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ABSTRACT 

A fuzzy set is a class of objects without a precisely defined 

criterion of membership.    Such a set is characterized by a membership 

(characteristic) function which assigns to each object a grade of mem- 

bership rangirfg between zero and one.    The notions  of inclusion,  union, 

intersection,   complement,   convexity,   etc.,   are extended to such sets, 

and various properties of these notions in the context of fuzzy sets are 

established.    In particular,   a separation theorem for convex fuzzy sets 

is proved without requiring that the fuzzy sets be disjoint. 

u 



I.    INTRODUCTION 

More often than not,   the classes of objects we deal with in the 

real physical world do not have precisely defined criteria of membership. 

For example,   the class of animals clearly includes dogs,   horses,   birds, 

etc.,   as its members,   and clearly excludes such objects as rocks,   fluids, 

plants,   etc.    However,   such objects as starfish,   bacteria,   etc.  have an 

ambiguous status with respect to the class of animals.    The same kind of 

ambiguity arises in the case of a number such as   10   in relation to the 

"class" of all real numbers which are much greater than   1. 

Clearly,   the "class of all real numbers which are much greater 

than   1,"  or "the class of beautiful women,"  or "the class of tall men," 

do not constitute classes or sets in the usual mathematical sense of these 

terms.    Yet,   the fact remains that such imprecisely defined "classes" 

play an important role in human thinking,   particularly in the domains of 

pattern recognition,   abstraction and communication of information. 

The purpose of this note is to explore in a preliminary way some 

of the basic properties and implications of a concept which may be of use 

in dealing with "classes" of the type cited above.    The concept in question 

is that of a fuzzy set,     that is,   a "set" without a dichotomous criterion of 

membership.    As will be seen in the sequel,   the notion of a fuzzy set 

provides a convenient point of departure for the construction of a concep- 

tual framework which parallels in many respects the framework used in 

the case of ordinary sets,   but is more general than the latter and,   poten- 

tially,  may prove to have a much wider scope of applicability,   particu- 

larly in the fields of pattern classification and information processing. 

We begin the discussion of fuzzy sets with several basic definitions 

■*  

An application of this concept to the formulation of a class of problems 
in pattern classiiication is described in RAND Memorandum RM-4307-PR, 
"Abstraction and Pattern Classification," by R.  Bellman,  R. Kalaba and 
L.  A.  Zadeh,   October,   1964. 



II.    DEFINITIONS 

Let   X   be a space of points (objects),   with a generic element of 

X   denoted by   x.     Thus,     X ^   {x} . 

A fuzzy set  (class) A in   X   is characterized by a membership 

(characteristic) function   fA(x)   which associates with each point in   X 

a real number in the interval [O, l],      with the value of   1'   (x)    at   x 

representing the  "grade oi membership" of   x    in   A.     Thus,   the nearer 

the value of   fA(x)    to unity,   the higher the grade of membership of   x    in 

A.     When   A    is a set in the ordinary sense of the term,   its membership 

function can take on only two values   0   and   I,   with   fA(x) ■  1    or   0   ac - 

cording as   x   does or does not belong to   A.     Thus,   in ths case   fA(x) 

reduces to the familiar characteristic function of a set   A.    (When there 

is a need to differentiate between such sets and fuzzy sets,   the sets with 

two-valued characteristic functions will  be referred to as ordinary sets 

or simply sets.) 

Example.     Let   X   be the real line   R     and let   A   be a fuzzy set 

of numbers which are much greater than   1.     Then,   one can give a pre- 

cise,   albeit subjective,   characterization of   A   by specifying   fA(x''    as 
1 a function on   R .    Representative values of such a function might be- 

fA(0) = 0;    Ml) « Oj    fA(5)r0.01;   (MO)* 0.2;    fA(100) ^ 0.95; 

fA(500) -  1. 

The following definitions involving fuzzy sets are obvious exten- 

sions of the corresponding definitions for ordinary sets. 

A fuzzy set is empty if and only if its membership function is 

identically zero on   X. 

i 
In a more general setting,   the range of the membership function can be 

taken to be a suitable partially ordered set   P.    For our purposes,   it is 
convenient and sufficient to restrict the range of   f   to the unit interval. 
If the values of   t/^ix)   are interpreted as truth values,   the latter case 
corresponds to a logic with a (possible) continuum of truth values in the 
interval [0, l]  . 



Two fuzzy sets   A   and   B   are equal, written as   A = B,   if and 

only if   f^(x) = fgix)   for all   x   in   X.     [in the sequel,   instead of writing 

f^x) = fßix)   for all   x   in   X,   we shall write more simply   f^ ■ fg.] 

The complement  of a fuzzy set   A   is denoted by   A'    and is defined 

by 

£A, = 1-V (1) 

As in the case of ordinary sets,   the notion of containment or be- 

longing plays a central role in the case of fuzzy sets.    This notion and the 

related notions of union and intersection are defined as follows. 

Containment.    A   is contained in   B (or,   equivalently,   A   is a 

subset of B,   or   A   is smaller than or equal to   B) if and only if   f^ < fp. 

In symbols 

A ': B^=^ fA<fB. (2) 

Union.    The union  of two fuzzy sets   A   and   B   with respective 

membership functions   fA(x)   and   fB(x)   is a fuzzy set   C,   written as 

C = A (J B,   whose membership function is related to those of   A   and   B 

by 

fc(x) = Max[ fA(x).   fB(x)],       x c  X (3) 

or,   in abbreviated form 

Comment.   A more intuitively appealing way of defining the union 

is the following:    The union of   A   and   B   is the smallest fuzzy set con- 

taining both   A   and   B.    More precisely,   if   D   is any fuzzy set which 

contains both   A   and   B,   then it also contains the union of   A   and   B. 

To show that this definition is equivalent to (3),   we note,   first, 

that   C   as defined by (3) contains both   A   and   B,   since 

and 

Max[ fA,   fB]   > fA 

Max[ fA,   fB]   >fB . 

-3- 



Furthermore,   if   D   is any fuzzy set containing both   A   «. nd   B, 

then 

f     > f ID-   A 

'DifB 
and hence 

fD>Max[fA,   g    .  fc 

which implies that   C C   D.    Q. E. D. 

The notion of an intersection of fuzzy sets can be defined in an 

analogous manner.    Specifically: 

Intersection.     The intersection   of two fuzzy sets   A   and    B   with 

respective membership functions   f^{x)   and   fgix)    is a fuzzy set   C, 

written as   C = A D B,   whose membership function is related to those of 

A   and   B   by 

fc(x) - Min[fA(x).   fB(x)], x c X, (5) 

or,   in abbreviated form 

fc ■ iA   A   fB, ,6) 

As in the case of the union,   it is easy to show that the intersection 

of   A   and   B    is the largest  fuzzy set which is contained in both   A    and    B 

As in the case of ordinary sets,   A   and   B   are disjoint     1   A ■ ' B    is empty 

The intersection and union of two fuzzy sets in   R      are illustrated 

in   Fig.   1.    The membership function of the union is comprised of curve 

segments   1   and    2;    that of the intersection is comprised of segments    3 

and   4 (heavy lines). 



i fA(x>'  ^^^ 

Fifl    I 

III.    SOME PROPERTIES OF _ .   (1   A\D COMPLEMENTATION 

With the operations of union,   intersection and complementation 

defined as in (3),   (5),   and (I),    it is easy to extend many ol the basic 

identities which hold for ordinary sets to fuzzy sets.    As examples     we 

have 

(A Ü B)* - A'  (I  B'      "1 (7) 

'       De Morgan's laws 

(A 1  B)' - A' U   B'      > 

C 1 (A J B)     (C ' A) J (CH B) 

CU(A n B) < (c u A) n (CUB) 

Distributive laws 

(4 

(10, 

These and similar equalities can readily be established b\   shoAiiu: 

that the corresponding relations for the membership functions of A     B 

and    C    are identities      For example,   in the case of (7).   we have 

1  - Max\iA,   fj        Min(l - f^,   1  - fB] (111 

which can be easily verified to be sn identity by testing it for the two 

possible cases:    f^(x) > fß(x)    and   l^ix) < fßix). 

Similarly,   in the case of{l0),  the corresponding relation in terms 

of   f A,   f^, and i~    is: 
AB C 

Ma x[fc.   Minify   fB]] Mm Max[fc,   fA],   Max|lc,   fg] (12) 
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which can be verified to be an identity by considering the six cases 

(AX)  > i    {x) >fc(x),  f    (x) > ir(N)  > l_(x).    f_(x) > fÄ(x) >f^(x). Bx Bv 

{&(*) > fC(x) > fA(x),    fc(x) > tA(x) > lB(x).    lc(x) > lB(x) > lA(x). 

A . Interpretation for Unions a.ic Literse^11o11i 

In the case of ordinary sets,   a set   C   which is expressed in terms 

of a family of sets   A,,   . . .,   A.,   . . .,   A      through the connectives   J   and 

M    ,   can be represented as a network of switches    a,,   ....   a  ,   with 
In 

A. ri   A     and   A   Ü A.    corresponding,   respectively,   to series and parallel 

combinations of   a.    and   o .    In the case of fuzzy sets,   one can give an 

analogous interpretation in terms of sieves.    Specifically,   let   f (x).   i -  1, 

. . .,   n,   denote the value of the membership function of   A   at   x.    Associate 

with   f (x)   a sieve   S.(x)   whose meshes are of size   f.(x).    Then, 
i i i 

f.(x) v f.(x)   and   f.(x) A f (x),   correspond,   respectively,   to parallel and 

series combinations of S.(x)   and   S.(x),   as  shown in Fig.  2. 
J 

' I 
S.(x) ^ — S.(x) 

— S^x) 

•f 8.(x) 

Fig.   2 

More genei-ally,   a well-formed expression involving   A.,   ...,   An, 

U     and   fl   corresponds to a network of sieves   SJx),   . . .,   S  (x)   which 

can be found by the conventional synthesis techniques for switching cir- 

cuits.    As a very simple example, 

C =  [(AjU  A2) 1 A3] Ü  A4 

corresponds to the network shown in Fig.   3 

(13) 
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1 
si(x) T     . •jC«!     T s4(x) 

i—i—i 

S^x) T 

Fig.   3 

Note that the mesh sizes of the sieves in the network depend on   x   and 

that the network as a whole is equivalent to a single sieve whose meshes 

are of size   fr(x). 

IV.    ALGEBRAIC OPERATIONS ON FUZZY SETS 

In addition to the operations of union and intersection,   one can 

define a number of other ways of forming combinations of fuzzy sets and 

relating them to one another.    Among the more important of these are 

the following. 

Albegraic product.     The algebraic product of   A   and   B   is denoted 

by   AB   and   is defined in terms of the membership functions of   A   and   B 

by the relation 

»AB"V» ,14) 

Clearly, 

AB   ci A H B (15) 

Algebraic sum.     The algebraic sum   of   A   and   B   is denoted by 

A ■♦- B   and is defined by 

fA 4 B - fA + fB (16) 

provided the sum   f^ + fg   is less than or equal to unity.    Thus,   unlike 

the algebraic product,   the algebraic sum is meaningful only when the 

condition   fA^x) + ^B(
X

) £ 1   is satisfied for all   x. 



Convex combination .    By a convex combination of two vectors   f 

and   g   is usually meant a linear combination of   f   and   g   of the form 

\f + (1 - \)g,   in which   0 £ \ < 1.    This mode of combining   f   and   g   can 

be generalized to fuzzy sets in the following manner. 

Let A, B and J\ be arbitrary fuzzy sets. The convex combina- 

tion of A, B and J\ is denoted by (A, B; A) and is defined by the rela- 

tion 

(A,   B;A) ■ A A ♦ A'B (17) 

where   _Y   is the complement of  A.     Written out in terms of membership 

functions,   (17) reads 

f(A. B;A)(X) ' f \(X) fA(x) + (1 " f V(x) fB(x)'      x * X- (18) 

A basic property of the convex combination of A,   B   and A is 

expressed by 

A 0 B C   (A, B; A )  C A U B for all A. (19) 

This property is an immediate consequence of the inequalities 

Min(fA(x), fB(x)]    < \fA(x) i (1 - \)fB(x) < MaxlfA(x), fB(x)l,     x c X(20) 

which hold for all \ in [0, l] . It is of interest to observe that, given 

any fuzzy set C satisfying A 0 B C C *- A B, one can always find a 

fuzzy set A such that C - (A, B;>t\). The membership function of this 

set is given by 

fc(x)  - fB(x) 
fA(x) =   fA(--) WB(X)'       X t X ill) 

'S- 



Fuzzy S.ts Induced by Mappings 

Let   T   be a mapping from   X   to a space   Y.    Let    B   be a fuzzy 

set in   Y   with characteristic function   fB(y)-    The inverse mapping   T 

induces a fuzzy set   A   in   X   whose membership function is defined by 

f^x) = fB(y). yc   Y (22) 

for all   x   in   X   which are mapped by   T   into   y. 

Consider now a converse problem in which   A   is a given fuzzy 

set in   X,   and   T,   as before,   is a mapping from   X   to    Y.    The question 

is:    What is the membership function for the fuzzy set   B   in    Y   which is 

induced by this mapping? 

If   T   is not one-one,   then an ambiguity arises when two or more 

distinct points in   X,   say   x,   and   x^.   with different grades of member- 

ship in   A,   are mapped into the same point   y   in   Y.    In this case,   the 

question is:    What grade of membership in   B should be assigned to   y? 

To resolve this ambiguity,   we agree to assign the larger of the 

two grades of membership to   y.    More generally,   the membership func- 

tion for   B   will be defined by 

fB(y) = Max    . fA(x), y €   Y (23) 
x < T    (y) 

where   T    (y)    is the set of points in   X   which are mapped into   y   by   T. 

V.    CONVEXITY 

As will be seen in the sequel,   the notion of convexity can readily 

be extended to fuzzy sets in such a way as to preserve many of the pro- 

perties which it has in the context of ordinary sets.    This notion appears 

to be particularly useful in applications involving pattern classification, 

optimization and related problems. 

9- 



In what follows,   we assume for concreteness that   X   is a real 
.n Euclidean space   E 

Definitions 

Convexity     A fuzzy set   A   is convex if and only if the sets   F 
a 

defined by 

rQ=  {x  \  fA{x) >a } (24) 

are convex for all   a   in the interval (0, l]  . 

An alternative and more direct definition of convexity is the fol 

lowing        A   is convex if and only if 

f^VXj + (1 - Mx2]    >Min[fA(x1),   fA(x2)] (25) 

for all   x,    and   x.?   in   X   and all    \    in [0, l]  .    Note that this <  .'finition 

does not imply that   f »(x)   mt 

lustrated in Fig.   4   for   n = 1 

does not imply that   fA(x)   must be a convex function of   x.     This is il- 

»A««) 4A 

convex fuzzy set 

^ fA'Vxl + (1  ' X)XJ 

<- 
non-convex 
fuzzy set 
V 

Fig    4 

This way of expressing convexity was suggested to the writer by his 
colleague,    E.   Berlekamp. 
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To show the equivalence between the above definitions note that 

if   A   is convex in the sense of the first definition and   a = i/^(x\) < fA^?)« 

then   x-cT      and   Kx. + (1 - \)x0cr      by the convexity of   T   .    Hence 

^[Kxjf (1 - \)x2]   >a= f^Xj) ■ MinLf^Xj),   fA(x2)]. 

Conversely,   if   A   is convex in the sense of the second definition 

and   a ■ fA(xl)»   then   r     may be regarded as the set of all points   x,   for 

which   fA(x2)  — ^A^xl^-    ^n virtue 0^ (25),   every point of the form 

Xx, + (1 - \)x-,,   0 < \ < 1,   is also in   F      and hence   F      is a convex set. 12 a a 
Q.E.D. 

A basic property of convex fuzzy sets is expressed by the 

Theorem.    If   A   and   B   are convex,   so is their intersection. 

Proof. Let   C   =   A     B.    Then 

f^KXj + (1 - Mx2]   ■ Min [fA[Vx1 + (1 - \)x2] ,   fB[^x1 + (1 - X.\*ji\     (26) 

Now,   since   A   and   B   are convex 

fA[\x1 + (1 - \)x2]   > M.nU^Xj),   fA(x2)] (27) 

fj^Ux^ (1 - \)x2]   ^Minif^xj),   fB(x2)] 

and hence 

^[KXjMl -^)x2]   ^Min^Minif^x^.   fA(«2)l ,   MinLf^x^.   i^j)]]      (28) 

or cquivalently 

^[Xxj + (1 - \)x2]   >Min   Min[fA(x1),   f^x^] ,   Min[fA(x2),   fB(x2)] (29) 

and thus 

^[Xxj + (1 - \)x2]   ^MinU^Xj),   fc(x2)l .    Q.   E.   D. (30) 
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r>('iti.cl.>:'ric,ss and strong convexity      A fuzzy set   A   is bounded 

if and only if the st-ts   F     =   { x |   f A(x) > c  )     are bounded for all   a > 0, 

o 

that  is.    for every   o > 0    there exists an   R(a)    such that    ,,   x  ||  < R(a) 

for ail    x    in   r 
a 

A fuzzy set   A    is strictly convex if the sets   T   ,   0 < o < 1   are 

•tnctl)   convex (that is.   if the midpoint of any two distinct points in   F 

lies  in the interior of   T   I      Note that this definition reduces to that of 
a 

strut convexity for ordinary sets when   A   is such a set. 

A fuzzy set   A    is strongly convex if,   for any two distinct points 

x. and x   ,   and any    \     m the open interval (0, 1) 

f^Kxj 4 (1 - \)xj    >   Minff^Xj),   fA(x2)] 

Note that strong convexity does not imply strict convexity or vice-versa 

Note also that if   A   and    B   are bounded,   so is their union and intersection 

Similarly,   if   A    and   B    are  strictly (strongly) convex,   their intersection 

is strictly (strongly) convex. 

Let    A   be a convex fuzzv set and let   M a  sup  fÄ(x).    If   A   is 
x        A 

bounded,   then either   M   is attained for some    x,   say x^,   or there is at 

least one point   xn   at which    M   is essentially attained in the sense that, 

for each - > 0,   every spherical neighborhood of   •*.      contains points in the 

set    Qt c )       {  x i   M  - f A(x) < -  } .    In particular,   if   A    is strongly convex 

and  XQ is attained,   then  x0   is   unique.      In the   sequel,   M  will  be   refer- 

red  to as  the  maximal  grade  in A. 

Separation of Convex Fuzzy Sets 

The classical separation theorem for ordinary convex sets states, 

in essence,   that if   A   and    B   are disjoint convex sets,   then there exists 

a separating hvperplane    H   such that   A   is on one side of   H   and   B   is 

on the other side. 
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It it natural to inquire if this theorem can be extended to convex 

fuzzy Mis,   without requiring that   A   and   B   be disjoint,   since the con- 

dition of disjointness is much too restrictive in the case of fuzzy sets.    It 

turns out,   as will be seen in the sequel,   that the answer to this question 

is in the affirmative. 

As a preliminary.,   we shall have to make a few definitions.    Specif- 

ically,   let   A   and   B   be two bounded fuzzy sets and let   H   be a hyper- 

surface in   E     defined by an equation   h(x) ■ 0,   with all points for which 

h(x) > 0   being on one side of   H   and all points for which   h(x) < 0   being 

on the other side.    Let   K,,   be a number dependent on   H   such that 

f *(x) < Kj.   on one side of   H   and   fB(x) < KH on the other side.    Let   MH 

be   Inf   KH.    The number   DH = 1 - M,,   will be called the degree of 

separation of   A   and   B   b^   H. 

In general,   one is concerned not with a given hypersurface   H, 

but with a family of hypersurfaces   {H.} ,   with   X.    ranging over,   say, 

Ein      The problem,   then,   is to find a member of this family which real- 

izes the highest possible degree of separation. 

A special case of this problem is one where the   h.      are hyper- 

planes in   En,   with   \    ranging over   E   .    In this case,  we define the 

degree of separability of   A   and   B   by the relation 

D= 1 - M (31) 

where 
M^  Inf    Mu (32) 

H        H 

with the subscript   \    omitted for simplicity. 

Among the various assertions that can be made concerning   D, 

the following statement     is,   in effect,   an extension of the separation 

theorem to convex fuzzy sets 

*This statement is a modified version of a separation theorem suggested 
by E.   Berlekamp     (The sUtement is trivially true ifM is equal to MA or 

MB.) 
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Theorem      Let   A   and   B   be bounded convex fuzzy sets in   E 

with maximal grades   M.    and   M.,,   respectively [ MA = sup fA(x|. 

M_ -  sup ^„(x)]  .    Let   M   be the maximal grade for the intersection 

n 

B B 

A 0 B (M ^ sup Min[fAix>.   fglx)] )     If   M < MA.    KKMgthen    D     1 - M. 
x 

Comment      In plain words,   the theorem states that the highest 

degree of separation of two convex fuzzy sets   A   and   B   that can be 

achieved with a hyperplane in   E   is one minus the maximal grade in the 

intersection   A H B,   provided it is smaller than the maximal grades in 

A   an^   B.    This is illustrated in Fig.   5   for   B « 1. 

I 
fA(x;.   fB(x) 

M 
M B 

B 

y 

iM__ 
• 

hyperplane    H   (point) 

Fig.   5 

Proof     Consider the convex sets   F.   - {x{ fA(x) > M}   and 

F-,       {x| fRlx^ > M} .     These sets are non-empty and disjoint,   for if thev 

were not there would be a point,   say   u,   such that   f*^) > M   and 

fR(u) > M,   and hence    f. - ji(u) > M,   which contradicts the assumption 

that   M - sup fA0 B(x). 
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Since   F.    and   F«   are disjoint,   by the separation theorem for 

ordinary convex sets there exists a hyperplane   H   such that   T.    is on 

one side of   H (say,   the plus side) and   T-,   is on the other side (the 

minus side)      Furthermore,   by the definitions of   T.    and   rR,   for all 

points on the minus side of   H,    fA(x) < M,   and for all points on the plus 

side of   H,   fB(x) < M. 

It remains to be shown that there does not exist an M', M' < M, 

such that for some H, f^x) < M on one side of H and fn(x) < M' on 

the other side. 

Suppose such an   M1   and   H   did exist.    Then the set 

F =  {x| fA-_(x) > M }    would be non-empty,   for otherwise   M ■ sup f.    ta(x> 
x 

would be a contradiction.    But if for some   x,   say   w. 

then 

and 

fAnB(w)>M 

fA(w) > M 

fB(w) > M 

since   ^A/iTi = Min[fA(w),   fR(w)]  .    Clearly,   the existence of the point 

w   is inconsistent with one or the other of the inequalities:    f A(X) < M 

on one side of H,   and   fr.(x) £ M'    on the other side of   H.    This shows, 

by contradiction,   that there does not exist a hyperplane   H   for which 

the degree of separation of   A   and   B   is larger than 1 - M.    Q. E. D. 

The separation theorem for convex fuzzy sets appears to be of 

particular relevance to the problem of pattern discrimination.    Its ap- 

plication to this class of problems as well as to problems of optimization 

will be explored in subsequent notes on fuzzy sets and their properties. 
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