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ABSTRACT

We define the complete problemofa two-stage linear programming

under uncertainty, to bes

Minimize z(x) = EE {ex+ q+)'+ +qy }
subject to Ax =b

Tx+Iy++1y' 3 4

x20 Y+20 y 20

vhere x 18 the first-stege decision varisble, the pair (y+,y')
represents the second-stage decision variables.s In order to solve
this class of problem, we derive a convex programming problem,

whose set of optimal solutions is identicel to the set of optimsl
solutions of our original problen. This problem is cslled the
equivalent convex programming. If the random variable ¥ has a
continuous distribution, we give an algorithm to solve the equivalent
convex program. Moreover, we derive explicitly the equivalent convex

program for a few common distributions.
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I. INTRODUCTION

The standard form for the two-stage linear program under uncertainty

is:
(1) Minimize z(x) = Eg {cx + qy)

subject to Ax =b
Tx + My = § EC(!,U,F)

x>0 y2¢0C

where A isa matrix mxn, T is mxn, M 18 mxn, § isa random
vector whose probebility space is (&£, 8,F). This problem (1) belongs to
the class of stochastic lineer programming problems for which one seeks &

here-end-now solution. One interprets problem (1) as follows: the

decision maker selects the mctivity levels for x, say x = x, he then

-~

observes the random event § = § and he is finally allowed a corrective

action y, such that y >0, My =% - TX and qy is minimum. This second

stage decision y, 1s taken when no "uncertainties" are left in the problem.

The decision maker wants to minimize the sum of his fixed costs (cx)
and of the penalty costs he may expect when he has selected given activity
levels (x). It is clear from this interpretation that we could also write

the objective function of (1)
(2) z(x)=cx+E({minqy|x}.

All quantities considered here belong to the reals, denoted R . Vectors
will belong to finite-dimensional real vector spsces R® and wnether they

are to be regerded as row vectors or column vectors will always be clear from



the context in which they appear, Thus, for example, the expressions

X = (XgpeeesXyoesonxs)

Tx =y
n
+ - +_ -
vy ‘E MRL
i=1

are easily understood. No special provisions will be made for transposing

vectors.

The randocm vector § = (Kl o inire (1 S (ﬁ) is a "numerical"
random vector, i.e. F C Rm, @ 1is an algebra or a o -algebra and F is
a probability distribution funetion from which could be obteined a probebil-

ity measure. (Ii ) 8 ’Fi) is the probability space of the random variable &, .

We only need independence of § and x s our first-stage decision has then

no effect on (X,0,F).

If for every finite interwal, Fi(Ci) has a finite number of discontinu-

ity points, then we cen always integrate by parts fgi(li)dFi((i) y Where

gi(Ci) is & linear function of &, . If it exists, we denote the density
function of &, by ri(ti) 1=1y...,8 end let @, and B, be respectively
the greatest lower bound and least upper bound, if they exist, of § g+ Ve

assume that E‘ {‘i} ex sts for all i=l’ooooo Elo
i

We say that probiem (1) is complete when the matrix M (after an appropriate
rearrangement of rows and columns)can be partitioned in two parts, whose first

part is an identity matrix and the second part 1s the negative of an identity

e e — P £ W 20 =



mtrix, M= (I, -I).

The standard form of the problem to be studied in this article is then

(3)  Minimize 3(x) = Egfox + 'y +aY)
subject to Ax = b
Tx + I;r+ -Iy =¢ te(%,0,F)
x20,7 203 20

where we partitioned the veotors q and y of the standard form (1) in
(q+,q') and (y+,y'), respectively, The fact that m = 0 (i.e. there
are no constraints of type Ax =Db) does not alter the characteristics of

our problem.

Among &1l classes of special cases of the two-stage linear programs
under uncertainty, the "complete" cese seems to cover the largest class of
possible applicationss One can think of' the vector x as representing the
activity levels of & production plant, constrained by Ax=b, x> 0. T
is the "transformation" of these sctivity lewvels into sellable goods. x = Tx,

is then the amount of goods the producer decides to place on &« market where
the demand, §, is only known in probability. y and y~ represent the
"errors" the producer made in estimetirng the demand; Q" and g are
penalty costs for making these "errors". For instance, an inventory type
problem has T =1,q represents the unit shortage cost, and q~ the unit
holding cost, and Ax = b the capacity, budget, technology,.es constraints.
It can be shown that the correlations between the ¥, do not enter the
problem; we do not need the¢ independence of the (i e We denote the marginal
distribution funsctions by Fi((i) 1= 1000000




The first section of this report shows the existence of an equiwient
separable convex program to (3). In the second section we let the random
variable { assume different distritutions, and we derive the correspond-
ing oquinlut oconvex programs. JFimlly, ve suggest an algoritha for
solving (3) vhen { has a omtimicus distridution. '




II. THE EQUIVALENT SEPARABLE CONVEX PROGRAM

We sey that a programming is equivalent to another programming
problem if their set of optimel solutions is identical. Let us consider
(4) Minimze 3(x) = ox + Q(x)

subject to Ax =b
x20

where

() AR =By g, 5, ) Q00

and

6) Qx8) =M’y +qy |y -y =t-1,5" 20 5 >0,

(7) Proposition: (4) is equivalent to (3).

By (5), definition of Q(x) and (2), the objective functions of

(3) and (4) are identical. It suffices to show that (3) and (4) have the

same set of fessible solutions,

Since we seek a here-end-now solution, a solution to (3) is not a
pair (x,y), buta vector x. Our decision y 1is taken when the random

event has occurred.

Our second stage problem
(8) Mnimize q"'y+ +qy
subject to Iy’ - Iy =¥ - Tx

y' 20 y 20




is always feasible, whatever be the values ¢ssumed by ¥ and x; it is
always possible to express any number as the difference of two non-negative
numbers. The constraints limiting the here-and-now decision sres Ax=Db,
x>0, i.es (3) and (4) have the same set of feasibie solutions. If (3) is

(in)feasible so is (4) and vice versa.

The word complete, which was used to define the class of lineer programs
under uncertainty of the form (3), can now be justified by the properties of
the solution set,visze.t every x satisfying the "fixed" constraintss

(Ax = b, x> 0) 1s automatically a feesible solution to problem (3). This
is not the case in generzl for linear programs under uncertainty.
Let
K={x|Ax=b, x> 0}.

It K=¢ we define Min 3(x) = -=,
xeK

(10) Propositions (4) is = convex program,
Since K 1is e convex set and ox 1is a linear function of x, it
suffices to show that Q(x) 1s convexin x. It is easy to verify that

Q(x,E) 48 convex in x (see (6)). The operator E, applied to Q(x,E) ,

3
Te2y forms a positive weighted linear combination of convex functions in x.

The resulting function ¢(x) is thus convex.

In what follows, we assume that (3) is solvable, i.es 2z(x) attains its
minimum on K. We also assume that K has a non-empty interior.™ We now
show that the Equivalent Convex Progremming problem (4) is a Separasble Convex
Programming Problem |2, pe. 482] and this, contrary to the assertion found
in the Appendix to [4, pe 2A6].




The sccond part of this section deseribes some useful
cheracteristics of the objective function of (4). The last pert is
devoted to show how the existing solution methods for separable convex

programs could be used.

A. Q(x} is separable.

Let

1"hz'owof T

Xy = Tix where Ti is the 4
and
Ax) = when x = Tx.
None the less, we should not confuse Q(x) and Q(x). Their dommins

being subsets of R® and Rn, respectively.

If the function Q(x) can be written in the form

a
Qx) = E Q, (x,)
1=1

where

Qi(xi) is a convex function
and

X = (xl,.......,xﬁ)

‘hen Q(x) 4is called convex-separable.

For a selected x (i.e. x) and given &, the problem to be solved

in the second stage ist




n n
(11) P(x,¥) = Minimn ngy‘; DA
= i=1

+ - .
subject to  y, - Y = l:i - Xy

i = l’...’i

+ -
Y120 Y120

The dual to the linear program (11) is:

m
12) Qx,8) = Maximm 2"1“1”‘1)“1 -Xy) -
i=]

Subject to -q; g "i((i’xi) S q_I i= 1,...,5

We have already seen that for any given pair (x, &), problem (11) is

always feasible; problem (12) is fewusible iff Y1 the interwal [-q;_,qz] 4.
These last conditions are completely independent of the values assumed by

x end &, Using the Existence Theorem (duslity theory in linesr progrem-
ming), we establish the followingt

(13) Proposition: (11) is solvable iff q+ +q =q>0.

The permanent (Vx, V&) feasibility of (11) and the proposition we
just established implies thut if the assumption q' + q” > O was not

satisfied, then

P(x,§) = == Vg, Vx (VX

Eg(P(x,8) = - VX




and
z(x) = - » VxekK &
Let
subject to -q; < "i(tis xq) < qI
a
(15) Propositions Qx, §) = zqi(xi, (i) .

i=1
The optima) solution to (14), and so to (12) can be cbtained ss follows:
If (Ei-xi) <0, set "1(‘1' xi) = -q; i.ee the coefficient of the

objective function is negative, we set ni(Ei, xi) at its lowest possible

value because we are maximizing.
If (Ei - xi) >0, set ni((i, xi) = qI .
1f ((i - xi) = 0, take for ni(li, xi) any value of the interwal [-q;, qI] .
Let
m (xy) = Eg {optimal m, (%, x,)]}

be the expected velue of the optimsl solution to (14). If (i hss s
continuous density function, then "i(xi) is unique, but not if Prob {(i= Xi] >0
By definition we set "1("1) = -q; when ((i - xi) = 0, but we come back to

this problem in the last section (IV).

In what follows we asssume that q+ +q =q>0 otherwise our problem

would be without interest. If we assume that the second stage problem is
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bounded, then the optimal solution to (11) must satisfy the condition

Y’y =0 (ee. 3, >0~y =0 and y;>0~yI=0)o One could then

show that Q(x) 1s convex iff q > 0, using e.g. the property that a function
Qi(xi) is convex iff it has non-decreasing first differences and that Q(x)

is & convex combination of convex funstions.

Let

ﬂ(X) = (“l(xl)’....’ﬂi(xi)’......"i(xi))
Qlx) = Egi{Qlxs 8) ) »

Since the expectation of a sum of random variables equals the sum of the
expectation of these random wariables and using (15) we have

n
(16) Propositiont Q(x) = ZQi(xi)
i=l

Since the different Qi(xi) are convex, we have now proved the separability

of Q(x) . From the duality theory for linear progremming, we elso get

P(x, §) = Q(x, §) V given pair y end §,

then
P(x) = Bglk(xy ©)} = E{Qx, ©)} =Q(x) »

B. A Study of Qi(xi) .
We point out some of the charscteristics of the functions Qi(xi) » which

are useful to simplify the computetion procedures when seeking en optimel



solution end also to obtein explicit forms for the equivelent convex
progremming problem when the ti 's hsve some specific distribution
functions,

By definition

n(x)=-q’f dr(c)+q+j aF, (€.
1(Xg 1 J8 <xyg 1B Y Ju sy, it

(17)
+ ~
=q, - ar(g
Y -9 j!ig X4 (%y)
where
G = qy +ap
P, (g,) 1s the distribution function of ¥, .
Also
Q,(x,) = = f 8y -xg)ary () + qy ff (& -xp)an(Ey)
T, <x 8, >x
15X K
- + ~
Y FERUEALXARE Y SPRURALAH
_ tF = +, -
=9t - qij “yaFy (8y) - [qixi ‘qij xidFi(:i)] y
1 Sx f1<y
We write

(18) Qy(x) = @ & =¥y (x,) - 7y (x)) %,
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where
¢, = ‘iii‘13
(19) b, (x,) =a g, daF, (€,)
) 1\ 1_/,:.1 < % §l =g v g
then _ _ _
m m m
Qx) = EQi(xi) = qufi -E [*1("1) + 1y (xy) xi] .
i=]1 i=1

In order to cbtain a more explicit form of Qi(xi) we divide the range of

X; in three parts, (- =, ai) , [ai, Bi 1, (Bi’ + ®) and we express Qi(xi)
for these intervsls. If :i has no lower bound, we set a = - and
consider the first intervel empty, if :i has no upper bound we set Bi =+

and the third intervel is then empty.

Case 1. x; <oy then (L8 <x,}=4.

In this regions

my (xg) = qI

\
o

’bi(xi) =
Qi(xi) = q.I Ei = QI Xi

and

|
b
S e

Sd(z Qi(xi) = &4 (- ® aj_)

_ni(xi) on (- “,01)0
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Thus, the function °1("1) is linear on the interval (- =, ai) . As
mentioned above, this interval may be empty. (See Appendix I).

Case 20 a, {x; <By then (&,| & <x,}={f|a <% <x,].

Sn—

In this region

X
mx) =qa -3, f Ler(x,)
g\ Xy/ = Qy ‘11/;ri 1'%

X
¥ (x,) = /a Ly ar(x,)
i

Xy

@y

The "form" of the function Qi(xi) on tais interval [ori, 81] depends on
dFi(Ei) « In Section III of this report, we give examples for a few common

distributions. If Qi(xi) 1s differentiable on this interval, we haves

Xy

a-:-i- Q(x,) = = + cIi/a' dF, (¥,) on (ayy B,)
1

s - ni(xi) on (0'1, Bi) .

ase 3, xi > Bi then [L’illi < X13= ‘1

EE—

In this regisn

= ot U5 =
"i(xi) - qi = qi = 'Q1

b (x) = 4

-+ .= e o e
Qxy) = a4 - qE + qx,= - L+ apX,



S ol ™ e

and

B =g on (Bys +)
= -, (x,) on (Byy +=) e

The function Qi(xi) is thus linear on the interval (ﬂi, +o),

(20) Propositions Qi(xi) is continuous,

If Fi(ti) is a continuous distribution function, it is obvious to
remark that Qi(xi) is continuous at all interior points of the intervals
(- =, ai], [ai, Bi], [Bi,+°) « Since Prob { g =a, }= Prob{t, = B, }=0, Qi(xi) is
also continuous at @, and Byo It suffices to show that Qi(xi) is
continuous for x, equal to a discontimuity point of Fi(Ei) . Without

loss of generality, we can assume that Prob[{:l = ai} =£>0.

When Xy converges to @, from the left, we haves

When X, converges to @, from the right, we havet

+3 + ~ Xy
Lt Q) = lm o T, - qjx, - qij; (€, - x,)dF, (%)
i

Xy =@y Xy ~ay
eqg'r, -q'a, - 1n § xi(r- ) aF, (E,)
Y 5 - Yy Y g T Xg) Sy
X, =a
i i °’i

= +
P T

"
4



wi
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Since the two limits are equal, Q,(x,) 1s continuous at a,.
’ S | i

The following figure gives the general form of Qi(xi) where we

assumed that Fi(ti) had discontinuities for Y, equal to a,y By k.

Figure I

(21) Propositions If Fi(Ei) 1s a continuous distribution function, then

Qi(xi) is differentiable and

% Y xy) = -my () L e



16 3

Since Fi(f. i) is continuous, then the derivetive is well determined at
#11 interior points of (- =, ai], [ai, Bi]’ [Bi’ +®) , Moreover, Qi(xi)

is continuous end at a, and Si y the left and the right hend derivetives

i

ere equale This determines < Qi(X) at a, and B, uniquely.
Xy i d i

The figure below indicates the general form of Qi(xi) when Fi(Ei)

is a continuocus distribution function.

2
=
>

Figure II

In wnat follows, we assume that a, > - @« (In the ippendix I, we give

the necesssry modifications when a, does not exist,)
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Let
Xy = & =Xy * Xypt Ny
with
0L 8 ~ay <Xy
0< X3Py =%
0<x3
This ylelds:
TyX+ Xy4q -xiz-xﬁ:zi 1= 1)ceees,l
“ We set
Q (X370 X300 Xg33) = Qy(xg) J
then

(22)  Q(xy39 Xgp0 X33) = a Xy, * 9 Xy3 + # (x4 )

subject to ‘i - o < Xq1

OSx5S Fy -y

08 %3
where
3 x12 =
0
and
By(6)) = Fy (&) 4 a)

P e 1
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Since the first term (-qI xiz) of ¢1(x12) is linesr, ii 20 end

X
i2 z
./(; ()(12 - 4.1)dF(€1) is convex, so is di(xiz) (over its domein).

The two first terms of Qi(xil’ Xy o '/_13) represents the linesr sections of
Qi(xi)’ see Figure I. The term Qi(xiz) gives to the function its particular
charecter, which depends on dFi(f.i) . As we shall see in III, ﬂi(xiz) may

be a plece-wise linear function, a quadrstic function, and so one Let us
also remuark that the function Qi(xil’ X{ )(13) is convex-separsble, the
equivalent convex programming problem to (3), in terms of xj, xu, Xi o XiB

is thus a separnble convex programming problem, linesr in xj, Xy10 Xq3° It

readss - -

n m m
- +. =
(24) Minimize z —zcjxj +2 [qi X1t Y )(13] +2 Q!i(xiz)
= i=m =
n‘
subject to Zaijxj =b, 1=1,e.,n

=1
n

Etijxj X - Xi9 'X12=€i i=1,...,m

J=1

ngj’ Ei‘aiﬁxili OSXiB, ngiziai -ai .

Ce Sepurable Coavex Programming Alvorithms

Two basic references in this ares are [2, pp. 482-490) and [5, pp. 89-100].
In his book [2], Dantzig suggests two epproaches to these problemss the
bounded-variable method (- broken lire fit) and the variable-coefficient method.
A broken line fit to the di(xiz) 's would reduce cur problem (24) to a large

linear program (the number of variables with bounds would incresse). This is
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equivalent to the sssumption that the distribution of (i cen be approximsted

by, or 1s, s discrete distribution, §, teking on positive probsbility ¢t

i
the points where there is = chenge in the slope of the broken line fite Sre II7, Al

1f one uses the veriable coefficient approach one should teke edvantige

of the fect that (24) is » linear progremming problem, but for Xy
i=1,...,m. The problem then becomess
n m m
+ -
IS =
(25) Minimize =2 Ecjxj +§ [qi Xgqt Y XiB] 4 )‘igi
J=1 = i=
n
subject to zaijxj = bi i=1,¢00ym
J=1
n
Ztij"j t Xy - Xg3 "%y T8 1=:lye.m
J=]
Xiz - )\ifi =0 i‘l,...,m
Xi = 1 i-:l,...,r?l
0L %59 8y -0y CXyp0 0L X990 0K 03, By -0y
#nd
N - _
g, 2 A (£,) = ajf, + qi/ (£, -€)AF (§,) i=1,u.0,7

f)
The soliution method to this cluss of problems ¢s well ss the convergence properties

are fully discussed in [2, pp. 486-490, pp. 433-438].



TII. THE PROBABILITY SPACE: (£, 3, F)

In this section we derive the equivalent convex programming problem to
(3), for some specific distribution functions F . Up to now, the assumption

made on the distribution of E, were limited tos E[L’i] exists and one can

X R
SEmputel thel maneher f 2 (xy,- EAR (8, Vg, el0, B, -a,] if
0
X3
a > -, (more generally one can integrate / (Ei - xi)dFi(Ei) ’
a,
1

VX, [ai, ;i] i.e. the formlas of the Rieman-Stieltjes integration by

parts apply)e. We did not require the independence of the Fie

A. 2 1is finite,

The notations used in thls paragraph differ slightly from the previous

section,.
2 ki
Let [‘} < !’i seeeee < Ei be the values assumed by Ei with probabilities

k

fi’ ’ ff ’ ....,i‘ii respectively.

Let
]

-1
s _ £ _ ]
i-'i = £, = Prob (¥, <}
L=

=0

X1
x*
+
-
]
[
|
g
g ]
J
o’
=
S
\
8
—
-

= Prob {Ei < ai]



It is eesy to see that

B (Mo o+ o] | <% < e

k
- L : Ly o
= - - -
! 2 (85 = %)y + g 2 (g =88 -
I=s+l =
Then ki+l
e + -y,
Qxy) =a; & - D (q - P‘fqilxi
L=1
ky
where 2 xf = Xy
=1
1,41 _ .l
Xy <& = L
R Y =
0 g Xi S Ei - (i = di - 2,0.0,1(1
k,+1
0 S xi .

Since 51 > 0 (the second stage problem is bounded by assumption) and
+1
Ff < Fﬁ for Fl,ooo,ki

it is readily seen that Qi(xi) 1s & piece-wise linear convex function.

This last property allows us to formulate our originsl problem as e linear

program (2, pp. 484-485], viz.s

-  k.+1 -
n m i m

(26) Minimize z =2 cij -2 ;(q’: = Ff ii) xf + 2 qzﬂ_

3=1 1=
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n
subject to ; 8y 4%, = b, 1=l,eee,m
n ki
L -
Etiaxa - 2 X3 =0
J= =1
X, 2 0 » jzl,ooo,n

k,+1
12 L, 4 i
Xy 208 4,028

m
where ng Ei is = constant.

- Xyq in (24) corresponds 1o )(:il and X 3 in (24) corresponds to

k. +1
Xii « The varisbles xf » £72ee05k, in (26) correspond to the unique

vorieble x,, in (24) «
This problem een now be solved using & linesr progremming code with

upper-bound vuriable option.

1. Allocation of Alrcreft to Routes under Uncertain Demend

The approach indicated sbove could be attributed to Ferguson and Dentzig
where it wes underlying their works "Allocation of Aircraft to Routes under
Uncertain Demand." [2, pp. 568-591]. Using their nottion, the problem

written in standard form (3) iss

m-1l n-l

n-1 n-1
Minimize Eg ;z Z(cij = pijkj)xij + Zcmjxmj + ijyjf
1= Je= = =



n
subject to zxij = 5y i=1,600ym-1
§=1
m-1
zpijxij + xmj - yj = (j JFLlyese,n-l
i-1
xij 2 0y :cm‘1 2 0, y‘j 20 i=lyeeeym-1; j=1lyeesyny

where yj is the number of sests remaining svailzble end Ej here is their

d The interpretation of the other symbols is given in [2, ppe 574].

j L]
This problem hss the following feesturess
cm.j =0 for 811
In our formulation this mesns q+ =0
+ L= 4 -
ioec qi = Fi qi— "Fiqi .

- _ iy _
In thelr terms -Ff Q = 'kj(Fj) = -kj(l - Yﬁj)

. 2’ 1 o, =
pij20 implies pijxij 20. i.e. Xj 20 for all j. The rendom
[

k
variable Qj on values E:jL < E? eeeee < ij and it is assumed thats
m-1 .
£,
2 Py 5%y 5 < Ej‘] for all
=
kj+1
lees ¥, is fixed at value zero. 1lsking these

J

modifications into aecount, the linear prograem, corresponding to our gener:1
form (26) followss

m-1 n-l1 n-1

k,
(27 Min 22515"1J+2kjipﬁx§+ﬁo
i=

1=1 1= =1



n
subject to 2 xij =y 1=1ye00ym-1
=]
m-1 kj
S - S
P15™3 X3
i=1 =1
xij 20 i‘:l,.o.,m-l, j '—'1,...,!1
Osxj _<_d§ j"—l,...,n and Fl’o--,kj
wnere
Cyj T Cyy - pijkj le.e. cost (negative profit) of flying
frirersft type 1 on route J et full
cupecity.
n-1
R, = :E:E.k.
0 A=
J=1
and

dg fis defined sisi AbOYEs

There the first n x m columns of the constraints m-trix (matrices A
snd T in our standard form (3) hsve the structure of = weighted distribution
problem, Ferguson and Dentzig specislized the upper-bound algorithm for linear
programs to this class of problems which lesd to an elegent solution technique,
tuking full advantage of the nature of the problems We would Like to point
nut ¢ slight conceptusl difference between Ferguson and Dentzig's formulation

[2, pe 577] and ours, reflected in the objective functions. The Ferguson-

Dantzig -bjective form cen be Interpreted rs followss only the costs of
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flying sirplane type 1 on route | are certsin (cij) end one expects

a certain revenue ott:ined when flliling up the sest cepecitles mede evuilublej
where our objective reads as followss profit (Eij) of flying eirersft type
i on route | sre certuin and one expects only a lost revenue resulting
from not filling the seat-capacity mede awvailable. Obviously, both object-
ives yleld the same welues for the optimal Xy 's «nd we czn derive one

from the other.

2. Elmaghraby's Approach

The problem studied by Elmeghraby in "An Approsch to Linear Programming

under Uncertainty," [4], written in standard form, is ns followss

Minimize z = Ez{cx + q+y+ +qy }
+ -
(x,y »y )

subjeet to AX <b

Ix + Iy+—Iy- =§

x>0y >0y 20

then x, = x, (1=l,e+eym = n) &nd one c:n sperk of the objective function

n n
2= cx+ Qy) = ex + Q) = zcjxJ + Zaj(xj)
1 =1

as s separable convex function in x, rather thei x and x as before (24),

but this does not lead to noticesble computetionsl simplificetions.

In what follows we present Elmughraby's version of the linesr progrem
used to solve his problem which will obtain its solution by a "sequence" of

linear programs (by this he me:ns thet Q;(xj) can be b_oken up in linear
v
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sections end the simplex method will exrmine these different linesr

sections in "sequence").

kj+1
Minimize z = 2 2[% - q; - F;qj]x§
< =1 &=
J
. kj+1
S'iject tO Eaij X; = bi i=1,no'o’m
=1 1=1
G
J S,
L J :
zxj gEj for j=l,eesyn} sj=l,...,kj
=1
£ - =
szo j-l’ooo,n; l-l,coo,kj+l
k.+l
J
4
x, = X,
where 3 2 j*
£=1 K.
J
°, 5 5
L xj is the optimel solution to the problem then xj = 2 x‘; is

=1

optims1 for his originsl problems It is obvious that the lnequslities

s
J o

2 x; < (j could have been used to obtein upper-bounds for x‘;' usS Wes
=1

done for xf in (26). This reduces the size of the problem considerzbly.

3. El-Agizy's Approach

An alternate method to reduce problem (3) to the linesr programming

problem (26) is given in El-Agizy [3]. This derivation gives also an



27

alternstive proof that the assumption of independence of the & g 's 1s

superfluous,
B. Ei is uniform, V i
Let
£,(E,) = —2— 1t € ¢la,, 8, ]
i1 B, < i 1?5
171
=0 otherwl se
then
F(E,) = —2— if €, ¢[0,8, -a,]
iti B, i 2l i
5 Wi |
=0 otherwise
and by (23)
~ X ~
q 12 q
_ + i . + i 2
9’1("12) = "4Xyp * B, /0. (xy5-8;)d8 = —qyx4 5+ 2(si-ai$ Xio
(24) become.
n n m 3
_ + + - 1 i .2
(28) Minimlze z = 2 cjxj + Z (qixil = 94Xy + iniB) +3 Bi'ai Xi o
=1 1= 1=1
n
SUbject to 2 &ijxj = bi i=l,o..,m
j:
n
2 bi:xu + Xil Xi y = Xi3 = (i 1=1,...,m
J=1
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(23) 1s easily recognizable as a Quadratic Programming Problem for which
many slgorithms exist in the literature, e.g. see [2, pp. 490-497]. Besle

was the first one to point out this property for uniform distribution[ 1].

C. Ei is exponentiel, V1

Let
‘*1‘1
£,(8)) = Ne if & ¢ [0, + <]
=0 otherwise
then
§ - r =31
and by (23)

X 1 9N 4
-+ = i2 S
030 )= =ayxyp + G4My f (xgp-84)e = "a&y
0

- Yy Xy
=Xy (L-e T )
i
using Taylor's expansion
q N Vs n \n
- i271 LN
= QX 5 -)\—(1 l+x12)‘i g +Z (-1)n xi2i)

rn epproxim tion to {Ji(xiz)

= + i 1 2 .
44X 2 X2



29

The value of this approximetion depends on the relative velue of 51 and

the proxdmity of the optimael value of P to zi = % o« If we introduce
i

the upproximstion of ¢1(X12) in the objective function of (24), the

resulting equivalent convex programming problem iss

n m m

_ + + 1 Q- 2

(2) St Ecjxj * g [qixil - in12]+ 2 2, 94 M Xy o
=1 J =

n

Subject to Eaijxj = bi i=1’ooo,m
=1
| 1
ztijxj + xil = Xi2 = Ki i=l,...,m
J=1

1
0<xp §, $%r 08Xy
So &s (28) this is ¢ Quadratic Programming Problem ( V i, 51"1 >0).
Remurk that we did not introduce Xy3 because B, =+ ®, l.e. 51 hes

no upper bounde

D. Ej has a continuous distribution funection, V1

In our last parugrsph (IITeC) we "accepted" an epproximetion to the
objective funetion in order to reduce (24) - the equivalent conwvex progrem-
ming to (3) - to a quadratic progremming problem for which algorithms have
been developede The purpose .f this parsgrsph is to suggest :pproximstion
for the distribution functlions rnd then show that the so obtained "equivelent"

convex progr-mming problem 1s in ¢ form for which efficient comput: tionel

b



methods cxist,

We have already pointed out in Section II.C (on'Separable Convex
Programming) that replacing d1("12’ by & broken line fit is equivalent
to finding a discrete distribution which would "approximate", in some
sense, the distribution of the random variable Ei o Here, we approximate
continuous distribution by step-functionse In other words, we replace
the random variable :i by a veighted sum of random variables having
uniform distributions.

Set
kg
)
b = 2 Py &y
=1
wvhere
K

£(E)  £21yeu0pk

, are uniform density functionse.

In (24), replace the eonstraint

n
2%1"5 *Xgy "X " X3 = Y
=1

by ki equations of the form

oy |

n
L 4 L _ =
121 tijxj + xil = Xiz e x13 ool Ei L-l’ooo,k .
=

it

Ths objective function of (24) becomes
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.k
ul 3l
; Z falt +aTx3) +§ pr % (xf,) -
1-1 =

de have rlready shwm (ITLC) that if §F is uniform then #(xf,) hes -

N
n

linieer end ¢ quedrrtic term. See (26). Ther

g\ 2
g 1% 2;"1 qi"n qix12+ qxiB *“Zzpi Z in2) y
=1

This approximstion of random veriables hsving continuous distribution by the

sum of random variables hsving uniform distributions led also to a Quadretic

m

Programming Probleme It is clesr th.t the increase in size (3 m Z (ki-l)

o i=1

m
new variables of which 2m 3 (ki-l) are bounded and (ki—l o additional

=1
constreints) depends on the des'red q =1lity of the zpproximation. To find
the af and Bf y Jlower and upper bounds for E;’ , see the Appendix to [1] .
E. Summary

This section hes shown that either directly cr by spproxdmation it wes
sometimes possible t- reduce the equivrlent ccnvex progremming to (3), to
progremming problems £ . ~hich we possess efficlent r1gorithms, For simplie-
'ty we nave sssumed in ecch prregreph thet the margin-l density function fi(Ci)
wes of the s'me nrture VY 1. This 1s not necesserily the crse.s It should be
clerr by row that erch ¢i(xi2) c:n be tre: ted independently. For instcnce,

if & h-s - discrete distribution, =nd sey (2 p uniferm distribution it is

1

not difficult to snow tnt trne equiwlent convex progrer ing problem is &

quedrstic progremming problem.
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IVe AN ALGORITHM FOR COQNTINUOUS DISTRIBUTION FUNCTIQNS

We now give an algorithm to solve problem (3) when Vi . Fi(Ei) is

a continuous distribution function. We assume that the distribution
functions F,(F i) allow Rieman-Stieltjes integratior of linear

functions of Ei o We also assume that (3) is solvable which implies emong
other conditions that G > 0. We have shown (4) that the equiwelent convex

programming to (3) can be written

(30) Minimize 2z2(x) = ex + Q(x)
subject to Ax =b
x20
or
(30") Minimize z(x,x) = cx + Q(x)
Ax =b
Tx - x =0
x20
where
n m
Ax) = zQi(xi) a z [qI 8 -9 (xy) - "1(’(1)"1]
i=] =
then i a
Qx) = quf - 2 [01(Tix) + ni(Tii)Tix] 3
1=1 1=1

n .
Since zqz(i 1s a constant, we mry delete this term from the objective
A

m
function of our problems. We elso wri‘c $(x) = F¥,(x,) «
i=]

BT R 3 s S e ?._-- -
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Problem (30) becomes

n o
(31) Minimize z(x) = chxj - 2 [‘bi(Tix) + ni(Tix)Tix]
J=1 i=1

n
subject to Zai*xj = b 1=],e00ym

j:

xj 20 J¥lyeeeyn

We should note thats

Iffi(E is continuocus st (i =Xy » then

_ o+~ _ 4~
(1< X4 Ei_<_ Xq

g

I £,(§) >0 for § =y, then f aF, (€,) ;l/' dF, (€,)
<%y 8, <xy

, + P
aF (8,) < my(xy) <af -3, I L)
i e 28
In this case a complete range of values exist for the expected w:ulues

of optimal solutions to (14). Identicsl relations hold for *i(xi) "

In what follows, we sssume th:t Fi(ﬁi) is & continuous distribution,

V i=l,...,m. The following propositions eneble us to derive #n rlgorithm

to solve problem (31), and consequently problem (3).



(22) Propositions dd—x 2(x) =c-n(x) T (i.e. M)— =g, - [ﬂ (x) T] {) .

dx ] J J
The result is immedinte if we remsrk thet (21) ylelds d‘i—x Ax) = -7 (x)

and slso that x = T x.

(33) Propositions [c -n(Y)T] x - ¥(X) is & supporting hyperplane of
z(x) at x=% where Y =TX.

In view of (32), it suffices to show that 2z(X) = [c -n(y) T]i - v(%)

which is obvious by the definitions o." 2z(x) .

(34) Propusitions If [c-ﬁ()?)T](x-;() >0, VxeK then z2(x) has e

minimum ¢t i ®

Since z(x) is convex, then the following inequality holds [7] s

2(x) -5(8) > [c-n()-()'l‘] (oD

Moreover, by hypothesls the second term >f this lnequslity is non-neg: tive

for «11 x¢K. This implies

z(x) > z(X) VxeK.

(35) Propositiont Let x,Xx¢K and such thet [c -n(x)T] x> [c —n(x)T]i
then q x*¢(x,x] such that 2Z(x°) ¢ Z(x).

Since [c -n(x) T]x > [c -n(x)T] X, we have
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[c-n(x)T]x) [c-n(x)T] (Ax+(1-NX) Vxe[0,1] .«
If 2(x) < 3(Ax+ (1-A\)X) VAe [0,1], consider

TA\) = (A x + (1-\)X) where  Me[0,1].

‘Since z(x) 1is differentiable, sois ¥(\) [6é] . Then

c-;it &) yoq = le-m(0) 1] (x-3) >o0.

This implies thet #AN ¢[0,1) such that
tZ) <€) .

Let

x* =A"x+ (1-A*)x we heve 2z(x") < Z(x) which contradicts

Z(x) <EAx+(1-A)T, VAel0,1]

(36) Proposition: Let xe¢K and 2(x) > Z(x") = Mirimm 2(x), then
xekK

4@ X such that [e-n(x) TIx > [e-n(x)T]x.

Since z(x) 1is convex and by our hypothesis we have

0> z(x") - &(x) > [e-n()T] (x*-x) .

The last two propositions suggest an iterative procedure, the next propasition

gives us 2 test of optimelity.

(37) Propositions z(x°) = Minimum Z(x) iff
xe K

e -n(x*)T]x® = Minimum [e -n(x*)T]x where x° = Tx’.
xeK

T e T WS s




30

Let [e-m(x")T]x* < [e-n(x*)T]lx V¥ xeX then by (34) x° is ptiml,

Let 2(x*) £ 2(x) Vx ¢K and rsume that Hdx ¢K such thet

- 1

[e =m(x")T]x" > [e -n(x")T]x

thea by proposition (35), J xe(x’yx] o-.ch thet 2(X) < 2(x"), which
contrudicts the rssumptions JxeK such that [c-n(y*)T]x" > Te-n(¢")T]lx.

Let us now c¢onsider the following llnesr programming problem,

(33) Minimdze [e-n(y®)7]x
subject to AX = b
x >
where
k _ .. k k
X - 1 X » X ‘K O

Since problem (31) is solvable, so is pr . blem (38) Vx© e¥; (propusiti.n (2))
uni the line-rity £ the term cx proves the continm.ity £ 2(x) wver ¥ ).

By (27), it xk is an optimal solution to (38), then xk is optimal for (21).
1f xk is not an optimel solutin, then by (36) the -ptimel solution t- (28),

Sey ik, is such that

re -n( T - 2 >

then by (25), gxk+1 ¢ (xk : ik ] such that
2(,X}Hl) v “(xﬁ) .
\re
Since x“+1 ¢k, we cen find n(xkﬂ') nnd solve ¢ new linesr progr=m -f the
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form (38) where we introduce the new values for the row vector mn(x) « To

k+1

find x consider the functions

() L) = i0xE+ (1-0 %5 A ¢ [0,1]

k =k =k k =k , 6=k
- gﬂi(k(xi 5 X1)+ Xi)(\(xi o~ Xi)‘*xi) L]

Since 2(x) is differentiable,so is ¢(\) [6] . The derivative of Z(N)

with respect to M for A NN 0 is

d r(n K -k, SO+ k_-h e "(Xli{‘ili‘)‘“’?if.
L ORE C e DI Y HC e R WEACH -inf :

1=1 fel} ay

1¢13
where 7 ik
Isg‘i . <A - Xy
2 <M< Mus R -k}
s %2 k!
-k
B; - X
8 i i
13'{1|k_-k iy
Xg =Xy
and
-k -k
a, - X By — X
1 i
[\}=‘0-1o 73 -i’ i _i, 1=1n-nm}n [0,1]
X -Xi Xi-xi

R
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#nd

A <\ VS = {1,2,.00, r S 21-!-1 + 2}0

de assumed here that xli{ - )—(?.(‘)O, this is n.t the case Vi y We

levelnp the derivation of de C(\) in more detail in Appendix II. 7o find
the minimum of ¥(N) we successively compute the value of adxC(K) at

the points A (at most 2m + 2), for s=lyeeesT e

Pe)

i

1t ETY (0) > 0 then ¥(MN) attains its minimum on [0,1] at N = 0.

If a—(()\”) <0 and —(&-C(h ) >0 then ¥(N\) attains its minirum

if adxC(l) <7 then ¥(A) atteins its minimm on [ ,1] st A =1,

If &(\) ctteins its minimm -t A =1, then

Ay rk -k'!
< 2(x) Vxe x, x .,

k
)
‘his implles that xk wss #n optimnl solution to (28), otherwise we

contredict (26), thus xk is #n optimrl solution to (21). Let \E be the

minimm of L(A} = 800 XX + (1 -N)FH) on [9,1) we et

k+1

X =kak

+ (1 -kk) )-(k .

n flow chart of tnis algorithm 1s given et the ends We now show the convergernce

>f this pricess. Propositions (25) and (26) assure us that if xk is not &an

1
ptimel solution for (21), then z(y_k) > z(x'{+l)

k+1
x

since z(x) attsins its

r k -k
]

mdnimum walue on [ x ,x at

« M.recver, prcblem (21) being solvable

{mplies that the series {z(xk)} is Cauchy convergent.
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(&) Propositions [e-m (9T] (x%-x¥) < &(x") -8 where x'
is en optimel solution of (31).

z(x) 1s convex end (21) then
B(x") 2 529 2 [e-n(MT] (- =
and since x¥ is optimal for (38), we heve
le-n( 1]x* > [e-n(x)TIx".

Adding up these two inequalities gives the desired resulte From this last

proposition, we have obtained a lower bound for z(x*) and

(42) 22 + [c-n0OT] (- 2 < E(x") <3 .

At each cycle of the slgorithm, we could compute i(xk) + [e -ﬂ(xk)T](ik- xk)
and use for lower bound of z(x°)s
= Max 3 + [e-nOATI(RE- <BY .
xt Fl,.o'.k{ }
We obtain

L, - 5() £ z2(P) - (29 <0

then E(xk) - L is an upper bound on E(xk) - Z(»®) . This upper bound could
be used for stopping the computation, e.ge when i(xk) - Lk is less than =
predetermined number.

To show that i(xk) + 3(x°) it suffices to show thet [c -n(xk)T](ik- xk)

k k k
has & subsequence such that 1lim[e -n(x i) T](x 1 x 1) <+ 0. If the process
k, %
X

O K s

St ‘:’7"“'&"“"%1, il ﬂa;g: TANRE g
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1s finite, we have ik= xk, Yk > ko . Let us assume that E(J:k) > z(x°) ¥k,

then

(43) Propositions zD > 0 such that [e -n(xk) T](xk = J.tk) >D Vk.

Let us assume that 3D > 0 such that [ec -n(xk)'l‘](xk--k) =§;: (1) >0, Vk

then by continuity of m(x), see (20), and for k > koo gvkc (0,1] sueh that
le -1'1(\;1()(k + (1 -vk))-(k)T](xk-J-tk) = % C(vk) = D/2.

Morenver, by convexity of z(x), we have

k k

2(x) - 2(VKxK + (1 -vF)F) > (1 -v e -n(v5F + -V TR -2

and we also have

k_k

z2(v x + (l-vk

%5 - 25 >o0.

Adding up these two inequalities, we obtain

22 = 2 2 @ -V le-n( S ¢ 1-vOEH TIGK-3N =2 vk

thus
(1-v¥) <2155 - 35D

1> v 22105 - 2] 4.

Since {z(xk)} 1s cauchy convergent, we have

limvk=1.

k -
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We also haves

-g-< ( le - n(XMT] - [e - n(v%* + (1 -5 fk)'fl) (*-35¢
Ile - a9 1] - e - n(*x* + @ - EHTI 1 - 75N ¢
Nie - n(xX®T] - [e - n(v*x* + 1 -vOFHTI - ¥
vaere ¥ 2 Supe | = -z*.

Such a M exists, because (38) is solvable Wk, and x(¥S) can be
expressed as a convex combination of all extreme points of ¥, Also,

lie - n(xk)'r] - [e - ﬂ(vl‘xk +(1- vk) i‘")r]ll tends to zero, as k - <,

( vk converges to 1 and n(x) is eontinuous). That means that at the
linit we must have % £0, which eontradicts our assumption that

fe - n(xy®T)(* - 25%>D>0 WVk.

SRR SR
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Flow-Chart of the Algorithm

Initiate with

A(yY) = qf ar(L) - o” AF(E)
fz P ‘/; g

t

where L'O is the mode, median or

expectation

Set k=k +1

Min[e - ﬁ(xk)'r]i
Lx=b

x>0

AL optimal y l
Let X be an ~ptimal

salution for

solutions Then
the linesr

Min (M) = 2(>~xk+ (1->»)ik)
A

program
say A 2T (\), VX ¢[0,1]

Termin:te

k k]
b'd is ¢+ 8

optirrl 85t -

tion £or (2)
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David ¥Kohler wrote an experimental code for this algorithm. We used
IBM 7094 and solved a few examples for which the computing time was
v-ry reasonable. An outline »f this code, its features, an intuitive

justification and examples are given in [8].
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APPE.DIX 1

We derive here an explicit expression for Qi(xi) when E’i has n»

lower bound (§TI.C). We recall

where

i

EL {1 = §

wikxi) =7 j; g dF. (&,)
1 8%
o~ "

We di-ide the renge of X; in two parts rnd derive explicit expressions

for Qi(xi) on those intervelss

Cuse la Xy S By then {Eil £ < xi} 1s the et of integrestion for wi(xi)
and ni()(i) .

In this region, we have
x;) =4, “ g
M) =a - T dR(E

= Sl ke
'&i(Xi) —q’if zidri(zi)

+ ~ Xy

e 4 is differentiable on the interwl (-=,8,), We have



4 =t e frar (g = -mx)
dx,L%xi"‘% qijjw S AL A LA

Gase 2. B, < x, them {L & <x;}= E,
In this region
™ (Xy) = -q
v(xy) = qE

and
24, (x)) = a7 = -7, (x,) on (Bt =)
B, T A 11X4 Pyt ©) .

The function Qi(xi) is linear on [Bi,+-m).

Let,

Xy T Xyt Xyg WAt x5 By 0L X5y BRd TiX - Xy, - X5 =0
Let
then

( = -, + T [ R, - £ (E) 4 q
Ulxyonxyg) = a8 -ayxyptdy J 7 Wyp = 5T+ 9%,

In & similar manner we could have given an expression for Qi(xi) when
Zi has no upper bound but this could bte obtained immediately from (22),

by letting B, = - = and deleting the term in Xy3s Se€ eoge (29).
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APPEIDIX TT

From (39)
ZN) = 500 x5+ (1- )8
n m
_ .k =k W, k =k K
_ch: xj-xj) s \bi\xi- i)+xi)
= i=]
k -k - X k -k k
- { _ -
gﬂi\\(xi X )+ X)) Ay =X+ %)
. . A\ k =k - K
In order to simplify our notations, we shall write Yy Lo K(xi - X.)t X .o

\ A
T 4 e . ([ &= ar
Let us ¢ .nslder wi\xi) and m, 'i) .
kK -k_ d ANy _od
If X, =X4=0, then z=m(x;) = 3 ¥ x

In wrat £-o1lows, let us assume that x}; - X

incqualities we obtain for the regions of
a )Ek
~ A : 1~ M
s ¢ ' 4\/
Case 1o X; £y thaer A< "EE
Xi - Xi
iy \) =q°
1 X407 %
A
o MY =
pylxg) = 0
~ s AN 4= + A
5 xg) = ag By -ay
an i
d . /A 4+, k k
T 4 0a) == (g =~ xy)
a )-(k
A 1 " *d
' —_—
Case 2. aiﬁxi_ai then PR <A

)i) =0, we delete thosec terms.
-k <
}; >0, if xli‘ -yk ¥0 the

A should be reversed,
P
8, -
%1 Xy
- X -k
Xi - Xi
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x\
+ - 1.
”i Xi) = qL = qif iri(zl)
oy
\ 7\
oy =q o3
by (%) qi/ £, dr, (X)
¥
x\
A+ + ~ i N
() =y By-qp - qif (€, - x,ldF, (¥,)
=
and \
d A\ _ 4.k - k =k £,
~ ai(xi) -, (x4 )ri) + qi(xi - xi)ja' dri(El) .
5
-k
A Bi - 71
2 . o
Case 3+ ¥, > Ey then — ¥ S A
Xg = Xyq
N -
X _~ =
b 00) =a,
R N = [
(%) = =a, By + a0y
and
i L -k
~ x.l) qi(xi-xi)-
-k _ =k

The points k! =7 letermine a chanse in the expressions we

-— k -—
Xy = Xy Xy =¥
A
btain for the derivatve .f£ each ;i(\i) with respect to N . The
lerivative of Z(N) with respect to M will also change at those points

(2m at most). But we are only interested in those which beleng t~ [0,1].
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Let us define

- -k
ai-Xi Bi-Xi - r N
[Xs}z {0’19 k_-k Y Tk —k ? izl""!ml)‘s<)‘s+l) N 10,1]
ani let
o -)-(k
s _ ). 1 i
S %2 Mar1r Meip e
X; - X
i i
or fk B )_(k
s _ ! |
= o k_-kﬁxs(‘xs+1£ k -k’ Ks’\s+1’e{xs}
Xy =Xy Xy~ Xy
-k
B, - X
s _ | Fi i
IB— 1I k_-k-(-')'s .
Xy =Xy
it icli, that means that on the interval [XS, \s+1] the derivative
of Qj(xi) takes on the value qI(x]i(-fl;); if :LcI;3 we have to use the

third form of the derivative of -i-df Qi(x:) . For Ne r\s ’Xs+1] we gets

n
d k -k +, k =k
-_— = ( - - ( - - + k -k
T M) Ecj *1 ~ "F E;sqi X - Xy) 2 Sqi(xi - Xy)
=1 ie 1 b >

A
X
-k ok ~ kK -k 1
+§ a (xy = Xy4) + E;qi(xi-xi)f dF, (%,)
S 8
icI3 le 5 a,

L simple algebraic manipulation gives us (40). Tt is very easy to see how

the constructi-n »f the sets Ii y I, and I; have to be modified if

l yd
I
]

k
Xy =X 0.



