the polarization. Heikes and Jchnston
ascribe the conductivity to a hopping or diffusion of electrons from one
site to a neighboring site, which will occur when the lattice polarization
around both is momentarily the same.

Yamashita and Kurosawa [7] attempted to work out the theory,
starting with a Heitler-London approacii. Taey found it necessary to
assume that the eiectrons are iccaiized around the cations, and wers=
then able tc show that the electrons could be trapped by the resulting
iattice peoiarization, and that conductivity could occur by rueans of equal-
site hepping. However, nc reason was given for the localization in
the first place,

Anderson [8] , taking up a suggestion of Mott [9} » put the theory
on a scmewhat firmer footing by pointing out that the localization could
be due to the large correlation energy we should expect in a low density
system. Anderson called U the ener gy necessary to remove one
electrcn from a given cation and put it on ancther cation wh “h is far
away. is thus an intra-ionic Coulomb integral, and can be estimated
from thke free cation ionization energi 1. Anderson approximates U as

of the order of 10 eV, aithough there are reasons to believe thir is too

(8]




high. If U is larger than half the bandwidth, it outwelghs the kinetic
energy loss which coid be accomplished by spreading through the

crystal, and the electrons would remain localized. Although this argu-
ment appears tc justify the procedure of Yamashita and Kurosawa, it
too,is only a self-consistent hypothesis, since the presence of many

free electrons would reduce U significantly by means of screening.  Thus,
the large order of magnitude given by Anderson for U is accurate only
when the electrons are known to be localized, and it is possible for a
metallic state to be seli-consistently lower in total energy.

Holstein [10] has applied the theor, of polaron formation of
Frohlich [1!] to the situation in the transition metal oxides. A polaron
is z bound state of an = ertron and its associated lattice deformation
which can be treated as a quasiparticle moving througl the crystal .
Holstein considered in particular the "small" polaron, whose dimen-
sic..53 are of the order of a lattice corstant. The polaren will be "small”
if the electronic bandwidth is much less than the maximum binding
energy of the polaron, a constant which is proportional to the square of
the strength of the electron-phonon interaction. Holstein found that at
low temperatures there i1s sufficient overlap to form a polaron band
through which the electron, together with its lattice deformation, can
rmove. An unfilled polaror band carries a current which decreases
exponentially with increasing temperature. Since the width of the
polaron band is also an exponentially decreasing function of tempera-
ture, and since the polaron states have a finite lifetime, eventually
the point is reachec when the bandwidth is smaller than the uncertainty
in energy 3ssociated with the lifetime, and the bands lose their physical

meaning. Above this temperature, esitimated by Holstein as half the

|




Debye temperature, conduction occurs when the interaction of phonons
with the deformation potential causes ionic rearrangements at neigh-
boring sites, enabling the polaror to jump from cne to the other. This
mechanism is just thermally activated hopping of polarons,

An entirely different approach was suggested by Slater [12].
He retained the band picture and suggested that the antiferromagnetic
ordering can bring about an extra band spiitting. Slater’s argument
goes as follows: According to the Hartree-Fock approximation, an
electron will be repeiled much less strongiy by electrons with parallel
spins than by those with antiparallel spins. Since the crystal is anti-
ferromagnetic, each electron feels a potential which has the periodicity
of the superlattice rather than that of the lattice. Such a potential will
split the first Briiiouin zone in half, each half containing 172 N V states
for each direction of spin, where N is the concentration of cations per
unit volume and V is the volume of the crystai. Thus even when there
is one electron per cation, the first zone could in principle be filled,
the second empty. Two difficuities with this theory imraediately
emerge. The 2d band should be highly degenerate, particularly for
cubic laitices, such as MnO and CoC, and Slater does not attempt to
show how such crystals, containing 5 and 7 3d electrons per cation,
respectively, can have anything but a partially filled valence band,
even with the antiferromagnetic splitting. Furthermore, Slater gives
no explanation of the non-conductivity of the NiO class of materials
above the Néel temperature,

Recently, Hubbard [13] considered another band approach which

removed the latter objection. Hubbard showed that electronic corre-
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4 narrow band into two sub-bands,
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lation could result in the splitting o
analsgous to the splitting due to exchange energy in Slater's model,
but independent of the magnetic ordering of the systemm. Thus the
crystals, if insulating at T = 0, should remain insulating, even above
the Néel temperature. This correlation splitting is essentially a

manifestation of the Anderson effect [8], in that it represents a partial

localization.

B. Transition Metal Oxides which Exhib't Insulator-to-Matal Transitions

The lack of electrical conductivity is not the only enigma pro-
vided by the transition metal oxides. Another subclass, referred to
here as the V2Q3 class, consists of several oxides of vanadium and
titanium, which are non-corducting at low temperatures, but undergo
a transition to a metallic state above a critical temperature. These
are the materials with which we are concerned in this work.

The first hint of unusual behavior in this class of oxides came
when Perakis [14] discovered that the magnetic susceptibilities of VO,
and V203 each went through a sharp transition at a given timperature.
Anderson [15] found a specific heat anomaly in V,0; in the vicinity of
ISQQK, with a latent heat of approximately 700 calories per mole
measured over a 20K temperature interval. Foéx [i6] investigated
the electrical properties of VZ‘,OB’ and discovered a sharp increase of
a factor of 186 in conductivity at the temperature of the specific heat
anomaly. He also reported a volume contraction at the same point,

Fo¥x and Loriers [17] found a transition in Ti2O3 at about 4?5{’2{, the
electrical conductivity jumping by a factor of 10. Jaffray and Dumas [18]

verified the transition in VZOS’ and also reported an insulator-to-metal
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transition as well 2as a small contraction in volunie in VOZ at the tem-
perature of the magnetic susceptibility anomaly. Pearson [19] noted
an absorption edge of 0. 15 eV in a samplc of powdered Ti203 in KBr,
but did not obtain a break in the conductivity curve. He did find that
the conductivity as well as the lattice constints were rapidly changing
in the vicinity of 500°K.

The situation with regard to the electrical properties of the
lower oxides of titanium and vanadium was resolved by the work of
Morin [20], who performed measurements of conductivily as a function

of temperature on single crystals of Ti 03, vZOB‘ TiO, VO, and VO

2 2°
His results are given in Fig. I-1. As can be seen, all these materials
with the exception of TiO are semiconducting at low temper .tures, but
undergo a transition to the metallic state at a given temperature, which
we shall call To'

The experimental situation since Morin's work has been reviewed
in great detail by Feinleib [22} » and we shall at this point mention
only three important discoveries of -ecent years. Yahia and Fred-
erikse {22] were able to measure the Hall coefficient in Ti203, and
found that the Hall activation energy was virtually the same as the con-
ductivity activation energy., Abrahams [23] performed neutron dif-
fraction experiments on T1203, and determined that it was antiferro-
magnetic with a small moment of 0.2 Bohr magnetons per cation,
the Néel temperature being in the vicinity of the semiconductor-to-metal

transition. Mcst recently, Feinleib [24] performed optical measure-

ments on single crystals of stoickiometric, semiconducting V203, and
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Observed an absorption edge at approximately 0.1 eV,

The first attempt at an explanation of the sharp discontinu:iiss
in conductivity was given by Morin [20} » who adapted the theory of
Slater [12]. If these materials were semiconducting due to a band
splitting arising from antiferromagnetism, then a transition to the
metallic state would be expected at the Néel temperature.

Callaway [25] made the Slater-Morin model a little more quanti-
tative by studying the energy band structure of a body-centered cubic
antiferromagnet. Considering only the first Fourier component of
the exchange potential, a major simplificat’on, he found that an in-
sulating state exists whenever an interaction parametsr (proportional
tc the effective mass, to the strength of the exchange potential, and
to the square of the lattice constant) is sufficiently large. Neither
Callaway nor Morin discussed the nature of the semiconductor-to-
metal transition beyond noting that the band gap should disappear at
the Néel temperature.

There are three difficulties with the Slater-Morin theory,
outside of the fact that it has never been quantitatively applied to the
oxides of titanium and vanadium. Firstiy, the existence of antiferro-
magnetism has been demonstrated only in Ti203, and even in that
material the antiferromagnetic moment :s extremely small. Secondly,
no model for the structure of the degenerate 3d bands has been pre-
sented which explainz how T5203, V203, and VO2 can be semiconduct-
ing even with the antiferromagnetic spiitting. Finally, it has not
been proven that the energy gap must vanish with the disappearance

of long-range order; it is conceivable that the large amount of short

tf
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range order present until twoe or three times the Néel temperature 1s
sufficient to maintain the effective double periodicity seen by the
siowly moving 3d electrons, and thus maintain an energy gap.

A different approach to the problem was presented by Mott [26],
who proposed that there would be a sharp transition from an insulating
tc a conducting state at a critical value of the lattice parameter, Rc
Mott argued that a free electron and a free hole attract =ach other with
a Coulomb potential, V(r} = -eZ/e r, and form a bound state, similar
to an exciton, from which neither can participate in conduction. However,
if a large rumber of free carriers exist, the attraction between an electron
and a hole is a screened Coulomb potential, V(r} = «ezeoqr/cr. When gq
becomes sufficiently large, this potential becomes too weak for the
formation of bound states, and a discontinucus increase in the number

of free carriers brings about a transition to the metallic state,

Mctt [27] assumed Fermi-Thomas screening, and roughly estimated

O
R ~z —Ff——2.1A
m /m
where z is the number of 3d electrcas per cation, € is the dielectric
constant, and m# is the effective rmass of an electron in the conduction
band. Mott did not attempt to apply quantitatively his theory to the
vanadium and titanium oxides, but it is possible that a crystalline con-
traction at a given temperature could indeed lower the lattice param-
eters in such a way as to bring about a transition to the metallic state.

Since there i1s evidence of phase transformations at or near T{} in all

four materials which underge semiconductor-to-metal transitions,
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it is possible that this model applies. However, the temperature
variation of the lattice constants often produces changes greater than
those which occur during the phase transformation, but in the “ppos te
direction. Furthermore, the expression derived for R_ shculd favor
metallic conductivity in VO, where z = 3, over that in T:0, where

z =2, the lattice parameters and ionic radii of the two crysials being
roughly the same. Actually, the reverse :s the case, TiO being

the metal at all temperatures. Other objections to this theory wil

be presented in Chapter VI.

Goodenough [28] accepted Mott's hypothesis of a critical cation
separation, and proposed that, due to the anisotropy of 3d orbitals
and complex crystalline structures, localized and collective electrons
could be present simultanecusly in a given crystal. By considering
the entire class of transition metal oxides, he was able to estimate
RC ~2.9 A, Noting that the lattice parameters in the V203 class
are smaller than R , Goodenough [29] suggested that, due to direct
cation-cation interaction, all would-be conduction electrons could be
trapped in homopolar bonds at low temperatures. Above a critical
temperature, the free energy associated with a metailic state may
become lower than that of the bonding state, because of the extra
entropy associated with the continuum of electronic states in the meta]~
lic phase, and a transition would then cccur, Goodenough [30] did
apply his hypothesis to the oxides of vanadium and titanium, and was
able to account for many of the previcusly unexpl2ined symmetry
changes. However, the theory does not lend itself to quantitative in-

vestigation, and has other difficulties which will be detailed in

[
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Chapter VI.

Two recent theoretical discussicns are quite relevant. a:tlough
neither has been applied to the V,0; ciass of materials. Kohr [37]
‘eveloped a characterizaticn of the insulating state, which essentia::y
makes quantitative part of Mott's original proposal [9]. Kohn cen-
sidered a ring of hydrogen atoms, and showed that if the separaicn
between nearest neighbors is sufficiently large, one can express each
wave function as a sum of localized functions wkich do not overiap,
and such wave functions correspond to an insulating system. Kchkn alsc
investigated the Mott transition [27} by considering a ferromagnetic
simple cubic array of hydrogen atoms. If the potential between a
spin-up hole and a spin-down electron were a Coulomb attracticn, an
insulating spin-wave state is lowest, independent of the weakness of
the interaction. However, ior a delta funciion interacticn, a cr vica
strength exists, below which only a ccntinuum of states, characteriz-
ing a metal, is present. Thus, an insuiator-to-metal transit.on can
occur at a critical value of the latiice parameter.

Hubbard [32] extended his cwr theory of correlations in narrow
bands, and found that at a critical rat'c -f the bandwidth | Eb, t: the
intraionic correlation energy, U:

%

—

-
3
the energy gap due to correlation has shrunk to zero, and a semicon-
ductor-to-metal transition occurs. However, the energy gap shrinks
continuously as the ratio of Eb tc U ncreases, sc that siightly beiow

the critical value, the material has ar ‘nf'nitesimal band gap, whije

f
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just above the transition point, the density of states ai the Fermi
surface is negligit'y small, so that the material is a poor metal.
This type of transition is unlikely to be responsible for a change in
conductivity of a factor of IOB at ’1“‘__i as is found in V203 and VO,

It is possible that Hubbard's neglect of interactions of electrons on
different ions camouflaged the sharpness of the transition, but until
worked out explicitly, this remains a speculation. If the nature of
the disappearance of the energy gap is as Hubbard has found, then
Mott's hypothesis of a sharp increase in the number of carriers is
incorrect.

It is clear that all theories of ‘nsulator-to-metal transitions
have serious deficiencies when applied to the VZ(}S class of materials.
In this work, we shall attempt to present a model which cvercomes
the objections discussed above. We shall retain the band picture,
and assume the non-conduv ting state of these materials is that of a
normal semiconductor, having a filled valence band separated from
an empty conduction band by an energy gap. In Chapter II, we shall
show how such a gap can arise in the transition metal oxides from
antiferromagnetism and also from a crystalline s;tructure distortion
to lower symmetry. It will be demonstrated that in these two cases
the energy gap will shrink as carriers are excited across it, and the
decrease in the gap will be quantitatively estimated. A thermodynamic
argument will be presented to relate this decrease to the observed
pressure coefficient of the gap. In Chapter III, the theory of con-

ductivity will be worked out in two limits, the effective mass approxi-

mation and the limit of narrow bands. We shall demonstrate that a
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sharp semiconductor-to-metal trans.t.on accurs, and calculate the
transition teriperature in terms of chservable auantities, In Chap-
ter IV, the theory of Chapters II and 17 will be applied to the exper -
meuntal data on the oxides of titanium and vauadium. Certain reia-
tionships predicted by the theory wil! be critically tesied quani:taf ve y.
Chapter V will consist of suggested energy band models for the
materials investigated, based on a combination of the experimenta’
data available and the predictions of the theory. Finally, in Chap-
ter VI, we shall discuss the effects of spin-disorder scattering and
broadening, polaron formation, and non-stcichiometry, as well as
demonstrate additional inconsistencies with some of the cther models

which have been presented.
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Chapter Ii

DEPENDENCE OF ENERGY GAP ON

CARRIER CONCENTRATION

A. General Hypothesis

Consider an intrinsic semiconductor for which the top of the
valence band is separated from the bottom of the conduction band by an
2nergy gap, Eg' In general, Eg depends on the concentratcn of carriers

in the conduction band, n, and on the temperature, T:
E =E {(n T).
g 8(

At low temperatures, the concentration of carriers is aisc smai, and
we can write;

E -E -4¢T -8n
g e

where Ego is the gapat T=0, ¢ E-{—B;B.F )n, and B8 E-{;is}.r . Aithough
the term linear in T is respon »le for the major part of the decrease
in band gap at very low temmuerztures, it does not contr:buie to the
semiconductor-to-metal transition and therefore will be dropped. In
Appendix A, we shall show that only a smaiil error is introduced into

the calculation by ignoring this term. We are left with:
E =E -fn (2.1}

which is our fundamental relation. The remainder of this chapter will
be devoted to demonstrating the applicability of Eq. {2. i) in two
particular situations, where the energy gap is due to antiferromag-

netism and where the gap arires from a crystaliine structure distcrtien




to lower symmetiry., We shall evaluate 2 for both of these cases, and

show that Eq. {2.1) remains valid as n becomes relatively large.

B. Thermodynamic Argument

In this section, we shall present a thermodynamic czlculation
of the change 1n energy gap cf a semiconductor with the concentration
of excited carriers. This will provide us with a general expression
for B in Eq. (-.1). The first part of this argument follows ciosely a
recent paper by Figielski [33].

The differential form of the Gibbs' free energy for a system

where the number of particles may vary is:

dG=~SdT+VdP+JEpj de 2.2}

where Nj is the number of particles in the jth phase and p.j is the
cnemical potential of the jth phase. Treating electrons in the valence
and conduction bands as differeni phases and ignoring inner orbitals,

we can write:
? p.j de A ch tu, de . (2.3}
For an intrinsic semiconductor, Nv + Nc = constant, and {2. 3) becomes:
?pj de = (pc - pv) dN (2. 4)

where N is the number of carriers.

3 °c 82G |
Since SPIN S 3 NOD’ {2.2) and {2.4) give:
¥y =&Y, i ~<ap") (2. 5)
IN'P,T VOn'P,T '"BP'n,T 'DP'nT :

where n = N/V is the concentration of carriers. The chemical




potential, i must be calculated from the relation:

= » - B

B ® fm P E) f(—y—) dE
where n_ is the concentration of electrons in the valence band, p (E) is
the density of states in the valence band, and f(x) - [*+ i]‘}‘ The chemical
potential K., 18 determined from ar entirely analogous relation. It is
clear that at T = 0, i’ = Ev and B = EZ{:}r where Ev is the energy of the top
of the valence band and Ec 18 the energy of the bottom of the conduction
band. In general, H B is the change in free eneigy when an electron is
removed from the valence band and placed in the conduction band. It can

be shown that H_"H differs ‘rom EC-EV by small terms proportional to kT,

which we can essentially neglect. Substituting this result in (2. 5):

1,8V, 2K, 8E 8E .
LA U il 3 DT RS 5 RPN S (2. 6)

where Eg = EC - Ev is the energy gap.

Using the thermodynamic reiatinns;

BE 2E i 9 E
(Fa)p, 1= (3¢, 1 Gale, Tt (o, T
and:
8 E 1 8 E
TV 1 v a1
where x is the isothermal compressibiiity, we find:
3 E 8 E s E
1 8V
(¥5p, 177w (T, R e, r t (aly, o 207)
Thus, (2.6) and (2. 7) yield:

8 E 9E 2 3E

1
Coate,r =% (w1 ety g - (2.8)

1}

1




We express the energy gap for varying carrier concenirat:on
and pressure as:
E =E - fn -yP. {2.49:
g . fn -y
Thus:
K
( )n, T Y
Substituting (2. 10} in (2. 8):
9E Xf g E
. - S >
(5n )P,T--& +(5n;V,T' {2
But also from (2.9}, we see:
° Fg
('a'n )p'T 5 o 5- {2. 12!

Combining (2.11) and (2. 12}):
2 I E
Bt - gy, T Foty

This is the general thermodynamic expression for B. The first term
on the right represents the contribution to B resulting from ~hanges

in the volume of the crystal. This term can be evaluated easily from
the experimentally measurable guantit'es, y, x, and is always posi-
tive. The other contribution to B is an explicit dependence of the gap
on carrier concentration at constant voiume, and can have either sign

This thermodynamic argument shows that whenever there is a
pressure dependence of the energy gap of a semicenductor, the gap
must also depend on carrier concentration. Since the pressure co-

efficients of the gap in V20 and VO, two of the materials with which

3

we are especially concerned, are anomalously large, we expect a
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relatively large decrease of gap with carrier concentration in these
materials. But this argument demonstrates only that Eg depends

on the number of excited carriers. It does not say anything about the
validity of Eq. (2.1} as n becomes fairly large, nor does it indicate
the microscopic reasons for such a variation 1n energy gap. Therefore,
we now turn to specific models for which we can calculate express ons
for Bg as a function of n, These calculations will provide us also

with expressions for § which can be tested experimentaily.

C. Antiferromagnetism

Consider an antiferromagnetic crystal which can be described
by Bloch wave functions. Assume that the crystal is an insulator at
T = U because of the splitting of the first Brillouin zone by the doubly-
periodic exchange potential. In other words, we have an empty con-
duction band which begins a distance Eg above the filled valence band,
with Eg being a measure of the exchange energy. The lower band
refers to wave functions whose amplitudes are large at the sublattice
positions of the electron under consideration, whereas the upper band
wave functions have large amplitudes at the positions of the sublattice
of opposite spin. As the *emperature is increased from T = O, the
upper band becomes thermally populated. When an electron is
excited across the energy gap, the net magnetization on either sub-
lattice decreases, and thus the gap decreases with increasing con-
centration of carriers, Thus a relationship like Eg. (2. 1) can be ex-
pected to hold. In this section, we shal]l determine for how large n

Eq. {2.1) remains valid and also calculate the value of 8, We shall




begin with a one-dimensional model, since it can be solved in terms
of simple band parameters and the solution exhibits quantitatively
the points discussed above. We shall then repeat the calculation for
the case of a three-dimensional face-centered cubic crystal {such as
VO) using the approximation of tight binding. Finally, we shall
evaluate B in the limit opposite to that of elementary Bloch theory,

employing a virtual crystal approximation.

1. One-Dimensional Model

Consider a one-dimensional antiferromagnetic crystal, with N
ions spaced a/2 apart. Assume each ion contains one electrcn outside
the core and take the ion at the origin to have spin up. The exchange
potential has periodicity a, and thus the first Brillouin zone is
-n/a <k < n/a. In accordance with L, C.A.O. theory, the Bloch wave

functions are:

S1/R .
tidl(k,;:) = (?—) Cll(k) %elkna a{x - na} a
-l/z z b 1
+ (EN-) Czl(k) ﬁelk(n‘i' ;/Z)aa [X-(ﬁ+%)a}ﬁ
/ {2, 14}
-1/2 .
¢2(k,x) = (ZE) clsz) § ELne a{x - nal a
-1/2 , _
+(-§I—) czz(k) %elk(n+l/zlaa{x-(n+-§)a}ﬁ .

Assuming the ionic functions do not overlap, the secular equation 1s:

det !Hmn(k) - E 6mn§ =0 (2.15)

where:
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H (k) = T coskna [ dx a(x-na} H{x) a{x)
: n
H,, (k) = }é‘ coskna [dxa[x - (n + %)3} Hix} a{x - %a)

H), (k) = H, (k) Z cos k(n=%)a [ dx a{x-na}H{x)a{x-g_—a} i

Let:

i

a [ dx a{x - na) Hix} a(x)

n

8 =la[x-(n+3)a] Hx) alx - 32)

ﬁn =i dx a{x - na) Hix) a(x - é—a} .

With these definitions, and assuming nearest-neighbor interactions

only, (2. 15) becomes:

1 H

| cQ-E 2§0cgs-§ka;

o=

i, -
2{30 c.os-z-ka g, - E

=E2-{d +@)E+ag -462c082-§~ka

where we have dropped the subscript o. Solving the secular equation:

] ~ -.n 5
J-—“;c + fﬂza)“iuiﬁzcosz%ka
Ei{k) =

{2.:6)

a + @ a - §,2 2 2 1
5 -\/{——-2--} + 48 cos zka‘

Consider an electron with spin down; thus ¢ > @ . Also,
cousider the narrow band case, where P« la - 2 1. Then (2. 16} may

be written:




E‘i{k} = a + -
2,7
4{32 coszé-ka
E (k} = £ @ == j.k
v a - €

where Ec(k) refers io the conduction band, Ev(k) to the valence band.

From (2. 17}, we can immediately write down the important band

parameters:
Energy Gap = Eg =g -2
. = aal A 2 3
Band Width = 48“/(a - 2} = 4P /Eg (2. 18)

7,

* )
Effective Mass: m_=m, =m =Zﬁz/Eba .

h

In the one-dimensicnal case, the snergy gap is exaciiy the difference
in exchange energy between 2 spin up and a spin down electron.

valuating the wave functions corresponding to electrons in
the valence and conductinn bands, we cbtain:

2
o

(e - @)

2&32 cesz—%ka ZBcos - ka !

i
i
-

i
i 28 cosé-ka

2?:2 cosz-z- ka
,{ a - ¢ -

2
1
H ia-g}z
\

i2. 19}

Equations (2. 19) lead to:
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Equations {2. 20} can be used to give us some nsig

antiferromagnetism. If the bandwidth is small compared to the band

)

{

gap, then the average spin on each sublattice will be clase 1o i 172,
and neutron diffraction experiments should show an antiterromagnetic
moment near one Bohr magnetor per cation  However, as the band-
width gets to be of the order of magnitude of the energy gap, much
lower values for the sublattice magnetization can be obtained.

In connection with this, it is useful t- investigate the exact
solution, (2. 16}, rather than the narrow band approximation, {2.17).

Although the energy gap remains exactly E = a - 2, independent

of the bandwidth, the general solution for Eb fe
E Leal 1/2
By=f s =) -1

E
E

Hence, as B approaches Eg’ the real bandwidth is smaller than the

value given by (2. 18}, When B=E /4,  E

g b 3

- 0.21E _; when 3= E
5 = '
= i.6E

The exact sclution, (2. 16}, can be most simply discussed

in terms of the parameter § , defined by:

Ly

48 cos -y ka

~

a -4

tan 8 =

Th 3 solutions for 1 s <5 = <8 > an be
e exact _Lfc, ._Lfv, 2 e and Sz . can be

expressed:
cos 9 53 :9_ \
¥ = z ¥ = " 2 !
€ 8in 6 © cos oy
= . =z
i _ i p
<Sz>£ = cos 8§ -.Sz::_—* - cos §
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Thus, the average vaiue of Sz. at the botiom of the conduction
band is alwavs exactiv 1 /2. However, at the top of the conduction
band:

P 21 -1/2

o
g

%]

[RUPRo—

3]
E;..
i
8y

1

Y

As the ratio of bandwidth to band gap increases, the average value

of S at the top of the conducting band decreases monotonically.

When E, = 0.21E , <8 >=10 34, whenE =1 6E |, <§ >=10.09
b g’ z ' b 54 z

It is clear that the average values of Sz in the valence band are

just the negatives of those in the conduction band in the one-dimensional
case.

At T = 0, the valence band is exactly filled, the conduction
band completely empty. Thus, the magnetfization of the sublattice
where the spins are down at T - 0 is given by the sum of <Sz) .

over all points in k-space:

T Z
o= Y Ly css§3p8=
k
Clearly, as the bands gel wider, the tctal magnetization on
each sublattice decrezses considerably In the limit where the

bands are much wider than the gap, the zverage sublattice magnet-

ization goes to zerc. In other words, the antiferromagnetism
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becomes undetectable when the exchanze energy is much smalier
than the overlap between nearest neighbors. We shall return to
thiy point later,

Calculating from {2, 20} the change in spin as an electron 1s

excited across the energy gap:

_ 2]
ﬁSz(k}w I - £ COS zka

4
:1-;{I+(toska}, {(2.21%
E
integrating (2. 21} to find the net change in spin when n electrons
have been excited across the gap:
T j}a Eb
as () =% [ dk[1-42 (1+coska)]
24
n AT |
=2 (1 55’5’.),}5_ Sf_;_?“
N E A T
4 g
since n/N =1 - ka/n. Expanding (2.22} in powers of n:
n Eb _{Z (n
&Sz(n)=r§ E-'%— 'ﬁ ‘;‘.s. =, e
The first term is the major contribution, not only because n/N is

usualily small, but also because we are considering the situation
where « E _,

I'lb 1

The assumprion is now made, in view of the fact that the
energy gap is a direct measure of the exchange energy [see (2. 28}] .

that Eg can be expressed in the form:

P

o
Hl




1 , . -
= B4 = 3 24
Eg m nﬁ ‘nﬁ I}U ( ] }

where ng is the number of down spins and U is an average exchange
integral. What (2.24) says is that the exchange energy s porpcrticna!l
to the number of pairs of parallel spins, the assumption hers is that
each electron sees the spins of all the otker clectrons i the band, a
hypothesis consistent with the spirit of band iheory. We can evaluate
U by noting that at T = 0:

U=2NE/[N/2 (N/2 - 1)

= 8 Ego/ iN.

Thus (2.24) become:

e o, 2
"‘g = —ﬁ%“ (nB - ng) .

tiiiny
4]
L

(V]
W

o (_"/ 5 o= S i - e i LT T '
Since ¢ Sz-‘” (na nﬁ)/ZN and N =n_ + 8’ where n, is the numbe: of

up spins, (2.23) and (2.25) show:

2
azg=-4ggo[§+,§§%f§;3+ .]{1+§}
4
(2. 26}
2
~ n Ebtr n
*Elnt e TR

since N ~ 0(1023) » 1, Equation (2. 26) indicates that the energy gap
will close down linearly with mumber of ex~ited carriers for quite a
large range of n, In the limit of narrow bands, all terms of higher
order in n are negligibly small. Furthermore, even when the band
width is of the order of the gap, the first correction term is an order

of magnitude smaller than the linear term up to values of n/N = 0, 3,

Jh‘
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This result tends to jus:ify the use of +g_aticn (2.7, in later chapiers,
From (2.26}, the value of f for a one-dimensional antiferromagne:

1§:

oy
[RY
rw
-
St

8 = 4ESO/N.

2. Three-dimensional Model

Muich of the calculation of the three-dimensional model is
entirely analogous to that of the one-dimensional problem. We return
to the use of n and N as concentrations of excited carriers and cat.ons.
respectively, and consider thz case of a face-centered cub/~ lattice
of magnetic ions with spins antiparallel in alternating (l1!l)-planes.
We shall assume that there is one 3d electron per cation outside the
core and that this eleciron can be descr bad by a non-degenerate
Wannier function due to a slight distorticn of the lattice. This is a
good representation of the situation :n VO. However, the calculation
is virtually unchanged by taking another struclure, such as corundum,
or by choosing a larger number of 3d electrons per cation in a degenerate
band. In the case described, energy gaps due to the exchange potential
appear at the surfaces of the reduced part of the first Brillouin zone.
Thus, if we take a cation of spin up at the corigin and one of spin down
at p = (110) a, energy gaps appear at the planes k - p =tn/2, In
three dimensions, it does not necessar. y follow that there is a real
energy gap in the density of states, and these materials in principle
could exhibit semimetallic rather than sem conducting behavior. It

i~ clear that when overlap is small compared to the exchange energy,




the bands wili be narrow and a rea! gap will occur.

But this 15 nat a

necessary condition for the existence of 3 gap. (Counsider a non-

magnetic crystal with no exchange potential, and assume that E(k)

has been calculated for the {double-sized) first Brillouin zone.

the exchange potential is turned on, this zone is split into two.

When

I

the original energy levels in the outer half of the large zone were

higher than those in the inner nalf cf the zone, then 3 gap exists even

for a relatively small exchange energy. Such a situation could occur

for the asymmetric 3d electrons in a low symmetry lattice, as well

as in special highly symmetrical lattices, such as body centered cub:c.

We shall discuses this further in Appendix B, where attempts at energy

band calculations will be summarized.

The L.C.A, O, calculation proceeds au in the one-dimensiona!l

case. Asz before, we take cvne 34 electron per cation. Let I—fa be the

positions of the ionz whose d electrons nave spinup at T = 0, and

m—f

let Rﬁ be the positions where the 3d ele .rons have spin down.

the Bloch wave funciions are:

iK: R
o, @& = (B e, e tuE-e

2 ik« R o
+ f;c;‘ e w(F - KB
8
Thern:
Z[H_ (k) - E(k) & (K)]c (k=0
where:

Then

{2.28;

{(2.29)
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%= oo f a2 : s st

H {(k}= Z cosk- R HE = Fa i+ H rig r - }

mn R ™ r mn m m
m

3 - B 4 = = 5= Pl 4

A {k) T cosk* R Jdfu iriu_ir-R_1}=

mn R m n “m m mn
m

taking an ion of type n at the origin. L.et the origin be the site of a
spin up ion, and let T = ;;1 be the positions of the nearest-neighbor

spin down ions. Then, in the nearest-ne ghbor approximat:on

H“{_Q} =i + @, f;‘ec:s k- ;;
sz(i) =20 + 31 ?{_GS K- p
Hl?,(g) = HZII_I_Z} = ﬁl L cos K+ pt
where {5; are the positions of the nearest-neighbor spin up 1ons. and

¢ =Jdrulri Hﬁﬁ{r}p(r

Q

P -.{d-. e -tf’i;—-i ,-.._'7__—@ ,‘_}

% B rp{rr-§!‘§:}§ Tip!ir = ol
cl=_{drp(r;H§c Tiu{r ~ g}

e [ dTu(T - H (Tiuwif-F-R
1 .{ B P’ Ba M p }
al_:jdrp(r-p}tiﬁ_}i? - 1_?_:31"

We do not know where n k-space the top of the valence band
and the bottom of the conduction band are. From our previous dis-
cussion it is reasonable to assume tha® *hese points are both some -
where on the planes k -;; = tn/2. However, this is not necessar:ly

the case. For simplicity, we shall assume the simpiest situa®:on:

the conduction band minimum and the vaience band maximum hoth




are at k = 0. Since we are using this calculation primariiv to evaluate
the average change in spin as electrons are excited across the gap
and since only the zeroth order change will turn out to be significant
in the evaluation of B, no error is introduced at this point. The
calculation has been repeated using more physical 2ssumptions about
the band extrema [cfmductisn band minimum at k = % {110}, valence
band maximum at k = - (111)], and it was found that only the higher
order terms are affected. Near k = 0, in the (111) direction, the

secular equation {2.29) can be written:

8.2.2 o 2 2
¢°+ai(6-§ka)-E _ﬁl(b-}-ka)
o = (2,30}
4 32 2 ~ A S w2
51(6-§=ka) ao+al(6--§ka)-E |

As before, we consider an electron with spin down and assume that the

bands are narrow compared to the gap. Then the solution of (2. 30) is:

oy al 2
368 8 ) 2 2
Ec=ao+6¢zl+~-ﬂ +{-341-————’;—-}ka
a -« a ~a
o o o o
- 16z {2.31
3685 B
_n i 8 ~ 1 A
Ev-co'!'él- = -[gcl-——T}ka .
g4 -« a -a
o o o o

Equations (2. 31) show that the assumptions about the band extrema are
self-consistent only if @ 1 is negative and ‘?1 is positive. The band gap

is then:

~ . A 2 ~
Eg-(aoeco)-l-b(al-cl)+72ﬁi/(ao-uo}‘

The corresponding wave functions are:




T
]

& 2 22 68, 2 22
I*ﬁﬁ;(i-%khab} : — ={=}ka_§
fe - ) ¢ -a
o o o o
iijt; g;,av:
2
68, 2.2 2 L 2.2 2
- : {1 =§‘& a } In , Py ? H gi‘- a
g - g e -a i
o o o o
2.32
Equations (2.32) lead to:
2
> 1 365 h D 3
CE ST L (1-2,2.3
N 27 ¢ 2 E =3 9
o o
2. 33
=l
36
~ =_1 1 4,22
".SZZV ‘3‘-1' ——'—-—q -a\ (I gka );
o o
Thus:
2 &
~ 7285 32¢ .
éSz(k)=1- 4;2%» {;?ka
(ao-co) {a -agi
- K 2 2
" / (n) a° : 7285 328 3 .,}
A5 (n) = —g [ I- — 4 -k a”
z N J Br e _-¢ i (e -2 )
0 ' G o 'S}
. x 2 .
7287 24 3. ,
= 1 (e - )2 - e -a )° g -
&) 8] O s ] 3

Using the same assumption about the form of E as in the one-

dimensional calculation:

E 443" 2 8, (2.35
g - NQ {nﬁl - v P

where V is the total volume of the crystal. From (2. 34) and (2. 35}, we




obtain the result:

g go 2
: s al - <2
4E 72p 2.5/3 .2 g ;
3 o f 1 32{677)}" " a 1 5/3
-Egc -+ i {} --_——ﬁ-_z] n+.—_§.——_f_ -m,ﬂ,izn }
{da-co (ao-a{);

{2.36:
Equation {2.36) shows that B in (2. 1) is a constant, independent of n,
to withir terms of the order of the square of the small quantity,
535{30 - :‘c}. The large coefficients of these terms should not be
disturbing, since in Appendix B we show that the bandwidth is greater
than 12 gi , while the band gap is considerably smaller than {ua - ’30).
Thus, the valve of 72 512;{ {a.o - 30}2 18 @ good deal less than haif the
square of the ratio of bandwidth to band gap, which we expect to be
itself small in the materials under consideration. Therefore, equation
{2. 1} will remain valid over a relatively large range of n . The
riirrower the bands are, the larger the range of n for which (2. 1)
holds. From (2. 36}, the value of P is:

i = : f , ,
8 4223‘1\%, L 5]

Coraparing {2. 37) with the restlt of the one-dimensional calcuiation,

{2. 27}, shows that the valu= of $ iz the same. Note that in the limit

f narrow bands, a, = ’31 =Py = 0, and (2. 37) is =xact within the

validity of {2 35).




3. Virtual Crystal Approximation
We shall recalculate B using an entirely different model but

maintaining the spirit of the Hartree-Fock approximation. We con-

sider metallic 1ons with spins ordered antiferromagnetically
at T = 0. Let an ion with spin down be calied type A, a spin-up ion
type B. Consider the sublattice where ail spins are down when perfec:

order exists. In the wvicinity of an A ion. an electron with spin up sees

A S miiarlv

q + .
a potential VA, whereas a spin-down electron sees V

V% and '4’1'3 are the potentials in the vicinity of a2 B ion seen by a sp.n-up

W,
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. . = . = afl | =% | ¥ 2al E
and a spin-down electron respectively. 7t is clear that 7, = Vg and
YA T VB. For simplicity, we shall take the case of one 3d elertron
per cation, Since N is the total density of cations. the density on
ach sy - H H o
each sublattica is N/2.
The average potential seen by an electron with spin up on the
sublattice under consideraticn is:
2z + ¥
Vi = n, v, + '
s FmaAVatrpVp
i2.38

2 + -
_;\—:—(nAVA%nBVA}

where Ny is the number of A ions on the sublattice

: g is the numbker of

B ions. Similarly, for a spin-down electron:
vi =% (n, V +n Ve
N A A BB

A
Lo
e

2 + =
--&;(nAVA {»nB‘v&} .

The average exchange energy is then just the difference hetween (2. 38

and (2,39}, or:
. X - 2 3 £ + i I Z e
<Vex>»ﬁ(nA=nB} (V- Vai- {2.40:

For perfect order, n, T N/E, np T 0. and:

~ . -
{vex/Tze B VA - VA iy

For complete disorder, n, =ng = N/4. and:

(vex>=0.

Since iy + np = M/2, and the number of intrinsic carriers is just the

aumber of ions with spin up on the sublattice, (Z.40) can be written:

it
I




V. _S=Ev S {1 - 4n/Ny. {2.4

- = exf{"{:{?

If we assume that the energy gap is proportional 1o the average exchange

energy. as was jound in {2. 18}, then {Z.41} becomes-
E =E (1 - 4n/N}. {2,
£ B8O /

Thus § = iEgﬁfS; exactly the same as found in equations {2.27) and
{2.37) for one 3d electron per cation. It is clear that if there are z 3id
electrons per cation filling the valence band, the resuitr far 8 in the

above approximations would be:

2 = . A
B %Ega,f:‘i,

D. Crystalline Structure Distortion

The existence of antiferromagnetism is not a necessary condition
for the applicability of {2. 1). The relation can also be shown to be
appropriate when an energy gap is caused by a crystal structure dis-
tortion o lower symmetry. This type of gap can arise from an energy
gair due o kemical binding — the lower band may be thought of as a
bonding ba tae upper an antibonding band. Excitation of an electron
across the = rgy gap decreases the gap because the excited electron
no longer contributes to the chemical binding. Thus the situation is
inalogous to the case of an antiferromagnetic crystal dealt with in
section C. However, the evaluation of B is more difficult when the
gap 18 caused by crystallize distortion. In this section, we shall cal-
culate expressions for §, using simple one-dimensional models, but
employing as much as possible the physical properties of the vanadium

oxides to which we expect the theory to apply.

k=

41’;
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I. Delta-iunction Interaction
Consider a one-dimensional crysial with tws cations per unt
cell at low temperature. Once again. we shall examine “he cases sf ane

3d electron per cation in a non-degencrats band, the case of lars

concentrations of 34 siecizons in degenerate bandg is entirely anaio-

[

gous.
In accordance with these assumptions. we place ions at pesitions

1 -2¢€¢

={}+ ~ lja

>
b

I.2¢ce.

4 s U-—5—15

Here € is a parameter which ranges frem 0 to i/2, and refiscts the

zero temperature deviation from the monien c situation the & are

Mol

parameters which take on valu=s from [ to 0 and indicate how the < 5

f
1

change positions with increasing temperature. In the case under con-

fiaits

. highk tem-

sideration, ¢. =l forall jat T = 0. ard = Qforall j a
; #

perature. The crystal is semicondu:ting due to the extra BFand gagp

hnq

brought about by the distortion from cne cation per un't cefl. Eack of
the assumed conditions is true for ?2(}3, which undergoes a structure
change from monoclinic to trigonal at the temperature of the serm -
conductor-to-metal transition.

To begin with, the simplest interaction we can write down s

a delta-function potential:

— I -2¢¢. 1 -2¢ge_
V(x)"'vgif{‘s{"‘{i? z _1}3}45{;-{}___4___.2%;}

This is essentially the situation in wh.ck the Coulemb nreractiorn s

fumd

L
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very strongly screened, which is not too far from the case where

an extremely high dentity of free electrons exists. When the ¢ ipk
independenc of j, Vix) is pericdic and we can solve Schrod nger's
equation exactly; when the aj depend on j, Bloch states are no longer
eigenstates, and the problem cannot be solved exactly. Consequentily,
let us assume & *v for all j. Then Schrodinger's equation may be

written:

N

~Im VIt Y, ;&[G(x-jaHé(x-ja-b)]q; =Ey (2.43)

wher:b=(1-2¢e)a/2,

Thus:
$.x} = A sin Yy, + B cos Yy v “x < b)
${x} = A’ sin Y, * B cos P (bh< x <a) (¢.44;

where yz =2m E/l‘iz. Bloch's theorem gives:

Bx) = e (kx) 2. 45,
where:

pllx) = plkix +1.a)] .
Ther:

¥la) = K2 1 (0)
| (2. 46)
(b} = ' *P | (kb) .

But from (2, 44) and (2. 46):

4




hord
L

${0) =u{0} =B

${b} = A sinyb + B cosyb = A" sinyb + B’ cos ¥b
{2,47,
. Elkb}i{kb)
#(a) = A' sinya + B' cosya = B elkd .
Integrating {2.43) from 0 to 0
$(0%) - 407y =27 ¢0) = 2B 2. 48
where A\ = mVo/ﬁZ. Similarly, integrating {2.43) from b to b
$'bT) - b)) = 2h4ib) = 2X[A sinyb + B cos yb]. {2.49;
Fram (2.44), we see:
$'(x) = Ay cos yx - By sinvx {0 €x < k!
{2.50;
$'(x} = A'y cas yx - B’y sinyx (b€ x < &}
while from (2.45):
$Hx) = e-lka $'{x + a}. {2.5¢
Comb:ning {2.48), (2.49}, (2.50}, and . 5
~-ika ) ) . .
YA - e [A'y cosya - B'y sin ya] =2\ B
A'y cosyb - B'y sinyb - Ay cos vyb + By sinyb 12, 38
= 2\ A sinyb + B cos vbj .
The secular equation is obtained from {2,47} and (2.52):
; sin yb cos yb sinyb - cosyb
0 ika : B
e sin ya - cosya |
0= §
Y cika =2 eika Y €O08ya ¥y sinya §
2% sinyb +y cos yb 2k cosyb -y sinyb y cosyh Y sinyb §

ka

=4).2 e'*® sinyb siny (a-b}+4§f_XeikacosyaAPZYZelkatOSYa-\;zf'éétfz'kai. {2.53




Solving (2. 53) for cos ka:

2) 1% |
coska = cosya + - sinya + -3—1. sinyb siny(a -b}. {2.54;

Fo. . reater clarity, let K =ka, y =vya, z = \a; recall

2€ = (a - 2b)/2a. Then (2.54) becnmes:

siny(%-e‘.a) siny(g— + €qa)

cos K = cosy + 2z L3
y y y
{2.55)

Equation (2. 55) gives the energy band structure of the crystal. We
still have two parameters at cur discretion, the strength of the inter-
action, z, and the amount of distortion, €. Since we wish to apply
the theory to narrow band materials, we must chcose z relatively
large. A good choice for € is € ~ 0.01, the distortion present in V203.
The enzrgy band structure at T = ) (@ = 1) is plotted in Fig. II-1, for
z = -60, € =0,009., As can be ecen, the bands are narrow. In this
case, the relevant energy gap is narrow also, as we might expect

in V203. As ¢ decreases, the gap shrinks, [n Fig. II-2, the band
structure is plotted for ¢ = 2/3; Fig. II-3 shows E(k) for « = 1/3.
Clearly, the gap must vanish as ¢ goes to zero.

It is important to demonstrate that ¢ decreases with increasing
carrier concentration. In the distorted state, the wave functions of
electrons ir. the valence {bonding) band have larger amplitudes in
the region where the caticns are closely spaced, whereas thiose of
electrons in the conduction (2ntibonding) band have iarger amplitudes

in the region of wide spacing. Thus, excitation of an electron across

the gap removes charge density from the closely spaced region.

36




d6H
45—
44/
43—
42—
4| —
40
S -

38

37

[

AARERRRRTERRTRER

FIG. II-1

-1 0 ! 2 3
ka

ENERGY AS A FUNCTION OF k
2=-60, €=.009;, a-=|




3

" r///J////////#///// o ,_,V///////V////A ~ '
L m
T e
- | | | | | | | l | il
T L o) o P ) (o)) w P
W % o <t <t < < <t Ly Op "
w

009; a=2/3

-60, €

FIG. I-2 ENERGY AS A FUNGCTION OF k.
Z =




- . ﬁ,.,_r_,,_w?/ﬁ,wé__u&s,,, 1 _hﬂn,,.,vﬁ//fﬁé_l!; rm. «;\ﬁ _”_,_“h_,““ﬂfw/////;ﬁo//w///,é y , -~
|
| ,i
., J | | _ _ \ | | I I H
s ¢ ¢ § ¢ ¢ ' 8B 8 2 &

AS A FUNGCTION OF k.

ENE &~

FIG O-3

={/3

a

. -€0; € =.009;

Z =




40

Consider a hydroger molecule. With both electrons in bonding orbi-
tals, the equilibrium distance between the hydrogen ions is 0. 74 5&,
when one electron is removed, we are left with the hydrogen molecular
ion, H; for which the equilibrium distance 1s 1. 06 X, The ions thus
move apart as an electron is réemoved from a bonding orbital. Of
course, the hydrogen molecule is made up of ions and electrons which
interact by means of a Coulomb potential, rather than the deita-
function potential with which we are dealing. Conceivably (ais could
make an important difference. Consequently, the hydrogen molecule
analogy i# analyzed in Appendix C using delta-function interactions. It
is found that the equilibrium distance of “HZ“ is 0. 76 of that for ”H;”,
which is roughly the same as the 0. 70 ratio for the real molecules.
We conclude that ¢ decreases with increasing concentration of free
carriers. It is clear that ¢ vanishes aiter N/2 carriers are excited,
ince the charge density between all the cations is the same, and thur
the cations must be equally spaced. Thus a decreases from Ito 0 as
n increases from 0 to N/2. We shall assume the simplest possibie

behavior for @, the linear relationship:

g =1-2n/N. {2.56)
The resul of an involved calculation, to first order in /N, is:

Eg =3.3(}-3.1n/N}.
The value of B is thus:

p=3.1E/N. (2.57)

It ise worthwhile also to caiculate P when the bands are narrow

[l

LR

e




compared to the energy gap. For this purnose, we mnvestigated the
case where z = -6, ¢ = 0. 15 The band structure is shown in

Figs. II-4 through 1I-7 for a - I, 2/3, 173, and & . It can be
seen how the energy gap sh:inks to zere with decreasing o ., while

the valence and conduction bands become wider ard move towa is

each other. The result for the variation sf E  is:

[ {41

Hence:

B =37E /N {2 58}

[

In general, B was found to be insensitive to changes in the bandwidth
for a constant band gap, however, B was sensitive to changes in the
gap, varying [rom .6 Egg;ﬂ"i for narrow gaps to 4.9 Egg;’?\;’ for the
widest gaps investigated.

Figures [I-4 through II-7 can £ive us some insight into the
nature of the distortion. Figure II-7 shows the band structure for
the undistorted situation, where there is no gap, but rather a half-
filied band. The distortion can be looked at as the band generalization
of the Jahn-Teller effcct. When the bands are wide, a Jahn-Teiler
distortion would just introduce a small gap at the ends of the reduced
first Brillouin zone, resulting in only 2 small gain in electronic
energy. This gain would quickly be svercome by the loss in strain
energy, and the distortion most iikely would be sufficiently small so
that a real gap in three dimensions wouid not aceur. However, :n the
narvow band case, the distortion has an effect on all points in

k-space, lowering the energy of tne eatire valence




il

-i6

-3&

-40

-48

=i —F | | |
52'3 -2 -1 0 { 2 =

i = r 3 5 E 3
= —
= —

ki
FIG I-4 ENERGCY AS A FUNCTION OF k
=-6; €015, a:=L

r——




s
",

-2 — =
-16 | =
20— =
-2&___ - —
e ?’5
=
;
’/
-28}— 4
Z
ZT
-2} =
£Eg
-36H =
40 ;,—l
=
7
/:;’
|7
=== =
== =
-52 | i | i = 1
= = ! O = 2
K3

FIGI-5 ENERGY AS A FUNCTION GOF k
Z==6. €015 a=7/3




-24 |-

-32 —
-36— | Eg
7
2
-0} 2%
%
A
—/ 2
-44}— .
-48 | —
55 L 1 | | |
-3 -2 -1 0 1 2 3

FIG. -6 ENERGY AS A FUNCTION OF k.
2:=-6, €:=0.15, a=1/3.

i3



~24l-

m

-36

-44}—

-48}—

-52 U

l | | |

S

KRS AR RN RN NN AN

~g = O { 2
ka
FIG. -7 ENERGY AS A FUNCTION OF k

z:-6, €:013, a:=0.

44a




BLANK PAGE




{
i
45
%
2 T
i
&
Bma” V 2n 2w
§ = —s 55— C0S — X_=8_ CO5 X
“ — & O O ) O
w h =
2
o Zma
£ = S5 E.
Then (2.61) can be written:
m [ 1 > ; z2 25
‘-5»"(2)+LE+~Z-SCOS .;z]ali(z) =0, (2.62)

Equation (2. 62) is just a form of Mathieu's equation, the eigenvalues
of which have been tabulated [34]. Take s, = 100, and for simplicity
assume that sufficient electrons are present to fill the lowest two
bands, leaving all higher bands completely empty. Set £ = 0.0},

the correct value for V,0 A long cal-ulation shows:

3
3.5n
Eg:0.30[} TN }
Hence:
: _ = , >
B=3.5 Ego/i\z. (2.63)

For a Mathieu interaction. the value of § depends somewhat
on the number of electrcons present and strongly on the amount of
distortion €. It was found that £ increases for decreasing €. In
many ways, the Mathieu interaction is inferior to the delta-tunction
interaction for our purposes. The Mathieu potential 15 a very weak
attraction, and at high temperature actually vanishes, leaving the
free electron Schrddinger’'s equation. This results in a band struc
ture where the bands are wide and the gap 1s narrow, just the opposite

of the physical situation to which we want to apply these results. At




low temperatures, this could be remed;ed by using extromely large
vialues for s, howeve1l, no tables of Mathieu functions exist for

s > 100, so such calculations are not practical at present.



Chapter IiI

CALCULATION OF CONDUCTIVITY AS A

FUNCTION OF TEMPERATURE

The electrical conductivity of a semiconductor can be expressed:
T =nep (3. 1)

where n is the concentration of excited carriers, e 1s the electronic
charge, and p 1s the mobility of the carriers. In this chapter, we
shall assume that Eq. (2.1) is applicable, and calculate n as a function
of temperature. We shall evaluate n(T) in two opposing limits, the
effective mass approximation and the iimit of narrow bands.

Let us take the bottom of the conduction bard as the zero point
of energy. The probability that a state with energy E will be occupied

by an electron is given by the Fermi function:

1 ;
fe(E) = ‘E'EF . (3,2)
£ S + 1
Clz2z:ly, the probability that a state i1s occupied by a hole is:
fh(E) =1 - fe(E)
1
= (3.3
EFsE
e ¥ + 1

Let pC(E) be the numbe* of states per unit vcluie between energies E
and E + dE. Then. v sing (3.2}, the concentration of clectrons in the

conduction band, n, is given by:




n=J dEpC(E) - E . (3.4)
0

Similarly, defining pv(E) as the density of states in the valence band,

and using (3, 3):

-E
4
p = [ dE pv(E) —E—_—IE——— (3.5)
F
-0 _-}ET_-
e + 1

where p is the concentration of holes in the valence band. For an
intrinsic semiconductor, the condition of neutrality reguires n = p.

This condition determines the Fermi energy, EF'

A. Effective Mass Approximation

We first consider the situation where the valence and
conduction band structure can be well-represented by ellipsoidal
constant-energy surfaces. We can then define densitv-of-states
effective masses, m_ for electrons, m for holes:

h
* /3

1
m = M(ml m, m3)

where m,, m,, m, are the principal values of the effective mass
tensor, and M is the number of equivalent extrema. The densities

of states are now given by:

2m_ 3/2
1 e 1/2
(E) =——2-(--—-2-—) E (3.6)
Pe 21 1}
2m, 3/2
1 h 1/2
(E) = —= (—=) (-E_ - E} (3.7)
pv 2;2 h g
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Equations (3.6} and (3.7) are always true near the band extrema.
However, for large values of m and W, they probably do not re-
main valid for a very large range of energy. The effective mass
approximation assumes that these relatinns remain applicabjz for
ali values of E which have finite probability of occupation at the
temperature under consideration. Thus, the effective mass approxi-
maticn is a good one whenever 'EF‘ » kT, and m is not too large.
In view of (3.6) and (3.7), {(3.4) and (3, 5) yield:
e 7
) 2m 3/2 El/{,
ns—s (—s) dE 588 > {3.8)
2w h* F
0 T
e + 1
A 2
, 2my 3/2 e (e -pl/?
p=—s (—5) dE —g B . (3.9)
2’ e ErE
e 5 + 1
We first consider the case where |E - EF I » kT, and Boltzmann
statistics apply. Then, the exponentials in the denominators are
much greater than unity, and (3.8) and (3, 9) become:
E
F o0
2m_kT 3/2 —=
n e I.,l_' ?’Z } o [ dxxl/ze'x
2n” h 1y
E
2m kT 3/2 &
H e Tk
mh
EF«}E
2m kT 3/2 - £
1 h kT .
p = 7 (__.._3_—) e . {3.11



I'he condition of neutrality gives:

E E_. E
F __F
3/ kT 3/2 "%T “Fk
m 43 = m, e e
e 11
or;
E m
_ - 3kT h
EF*'*?*T“‘?;;-

*
Defining m as the geometric mean of m, and m,, (3.10) yields:

E

1, 2m*kT.3/2 TR

n~z(—g-2——) e .
W

Letting A = (I*Zml.I kT/nﬁ2)3/2 /4, (3.13) becomes:

E
- B
n:AT3/2 e ZKT

Substituting (2. !) into (3. 14}:

E
o P
--—BT >Er D
n=AT3/2e 2k e“™ .

Equation (3. 15) can be solved explicitly. Let:

T = exp ok
o E ’
‘ (o}
% = 1 2kT
; E

(3.13)

(3. 14)

(3. 15}

(3.16)

(3.17)

Subsatituting (3. 16) and (3. 17) into (3. 15), we are left with the simple

equation:

n= 2,

The solution of (3. 18) can be written:

(3.18)



5

72 =T ,—E??(T} 5 (3. 19)

Equation (3. 19} gives n as a function of temperature. The function
n{r), which can be calld the infinitely repeating exponential, is a
function which will recur often during this analysis. I* 1s not dis-
cussed anywhere in applied mathematics literature, and has some
unusual properties which are worth detailing at this time. Its be-
havicr is shown in Fig. III-1. n slowly rises from O to e as 7
increases from C to el/e = 1.445. However, at the poirt v = el'/e
an essential singularity exists and n increases without limit. Not

only does n blow up at this point, but all its derivatives are infinite

also. Such a singularity in n(T) completely eliminates the band gap,

and brings about @ first-order semiconductor-to-metal transition. We

can determine the transition temperature easily. At the point of singularity,

To " ej'fe_, and equat on (3. 16) yielas:
E
2 ]
2kT
BA 1/2 _ o
o To = e . (3.20)
Let:
_ , 2k i

Then (3.20) becomes:
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THE FUNGCTION n(r)
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5 R
Q=R~¥=R = n(R} . (3.21)

Equation (3.21) gives the transition temperatura, I‘o, in
terms of the band parameters, Ego’ S m* A transition always
occurs in this case, since R < ], and thus (3.21}) always has a solu-
tion. Using Boltzmann statistics, the number of carriers grows
without limit at the transition temperature. We shall be interested

in the ratio Ego ,/1('1‘0i which can be expressed:

E
H .
E—,%g = Qln (§)=n(R) m(ﬁ) . (3.22)

In Chapter II {see equations {2.27), (2.37), and (2. 42)] , we
fcound that for an energy gap arising from antiferromagnetism:
B4 B /N, (3.23)

In equations {2.57), (2.58), and (2.63), we saw that (3.23) is also
a good approximation when the gap is due to a crystalline structure

distortion. Let us write:
B4l +8E, /N (3.24)

where & vanishes in the c2se of antiferromagnetism, and is small,
probably between -1/4 and 1/4, in the case of crystalline distortion.

Then the parameter in (I/R), which determines Egb;"k'f' . becomes:

L L m*EO 3/2 2
In (£) = 2(1¢ & gg,-w-ﬁw ] - (7 .25)
w

Tke quantity in brackets in (3.25) 1s essentially a measure of the

53




rario of the band gap to the band width, [In fact, using {2, 18), from

the one~dimensional theory of antiferromagnetism: In {—;i} =
& 2 E o 3
;-;5 (1+8) (-Lli—) -] E /KT, is plotted as a function of In(1/R) in

Fig. IlI-2. For narrow bands, In(l1/R) is large, and Ego/kTo is a
slowly-varying function of R. Boltzmann statistics are valid for
roughly EgO/kTO > 2.

The important point is that a semiconductor-to~-metal transi-
tion can occur in a simple way in a band theory. The rezulting be-
havior of In & as a function of 1/T is shown in Fig. III-3 for reason-
able values of Ego and m*.

Just before the transition, ?2-- e. Thus, from (3.17), at this

peint-
E
"2k ;0
_— 3/2 o .
n(To} =e A To e . (3. 26)
But it can be seen from (3. 15} that (3.26) implies:
n(T ) = ZkTO/g. (3.27)
Substituting (3.24) into (3.27):
n(To} 1 E -l
= (ﬁ-) c (3.28)
o 2(1+86 <
From Fig. 1{I-2, we see that for the narzow band situatior with
which we are riost concerned, Ego/kTo > 5. Equation (3. 28) then
shows that the maximum value of n/N before the transition is:
n 2
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Equation {3.29} 1s a very important result, since it shows that our
use of {2, 1} for all n up to the transition was valid. Furthermore,
if n/N had approached unity before the transition, the value of the
effective mass approximation in arriving at (3.8) and (3. 9) would
have been brought into question. If Ego_fkTo is small, and {(3.29)
does not hold, Boltzmann statistics do not apply and Fermi statistics
must be used.
When Boltzmann statistics are invalid, we must return to
equations (3.8) an? (3.9). We may write these:
2 3/2 E
1 Me F
n=—7z |{ ) F,. ) {(3.30)
2“2 iz 1/2 kT
2m, 3/2 E_+E
1 h
p-—y () Fyp (-~ (3.31)
2n )
where:
© 1)z
F, .y} = x - dx
1/2%° (x-v}
0 e + 1
In an approximation valid up to y = +2, or just before the
system becomes completely degenerate, Ehrenberg [35] has shown
that F,E/Z{y} can be written:
2
F1 /)= ———'—ﬁ, - (3. 32)
1 +4¢”7

Th' s approximation will be valid until the Fermi energy is well into
the conduction band, so that we can think of {3.32) as exact in all
normail s'tuations involving semiconductors. Then the condition of

neutral'y gives, from (3,30}, (3.3}, and (3, 32):

L L




T

I . .
=%z 1+de g /k
- 152 . .
vy W E = ??f . The solution of (3, 33) is:
E_ ; = S
£ g N
- E /T
s _MNM-.-1I . i M-1.2 g . .
2 = T + jf {-8——- + Me . {3. 34)

Thae co=m<entration of electrons in the conduction band ie then:

2m_kT 3/2 N
N=t—=1 ——sv B
=k l1+4e
For 22 zase m_=m = m‘, {3.35) becomes:
By
_ 3/2 TkT 1
l1+ze 8
4

Ths diifers from the Boltzmann expression, (3. 14), only by a factor
of[1+ exp{-ngZkT)/é} -l, which is very nearly unity for all ordinary
temperatures uniess the energy gap is extremely small.

Combining equations (2. 1) and (3. 36):

E

) g
: -TST n
3/2 " ZkT  ZKT El: ) (3.37)

'?}é‘?’ ei'r“

n=AT

1 +% e
Equation (3.37) can be solved analytically only when the initial energy
gap is much larger than kT for all temperatures under consideration.
in that case, let:
-Ego/ZkT

E
o fn g 3/2
KT IO TRT.. T AT e

-;5 {e(l-me € )} (3'38)

'E ; 1
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13}

4]

Bl

Equation {3.37) then becomes:

=% =7 =7 (7) (3.39)

where 2 is defined as in equation (3.17). Thus a transition still occurs
with Fermi statistics,

Just before the transition, ?Z = €. Thus the concentration of
carriers at the point of transition 18 the same as the Boltzmann result
in terms of To:

7

n(T‘o) = Zchfﬁ. (3.27%)

But for Fermi statistics, a different value for T0 is obtained. The

l/e

transition temperature occurs when 7" = e , which yields the condition:

esATY2 _E /2kT
) go o

1+In[l - -——17'—k > o X ° 1= —-——,72—-2k eEg°/2kT° )
2BAT e BAT /e
(3.47)

Equation (3,40) can be solved graphically for To' However, it can be
scen that Fermi statistics tend to raise the transition temperature,
Since exp(-Ego/ZkTo) is a small parameter, an expansion of (3.40) to

{irst order gives:

E,
eBATY? kT

o _ o e _
e = e +g (3.41)

ignoring the relatively small second term on the right of (3.41), we
recapture the Boltzmann relation for To’ equation (3.20), The presence

of the smalil positive addition to the right-hand side increases TG by a
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sma.; amount. Equation {3.27) then shows that slightly more carriers
have been excited at the point of transition than had been when Boltzmann
statistics were used.
In the case where the electron and hole effective masses differ,

M# 1, and we must modify equations (3. 38) and (3.41). These become:

E'o n
N-aT/2 e'f‘ﬁ'eﬁf et ——  (3.42)

L 1M e‘i‘f’; ffv , (M-1)? e“_k%?' j?r
M TIEM
and:
gn
epaT)/? AT, e(3-M) ,
5 < © + =2 ‘ (3.43)

8 /M
Equation (3.43) shows that the transition temperature can be a

sensitive function of the mass asymmetry, M. Whun the electron
effective ruass is about twice the hole effective mass, To is approxi-
mately the same as for the Boltzmann case. For greater ratios of
m, 1o m, the transition temperature is lowered, but this lowering is
small for normal values of M. As an example, when Egc is 6kT, and
the eiectron effective mass is 100 times the hole effective mass, TO
will be decreased by roughly 15%. On the other hand, a large effective
mass for holes relative to that for electrons tends to increase To some-
what more sharply. When Ego is t‘:k"I‘oE and m, is 100 m_, To in.
creases by about 50%. It is important to bear in mind that {3,43) is
valid only for values of Ego greater than approximately 4kTo‘

When Ego is not this large relative to kTo’ we must return to
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43)

6l

equation (3.28}. We cannot solve (3, 38) analytically, but we can solve

for the transition temperature. Using {3,23):

E
o
3 k;f
If* ; 4n
. .gzgofm’i(z -57)
dinn l+ge
nn o £ (3.44)
dT*“ go 2n
i kT N
- ) 4n .,
-E_/2kTj(1 - )
1 +7;l-e @gc ) N

From {3.44), we see that the transition occurs when:

E -=82 (1 - in )
—kg,i‘g %’1 - l+"i‘ e ZkT- N (3.45)
If we let:
-E__/2kT
e, go o
= e4
and:
1 o 2n .
e v w1
o
then equation {3.45) becomes:
0 B B
Q-B"'=B =R (B) . {3.46)

Equation (3.46) can be used to find 'I‘o when the energy gap is small.
A major effect of Fermi statistics is the cutting off of the con-
ductivity anomaly at very high n. This can easily be seen from (3. 35).

The maximum value for n at the transition temperature, after the




fransition, 1s:
{3.47)

whereas with Boltzmann statistics, n grew without limit after the
transition. Such a2 cut-off is characteristic of Fermi statistics.
Using (3.27) and (3.47), we obtain the jump in carrier concentra-
tion at the transition temperature:
2 372
mhk'I‘0 ) / ) NkT0

an = (—— IE
=R go

This result, as well as {3.47}, is physically meaningful only if the value
of n given by (3.47) is significantly less than N, since the effective
mass approxin-~tion must remain valid in order to use (3.35). If n in
{2.47) is greater than N, clea:ly there can be no more than N carriers
per unit volume in the conduction band, and the jump in n at To is

Jusi:

An = N{i - kT_/Z2E }.
o go

This teiis us nothing about the jump in conductivity, since the mobility
will change considerably upon transition from a semiconducting to a
rnetaiiic state. However, this result will enable us to calculate the
mobilities before and after the transition from experimentzal measure-

ments of the conductivity.

B. Narrow Band Limit

The transition metal oxides which exhibit semiconductor-to-

metal transitions are characterized by extremely narrow 3d bands.




For such materials, the effective masses of electrons and holes are
so large that it is not meaningful to use the approximations in section A.
The physical situation is probably closer to the extreme limit of delta
function bands. We shall here derive an expression for ni(T) in tkis
limit. We assume one 3d electron per cation, although any number
can be treated analogously.

We return to equations (3.4) and (3.5) for n and p, but now use

the narrow band densities of states:
pC(E) = N &§{(E) (3.48)
pv(E) =N §(E + Eg; . (3.49)

Substituting (3.48) and (3.49) in (3.4) and (3.5}, respectively:

_ N
n -EFJkT (3.50)
e + 1
N
p = = . (2.51)
EF+L
e s + !

The condition of neutrality leads to:

Ep =~ i/2 Eg.

Hence, the concentration of free carriers is given by:

n = W* (3. 52)

Putting (2. 1) into (3,52}

n _ 1 L .
N ° "E_ /2T  .pn/zkT a8
e go e + 1




Using the general expression for B, eguation (3.24), {3.53) becomes:

% =Wi ”—— {3.54)}
e B e +1

First, we arsume Ego » kT for all ordinary temperatures. This

ia equivalent to the Boltzmann limit. Then, leiting:

K
=F

n

]

X
y = Ego/z kT,
equation {3, 54) can be written:
xe’ = e4(:.+6)xy .

With the substitutions:
Z:=sx ey

W=exp[4(l+biyeV],

this equation becomes:

w
z=wZ-w ¥ = (W) . (3.55)
Once again, we finc a transition to the metallic state. The
transition occurs at Wo = el/e, where:
- { 1 1 4(1+ §)e Y,
i Z“ 5le |
4(}+6)eyo=e°={e * e_§ {3.56)

Equation (3. 56) gives Ego/k'l‘o as a function of &, The solution
is plotted in Fig. I1I-4. I* can be seen that Ego/kTo is not a r: idly
varying function of & over the "range of interest. It is important to

note that § is a constant for each material. Thus Ego/kTo will also
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be constani. This can be expressed as:

dln E_ dinT
7 3 O

° = — daX {3.57)
where X is any external parameter, suth as pressure. Equation {3.57)
can be tested experimentally, and is an important prediction of this

theory. In the event the energy gap is of antiferromagnetic origin,

6§ = 0. Then (2.56) becomes;

Hence:

E 3]
F'ﬁ_: .40 , {3.59)

Equation {3,59) is true whatever the material, provided it is anti-
ferromagnetisim which was respons:bie for the energy gap. Just before
the transition, Z = e. At this point, X, = e“'y') = 0,067. Thus the
concentration of carriers in the conductics nand at the transition point

i83
ﬁ = 0, 06; = (3. 60)

This smail a value of n justifies the use of {2. 1} throughout the semi-
cenducting region.

The approximation Eg >> kT need not have been made in the
narrocw band case. The general equation, (3,54) can be solved exactly
for the transition temperature, To. In terms of x and y, {3.54) be-
Cumes;

x = [eVE-40) gyt (3.61)

where we have set §=0 to investigate the antiferromagnetic situation.




}’ = = 4} 1n - {3; 6—2
The transition occurs when dy/d.x =0, zr when:
i-4dx i-x ,
Silp ———28 i3.63)
4x 7T - x ) x
o o o
The solution io (3.63) is x_ =0.08, which corresponds toy_ = 3.55.
Hence, the complete Fermi solution is:

E‘%ﬂ = 7.:0. (3. 64;

o
As in the effective mass approximation, Fermi statistics tend to raise
the transition temperature somewhat,

The solution to equation {3.6:1 is shown in Fig. III-5. The part
of the curve for x » 1/4 is unphysica:. since the energy gap becomes
negative.

Analysis shows that the final resuit, (3, 64), is independent of
the number of 3d eiectrons per cation.

The case of a Gaussian brcaden:ing about delta function bands
can be soived analytically for Boltzmann statistics, which is a goed
approx.mation :f the spread is smai.. Lei A be the parameter which
measures the root mean-square dev:aticn in E, Then, for one 3d

eiectron per cation, we write the densit'es of states:

g2
T2
p (E) = o (5. 65)
A
(E+E *©
p (E) = N o A (3. 66
M THY
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Weo are assumuing toth bands are broadened similariy. This can be

bl

generalized easily by taking different vaiues of \ for sach band.
in the Boltzmann i'mit, {3, 8) becomes:
E

+ B __F,
KT " kT
e dE

|

i
H i
}\; H

-

2
E
2]
&

-~

n =

b |

E 1N

Fo—

KT  4x°T-
=Ne &

Similarly, (3.9) can be written:

E_+E )2
. “3:7:& t34;:2'1‘2

p=Ne . {3, 68)

The ccndition of neutrality gives:

Thus, {3.671 shows:

2
1N
4k"'?
n=Ne T € B 13, 690

o

[
m

Substituting {2, 1" and {3.23’, and us'ng the previous definitions of x

and y. (3,69} becomes:
uﬁkz —
3 yii-4x;

X = e e’ " . {3.70;
i we Ter:
XZ
T 2.2
Z= xey e £
o &
Y
Ll
W= exp{éiyt: y e4k’ T ]




eguat on (3. 70} can be written:

~ — W
7-wl-w ¥ = (WY . 3,71

- 1/,
L = e
The transition occurs at W = ¢ / , where:

o 1 .
4Y0 e e = 'e‘ . {3‘ =
The solution of equation (3.72}) is:

E
PFS = 21n R n{R) (3,73}
O

where:

G

1]

Tc second-order in the small quantity, \/2kT , (3.73: yields:

E 2 -1 2 -1
rf—gg ~2[4e(? *"TTA )] N {exp[4ei: +-=2_" 11 }. (3. 74)
o [ 4k TQ 4k T; } !

it can thus ke seen that introducing a smail spread to the bands fends
to raise Ego-/ch scmewhat. This means that the transition occurs
at a slightly lower temperature than in the zero bandwidth case, as
cne might intuitively expect. For A/Egg = 0,01, Ega/kTa = 7.40, :he
same value as when k = 0: for A\/JE__ = 0.05, E /kT = 7.44.
go go o
When ?\/Ego becomes much larger than G. 05, not only does

the approximation in (3. 74) begin to lose validity, but also we rmust
start to take into account the effective lowering of the real band gap

due to the finite bandwidth. The parametzsr \ is approximately /5%
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the band width, so that we may write the ratic of the

L

band gap

Band W.dth _ 5X
“FBand Gap E__ -5} °
When the bands are about half as wide as the energy gap, then Eg_&jkTQ
7.51, When the band width and energy gap are roughly the same,
solution of {3. 73} shows that:
E o
o =7.84. {3.75
o
We must bear in mind that (3. 73} is vai:d only for extremely narrow
bands. so that we cannot allow X to become very large. Nevertheless,
when the band width and the band gap are both small in absolute mag-
nitude {e.g. of the order of 0.05 eV:. equation {3.75) could have meaning.
In the case of antiferromagnet.sm, the theory presented here
gives 2 behavior for the variation o:i sublattice magnetization with
temperature which differs considerabiy from that calculated using the
ordinary moivcular fieid model of ant f¢ r “magnetism, We can evi.uare
the sub.attice magnetization in the narrow band limit, using equaticns
{2.20), {2.22:. and (3.55}). Eguation :2.20), which g.ves the average

value of spin :n the valence band, provides the magnetization at T~ 0:

3 . ;q ~,
Mafg) g "LB N ‘;\’«z P

(g
a i .
Jo go

A ot

B
go




where M§{Q§ iz the magnetization at T = 0 on the sublatiice where the
spin i8 primarily down, g is the spectroscopic splitting factor, and
by efi/Zmc is the Bohr magneton. In the limit E, - 0, Mﬁ:"(}‘ ‘s
Just the value obtainied by the molecular field treatment of antiferro-

magnetism, For all finite band widths, however, M_{0) is reduced

g
in magnitude,
Equations (2.22) and (3. 76) give the sublattice magnetization

as a function ¢f the number of free carriers:

- Eb - 1 n Eb Singﬂ_ s :
Ma(n)zngN{{l-Eg—o)f-gfn)*'E-g: —-T-—%-]. {3.77;

Finaily, equations {3.55} and (3.77) can be used to calculate M as a

function of temperature:

| ’ E_ : sin[mx(y}] )
MﬁiTﬁ38FBN{i1“fg—o-)['z*x(Y}]*‘§";:_T'_"‘ (3.78

wherey = Egg/ZkT as befcre, and x{y! is given by {3.55), Equation

i N . )

{3,78) is valid only when Eb « Ego'
We shail investigate the sublattice magnetization for two cases,

E, 0, to .rrow band limit, and E, = Eg°/4, just about the upper

timit for the use of {2,20) and (2.22}). When Eb = 0, the magnetization

:8 given by:

M (T)=gpg N[-5 +xty)] . (3,79

When E,_ = Ego/4, the magnetization is:

M(T)=g kg N[ -% + x(y)] ; (3,80




o
(s

From (3.79) and (3.80), the ratios of M, T} to the magnetization at
8
T =0 are:

Mﬁ(T)

W=i‘zxi¥)

P (3.8}
ol g

LSO R

Evaluating {3.81), we find that the ratios remain very close to vnity

from T =0until T=0.7 TN' As T is increased above this point. the

ratio begins to fall off, until just below TN’ where:

Mg (Ty) | ‘
wr = 0,87 (Eb = 0;

{(3.82;

At TNg the sublattice magnetizations drop sharply from the values
given by {3.82) to zero. This behavior for Ma{T)/MB(O) contrasts
with the Brillouin curve obtained using the molecular field theory of
antiferromagnetism in that it remains higher at low temperatures and

then drops to zero at T, much more drasticaily. As the bands get

N

wider. the ratio M {T}/M_i0; approaches the molecular field kchavior

p p
more closely; however, as we have seen. the magnitude of Ma(D} is
greatiy reduced from the zero band widthk. and thus the molecular

field case.
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Chapter IV

COMPARISON OF THEORY WITH EXPERIMENTAL RESULTS

In this chapter, we shall present the results of experiments
performed on the four materials known to exhibit semiconductor-to-
metal transitions. and compare the results to the predictions of the

theory given in Chapters II and IIL

V203 wili be of primary interest to us siace it is the material

which has been studied experimentally in the greatest detail. At room

temperature, V203 has corundum structure, with rhombohedral
symmetry. The jattice parameters are most easily expressed in terms

of a hexagonal unit cell, consisting of 6 molecules. As measured by

Warekois [36] at 300°K, the hexagonal c-axis, ¢ = 14.00 A, whereas

the basal plane lattice parameter, a; " 4,95 A, The c-axis contracts

with increasing temperature as:

dlnc -
i -6 ,0.,.~1
—dT-—v-S-.BXIQ {"Ki
while the a-axis expands as:
dina
H _ | -6 ,0...~1
— 22.9x10 " ('K} " .

Thus the thermal expansion coefficient is;

din ¥V _ -6 L0,
T = 40,0 x 10 ~ ("K)

-1

in the vicinity of 150°K, a phase transformation occurs. At

.ower temperatures, V203 has monoclinic symmetry. As also

y

M

e denrm A

LA
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measured by Warekois §36} at 77 K, the monoclinic unit cell, con=~

sisting of ¥2 monlecules, can be expressed as:

a=8,574
b=4,98A
c - 13.88 A
B=91.6°.

A simplified diagram of both structures of V203 is shown in Fig. IV-1l.
The monoclinic distortion can be thought of as a shifting of

pairs of cations in the hexagonal basai plane towards one another, re-

sulting 1n an effe<tive tilting of the c-axis. From the above data at

77°K, the parameter €, defined in Chapter II, can be evaluated as:

c sin(f - 7/2)

12 _0.0323 A
T T2.86 A

a
3

al

0.01i1 .

Dilatometric data by Foex [16] showed that there is a sharp
contraction of volume at the transition temperature. Recent experi-
ments by Minomoru and Nagasaki [37] have shown that this contraction
is about 3. 5%.

The presence of antiferromagnetism has never been established
in V,0,. Carr and Foner [38] measured X, and X, with respect to
the c-axis. and found both components the same order of magnitude
and essentially constant down to 4°K. Paoletti and Pickart {39] per-
formed neutron diffraction experiments which placed an upper lim:t

on the antiferromagnetic moment of 0.5 Bohr magneton per cation.
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Abrahams {2.;; #%as able to detect ant:ierromagnetism in T1203 by
means ol neulron diffraction, and found a moment of 0.2 Bohr
magneton per cation. so antiferromagnetism 1s certainly not as

yet ruled out. Wucher [40] and later Teranishi and Terama [4 ]
have interpr=ted their magnetic susceptibil:ty measurements to inier
that V203 is antiferromagnetic clear through the transition, up

until the vicinity of 525°K; we shall refer to this point as the high-
temperature transition.

Transport measurements on Vz(}J have been done by manv
workerz. Foex {16] found that at the same temperature as the dilaic
metric anomoly, there was a semiconductor-to-metal transition. Be-
low the transition temperature, the resistivity increased exponent ally
with 1/T. the activation energy being 0.20 eV, Above the trans.t on
and up to the high-temperature anomaly at 525°K, the resistivity
:ncreased lineariy with T, and was metal-like. There was a jump
in conductivity of a factor of §06 at the transition. Foex found that
above 525°K. the resistivity decreased exponentialiy once aga:in. with
an activation energy of 0.04 eV,

Morin’s experiments [20] {sex Fig. 1-1) confirmed most of

Foex's resuits. in Marin's sampies, the jump in conductivity was

al-. a factor of 366

» and his measured activation energy inthe semi-

conducting region was 0.17 eV. MacM:ilan [42] prepared a number
L e

of samples of stoichiometry varying ‘rom V‘?.Oz.90 to V?r{)3'05, and

found virtually identical conductivity behavior for all samples. The

activation energy was 0. i3 eV, independent of the composition

Recently, Feinleib [21] performed measurements on single crys:als
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of vEQZ’ found to be within 0.3 % of steichiometry. He found a jump
B, o N |

of 10 in conductivity at the transition temperature, measured to

be:

T, = 152°K . (4.1

The magnitude of the activation energy varied from 0.12 toc 0. 18 eV,
Other electrical conductivity work has been done on V?OT by
Austin [43], and by Goodman [44]. All experiments confirm that a

: - . o
semiconductor-to-metal transition occurs with TO near or at 152 'K,

that it is a sharp transition with jumps in & of 106

-10%, that above T
the behavior is metallic, and that helow To the conductivity is
thermally activated, with activation energy in the range 0.11 to
0.20 eV, These resuits show that V203 is a material to which the
theory developed in Chapters I and Iil may be applicable., and they
provide the value of To, equation {4.1}). Where there is a choice, we
shall use the results of Feinleib [21], since his data were taken on
singie crystals, and his material was clcsest to stoichicmetric. The
vaiues cbtained for the activation energy conceivably couid give us
some informaticn about the size of the energy gap. In particuiar, if
the mobiiity were independent of temperature., our previous results
would give:
f “ney
-?—%’(z -3
k N

g e (4.2

Since we ' ve shown that n/N does not become very large

before the iransition. (4,2} would impiy:
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|
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However, it is unrealistic to assume a temperature-independent
mobility. For example, if polar scattering is important. then the
mobility would be thermally activated, giving a negat.ve contr:bulicn
to the measured activation energy of approximately k @D’ whers {;}D
is the Debye temperature. Since the Debye temperature is in the
vicinity of 500°K [15], this would modify i4.3) to give:

E, = Egojz - 0.04 eV,

Other types of scattering may be present, such as spin-disorder
scattering or impurity effects. Also, If polaron formation is m-
portant as we ex;-ect in the case of narrow bands. there may be a
poiaron contribution to the apparent activation energy. In genera.
the most we can say is:

E, Ego/Z +E_ 4.4
where Ex conta:ns ail contributions besides that of the energy gap.
and may depend on the particular sampie being investiigated. Oniy |
lattice scattering dominates can Ex be negative. all other con ribyu-
t.ons are positive or zerc. f we as-ume Ex :s pesilive, the meas-
ured range of activation energies of 0. °~ eV to 0. 20 eV g:ves us an

upper limit for E -
: g

E <0.22 eV . 4, 51
go

in order to find the exact vaiue of Eg&’ Feinleib [24] per-
fermed optical experiments on V203 al temperatures above and becw

the transition. No transmission was observed in the room temperature




metallic region between 2.05 eV and 6 eV, However, :n the sem:-

{1}

conducting region, at 77°K, transmission was obtained between
0.1eVand 0.4 eV. The transmission changed by several orders of
maraitude in this range, and clearly indicated the presence of an

absorption edge at approximately 0.1 eV. Since at ‘(’?‘0& T=i/2T

L=
and we have shown that n/N is negligible at this point, this value
can be takenas E  for V_O.:
go 273
E =0.i0eVv. 4.6

go

From {4.1) and (4. 6), we find:

Pﬁﬁ = 7.6 4.7
O

For VZOB’ we expect the narrow band analysis of section ' B
tc be appropriate. If the energy gap .& VZOB were of antiferromag-
netic origin, equation {3.59) shouid appiy. The resuilt, (4,7). agrees
with this well within experimental error. If the gap were due to a
crystalline distortion, then as we have secen, {3.59) stiil remains
approximately true. We can then use the experimental resuit {4. 71
tc evaluate B. This can be done directly from {3,56}. or from
Fig. iii-4. The result is:

p=4.4 EgO/N. 4.8

There is no evidence that V203 ig antiferromagnetic. The presence
of a phase transformation of the correct type at To i8 strong evidence
that the gap arises from a crystalline distortion, If so the theory

of Chapters II and Iii would account for the phase transfcrmation as

well as for the semiconductor-to-metal transition. We can gain




further insight into the nature of the transition from the result of

the thermodynamic argument in section II B:

2 E
ﬁ=g -{HE}V,T

Feinleib [21] has measured the total pressure coefficient Yp

dE

YF"’Tig
a}:

an
='(3‘P&n‘r PTdP

Assuming Boltzmann statistics apply, the concentration of

carriers is:

= I[)

Recali:

Eg?EgO—ﬁn-yp.

Substituting {2.9) into {4, 10):

_ = o Ppn  yP
a Zk;f 2kT 2kT
n=n_e e e
Thus:

dn £ dn
T CAT Y "t b

Sciving {4, i2) for -15

T = oy

But from {Z.9}:

i4.9

(2.9

{4.!

(4. 23

[w
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dE
v -egp o

Substituting {4. 13) and {4. 14) into (4. 9):

Yp =Y [mml ] . (4. 15)
F = : 3. 13
At T = 132%°K, Feinleib raeasures Yp=2.2X 107 ev bar-;i Hence,
from (4. 15);

v = 1.8x10"% ev bar-l. (4. 16)

Unfortunateiy, the isothermal! compressibility has not been

6

measured for V_O But the value x = 0. 88 X 10~ bar'} has been

273

found for the very similar materials Fe,0, and FeTiO, [45]. and
the compressibility of V203 will undoubtedly not be much different.
Using this value for X in equation (2. 1"} yieids:

3.6 E c; I

s el € S (4.17)
Thus the measured value for 8, equation {4.8), is almost entirely
accounted for by the variation of Eg due to explicit volume changes.
In fact, with just a very slight band spread, such as that due to spin
disorder broadening {see Chapter VI), this variation aione is suf-
ficient to obtain the experimenta! vaiue {4.7;. This resuit. taken
together with the measurement of a finite volume change at To by
Minomura and Nagasaki [37], is another indication that the transition
:8 due to crystall.ne structure effects rather than antiferromagnetism,

No matter what the cause of the gap, the theory predicts

that the ratio Ego/kTo will remain constant. We have expressed

this as:




din E din T
go a

% = % {3.57}
In order to test equation (3.57), Feinleib[2}] varied both
Eg0 and Te by applying hydrostatic pressure and uniaxial stress,
His results were as follows. The transition temperature var:ed w.ih
pressure as:
S e . g6 025 ) 4, 18)
3T 5 ¢4, 18
where P is the hydrostatic pressure. With uniaxial stress applied
parallel to the corundum structure’s b-axis, the relation between
transition temperature and stress was determined {o be:
dlin To -5 1
—Ts——z-Z.SX.lO bar 4. 19;

where S is the stress. With stress app ed along the c-axis, the
uniaxial stress coefficient was at least an ordar of magnitude smailer:

din T .

—5> <0.3x 10°° hae" !, '4.20)

The pressure and uniaxial stress coeffic ents for the eNnergy gap were
determined from the stress dependence of the activation energy for
electrical conductivity. These results can be expressed, in the

case of hydrostatic pressure, as:

dlnE__ 5 : 7
ap =-2.2xXx10 " bar 4.2:%
whereas with uniaxial stress along the b-axis:
d In E o . 1
= -3.0%x10 " bar ", {4.22}

ds

In Chapter VI. we show that the pressure coefficient of contr.butions

i

%]

loahdt



im i it

to the activation energy from polaron effects and non-stoichiometry

-6 -1 . .
are of the order of 10"~ bar , and thus these contributions do not

affect the results {4.21) and (4,22},

A comparison of (4,21) with (4. 18) and (4.22) with (4.19)
shows that equation {3.57) is indee " satisfied within experimental
error. Thus the two major predictions of the theory, equations (3,57}
and (3.59) are verified by Feinleib's results. There is no a prior:
reason for the validity of (3.57) and (3.59}, ard no other model here-
tofore suggested predicts these relations. Therefore the agreement
with expsriment must be considered as good evidence for the applica-
bility of the model of Chapters II and III.

The anisotropy in variation of T, with uniaxial stress found
in {4. 19) and (4. 20) provides still another indication that it is crystal
structure changes which bring about the energy gap. The distortion
which doubles the number of cations in each unit cell is entirely
in the basal plane of the corundum structure. Therefore the varia-
tions of Ego and '!‘O with stress applied along the c-axis should not
be very great, as is borne out by {4. 20}, However, the changes in
Ego and To with stress applied along the a-axis or b-axis are
strikingly large, as we would expect.

Feinleib [21] also investigated the high-temperature anomaly,
measuring resistivity vs. temperature from 300°K to 800°K. He
found that resistivity increases '.1early with temperature with the
same slope both below and abo e the high-temperature transition.
However, in the vicinity of 550° K, the resistivity undergoes a rather

sharp anomalous increase. In the region To < T < 500°K, the
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measured resistivity can be expressed:
p(T) = 4.3 x10™% chm-cm (0.51 + 0,49 T/T ). (4.23
if we write for the total resistivity up to 800°K:
= (" (" (4, 24:
p(T) = py (T) 4 p,(T) (4, 24)

where pL(T) 18 an extrapolation of (4, 23}, and pA(T) is the anomalous
resistivity, then pA(T) is a function which is zero up to 500°K, then
sharply rises to a value of 12 X 10-% ochm-cm by 600°K, above which
temperature it remains constant. Such behavior for pA(’I‘) bears a
striking resemblance to the spin-discrder resistivity calculated by

De Gennes and Friedel [46] » and therefore suggests a magnetic order-
ing temperature of 600°K. As we have mentioned, Wucher £40] and
Teranish. and Terama {4}] have conciuded that this is the Nee *em-

perature of V20 We shall return to this pcint later,

3°
B. VO

The experimental resuits for VO are quite simiiar o those for
“J’203. VO has (cubic) rock salt structure above T = 126°K. At this
ten..>rature, there is a crystalline structure distortion to orthorhombic
symmetry. The exact low temperature crystal structure has not as
yet been reported, Littie is known about the magnetic properties of
VO as weil. Neutron diffraction and magnetic susceptibility measure-~
ments have not been performed.

What we do Bnow about VO is its eiectrical properties. Morin [20]

isee Fig. I-3) found that there is a sharp semicorductor-to-metai

transition at:




R 4

I

R R R

36

T, = 126°K . (4. 25)
6

The jump in conductivity at TQ was measured to be a factor of 10,
Below T+ the activation energy was E, =0.14 eV. Above T, the
resistivity increases linearly with T and is metal-like. It can be seen
from Fig. I-1 that the electrical properties of VO greatly resembie
those of V203,-
Austin [43] has performed pressure experiments on VO, and

has observed the effects of quasi-hydrostatic pressure onthe electrical
properties of single crystals of variable composition, From meas-
urements of resistivity as a function of pressure at 94°K, Austin ob-

tained:

dE

_ -6
H.pg =-2,9%x10

eV bar~ !, (4. 26)

Since no direct measurement of the energy gap h2s been made in the
case of VO, we cannot do more than assume the gap is the same as
that of V203 as a first approximation, and perform a self-consistent
calculation using (2. 13) and (3. 56} to cb‘ain a better vaiue. Thus, we
begir with;

E_=0.10eV. (4.27
g0

We use this value to calculate the contribution to B of the volume term
in {2.13). In the case of V203, this term was sufficient to give the

correct ratio ot Ego to To' If VO is completely analcgous to V203,
as Fig. I-1 suggests, we should obtain good results in this mannetr.

From (4.26);

Yp©2.9X 107 &V bar~! .

i
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Using {4, 15}):
v=2.7x10"% ev bar~}, {4. 28)
Fo. the isothermal compressibiiity, the best value availabie

is that for ZnO [45]:

X =0.78x10"%par~!, (4.29!
Substituting (4, 28) and {4.29) into {2.13), we can evaluare the
contribution due to explicit voiume ckanges as:

6.9 E
o

B=— B2 . (4. 30;

Using this value for B in the general expression for narrow bands,
equation (3, 56), we find:
% o
o = 8.9. 4.3
o
But {4.31: implies that Ego =0.3i0 eV. as was assumed in {4.27;. Thus
we see that this assumption is se.f-consistent, and that, just as for
v203’ the velume term in (2. 13; and narrow band theory give the
correct ratioof E__ te T .
go o
However, now we can use Austin's resuits for ch/dP to cherk
the validity of {3.57!, This reiationsk'p provides an imperiant test
of the thecry. From (4. 26} and {4.27. we can express Austin’s
Mmeasurements on the pressure variation of the energy gap as:

din E
d

= -29xi0 0 par-l. {4.32)

As we mentioned before, we shall show 'n Chapter VI that the pressure
coefficients of contributions tc EA frem pciaron effects and non-.

stcichiometry are of the order of 10-6 bar » 80 that (4, 32) probahb.v




does represent only the variation of the energy gap.

Ar 94°K, Austin found:

dTi} 3o 1
E-P‘ = .3 X igt K bal‘- -
Hence:
d In TO -6 ‘3
—p— = -32x 107 bar™t, (4.33)

Comparison of (4. 32} with (4.33) demonstrates that (3.57} is satisifed
“ithin experimental error,

V- : conclude that it appears likely that the energy gap in VQ
arises from a crystalline structure distortion and has a value of about
0.:0 eV, approximately th- same as tha* of V203. The lower transi-
tion temperature of VO seems to be due to a greater change ‘n volume
at T . This is refiecved in a larger vaiue for B in equaticn (2,1},
Outside of the slightly lower transition temperature, the behavior of

YO and V2f33 seems identical,

C. VOZ

The crystailine structure of V02 is relativaly simple and well -
known., Above T = 34001{, the structure :5 that oF tile, the cations
cccupying the positions of a body-centered tetragonal lattice. Bilow
34001(, the syminetry is monociinic, the structure being that of MOO‘Z;
The low temperature phase is just a distorted rutile structure —
the cations which in the rutile phase were collinear and separated by
2.87 R, are slightly non-collinear and spaced alternately 2,65 A and

3,12 A apart [4?] . This is an almost classic example of the model

of section JID — the unit cell is doubled by a distortiun of the lattice

[ v]
o




in one dimension, alternate cations pairirg. The parameter e, defined

in ii D, is:

o
s

.65
L7

!
5-5-

n
po

=0,.04.
The details of the transformation have been s*ud ed by Mincmura and
Nagasaki {37] . They find that at TO the m..noc. nic a=ax s ccn ra.'s
from 5.77 A to 5.70 R, twice the rutile sty cture'’s c-ax:-s: simuv -
taneously, the mcnociinic b-ax's expanrds from 4. 50 13% o 4,54 R the
rutile a-axis, while the monoclinic c-axis contracts from 5. 39 A to
5,24 A 2/{73 of the rutile a-axis. They found nc measurabie tctal veiums=
change at the transition pcint, just a change ‘n he sicpe thermal expan-
sicn coeff:cient). Thkey concluded that the transformaticn was of second
order, Jsffray and Dumas [38] measured a voiume contraction of
0.08% on powdered VOZ’ which is consisten! with the ia*’ ce censtant
measurements of Minomura and Nagasaki. In any event. the voiums
change .s mcre than an order of magn 1ude smailer tkan that which cccurs
in V203.
Magnet'c susceptibility data have been t=ken on VOE by Rudorff
et ai [48] and by Kawakubo and Nakaga ~a [49]. Both sets of experiments
found suscept.bility independent of temperature hoth above and ceiow
340K, with a jump in X, at 340°K of a factor of roughiy 7. They con-
clude that the low temperature susceptibility can be accounted fer by
temperature independent paramagnetism, znd ‘hat there ie no evidence
for ant ferromagnetism. Similarly, Kaspe: [50] found nc magne' ¢

_ ) ) , .. D
scatier.ng 'n neutron diffiract on measurements beicw 340 K.
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The electrical conductivity hehavier of VO, was also studiad
by Morin {ZG} {see Fig. I-1), who found a sharp semiconductor-to-
metal transition at:
T = 340°K {4, 34)

the temperature at which the phase transformation takes place. Beiow
To’ the activation energy was 0.13 eV. The jump in conductivity

at To was a factor of 132. Neuman, Lawson, and Brown [51] found
th = same value for TO, but obtained a jump in & at To of ?04 and an
activation energy of (.44 eV,

The energy gap has not as yet been measured. The narrow
band limit appears to have given good results in the cases of V'ZO3 and
VO: we expect it should be at least as appropriate for VOZ’ since the
cations are V‘H*M, which are smaller in spatial extent tkan are vt
and V'*. It can be concluded that the cause for the higher transition
temperature in VOZ is most likely a larger value for Ego' This can
be easily explained by the four times larger .alue obtained for the
distortion parameter € in the case of VOZ, which should certainiy
produce a much larger gap. In our analysis of section II D, we found
that using a delta function potential, the larger the initiai gap, the
larger the value obtained for B. The most reasonable conciusion is
that the final Ego/k’rc ratio for VOZ is probably somewhat larger than
it is for V203. As a rough estimate, we shall take:

E ~10kT
go o

~0.3 eV.

Pressure measurements on VOZ have been carried out by




Minomura and Nagasaki {3?} and by Neuman et 53_1_{51} . Minomura and
Nagasaki measured the variation of 'I"o w.th pressure and found:

dinT 6 )
T—o =~ 1.4X% 10- bar- - i4,35}

This is a very small value and contrasts strikingly with the pressure
coefficients of V203 and VO {see (4. 18}, {4.:9}, and (453)] , wkick
are an order of magnitude larger. Neuman et al could not find a shift
of ’I‘0 with pressures up to 6 kilobars within the 0. 5°K scatter in To
itself. Thus they find a still smaller value for ! 1In To/dP than is given
:n (4. 35},

Neuman et_al also measured the change in activation energy

with pressure. Their experiments show:

dEA

. -? - . i
=5 -5.0xi0 eV bar ., id4, 36;
From their measured value of EA = 0,44 eV, (4, 36) y:ields:

din E, 6

—ap— = - 1,1 X107 var “.
This is aisc an order of magnitude sma::er than the values for V203
and VO, given in equations (4. 21}, {4. 22}, and {4.33;. However, in
this case we cannot use (4.36) to evaiuate d in Egc/dp in order tc
compare with (4. 35) and check the vai:dty of {3,57). For equation

{4.4) gives:

cll‘i?A i dE o dEx
?‘F = z‘ 1%- + W s 4,371
In the cases of V203 and VO, the measured vaiues of dEA/dP were

so iarge that we could neglect dEx/dP in (4.36;. As we mant oned

previocusly, we show in Chapter VI that dEx_/dP is normaliy of the




order of ii}'? e?_fhari But, in the case of Y{)E, this is just the
order of magnitude measured for dE,/dPin (4. 38. A further com-
piication in the results of Neuman et_al is the extremely high value
found for Ex. Since we expect Egoﬁ 0.3 eV, (4.4) shows that
Ex ~0.3 eV, much larger than in V203 or VO. Therefore, for VOZ’
we can only use (3.57) and (4. 35) to conclude:

dInE__ ., -
3 ==-1.4X10 " bar " . {4, 38}

Using the approximate value, Ego"" 0.3 eV, (4.38) shows:

=

dE
—f~ -4y 07 evibart,

We can use this approximation and equation (2. 13) to calculate tha
contribution to f from volume changes. Since the volume change at
the transition is so smail in VOz. we expect this term also to be very
small. Taking for the compressibility the value measured [45] for
the rather similar material, TiOzi X~0.59 % 10'6 bar'i, equation

{2.13) gives:

B =0,05 EgO/N - {8 Egofa n__‘:a,_,' T~

Therefore, the contribution due to exp:iic:t changes in volume is
negligible, as we expected. The transition in VOz seems to be due to
a crystalline distortion with !’ttie or nc accompanying volume change.
Thus hydrostatic pressure is actually a poor variable to use in the
study of this materiai. It should be much more advisable to study the

changes in electrical conductivity with uniaxial stress.




D, Tizi)z

in crystal structure, T13{33 appears to resembile ?203 con-
siderabiy. Pearson [19} studied Ti203 from 300°K to 650°K and found
that the structure was that of corundum, as in V203. At 300°K, the
lattice parameters are Cy = 13.64 A, ap = 5.15 A. The c-axis ex-
pands and the a-axis contracts with increasing temperature, slowiy,
except in the neighborhood of 450-550°K, At 650°K, the lattice
parameters of Ti, O, and V,0, are virtually the same. Abrahams [23]

examined the structure of Ti203 down to 4.2°K and found the iatiice
constants to be within 0, 5% of those at 300°K. Thus there is no phase
transformation in TiZOB’ and the symmetry is rhombohedral at ali
temperatures. The only region resembiing an anomalcus one is the
range 450-550°K, where the thermai expansion parameters sharpy
increase.

The magnetic structure of T2203 is kaswn unambiguously.
Abrahams [23] performed neutron diffraction experiments over the
temperature range :.4°K. to 7.:°K and found that antiferromagnerism
was present untj! a Néel temperature in the vicinity of 600°K. The
magnetic struciure was monoclinic, sirikingly resemb:'ng the iow
temperature crystal structure of V203, Abrahams determined that
the c-axis pairs were antiferromagneticaily aligned, whereas the basa:
plane spins were ali parallel. The spins were perpendicalar to the
c-axis, thus reducing the symmetry to monoclinic. The magnitude
cf the antiferromagnetic moment was about 0.2 Bohr magneton per
cation.

Pearson [ 19] and Foex and Wucker [52] have measured magnet.c
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, . . ) - . i
found a jump in conductivity of a factor ef 40 at about 550K, approx:-
mately the experimental Néel temperature. The variaiion in TQ

is unigue to Ti, O

37 and prevents us from deciding on an exact vaiue
-

fcr To' The most we can say is:

T, = 450-550°K . 4,41}

Since there is no ¢rystalline distcriion in the case of Ti203,
it must be the antiferromagnetiam which ‘s responsible for the energy
gap. Thus the theory of section I C ‘s applicable. We must aiso
decide whether the effective mass approximation or the narrow band
limit is more appropriate. Theoreticaily, we expect the bands to be
wider in Ti203 than in V203, since the cverlap between ittt :ons
should be significantly greater than that between the smalier ’V'HH'L ions.
Furthermore, the c-axis pairs are 3% cioser in T§203“ whkick wou.d
tend to increase the overlap, and hence the band width, in the Y kand,
which we shall show in Chapter V is the band of interest in the case of
T

O Experimentally, the prescnce cf ant’ferromagne’.sm with

5,04,
such a smail moment as 0.2 B g pPer caton is an indicaticn of some
degree of band width, as we noted in the d'scussicn foliowing equations
(2.20:. Application of the exact one-dimensional theory of
~ection II € shows that a band width equal to three times
the energy gap leads to a sublattice magnetization of C.2 g
per cation. [We would expect in three dimensions that

a smaller band width to band gap ratio could suffice for

the same sublattice magnetization, since the density of
states in the center of the Rrillouin zone (low spin region)
is far greater commared to that at the zone edges than

in the one-dimensional case,] A band width considerably

wider than the energy gap would seem to preclude use of

the narrow band limit,
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An additional point is the icw value of Ex found in equation
{4, 40}, as compared with the E‘x >0.6 eVin VZQY We can take *his
48 evidence that polaron effects are noi as ‘rnportant in Ti203 as 'n
V2039 as we shall discuss ‘n Chapter VI. But this is stiil one more
indication that the bands are relat:velv wide in Ti203. FPinally,
we note from our discussion of the Jahn-Teller effect in
section II D that a leck of observable crystalline

distortion is a wide band characteristic, Thus we con-
ciude that it is probably more accura‘e tc use the effective mass

approximation than the narrow band iimit fer Ts%,203.

: _ ¥
Untortunately, the presence of an extra parameter, m , affords




&m i greater degree of freedom in the calculation of the transition
temperature in this case than in ths narrow band limit. Frederikse [53]
measured the effective mass of the bottom of the lowest 3d band in

TiOZ, and obtained:

M = 2§ (4.42!

We shall use this value as the best available approximation, noting
that the ratios of nearest neighbor cation-cation and cation-anjen
distances to cationic radii, probably the best single measures of over-
lap available, are virtually the same in ’I‘i()2 and Ti203. Using (4. 39)
for Ego' the solution of equations (3.22) and (3.23) is:
7 E
E‘?g = 0.6,
o
This shows that Boltzmann statistics are invalid, as might be ex-
pected with such a small energy gap. The general Ferm: equations,

(3.37) and (3.46) must be used. In the case of Ti,,03, the solution

of {3.37) and (3. 46), using (4.39) and (4.42}, is:

E o
£ -t (4.43)

Equations (4.39) and (4.43) predict for the transi‘ion ternperature:
; o
T =490°K. (4.44;

A comparison of (4.44) with (4.41} shows that this value is within
the experimental range.
For this solution, the jump in carrier concentration a¢ the

*rans:tion is much smaller than those for the oxides of vanadium.
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Furthermore, the wider bands of Ti203 should give a larger value

for the moebility in the semiconducting state. These points should

be refiected inthe larger conductivity in the semiconducting region
and a grpai.2r jump in conductivity at the transition in the case of
T'_203. As can be seen in Fig. I-!, this is indeed the experimentaj
situation. Connected with this, however, is the fact that, for this
solution, a large percentage of the avaiiable carriers have been ex-
c:.ted before the transition. This prcbably means that the effective
mass approximation begins toc break down below To' and that (3.6} ard
(3.7) should be modified by introducing the details of the band st ruc-
ture. One possible way around this is to allow the effective mass in
{3.35) to depend on temperature, If we add to the effective mass a
small negative contribution iinear in T, we find that the sharpness cf
the transition disappears, anc the transition to the metaliic sta‘e
takes piace over a smali range of temperature. But this is Just the
pecuiiar characterist'c of the transit'¢n 'n Tl203 which we ncted
previcusly. Furthermcre, sraall deviaticns from sto:chiometry couid
now cause iarge variations in T, and this may be the explanation cf

*he wide range cf experimental values of T . as given in {4.4: .
iF
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Chapter V

MODELS FOR BAND STRUCTURE

In this chapter, we take the results of Chapter IV, togethe
what is xnown about the structure of the various materials, and try
to piece together the approximate band structure of each. Since some
critical information is missing about every one of these materialas,
the band models presented here contain some guesswork. But they
are all consistent with both the symmetry and the electrical properties
of the crystals.

As we discuss in detail in Appendix B, little information can be
ga ned from actual band structure calcu at ocna. For the sake of this
chapter. we are nririariily interesied 'n ke bands a:.sing from the cver
-ap of the 3d wave functions of the magnetic ions. We shail use the
point of view presented in Appendix B tc discuss these bands. in short,
we begin withk the tight binding approximation, taking the ionic wave
funci:~ns toc approximate the Wannier func:ions of the crysta.. We a s
adopt the outlook of Anderson [8], in which the Wannier func*'ons
:ccaiized around the cations ccnt2in contr tutions due to cver.ap beiween
the cat:ons and ail the ligands. These functions are pr mar iy 3d 1onic
=iectron orbitals, but they contain finite amplitudes on the surrcunding

anions. For example, for a cation at the crigin:

¢(r)=x§a3d(r)+ {..Aiotzpi("?-Ri) 5.°)

whterre R; are the pcs t-ons of *he ¢xygen ‘=ns. For oar purposes,

F s enatlcs us to preceed by ignoring the anions, assuming that they are

98




33

&= 3
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hi

<en into account in some effective way by using functions such as

"

{5.1). Functions of the form {5.1} can have {inite overlap even when
P

<3 = = s 2
the cation wave functions ir - Rm) have negligible overlap. since

34
they can have finite amplitude on the same anion. We shall label the
functions (5.1} by the type of ionic orbital of which they mainly consist.
We first note that since the ligands are large oxygen ions and
are doubly charged, the octahedral crystal field is undoubtedly very
larvge, and accordingly we expect a large separation of the t?.g and e
bands. Experimentally, this splitting seems to be of the order of
i.5 eV or .aore. In these materials, where the 3d bands are rela-
tively very narrow, this means that we can neglect the interaction
petween ’23 and eg bands. For ali the transition metal oxides, each
cation is surrounded by an octahedral array of 07~ ligands. The
qegative charge clouds of the eg orbitais are directed at these nega-
t.ve ligands, and therefore the eg orbitals have a higher electrostatic

energy than do the t, orbitals, which are directed between the ligands,

2g
Thus the {2g bands are lower than the eg bands. Since none of the
oxides of titanium and vanadium have more than 6 3d electrons, we
need not consider the eg bands at ali.

The ‘s bands contain 6N states per uni® volume, which are
nct split any further by a pure cubic fie!d. Tetragonal and trigonal

fields split tha t, band into two sub-bands, one with a concentration

g
of 2 states per cation, the otlier with 4 stares per cationn. Mornclinic
fields produce three sub-bands with 2 states per cation in each. The

presence of antiferromagnetism or of a un:* celi which consists of

twe cations can bring about a splitting in haif of all the tZg bands.




A, \*’203

For the corundum phase of V203_, the trigonal field will split
the tzg band into a io and a t band. The ' band is associated with
orbitals directed ai 7 the c-axis, the t, band with orbitals pri-
mar:ly in the basa}] plane. Below 150°K, the crystal has monoclinic
symmetry, and the ti band is split into two sub-bands, which we shall
call the t band and the ty band. The c-axis pairs form the ciosest
cation-cation distances, and these cations are in octahedral arrays
of anions which share a common face. We should therefore expect
a relatively large bonding-antibonding splitting of the t, band. The
monoclinic distortion, as we have demons*rated in Chapter [V leads to
the pairing of cations in the basal piane, albeit with a sornewhat
larger cation-cation distance than aiong 1€ c-axis. Thus the bonding-
antibonding splitting of the t and ty kbands is reiatively small. We
infer that the t bonding band is lowest {oz V203, and that it is scpa-

rated from the t antibonding band by arn energy E The t, bonding

g2’
band :s next lowest, and it is separated from the t antibonding band
by an energy Egl' We assume ‘h2 situation is as given in Fig.
V-!{aj. Since the na:row band :imit appeared to give gcod resulis for
‘«’203, we have drawn the bands as quite narrcw, and thus there is no
cveriap. We shall give an order-cf-magnitude estimate of the band
width below. Each of the six sub-hands ccntains one state per cation.
Thus, for VZOB’ with two 3d electrons per V*‘H ion, the bottom two

bands are exactly filled at T = 0, while thLe top four bands are com-

pletely empty. The material is thus a narrow band semiconductor with

100
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an energy gap E We determined in Chapter IV that £, = 0.10 V.

gl ' gl
The theory presented there shows that at ’I‘G = ESQGK, a phase trans-
formation occurs due to the breaking up of the basal plane pairs,
changing the crystal structure to t.e higher symmetry rhombohedral
phase,

As a very rough estimate, we can use equations {2, !8; to
determine the band widths for V203‘ Since these eqguations were ob-

ta‘ned from a one-dimensional model, we must consider these £8ti-

rmates as order-of-magnitude approximations at best. From (2. 18):

12
2h
Eb ~ %3 (5.2)
m a
For the t, bands, the lattice parameter of interest is the c-axis pair
2
d:stance of 2. 70 A, which yields:

{Eb}tc ~0.03 eV. (5.3}

For the Y bands, a ~2. 88 :\, giving:

(Ec)t ~0.02 eV. (5. 4)
+

We have used for the effective mass the value calculated in sec-

*
m

*‘on VI-E for the semiconducting state of \'203: —— =& 70.

From ISOOK to 60001(, the situaticn is now as shown in Fig.
V-ii{b!, In this temperature range, VZO3 is a metal, the t_band being
1/4 filled. Thus 'J."0 is also the temperature at which a semiconductor-

to-metal transition occurs, as is experimentally observed. However,

*ke theory of Chapters II and III now can be applied to the energy gap

Eg?_ ~etween the t, bending and the t, aritending bands, The applicaticn




of the final results of Chapter III is not immediately obviocus in this
case, since there are now electrons present in the gap between the
two bands of interest. The situation 1s analogous to that of a normal
semiconductor contairing a large percentage of impurities. However
note that we are concerned with the thermal excitation of electrons
from the !o - # band to the tO - @ band, for it is this excitation which
reduces the bonding and thus tends to close down th- gap. The cor
centration of electrons in the to - ¢« band is still given by (5.50},

and the concentration of holes in the to - B band is given by (3.51},
with Eg = EgZ' But now the position of the Ferm: level depends on
the intermediate partially-filled band. I this band is approximately
half-way between the t - B and the t_ - a bands, Ep = -Eg/z, and
the final resuit. {3.64), fcllows exactiy as in Chapter III. If the
:ntermediate band is nearar one or the other to band, the theory must
te modified somewnat. Equation {2. % should be generalized to:

E -E -8
go n

n -
Bp P
since n and p are no ionger equal. The results of Chapter II indi-ate

that {Sn ~f zg . With th.s modification, it can be shown that (3. {4}

p
remains approximately true, even when the intermediate band is
very close to one of the t, bands,

Thus another transiticn is predicted ai a temperature '1"t ~

7Eg2/k’ at which point Eg" shrinks to zero, leaving one t . band 1/3

2
f:2’ed. The behavior, of course, is stiil metallic, and no striking

change .n conductivity will be observed at T,. However, this transition

changes the shape of the Fermi surface and could account for an




anemaious resistivity change such as tne high temperature transition
discussed in Chapter IV. From the temperature of this anomaly,

Tt = ﬁﬂﬁoﬁ, we can eatimate:

Egz"o‘é eV .

Recall that the anomaly in resistivity at 'I’t resembled the
additional resistivity due to spin-disorder scattering [see the dis-
cussion following equation (4.23)]. I V,0, is antiferromagnetic at
T = 0, then antiferromagnetism would contribute to the ty band split-
ting. In particular, the antiparalie] spin arrangement of c-axis
pairs is just the magnetic configuration found by Abrahams [23] in
Tizoz. We would expect the same spin configuration in V203 as in

the structurally similar Ti203, so this is a reasonable hypothesis.

Then the theory predicts the breakdcwn of iong-range order (i.e. the
Neel point} to occur at Tt = 600°K, and the high temperature anomaly
of V203 is easily explained. We shall return t> this point when we

consider spin-disorder scattering resistivity in Chapter VI.

B. T2203
In the case of TiZOB’ which has corundum structure at all
temperatures, the trigonal field results in a splitting of the t?g band

into t and ti sub-bands. Experimentalily as well as theoretically,

the s band turns out to have lower energy than the t, band [54]. Since
the structure of T1203 below 500°K is the same as that of V203 between
:50°K and 60001{, we might expect sirmilar band schemes in these

temperature ranges. However, as we demonstrated in Chapter IV,

the kands in Ti203 are much wider than those in V203, The same
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estimate which led to {5, 3} and (5.4) can be used with the values

l
]
ek
B
1]

E
m 3 . _
R 2.59 A to calculate the band widths in Tx,,,(}}:

(E, 3, =~ 0.10eV, (5. 5)
Bt

We know the energy gap due to the antiferromagnetism of c-axis

pairs is8 0.06 eV, Thus the ratio of band w'dth to band gap is drasti-
caliy different in Ti203 and VZOQ‘K. Note that the cation separation in
the basal plane, which determines the bandwidth jn (5,2) is con-
siderably larger in Ti203 (3,02 ‘R.) than in V203 {2.88 }Qk), whereas the

separaticn of the c-axis pairs is in the opposite order for the two
materials. Thus (5.2} estimates the t, bandwidth for Ti203 as:
iEb)ti ~ 0,06 eV . (5.6}
The band scheme for Ti203 heicw To is given in Fig. V-2{(a}.
Since there iz only one 3d el=ciron presrent per cation, the t, - B banc
which corresponds to elactrons primarily with spins on their own

sublattice (analcgous to the bonding bands in V_0O,j, is exactly filled

3

while all higher tZg bands are complete'y empty. In this temperature

range, Ti203 is therefore a semiconducter, with a gap of Eg =0.06 eV,

brought about by c-axis antiferromagnetism. The theory then pre-
dicts a semiccnductor-to-metal transition at about To = 500°K. Above
SOUOK; the band situation is givenin Fig. V-2(b}. In this range, the
ng barnds are /6 filled, and the material is metallic.

The details of the band structure presented here offer an

aiternative explanation for the spread-ou! nature of the transition in

Ti,0

293- This is the effect on the transiticn of the probable overlap of
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the t’i band with the tg - ¢ {conduction® band. Since the transition
in Ti203 does not occur until the conducticn band is relatively weil
thermally populated, the significant change in density -of-states due
to the t;t band wiil clearly be important.

It should be noted that the main difference between Ti203 and
V203 i8 the number of 3d electrons present per cation, V203 would
be semiconducting up until the high-temperature transition were it not
for the additional 3d electron on =ach v ion. Then the conduct v vy
would greatiy resemble that of Ti203, despite the smaller gap and

wider bands of the latter. Further evidence for this picture wiil ke

given in Chapter VI.

C. VO and TiO :

Beicw :26°K, VO undergoes a d.stort on tc orthorhombic
symmetry, sc¢ that the tzg bonding and ant:bonding bands are each
sp.:t .nto three sub-bands, which we cai. t ty. fz. The exact low
‘emperature structure i3 as yet unknewr., so that we cannot make
any statement about the relative posi‘icns of these sub-bands., We
arbtrarily take the orthorhombic lattice parameters to be smallest

aiong the x-ax:is, largest along the z-ax.s. in the case of VO, we
g ;

expect the bands to be wider than in V203, but probably not so wide

n Ts : ++ . Ney : . A+
as in T1?03, since the V  icn is smaller in extent than is the Ti

:on, Whether or not there is overlap between the sub-bands ia
rrelevant .n VO, as long a< there is a real gap between the t, bonding
and the Y ant:bending bands. Frem euperiment, we know that this

gap exists and is about 0. 10 eV. The band structure of VO below
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126°K is sketched in Fig., V-3(a). There are threc 3d electrons per
cation, and 8o the lower three sub-bands are just filled, while the
upper three sub-bands are completely empty. Thus VO is a semi-
conductor, whose gap of 0,10 eV is brought about by a crystalline
distortion. The theory predicts a transition at To = 126°K to the
situation as shown in Fig. V-3(b). Above To' VO has a 1/2 filled
tZg band and is me:allic.

Note that TiO retains r.ck salt structure down to at least

4°K. The presence of antiferromagnetism has not been established,

but since TiO contains only two 3d electrons per Tiﬂ' ion, it must
exhibit metallic behavior at all temperatures. As can be seen from
‘ the results of Morin's work [20] (see Fig. I-1), this is the case down

tu at (east I.SOK.

D. VO2

The rutile phase of VO2 has tetragonal symmetry, and splits
the 'Zg band into a ta sub-band with 4 states per cation and a t. band
w;th 2 states per cation. Since c is considerably smaller than a
in rutile VOz, we expect the t. band to be well below the t, band. At
low temperatures, the crystal undergoes a distortion to monoclinic
symmetry, the c-axis cations of the rutile structure pairing and
puckering somewhat. This monoclinic distortion has two effects.

The t, band is split into sub-bands, which we shall call the t, and

1

the L bands. But, more important, the t. band is split into bonding

2
and ant.bonding sub-bands by the pairing along the c-axis, which is

a classic example of the theory of crystalline distortion given in
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gsection II D. The distortion parameter € is rather large, which tends
to bring about a large energy gap, estimated in Chapter IV to be

0.3 eV. The band structure below To = 340°K is outiine?! in Fig.
V-4(a). Since there is just vne 3d electron per \ARAA ion, the t, - > |
band i8 completely filled, and all higker bands are empty. The theory
predicts a transformation at Tc to rutilie structure. Above 3400!(,

the band structure is given in Fig. V-4(b). It can be seen that the t

band is 1/2 filled, resulting in a semiconductor-to-metal transition

at 340°K, as is observed.
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Chapter VI

DISCUSSION

A, The Metallic State of V.,03

Prirmarily because of the exhaustive work of Feinleib[21],
much more is known about V203 than about any of the other materia.s
which exhibit semiconductor-to-metal transitions. Therefore, much
can be gained by considering \’203 in more deta’i.

In view of the recent accurate measurements of the lattice
parameter changes at the transition |37], we shall recalculate the
latent heat of transformation and the Fermi energy from Feinleib's
pressure measurements {21]. The Clausius-Clapeyron equation gives:

dT
av o
T XVXT, /3

H

b
i

3
£y (2 cm (8]
.035 % 30,8 ;—rm X 1527K

3.86 x 109 _K cm”
. 86 T

i

]

cal _ eV .
1020 — 0,044 e {6.:

We can use the value of latent heat to approximate the Fermi energy,
as was done by Feinleib {55] . W assume no spin changes cccur at
the transition. The difference in free energy between the semi-
conducting and metallic states at the transition point can then be
expregsed:

O:AG--AE—TO {48

wz kz TZ

S o
= AE - 2“"—'—‘?;:"_-"- - k’r{} - {6. 21

electronic * As}attice)

N



According to the model we presented in Chapier V, two 3d electrons
per \'203 molecule (one 3d electron zer cation) contribute to the
metallic band. Setting AE in (6. 2) equal to half the value of the
latent heat per molecule found in {#. 1}, we obtain:
>

r.rz kK°T
E.. 5 —

¥ L - 2k

o e

4

o)
0.09 eV, 6.3
This is a reasonable rnagnitude for EF' consistent with the
orders of magritude assumed in Chapter V for the band parameters
in V203. With this value for EF‘ the band width in the metal ‘¢ state
can be estimated as Eb ~ 0. 18 eV. Note that EF =T ch’ 80 that *ka
usual statistical approximations are valid.
We can now use (6.3} to calculate the effective mass of eiec

trons in the metallic state. In the effect ve mass appreximation for

metals [56]:

2
Eg - B 3223, 6.4
Zm
Hence:
e ]
L i ﬁ:z (32 N)2/3
m  2m EF
= §0 . 6.5

This order of magnitude effective mass is roughly wh.t we would ex-

pect for V203. We can approximate the effective mass in the

retallic state in a- cher way, to check (6.5). Feinleib [57) has estimaind

3

. . . e -
the plasna frequency from optical data on the metallic state of v ;t7q as

wpzl.Z eV .




But from the usual expression for the plasma frequency {58}:

m _ 4rNe

m Z

i
B

= 45 ,
This ia in agreement with the approximation {6. 5},
We can now use this value for the effective mass to calculate
the relaxation time in the metallic state. From (4.22), we get for

the conductivity just above the transition:
GIT;) = 4,6 X 10° ohm™! em™1, (6.6

Hence, the mobility is:

=0.72 fzmz/valt-sec. {6.7)

The relaxation time, in view of {6.5), is:

pe)

*®
_pm o om
T’ L+ 5(I'f}t

2.0 x 1071 gec. (6.8)

1]

This is a typical magnitude of relaxation time for a good metal, It
18 clear that the difference in mobility between metallic V203 and
metais such as copper is solely due to the large effective mass in
V203. This means that the carriers are moving much more slowly
than they are in copper. Thus, although the average time batween
collisione, (6.8}, is the same for V203 and copper, the average

distance between collisions, or mean free path, i3 much lower for

o




VjOju Usirg (6. 3), we evaluate the velocity of carriers at the
e

Fermi surface as:

2 EF
= *
m

=0.03 x 1(38 cm/sec . €.9)

From (6.8) and {6.9), we {ind for the mean free path:

A=Tu

Therefore, the mean free path is about 2 -é- iattice constants in
\’203, as opposed to about 100 lattice constants in copper, All these
values are consistent with the picture of a partially filled narrow
band resulting in the observed metallic conductivity. However, we
are approaching a borderline situation, since if the mean free path
gels much below one lattice constant, the carriers are essentially
localized and the tands can be considered to be washed out,

As the temperature is increased above ’I‘O, kT increases,
until at 600°K, it is almost half the Fermi energy, as given by
{6.3). At this point, the statistical var.ations in Fermi energy
begin to become important, and we are entering another borderiine
region. But here the high temperature transition helps retain metali'c
behavior. For at Tt = 60001‘1, the t_~ B and the ty,- ¢ bands merge,
and above this temperature, there is essentially one relatively wide
tZg band, 1/3 filled. This means that the number of free electrons

contributing to the metallic conductivity has doubled. Assuming the




effective mass remains the rame, tke doubling of N serves to in- .
creasge the Fermi energy to:

EF*-' 0. 14 eV. {6. 21

We conclude that the experimental data on ‘5203 abave 150°K can be
satisfactorily explained by the model presented in Chapters IV and
Y. However, the bands can probably not get muck narrower and
stil maintain metallic conductivity. We shall add one more support-

ing argument in section B, where we consider spin-disorder scat-

tering.

B. Spin-Disorder Scattering

The theory of spin-disorder scattering has been given by
De Genneg and Friedel [46]. There are two main effects of this
type of scattering, which we completely ignored in Chapter Iii.
Firstly, there is a contribution to the resistivity, which is small
when the spins are highly ordered {i.e. below TN}’ but adds 2 term
:ndependent of temperature after long range order disappears.
Secondly, there is the effect of the broadening of the bands due to
spin disorder. This broadening will affect the rejations developed
between Ego and Tc'

If our hypothesis about V203 pregented in Chapter V is
correct, we can calculate the spin-disorder resistivity above TN =
600°K, and compare it to the experimental jump in resistivity at
T, measured by Feinleib [21] [see discussion below equation (4.24)].

We first apply the theory of sections {I C and IIl B to esti-

mate the antiferromagnetic energy gap from TN' Since we expect




narrow band theory toc be applicable, eguation (3. 59} i8 the appropr ate
reiation for Eg«o’ and we {ind:

E =0.4eV 6.2
go

as we already estirmated in Chapter ¥ {(where we referred to this gap
as Egz). The cnergy gap is due to the coherent scattering arising
from the exchange potential. But it is the incoherent scattering
caused by this same potential which gives rise to the spin-disorder
resistivity. Using the Born approximation and the exireme simpi.f ca-~
tions of spherical energy surfaces and quasi-free electrons, *he

spin-disorder resistivity above T,, can easily be calculated in terms

N
of the energy gap.
Under the assumption of quasi-free electrong, the energy

gap can be expressed as twice the Fourier component of the exchange

potential:

Boo ™ 2Vpp 52 [ @F bp (3 V  (3) bp(F) 6.3

- Ead —
where k - k' is tw.ce the Fermi mementym, k For the case of

F&

‘1203, using the vaiue for Ego calculated in equation (6. 12):
Ve, = 0.2V, .14

For spherical energy surfaces, the resistivity can be expressed [59]:

[ [ doda' |Ve=1°

g i1 - cos 8} . {h6,I5:

3
p =
50 l6r h ez vz N

Performing the integrations, (6.15) can be written:

v 2
_Am (4 —ri) m{Vep { * G
Psc "8 " "1 z m o

e NEF




But {for the high temperature phase of V,0,, using (6.5}, {6.i1),

and (6. 14), equation (6. 16) gives ior the spin-disorder resistivity:

-4 .
Pso = 12 X 10~ ohm-cm. {6.17;

This is just {he value of pA(T) measured by Feinleib for the sznomalcus
resistivity acrease in VZOB above 600°K, Although the values of
Fermi energy and of the effective mass used in {6, 16) are just rough
approximations, they can both be arrived at by two different methris
and we thus do aot expect too much variation. Therefcore, the agree-
ment between theory and experiment can be considered quite good.
However, we cannot prove the existence of antiferromagnetism in
‘»’ZC)3 by such arguments, since the agreement could be accidental.

U V203 were non-magnetic at all temperatures, there would
be a contribution to resistivity from the spin-disorder scattering.
In order to estimate this contribution from {6. 15), we must use the

* -
appropriate values of E , and m for the range 150°K « T < 600°K,

ol

2nd we ‘nust approsimate Vog: in some way. One possibility is to

azsume that the exchange ensrgy i3 the same for VEO% as for ’i‘i:,{).i.

Thew we can use the value of qu in Tizﬁ3 to ¢htain:
VEE' = 0,03 ¥,
Evaluating {6. 15} in this case gives:

-4 ;
= {1 T3~ . 3 ;E. }
Fsoy 1.4 X110 " shm-cm 6, :8)

But the temperature independent part of the metallic resistiv .ty a=
measured by Feinleib [21] and given in (4. 23) 1s:

P
2 £ x iv ohin -cIn.
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Thus {6. 18} shows that spin-disorder = attering could accourt {0y
alrost 2/3 of the temperature independent patt of the resist v.iy
above To' The remaining 1/3 could be due to the etfects of im-
purities, imperfections, or, as we shali see in section C, polarcn
formation. Clearly, spin-disorder resiativity, being of the order
given by (£. 18}, is completely negligitle in the semiconducting
region,

It i also important to egtimate the amount of broadening
of the bands brought about by spin-discorder. Us.ng the same assump-
tions as in equation (6. 13}, the perturbing potentiai due to spin

discrder can be expressed as half the change in energy gap:

- 5 A
(Ego -ag) . {75 ‘9

£ b

IV
. pert/
Using equation {2.42) for the change in energy gap, we obta n frem

{6.19}):

P -
V.S E . 6. 2¢
N pz,rtf
Thus, the inean square deviation in energy due 'o spin disorder =
Y, 2 .
(AEY = E . } . ‘6.2
ﬂ

Esuation {6.2:1} shows that the effect of spin-disorder brocadening '3
similar tu the modifications brought abcut by a Gaussian spread

srnund delta functicn bands in the narrow band iimit, except that

‘he sprezd 1s no longer constant, Gut depoads or the amount of spun

z

discrder, and thus oo n. We have aiready worked out the case ~f a

Gaussian spread in detai! in s2ct:on [ B, Using (6.27 as the vaiur

for A in equation (3, 70}, we obtain:

?‘.
fit
E\
L
l\
4

st




iz4
22 .
x = e-iy - gYil'éx; . {6.22)

Solving (6.22) gives:

o = 1.6, (6.23)

Thus, spin-disorder broadening lowers the transition temperature

somewhat, as we would expect.

C. Polaron Effects

A second effect which has no* been considered thus far is
polaron formation. It is clear irom the extremely narrow band
widths that only "small" polarons are invoived in these materials.
Holstein {Eﬂ] has calculated the conductivity in the two cases where
transport occurs in a polaron band and where an slectron hops te a
neighboring site. Cond ction in a polaron band, which should domi~
nate at very low temperatures, is characterized by an exponential
decrease with increasing temperature. This is certainly not the
situation in the oxides of vanadium and titanium. For thermally
activated hopping, the experimentaiiy observed temperatu. ¢ de~
pendence is obtained. The activation energy in the temperature<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>