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PROJECT 1.9 

ABSTRACT 

This report contains all the conpletad results obtain- 
ed in connection with Project 1.9 of Operation JANGLE by 
those working on Project SH 340-040, Contract Monr 222-04, 
entitled "Shock Waves in Solids"• The report consists of 
several chapters of which the first contains a general dis- 
cussion of the work done and each of the following chapter» 
is a complete study in itself. The authors of the chapters 
are as follows: 

Professor Morrey, Mr. Parsen, Dr. Lakness; 
Professor Pinney; 
Dr. Stoneham; 
Professor Morrey; 
Dr. Chaabrl. 

Chapter 2: 
Chapter 3: 
Chapter 4*- 
Chapter 5» 
Chapter 6: 

Besides containing a general discussion of all the 
suits, Chapter 1 contains a discussion (see Paragraph 1.3«2) 
in support of our belief that the ground behaves like an 
elastic solid at distances from the explosion corresponding 
to values of the scaled distance  (for definition, see 
§1.1) which are greater than 4. The necessary statheaatical 
study has not yet been completed. 

Chapter 2 derives the most general possible relation 
between the stress tensor T and the strain tensor E which 
can hold in an Isotropie medium. It is assumed merely that 
the components of T are «Ingle-valued functions of the coa- 
ponents of E only. In - itriz potation (see ^2.2 for nota- 
tions, etc.). the result is at follow»: There exist three 
scalar functions SUL^N), $»,0 M,KX, fid <pa(L,M,N) of 
the strain tensor such that 

T =(p0(L,MlN) I -f 9iU,M,N) E + fA(L,M,N) E2. 

In Chapter 3» a theory is developed of a hypothetical 
material whose mechanical behavior may approximate that of 
soil,, The material differs from an elastic material in 
that a Coulomb friction mechanism is postulated which per- 
mits plastic yield when shearing stress becomes too high 
with respect to compressive stress. The material cannot 
support tensile stress vhm  dry. Rough corrections to 
take into account the presence of moisture are given. The 
theory is applied to one-dimensional problems or wave 
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propaifttioo. An intertsting result is that at a finite time 
after the energy source cuts off, all motion ceases. 

Chapter 4 presents aethods, which use the complex Inver- 
sion Integral of the Laplace transform, whereby one can ob- 
tain the exact formal solution for the displacements in an 
elastic half«apace due to any arbitrary radial pressure-time 
distribution on the surface of a small finite spherical cavi- 
ty within the half •space. 

Chapter 5 presents a derivation using methods of statis- 
tical mechanics of the equations of mass-motion of a medium 
which consists of a very large number of particles any two 
of which repel one another according to a given law of force; 
the dependence of the equations on the law of force is ex- 
plicitly given, nie equations are those typical of liquids 
and gases out the analysis suggests how the solid state 
might arise. 

In Chapter 6, the assumptions underlying the theory of 
dimensional analysis are reviewed and the fundamental Vaschy- 
Buckingham Pi Theorem is stated. Application is made to the 
determination of the most general functional forms of the 
peak values of soil pressure, particle acceleration, velo- 
city and displacement. 

vili 

CMFIDENm 



fttter» i« ws- -.'    *    " 3'' S:*'c« w»en «* 
mMTrueC    eei   ' v. T ft H. U-3.A, 

9f wNch •« any mc xi ■« in wwnlHeri^ I 

GEHBRAL DI3CU3SI0H OP RBSÜLTS 

1,1  PURPOSE OP A THEORETICAL STUDT 

The purpoa« of this ppojtct It to develop a tto«opy 
of wav« motion in th« ground «hlch «ill «ecount for pbtnomtnii 
Already observed in large aeele explosions end will predict 
phenomene with reesonebi? eccurecy in future explosions« 
Such a theory should also be useful in suggesting further 
experiments to increase our knowledge concerning ground 
waves and their effects on structures, etc* 

Reasonably accurate empirical formulas for the varia- 
tion with distance from an explosion of the peak accelera- 
tion, peak pressure, peak transient displacement, etc., 
in the resulting ground waves were developed by Lampson 
[7].  The expressions for these quantities in terms of 
the distance from the explosion were all sums of terms of 
the form 

aX -n 

where a depends on many sther quantities (see Chapter 6) 
and 'X is the scaled distance defined by 

\-r/%* 

in which 

r is the distance from the explosion in feet and 

W is the equivalent weight of chemical high explosive 
in pounds. 

Although the results of recent H.S. testa held on the 
Nevada site, as preported by Doll in [4], do not agree 
in detail with those of Lampson, similar formulas sews to 
hold. Predictions based on Doll's results and th« use of 
the scaled distance X were sufficiently accurate, tt 
least, to enable those Instrumenting some of the later tests 
at that site to select instruments capable of recording 
the data, 

- 1 - 
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In ▼!•» of th« •zltttzio« of thla fairly tatlafftotory 
•apirloal thaory» wo havo oonoolvod of our taalc aa tha 
daapar ona of davaloplng a thaory of ground aa a oontinuoua 
»adliaa fro« fundaaaatal principle«. Thla thaory would 
oorraapond to tha thaory of hydrodynaaica for llquida, gaa 
dyiMBlea for gaa«af and alaatlolty or plaaticlty for aollda, 
Tha program would than eonalat in atudying tha raaultlng 
aquatlona to dataraina first whathar tha thaory «greed with 
axparlvant and, if »o, to draw further concluaiona of in- 
taraat« la partioular, it might be possible to find out 
what tha wawa ▼eloelty and other alailar constants depend 
on and to datemine tha aaaning of the measurements of 
earth preaaure, etc. 

• • • 

• aa*#a 

• e 

• •  • • • « 

• •  • • • • «   • 

«  ■ 

« * 

• • • •»• 
• a • • • 

• ••• • « 

1.2  ORIOIMAL FORMÜUTIOM OP OUR PROGRAM 

Our contract (Project MR 3M> Oi^O, Contract 
I0IR.222(^j)    began on June 15, 1951. The first few 
months, before receiving any data, ware spent by our group 
in acquainting ourselves with the standard theoriea of gaa 
dynamics, hydrodynamics, thermodynamics, elasticity, and 
one-dimensional alastlc-pl««tic flow and with what theories 
of «oil machanica and experiments on soils could be found 
in the literature. The material on aolls was diacouraging: 
wa encountered a great many widely divergent theories and 
widely differing experimental results. However, the re- 
aulta of Lampaon, to which we presently had access, were 
more encouraging and had a more direct bearing on our problem 
than had moat of the preceding material. 

After the survey of relevant background material 
mentioned above and many discussions of possible important 
araaa of invaatigation and after a trip by the project 
director to the Nevada «it« in September 1951, we decided 
on the following line« of investigation: 

1. An extension to three dimensions of the present 
one-dimensional theory of flow and wave transmission in an 
alaatic-plaatic material. 

2. A comparison of the results of this extended 
theory with the experimental results of Lampson and of the 
more recent testa. 

3. An adaptation of the methods of statistical mechan- 
ics to the deduction of appropriate mathematical equationa 
for flow and wave propagation in soils. 

- 2 - 
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l|.# A study of the  meaning of th« "pressur** aeature- 
«•nti taksn In the test. 

It was rather evident that the fourth study above 
would have to await the development of a fairly satisfactory 
theory of soil mechanics. 

1,3   GENERAL DISCUSSION" OF RESULTS OBTAIHID 

Most of tho results of our studies «re embodied in 
Chapters Z  to 6.  In this section we shall discuss these 
results in general terms and point out their relations with 
our general problem.  One incomplete result, which is not 
discussed in any of the following chapters, seems to be of 
sufficient interest to be included in this section and is 
discussed under paragraph 1.3,2. 

1,3,1  The Elastic Character of the Ground 

We believe that results in good agreement 
with the experimental data will be obtained by assuming 
that the ground behaves like an elastic solid at distances 
from the explosion corresponding to values of the scale 
distance "K which are greater than l^.. We have come to 
believe this so recently that we have not had time to write 
up the rather difficult analysis in detail. 

We were led to consider this assumption after in- 
spection of the data in Doll's report [4] when we noticed 
that the earth pressures were very small and the peak 

acceleration (In the first wave) varied like aX "2 for 
distances corresponding to "K > k»    After a number of 
unsuccessful studies of the equations of motion in an 
elastic medium, we found that we could make use of the verv 
important recent work of Professor Pinney on "point source" 
problems in an elastic half space [13]• 

One of the problems considered by Professor 
Pinney in thst paper is the determination of the wave 
motion in an elastic half space generated by the instan- 
taneous injection of a small spherical hole at some point 
in the half-space, He has determined exact formulas for the 
resulting displacements on the surface. Prom this solution 
one finds that if one inserts this volume in a finite time 

- 3 - 
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aoeording to •aa» law, one can f lad tha raaultlng eontlnu- 
oi^i aava aotion. A rough atudj of thaaa ahowa that at suf« 
fielastly larga dlataneaa frc« tha axploalon tha flrat wava 
raaehing a atatIon should ba propagatad bajoad with llttla 
dlatortloii and that tha aaplltuda should daoraaaa like 
aX"^ which la in accopdano« with Doll1 a obaarvationa. 
Of oouraa tha ground la not atriotly alastie naar tha 
aourea but tha wavaa sufficlantly far out can probably ba 
thought of as having ariaan from so«® aquivalant point 
aourea in a strictly alastic madium. 

l.<5.2  The General Stress-Strain Relationship 

A first result obtained in connection with 
tha flrat line of investigation mentioned in  §1.2 was tha 
datermination of tne most general relation between the 
stress and atrain tensors which could be possible in an 
iaotropic medium. These results are set forth in Chapter 2, 
tha only assumption being that the components of the stress 
tanaor in Cartesian coordinates are single-valued functions 
of ths components of the strain tensor only. The object 
of this study was to prepare to generalize the present one- 
dimensional theory in which it is assumed that the single 
component of atreas la a fairly general non-linear function 
of tha atrain, the function being changed whenever the rate 
of change of the strain changes sign. However, in trying 
to carry through the complete extension to three dimensions, 
the difficulty aroae of finding the condition corresponding 
to the change of sign of the rate of strain, there being 
six components of strain in the three dimensional case. We 
were thus led to study other theories of placticity, such 
as that of Prager and Hodge [14] in which the stress also 
depends on the rate of strain. 

1.3.3  A Theory of the Mechanics of Soil. 

These difficulties inspired Professor Pinney 
to undertake to develop a theory from first principles. 
This very interesting theory is presented in Chapter 3» 
It is very difficult (see below) to check the agreement 
of any of the known theories with experimental results. 
If however the effect of the surface of the ground la neg- 
lected (i.e. we assume that the explosion takes place very 
far underground) the equations are greatly simplified. 
Making this assumption, we found that a first draft of 

- 4 ~ 
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Profftttor Plim«f,i theory yl«ld«d a proMislng «gr^MMiit 
with th« obi«rv«d ▼•rimtloa of peak ftcc«l«ratlofi with dli- 
tano«« 

i#3#4  An Aplratioaal Solution for Dlaplaegaent» 
in an Elaattc Half-Space' 

In Chaptar k»  D^» Stonahaa haa ganaralitad 
Profassor Ptnnaj1« point aourca rasults to tha eaaa «hara 
tha point sourca ia raplacad b| a spherical hola of finlta 
sisa« Althoiigh tha rasults are similar to those of Profassor 
Pinnay, the methods are somewhat different and constitute 
a valuable addition to our knowledge concerning the aqua- 
tions of elasticity. 

1,3.5  A Report on the fork on Statletlcal liechanles. 

The method of statiatical mechanics haa bean 
pursued by Professor Morrey with a view to developing from 
first principles a theory of ground aa a continuous medium. 
Since the ground is actually composed of small part Idea 
the method is not an unnatural one. Several writers on 
soil mechanics have regarded the ground as consisting of 
small elastic spherical part Idea which exert a force upon 
one another when in contact according to a law developed 
by Hertz [5],  If this is done and the effects of friction, 
distortion, and rotation of the particles is neglected« 
the model obtained reduces to thr , of a system of point- 
particles (the centers of tha spheres) irsving according 
to a central force law (the force between two particlea 
being sero, of course, when the particles are not In con- 
tact). This is a standard model in statistical mechanics« 
This program has not been completed but some interesting 
results have already been obtained and many aspects of our 
method of attack are new. Chapter 5 constitutes a progress 
report on this work. 

In particular, a complete set of equations has been 
obtained which involve the assumed central force law ex- 
plicitly. The equations are those appropriate to a non- 
viscous liquid or gas. However, the analysis gives a 
strong Indication as to how the method can be applied to 
discuss the solid state. The results also suggest that 
viscosity is definitely due to the finite sise of the parti« 
des; viscosity terns can only be found by making a care- 
ful study of the approximations made, 

-6- 
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On the Application of Dimenglonal Analysis to 
Underground Ixplosiolta. 

This chapter presents an informative and 
careful study of the conclusions derivable from the ccn- 
eiderationa of physical dimensions alone. 

• « • • 

«  • « 

• a  * 
• « 

• «  t 

iJt  IDBAS FOR PÜTORB 10RK 

Our •xperlences to data suggest that further theore- 
tical work be carried out along the following lines: 

I. The completion of the study of Pinney's point 
source fomulas described in paragraph 1.3.1 

2* Study of the equations of motion in an elastic 
half-space with elastic constants varying with depth with a 
▼lew to the determination of underground effects« 

3« A study of the significance of the measurements 
of earth pressure, assuming the surrounding ground to be 
elastic. 

It. A study of the motion in a combined medium con- 
sisting of an elastic half-space with air above it, in order 
to determine the effects of air blast. 

5, A study of Pinney's theory to determine effects 
nearer to the explosion than the elastic range. 

6« A completion of the study of statistical mechanics 
along the lines presented in Chapter 5 and its extension 
to include the solid state, mixtures of earth and Air, 
etc., and viscosity effects; this might lead to appropriate 
equations valid very close to an explosion. 

- 6 - 
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CHAPTER 2 

THE GENERAL STRBSS-STRAIS REUTIOMSHIF 

FOR AN ISOTROPIC MEDIUM 

2.1 INTRODUCTION 

In tho finite deformation theory of continuous aedla, 
as developed by Murnaghan, a general expression for the 
8tres8~straln relation In an Isotropie medium is given in 
terms of an elastic potential, whose existence and general 
functional form is assumed (see [10], pp. 91-94; [16], 
pp. 314-318).  In this chapter, we derive such an expres- 
sion which is independent of the elastic potential and 
assumes only the existence of a stress-strain relation 
given by a continuous function invariant under rotations. 
The results of this chapter are summed up in Theorems 
2. 1, 2.2, 2.3, and 2.4. 

?.2 SOME BASIC PROPERTIES OF MATRICES 

This section is a summary of the matrix nations and 
summation convention used in this chapter. For an elementary 
exposition of the details of the results stated here, the 
reader may consult Sokolnlkoff, Tensor Analysis, Chapter 1. 
Readers familiar with these notions may turn immediately 
to  |2,3. 

A 3 x 3 matrix A is a set of nine real numbers a^ 
a12 Sl13 ft21 a22 <l23 a31 a32 ,l33 » c*l^*& the com- 
ponents of the matrix, which for convenience we write in 
the form 

A = 

all a12 ft13 

a21 a22 ^3 

Ä31 Ä32 Ä33 

or, for brevity, write symbolically 

A = a 
'aß 

Throughout this chapter we make use of the following 

« 7 - 
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ition conwntloni     if in a term a cartaic index occur« 
twice,  this is to mean that the term is to be  euamed with 
respect to that  index from 1 to 3.    Thus 

Äoy b vp = 
'*! 

*ayb >ßJ ay x
Y= 

3 
cayx (2.1) 

Oiwen two matrices A  = ||ettß||    ^nd B   = l|hag|j      , we 
define their sum C = A+B and their product D = AB by,  for 
every choice of a and ß, 

Caß= 'aß* baß;    daß =   mavbvß- 

Addition and multiplication of matrices obey all the usual 
rules for the addition and multiplication of real numbers, 
except that the multiplication of matrices is not commu- 
tatite, 

Equality of matrices is defined as follows: 

A = B if for every a and ß, a « = b « , 

Multiplication of a matrix A == ila -li and a number x 
is defined by: {]   aß,i 

«• •» • « XA   = 'aß where caß  = X aaß  . 

In the usual way we may associate with the matrix 
A = |!*aßi  it8 detennlnant 

A  = •aß I = 
11 

21 

31 

»12 '13 

'22 '23 

'32 '33 | 
Determinants obey the simple rule IABI = |A| |B 

Matrices derive their importance from the fact that 
they are closely related to linear transformations of a 

space coordinatisad by coordinates {y*,y2,y3) into the 

same space coordlnatised by new coordinates (y'^y'^y1^). 
Such linear transformations are defined by the functions: 

- 8 - 
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(a = 1,2,3) (2.2) 

An «spftcially iaportant matrix 
If the Identity matrix, denoted by I, defined by 

I   = 

10    0 

0    10 

0    0    1 
= ll^ll 

»here £ 3 1* the usual Kronecker delta, defined by 

Saß   = 

I poi 

1  for a = ß 

0 for a / ß 

the property that IA = AI = A for any matrix A, 

The identity matrix ia an example of a diagonal matrix. 
A matrix A is diagonal if its components are such that 
aaß =s 0 for a ^ß; i.e. 

AB = 

•ll 0 0 

A   ä 0 •22 0 

0 0 
'33 

s possess two highly useful 

A|-an a22 '33 

a11 b11          0 0 

0            a2p b22 0 

0 0 ft33 b33 

s        « 

= BA 

if B is also a diagonal matrix, with diagonal components 
bll' b22' b33 * 

If to a matrix A, we can find another matrix B such 
that AB = I, then it may be shown that B is unique, and that 
BA = I, We call B the inverse of A. and denote it by 
A"1, The determinants satisfy IA"*

1
 =Jy(A|.    In terms 

. 9 - 
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t v« could show that th« y's of «qua- 

tlon 2.2 may be exprosfed in toms of the y'*! by the re- 
lation 

ay y0 = Kt y (a * 1,2,3) (2.3) 

Not erery matrix possesses an inverse, but every matrix 
♦ _ A does possess a transpose A  = a 

ae , It may be shown «I — = A 
aß 

defined by a » - 
aß "" 

A matrix A is said to be symmetric if aag = aga for 

•very a and ß, or equivalently if A = A, Notice that an 
aquation involving matrices is equivalent to nine equations 
involving numbers. 

It can be proved that the condition that the linear 
transforamtion defined by equation 2.2 correspond to what 
ve mean geometrically by a rotation can be expressed in 
matrix notttion by the conditions 

A = A A  =1 (2.1+) 

For a rotation we have by equations  2.2 and 2.3,   since 
a*^ = a*      -   • , 
ar      ay ya* 

y'a = a ▼y ;   y0 = a      y'X (2.5) 

There exists a very useful relation between symmetric 
matrices, diagonal matrices, and rotations. To every 
symmetric matrix fi, there can be found a rotation C such 

that CEC*1 =£' is a diagonal matrix. 

Two matrices E and E' are called similar if they can 
be transformed into one another by means of linear trana- 
formations which possess an inverse, i.e., there exists a 
matrix C such ihat £• = CEC*1. A numerical valued func- 
tion of a matrix, f(S), is celled an invariant if for 
similar matrices E and E«, f(E) = fCK'). 

A very important example of an invariant is the character- 
iatic polynomial of a matrix E, defined by 

q?x(E) = |E-Xl| . 

.10. 
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If this dttenainant is expanded in powers of X # it will 
be seen to be a cubic polynomial which we write 

where the coefficients L,M,N are functions of E, For 
similar matrices E and £• = CEC'1, 9%^)   = f^CE1) since 

IE'-AII = iCEC'1- XlGC"1! - icEC^-CXXC-1! 

^IcCE-XDC-1! = |C||E- Al| Ic"1! 

^Is-Xi 

Therefore 

X3- L(S') X2-»" M(E') X - N(£') = X3'UE)  X2*M(E)X-N(E) 

and since these cubic polynomials agree for all X , the 
coefficients are equal; 

LCI«) =L(B)  M(E') =y(E|  N(E') =N(E). 

L,M,  and N are explicitly given by,  for    S   = II^CBII    » 

L(E) = e^^^ ■»• 92? * e33 

M(E) =  (e11 e22"e12 *2l)  *  (e22 e33'e23 e32^   *   (e33 ell"e31el3^ 

N(£)  = jeaßj 

2«3      IM. STRESS-STRAIN FUNCTION 

Consider a continuous medium which is undergoing de- 
formation.    We suppose  the body to be coordinatized by a 
Cartesian coordinate system.    For a given material point P 
we  let   (a^a2/t3)  be  its coordinates  in the  initial state and 
(x^x^x^)  be  its coordinates  in the  deformed state,    le 
assume  that  these coordinates  are related by dlfferentiable 
functions: 

xß = xöfa^V) (a = 1,2,3). 

The point P has then undergone a displacement u, due to 
the deformations, whose components are 
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ue ^uöCtV2/13) = xttUV2^3) - «a    Ca = 1,2,3). (2.6) 

Ä9 ft Beasuro of th* strain associated with th« da- 
formation in the finite deformation theory we consider the 
set of nine quantities 

r I 3ap       ^aa        aau    aap . 

For the geometric and physical significance of the eQß 
see Sokolnikoff, Mathematical Theory of Elasticity (McGraw 
Hill, 19i|.6) pp. 20-32, 'Rie quantities eaß are symmetric, 

!••• *aß ~ ®pa »  and thu8 tkeJ ^BJ fe® taken as the com- 
ponents of a symmetric matrix E, 

Let the Cartesian system Cx^,x|x3) be transformed 
Into a new coordinate system Cx,^,x,2

>x
,3) by a rotation 

matrix C = |caß|| . How it may be shown that the quanti- 
ties eaA are the components of a covariant tensor of rank 2 
([10], p. 77; [16], pp. 291~299|.  This means that if P is a 
mftterlal point at which the strain components in the old and 
new coordinate systems are denoted by e0fl and e'« respectively, 
then cp 

e'  (x'1 x«2 x'3) = e  (x1 x2 x3) JL*I -ili, 

12 3 
= eVi (3C 'x 'x ) ca> cßl (2»8) 

ica>dW{xl'x2'x3)   cJß 
since by equation 2,5 

ax 0    - ca> - Sa   "  c>a 

The reader may check equation 2,8 for himself by substituting 
in equation 2,7 

3u«Q __      3uy 

We have shown then that  if E»   ~   ]|eißll    ig thm Mtrix of 

- 12 - 
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th« •train» In the new coordinate ay»tern,  the following 
relation holds between the strains  In two coordinate systems 
«hlch may be transformed Into one another by a rotation 
Cs 

E»  = CEC'1. (2.9) 

Next consider the set of nine quantities 
Taß(a,ß = 1,2,3) associated with the (x

1,x2,x3) coordinate 

system AIch It Is known are sufficient to characterise the 
state of stress at any point of the medium. Similarly let 
Taß be the corresponding set of quantities associated with 
the (xllfx

,2|x3) coordinate system. The Tap may be regarded 
as the components of both a matrix and a tensor, and we may 
obtain an equation for the TGß similar to equations 2.8 
and 2.9 ([15], pp. 44-45): 

^'aß = c<u  Taß cß* ^•10) 

T» =C    T    0"1 (2,11) 

where T = ||Taö|| i» the stress matrix. 

Now let us suppose that there Is a relationship be- 
tween the stress and strain matrices, defined by means of a 
continuous matrix function P as follows: 

T =P(E) (2.12) 

By this we mean that every component T a of T Is a func- 
tion of the six Independent components of B: 

Taß = faß(E) = faß(ell'ß2^3y>1^23^31)      (2-13) 

To say that P is a continuous matrix function is to say that 
each faß is a continuous function of its six arguments,  if 
the -adium Is assumed to be Isotropie, then the stress- 
strain relation must be invariant under rotation ([15], 
p. 6$). That is, let P be a point in the medium whose 
coordinates in a given coordinate system are (x^x^.x^). and 
are (x^x'^xO) ln a new coordinate system obtained from 
the given one by a rotation C. At P, let the strain and 
stress matrices in the given coordinate system be denoted 
by E and T respectively, and in the new system by E» and T* 

CMFIOEIITUL 
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r«tp«3tiTtly.    Th«n 

T«  = P(E') (2.li^) 

But by «quÄtion» 2.11 and 2.9 

T» = CTC"1 =CP(E)C-1 = CP(C-XB»C)C"1 (2.15) 

■o that «quating «quations 2.14 and 2.15 

C^PfE'K =P(C-1E»C). 

Va hava thua ahown tha 

Theoroa 2.1    Tha matrix function specifying tha stress- 
strain relation (of equation 2.12)   in an Isotropie medium 
must ba auch that, for any aymmetric matrix E and any rota- 
tion C, 

P(C"1EC) = C"1P(E)C. (2.16) 

The remainder of this chapter will deal with the prob- 
of characterising a matrix function of this kind. 

2.i|  TOE STgBSS-STRAIg PUHCTION FOR DIAGONAL MATRICES 

We note first that P is completely determined by its 
▼•lues for diagonal matrices. For to every symmetric matrix 
Et there »ay be found a rotation C such that CEC'

1 = D is 
a diagonal matrix. Then by equation 2.16, P(£) = CPCDjC"1, 
which establishes the remark made. 

However, since for a given S, the rotation C may be 
followed by another which carries a first diagonal matrix 
into another with its elements permuted, the function P 
for diagonal matrices must satisfy certain conditions of 
symmetry. 

For a diagonal matrix 

E = 

a 

0 

0 

c 

b 

0 

0 

0 

c 

we have by equations 2,12 and 2.13 

-14- 

CMFIDENTIÄL 



PROJKT 1,9 

P(E) = ||faß(».btc)| 

If 

then 

10 1 0 0      0      1 

c = 0 0 1 c-1 - 10      0 

ll 0 0 0       10 

l 

b 0 0 1 f22    f32    f 12 
CEC'1  = 0 c 0 CP(E)C"1 = f23    f 33    f 13 

0 0 « f 21    f31    f 11 

(2.17) 

whare föo atmnd for f0ß(*,b,c). Forming P(CBC ), w 
equate It, component by component, to CP(E)C~^# Among the 
relations we obtain are 

(2.18) 

= f11(c,a,b) 

fll(b»c»») =f22(a»b»c) 80 ^22^»h>c^ - fll(b»c»,l 

fggCto.«5»») = f33(Ä»b»c) so ^(»»b»0) = f22^b»c»1 

fl3(b»c,a) = f^Ca.b.c) so f^Ca.b.c) = f^Cc.a.b 

f23(b,c,a) = f13{a,b,c) so f23(a,b,c) = f^Cc.a^b 

f2i^b»c»a) = f23^a'b»c^ so f21^a'b'c^ = f23^c'a»b 

f31(blc,a) = f21(a,b,c) so f.^a^c) = f21(c,a,b 

f,2(b,c,a) = f^1(a,b,c) so f32(a,b,c) = f31(c,a,b 

Thus in terms of f,, and f.« the function P may be represented 

f11(afb,c)  f^Ca^.c)  f^U^b) 

f12(a,b,c) fj^j^Cb.c.a)  f12(b,c,a) 

= f12(
b»c»») 

= f^Cb^^a). 

faß(a,bfc)|| = 

Next, if 

f12(c,a,b) f^Cb.c^) f11(c,a,b) 

-18- 



1.9 

1      0 Oli |1 0      0 || 

c  » 0      0 1 c-i =. 1°      0    '1 
11 0    -1 0|| jo    1    oil 

th«& 

CEC-1    = |ft      0 0 |fll   f13 -f12|| 

p    c 0 C?{E)C'1 = f13    f33 •f23 
II0      0 b 1 rfi2 "^3 

f22|i 
(2.19) 

III th« sia» «ay that equation 2,18 was obtained fro« equa- 
tion 2.17* we obtain from equation 2.19 

fn(atctb) = fj^Ca.b.c) 

fig^fCf^) = fi3(a,b,c) ao f^Ca^c.b) = f^C^.bjC) 

f13(a,ctb) = -f^Ca^.c). 

le therefore infer about f_ that 

f^Ca.b.c) = -f^U.b.c), 

•o that ty- s 0» <IIlä infer about f^^, that 

f11(a,b,o) = f11(a,c,b). 

Application of other specific rotations gives no new in- 
formation. If we write f instead of f.. we have proved 

TlseoreiB 2.2 If P{E) is a matrix function of a 
sjaaetrlo aatrix S such that, for any rotation C, 

PCC-^C) = C-lF{E)C, 

then for diagonal matrices 

CWnDENTIAL 
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fU,bfc) 0 0 

0        f(b,cf») 0 

0 0 f(c,«fb) 

C2.20) 

vh«re f It a timetion sfBinttric  In the last two argxoumta: 

fU^c) = f(afcfb) (2,21) 

1 

2.5  A MBCES3ARY AgD SÜFFIGIENT CONDITIO» FOR THE STRESS- 
gTRAIH PÜHCTIOH 

Lemaa 2.1 Suppose f(a,b,c) is any polyaonial of 
degree n which is symmetric in b and c.  Then there exists 
polynomials fjia^b.c) of degree less than or equal to i 
which are symmetric in (a^c) such that 

fU,b,c) = ZI f1(a,b.c)a
n"i. 

This is a special case of the theorem given in [3J , 
p. 132.  In fact, since f(a,b,c) is a symmetric polynomial 
in b and cf we may write 

f(a,b,c) = P(a,b+c,bc) 

where P is a polynomial in these three Tariables [3]» 
p. 129.  le note th^t 

b-t-c = L-a 

be ~ a(a-L)4-M, 

whara 

Hence 

L = a+b-t-c 

M =■ ab+ac+bc, 

f(a,b,c) ~ P(a,L-a,a(ft-I.)4-M). 

By rearranging in the explicit powers of a we obtain 

-17- 
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l»0 1 

n-1 Q.E.D. 

\ 

Applying this we prove the following 

Theorew 2.3 Suppose the lyasmetrlc matrix T is a function 
F(E) of the symetrie natrix B, where the components of T 
are polynoalals in the components of £, and such that the 
relation 

CF(1)C"I=P(CBC''1) (2.22) 

*    • 

» 

► • • * • 

a * « 

holds for all rotation matrices C. Then there are poly- 
Boalals 5>0CL,M,»), f 1(L>M>M)> f2(L,M,H) in the in- 

war Ian ts LtMf& such that 

P(B) ss y0(L,M.I)I ♦^1(LfM,N)t i. (|)2(L,M,N)E^  (2.23) 

Proof: Suppose first that S is the diagonal matrix 
of Theorem 2,2, then by Theorem 2.2 and Lemma 2.1 

a 0 0 

|0 b 0 

0 0c 

an 

=   f.   ^(a.b^c) 0 

0 

.n-i 0 

.n-i 

(2.21;) 

where each f^iatbfc) is a symmetric polynomial in afbfj. 
It it well known [3], p. 129 that each ti can be written 
in the form 

where 
f1(s,b>c) = H^L.IM) 

L st a+b-HS,       M = ab+ac+bc,      H = abc 

and where     y    is a polynomial in L,MfN.    Also,  from the 

definition of matrix products 

.n-i 

.n-i 0      b 

0 0      © 

0 

n-i 

a 0 0 

0 b 0 

0      0c 
- 18- 
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Thus, from equation 2.214. 

a 

1=0  1 

-1 
(2.25) 

One  verifies directly that the diagonal matrix £ satisfies 
the relation 

S^-LE24-ME-NI=0 

so that, we may express all the powers of £ beyond the 
second In terms of I, E, and £ , Making this substitution 
In equation 2.25, we obtain for diagonal matrices £, the 
relation 

F(E) = (po(L,M,!i)Ii- <5>1(L,M,N)E-|.92(L,M,H)E' 

In which <p t  ^,, (pp    are polynomials. 

(2.26) 

But now, suppose E is any symmetric matrix. Let C 
be a rotation rastrlx such that JE'C  = E, B' being diagonal. 
Let L'JM'JN' be the invarlaats for £', then by §2.2 

L = L»,  M =M«,  N =:N« . (2.27) 

Also we note that 

CIC"1 =1,  CE,C"1=E,  GCE')^'1 ~(CS,G"1)(G£IC"1) = B2 f 

(2.28) 

Hence we obtain the equation 2,26 for F(E) In general. 

If In Theorem 2,3 we replace the word "polynomial", 
whoever it occurs, by the expression "twice differentlable 
and continuous function" then the theorem may be shown to 
still hold. In its present form, the proof is somewhat 
tedious. It proceeds by uniformly approximating P(S) by 
polynomial relations Pn(E) for which by Theorem 2.3 

Pn(E) - %(LMN)I ♦ 9>
1(LMN)E4 %{im)&. (2.29) 

n 
One then shows that the polynomials (&t    ^>, ^L converge 

to continuous functions Cp0, «y^, ^2» and equation 2,23 
is established. It is hoped that in a later report this 

- 19 - 
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work may b« simplified and pr«s»nted. 

Theorem 2.3 admits tbo following converse, which 
follows imraediately from equations 2.27 and 2.2o: 

Theorem 2.4 If P(E) is a relation of the type in 
Theorem 2.3 equation 2.23« then it satisfies the relation 

PtCBC"1) ^CPCE)^1 

for all sjwaetric E and rotation matrices C. 

mmmiki 



CHAPTER 3 

A THEORY OP THE I^SCHANICS OF SOIL 

3.1  IlfTRQDUCTIQW 

Static and dynamic stress distributions In soils are 
Important In geophysics, in civil engineering, and In 
certain other fields. Typical problems occur In the theories 
of building foundations, in earthquake theory. In seismio 
explosions, and in the resistance of structures to earth- 
quake motion. In selsmolo^lcal theories of earthquake waves, 
the earth is usually approximated as an elastic solid. 
While this approximation is probably good at depth it is 
questionable near the surface «here the pressure Is not 
great. Moreover, as Indicated by the Rayleigh wave phenomena, 
the surface effects are especially important In geophysics. 
The purpose of this paper is to develop a theory which may 
more closely approach the mechanics of soils than the 
classical theory of elasticity. 

It is, of course, hopeless to expect to determine the 
individual behavior of each soil particle, and no useful 
theory can involve such detailed knowledge. Our basic data 
must be taken as averages over many particles, and we are 
limited to no more specific predictions than those of the 
average behavior of many particles. Roughly speaking we 
will be concerned with distances of three orders of magni- 
tude. Distances of the order of the dimensions of the 
soil particles or less may be called microscopic. Distances 
of the order of the dimensions of the whole soil field may 
be called macroscoDic, Distances large enough that under 
uniform conditions, stresses averaged over areas of these 
dimensions have suitably small standard deviations may be 
called mesoscopic. For example, in certain soils, distances 
of the order of hundredths of an inch might be microscopic, 
distances of the order of Inches might be mesoscopic, and 
distances greater than ten feet might be regarded as macro- 
scopic. 

Experimental data will be mesoscopic because detection 
instruments are mesoscopic. Our predictions will apply to 
at least mesoscopic dimensions. The stresses we will discuss 
will be forces applied to at least mesoscopic areas, unlike 
stresses in the theory of continuous media, where the areas 
of application are allowed to tend to zero, thus defining 
the stresses as point functions. Actually we will also 

- 21 - 
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speak of stresses as point functions, but will really mean 
average stresses averaged over some mesoaccpic area centered 
at the point in question. Of course these may differ 
widely from the actual stresses at that point. 

It will be assumed that the soil is homogeneous in 
the mesoscopic sense. By this we mean that the particle 
arrangements and particle size distributions, etc,, obtained 
from a series of samples of mesoscopic dimension are the 
same within suitably small deviations. The assumption of 
isotropy in a similar mesoscooic sense will aonsiderably 
simplify the theory, although a non-Isotropie theory, simi- 
lar to the elastic theory of crystals might be developed, 
Mesoscopic Isotropy will be assumed in the present theory. 

The hypothetical material discussed here differs 
from an elastic solid in two particulars. First, it is 
assumed that the material cannot support tension. Second, 
a Coulomb friction mechanism governing the internal particles 
Is postulated in the plastic yield condition equation 3.13 
and in the assumed form of the frictional loss of internal 
energy. 

Heuristic arguments for the assumed forms are given, 
based on certain physical considerations. However it raust 
be borne in mind that at this point adequate experimental 
evidence does not exist as to the relative importance of 
various plausible theoretical mechanisms in the mechanics 
of soils. All such theories »=? this are therefore tentative; 
one is justified in developing them as long as serious 
conflicts between theory and experiments do not arise to 
diminish their plausibility. 

To save havlnn to rewrite a number of formulas and 
to avoid breaking into the main line of argument, certain 
corrections to take into account the effects of water in the 
soil are developed before the theory of dry soil is developed. 
The arguraents employed are very rough--one might say semi- 
plausible. The final results do not seem unreasonable. 
Further experimental guidance is needed. 

In  § 3.2 a rough analysis of the effects of surface 
tension in the soil water is trlvsn. A similar treatment 
of the effect of water viscosity is given in §3.3.  In 
§3.i|-, the condition for plastic yielding of the soil 

is derived. 

- 22- 
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3.2   1ET 3QIL - SURFACE TENSION 

We will now aupoose that a aufflciently large amount 
of water has entered the soil to fill an appreciable frac- 
tion of the air spaces between particles In a uniform manner 
throughout the region of Interest, Under these clrciaa- 
stances the connected bodies of water In the soil may be 
expected to be of very much larger than microscopic dimen- 
sions—possibly of macroscopic dimensions, for the cohesion 
of water tends to keep these bodies from breaking up. In 
such water bodies the pressure due to surface tension will 
be constant. It seems not unreasonable to assume this 
pressure to be constant throughout the medium. 

The pressure due to surface tension is given by 

where R^ and R2 are the  principal radii of curvature of the 
water surface, and are considered positive or negative 
according as the corresponding centers of curvature lie on 
the water side or the air side of the surface, respectively, 
T Is the constant of surface tension and has the value 
73 dynes/cm for water at 20oC. 

Consider the water near a point of contact C between 
two particles. The principal curvatures of the water sur- 
face will be in planes roughly parallel to the plane of 
contact, and perpendicular to this plane. The radius of 
curvature, R^, in the latter plane will generally be small 
compared to the other principal radius of curvature R2, so 

by equation 3.1, P^ Is nearly constant. R^ is roughly 
proportional to the distance between the two particles at 
the water surface, and this is roughly proportional to the 
area of the cross-section of the water in the plane of 
contact which is therefore roughly constant for all particles 
large enough. 

Since p is constflnt it would apoear that each suffi- 
ciently large oarticie Is subjected to roughly the same 
normal force in the region around each point of contact, 
this force being roughly Independent of the amount of water 
present. Smaller particles would be completely inundated 
by water, but in this case they may be considered to be 
joined to their neighbors into a larger composite "particle" 
which will be of type already discussed. 

Statistically we may expect the Individual oarticles 
- 23 - 
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to h*ve numbers of points of contact with other particles 
roughly oroportlonal to their surface area.  Therefore In a 
rough way, the forces due to surface tension acting on the 
particles are statistically proportional to their cross- 
••ctlona. Therefore these forces per unit cross-section 
area are statistically constant, and the effect of surface 
tension la, according to these assumptions, to add a con- 
stant pressure to the stress in the medium which is at most 
weakly dependent on the degree of saturation of the soil 
by the water. Applying dimensional reasoning to equation 3.1, 
we might expect this pressure to be given by 

P = l|T/d (3.2) 

where d is some sort of statisticallv derived distance 
measurement, such as a mean soil grain diameter or something 
similar. 

If there is very little water present, or if the 
soil is virtually saturated, these conclusions may not, 
of course, be expected to hold.  On the other hand surface 
tension probably plays a minor role in these cases. 

In practice p may be small.  By equation 3.2, for 
d=0.1 mm,  p =0.1+2 lb/in2. 

3.3   WET SOIL - VISCOSITY 

When the particles of the soil move with respect to 
one another, the viscosity of the water may play a role. 
To a lesser extent the elastic deformation of the particles 
causes motion in the water even when there is no slipping, 
and this motion may generate viscous forces. We shall 
attempt a crude analysis of the effect of viscosity in the 
water on the mesoscopic components of stress. 

Consider the liquid between two particles in contact. 
When relative motion occurs it must be expected that the 
liquid in the immediate vicinity of the points of contact 
slips over the solid surface in a semi-solid manner, possibly 
exhibiting marked internal turbulence. We will not pre- 
tend to analyse the behavior of the fluid in this region, 
but will assume that its effect can be accounted for by 
modifying the Coulomb coefficient of friction of the medium. 

Outside this "Coulomb friction" region we will assume 
that the water flows as a classical viscous fluid. The 
shearing motion and therefore the viscous effect is greatest 
where the particle surfaces are nearest together.  Suppose 
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ve consider the flow to b« analogous to that between two 
parallel plates when one is moving edgewise with a velocity 
V relative to the other. In this case each plate suffers 
a shearing stress /»V/«, where z is the distance between 
the plates and /« is the coefficient of viscosity of the 
water. 

We might use the expression /<¥/E for the viscous 
drag in this case where £ is variable. This Is not a very 
good «pproxlmaticn, but it is enormously more convenient 
than an attempt to make a very accurate analysis. This 
expression probably overestimates the drag where the sur- 
faces are farther apart and less nearly parallel. 

We will consider the case of a sphere in contact with 
a plane, and will attempt to extrapolate from this case to 
the general one. 

Let the plane in question be the s =: 0 plane in an 
x,y>z - rectangular coordinate system, and let the sphere 
be of radius R and tangent ta this plane at the origin. 
Suppose the 'Coulomb friction" region is a small circle of 
radius a about the origin, lying in the f s 0 plane, lear 
the origin the distance from the sphere to the plane is 
r2/i2n)  *  CHrVR^), where r is the distance from the z~axis 
to the point in question. Accordingly we will approximate 
the stress by 

2/< VR/r2 [ H-C (i^/R2 )J . 

Integrating this from the Coulomb friction region to a 
circle of radius R' about the origin, the total force is 

P=4rr/*VR inCR'/a) [l+0(R'?/R2)] 

In general In a soil we will be concerned with the 
rate of strain e = V/R rather than the velocity V of one 
particle with respect to another. Then dividing P by the 
area irR2 of a great circle cross-section of the sphere, 

t = h/<e    in(R'A) [l+0(R'2/R2)] (3,3) 

represents a shearing force per unit area of the sphere's 
projection on the plane due to the viscosity of the water. 

The quantity R1 used in this analysis will be taken 
near to the radius of the water surface if the sphere is 
not immersed, or of the order of the radius of the sphere 
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if it is. It will b« assuied that « ^ < R. If R* it not 
large with rwapwet to a it nay b« aaaumad that vary littla 
watar la praaant in tha Twdium and that ita viscous affacta 
will not ba Important. On the othar hand if R* > > a, tha 
fanotion 4i(R*A) i» * a lowly varying function of its 
argiaant. Both tha affact of tha 0(R 2/R2) tarn and a 
eorraetion for tha arror of our parallel plata flow approxi- 
mation would tend to make the coefficient of li/*e in equa- 
tion 3.3 even more slowly varying than this. We will 
accordingly maxe the extrapolation that in general the 
viscous shear is given by an expression of the form 

Ts Me, 

where M is a constant of the medium. 

(34) 

The meaning of this is that we will consider the 
viscosity of water in the soil to be accounted for simply 
by adding to our mesoscopic components of stress the usual 
expressions due to viscosity In a continuous liquid whose 
coefficient of viscosity is M. 

M will be a constant for a mesoscoplcslly homogeneous 
and Isotropie medium. However it will differ from one such 
medium to another. It may be expected to depend on the 
diatribution of particle sizes in the medium and (although 
notstrongly) on the degree of saturation of the soil, 

3.1*  THB COULOMB FRICTION YIELD CONDITIOH 

Dry soil is incapable of supporting appreciable ten- 
aion. Accordingly the three principal stresses will be 
assumed to be compressive and, according to convention, 
will be non-positive.  If one of these should become zero 
at an interior point of the medium, the soil will break 
apart, initiating a new regime. 

Assume now that all principal stresses are negative. 
Then any mesoscopic surface area supports a non-zero normal 
stress. A soil differs from an elastic solid in that it 
can sustain only a limited shearing stress on this surface 
area without suffering permanent or plastic deformation, 
We will assume that the mechanism of yielding and deforma- 
tion are similsr in nature to those of Coulomb friction 
and will use physical arguments based on the idea of Coulomb 
friction in Justification of the yielding hypothesis equa- 
tion 3.13 advanced. 

At any given point in the soil the ratio R of the 
- 36- 
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tangeatlal to th« nomal stress can bo calculstsd with 
rospsct to a mssoscoplc surface area oriented In any direc- 
tion. By  varying the direction, R may be made to take on 
Its Bajtim» value 1^. We will assume that as long as % 
remains less than a certain constant k (called the coeffi- 
cient of friction for the soil), sliding does not occur, 
and the system is conservative la the iimedlate neighborhood 
of the point in question. On the other hand, if H^ grows 
as large as k, sliding will occur, with attendant loss of 
energy by friction. In such a manner as to keep H^ from 
growing larger than k. Therefore we have 

H« £ * (3.5) 

k may not be equal to the coefficient of friction 
between any particular pair of particles, which may vary 
considerably from one pair to another if several different 
materials are present in the soil. It is a mesoscople 
rather than a microscopic parameter* 

We will now calculate R^. Let ^ *2. be the 
principal stresses at the point P of Interest, and ass; 
Tx ^ fg ^ T3 ^ 0« Establish a rectangular coordinate 

system with origin at P and axes along the principal direc- 
tions of stress at P. Mow consider a plane through P whose 
normal has direction cosines v^, i^, -p-*    with respect to 
this system. From the tensor law of transformation of stress, 
the component of force normal to this surface is 

f i vi* Tj -Vj ♦ T 3V3 

and the square of the magnitude of the t3tal force is 

Tf-vf  *r2
2-v*  ♦T3

2^3
2   . 

Therefore 

Moreover 
2 2 2 

^1    *   ^    *    "^      ~l (3.7) 

Prum equation 3.6,   equation 3.7 we may write 

- 27 - 
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(3.a) 
(ax^by^l) 

2 2 
where x   = V^ ,    y  s Vj , A = ri/r}

2 - i, B = 

-  1.    We T22/ T32 -  1,    a Ä V T3 - 1.    b   = T2/T, 
wish to mmxlmlze this expression as a function of x and y 
subject to the restrictions 

* ^0, y ^0, x ♦ y 4 1 (3,9) 

" 
1 

It is easily seen that )H/}x and aH/^ y cannot 
vanish simultaneously except when Ti = T2» a limiting 
case we are not now considering. The maximum value of H 
must therefore correspond to (x,y) on one of the boundary 
lines of the region equation 3.9 in the x,y-plane. 

Suppose x - 0. Then by equation 3.8, |R/ jy = 0 if 

BCby+1) - 2b(By*-l) = 0, 

giving y = (B-2b)/(Bb)   =  7^/i T^-i-T^),  and,  by equation 3.8, 

R = |vT3!V^ r2y* 
Similarly the maximum value  of R corresponding to 

y=0i8R=    |Tr r3|/-/(^T1 13). 

Finally consider the boundary x ♦ y = 1.    By equa- 
tion 3.3, 

R2 ^ !   =     ^9)^1 
[(a-b)x-i-b-»'l] 

Then    >R/ a x   =0  if 

(Ä-B)[(a-b)x>b-i-l]   - 2(a-b) [(A-B)x^B+l]  =0, 

giving 

x  = [(A-3)(lH-l)-2(a-b)(B+l)]  / [(a-b) (A-3)] 

=  V(T1+ h^ 
and R  =  jTi- T2|//(li T1 r2). 

These  three expressions  for R have  the same forraj 
- 28 - 
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th« greatest is that In which the two varlebles are farthest 
apart.    Therefore R^ =  ^^ 3J/V ik 11 T^),  «o be equa- 
tion 3.5 

1-K iL   T3 ^ 1, 
where 

K s cos(2K ) = k/V (H*2). (3.10) 

For wet soil,  the surface tension correction of   $3.2 
nay be incorporated, giving, for p a non-negative constant, 

fnZ,.   fclt^Ii^l. (3.11) 

The limiting cases T, = r^ *nd T2 m r3  glT* results 
in agreement with this. 

«fcen p-r. 

the system is conservative, but when 

p. r 

p- T 
i =^| = tan2 t, (3.13) 

«*»• 

* 

«•«• • 

M ■ • « 

Coulomb frictional yielding may occur with attendant energy 
loss. This condition is assumed always to hold during 
yielding, although it may also hold in the transition be- 
tween the elastic state and the yielding ^tate but just 
before yielding takes place. 

3.5  THE MSCHAiyiCAL EQUATIONS 

We will now derive the fundamental mechanical equa- 
tions for our soil model, following the method of Kurnaghan 
with appropriate modifications. 

It will be necessary to study the medium in both the de* 
formed and undeforraed condition, A rectangular Lagrangian 
coordinate system with coordinates a%a%a' will describe the 
material points of the medium In the undeformed state, and a 
rectangular Sulerlan coordinate system with coordinates x*, 
x2,x3 will describe the material points of the medium in the 
deformed state. The Lagranglan system describes events with 
respect to the medium, and the Eulerian system describes 
events with respect to a fixed reference system, 

- 29 - 
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We uaa lasaoscopic  stresses,  as defined  in   §3.1; 
otherwise the definition of stress  is  the familiar one. 
That is,    T J denotes  the component of force  in the direc- 
tion of the negative xi-axis exerted per unit surface normal 
to the xJ-axis by the material lying on the side of this 
surface corresponding to lower values of the coordinate xJ. 
In this case, however,  the surface element must be of meso- 
scopic dimensions. 

For brevity we denote    3A/ax*'   by kt(r 

In the strained state consider any volume V of meso- 
aoopic dimensions surrounded by a surface S.    Let    S^X, 
1x2,    1x3 be virtual displacements  of the points of V as 

measured In the x-system. 

The virtual work due to the surface stresses over S is 

J t± iaßTal^xßdx2dx3l ^ßT*2 ^xßdx3dx1
± SaßTa3dxldx2) 

-J.[ ( s aß1 
al      ß a2      ß 

i x  ),! ♦  ( S aßT     <$ x ), ? 

o3      ß 
1      d x   )0 * ( 6 aß 

= J 
dx1dx2dx3 (3.1i|) 

v
(Saß 

0«r ß 
T       ^ x  ). dV   =   f   ( T 

a<r 
^Vv dV, 

where  the  summation convention is used and where 

ixi =  6 io- (3.15) 

If P*-,?^,?^ are components of external force per unit 
mass, the corresponding virtual work is 

y r P
a h x0 dV, (3.16) 

P being the density of the medium. 

Finally let ^U denote the variation in internal 
energy per unit mass corresponding to the variations ix*, 
6x2, ,Jx3, By the Principle of Virtual Work, 

or 

J r(Ta<r6xa),<r ^ pPa^xa - /o^U 

- 30* 

CMFIDENTIAL 

dV = 0, 



PROJECT 1.9 

/ [{T^ * pPa) SxQ + T*'' ( ^»a^^ *  /»ÄUJdY = 0 (3.17) 

Rigid virtual diaplacaments of the medium are character- 
ized by 

In particular, translations are characterized by 

iS x1) j = 0. 

(3.18) 

(3.19) 

Under a rigid displacement of the medium the internal energy 
is unchanged, so «JU -0, By equation 3.17, equation 3.19» 
since <$xa is arbitrary, 

T1' ♦ pP1 =o. (3.20) 

3y equation 3.17 for a rigid displacement,  using equation 
3.20 

J(raß-/a)Ux 1  ft dV+    [ raß 
( 4x  )       +  Ux  ) 

ö ,P P »a 
dV 

By equation 3.18, the right-hand integral vanishes.  Since 
( S r.a)  ß is arbitrary we must have 

(3.21) 

That is, the stress tensor is symmetric, as usual. 

Equation 3.17 may now be written 

J [TAß (6xa)jß - pSV    dV=0. (3.22) 

3.6  THE INTERNAL SNERGrY U 

The virtual change <$ü in the intemax energy is given 
by 

^U =   S* +   <$W ♦ ^W", (3.23) 

where ^W is the change in elastic energy, ^W* is the 
change in energy due to viscosity in the water, and 5W" 
is the change in energy due to Coulomb friction loss, 

W is the elastic energy of the body when distorted, 
- 81 - 
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»nd d«p«ndt on th« d«gr«9 and m«nn«p of distortion of th» 
body, A »•••UP« of this distortion is obtained by comparing 
ths diffarantial of distanc« In th« stralnad and unstrained 
states« 

L«t di^, and ds denote the differentials of length in 
th« undistorted «nd in the distorted states respectively. 
Then 

as0
2 = 5<rr da

0-dar , ds2 =. 5aßdx
Gdxß, (3.21;) 

or 

dio2:=   trr^a*^***^'    ** =   8^\S,r    ^^'   (3-25) 

Tharefor« 

ds2 - ds0
2 = 2 £aßdxadxß = 2^rde-daT, 

«h«r« 

£i3 = »^ir^r»>.rj'' 

By equation 3.26 

^ij = 7.ra:iarj » 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

Tti« quantities ^^i and -v^*    measure the distortion 
of the body and are components or the Eulerlan and Lagrangian 
strain tensors respectively. W maj be expressed as a func- 
tlon of th« three Eulerlan strain invariants I,,!,,,^! or 

the three Lagrangian strain invariants ^11^2»^3» wJlere 

I C^ ♦ H^ I =i(
3 + I^^I^X^, 

^i ♦ "KS 
1J 

= *K3 ♦ J1\
2^2li-*'J^t 

(3.30) 

(3.31) 

Thsse invariants are simply related. By equation 3.27, 
equation 3.28, 
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%r ^uhi ^^fr —r11'2*^ ij 

_ i 

l 
~ 5 

4ß - (i-PTO^^afßj (^ 
r I 2 

5ap ♦ (l-2X)(2taß. Saß) if 
fore 

= ^-2^)3kß^Ir|T 5 aß 
Ba. 

r\2 

Thereofrora equation 3.30,  equation 3.31, 
3 2 a   *" |2 

aak j   L 1 2 

♦I3( 1-271)3]   , 

Equating the coefficients of like powers of 1C , 
. r 2 

-äi-    - 1/(1-21 ^i-ai.), 
^a J 

J1 = (^-1112+121^/(1-21^12-8^), 

J2 ^ (I2-6l3)/( l^I^^-S^), 

J3= I3/(1-2I
1
:4l2-8l3). 

(3.32) 

(3.33/ 

W is a function of «J^Jp,«!^,  and therefore of the   y tt, 

or by equation 3.33  it  is  a function of  I,,!«,I,,  and 
therefore of the    t*«.    We may write 

aw       Af^rz      <?W 
77 

<SW = 
ae aß 

^aß = I-» (3.31+) 

of a given material point.    It  is  therefore  independent of 
The operator    S    represents  variation of a function 

^iven material point.    It  is 
the operators    d/2 a^.    Therefore 

'{IS. 
- 33- 

-r   ( i x 

I 

i)    -£*: 



PROJECT 1.9 

fbmtvform by •quatlon 3.28 

= t[(^«>,p+(ixp).a]^   -|2| 

On th« otbtr hand, by «quttlon 3.29» 

= [^£ap ♦   tör^»')^ ^   ^/ß^^),( 

so 

^.(J^^V.p*  ^V.a]   "   ^^o. '^V.p 

-   S^*  £o-ß(^T),, 
By th« sy«a«try of the  Invariants, 

^w     „aw o»l     _   ^W 

^ß        ^€ßa 
j   ^rr ^?ra. ' 

so by aquation 3.34 

i»~      PW ^xa   ^x^  ( , ^  . 

«?W <?w 

^aß ßr 

(3.35) 

Uxö),ß, 

wher^ W Is a function of «?i»J2*J3 or of Ii»I2,i3# 

iW! Is readily available from text books. It may 

be derived from [ll;f 19.41)» aild is g*«ön by 

^W =:(M//o)(f ^f^* ^,rßC)Uxa^ß,     ^3.36) 
- 34- 
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where a dot tbov« a sjmbol Indicates differentiation with 
respect to time. 

Finally we require an expression for £1*. Couloab 
friction in the medium will be assumed to be a linear func- 
tion of the expressions on the left-hand side of equation 
3.16, which are measures of the distortion of the aediia. 
In fact we will write 

SW" -(!/>> )^(5x0)ßf (3.37) 

where H0^ is a symmetric tensor, I0** —0 wheneT^r equa- 
tion 3.12 holos. By the Second Law of Thermodynamics, 
Si^* 6: 0t  so by equation 3.37, 

NGp SßY  xf
r
a ^ 0. (3.38) 

aß 
.The form of I ^ will be considered more specifically in 

§3.8. 

Substituting equation 3, 35-equation 3.37 into equa- 
tion 3.23 and substituting the result into equation 3*22 
we have,  since  ( ^xa)  o  is arbitrary, 

riJ äT
1J
 * llij (3.39) 

where 

irr      * a      #a 
(3.40) 

~r\    9€ii err        3€    y „r .<r 

3.7      THE TENSOR T ij 

W may be expanded  In a triple Taylor series  in 1^, 
12,13,  only a few terms of which need usually be used.    To 
terms of the  third order we may write 

|00W   =1^ ♦ *U+2/<+3V)Ii - 2(/,*> )I2 

- 3 (3.41) 
■♦• i(x +V+ |r-2h)i1-3^ 2(h-v)rIi2 ♦ qi3, 
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y, x t^ff ^f^fQ b«lag constants, and  />0 bslng the dsasitf 
in th« unstrained state« 

By equation 3.30, 
aß % 2      2    ^^   ^^ 

II =   i     € aß.    Ig = fl    - t S     6     € aT Cß^ 

2     2        2 

12    23      31      11    22      22^33      33    11 

(3.1*2) 

b =I€1J 
and 

^1 
^€ 

=   5 
ij PI2 

1J 
y i    ■      =   X«   O "     O O €. 

ij 
aß' 

(343) 
51 3       . K1J 

"ij 
.u allere 1 J  Is the c©factor of    £. .  In      £. . I  .    Pro« equa- 

tion 3.1*1 IJ 'IJ 

>♦( X4--)')I1 ♦ (X +X+ |>)I1
2+2(h-Y )I2 

^[/-♦r+O-h)!^ Sia ^je£aß 
+ ^K11. 

ij 

ro^r-lt-~b^*^h]s"s>\ 
IX 

aß 

^(^♦r) S117' SaT S^ ^re      . 

dropping terms of the third order in the  strain components. 

The density /o  is that of the material in the strained 
state,  aiid    />0 is ♦■•he density in the unstrained state.    If 
dV and dV0 are volume elements in the two state. 

/«       dVo 3 a* 

llierefore by equation 3.32, 

- 36 - 

Srarttf I 



CMfMBmAL 

PROJBCT 1.9 

SO 

/o =p0Cl-V2I2- i Ij2♦...). 

By «quat ion 3#l|.0 

«here I,  and I- are given by equation 3.42# «bare E1^ la 
the cofactor of    CJJ In   | CJJ | ,  and irtiere the Bulerian 
strain components are given in terms of the dispiaoeaenta 

u1 =. x1 - a1 (3.^6) 

by 

Equation 3*^7 is an ioraediate consequence of equation 3«27» 
3.8    IM TENSOR H££ 

The components N1^ vanish when equation 3.12 holds 
and when equation 3,38 cannot otherwise be satisfied. However 
in the yielding state they must be such that equation 3,13 
holds. Since there are six components If", it is clear 
that equltion 3*13 cannot determine them entirely, and that 
more restrictions must be added. 

At the present time adequate experimental informa- 
tion as to the proper choice of restrictions does not exist. 
On the other hand, how should one design experiments to 
obtain such informstionT Experimentation without theoreti- 
cal guidance usually proves to have conoamed itself with the 
wrong things. Usually it is not feasible to establish by 
direct experiment what the proper fundamental postulates 
of a physical theory should be. Its author must choose 
them on some basis which seems reasonable, and must develop 

- 37 - 
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the theory to « point wher® «xperimontal coa^nriton becoaot 
pr«ctlcabl«« In this cholc« he a&f be guided not only by 
•ueh inconplete e3^eri»ent«l facts end physlcel principles 
es do epply, but elso by the deslrebility of siapliclty. 
The slaplest theories should certainly be tried first. 

4 theory developed on this basis not only tells the 
experimenter what to look for, but often helps hi« form a 
ne« one if it fails. 

Accordingly we shall use an argument based on the ideas 
of Coulomb friction to reduce the six unknown quantities 
H*-) to only one which may be determined by equation 3» 13* 
Prom the standpoint of simplicity it is highly desirable 
that r J snd I^i have the same principal directions. 

At any given point In the medium construct the axes 
of principal stress and let yity^,y^ denote the corresponding 
coordinates. Let T-^, T^,  tj be the corresponding principal 
stresses ordered so that *i i tg £ ^3 ^ 0. By  §§3.2, 
3.4, when the material yields and *i * t2 < T3 4 0, slipping 
may occur in the two planes whose normals have direction 
angles v/2  ♦K , w/2. It with respect to the y1>y

2,y3-axe8, 
respectively. When ^x ^ ^2   ~^3 ^0» süPP^g n*! occur 
in any of the infinite number of planes whose nonnals have 
the direction angle fr/2 - fi     with respect to the y^-axis, 
Mien t^ ä T2 ^ T3 ^ 0, slipping may occur in any of the 
infinite number of planes whose normals have the direction 
angle It with respect to the y^-axls. When T^ = T2 s T 3, 
slipping does not occur except in the singular case T^= 
^2 — T3 Ä p =* 0. This condition is encountered on the 
boundary of a dry sand. 

The energy loss due to Coulomb friction is propor- 
tional to the shearing stress in the plane of yield. We 
will assume an equl-partition of energy among the different 
possible planes of yield in each case. With each plane of 
yield we may associate a tensor defined In such a manner 
that in a rectangular coordinate system having the yield 
plane as one plane of reference, the only non-zero compon- 
ent is a shearing component in that plane, the direction 
of the shear being toward the principal axis of minimum stress. 
Giving all such shear components the same magnitude in the 
various possible planes of yield, S1' will be defined 
as the sum of all such tensors, 
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The coBponenta of M '    in th« principal coordinat« 
sjstaa of th« tensor   T^^ BMIJ be ejqpressed readily,    I*J 
has,  in fact,   the same principal axes,  so we need only 
express  the principal values N^,^,^ of the tensor H^-J, 
It  is a simple consequence ol the tensor lav of tranafo 
tion that 

I1 = Hf    H2 = 0,    I3 =  -I 

when   T^-tTg* T3 ^ 0, 

»X = If,    H2 =  -il,    »3 = -|1 

when   T1^T2  =T3^0, 

»x = hns    N2 = |H,    H3 =  -I 

(3.48) 

C3.49) 

(3.50) 

when   X-*  = X 2 ^ * 1 *- ®» where H is a non-negative factor 
that vanishes whenever equation 3*12 holds or whenever 
equation 3*38 cannot otherwise be satisfied, 

N is determined by means of condition equation 3.13. 
Let T-,?«,!. be the principal values of the tensor T*J, 
i.e.,  the roots of the equation 

IT1^ - T «iJ I ^ 0 (3,51) 

arranged in the order T^ *: T* £ T*. Equation 3,51 »»y 
also be written *        J 

T3-®T2+®T-®   =0. 
1 2 3 

where 

1 rn+ T22 ♦ T33f 

®2 = 
Tll T12| 

■4- 

T12 T22 

^22  T23 

T23 T33 
♦ 

T33 T31 

T31 T
11 

(3.52) 

(3.53) 

(3.51*) 
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®3 = 

fll «^12 <3»13 

T12 ^2 ,23 

fl3 ^23 T33 

(3.S5) 

Th«Q for 1 r 1,2,3, 

Ti s Tl * «1 
(3.56) 

In ««•• T^ = T2 or T2 » T3, tht «ff^ct of N In 
•quttlon 3.^9 or equfttlon 3»50 is to bring Ti and T^ 
n*ar«r togathar than art T^ and T^. If T^ and T^ ara al- 

raady naar aoough together to satisfy equation 3.12 with 
tj^T* replaced by T^,ij, respectively, then K = 0* If 
uot, X la determined by condition equation 3«13. 

ttian Ti < T2 -t T3 the sane process applies but with 
on« complication. Consider the quantities T^ + N, 72« 

T3 - I, which are of the forms of ^\ t^2 *^} »  respectively, 
«hen the regime^equation 3.1|8 applies. As M increases from 
sero, on« of the two extreme quantities may come into 
coincidence with the middle quantity T2 before N grows 
large enough to satisfy equation 3.13. I& this case the 
regime^equation 3.1+8 will no longer apply, but either 
equation 3.i|9 or equation 3.50 must be used to bring T^ 
and T* near enough together to satisfy equation 3.13. 

It appears that a number of cases must be analysed 
separately, depending on the initial ranges of the quanti- 
ties Ti,T2,T3, All may be verified by straightforward 
calculations to fit into the formula 

Ti = T, ^ M^ (3.57) 

for 1 - 1»2,3» where 

-^po.[lip-T2-K(p- up) 

(3.58) 
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M*=  - 3^ poa [,2.V!i.K(p.ü£)] 
fix^Ti 

* ynü POS [ 2" • T2" K (P. r-^)\ 

(3.59) 

«3= -Z^!l +K(P-!I^) 

.-po.[llp-T2-K(P-Iip)]. 
where by equation 3.30» 

12     3 
S = 0 if l^u 1 ♦ M2ü 2 ■»■ M^u 3 > 0, 

<$ =1 If M1u
1
1 +  Mgu^ ♦ n^2  ~0* 

If y?»y^»y^ ar« principal coordlnatea and x',x2,x3 
are general coordinates, the components of the tensors 
T^J and T^-J are given by 

(3.60) 

(3.61) 

tiJ =t1 -üi ^ +r M^M + uM 
*j    ay ay    ay ^r 

.ij  . .1   .XJ -i 

ay    27 ay    ay a 

1  axi 
ar 

xi   Axl 
a: 

(3.62) 

(3.63) 

3.9  BOUNDARY CONDITIONS 

Boundary conditions are Imposed at the exterior 
boundaries of the medium In the form of proscribed externally 
applied surface tractions or displacements. At the (in 
general moving) Interior boundaries between the conserva- 
tive and yielding regimes, the displacement components 
u^ must be continuous functions of position and time« 

In the particular case when the exterior boundary is 
free, acted upon by no externally applied surface tractions, 
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ttom  coapr«s«iv« traction nonul to the boundary it p# tha 
•urfaca»tanaion praaaura. Suppoaa x* ia a ractangular 
eoordlnata noraal to tha turfaca. Than by aquation 3.62, 

.2 ( Trp) (^f . ( T2.p) ^ . ( T3-P) (Jgj 
(3.6^) 

= T'-p = 0. 

Tha »adiun cannot aupport tamion graatar than pf so 

t rp * T2-P * T3"p ^ 0« (3.65) 

Tha quant it iaa axV^T1» 3*^/4 1*,    3**/jj3    cannot 
▼aniah aiaultanaoualy so by equation 3.61| one, at least, 
of tha quantities t^-p,  tg-P» ^ 3-P «ust «snish. In 
particular, by aquation 3.65,  T3-P « 0. Therefore 
Tj^-p s 0, for neither equation 3.12 nor equation 3,13 

could otherwise be satisfied. Ifeen by equation 3.6$, 
T 2-P = 0, 

Theor«« 3. 1 The stress distribution on a free ex- 
tarior boundary ia completely characterized by 

or by 

Xi = To = T^ = P 

13 =PgiJ 

(3.66) 

(3.67) 

Equation 3.67 is derived fro« equation 3.66 and 
aquation 3*62. 

Theorem 3.2 Whenever equation 3.67 holds, then 

(3.68) Tll + ^2 + T33 s3p. 

Conversely, «hen equstion 3.68 holds,  then 

TiJ -.Tij lf (p-T1)u1
1 -»• (P-T2)ü2

2 ♦ (p-T3)ü33 >o,    (3.69) 

T1J =pg1J if (p«T1)u;l
1 f (p-T2)ü2

2+ (p-T3)u3
3 ±0,    (3.70) 

Proof. By equation 3.63, T11 ♦ T22 •♦■ T33 ^T^Tg+T^. 
. 42 - 
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To d«rlv« equation 3.^8 from «quatlon 3.6?, not« that 
•quttlon 3.6? la äquivalent to aquation 3.66.    Equation 
3,68 than follows by adding aquationt 3.58, 3.59 »Qd J.bO 
and substituting into aquation 3.57. 

Conva?8aljf  suppose aquation 3.^8 holds.    Than 

T1 ♦ T2 ♦ T3 ~ 3P, 

snd 

T2-^.K(p-Ü^) = (3-K)(p-Zi^)   . 

ü^i - T2 . K (p - li^l)  c   -  iW (p - li^)  . 

Substituting these into equations 3»58-3.60 and noting that 
pos(x) - pos(-x) s x, we easily see that M^ ~ -T^p, 
Equations 3.69 and 3.70 then follow from equations 3.57 »nd 
3.61. 

In the yielding regime the condition in equation 
3,70 is satisfied. It then follows that equation 3.68 is 
equivalent to equatian 3.67, so that the boundary conditions 
on a free exterior surface in the yielding ragime are c< 
pletely characterized by condition equation 3.68, 

3.10  ITHI-DIRECTIONAL DI3PLAGBMEWT3 IH DRY SOIL 

Possibly the simplest case to analyse is that in 
which all displacements are in only one direction, say 
parallel to the x-axls in an x,^2-rectangular coordinate 
system, and depend on x and t (time) only. This case arises, 
for example, when a rigid cylindrical container is filled 
with soil and compressed by a piston at one end. 

We take x* = x, x- = y, x^ n z. By equation 3.47, 

eilS € ^ u, - ^ u/, (3.71) 

and all components of strain are zero. By equation 3.i|.2, 
Il= € »  Ig = I3 = 0« Also Ei^ - 0« By aquation 3.1*5» 
since M - 0, 
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T"   =  r +  ( > +2/A ) 6   ♦  { X'+S^O € 2  , 

T^y =T2Z    => * X6  ♦   A'€2  , (3.72) 

irt» re     yH's-ih* X +3/u ^2r ), 

We are interested in compression only, so  C <c0. 
Then for /*«'* 0 or for e sufficiently small Txx -: T^ 
= T", Therefore by equations 3.52-3.55, equation 3.72, 

T^L = T**, Tg = T, = T^y =TZZ, Also, of course, x** 

= ti, t77 = t" = t2, Txy ^T72 =rzx =0. By 
equations 3.57-3.61, equation 3.71, equation 3.72, since 
P - 0, 

^ - M D^+OX^/O e ♦ (3X/+2/^
/) €2] , 

(3.73) 

Tyy «T«* - ^|[3y+(3x+2/«)£ + ux'+zy)*2] 

if 

KV ♦[/"-KUt/")] (-£) ^[-/^^(X^X)] £2 >0 

and € -^ 0, 
while 

T« = Y + (X^^)^ + (X'^O €2, 

tyy = r" = v + xe  + xe2 

otherwise. 
Equations 3.73#3.7l| correspond to the yielding 

regime, and equation 3.75 to the elastic regime. It will 
be convenient to discuss the plane in which - x**  ls plotted 
as ordinate against - € as abscissa» Only the first quadrant 
will be of interest. 

In successive transitions from the elastic to the 
yielding condition and back it will usually be necessary 
to change the constants apoearing in equations 3.73, 3.75 
in successive appearances of the same regime. It is clear 
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that at the beginning of the initial deformation of a soil, 

^.xx = Q „hen t = 0, so >" = 0.  On the other hand, for 
later deformations when the soil has received permanent 
set we must have >• ^ 0.  Since the adjustment of v is 
necessary in any case, since this is by far the simplest 
constant to adjust, and in the absence of experimental 
evidence to the contrary, we will henceforth in the present 
paper adjust only this constant, regarding it therefore as 
a parameter and considering X »y^tX»/**'  to be constants 
of the material which are not changed in spite of the 
compaction of the material. Of course this hypothesis may 
require modification when more is known about soil mechanics, 
but for the present its simplicity recommends it. 

In the (-T3"1,-«.) plane, the first of equation 3.73 
represents a family of yielding curves obtained by varying 
the parameter v , and the first of equation 3.75 similarly 
represents a family of elastic curves. The second condi- 
tion in equation 3<7l| can only be satisfied if the point 
(-T**,-* ) is moving to the right in this plane, so yield- 
ing can only occur when this is the case, A reversal of 
direction initiates an elastic regime, the point then follow- 
ing the particular member of the elastic family passing 
through the point where the reversal occurred. 

However for yielding to occur it is not only neces- 
sary that the point (-T7"*»-^) be moving to the right, 
but also that the first condition in equation 3.7J4. hold. 
We will now determine the part of the -T*31»-^  plane 
where this condition holds. 

Consider the point (-Txx,-€ ).  If this is on a 
yield curve, the corresponding value of >* la obtained by 
solving the first of equation 3.73. If this is substituted 
into the first of equation 3.7lt we get 

-T3" ^ (l+l/K)^-€)-//(-fc)2] .      (3,76) 

of 
It follows that yielding, described by the regime^equation 
3.73f can occur only between the parabola 

-T3" = (Ul/K) [/.(-£ )-V(-€ )2] (3.77) 

and the - €. axis, and only for points (-Txx,- €) moving 
to the right. All points moving to the left, and all points 
in the first quadrant outside this parabola correspond to 
elastic deformation, described by the regime of equation 3.75 
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Th© case of practical interest is  that  in which 

K£/i/(X+>«)    or    k £,« A/ [x(>+2/*0]   ,   (3.78) 

in which, as will be seen later, the seismic velocity in 
the yielding state is lower than that in the elastic state. 
In this case the elastic curves of equation 3.75 have, at 
-6=0, a greater slope than do the yielding curves. A 
typical situation is shown in Pig. 3.1. The dotted curve 
is the yield limit parabola of equation 3.77. The solid lines 
are members of the elastic family of equation 3.75» «nd the 
dashed lines are members of the yielding family of equation 
3.73. 

Now suppose the end of the dirt column is rammed 
a number of times, each time --j-xx being raised to a value 
T and then returning t zero. The stress-strain curve 
followed by the phenomenon zig-zags up and down in Pig. 3.2, 
tending toward the right-hand side of the yield limit 
parabola, and approaching the elastic line through 
P(0,/«//*'), where the yield limit parabola meets the -4 
axis. This model therefore exhibits the familiar behavior 
of soil when tamped to a more solid condition. 

3.11  A 0KE-DIMEN3I0HAL WAVE PROBLEM 

We may apply the theory of ^3.10 to study the one- 
dimensional transmission through a semi-infinite dirt 
column of a wave due to the application at the end of the 
column of a force T per unit area for an interval of time 
t0, the force being then removed, Por simplicity we will 
employ the linear theory obtained by setting X7 — 0, y^'^O 
in ^.lO and ^ « /o0 in equation 3.20, This implies 
that the entire stress-strain history of the material re- 
mains near the lower left-hand corner of the parabolic 
yielding region in Pig. 3,1, 

The external forces are inertial: Px = -u tt» 
py = 0, P* = 0 in the coordinate system of ^3.10. The 
origin is taken at the end of the colugm.  3y equation 
3.71 we may approximate 

^ =ux 

By equations 3.20, 3.73, 3.75, 

c2uxx " utt = 0 when uxt > 0' 
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FIG. 3.1    Yield Unit Parabola 

9 6 

Flü. 3.2    Soil Tamping 
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c,2u3uc " utt := 0    when    uxt ^ 0» (3.81) 

c2 = (>>2^)/yO0,     c'2  Ä(3X-»-2^)(UK)/[(3-K)/ol 

(3.82) 

Instead of the stress-8train diagram of Pig, 3.1» 
we now have one like that shown in Pig. 3.3» where the 
straight lines (of slope c'2) parallel to OP are yielding 
curves, and the straight lines (of slope c^) parallel to 
PR are elastic. 

In thia problem the initial compression of the medium 
must correspond to a displacement along the line OP in 
Pig. 3.3» carrying, say, to the point P. The following 
decompression will be along the line PR. During the com- 
pression the yielding regime described by equations 3.73» 
3.79» 3»9l holds, while during the decompression the elas- 
tic regime described by equations 3.75» 3.79» 3.80 holdn. 

Writing u s u(x,t) we may now give boundary condi- 
tions at the end x = 0 of the column. During the interval 
0 <. t <• t0, - T3"1 = T, corresponding to the point P, say, 
in Pig. 3.3. The corresponding strain is given by equa- 
tion 3.73. Por t > t0, - x3"1 =0, corresponding to the 
point R in Fig, 3.3. The corresponding strain is given 
by equation 3.75.  In view of equation 3.79 wa have 

(3.83) 

_  T       T   3-K Uit(0't) = -w - wk? M when * > v 
In the yielding regime, the wave equation 3.8l 

holds, so the initial disturbance is propagated in the 
positive x-direction with a velocity c1.  In fact, u = 
funCx-c't),  By the first of equation 3.83, 

in the yielding regime.  The yielding regime can be taken 
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STRAIN,-! 

FIG. 3.3   Stress-Strain DUgrta 
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as holding until th« decompresslonal wave arrives. This 
begins at tine t = t0 at x = x0 and propagates in the 
positive x-direction with velocity c. It overtakes the 
compressional wave at time t = t^/Cc-c') at x = t0cc'/(c-c

1), 

Since equation 3.814- is linear in x and t, it suggest 
that the elastic regime might be described interns of 
another linear function. This, in fact, proves to be the 
case« The constants are determined by the second of equa- 
tion 3»33 and the fact that u(x,t) must be continuous at 
x sc(t-tö). We have altogether, 

u(x't) = Ä3rM '"*-*> (3-85) 

when 0 < t ^ tQc/Cc-c1) and pos [c(t-t0)J 4 x ^.c't, and 

»<'•*' = 35^ M [}-&*•* - t1^) - ^ *<>] <3-86) 

when t0 ^ t ^t0c/(c-c') and 0 ^ x < c(t-t0). 

In equation 3.85 and equation 3.86 u ia plotted as 
a function of x and t in Pig. 3.1+. Here 

^ = t0c/(c-c'), x^c«^, (3.87) 

For t > t]^ the material is at rest, maintaining the dis- 
placement profile PRS it had at t =. t^. This profile then 
represents the permanent displacement of the soil due to 
the original impulse. For 0 < t < t^, x > c't, u = 0 
in Pig, 3.4. 

The energy Imparted to the soil by the impressed 
force has spent Itself in the time ti. The deformation 
of the soil due to this excitation does not penetrate be- 
yond x = xx, A permanent deformation of the soil is left 
which is a linear function of the distance from the source, 

3.12  A GRAPHICAL SOLUTION OF A ONE DIMENSIONAL 

Suppose the problem of $ 3,11 ia  extended in the 
sense that at the end x = 0 of the column a variable force 
T(t) per unit area is applied. By plotting - Txx in three 
dimensions against x and t, a graphical representation of the 
stress may be made. The curve -txx ^TCt) is plotted in 
the (-T3tXft) plane as in Pig. 3.5. Where this curve has 
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FI6. 3.5   Stress Diagran 
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a positive slop«, the stress is increasing and the  yielding 
regime applies inside the yield limit parabola. When this 
curve has a negative slope the elastic regime applies. 

When the maxima of T(t) are fairly low the segments 
of the stress-strain curve corresponding to - T3^ -T(t) 
may be approximated by straight lines with appropriately 
chosen average slopes. The slopes of successive elastic 
or plastic stress-strain curves in this diagram may differ 
in different parts of the plastic region. 

Impulses will be propagated through the medium with 
the velocities indicated by the square roots of the slopes 
in Pig, 3*6• Let A,B,G be maximum, minimum, maximum, 
respectively on the T(t) curve in Pig, 3.5. Impulses during 
the compression regime OA on T(t) will propagate with a 
velocity equal to the square root of the slope OA in Pig. 
3,6, and will generate a ruled surface OAE in Pig, 3.5. 
Impulses during the decompression regime AB propagate with 
the higher velocity equal to the square root of the slope 
of AB in Pig. 3.6, These also generate a ruled surface ABE 
in Pig. 3.5» which intersects  the first ruled surface 
OAE in the line A£. Impulses from the compression regime 
EC and from the decompression regime CD in Pig, 3.5 pro- 
pagate with velocities similarly obtained from BC and CD 
in Pig, 3.6, and generate similar ruled surfaces BCPG or 
HJK and CMC, which intersect along a line CGK. In this 
second case, however, there is a dlffercmce.  The parti- 
cular curve T(t) chosen for the diagram was such that part 
of the original compression was unneutralized by the suc- 
ceeding decompression. This reinforced the secud com- 
pression, resulting in the superposition region PGJH which 
is not a ruled surface. 

The horizontal surface BLP is interesting and is a 
result of the discontinuity in slope between AB and BG 
in Pig. 3.6. 
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FIS 3.6 Stress-Strain Curve 
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CHAPTER 4 

m  OPERATIONAL SOLUTION FOR DISPLACEMENTS W 

AN ELASTIC HALF-SPACE 

4.1 INTRODUCTION 

In this chapter we shall develop general solutions for 
the vibratory motions of an elastic half-space with given 
boundary conditions in the form of complex inversion integrals 
of the Laplace transform. 

The solution will be developed in such a manner that any 
type of pressure distribution may be given on the surface of 
a small sphere below the boundary surface of the elastic 
half-space. In the past, many considerations have been made 
for a continuous harmonic point source in the half-space where- 
in final study is made of the complicated integrals that brise 
in order to determine the various types of waves propagated 
by reflection back into the half-space as well as along the 
surface. In order that these procedures be of any value in 
the study of explosive disturbances in such a medium, the 
solutions due to a harmonic source would have to be rormed 
into a pulse by means of Fourier procedures. Due to the 
complicated nature of the solution in the form of definite 
integrals, this is seldom done. 

Using the solutions developed in this chapter, one can 
consider the effects in the half-space and in the surface 
layer of a unit pulse function applied to the source below 
the surface, or any other pressure-time function as applied 
to the interior surface of the spherical cavity. 

Professor E. Pinney, at the University of California, 
has considered the same problem from another point of view. 
His paper is soon to be published with a considerable amount 
of numerical work which has been done by a computing project. 

One should point out that in order to solve the boun- 
dary value problem exactly where the spherical source below 
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the boundary surface has a finite radius, one mast consider 
the tertiary reflections from the spherical source. HoweTer, 
we shall assume that if the spherical source is sufficiently 
small we may neglect the tertiary reflections as being less 
dominant features on the Instmment records compared to the 
effect of the primary and secondary wares when measurements 
are being considered fairly close in to the source» 

Specifically, we consider the exact solution for any 
pressure distribution on a small spherical surface in an in- 
finite medium and show how generally this may be used to 
solre exactly the problem in the half-space. 

It is well known that if an elastic body is suddenly 
loaded the body takes up a mode of Vibration about the posi- 
tion of static displacement which the body would assume if 
the load had been applied slowly« Therefore, if we hare 
chosen a unit pulse in the elastic half-space, we know the 
displacements in the medium oscillate about the position of 
static equilibrium. Therefore, we could solve the static 
Krt of the problem and know this part of the displacement 

forehand; however, the general solution presented will 
automatically include this term in the integral solution. 

4«2  3TRg33 FUNCTIONS FOR THE ELASTIC EQUATIONS OF MOTION 
IN COMPLEX LAPLACE TRANSFORM INTEGRAL FORM. 

If u, v and w are the rectangular components of dis- 
placement in the x, y, and z directions respectively, then 
the equations Of motion are [9J 

(u,v,w) = ( V^<) 
9x   dj   d* 

\ /uV2^^^ 

(4.1) 

where p a density. 

A.||+a+Ä| (4.2) 

is the so-called dilation, and 
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"■     >f    y 
the Laplacian operator« Let 

u a^^u»] T(t) 

T '(^^•j T(t) U.3) 

w =^ 4wA T(t) 

where    f ~$(xtytt] is a "stress function11,    then by equa- 
tion 4.2 we  find 

A ^f^f^ A')   T(t) (4.4) 

lA&ere 

For each component we have typically 

r^: (ix+u»)T(t) = CX^/^ ^«/ji^) Tit)*/*?Smithy*** u».T{t) 
and if we set A'^O, then we find 

P-£L =   LLtAfilgii^iJ^L^ = .M2 (4.6) 
r ^^ ^x + u

T 

where m is some arbitrary constant. Separating, we hare 

/oT^ + m2? ^0, (4.7) 

■ real or complex, and 

[V*i f*)    u» = 0     tb) 

where 
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^ r:    ,»1       and    **--£ (^«9) TT37r   —   /«   - ^«« 

A particular aolution of   A* s0 t suitabl« for the «yuaoetry 
desired, it 

u'=^     »^ ^^        .^      ^^a^ (4.10) 

«her« Hr -ttix-tJ,*)  is a "stress function11 and equation 4.8 

requires that 

Finally, we aay express each component of displacement as 

« = ( f x + ^ )T(t) 

T - ( #. ^ t  )T(t) (4.12) 

where T(t) satiBfies equation 4.7, #(x,y,z) and "^(»»/»z) 
satisfy equation 4.6 (a) and 4.11 respectirely, with at 
and /3 defined by equation 4.•9.  When we build solutions 
which satisfy prescribed boundary conditions, we must require 
that ufTtw -»0 for s -> oc • If we choose the functional 
form for T(t) as 

T(t)=eat (4.13) 

then the solutions 4.12 can be written In the complex 
Inversion transform as 

2iri /ö-*0 «l L J 

2irl ^^ ^^ 
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Hhtr« iix9ft%tsl  and ^r ix9jt%ts)  *r« eontinaotis dlffer^n- 
tlable functions of s, analytic in tht half-plan« Ha(a)^> 
axproasad in terms of its values along the line >-i4~*> + ±/$ 
for some suitable fixed y   • The functions f ana # 
satisfy 

«here we have introduced 

and (j^- sy^)f=o        (4.15) 

-c = V^     ^s = /^" (4.16) 
?e = velocity of the compressional wave and T. = Telocity 
Of the Shear wave«  Incidentally, since 

> = /" ^ 'c ^) 

and ^A > 0, we conclude 

^ > /T. 
In particular, we find that 

A^-l 
-1 

2iri /a 
c Y-iA 

Since the stresses are 

(4.17) 

(4.1S) 

r   AA.^^ 
»"—^T     lV^(^^7f)    (4. 

rZi= ^^^^^ 

19) 

mi calculate and find 
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which 
Th«a for sea« type of boundary conditions A hare stresses 
tha^fcre prescribed functions of time, we write 

-T, ^L'1 5f(s)| - -i- liM f^^e8* f(s) ds. (4.22) 

The function f(s) will therefore be determined by the bo'in- 
dary conditions on some portion of the elastic medium* Yo 
eoaplete the solution we take linear combinations of the 
fundamental solutions of equation 4.15. The coefficients 
of these linear combinations are determined from the boun- 
dary conditions using equations 4.20 and 4.21. These 
coefficients are replaced in equations 4.20 and 4.21 
and we hare the complete solution* Let us consider in some 
detail the case in spherical coordinates where the essential 
coordinate is radial. 
4.3 BADIAL MOTIQii 

In this section ve shall develop the solution for the 
case of an arbitrary radial pressure on the interior of a 
snail spherical cavity in an infinite elastic medium. In 
particular we shall derive the solution by the method of 
section 4.2 for a unit pulse in the spherical cavity. We 
have basically, 

^ = -1*-^ (4.23) 

with Ü(R) = radial displacement, 
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the strains and the strsssss 

T
e8

=>?l+ 20^) I . 

The equation of notion is 

and if we set 

then R'® satisfies 

Let us set 

Then equation 4,27 gives 

L-1 Fs2 Q - T; ■1[' ■
!- ^91 = 0 ■ dR^J 

or Q(R) satisfies 

If we take the solution 

Q(R) = A-e^'+B-e'^^ 

then we find 
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0(E,t) ^L-^AF^ BF2) (4.31) 

and 
^| = L"1 (AF3 ^ Br4) (4.32) 

whtrt 

1H'v
e»
, 2H"£ R 

In ord«r that w« consider only progressiT« waves, we take 

ü(B,t) = L-1 [B F^j (4.34 ) 

and 

T^     =   ^[O^a^) BF44   ^BFgl  . (4.35) 

If we take the pressure function in the forn 

p(t)   = L"1 [f(s)] (4.36) 

then for Rsa, some initial radius, set 

= 0, for t<0 , 

and so 

-L-^fU)]     -    Lml[{^ + 2/a)BF4(sfa) + ^- BF2(s,a)| 

or 

(X*2,4<)F4(8,a)*i2 F2(sla) 

h«ao«t   finally 
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U(R,t) =L' -f(a) F2U.R) 

{\f$c4fkiBfA)+**r2i*,t) 
t >0 

(4.3Ö) 

= 0 t^ 0 

In detail this solution is 

(4.39) 

= 0 , t^O. 

We see that these are progressire wares out fro« the sphere. 
If we set 

then 

pUHL"1 [po/sj 

Pit) -p0      ,      t >0 

^2 ,      t=0 

= 0        ,      t ^0 . 

Using   this   fons  of   f(s)    in   equation  4.59i   we   find   for  a  unit 
pressure   pulse, 

0,        r^o 

r>o 
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T=t.JÜbÄl,    v=  1        ^    =     ^>> 

(4.42) 

• • « • a i 

• 4 

• > f • •••«•« 

^ ^ (4.43) 

Wt se« that the total displacement consists of three terms. 
one static and two oscillatory« The first decaying as I/R2 

and the second as l/&« I* w assume that a is snail and R 
fairly large, then the dominant oscillatory term is 

.2, 
m,t) -    • PQ i   t"Yc/a^iin   Ic v r T>0       (4.44) 

= 0,  t <.0 • 

^/rrv;      » * 

Ve obserre amplitude oc , pressure, area of cavity, 
l/rigidity of medium, frequency =(TC y^  /2Tra)oc, Telocity 
of wave propagation, l/radlus of cavity, and if > ^^ , 
the damping is high, hence the motion is in the nature of 
a pulse of duration 

At  - 12L 1 f - £-    .l£ ll     LZ\ At" 17!  TC *    f-rr  r • ^5) 

4.4  «LÄSTIG HALF-SPACE. 

From the spherical case, we have for any pressure 
time distribution at S»al the radial displacement 

D(R,t) = I.'1[W2>L'irB^ ( ^/*'e)R)]-        U.V6) 

In cylindrical coordinates, this becomes 
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for the flpharie&l disturbane« located at ts-d with 
Rs\/r*+ (i+dT*.       For a spherical disturbanea loeattd at 
sad, w« hare analogously 

V^ w^^fZÄi (4.40) 

where R» ' l/r24-(i-d)a     and ü»(R,t)    is a solution 
like  equation 4.46. 

If we combine the two solutions, we hare 

^[-fi(W^r(VV = rrx =o (4.49) 

at 1=0, or this aeans that we have zero shear stress froa this 
so» at s =0«    If we fone the cylindrical components of dis- 
placement , we hare 

-1 

and 

u0 = t 

w.  = I"1 

rfc//te)R- 
BB  ^ C-r) 

.B ^Ä (-1-)     . • 

Noting that 

^r TÄ* s%    ~     HT^R 

(4.50) 

(4.51) 

(4.52) 

equation» 4.50 and 4.51 may be written 

B A 

and 
* (f) ^R 

L     x        -J 

(4.53) 

(4.54) 

From iatson'a Beseel Functions [l^  using p.416, 13.^7 
equation (2) and p. 80, 3.71 equation (13), takingi/=o, 
yVj^, a = {z+d), b»r and z = e/vc, we hare 
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2e-(1^   ioLV)*7>W-° 
(4.55) 

iÄ«r« »L a y^"1* 'Xrg1  • This inteipral is clearly 
uniformly conTergent. By differentiating under the 
integral sign, und using this in equations 4.S3 aod 4.04. we 
have 

u. = L"1 -BJ  ^£        livui\       u-56) 

and (ji+dJyo 

For the image located at s ^4 , we have similarly 

(4.57) 

= L -1 "B  J-   X c J.ho (^ r) d 'Y (4.5Ö) 

and 

•i=L 
-1 

7 Jo^^^^ I       (4.59) 

where we have chosen B to be of the same form for 
equations 4.S8 and 4.59 as in 4.56 and 4.57 in order 
that 4.49 be satisfied.  In cylindrical coordinates, 
we must have zero vertical stress at z «0.  Explicitly, 
this reauirement on the displacements is 

(nr^-l.^) ^  r^y-rt     ^ =0 (4.60) 

Let us take the displacements given by equations 
4.56 through 4,59 and combine with 

112= L"1  [B J0e7Ah)e*i JiC7<-)d7 
(4.61) 

— 66 *• 

CONnDENTIAl 
MCWnj Wmmnm 



reanscT 1.9 

W2 = 

ar« funetioDS i^«r« «t = jY*£x       t /f =/7** iri      and A and C 

cf ^ Which We Shall determine by equation 4. 60 ia order tli«t we 
have sero shaar atrass and zero normal »tress at s =0. Physi- 
cally, this aiocunts to assuming that when the priaary coapres- 
sionai disturbance, originating at the sphere, impinges on 
the surface s =0, it gives rise to waves öf the eoBDrassional 
as well as shear type» low we determine A{j)  and Cly)  so 
that 

U x UQ -»- u^ + U2 W = WA-fW, fW, 

are displacements which oroduce sero shear trx and sero 
vertical stresses at s =0. Having dene this, we obtain the 
formulae valid for \*\ < d 

tr,,.t)^[Blf£lf'^3i (7 »•) d 7 
(4-62) 

- o 

t > o 

and t^ o 

wC r,«^)-!"1  FBH'H/ (VM^)    /^-^ 

(4.63) 

JAyietj 

= o 
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F(7)-   (A7^   ^j-V^/a-p^ (4.64) 

fl^W-1?^   ^)^^^7
4, (4.65) 

and 

W« hart assiuMd her« that the initial function ff») is so 
ehosan as to rtprasent SOBS iapulsiTt type of pressure on the 
spherical surface. The square roots are taken positire when y 
is large and positITS. We can show by differentiation that ' 
these aisplaceaents are derivable from the stress functions 

- f^il f«2?^«^*)  tf*^ (4.66) 

and F^ ^     (4.66) 

T - f* . /, A il\    P*--*-* (4.67) 

Iquatione 4.«62 and 4.63 give the exact solution for the 
displaeeMents in an elastic half-space due to  the application 
of an arbitrary radial pressure-tike pulse on the surface of 
a small spherical carity of radius a imbedded in the half- 
space a distance d from the surface. Previously, solutions 
hare been given for a unit pulse in the elastic half-space 
considered as the instantaneous injection of a small volume 
in the medium. However, using this solution to build an 
arbitrary shaped pulse would require further integration 
procedures. With thefbra* given here an arbitrary type pulse 
can be initialiv given on the surface and is expressed in the 
operation IT-'-LM J 1 •    SP«C'" 
surface displacements, placing *=0, 
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= 0 t?o 

=.0 (4.60) 
and 

'' T8 if h^ ^) (3&X- ^ ^S 69) 

These «ay bt written wivh only ^0C7
r) appearing as 

md > e<0 

•(r'o't,=L"'Hr(^ ^ (^)^.^.JI t. V    /      ()J '  (4.71) 
= o 

,  t-co 

In these expressions 

(4.72) 

8 
which has branch points at 7» =• i V^c • 7» = ^ '/^ /and a 
pole 7* ^ (-8VV)(1-0Ö766) for X =^ . La»b has shown for 

G(M):.(2M2-k2)2-4VK? .\/«2-h2 . a2- 

that G(a) is a sulic in «2/k2 and if h and k are real then 
we hare one essential real root and two extraneous coaplex 
conjugates. These last two roots make no contribution. If 
we write 

G(iM) ^(2M2+k2)2 - 4/^"? • N/MW . M2 

then for the case on hand, we identify kss/Te> h ~s/Tet 
iM~ j   and F(^)=G(iM),  We have therefore to consider ths 
evaluation of the integrals around a suitably chosen coa- 
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tour •neloting tb« thr«« slngularitits. From this integra- 
tion with respect to 7 , we obtain functions of s *u(Lr only - 
when we are at the surface 1 = 0. Then by applying L"1^*--- /J 
we introduce whatever type cf pulse we would consider« Evalua- 
tion of these integral» yst reaalns and this is to be done 
at soae future time* 
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CHAPTER $ 

A CLASS OP CKHTRAL FORCB MODELS II STATISTICAL MECHASICS 

5.1  IHTROPgCTIO» 

Th« object of this chapter Is to study carefully the 
particular class of Models in statistical mechanics described 
in § 5*2 with a ▼lew to deriving the equations of the aass- 
motion of the particles of the system considered as a con- 
tinuous medium. The resulting equations constitute a sort 
of theory of hydrodynamics corresponding to the given model. 

Since a finite system of particles is not a "conttnu- 
our medium11 some way must be found to pass from the discrete 
to the continuous. The method of this chapter is to con- 
sider an infinite sequence of particle distributions in which 
the number N of particles becomes infinite. Of course as 
N is varied, the laws of force acting between the particles 
must be adjusted in order to preserve the important character« 
istics of the system; this is done by choosing the potential 
f«(r) (r =distance) of the N-th force law to satisfy 

B^ #RCr) = K i(rAN) 

where K is a constant having the dimensions of the square of 
velocity and 

3 
M = Hai ,  m = D o"  , 

M being the total mass, m» the mass of a single particle, 

D a constant having the dimensions of a density, cr» a 

scsle length, and §( z0) is a fixed function, K,M,D, and 
f being Independent of N, 

The particle distributions are handlea by considering 
the Pourier-Stleltjes transforms of the distributions of 
mass, momentum, and energy which transforms have desirable 
continuity and differentiability properties in the trana- 
formed y-space.  Some very interesting theorems concerning 
the existence of the limits (as fi —» oo) of these transforms 
which vary continuously with time also t\re proved In $5,k* 
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Th« r«aMiiQd«r of the ctiÄpter is devoted to the determina- 
tion of the equttlons setisfied by the limiting distributions. 
These ere seen to be the Fourier trensfoms of the desired 
equations which are as follows: 

n* *vr v?* * p      =0t      a= 1,2,3 
t     xp   xu 

-a      -1, a  —a . ^ ♦ u  txü + r  (o^pu^) = o 

in which a repeated Greek index in a tern indicates a summa- 
tion of all the terms obtained by letting the index run 
fro« 1 to 3 (see also § 2.2; we use this summation con- 
vention for Greek indices throughout this chapter), f3  is 
the density, u1«^. and u3 are the components of mass-velo- 
eity. £ is the internal enerRy per unit mass, p is the 
pressure, q^,^, and q-^ are the components of the heat flux 
vector, all being functions of the time t and the rectangular 
coordinates x^tx^,x3. The following relations also define 

p and qG in terms of the other functions  p, ü^, and £ 
and the constant K and the function f entering into the 
force laws of the model: 

p ={ f>/2)  k[£-ß(f )]/3 ♦ KrC(e/K)/DJ 

qa=(pl[iV2)|5 [£-ß( (ö)] /2 + K^o A( £ A)/D + K ^ C( £/K)/D 

-2p/p -2£J 

where A(s),   C(s),  and &if)  are functions  determi.ied by 
the force law and 

ACa)  = l^w J   w2 |(w)   exp [-3s ffw)/?] dw, 

C(s)  =  (W3) j   -w3 $'(w)   exp   [-3s §(w)/2l  dw; 

we have not determined  the  explicit  form of the function 
ßCl0)  but believe  that  it  is  given,   at  least for convex 
functions    <|  »  by 
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where P Is the numerical density of the densest peeking of 
spheres, i.e., 

P = ^2 [3 Arc cosd/»-*] , 3PAir = .186128. 

We have also determined the form of the density function 
for the distribution of coordinates and velocities as follows: 

(t;x,u) = p(t;x) • [B( £ , f)/*]   exP [-B( £ » f ) |ü-«Ct;x)|2J tr 

where 

We note that 
00 

B{ £,(<>) = 3A [e-Pifi] . 

J Tr(t;x#u)du =(o(t;x), \ uaTrCt;x,u)du = («ü0 . 

The explicit forms of the functions p, qa, A(s), C(s), 
and v  were obtained bj making a series of assumptions which 
are set forth and underlined at various points in the deri- 
vation. Most of these tssuaptions are in the nature of 
approximations which the writer beli res are valid in the 
limit; unfortunately, at this writing, the writer has not 
investigated them carefully. However, we have made a funda- 
mental assumption, stated as Assumption 5 in §5*5 which is 
closely allied with the famous Ergodic Hypothesis. It is 
probable that this will not be proved by anybody in the 
foreseeable futurej the best that can be hoped for is to 
supply a good deal of heuristic evidence in its support. 

The equations which we have obtained are the standard 
ones for liquids and gases, although the writer believes 
that the explicit determinations of the "equations of state" 
are new. The writer believes that the solid or perhaps 
plastic states correspond to cases where  £ is very close 
to its lower limit ßC^), For notice what happens to the 
function w in such cases; this indicates that the random 
motions of the particles with respect to their mass-velocity 
become very small. This in turn points to a definite break- 
down of assumption 5 on account of the inability of the 
individual particles to change their relative arrangement. 
This is an exceedingly interesting line of investigation 
which we wish to pursue further. We believe also that our 

- 73 - 

CMFIDENTML 



CMFIKNTIM. 
SMrtlf 

PROJECT 1.9 

Assiuiptlon 1 on the nature of the function $ rules out the 
poaalbillty of a liquid state for our model. There are no 
teraa which involve viscosltj in our equations; accordingly. 
If our approximations are valid the viscosity effects arise 
from the finite size of the particles so their determination 
will require a further investigation of the approximations. 
Some of these involve the neglect of terms of the order of 

Ofl and ar§ which might be found without too much trouble: 

howeverr sc many of them involve terms of the order of O-JJ 

that it Is probably hopeless (and also unnecessary) to carry 
an expansion in terms of  crH to terms beyond the second 
power. 

We have already alluded to the summation convention 
with respect to repeated Greek indices which we shall employ 
throughout this chapter. We shall make extensive use of 
superscripts and subscripts» and tae superscripts will be 
located in the places usually occupied by exponents» Super- 
scripts will sometimes denote exponents and such cases will 

usually be clear from the context, as in (B/np/S^ etc., and 
in connection with the exponential function which we write 
alternatively as 

9Z    or exp z 

the latter being used if z is some complicated expression. 
We shall also use double subscripts or superscripts such a« 
K  , etc.; a conma is to be understood between the subscripts 

or superscripts and will be inserted if either p or q is 
complicated. 

We shall frequently use single letters, possibly with 
subscripts, to denote vectors, the components of a vector 
(in 3 space) will be designated by superscripts; thus x9 
denotes the a-th component of the J-th vector. The inner 
product of two vectors y and x will be denoted by 

y • x ^yöx0 

and the length of a vector w by | w j , We shall write 

f(x1,...,xN)  for 
f(xi,Xi,Xi'*,,,XH1'XN2'XN3 ^ etc* 

We shall use the term cell (in 3-3pace) to denote the 

set of all (x ,x ,x3) (or some other letter) satisfying 
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•a 4xa ^ba ,  o =1,2,3. 

for fixed numbers »a and ba and «ill denote cells by the 
letter R, possibly with subscripts. Cells in 6-spsce ere 
defined similarly. Parts of the boundaries have been left 
off so that cells can be fitted together without counting 
boundary points several times (particles on the ccanon 
boundaries of several cells otherwise would be counted in all 
these cells). 

Multiple integrals will frequently occur and will be 
denoted by a single integral sign except where it is de- 
sired to express a multiple integral as the result of several 
repeated (possibly multiple) integrals. Thus an expression 
such as 

J dx^ j dx2 J h(x1,x2,u1)du1 

will denote the result of integrating h first with respect 
to the variables in u^ (each letter may denote several vari- 
ables) over the domain of integration S3 (which might depend 
on xi^ and xg) holding x^ and xg constant, then Integrating 
that result with respect to xg over S2, and last with respect 
with respect to x^ over ST. 

A function f of several variables, say (t;y) = 
(t»J^$l^$7^) >  «HI be said to satisfy a Lipschits condition 
on a set S if there is a constant L such that 

f(t1jy1)-f(t2;y2)| ^ (t2-t i)2*lvMf 
for any two points (t^y^) and (t2;y2) 00 3, If 3 is a 
cell (or the whole space, etc.) and the partial derivatives 
are continuous and uniformly bounded on 3, then f satisfies 
such a condition but the converse is not necessarily true. 

5.2  PARTICLE DISTRIBUTIONS 

The models which we consider in this chapter consist 
of N Identical particles, each of mass m, any two of which 
repel one another with a force 

-m2 f'(r) 

(If f(r) > 0 the particles attract one another). Let 
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HCXL-'-.XJJ)^! ZI  S>(rJk), rjk =|^-xk|.($.X) 

ftMn th« oquations of motion of the system are 

iixja = -mSH/^Xj0 f a = 1.2#3,  j = l,'-«,K%   (5.2) 

or 

x* = u^ and üj0 = - >*/*** , (5,3) 

where dots denote differentiation with respect to time. 
We may think of these equations as determining the motion 
of a single particle of mass 

M ~ Km 

in the 6N-dimenslonal space of the vectors x^f*««(Xj| and 
u^,***,!^« This space is called the phase space and the 
particle is called the phase particle. 

Prom equations 5.3, it follows that all the quantities 

I<i |Laa ^aßßa 
■   ZI   u«  f m   21 (XJ -tu*   ), m   H (xj uj  -x1 u1  ) (5.1+) 

J«l    J j=l    J " j=l    J    J       J    J 

N 2 
|   Zllujl     + mH (5.5) 

are constant in time along each trajectory of e phase parti- 
cle. The first and third quantities in equation S»k  give 
the components of the total momentum and angular momentum 
(about the origin) of the system of particles and the first 
and second terms in equation 5.5 are the total kinetic and 
potential energies of the system, respectively. The three 
components of angular momentum ire obtained oy setting 
(a,p) - U,3M3.1), «nd (1,2), 

We are Interested in the distributions over the x-space 
of mass and the other quantities mentioned above. These are 
determined by a knowledge of the total mass, momentum, etc., 
of all the particles in each cell R of the x space. The 
total mass in R at a given instant of time is just m times 
the number of particles in R at that Instant and the com- 
ponents of momentum and angular momentum and the kinetic 
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•n«rgy ar« glvsn by the amaa 

ui 
aß      ßa. 

2    J 
uj 

(5.6) 

where the sums are extended over the particles xj which are 
in R at that instant, I*. Is customary to define the potential 
energy of the single j-th particle by 

«2 

T 
N 

z: 
k ^^ (5.7) 

this merely assumes that the potential energy between two 
particles is shared equally between them« It is seen that 
the total potential energy of the system is then just the 
sum of that of all the particles and so we define the poten- 
tial energy of the particles in R as the sum of their separate 
potential energies. 

Obviously these quantities for any fixed cell R vary 
dlscontinuously with tune as particles enter and leave R, 
Moreover, it is obvious that these distributions are not 
integrals over R of continuous functions of x. In order to 
derive equations for the density, mass-velocity (or momen- 
tum-density), and local energy, considered as continuous 
functions of t and x, we must somehow pass from the "dis- 
crete" particle distributions just described to "continuous'* 
distributions in which the mass, momentum, etc., in a cell R 
are triple integrals over R of density, etc., all of which 
are continuous and have continuous first derivatives with 
respect to t and the xa. 

This is frequently done by considering a continuous 
family of particle-systems, in other words a continuous 
family of phase particles, and then introducing a weighted 
average in the phase-space over this set of phase particles. 
This introduces such a degree of arbitrariness into the 
situation that it is difficult to draw exclusions of physical 
significance. We shall study particle distributions by means 
of their Pourier-Stieltjes transforms which turn out to have 
desirable continuity and differentiability properties. Our 
method of passing from the discrete to the continuous consists 
in considering sequences of particle distributions In which 
the number N of particles becomes infinite, A very general 
theorem concerning the existence of limiting distributions 
is proved In $5.4. We then present a heuristic argument, 
based on certain assumptions which are set forth in the course 
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of the mrguaent, which leads to the for® of the equations 
satisfied by the limiting distributions. 

In Statistical Mechanics, it is frequently desirable 
to consider the distributions of the quantities mentioned 
above in the 6 dimensional (x,u) space. These are defined 
by equatioa» 5.6 and 5.7 where the sums extend over all j 
for «blch (x4tUj) it in the cell H in the {x,u) space; in 
other words for all J for which we have simultaneously xj 
in R^ and Uj in 1*2, H^ and l^ being the projections of R 

on the x and u space, respectively. If we denote the total 
mass In such cells R by TfCR), then IT is called the simul- 
taneous distribution of coordinates and velocities. The 
distributions in the (x,u) space of momentum, angular momen- 
tum, and kinetic energy can be expressed formally in terms 
of the distribution TT by means of the Stieltjes Integrals 

JuÄdlT,  ( (xauß-xßuG)dTr, and |[ |u|2d¥ ; 

the potential energy cannot be so expressed. In case TT 
were a "continuous distribution,,, i.e. if there were a con- 
tinuous function tr(t;x,u) such that 

1T(R) = J  ir(t;x,u)dxdu 

all the other distributions would be continuous, reducing to 

) u^Ctjx^dxdu, \ (xauß-xßua)tT(t;x,u)dxdu, and 
R JR 

| \   [u| ffCt;x,u)dxdu, 

respectively. The distribution TT is therefore also of 
considerable interest, 

^.3  SEQUENCES OP PARTICLE DISTRIBUTIONS! A THEOREM ON 
gaMikm """™—~ ~ " ' - 

We wish now to consider sequences of particle distri- 
butions in which N is allowed to vary and we shall wish to al- 
low N (which is very large anyway) to tend to infinity.  In 
order for there to be limiting distributions of a reasonable 
sort, we shall assume that the total mass, tnomentuu components, 
and energy remain constant. Thus we must attach a subscript 
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N to a and   #   and must have 

Mnjj = M (5.3) 

Independently of N.     It  is convenient to  Introduce a distance 
acale factor    a   having the dimensions of a length defined by 

MJJ  = D <rN (5.9) 

where D has t-he dimensions of density. Since »e are Inter- 
ested In systems In which the potential energy Is Important 
(dense gases, liquids, and solids), we need to choose the 
form of  #H 80 that the potential energy term tends to a 
limit as N —» oo . We choose | so that 

mjj §H(r) = Kl(r/<rN) 

where K must have the dimensions of the square of velocity 
and f Is a fixed function Independent of N, 

The equations of motion then become 

i^u^ and u^ -n o-1^ §.(rJkAN)(x^)/rJk.    (5.10) 

The components of total momentum and th« total energy become 

N   a        .  N 

Fl J        ^ jTl 

2   N 
(5.11) 

M'l ^ UJ and M*^ ^ IUJI +K 4 ^^/-N) 

and these remain constant with time. We note here the pre- 

sence of the factor o-^1 in the expression for u,a . Prom 

equations 5.8 and 5.9 *« s«® that or« —* C as N __^ oo 

This suggests that the u-components of the motion of the 
phase particle vary more and more rapidly as N -—> oo ,  It 

also raised the question as to what quantities remain bounded 
and what quantities have bounded time derivatives as N —> oo. 
In this connection we first prove the following theorMi: 

Theorem 5.1  Suppose  |( p) is continuous and differentl' 
able for all p > 0 with 
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f ( ^ )   ^ 0    and     fif)^0    If    /o  > 0, (5.12) 

and suppose there  la  a number n  > 0 such that 

0 4 - p fM e) 4 n f( ^)    for    ^ > 0. (5.13) 

Suppoae a particle distribution has total energy S and sup- 
pose at some instant ~0$  we have 

» .  .2 
= C <• 0° . •^h 

Then,  for all times we have 

*'i  Z1|XJ|    ^ c*2   ^CE)       It-tQJ-Mi'E • |t-t0| (5.il*) 

where 

n* = the larger of 2 and n, (5.15) 

Proof,  If we let f(t) denote the left side of equa- 
tion 5,ill-» then 

N 
f'(t) = 2M. 1 Z  (M'^i) 

W j=l  J  J 

N    -> M   a. a 

using the equations of motion 5.10, Prom the equations 
of motion, we obtain 

5.  a.a      -1 
2M • ^ Z   »jUj = 2MK <r; .1 Z     ^ " f (r jk/ .„)' Uj-x^/r jk 

Noting that the intercnange of J and k in this double sum 
changes the sign of the term in brackets, we may add a dup- 
licate of this sum with J and k Interchanged and divide the 
result by 2 obtaining 
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a a 1      ^     a 

2M. -     Z   XVL 
«I # _ 

M 

■ i   Z 

Using «qumtlons 5.12,  5.13»  *n<i 5.15. w« sae that 

0  4f"(t)   ±k**'W       ^-       iull     •► 2n«IK. 55-      71      tdv/orj 

4 2n«E, 

for all t.    By th« Schwartz    Inaquality 

f'(t0) = 2M« 
N 

r     L   (x .u ) 
H     j=i     J   J 

4   2 -1 2 

JIJ 
^Zlu/l 

J 

i 23^2CCB)*. 

Th« result follows. 

From this result. It follows that all th© "sacoad momenta* 
of the distribution -^ of coordinates and velocities, such as 

a ß a ß 1^-ap       lvap l"ap 
M. f  ZL  x. x  ,  M- n  Z,  x.u ,  and M- -  Z. u.u. 

j=1  J  J       l, J-l  J ^ N j=l J J 

remain bounded on any finite time interval. 

We remark that any function f(p) of the form 
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Üft) =A^"n  , n >0 

satlsflas the conditions of this theorem. Many other func- 
tions do as well. No doubt one can obtain a boundedness 
theorem for a much more general class of functions J In- 
cluding some which change sign but this question requires 
further study. 

5.^  222 P0gRIBR"3TIELTJS3 TRANSFORMS; LIMIT THEOREMS 

In this section, we Introduce the Pourler-Stleltjes 
transforms of the distributions of mass, momentum, and total 
energy over the x-space. These are the complex-valued func- 
tion» of t and y defined by 

N 
yMtjy)=M. | Z   «xp [Kyxj) (1 = -1) 

t^-Ujy) 
i N r       n 

= M. ^ Z   ua.exp [i(yXj)J . a =1,2,3. 
v 

(5.16) 

f (t;y) =M. ^p 

N 

z 
j=l 

N 
u ♦ K z ^r,y<r„) 

k=l jk'"N* 
exp Kyx )1 

J j 

The Pourler-Stleltjes  transform of the  distribution TT  of 
coordinates and  velocities  is defined by 

, N r*** 

flp(tjy;v)-M»^   Z exp    K/'x,  v.u.)  =Jexp[: i{y»x v»u) dTTCx.   ) 

(5.17) 

We notice  that  the partial derivatives  of   <f are continuous 
and given by 

<$a   -IM»^   Zx    exp I Kyx  + vu.) 

fTo   =i»,H    ^«j «xp L1^^« + v,uj)j 
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V/ = = -M-i   Ex^ .xp  [Ky.Xj^.Uj) (5.18) 

Vv^-Hf Z^j"p [^^«r^^ 

^aT(J = -«•*   ^ U°UJ »^  C1(y-XJ * T,Uji 

Prom these formulas, we see also that 
l-HX, 

<*>( 
t;y.O) =yt(t;y) , 9a(t;y,0)=lY  (t;y). a^.2,3 

We note that the functions    ^,---, r5    ^ $ifferentlable; 
with respect to t as follows: 

Yl(t;y)=lyay1','a(t;y) 
t 

Y^a(t;y)=MiyßN"1    Z Vj exP  [1(y,xj^ 

H        r        -i J-   r n a^ 
♦  (lyß/2N)Z   exp [^y-^J ^BLll-^-^J^k 

J=:1 k/j (5.1 

n   aß 

(5.19) 

r5
t(t;y) (iya/N)   |:   u%    exp[l(y.x ) 

♦ (ly^/2H) i   u^ exp^Cyx^]  ^ E[iy(V3Ej)J > 

where 

e^-CM/a) lj 

2 N " 

k«l J*    w 

- 83- 

CMFIDDITUL 



i. 
PROJECT 1,9 i 

1 

-(r Jk/crN)  f (xy^) • (x^-xj) (^-^)/rjk (5.20) 

S(f| =«*     [axp z - l]  if «?«0, EC0)=1. 

W« note that r   enters Into the derivatives of the 
In equations 5,19 *$& 5*20 only inside   i or in the comblAa- 
tlon 

- f> $'i f>) with f =rjk/<r1| . 

Suppose now that # satisfies the conditions in equations 
5*12 and 5*13 *a<i suppose we have any sequence of particle 
distributions in which H-* «» , the total energies % remain 
bounded as ^oes the quantity on tue left side of equation 
5#11| et soae instant of time, all the bounds being indepen- 
dent of S# Then, since | exp (16)1 =1 for all real e, it  . 
follows from theorem 5.1 and equations 5.19 «nd 5.?0 that fjj 
to fj and their first derivatives with respect to t and the 
y0 are uniformly bounded independently of M for all y and all 
t on any finite interval. Hence we have the following theorem 
as an Immediate consequence of Ascoli's theorem; 

Theorem 5.2  Suppose we are given a sequence of particle 
distributions of the type described above, men there is an 
Infinite subsequence of the p'iven sequence of N such that the 
functions ft.      tend uniformly on any bounded part of (t.y) 
space to limiting functions  y>-, y -I,...,!*, each of which 
satisfies a uniform Lipschitz condition on any bounded part 
01 tne (t,y) space, Tne function y« is continuously dirreren- 
tiable with respect to time and satisfies the first equation 
in Sul9. 

The derivative of ^i  Involves third moments and strange 
cross momenti which we have not proved to be bounded in time. 
However if the energy distributions tend to zero uniformly at 
infinity and uniformly on any finite time interval (something 
which seems very likely if it holds at one instant), then the 
functions %r^'  are equi-continuous over the y-space anyway. 
Most probably there are sequences of particle distributions 
in which the required additional moments are bounded in time 
which would allow us to include y5 in the theorem above. 
The second derivatives of the   Y^ (> =2,. ••,5) are seen 
to involve the factor cr "i which suggests that the first 
derivatives of the f^ ' , though bounded, oscilltte more 
and more rapidly with respect to time as N increases. Thus 
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theorem 5*2 is iiit«restliig in that it shows that for any tiiM 
interval, howsvsr smsll, th« tim« averages of the time deriva- 
tivei of the yjf*      tend to limits, nanely the difference 
quotients of the limit functions. 

It is also found that the first time derivative of 
tyitij,?) for  v/0 also contains the factor «r^1  so that 
also varies more and more rapidly as a function of time as N 
incresses. But if we have a sequence of particle distribu- 
tions as above we note (from equations $mlB)  at least that 
the $>N and their partisl derivatives up to the second order 
in the j*9  and vU are uniformly bounded over the (7,v) space 
on any bounded time interval independently of H, Let us con- 
sider the functions 

yt^v) = f   (^(s^v) ds. 

^ 

Then the functions X^, \^a# *nd ^vva  iuad ^le^T  derivatives 
with respect to t, y^, snd v^ are all uniformly bounded on 
any bounded part of (t,7,\r) space. Hence we obtain the fol- 
lowing theorem? 

Theorem 5.3  Suppose we are given a sequence of particle 
distributions as in theorem 3*<?. Then there is a subsequence 
of H such that X||, %▼&; sad Xj^a ftii converge uniformly to 
limiting functions X, xla, and X a ön tnj  finite part of (t,y,v) 
space; the limiting functions satisfy uniform Lipschits condi- 
tions in (t;y,v) on any finite part of (t;y,v) space. 

The Interest of this theorem lies in the observation that 

rt + T .XH(t.r;y.v)T.XK(t;y.v)  __ i j   ^U!yjT) dg< 

t 

i.e. is a time average of Cp , Thus we conclude from the 
theorem that there is a subsequence of H such that the time 
averages over every time Interval however short tend to limits. 
Finally, since the limit functions X, Xyi, end X a *il satisfy 
Lipschlt« conditions, it can be shown that there is a set of 
measure zero of values of t such that if ti is not in this set, 
then Xt(tpy,v) exists for all (y,v) simultaneously and satis- 
fies a Lipschitz condition in (y,v)# Since t does not enter 
into the equations of motion, one would expect that Xt would 
exist and be continuous for all t but this has not been proved. 
In this case, we would call the corresponding distributions of 
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coopdlnat«! &nd velocities gumsi-stable. 

5.5  DETSRMIHATIOII OF TOE LIMITIHG EQUATIONS; THE FDTOAMEN- 
TAL ASSUMPTION.    " ' ' ^ ,_„_ __ ^_.__ 

In Ulis and following sections we wish to determine tbe 
forms of the limiting functions obtained in theorems 5*2 and 
5.3 obtained in the preceding section« 

We now make the following assumptionss 

Asaumotiem 1:  f satisfies the conditions in equations 
5.12 and 5.13. 

Assumption 2: We are ßiven a sequence of particle dis- 
tributions such that their energies E^ and the quantities C„ 
on the left side of equations 5*1^ ftre bounded and indepen- 
dently of I at some instant. 

Aasumption 3:  The particle distributions are such that 
the functions T^f«««f fl are all uniformly bounded, have 
uniformly bounded first derivatives, and converge uniformly 
to functions  ^•••t«fy on each bounded part of (t;y) space 
aj in theorem 5.2. 

The assumptions 2 and 3 above can always be satisfied, 
except possibly that about V* , not yet proved. The next 
assumption reflects our desire to obtain equations governing 
the distributions in the x-space. 

Assumption 4:  The functions ^»•••, f^ have continuous 
first derivatives and are the Pourier-Stieltjes transforms 
of continuous distributions in the x-space the density func- 
tions of which have continuous derivatives. 

For each I in our sequence, let D (t;R) be the distri- 

butlon corresponding to tjj (tjy) and let D (t|R) correspond 

to  V (t;y). Prom the theory of Pourier-Stieltjes transforms 
it follows that the distributions are uniquely determined and 
that the convergence of DJJ (t;R) to DY(t;R) is uniform for all 
cells and for all t on any finite interval. The distributions 
D1 and D»- are those of mass, the D1***«1 and D|j G are those of 
momentom, and IP and DJ? er« those of energy. By assumption 
l|f and equations 5,16, 
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Dl(t»R)=    \ fit;x)dx,    D1+0(t;R) =    f   <o(t,x)ua(t;x)dx, 

•(t;x)  being th« total energy function end uc(t,x)  b^ing 
the components of the mass velocity vector;  also 

Vl^;y)=    J    f,(t;x)exp|l(yx)]dx# 

^^.-y) =  J   ^(t.-x^tjxlexp^y.xjjdx 
— oo 

f5(t;y)=  j     e(t;x)exp l(y.x)  dx 

For each N, choose a finite number ^»•••»Rp, P = Pj, 

of non-overlapping cells which together contain all the 
particles of the distribution D'if. We assume that Pjf ""^ ^ 

and the diameter of each cell —^ 0 as N —» oo but «o slowly 
that 

lim  o^/^fRjj) =0,  lim  DJfUiRj^/^CRj,) ^^(t;x0), 

(5.21) 
1+a     . a 

lim  %  (t;RN)//<(RN) =r ^(f^Q)^! (t;x0); 

5 
lim  DN(t;RN)/^{RN) -  e(t;x0), 

whenever RJJ is any cell selected from the N-th collection, 

so chosen that the cells close down on the point x0# We 

may also assume that the ratio of maximum to minimum dia- 
meter of each cell is 4 some fixed number Q independent 
of N. 

Now, consider the manifolds ^ in the M-th phase 

space consisting of all phase particles «hose corresponding 
distributions coincide with the Dj^ft^R) at time t^ for all 

cells R of the N-th set.  For all of these it is seen that 
the corresponding *f JJ (tj^y) differ very little from those 
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of th« given Du . The derivatives with respect to time 
may differ considerably but those for y from 1 to i^ are 
bounded Independently of N, It Is ilkely that as N —r 0° , 
the proportion of phase particles on such ~^rl^  for which 
the derivatives of the y*  functions fall to be bounded 
tends to zero. Since these  ^Ht are boun^#d Independently 
of N and we have uniform convergence, it follows that every 
phiise particle remains on nearby such manifolds for an 
appreciable length of time, independently of N, On the 
other hand, the factor 9^ in  the equations of motion 5.10 
suggests that the total speed of a phase particle becomes 
large with K, This suggests that the total motion of the 
phase particle is compounded of a rapid motion along a 
manifold "^l^  and a slow motion into neighboring manifolds. 
Since there seem to be no other functions besides Y , •••» f^ 
which vary slowly with time, it would seem that there are 
no ^invariant submanifoldsw of "^JJ so that the projection 
on "^ of the phase particle would come close to every 
point on IUJI in a short time Interval in the manner stated 

In the well-known Ergodlc Theorem, This is reinforced by 
the fact that there are NJ indistinguishable phase parti- 
cles obtained from one another by permuting the indices 
of the particles. The Ergodlc Theorem states in such a 
case that the time average over a sufficiently long time 
interval, which in our case may tend to zero  as N—^ 00 $ 

would be equal to the sp ce average over "JAJJ of any given 
point function on ~^u. We therefore make the following 
fundamental assumption. 

y 
Assumption 5:  The derivatives Y^ (t^iy) are equsl, 

respectively, to the limits as N —> 00  of the averages 
over Tfiy  of the expressions in terms of the %P   and xxf- 
for the derivatives of  f Mt^*y^ given in equations 5.19. 

The averages over y*i^  are, of course, to be taken 
with respect to an appropriate "surface measure" on 7h.M, 

Si 

Since the flow in the phase space defined by the equations 
of motion 5.10 is known to preserve volumes, this measure 
on '^Kß  is ,,invarlant,, as is required In the Ergodlc 
Theorem, 
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$.6   FIRST HEP IN THE AVERAGING £RQ.gg5g. 

AasumptlDn 5 reduces our problem of finding time 
averages to that of finding the space averages of certain 
functions over certain manifolds, a type of problem which 
is rather standard in Statistical Mechanics. Since this 
is so and since the formulas are complicated, we shall not 
carry out this work in all detail. 

The expressions in equations 5.19 *J*e seen to b3 
symmetric in the indices. Since each TU-  has the same 

property we may replace the l/N times each single sum by 
one terra with j = 1 and the sums involving k / j by N-l 
times the single term with k =2, Thus the averages over 

ify are equal to those below •yn    of the expressions for 

iyßexp^yx^]  [MU^ ♦(N-DE^y^x^jj v^/aj 

for    V =1 ♦ a 

iy^xp^Cyx^]  ju^l-^CN.Du^E^y.Cxg.x^v^/al , 

for   y =5 

where E(z) and v^J are defined in equations 5.20, and 

(5.22) 

e, ={M/2) I^I^KCK-l) #(r12/aN)l.      (5.23) 

Since we already know that the equations for Y^ bolds in 
the limit, we have omitted it here. Each of the quantities 
in equations 5.22 and 5.23 is a function of (x^,X2,u^) for 
each fixed y.  In order to average a function f(xx,X2fUx) 
over a manifold ^l , we first find 

>(x1,x2,u1) ^ [^(in)]'/<[>H{x1.x2,u1)l     (5.210 

in which /u is the surface measure and  Trt (xi»3t2»ul^  de" 
notes  the  section of  "M   for which xx^xg,   and u^ have their 
given values.    The average  is  then given by 

J    f^xl»x2'ul^ ^(t1.x2,u1)dx1dx2dui (5.25) 
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Q b«ing the projection of  ^l   on the Cau,^,^,)  spacee 

Por simplicity let us hold I fixed for the aoment end 
denote  Th^ hj  m  and the N-th set of cells by R^,«'*,Rp, 
Pre»! our definition of   TU  »nd of the various distributions, 
we see that   IH   consists of all (XJ,UJ)  in the phase space 
such that 

(i)     there are M      particles x. in R    where 

% ^ ^^1;Rp)/M,    p =1,..%P 

(II) I uj0   = HpHj0  = NDj^Ct^Rpl/M 

(III) Z i«j|     ♦ Vx)   ^^P^  =2TON(tl;Rp)/M'  whera 

Wp(x)=K    Z   ^    *CrJk/<.N), 

E« ^ Di/(VRJ/Di(tvRJ p    N   1  p   N  1  p 

and the sums on j are over those j for which x* is in Rp# 

We wish to reduce the problem of finding the func- 
tion  "Xtx^jXgjU^) of equation S*Zk  to simpler terms. We 
see from the previous paragraph that "»i breaks up into a 
number of symmetrically placed manifolds ^j where J stands 
for a permutation 

h,!»'*'^!,!^ J21'*##'J2,N2J"-JJpil»--*'Jp,Np ' 

and jp i»*#,»jp1|f ••re those j for which xj lies in Rp, 

p -l,*»»fP, All the manifolds obtained by permuting the 
jp t. jaong themselves for each p are Identical so that the 

^  are distinct only when the sets jp ^ a~e not all 
ideniAcal, The number of ways in  which these P sets of 
M^f«»%Hp objects can be selected is well known to be 
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low, suppos« that x^t  it in lip and xg ^8 ^ ^q«    Than 
"Wlj(x^tX2,iix)  1» «apty unlaia J la auch that 1 oeeura la 

the p-th a«t and 2 In th» q-th a«t.    Th« nuoibar of J fop 
which thia  la the caae ia 

^l^^ptl\i...^l    ^ P = q, ^d    Si!..,(^:f|i..^vlj2,.,Bp! 

if p ^ q. 

Henc« if x,   la  In R    and x^ la  In R«,  w© hava 

(^Np.l),(PPUl'X2'Ul)/!iCll"1)   lf P =^ 
^(x1,x2,u1)   = ) (5.27) 

(NpVpqui*x2,ui)/N(lf"1)   if P ^ q' ^•^ 

ilpq(x1,x2,u1) ^[^(^j)]    /< [V'WV] 

for a fixed J for which 1 ia in the p-th aet and 2 la In 
th« q-th, 

5.7        DETERMINATION   OF   THE   FUNCTIONS l\pq 

In thia aectlon, «e sketch briefly the detemlnatlon 
of the functlona "^nq. There are really only two diiitlnet 
cases? p = q and p ^ q* Since the results must com« out 
in terms of the constants H, SL, HL0 f and £_, we may talca 
p = q = 1 in the first caae and p =1, q ~ 2 In the second; 
the reaulta for the general p and q may then be read off. 

In order to avoid complicated notation involving the 
iptk» w,9 introduce a double aubacript notation for th« 
x'a and u's in which Xp^,«»«,Xp B are the x's in R« for 

each p. Since w© wish to exhibit the dependence on xx»x2* 
and U| we aaaume the alternative notationa 
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'1 

^ " ^»Mx-l if p = q = lf and Xg ^ x^ 

If p - 1, q = 2, 

C5.28) 

and shall uaa thas« notations intarchangaably. Our givan 
manifold '^L can than ba dascribad bj 

xp. in Rp for J = l,•••fMp and p = !,•••,?; 

3^KrSl2^ Vx) =-P(2VISI2) =2IPSP# 

C5,29) 

wla»r«s 

P      J.k-i ^Pj-V q-l j=i yfci     ! ^J ^f  n 

qi*p 

(5.30) 
S# = E - in |2/2. 
P    P  ' P1 

Th« darivation of the last aquation makes use of the fact 
that 

*" -   ""     ,2    .-,2 
I   -"P^PI   ' 

this follows  immediately from the first equations. 

Since all we want  is the surface area of   In j    and 
"Wij(XpX2»ui)» we mliiy Introduce new variables v     . de- 

fined by ' 
▼ft    =*ja      - ua. (5.31) 
Pj      PtJ        P 

The equations 5.29 can then easily be solved for w .   , 
2 "k 1 o. P ▼«if ▼£•!. *nd ▼„o in terms of the other v 4 and all the pi» pi»     p2 pfJ 
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X
Q k* ^or •tc^ P» w# obtain 2 soultlons so ^j mnd 
T^jCxpX-jU.) break up into 2 parts of aqual araa on aach 

of which the solutions above are single-valued; we have 

chosen our variables so that XxfX2f <Ln^ ul *r® ABk0z:iS ^® 
independent variables. The element of surface area on ^Äj 

and T7lj(i^fJ^UJJ 
cai> feÄ found by standard foraulas; ona 

can then find the area of "W|J(X^,X2#UJ) by Integrating the 
area element with respect to all the independent variables 
except XpXpt •od u^ and can then find that of ^Ij  by 
integrating that result with respect to (xjjXgfU^), 

More specifically, suppose that 0 is the projection 
of >7lj on the (x^,X2,u^) space and, for each set (x^XgfUp 

in G, suppose G(xpX2,u^) is the projection of ^ijCx^,X2,Ui) 

on the space of the remaining Xp«, Having chosen x^#X2» 
and u^ in Q and a set of remaining Xp« In t}(x^tX2,uil, it 
turns out from the fact that the solutions for v0, and v*. 

« pl    p2 
depend only on the viS of the p-th set that the area element 

is a product of functions of the v_j only and that the 

domains of Integration of the v-j are independent. Thus 
the integration with respect to the v,8 breaks up into a 
product of integrals of the form 

I 
5,V

Xl'X2'Ul'J12iTpJ>dvpJ 

ahere the Sp are ellipsoids whose positions and dimension 

depend on Cx^Xg^,^^ a21ci the fp •r0 «iaple functions of 
the Vpj; here $^2 denotes sll the Xp* except x^ and X2. 
The result is 

(5.32) 

r(3t1,X2,U1) 
g1(x1,X2,u1,x12) • • •gp(x1,X2,u1,x12)dx

,
12, 

where 
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{3llr8)/2 
«1 -^[l-V^x)^ .   l^-u,!  ^(1,-1)1 

1/9 1/9 3(1,-21/2 ..O^-S)^/    r -i 
K1 = 21/2cirir3/2«    1       izn^p    l      / r[3(irr2)/2j 

1/2-1/2 3CV1)/2       ♦ (3V5)/2/   r .1 
P P PP /LPJ 

VpCi)   =:lpU)/21lp  .       p  ^1,---,P, 

tnd    fC«)   1»  th© gaoma function.     Sine» we »re ultimately 
letting I  (»nd hence eech I    by equations 5.21)  —* ^    , 
we replace g,  by Its  very accurate asymptotic formula 

g1 = K1[l.V1Cx)/E*J exp[.a(x)ju1-ü1pj   ,  wh 

.(at) = 3A [E* -V^X)] 

ere 

(5.34) 

We now wish to exhibit the behavior of the  integraj 
in equation 5*32 as a function of Cxxtx2^*    *® ÄS8'aai® first 
that J Is such that x^ and X2 are both on R^,    By referring 
to the definition of Wp(x)   in equation 5.30 «nd of Vp(x) 
In equation 5.33» w® so&y write 

V1Cx) =K #(r12/<r|f)/N1 ♦ V^x) (5.35) 

where V*(x)  contains all the remaining terms.    We write 

[l-V1(x)/&1*j ^^«(r^/orjj)^^*]   .   [l-V^x)^**!,  whe 

E^* ^E* - K Kr^/^-jj)/^ 

re 

(5.36) 

Using the standard asymptotic formula in the preceding 
paragraph, see that we may write 
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r #1   r -       «n(3V8)/2 

• »xp -o(x) l^-^l2    • 

Sine« the first exponential factor does not depend on the 
variables of integration in equation 5«32, we maj take it 
out in front of the integral. In a släilar way, if x, is 

in R^ and ^  is in l^,, we find that we may define V^Cx) 
and V^Cx) properly to obtain 

r      ,        «I r   -    ♦»l^i-^/2 
g1~Kl*xp\.3K${T12/o'1i)/kEl^-   l-V^x)^ 

r    "  - 
• expjja(x) j^-^l 

g2 = V^L*
31 #(ri2/o'H   2] * 1

1"¥2(X)/B2 J 

and the first exponential factors may be taken out in front 
of the integral. 

We wish to exhibit the dependence of /*< pn-Cx^x^u,) 

on u^. We can think of the integral in equation 5*32 as 
equal to an average value of the exponential involving Ui. 
times the integral of the remaining factors. We need to 
discuss this average value. Since we have assumed that 
e-jj is small in comparison with the dimensions of R«, we 
note that the sums 

N 

q 
q^p 

are all small In comparison with 

K
k^ #(Kj"xp,k|/v 

k^j 
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•zetpt for j auch thtt x-« if within « dlttanc« coapmrmblt 

with <rH of th« boundary of R. proTldod that #C f>)  tanda 
to saro aa p—* a» rapidly anough. fhua It would aaam 
that wa wight raplaea tha funetlona Wp(x) In aquation« 
5.30 (and hanca tha eorraapondiag Tp and Yp) by th« first 
suBtf without waking wucb error in tha daalrad avaraga, Wa 
forwallt« thia In th« following aaaowntlons 

Assumption 6-. In oalenlwtiag th« aaywptotlc value aa 

I -^ oo of tha araraga valu« of tha factor «xpj-a(x)•ju^-i^j I 

In tha intagral la aquation 5*32 for >A[Vj(xx»Z2*ul)J * 
it la poaaibla for «aeh H to raplaea tha fwnetiona Vp(z) 

[and V^x) and ^2^x0 **  the f^oetlon« V*{x) obtained by 
owlttlng all term« of th« for» f (|Xp «-«q «I/0"« ) ^or  ^ ^ P 
and alwultanaouflly to chooa« proper lnd«p«nd«nt dowalna of 
integration Q (x^x^u^) for the x .. 

When thia la don« th« integral breaks up Into a 
product of Integrals Ip In which lyt'",lf  are Independent 
of (xjjXptUj) and Ig Is Independent of u^. In the caae 

where x^ and Xg are both In R^. Ip Is also  inaependant of 
(x.jXg)  and have 

I1 = L1exp^3K f (r^/o-j,)/?^ 

(5.37) 
ill [exp -a#(x)luruil2 

• ♦«l(3Nr8)/2 
1-V^x)^ J dxlfl---dx1#N#. 

in which E?* is defined In equation 5#36 and 

¥i(x) = r 
Mx-2 
z 

Hi-2 
z 

J,k=l 

$(|x 

f( 

..r^/ (TJJ)*  f( rlj"X2 /-,) 

X,   M-X Ij *lk 1/ -,). 

«•(x) = 3A   t^,-V*(x) 

-M - 
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To tlaplify this twtthar, wm ma» 

Assumption 7: In coaputlzig *n »simptotic fonml« for 
th« ftT^rftge of th« •xpontntlal factor in thm intagral 1^ of 
•quatlon 5.37, «« m*j replao« VfCx) by th« fimctloa 

11-2 
V?#(x)=    K z        f (Ix^-x^l/cr ),       (5.38) 

slaultaneously enlarging th« domain of integration d^ to 
includ« all »ii» •••»x s1-2^or ,rhLicil 

P being the niniauB of ¥<•    for th« giv«n ▼aluea of   «r» and 

h- 
When this substitution is made, the integral 1^ de- 

pends on (xxfX2) only through the value of Ej** which tend« 
to £ *. To investigate this integral, let /^ ("X) be the 
measure of the manifold 

and let us denote B. by h. Then the integral in I. becomes 

fH  r      p 1     .  (3lf1-8)/2 
Jexp^l^.^^ACb-^)] • (1- >A)  1    /<, (>)d>. 

C5.39) 

The high power of Cl- A/h) occurring in the integrand 
suggest strongly that an asymptotic formula for the average 
of the exponential factor in this integral would be obtained 
by setting > = ß. On the other hand, as 1^^ —^ oo # the 
functions /^..C X ) B^J  ^®nd rapidly to sero for small 

values of \  . What happens awaits a further study of 
these functions /%*. However, in order to obtain a definite 

result we make the assumptions 

- t7- 
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Assumption 8: An Mjaptotic ?»lue for the average 

value of the exponential factor in the Integral in equa- 
tion 5*39 ia obtained by getting  "X^ß. 

If this aaaumption is not made, the average value 
would occur for soae other intenaediate value \    which 
wight depend on u^ as well as on ß and h. In this case 
the average would not be exactly an exponential function 
but would behave somewhat like one and, at any rate would 
depend only on ßt h, and |ui-%|2 • 

Acceptance of this assumption focuses attention on ß. 
Prom the form of yj*(x) (equation $.38), it follows that 

if the sise of R^ is increased and cr^  is simultaneously 
increased so that  cr^/y^CRi) is kept constant and if Ij 
is fixed, then ß 5s unchanged« Also, if the shape of R^ 
is held in bounds as described in the original aelection of 
the Rp and if «Kp ) —» 0 rapidly enough as p-* «> , it 
is practically evident that ß will depend essentially only 
on the combination 

(\sI1
<V><Rl) -M-{H1/N)/m(R1) = I>J(t1;RL)/^(R1)  (5.^0) 

But we have seen in equation 5*21 that 

lim    p.    = lim   D'(t1;R.)/><(R.)   = P(t.;xrt) j-»o<»l!      n+oo iii i       «    i   o 

if the R^ are selected  to close down on the point x0#    Hence 
we wake the assumption: 

Assumption   9:     Asymptotically 

ß  ^ßCf.)  where   ^   -DMt  :R  )/^(R  ). 
1 " i- H      1      1 1 

Using assumptions 6 through 9, we find that if x-,   and 
Xg are both on R^, 

^r,*^,i»x2»ui^ = K,••«Kp-Ip»•»Ip»! 

exp 
iSAD 

CONnDQITIAL 
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«her« 

B((Oi#B*) =:3A[B*-ß(/
0
1i] . 

(5.1^2) 

-ßC^J 1 

Sine« /^iTTtj)  is the integral of z" fajC*!»3^»11!^] » wt 

see thst the function X^ defined in equation 5.27 «ist 
be some constant times the exponential function in equa- 
tion 5.^1» the constant chosen so the integral of  K-j^ 

with respect to (xitx2»ul} 5-8 ^* But til0 fox« of this 
function shows that we may extend the original projection 0 
of "Vtj  on the (x^,X2«u^) space to include all u^ and all 
X} and X2 on R^ (previously x^ and X2 had to remain at some 
positive distance apart •-* 0 as N —* oo and [uj-tl^] had to 
remain leas than some large number —t oo  as I —f o» ) 
without affecting the asymptotic formula for K.» Supposing 

^11 = A exp [-B |u1-tri| 2.3K $ (r^/ <rM)/2K*] 

and the integral of   it1, with respect to (xnjXp.u,)  is 1, 
we obtain AX x    ^    J. 

1 = AJ   dx^^J^ exp[-3K$(r12/<rI)/2112 dxg J  exp[-B1^-^]   d^. 

Since, by i well known formula 

j eoSxp[-B|u1.l1|
2]du1 = (w/B)3/2 

and since the exponential involving    $    is practieal^jr 1 
except when r^ is of the order of     o-j end since   ^f/Ai^i) 
—^ 0 we see that we may write,  asymptotically, 

^ll^xl»x2»ul^ Ä 

An entirely similar argument shows that 

~9t- 
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•xp 

^12^ B( fi'EI)/,rJ        L//(R1)]"1 [/<(R2)]'1 * 

.B1|u1-ü1|2.3Kf(r12/«-I)(B*"1^"X)A|. 

W« »ly t!i#r«for« r#*d off our g«noral results: 

Kpp  =(Bp/w)3/2[^(Rp)]-2.xp -BpjUi-ü/.^fCr^/^)/^ 

(5.43) 

V =(B /w) 3/2 ^(Rp) ,]-K)]-. 
• exp 2  .„ x.        .    . , *-l    »-1. -Bplui-Üpl   -3Kf(r12/cr)(Ep    ^    )A 

5.8   TH1 LIMITING EQUATIONS. 

In this section we apply the results of the preceding 
sections to detemine the quantities  *fj(t;y) and will 

also determine the form of the function <5P(tjy,v) = 
xt(fc»y»v^ of ^5.4. These, in turn, will lead to our 
proposed equations of motion in the (t;x) space and to the 
for« of the limiting distribution of coordinates and velo- 
cities. 

We first determine g?(t;y,v) = xt{t;y,v) which will 
be determined, using the fundamental assumption 5 and the 
symmetry of 7n as the limit of the average over TK   of 

If exp Ky-Xj+v-u^ 

According to  equations 5.-5,   5.27,   and 5.43,   this average 
will be given by the limit of 

J  X(x1,X2,ui)exp  iCy-xj+v.u^)  dxjdxgdu! 

= Z      (y(VN) [/^V] ^j   "P^yx^jdi! • 
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p-1  <l=l "fl 
q»»p 

• JR  .xp^K^X"1^]^' 

. J    «xp [l (▼- u^   (Bj/w)3/2 «xp [-Bp | u1-tl1j 2] ilu1 

wtwrt   p^ was deflnod in oquation 5«^0.    low R^***-** Ip = I, 

and  P   —^   f5^!»*©^  *nd  t*** «quationa 5.30» 3.26*  »ad 5.21J 

11» B*   = e(t1;x0)  =#(t1;xo)/(o  .  |ü(fc1;x0)| 2/2 

as Rp closed down on x0,  «here ^(tix)   is  the «ass Tsloclty 
vector and   £(t;x)v defined by this equation.' ,  is the speci- 
fic internal energy per unit aass.    In the liaitf since the 
exponential involving   f 1J 1 »oat of the time, we obtain 

<?(t;y,v)=]     exp[i(yx1+v.u1)] ^(t;x1)(B/w)3/2- 

• exp[-B|urü(t.x)|2]dx1dtt1    iS.kk) 

where B = B( 6 , f» ) = 3A t -ß( f )] • 

This  is seen to be the Fourier transform of the function 

!T(t;xfu)  =   f(t|x)-(B/ir)3/2 exp ^B|u.u(t|x) |2] (5.1^5) 

which is the  density function for the distribution of 
coordinate» and velocities. 

We may read off the averages of 

Mu^Uj^ exp[i(y.x1)J     and Ife^ | ^ |    expLKy-Xj)] 

-Ml- 
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trvm tb*  r«sult I» »quntlon S^kk *J  «xpiadlng thm  exponÄntiml 
In po*«p» of til« t* »ad carrylag out th« lnt«gr»tion with 
r«sp«et to ui  OP by capryiag tbrou^h the avemglng proceis 
directly; th« l«tt«i» proc«t« •▼Idently give« 
SO© (Oft *"■ 

^[iCyx^l r(t;Xl)dXl([j)B/w)
3/2u^u^xp[-B|u1.ü1fj du1 

= j «rpflCy.^)! fCt;x1)rift(t5X1)iiP(tjx1)+^
a^/2B]dx1 

» Off   !- J ^ 

(5.1^6) 

^  •xp[iCy.x1)1 ^(t;x1)dx1 J  U/w)3^^/oxp [-B|urtt/] d^ 

st   •ip[lCy.x1J] f(t|x1)jtt1|a1| ♦5ü1/
2BJdxl 

«h«re    ^^ !• th« uaual Kronecker delte defined by 

^   = C If o =ß 

" Ä  if a jt ß. 

In order to couplete the deteminetloa of the f±  , 
we tee fro» equation! 5«22 and 5*23 th&t «e need to 
compute alto the trerages of 

MKI-Dtt^ $(r12/cr1|)exp[l(y.x1)] 

(I-DS^yCxg-x^l^ exp^Cyxx)]      (54?) 

We note that, in carrying the averaging process in 
equations for these quantities, we may first carry out the 
Integration« with respect to u^. In the first and third 
quantities in equations 5.47, this results merely in tne 
constant factors fL,^ and up0 which can be taken entirely 
outside the integrals along with  p«; in "he second the 
result of the integration is Just 1. Also the factor 
•xp[lCyxx) is the sane for all terms in the sum. If we 

QMRBENTIAL 
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e respectr 

tlona 5.^7 by Q^, ^p
t end Q^*, we therefore obtain 

p«l JKr 

^ß = I     fpj   •xp[l(yx1)]caß(y.x1)dx1 

^ 

Q3ß= 4 Vp^p^y^l^^y^i^i 

P r 

«=•1 "" R- 

exp[-3K ICr12/<r!j)AB^-3K Kr^/^g)^J dX2 

CGPCT;X1)=   7   (ra/M) ?    KCM-1). 
x q^L        q        JRr 

• «xp^K f(r12/(rs)ABp-3K «(r^/cj)^ J   . 

• E^.U^rj   [-(r^/cr^-^r^/a^-Cx^Cx^^J- 

• dx« 

In order to evtluate these  Integralss, «e set    |  = (x^-z^/ov. 
Then £    x      u 

3 3-1 
dx2   ^  ö-gd^    snd (M-l) fvs = Md-I    )/D (5.^8) 

and the integrations are now extended ovei* new cells R» q 
each obtained from the origins! Hq by first translating It 
through the vector -x and then aagnifying the result in 
the ratio   «r" , Of these new cells, only R1 contains 

I p 
the origin and the others are all far from the origin 
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unless x1 Is within s distsnc« comparable to  r« fro» the 

boundary of H . Hence, if x^ Is confined to the part of 
R at a distance d from the boundary which remains as I —♦ 
o© comparable with the dimensions of Rol we see that all 

the R' go off to infinity and the integrals over them con- 
tribute nothing to the integral in the limit while R' 
expands to include the whole $ -space. Since ISCis}! ^1 
for all real 2 and E(0) =• 1, we see using equation 5.^8 
that the limiting values of -Mx^) and C^Cyjx^ are 

ACx^ = -^E j K#(lg()exp[.3K|( HI )/2E*]df = 

^ITKJ w2 #(w)exp[-3K #(w)/2E*]dw = KA(gjA) Pj/D 

C^Cy.x )= ^ ( 5aß/3)^trj   -w3 #'{w)exp [-3K $(w)/2B*]dw = 

S0^KC{BjA)  f>p/D 

where A(s)  and G(s)  are  dimensionless  functions  of s only 
explicitly defined by these equations  in terms  of a and 
the potential function     $   .    Therefore,   the limiting values 
of the Q's are 

Qx
P(y)   = (K/D) ^     fVAC £/K)exp[i(y.x)]dx 

Q^(y)  = (I/D)  6^ J ^(^Ct £/K)exp[i{y.x)]dx 

^(y)   - (K/D) J0O^2ü>9C(€A)axp[l(y.x)]dx 

Inserting these results  in equstions 5.22 and adding 
in the equation for      ylitiy), we obtain 

a yl+o 
^t;y) ^iy   Y        (t;y) (5.1+9) 

T1r(t;3r)   " iy  J     fsV;«xp[l(y.x)]dx + 
- OP 
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♦ (iyG/2)J   ^[B'^CC £/l)/D]«aqp[l(y.x)]dx 

Y^Ctjy) = Cl//2)J0W   |u|^5/2B^IrÄC£A)/D«fCCf/lQl)] 

>exp [lCy-x)]dx 

Sine«    T #•••» Y    »re  th« Fourier transfoms of 

f>,    fü1,    fü2,    eü3t  and ©(t;x) =  f [eCt;i)*!u|2/2]   , 

w« see that th© equations S«k9  ÄJ'e Just the Fourier trans- 
forms of the equations 

ft* ^ö>xa =0 

(eua). * (eüaüß) « ^ p Ä =o (5.5o) 
^ x»3        x* 

^ [f(^|ü|2/2)]t 

^i -ji_ |^   iul^/SB+l^AC €./K)/MLeC{ £A)/l>j|=0 

where we have defined the pressure p by 

p  =(f/2)[B-1^KfC(6 A)/D]   ^ (r/2)k[6-ßCp]/3*K^(€/f)/D| 

(5.51) 

By using the first equation in 5.50 to simplify the second« 
using the first and second to simplify the third, and 
introducing the heat flux vector qa defined by 

qö = I r^^B-t^AC 6/ f)/T*l!ieCit /f )/D-2fl -pü?   (5.52) 

we obtain the standard equations 

cnvmanuL 
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a       ß a (5.53) 

-1 q* ♦im* = 0 
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OK rSS  APPLICATI08 OP DUBOISIOIAL A1ALISI8 

TO ÜMDERgROÜTO EXPLQ3IQIS 

6,1  lyTRODUCTIOW 

Diasnsional analyslg treftta the g»fi«rftl form of 
equations that daacrlba natural phonoB«na# It aria»« fro« 
an attaatpt to apply th« concepts of geoaetrlcal slailarity, 
ratio and proportion to a physical profelea. In th« follow- 
ing «e are specifically concerned with the application 
of dtaensional analysis, in contrast to disensional reason- 
ing, to the problem of analysing the soToment of earth 
eaves due to underground explosions. 

Ciaensional reasoning is by no means new in this 
field. Model laws derived in this way were apparently 
first proposed by C. i. Lampaon [7] »nd slnee thea aav« been 
used by other Investigators.  However their «ode of derlvatioa 
leaves something to be desired froa an over-all point of vie«. 
It is felt that a more general discussion of the principles of 
dimensional analysis and their application would be of help to 
others faced with similar problems. 

In the following the assumption« underlying th* theory 
of d aenslonal analysis are reviewed and the fundamental 
Pi theorem is stated. The method of computing the unit- 
free relations is explained and application is made to the 
problem of determining the moat general dimensionless 
function forms for underground explosions. From these, 
the model laws used by previous investigators, easily 
follow. 

6.2  THE Pi THEORKM 

The assumptions underlying the theory of dimensional 
analysis have been suamarised by G. Birkhoff  [ll 
The? are; (I) There are certain independent "fundamental 
units" qi  such that for any positive real number 
a^Ci = l»»»n) we can "change units" according to the formu- 
la 

- Iflf- 
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Cla th* following q^ are l«ngtht tlMt and aatat).  XI) 
Thar« ara "darlvadi quantltias** $* Csucb as danalty say) 
whioh ara hoaoganaons in tba sanaa that widar aquation 6.1 
aaoh Qj la miltipliad by a "convarslon factor" givan by 

fba axpo&anta aj^ ara called t^ia "dlaanalons* of Qj, If 
thay ara all saroj, than Qj la callad diaanalonlast. Ill) 
Tba quantity Q^ la datarminad by ^2e**^r through a ralatlon 

Ql ":f(q2#*,Qr) (6'3) 

I?) Equation 6.3 it unit fraa in the sanae of baing pra- 
aarvad by any tranafomation of aquation 6.1. V) Tha 
quantltiat ^•••Qj. involve all n  fundaaental units. 
With thaaa aaamptions the Pi theorem of Vaschy and 
Bucklnghfta nay ba fonmlated as follows. 

Theorea 6.1.  Let the positive variables Qi,,,Qr 
tranafom by aquation 6.2 ander all changes of equation 
6.1 in tha fundaaental units qi***qn • Let a £ n be the 
rank of tha matrix ||*jki defined by equation 6.2. Then 
the assertion that 

gCV^Qp) - 0 (6«V) 

is a unit-free relation, is equivalent to a condition of 
tha form 

<y(Tri... 7rr-|a) =0 (6.5) 

for suitable dima'aionless power products TT,•••TT. _ of x    r—m 
tba q^ 

Tha proof ft  the theorem, including a critical dis- 
cussion of the assumptions can be found in  [l] , 
6.3  SYSTKHATIG DETSRMIMATIQ1I OF TtiS    Tf's 

Tha systematic calculation of a complete set of 
dimanaionlaas producta may proceed as follows. Consider 
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th« "d«rlT«d quantltUs" QiCj = !•••?) which ar« d«rlv«df 

for «jMuiple,  fro« the thr«« "fundaaAnt«! unit»* q^ i««.#  th« 
length    [Li ,  the time    [t]    end the Bess    [l]    •    The 
diaeneione of the quantities 

r «n »12 
^i Li.     M 

Q« can be written at l3 
•13 

[ L**1 Ur2 

(6.6) 

.^3 

In order to obtain a diaensionlesa power product of the Q* 
one may write J 

TT  [LO«O,O]   =   [(L'" ,^ T.13)X1 ....(tTl ^2 t^}Xp 

The exponents x1>*«zH. of the diaenslonless product are x   r 
solutions of the set of homogeneous algebraic equations 

(6.7) 

r z jk^J = 0   (k =1,2,3) (6.8) 

Pron the rank of the matrix *jk and the number of vari- 
ables Q« one obtains the number of dimensionlesa products 
in the complete set. 

Bridgmaa [Z]   has shown that any fundamental system of 
solutions of equation 6.8 furnishes exponents of a complete 
set of dimensiünless products of the Qj's.  There is arbi- 
trariness in the determination of a fundamental aystem of 
solutions ot equation 6.9.  The result can however be made 
unique by specifying that the matrix of the solution shall 
have the following form. 
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1 0 0 ••• 0 0 x,    ,  x.      ••• X, 
l,r-«^l  ltr-aM-2     l,r 

0 10. 0 0 «a^r-^H x2,r-«i-2 ••• *2,: 

0    0    \ 0 0 

0 0 0 ••• 0 1 

(6.9) 

Bach row of the matrix, which incidentally represents a 
particular solution of equation 6.6, is a set f exponents 
la a dlaensionless product of the Q«5 s. The complete set 
of dimansionless products determinea by this psrtiuulsr 
matrix construction has the property that each of the 
variables Qx***^r occur» in only one dimensionless grouping. 
This property lias the advantsge for the experimentalist 
in that it permits him to vary a specific dimensionless 
product «bile he can keep all others constant. This facili- 
tates the study of the importance of a specific dimension- 
less grouping in a physical phenomenon as well as the 
representation of experimental data by graphical means. 

6.1*  APPLICATIOH TO ÜHDgRSROüID K3CPL03I0W3 

The determination of the model laws for underground 
explosions requires a decision as to what variables enter 
into the problem.  If variables are considered which do not 
really affect the phenomenon too many dimensionleos group- 
ings will appear in the final equations.  If essential 
variables are omitted the final equations may not describe 
the phenomenon correctly. The problem as to «hat the 
necessary and appropriate variables are rests basically 
on the following factors. 

Obviously one requires enough knowledge about the 
problem on either theoretical or experimental grounds to 
decide which variables influence the phenomenon. For 
example if the appropriate differential equations are known 
one can Immediately determine the proper variables. Un- 
fortunately a successful theoretical model is unavailable 
at this time. On the other hand the experimentalist has 
supplied us with a number of parameters which appear to 
be of importance in the description of the explosion 
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phtnoBAiion. The»*  ar« liattd later. 

fh« aacond factor to ba conaidarad la that tha choiea 
of varlablaa and tha taat of thalr laportanca la In mMnj 
Inataneaa govarnad bj axpadlancj Callltary, aeonoale, ate). 
If aay variablaa daacrlptlva of tha aoll charactarlatica 
ara choaaa It la vail to kaap In mind that axpariaantal 
chacka aa to thalr laportanca nay vail ba lapoaalbla. 
Choiea of taat altea hava in tha paat baan baaad on othar 
conaldaratlona than appropriate aoll conditions [l2j • 

In the choice of the appropriate parameters we have 
been guided by the experiments of C. 1. Lampson |7] and 
E, B. Doll [4],  The phenomenon of underground eiplosion 
has been experimentally described in terms of oeak values 
of the pressure p [ML""^T" | , the particle acceleration a 
[LT"2]t particle Telocity T [LT"^j and particle displace- 
ment d [L].  fe must restrict ourselves in the following 
to positive values of the peak parameters since by theorem 
6.1, the Qj's are assumed to be positive.  The scaling of 
a complete wave profile is open to question.  The param- 
eters are determined as functions of the distance r [L] 
from the center of the explosion and the time t [T] .  It 
is found that the phenomenon ddpends on the mass of the 
explosive W [ll], a characteristic speed c [LT"^| with 
which a signal of small intensity travels through the 
mediums as well as on the density f*  [ML  ] of the ground 
It has furthermore been found that the decay of say the 
peak quantities depends ultimately on the depth s[L] of 
burial of the explosive below the surface.  Shallow surface 
explosions are commonly coupled with air blast effects. 
The latter despite their short duration are of consider^ 
able importance since they introduce undesirable scale 
effects [4],  An additional parameter is needed to 
describe the effectiveness E[M0L0T0| of the blast pro- 
ducer.  The explosive characteristics have been rated In 
the past with T.ff.T. as a base.  It is open to question 
at this time if the effectiveness E can be successfully 
correlated with the physico-chemical characteristics of 
the explosives. 

In addition to the above ve propoae a parameter vhich 
we feel deacribea in many respects the energy degradation 
in deep underground explosions. Such a parameter appears 
to ua of importance,since it should characterise the maximum 
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•tr«at«8 and strains which might arise in the »sdlun, IT 
for «xtaple a large portion of the explosive energy is 
utilized in creating a cavity or fissures in the soil, the 
residual stresses in the soil may have fallen to such 
saall values that the medium conceivably exhibits elastic 
characteristics. (This of course can also be caused by a 
shallow burial explosion in which an appreciable amount of 
energy spends itself in air blast effects.} On the other 
hand if the medium resists the creation of a cavity the 
residual stresses may remain large enough for the medium to 
exhibit plastic characteristics« An appropriate parameter 
is perhaps the mean work per unit volume Q[]IL~^T~2J which 
is needed to expand the shot hole to a final state of rest. 
It has been found, in an analysis of the cavitation in 
which spheres were fired into clays, that the mean work 
per unit volume was constant over a wide range of striking 
relocities [6].  This seems to indicate that Q represents a 
characteristic soil parameter which is apparently independent 
of the intermediate time variation of the shot hole radius. 
Last it has been assumed by previous investigators that the 
environment of the experiment {i.e. the air and earth) is 
homogeneous.  In the case of air this is a valid assumption 
but for the earth this may not necessarily be the case.  If 
local soil variations exist proper account of these must be 
taken in modeling of experiments [4]. 

* * mm 

The relationships between the dimensionless grouping 
are readily derived from the above considerations. Con- 
sider as a specific example the following functional re- 
lationship. 

f(p,r,8,t,Q,E,W,c,/«) - 0 

The dimensional matrix la 

(6.10) 

(1) (2) (3) ik) (5) (6) (7) (8) (9: 

P r 8 t Q £ w c 1° 

M 1 0 0 0 1 0 1 0 1 

L -1 1 1 0 -1 0 0 1 -3    (6.11) 

T -2 0 0 1 -2 ö 0 -1 0 

-US- 
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Th« rank of tha matrix la thraa and ainea tbara ara aina 
▼ariablaa, tlia niaabap of dlaacalonlaaa produota la aix« 
Tha axponanta of tha varlablaa which fona tha dlaanaioii- 
laaa produsta ara tha aolutlo&a of tha folio«log aat of 
aquatlona: 

xl * x5 * x? * ^ ~ 0 

-x^ -fXg + Xn-x^ + XQ- 3x^ = 0       (6*12) 

"2xl * ^ " 2x5 * x8 = 0 

Solving thaaa aquatlona for x-, x« and x- thara raaulta 

X7 = - * X2 - i X3 - | ^ 

xQ = - axj^ ♦ 3^ - ax^ (6.13) 

x9^-x1 + ix2^Jx3+ix^-x5. 

With 

x1 = Ij Xg = x3 = x^ = x5 ^ x6 = 0 

tha aquaeion« 6«13 yield 

x7=0; x8= -2; x9= -1. 

With 

Xg = 1; x1 = x3 = x^ = x5 = x6 = 0 

thaaa raaulta 

x7= - i; x8= 0; x9= |. 

Continuing this procaaa one can construct tha matrix of 
tha solution which has tha following form 

• 111« 



RtOJBCt 1.9 

(x,) (Xj) (Xj)      (X^)      (Xj)      (X^)      (x7)      (Kg)      (J^) 

^6 

1 0 0 0 0 0          0 -? 

0 
A 

1 0 
1 

0 0 
1% 

o     -1 
V 

0 0 

X 

0 

0 

1 

V 

0 

0      -t 0 

1 

0 0 0 0 1 0         0 -f 
0 0 0 r 0 1          0 0 

-1 

*  (tab) 
* 

-i 

o 

ni« di««!isioal«at products «p« UMIQ 

TT.  -PC«)*2/0"1 

i 

■rr2 =HI"* i0* 

TT, = 8W"* e* 

TT,   = t»* <o¥ c 

TTiL  =B 

(6.15) 

Aooording to theore« 6. xt cn«r« pesultt conatquentXy a 
raUtionshlp of the fom 

♦ (-V • '(f)* • «(f )* •' «(f)* • -^ •B) = 0- (6-l6) 

With 

'(f) *= Xr. '    '(f)* =   X s» (6.17) 

and »itualng th« poiilblllty of solving equation 6.16 for 
the group Cp/|»52) we obtain for the peak pressure 

p =: <o(S )2 f(Xp#, Xt#, t5^* , —^ , B).      (6.18) 

r 

%f •Smilar arguaents one obtains the general functional 
equstittts for the fositive peak values of the particle 
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•ccelorfttlon,  velocity and displacementj 

' =5 h(\.' w *5(f) ' -J?? • B) <6•^0, 

4x ri)* i(Xr#,   X.,.  t8(^.)* . -^    .    B) . (6.21) 

Th« appropriate model laws and acale factors are readily 
determined fro» equations 6.18 through 6.21. 

The dimensionless parameters XR# Xm    ^a^a been used 
In the past to correlate experimental results« These 
parameters are related to X  and X , *>* »ettlng p =s 1 

in the latter expressions. The correlation of experimental 
results for different soils is undoubtedly effected by 
this choice. 

Special forms of the general functional equations 
6.18 through 6.21 for the peak parameter, for example 
polynomial expressions in  X r, have been used in corre- 
lating experimental data for both deep as well as shallow 
underground explosions with considerable success [7], [4]. 
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Tm eo^Lit« set of partiftl differioifclal «quations governing Urn 
of the Mdiun behind th« tphcieally ajinetrieal «hock front he« 
redi»«d bj Kixlcvood and Brinkley to e pair of ordinary differential 

equations. 
One of tl» aoat obvious difficulties in applying the Kirkeood- 

BriiMey nethod to the theory of undergroind explosions t as outlined 
her«, is that the radiation effects in the initial, high-preesure phase 
of the eoqplosion um not taken into account. On the other hand, the 
asthod has the advantage of providing a direct attack on the prohlea 
of uadargrouad explosions, since it presupposes only data liiioh are tae- 
periaenbally aeasurable. However, it ähoidd be pointed out that the 
effort involved in the actual nunrical integration of the two Kirk- 
«ood-Brinkley differential equations is trifling coopared with the 
effort in constructing the table« for the Hugoniot function and Kirk- 
«ood-Brinidey enthalpy 

Before applying Vu aethod to an earth foadJUai, ite application 
to air, as an internediary step, would be ^«irabl». In IM» way, the 
•olutiais octtld be eoapared with results that have been carried out 
by other asthods, and also aerve a« a guide in developing the »ore 
ccnpiasK uniarground case« 
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APfLICATIOI CF THE URCTMP-ÄIHOJEI MSfHD© 
10 THE THBDHI OF WDrnMOOW EXPLQ6IOH5 

i.i ptrapgociioii 

Th« prohltB of pr«iicting th« mqvme* of «wist» in an 
«zplosloii d«pMd8 idtiBfttaly on th« •olAioa of tiw partial diffaraoli- 
al aquationa of hjrdrodyiiaalGa, aubjaet not only to propar initial eon- 
ditlonay bat alao to a atoviqg bottudary oonatralot repraaantad bjr tha 
Httgimiot e^diticms at tha shock front in tha aarth.   k vmtf mriom 
proMaa arlaaa from th» difficulty in mlting an aquation of atata for 
tha aarth aadiua«   On tha basia of a rou^i praaaara-<kfflaitjr emta for 
aarUi and an aaauaptlon on tha anorgy, G^rigga^'haa aatiaatad ttootk 
Taloeitits and peak praaauraa in an uniarground aaqpicMiicm for a ptLana 
•hock.   Unfortunataly, it is dlf£lcult to aatiaata tha affaeta of tha 
approxiaationa flMda, and tha nathod doas not adait of obttmia axtao» 
«ion toMurd graat«r accuracy. 

1.2   Ti£ ^RKlK)OD-£EBflCtfI DlTF^BimL gQUWIOfig 

%a ooapLata set of partial diffarantial aquation« gotarnii^i tha 
flow of tha fladiw bdhdnd tha shock front (of planar, c^Lindrieal9 ar 
apharical ajnattry) haa baan raducad by Elricaood and Brinlcl^r^2^ to a 
pair of ordinary diffarantial aquationa. Thuaa diffmrwatiJl aqaati 
(irtiidi ara axact) are, in the caaa of apharical tyaaatry. 

|   = - y B2   g!    «(p) - I   «p)    . (U) 

&      9 

» « • 
* 

f -^LCP) (lb) 

where R, tha radius of the ahodc front, ia the independadt varieMa. 
Tha dependent ▼ariatO.e p is the otro'presaura at tha »hock front (tha 
preeaur» in excess of the pressure Po of the undiaturbad MKüUB).   Tim 
dependent ▼ariatte D is a quantity euch that a non-raniahing TaLua of 
its gradient lüfjlies an entropy increment of tha aediun due to pasaaga 
of the shoöcj it «ill not be particularised further since it is defined 
by Eqs. (1) as a function of E.   The functions L(p), M(p), lf(p) ara 
defined by , 
(1) See Project 1.9-2, JANGI£ Report Seriea 
(2) S. R. Brinkiey, Jr. and J. G, Kirkwood, Phya. Rar. ]!, 606 (1%7). 
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IBTWCip 
vsmws t.**i 

UP)-^Q hip), iz*) 

0 

K(P) = mm - 2(iiv/>) o, esc) 
2 (UgM 

g.l-Jf.        O) 

Itmm Ü !• th« v«Iocitgr of Urn Aock front, £ im ttm ^   dty of thm 
unHaturbwi nadiiia, /* is tte« d«aaity of tl* «UsturbMl Mdim at ih« 
•hock froat, c la tho «ound f*Locitjl(9pßp)gl  | of th« <iLttttrb«l 
Mdlia at tht *ock front, «id h(p) is tfa« KirkNood-Brlnklsr «ithtlpjr 
dangt (ehuraetozdsod in »or« d«tall la tor).   The q^antltiaa Lip), 
lCp)t M(p) csan ba «Kprassad as tmictlom of tl» owvrprmmmtm p in th» 
distw^td matiixm at th» rtiodc front by virtua of tl» Hi^cxdot rtl*- 
tioos anl tha «qoation of Mat« of tta am&ixm*   fhm qvmtitj'fi i» dafin- 
ad by 

/« "?"p(R,o) u (R,o) 

«bar» tl» redaoad tiaa T it 

ik) 

T'- jlln Ir2 (R,t) p'(R,t) tt«  (R,t)l • [t-to (R)] 
(5) 

t  • to   (R) 

in liiidi r it tbt Eul« ooordinat« of tha particlat itiich aro at tha 
thoek position R at tha Una t «t0(R)f p* is tha ovarpratturo (abow 
Pw) and tt' it tha partiela vaioelty in ths ragLon behind tht tbock 
front.   Note that tha danwinator of the integrand m Eq. (4) it tioply 
the peak value (at the shock front) of tS nuaerator. 

The integrand of |) In £q. (4) involvet quantities (indicated by 
printt) etaluated in the region behind the shock front, and thus]) can- 
not be deterained without a knoaledge of flow conditions behind tl» 
shock.   Tha^irkwood-Brinldey approadoation (as distinct fron the 
Kirkwood-Brinkley equations Ii)|consists in assuaing that this inte- 
grand is a function only of T •   fispllcltly, if t>i int^p-and is taken 
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at t~r , on« bat y * I,   Aa. mpixical "fain» of •li^tljr wiimt agpllo** 
billty lnf~ 1 - «qp (p'/p«)*    Ads approxLaatloa coastitutM a 
ilMlÄTity assoaptloii, nMca aaket ^.i. (1) i«p«ßd onlj an «paatitia« 
eraluatad at the shock front. 

IquaUont (I) contain p and D at daptoäsit wydablwi, with the 
radius R of tht thoek front at IndtpMidkiiii wrlaÄa,   To Sjafe^gr«*« 
thttt tquttic»« for a «ntral atdiia, ont «att «OEpratt tilt t«o ancill- 
ary variaMat ▼ (»1^= ^pacifio Toluat) tod h aa fUnetiooa, T (p) aai 
b(p) ratpactltaly, of p.   Thi» out autt hatas 

(a) Tha fN^yatiim of ttata for tha MMUUM« 
(b) »a Hugoniot ftinetioa for tha atdita, «Moli fSJEM tht 

tpwsifie TOIUM T(P) at tha thoÄ front* 
(e)   UM KirloDod-Biliiklty anthalpgr faneticm h(p)f *&& appaura 

oxpUeiUy in Eq. (2a). 
Tim Hugonlot oondition it ohta&nad f*o« tha eataarwatdon coodltiaaa at 
the Aodk front and la 

H(P,T) = «(p^) - a(p0tT) 4- (v-^ P^ Po   = 0 

—7— 
(6) 

whera a it tht pacific intarml «ntrgy of tha diaturbtd aodiin at tha 
shock froot and aaro auhaeript rafar to tha wdiainrlitd Btdiiau   fe 
fix ▼ ■ TCP) fro« tha Ht^onlot ^nditii», it it nteaaaary to know UM 
tpaeifio intamtl anargf a aa a ffenetioo of praaaart asd ^paaifle wl- 
aat,   Sinca a it a fm^tion of tao indapaadiat ttat»-ooordiiMit«if In 
ganaral, itt tabtalation rtqairaa a tao-argutnt tahLa (ttait it, a book). 
Tha ralation a m a(pyT) MKtuott to an aqoatioD of ttata.   Iota that tht 
Hugoniot condition it Ukaaita aattntial to ^»aaify torn qmys^ty 
[(%p/dfkT1   C***16*1 «PP^rt axpUcitly in G of &!• (3)) at a fbaetloii 
of p.   To tpaeif y tha Kirkaood-Briidd.^r «ithtlpy fimetioa hCp), oonaid- 
tr Pigort 1.   Tha (irrarartihla) shock front mm*» tht initial aUta> 
point (pojVt) of tha atdiua up tha Hugoniot eurva to tha point (?,▼)* 
Aftar tht riiock hat passad, tha atdiia und^rgoat an adiabatie «qaii- 
tion froa tha point (?,▼), ulUaataly raaehing tha iidtitl pratmont 
po  at tht point (pö,vf).   Tht KixiEaood-Bxlnklay aathalpy fane tion 
h(p) it dafLnad at tha enthalpy iacre«aat in going froa tha point 
(pot^o) to the point (p©, ▼f(p/)»   Thit ftemetion can be wittaa at tha 
integral 

« «    « 

« C  9 

h(p)   = Tf(p) 
cp(Po,T) <« (7) 

«hare c« it tht tpeciflc l^at at constant pratture and T it abtolata 
t«f>eraCyre. AltwmatiTely, one can «rite froa Figure 2, 
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«    * 

•    « * • 

« « « 
S «    « 

* « * 

S la tlM «oferopr «ad Sf it lit fiml wwlm aft«r th« adi&baUe 
ft» mmt amvmdmA awUiod of eo^ati^g h(p) rmmim to 

b» d«t«i«iiMdf «ad it amm wrth iMl« to oxplort othtr pos«llbiUUM 

Hw %ä»mßifymmle data to dotoraino tho ttigcmiot lUoetlon and tho 
Kixkmw&JBrisiklmy maXtmlpf fttactioa for aa «urth atdidB can bo obtadatd 

(a) Maamwnta of BzldgMao and othmr«u^ m cmprmtiUIlti»» 
and «qsaDaion oomtticimAm for «arioiis ainarala, «xtandiiig vp 
to a proaaa» raaga of about MP bars and cowing a rtstriet» 
ad raaga of tafwritum 

(b) TIM tfeaory * a Farai &*&* appUad to aatarial uodar high 
eoap-aaaifm (orar about 107 bara). 

fbm ragloB 10* - 10' bara# not cotarad by tin aoureaa of data abova, 
at praatJit ba datandnad ouljr by raaaooafaiLa intarpolatioa«   Hoaawar, 

diaewaiont with Profaaaor P. M. Moraa hava indLcatad acwa 
of aztaaUof tha FaraL-tfwaaa thtoxy doan to thia ranga of 

Tha varioiw mtiwi» of Imadling tha initial eonditioiia on th« 
aoliitioo iaeluda (in ordar of probabla uaafuLmaa): 

(a) fflm-'B aiaUarity aolutionCJ), 
(b) laobarie fpiMra Mhind ahoek front at an initial tiaa. 
(e)   fbiat soarea solution (i.a. not of aLailaritj typa). 

1.3   PIFraaiLTIES I» APPLYIIIS THE MEIHOO 

It reaaina to point out aoot obvioua difficultiat in applying tha 
Ilrkaood-^lflklajr atthod to tha thaory of an undarground axploaion«   ia 
ouUload hcra, th« atthod takaa no aecount of radiation affacta^^ in 
tha initial, high-prat«tra phaaa of tha aaploaion»   At Intamtdiata 
praaawaa, tha posaitdlity of plastic dafojraation and phaaa tranai- 
tiona in tha aarth atdiua caoaaa miaplieationa whota affact is dif- 
ficult to aaaaaa.   At loa praaauraa, tim asthod prasuf^oaaa a siapla 
aad adaquata aquation of stata for an aarth aadiua. 

Bafora tpfßjiisg tht asthod to an aarth aadiua, it aoitM ba daair^» 
abl% pzobabljr, to apply it to air*   In tha eaaa of air, tha nsoaasary 
tahLaa"' ovar auch of tha raquisita rangs ara already availabla. 
Although Shock caleulations for air hava been carried out by other 
asihods, applieation of the lirkwood-ftrinkley aethod to air is of ooo- 
«Ldarabla interest, not only as « check but also as a guide in the acre 
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(3) 

(4) 

(5) 
(6) 

(?} 

F. Birch (Editor), Handbook of Physic«! Qomtmsfca ((kolagie«! Socie- 
ty of Merles, Special F&par Mo« 36). 
J. G. Slater and H. M. Krutter, Pby». R«v. ^2» 559 (1935)| fi. P. 
Feymm, H. Metropolis, mid £. Hsller, H^s. Bsv. 22» ^^ (1949| 
W. M. Elsasser, Science, UJ, 105 (1951)j M. Metropolis and J. E. 
Reits, J, Chaa. Riys. 1& 555 (1951). 
0. I. Taylor, Prnc. Boy. Soc. A ggi, 159 (1950). 
Stanford Research Institute, Technical Report No« 1, Contract 
N7onr32104 (and Memorandias   Estlaate of Beirisions of lechnioal Re- 
port No. 1) Dec. 15, 1950 (SECfflT-ABC ^STRKTED Dm). 
J. 0. Hirschfelder and J. L. Magee, Report MDDO-590, Ü. S. Atcwic 
Energy Comission (Declassified January 1, 1947). 

1.4   ADVANIfrGE C£ KffKWOQD-BRIMIg METHOp 

Sie Kirkirooö-Brinkley n^thod has the advantage of providing a direct 
attack on the problem of underground explosions.    It pre-supposes only 
data which are experinientally measurable, and its procedure is independ- 
ent of analytical artifice for its execution.    Hcwever, a salient feature 
cf the method should be emphasised.    The labor Involved in the actual nu- 
merical integration of Eqs. (1) is trifling conpared with that of con- 
structing the tables for the Hugoniot function and Kixlcirood-Brinkley en- 
thalpy.    As pointed out, one requires a book of tables (a two-argtB»nt 
table) to determine the Hugoniot function, and at least a single table to 
determine h(p).   Furthermore, no solutions of the hydrodynaaic equations 
are available until the tables are corapleted.    This feature of the «ethod 
is a handicap in applying It to a medium' (such as earth) for which relia- 
ble asymptotic or approximate solutions are not (as yet) available.    It 
should be noted, of ccRirse, that the need for these thermodynaadc tables 
is not peculiar to the Kirkwood-Brinkley integration achme, since aH 
integration methods require essentially the same thernocömamic data.   It 
similarity solutions, for example,  the role of the tables is taken by a 
suitable approxämation for y(specific heat ratio). 
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1   SpwdfySßi th« EcUialpy PQRCUOII (SM Eq. 7) 
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ÄBSIEACT 

A erud« first orckur tbtorjr is ^pli«d to dsrivt th« ttook condi- 
tictM rtsolting froa • point msmrgy soureo in an infinit« hoBogonoous 
mrtlvm hAving chsraetorlsties sinilar to toils.   Approxinat« prossure- 
dlstsiies-tis» vsluss art detsndnsd.   Soa« coapsrisons ar« nd« b»- 
t«aaa tfat offsets of surfaes tut shaHow undsrground bursts. 

• ••• 

• •     • 

•••••• 
• •* • •     • 
• •• • •     • • « 
• •••« 

s • • ••• 
*■■ • • •     • 
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SECIET 

mmmmmmwwmvvmm. 

Ti» chtmi aim la to deriv« apprcxlaat« TKIUM for thi ground 
•ffacts raaulting txom  aurfae« r»,  «hallo* bursts• It stass olaar that 
ttas kay to this qaastion lias in tha aarlj history >f tha «cploaiaa 
shan tha propagation in tha aarth is in tha fom of an intanaa ahook 
sara. 

It is eoneludad that a surfaea burat «ill produea about tha 
aarth diaturbanea as a ahallow burat (acalad to $0 fast burial for 25 
KT) of approxiaataly ona-tenth tha anargy ralaasa. 

1.2 APHnXBUTl SHOCK ODKHTIOHS IN A TOP BURST 

For a abort tina aft«* a daep undarground nucliar axploaion tha 
enargy will ba propagatad outward aa a trua shock wem,  ainoa tha anargy 
of coapraaaion far axcaads the anargy of distortion« Tha charactar- 
istica of this shock wava propagation can ba dariTad approsdaataly from 
tha Hugoniot conditiona, tha aquation of atata of Fafnaan, Metropoli», 
and Tailar for higiast pressures, and ooapraaaifaillty ■«asurasttdts in 
tha intaraediata praaaura range« 

The ftafonlot ooaditione for oonaarratioa of aas*^Hl 
the SilOek  fmnt,  mmw hm mr4**mn i.» itlw'IWIHrarf MI 

strong sfeodkT p,-. i - wm^m (i) 

^0 
o   VPo 

n 

tikmm i© « s 
disturbed dens 
shock front, X 
Sboek. 

'Kqamtlm (2) shoal« rmAt 

&.I ■ ft. "="•-") 2\ PlPo / 

Th« four Urn» follairlnf Kp«Uoo (2) ihoBM r*At 

*hwi   T0 « »hock v^-oolty, P « p*k prtttar« in th« ^oek, 
Pa = undi«tarb«l dea^ty of th« «wrtli. Pi = dw^ty iMndirt»- 
ly b«hlnd tii» »hook ft-ont, Al * IntwrnL «warff iaarmmt p« 
«alt »»M »cro'« th« ihook. 

FtynsftR, Metropolis, and Taller1e calculations for the appropriate 
Atonic weight, •Bridgnan's data on cüapressibility, and rough estiaat«« 
on the compaction of typical soil In the low pressure range yield a 
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r«latl0B«hlp btftw—a dtntlty and pressur« which it plottad in Fig. 1. 
Fro» this «Ml «quatioB (1) the chock velocity aey be derived ee a 
tmctioR of preceure*   Thie is plotted in Fig. 2.    In the preesure 
range of about 100 to 1000 bare, the «hock will be transforaed into a 
distortional "earth prtesure ware" of the type obeerred by Lwpeon. 
This transition is indicated very rou^tly by the dashed U.m on Fig. 
2*   lbs ODdLsturbed soll density is assuaed to be 1.8.   For other 
Initial densities, «be lelociff of an intense shock «iU vary as 
^  ^.   BM *mk nl«ei%r •»* üw pt—mm U mot 

um» tmrn «T lb» fm* f MUtUa, M «tat «to 
«r Mt* i 

*. 

His •keA fAnei^r as a f snetistt of radius AM* a deep burst w 
be obtained to a rough ipproadaation fron the above and equation (2) 
by susualng ttet the m&tjj far anit aaas is constant within the ahock 
front and thai the total energy ist 

i« *w* 

where 7 is ^e wolans Inside the Aoak front. Shook velocity is 
plotted vs. radius for a 1.25 KT Aot in Fig. 3. Integrating graphi- 
cally, shock radius as a function of tine is obtained and plotted in 
Fig. 4 (loner curve). For conparison, the ahock radius of a aimllar 
shot in sir is plotted (upper curve) scaled froe data on the SANDSTONE 
I-ray shot. 

1.3 OOMPAPISOit C£ SORFACI AI© SHALLOIf BURSTS 

The propagation of a shock from a point source explosion at the 
earth-air interface may be derived to a roogh approximation by assum- 
ing that the pressure is constant within the ahock front. The initi- 
al condition for shock propagation aey be taken as the end of the phase 
of predominant propagation by radiative transport. At this time the 
radius of the shock front in air is approximately 5 meters, while the 
penetration into the ground id 11 be negligible due to the high opacity 
of the soil and the comparatively slew velocity of shock propagation. 
From this time until the pressure in the soil drops sufficiently so 
that propagation of energy occurs by the cästortional plastic wave, 
the shock velocity in air remains much higher than that in ground. 
The pressure versus radius in air may then be approximated by Taylor's 
expression: 

 ^ 0.155/a\ Ä . 

RESTRKTED JiT* SECRET 
ATOMIC CNewy ACT HM*f {MrtW llUillltL- 



PROJECT 1.9U2 

Tbt T«lod.ti»8 in «IT, in greuod, ud ÜMlr ratio tr* &wa. la Wtä» 1 
M a function of radio» for a 1.25 IT bunt. 

TAU 1 

?«locitl«» A« A Function of Bntti» 

r P Ta Yf 
Ta 

(Mtara) (at«.) (W»«») (W^) Tf 

5 1.3xl05 no 4.0 27 

10 l.&dO4 39 1.5 26 

15 .AftxlO4 a 0.14 25 

20 ,2Qxl04 u 0.56 25 

30 6.oaao2 
7.5 0.3 25 

▼a ia ealeolatad fna tha SngBBioi aqwünM for an idaal gaa «Lib 
T s 1.4} »f !• «btaiaai Am fig. 3. ?# ** 

Tha ratio of tHa rata of doing aoA 
iat 

tte air aod on Uw ground 

wt    2w Ft      a» 
•MHM>    ■ Hl »llll«     •       HI—>i.      a 

This ratio is marly constant at 50:1 out to tha point at dtdeli tha 
propagation in aarth is dlstortional in eharaetar* Proa thia point on, 
ths off act on th« aarth prassurs wara of the shooc wara in tht air 
will ba snail sines it will act only to prolong subtly ths duration 
of the strain inpulsa. This raasoning than inpliaa that tha anargy in 
ths earth pressure WSTC fron a surface burst will ba about 2 per cant 
of that tvom a deep source of the sane energy raleaae. nils is to ba 
conparad with about 20 par cant for a surface TS. deep TIT socploaion. 

A 1.25 KT explosion at a depth greater than 3 natars will produce 
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•ff«tt« tljdlar to «in «qptilj «Mrgvtie TStt «xplotion at UM MM dapth, 
UM mlf i^ortant (Hfftrane« «mild appaar to b« UM haat vaurgy laft 
la tfe« iaitlaUy Taporiatd aarth «IMII it has axpandad to atasaplMrie 

Siaea the aarfaea oi tlia aarth «ill ba braaohad «hila Mm 
wvn ia atlU inÜMMa, ths aaargj eouplad to UM ground «ill da- 

on th» loa« of aiargjr to tha «ir rathar thaa on tbt initial char- 
aat«Hr of tha aoarea.   It ia aatiaatad that toaa 2D par cant of tha 
MMlaar •nargjr alll ha aaatad in a ahallo« hurat, aa ooapaiad to an 
aqa^lj azargatie TUT iaa>loaioD. 

IMng Ijapaoa1^ coapling factor aa a aaaaun of tha anargj coi^lad 
to tha grcaod, and tha abora oorraction, a 1.25 KT «hot bur* id 18 ft. 
aoold prodMa about 25 par c«it aa aoargatie an aarth prasama wvrm aa 
a daap 1.25 R «hat.   Tha aarfaea chot ia thta aatiaatad to ba roughly 
ooa-taBth aa affieiant in coupling anargjr to tha ground aa a afaot at a 

i^Ul af M ft. t*ßL'2* K «P 50 ft. for 25 O. 

•t aw *Mk fswii 

mm^mSmämimtmmm^mmnMm af aarth f^oriaatifln and 
~-*^*j,> ^-, — **mAmmmmmm§. Ait.   Jhm haat tn »••—-*aa aoll ia ^ppraad- 
aM^ 3000 «W^.. «MM Mit 1%«M«W».   aB> 3000        I   = 3000 cal./ 
^^I a raüaa of 1 altop, aad MX) cal./ga. at "6 awfcara.   It thua 

Mia tfet la thi rigWnir Aat, buriad 5.6 «aUra, an incanr^aacant 
ihall alU jort braach tha aurfaca. 1**AJUJ*4 «"Jia^r? . ^ 

It aaaaa oartain that both underground ahota idll produce auffici- 
antlj denaa douda to aattle after a aoall initial rlae, producing a 
"baae surge."   Tha height of riae «ill be aoaeahat leaaf and the rate 
of aattling aoaaahat larger than for an equivalant TRT ahot, due to 
the greater danaity of the final producta in the nuclear caae. 

In tha aurfaca Act on the other hand, aince 98 par cent of the 
energy ie qpent on the air, one would expect the history of the cloud 
to be not greatly different from a tower ahot.   the material ejected 
froa the crater, however, will largely aattle to the ground, and it 
oay ba expected to carry aome 5-10 per cent of the fiaaion producta. 
Ihe hiatory of thaaa fragaanta ia not obrioua to me because of the 
eoaplicationa of the afterwind aaaociated with the rising hot air maaa. 
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10 10 

PRESSURE   (bort) 

Figure 1   Relation Betveen Density and Pressure in a Typioal Soil 
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ABSHAOf 

BMoIt« of «a «Biljrtie*! trafttarat, tofvtlwr nith eondtat«! 
■titMMirti of a«siHptl«iwv «rt prvMsUd with a alainn of annl^tieal 
dttolli for ^M ■•eiHud.oal yhwv—m «stviag tram ih» «adorfroand 
4tt«aKii<m of o aiKtlMur wotpon*   Conditicim bwr« boon läoolised by 
•ttqitnt tfc* iaoioatoiiooaa FOIMM« of I Et of «nargy (TUT •qnivmloBt) 
in o voiy rnmll rdhmm «ad in o dry SUICä »cdl.   A aodifiad fom of 
Botlio9! ■MTT(T - l)thoei7 is «MMKI to obtain rougt »owrieal «atiaat«« 
of prootttTMiy toBporotarM, Ttloeitlos, and diatMUiiona ataociatod with 
tho hrtkmmf bidsbla« «»TO plunc—na in th« oarth, ▼rating of oarth 
tu» air-blaat «Mrgr» boigtat of atoaic cloud, throwoot Toloeity, 
broaknp of avrfaeo targota, rotarn of tbrowoat, and mtargy partition. 
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CHAPTER 1 

IIXBOflDCTIQJ 

1.1 80QP1 QT SgQBI 

A gttzwml study hut be«o and« of aadtrgrouad nuclear «acploeioaB 
bf tracing th« pheaonena fro« their vary earl/ stagaa out to th« final 
effacts. Thia raport preaants the predictions resulting wfaan the 
analysis is applied to the Ibdergrouad Test of Operatloo JASGIE. In 
addition, the valoes obtained are ccnpared, wheneTer possible, with 
results obtained fron other analyses or fit» extrapolation of data 
fron HE explosions. Confidence Units for the results are not knom; 
a tvo-to-one uncertainty is sot out of the question. The analysis 
should be considered an introductory guide to the pbenoasoa, «hleh my 
be studied «ore carefully whan sufficient esperinsntal data beccne 
available. This study osbraces nechanical phenoBena only; themal and 
nuclear radiation are not considered. 

The explosion pbenGseae are eoosidered under six headings: 

1. Breakaway of pressure ware froa gas babble. 

2. Transaissioe (lare) phenoaena. 

3* fenting of gsses. 

4* Throwout and aissiles« 

5« Return to earth of aaterial thrown out. 

6. Energy partition. 

i.2 smmmimämm 
The nuclear «zploeion is assuud to have a total energy release 

of 4.2 x lO1^ ergs, equivalent to that from one kLlotan ^f TUT. Of 
this energy, 15 per cent is asstned to be in delay-ad r-dioactirity not 
aYailable for praapt nechanieal effects. The gadget, is idealised to 
a source of energy sufficiently snail so that point source theory aay 
be used«. The effectire center of the explosion is taken at 17 feet 
below the surface of a sandy soil, which is asswed honogaosous for 
the aost part. The soil is assused to have a porosity of 30 per cent 
and to be a5 per cent saturated. The solid constituent is assuned to 
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to MtoUy CUIM «f ToldlM« teMity 166 lb/ft3.   jt d«pths b^av ID 
fMi tl» «dt iMU^t of Mil U Ukm w 110 lb/ft39 with a ••Iwie 
viloelty of 3000 tpB,   For yrpoei of prodieiing coziola «DOHüIO» 
laqpo^od la tha frtt ■ortii ph«MMiio, o —iamic voloeity of 4500 f^» 
io ■iiMMi! to «xlot boloir a dsptlt of 100 feot. 

For cloud rloo eolcttlotioni, th» «T«rofe cloud oltitodo «bove soo 
lovol 1« Ukm M 10,000 foot, «ad tbo chazaetorlotlca of tfeo OS Stand- 
«rd Maoifihof« art ovalaatod at that altitodo« 
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CH4PIÄ2 

2.1 

UMB UM «MT^r rtlMMd by tha aaelMr d«tomtioB ntehM th* 
•Mill •urrmmdlag tb« wapop, th« «aargr d«aslty 1« «o grMt tkct tb* 
Mith is qaiekly coo¥»rt«dl to A Idgbly «wifviie alxiart of onelMr 
putielM, la», «teas, and photons.   At this gtmgß purüeXo aal 
mdlAtloQ Mtloos and intvxmctloDo art iaolaatic la tho aona« that 
tha booaäazy cootaliüac tha anarar gf*** hj eoavartJj« tha aolid aata- 
rial axtaxlor to it to aora particlao of tha aaaa typa, rattaar than by 
oataaxd radial aotioo of aingla particlaa.   Tha natarial within tha 
boondaxy «ill be eallad aarth gaa.   Evantnally, hoaavar, tha 
danaity falls so auch that elastic impacts appear, 
oos, and finally pradoaimta.   flcaawhuru in thia proeaaa tha 
ing aarth is finally able to tranaait elastic aa*a signals faster than 
tha bcrandaiy grews by angnlflng aatarial.   it thia stage the preasnre 
nare breaks «lay froa and ootmns tha aarUh-gaa babble, which frea 
than on gromi principally by UM onfcuaxd notion of the particlaa in 
its botaidary. 

As used here, breekaaay is azMtrarily defined by tha eondltic 
for which 50 per cent of the ooqrgen atoao are singly ionised.   The 
precise conditions nay be eralnated by a nodi fled application of 
BetheU saall (t - 1) theoiy.   Here Y is the eapeoaat in the eqnaUon 
of state of earth gas, 

^o Ko 

The resalts of this analysis, whan applied to the test in qaestlon, 
depend on the easrgy release appearing as radloavtlvity. Since thia 
represents energy not praqptly aTailable for aachaaieal effect», it 
is subtracted froa the total release to give the energy with which we 
are concerned. In the absence of a eonplete eralnation of GBEBHOOSE 
data, tha pronpt (aschanical) energy baa been taken as the earlier 
figure of 85 per cent of tue total release. 

- 3 - 
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TIM umljmiM thtm parwüei« tha foILoiflac far—I tri of tte fM 
babbit at braakmajt 

Y- 1.64 

Taaparmtur« Tfe • 220,000° I 

***•***• pb • 3.2 x IOP pal 

Balatlva danalty at booaduy p^>0* 4.1 

Shock Talocity 0^ • 1.3 x 10-' fpa 

Matarlal Taloclty «b '■» 1.0 x 105 fpa 

Tlaa to raaeb braakamjf t^« 12^.9 

Vaifbt of aarth ^»5.6 tooa 

Badiaa of bobbla rb - 2.9 ft 

Thara la raaaoa to baliaw that thia ealealatad praaaara la hifb 
and the braakamj radiaa law. Tha malyala iaplieitly aaamaa that tha 
alaa and wal^tt. of aarth affaetad la eoaeldarabljr graatar than that of 
tha gadfat. It la probabla that thia aaawptloa will sot ba valid at 
thia apoeh. 

Tha valaa of t. la obtained froa the Mawaiw Facha-Taylor relation 
for point aiploalooa. 

It la of intaraat that at braakSMaj, radiation co^prlaaa about 
0.001 per cent of tha energy reloaaed. Ita iaportance aa an energy 
tranaport nachanlan at breakaway it greater than thia value indieataa« 
and My be eatiaatad by tha following, latwe the te^paratare at 
breakaway to riaiiln eonatant for the enaalag 0.1 ailllaoeond. Ualag 
2700 csaloriet/gn aa the energy to vaporlae luDder ordinary coadltiona) 
aarth fron the aolld, calculate the angnlfkwt ineraaae la rtdlaa fron 
the radiation flax; the talae tome oat to be cue foot. However, in 
the aaa» tiat, the naterial Telocity woald have advanced the radiaa 
10 feet. Hence it ie eeen that radiation tranaport in the aarth la not 
too important after breakaway. 

2.2 aumasm ^MT»^"* 

We are here concerned with the preaaore in the tree earth ahock 
leaving the bobble of earth gaa, and ita aabaaqatat decay. A aabaid- 
lary retult it a theory of crater fomatlon foondad on Veatergaard«t 
ideaa. 
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It 1« flxvt 1MCMM17 W fom « re^i •qaatioa of 0UU for IdfU/ 
mxth.   Jn UM Toit fom Udo io 

la tbo foUoHiiK maMT.   Covoro UM iMoferopil «ad iootkomol 
Uooi of otcto for uttor.   frm BriOgmn1» data co il» eoapr—ibilltj 
of nboUneoo si^LUr to hifhlj eo^MMd «orth eooftitont« (oilleo, 
S2AM# rock), fom «a ioothosMl «qaotleB of ftoto.   A—M ttet tho 
iMOtropie Mootoato for tho tolidi art rtlatod to UM laotlMzaal OOM 
la UM MM ratioo aa for «ator«   Thi» (Ivoa aa ottlaatos 

p« . 19»000 pal 
(3) 

Y- A4 

UM hlfli Taint of y eorrasponda to UM bl& ineoaprMaibility of «arth, 
cne« UM WIOA» hat« baoa raaatad. Yhaa« eooatanta clva a aaiaale ▼•- 
loeity of mem 67OO fpa; for •aadstom UM Telocity lias batnoaa 46OO 
and 14»000 f^». Thia ladieataa that UM Talnaa for UM eooataBta p^ 
and Y *r« not too anr«aa«ntbl«. 

FTCB Uda aqaati«! of atata» and aaraaiag caotiaBity of praaaore 
and aatarial nHjoeitj, UM praaaara ia UM abode dallvarad to UM 
•artk at braakaaagr can ba calealatad. It tana oat to ba 6.4 z ICr 
pal. It ia alao of iataraat tbat »Inea UM aartb ia atiffar than UM 
aarth CM, at braakaaay a positiv» prMsara polaa go— radiaHj back- 
«arda lato UM CM babbla. Alaoat ecaplata reflaetioo obtaisM, indi- 
cating UM ^iliitch« bafeaaca aoorca (CM babbla) and laad (tba aarth). 
Ia fact. UM aboek-aeoattic iayadmea p0U in aarth ia »boat nina tinas 
tbat ia tba CM babble at braakaaajr. 

Tba Initial aarth abode ia MIHMI! to dacaj acecotting to iaotbar- 
■al «pbare aiploaicn thaoix antil UM "TIT radiM« of 17 f aat bM baao 
rMCbad. Tbto a l/iv lav ia jolMd en, Ticlding an «aqpxaaaioo for tba 
paak praaaora 

P - ^^9 (pai, ft) (4) 

Rota that tue «arly infinit a aarth ahoek praaaora hu baaa idantifiad 
with tba latar paak of a aaTa fom daganamtad fay raflaction, hyatar- 
aaia, and plaatic flo» affacta. If the aarth praaaom raaolta froa 
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1* 
the HE-2 tMt  art corrected for gtge depths end «re extrepolated to 
ft one kllotoo eiploeton, there reeolts 

p. iijP   (p.!, ft) (5) 

This ie ftbevt coe-oi^ith the preesvre predicted fro« noeleftr cooeid- 
ermUooe, and maj indieete the effect of the reflections which «ere 
neglected la thftt «aftljiis.   The presswres ere expected to lie clooer 
to the Tftlnee extrnpolsted fron the HS-2 test then to those predicted 
fron the hresktanor ftMOjeis.   This toads to confin the suspicion thftt 
the fthore breftkftwiy pftrsneters, coHpated fron Bethe*a onill  (Y~ 1) 
theory, ere scnowhat too energetic. 

Sxpressions b»Te been obtftiaed for the eospreseionftl, kinetic, sod 
plftstic-flow eoerfor psr vdt Tolone in the preesvre shock wre.   These 
ere respectively 

e 
o «^{7^ '<l4-^> "r -^ 4 LU^)'Y -1] ).   (•) 

p p   1 
•k-jid'-Jr - 1 }» if) 

e 
P ? i1 ♦ ** mrr) ^ * <*) 

In BquÄtion 6, I ie the dyneaic caqpreesire yield stress, E is Young*» 
nodulos, end v is Poisson's ratio for eerth. 

When the preesure-distence relation (5) and the pftraaeters of (3) 
are »ubetituted, it turns oat that p * p. «t r » 46 feet, and that at 
this distance the coapressional energy density is only seven per cent 
below the kinetic. At lower pressure» they approodnate p2^^, until 
at about 130 feet both are equal to the plastic flow energy deSsity of 
about 5 x IQP erg/ft-5 for JAMQLS »oil. These calculation» are 

♦ Superecript maber» refer to .eference» given in the Bibliography at 
the end of the report. 
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«necrUia to tb« «xUnt that th« prM«ure law «ad th« «ff ect of high 
pressure OB «arth »ViscositT« are QBIOWMB. The Utter in ptrticvltr 
ia foostiooable, since it is known, for «aapie, that at extrea*!/ 
high pressures, lubricating oil has practically the riscosity of copper 
at ordinary cooditiocs. Hence plastic flow «ill probably use aore 
energy than anticipated, especially near the charge. 

^ P * Pi» at r ■ 46 feet, the predicted earth shock Telocity ia 
6200 fpe. Thus the seisaic reglas exists throoghoot the region in 
which aeasureaents are possible. 

An appradaate theory of craterli« has been dereloped, based on 
1iestergaard«s ideas of the tension aare resulting froa the reflection 
of a pressure wate at the surface of the earth. It is assoasd that 
the boradary of the real crater is the locus of points for which the 
peak aagnitude of tb» tension aare is equal to the sun of the djnaaic 
tensile strength of earth plus the geostatic pressure. The relation 
is 

{r2 ♦ (h ♦ if] I {pt ♦ pga} - A, (9) 

ahere r and z are the boundary coordinates, h is the depth of charge, 
Pt ia the tensile strength of earth, p is the density of earth, and 
the constants n and A arise froa the pressure relation p « A/r*. 
(Mng to the disturbance created by Ute aave, it is probably a good 
approodaation to assme that the earth within the crater has been so 
decohered that it acts as a Tiscoos liquid. This partially justifies 
the use of the geostatic pressure without aodificatien by the elasto- 
plaatic properties of soil. In order to obtain the tensile strength 
of JAMSLg earth, an estlaate was aade of the radius of the real crater 
for the HE-2 shot; extrapolated to a one kiloton shot, this is 100 
feet. The raJLue then obtained for the tensile strength was 340 psi. 
It is of interest that the dynaaic tensile strength of concrete is 
about 300 pel, indicating that either the analysis is incorrect or 
else the dynaaic tensile strength is auch greater than the static 
(this is true for water). 

«hen this tensile strength is used in the theory to predict the 
crater depth, a ralue of 150 feet is obtained. This is considerably 
in excess of the 62.5 feet estlaated by extrapolation fron HB-2. A 
partial explanation for the large discrepancy is that the crater 
radius predicted by the theory is not that of the real crater, owiijg 
to collapse of the walls near the surface. However, if the depth i» 
to be predicted as equal to that fron RE extrapolation, then the 
effect ITS radius to be used will be less than half that extrapolated. 
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•ad UM tcatil* ttrmgth obbaiiMd «ill b« vnrmmmMMj high. In rim 
of this» tbt «xfctmpdlAWd prtdletions «re probablj More relUbl«. To 
rvpMt, UM MtiasUd in» enter dieaeter Is 360 feet and the depth 
62 feet. 

It la knom that the earth at the elte ahom a fairly rapid chaage 
of aelaMle Telocity at depths around » • 100 feet. By staad&rd geo- 
ptayaieal ealaüations (kaoHiag the Telocitioa ^ and T2 in the apper 
and loner layera respectively), it is predicted that beyond a distance 
rA» tiaDMdaaion «ill be priaarily fro« a path dam to the interface, 

the Interface, and vqp to the surface. The distance is giTsa by 

▼. ♦ T,  1 
JL—1 a 

a   •  ▼t  Ti 

Bayood r the direction of arrival should be predcndnantly Yertfcal. 
Also, alaee aeisaic eaergf trapped by the «ave-goide action of the 
interface spreads in t«o diaenaiooa only, this path should bare leas 
attemation than the direct «Da. Thus it is predicted that beyond r^ 
the vertical octwnent of the acceleration should decay auch less 
rapidly than nearer the enarge. With v, ■ 3000 fpa and T?« 4500 fpe, 
«« get rm • 450 feet, or X - 3*6. In the RB~1 and HB-2 shots, this 
fiMn—aca «aa actually obaerred. The •tura-orerw distaacaa «er« 
abovt 400 feet aal 440 feet respectively. The distance for the under- 
ground noclaar teat «111 of course depend on the actual undergronad 
profile, but 450 foot appears to be a good working value. 

Values for the acceleration have not been predicted in this 
report, for no theory of spherical transadssicn in a finite elaato- 
plastic earth baa been developed. Ordinarily it la assuned that the 
acceleration is proportional to the pressure gradient, which would 
nake the exponent in the acceleration law equal four for a l/iy pres- 
sure law* Actually, in the HE shots, aost of the exponents were near 
two« Mo explanation is advanced to explain this, although the viscos- 
ity t-rm in the lavier-Stokes relations nay be large enough to accoont 
for the difference. Values extrapolated fron HE experience should be 
used. 

When the pressure wave hits a horizontal target lying on the 
surface, such aa a reinforced concrete highway, it is of interest to 
estlnate the effect of shattering. An analysis based on Sewnark*« 
theory of crack width in ahock-loaded concrete beans has been devised. 
If the energy delivered to the concrete is supposed to be equal to the 
kinetic energy density in the earth shock, there results 
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Bmn r   U Ik» Halting distue« laald« «hiek aU i^iaforcing ban 
»re raptor*!; « is tto ratio (dljrUao« trm iwctz«! »<»e)/(thickne*«)j 
t i» th« thiekMMj w i» the width (hew 10 feet); i and a are the 
CCBVUBU IJI the par—»qra ralatiao p •A/rn| a la the plasUc atrength 
«f the reiaforciag ateelj A8 la the area of the ateel; d ia the depth 
of the tenaile ateeli r «ad P^ are the ceoatanta in the equation of 
atate of earth; and « ia the atrain m the alab aarfaeo nhich will 
f%pt«re the ateel. 

Wbea the eqwtanta apprapriate to the aadergroaad nnelear teat 
are iaeexted, it tana owt that rs ia ahovt 70 feet. Tbaa iaaide thia 
*•***• «*•««»"*• «ill probably be ia pieooa las« than alx-iaeh 
odieo, the apaeiag of the reinforeiac Baah« Beyood thia, the piecee 
ahoald fet larger, Thia iafoxvation aide in predicting the eise and 
hence the range of the aiaailea f oaed by the breakup and thrcwoat of 
each targeta. Beairta the wBeertaintiea about the Ina of preaenre and 
of energf aboorptioa, thia aaaljaia «xtirely neglecte th» floznral 
ware eet ap in the eenerete. It ia eotiralj pooaible that there nay 
eodat at a certain dlatanre a apedea of traveling wave aaplif ieation 
between the ineidont aeiaadc earth wave and the fleraral wave it ex* 
citee in the concrete higjaiay. It ia likely, howerer, that thia will 
be oboccred by other effecta. 

in the wall and foaadatioa targeta will bo nach aore 
oeapLaz, and aa eetiaatee hare been node of the ahattering to be ex- 

3*3 WDM» itt iMilTi IB fiUBB OM 
Tenting ia tmtmmi to oecwr when the ehock reaehee the earfaee, 

ia reflected, and neete the aatpandlng gaa babble. Fron the theozy it 
ia predicted that thia aheald oecwr aboat 2-1/2 feet below the earface, 
and aboat 0.2 niUiaeconda ahoald elapoe between the aboek reaching the 
earface and the (Mergence of the gaaee. The gaa velocity ia difficalt 
to eatinate with nach aaaarance, bat it appeara that the Laval noaale 
relatian glvea 12,400 fpa. Another eatinate ia baaed on the ezpanaion 
of the earth gaa babble in which the presaare at the boendazy ia 
wtiliaed, up to the iaatant of venting, ia accelerating the earth 
beyond. The babble boodazy velocity ia ^proodaately doubled en 
venting to aboat 30,000 fpa. A third eatinate ia baaed on calculation» 
of the preaaare at venting; with approodnately 200,000 pel «t venting. 
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tkm ««rrMpoMuac vtlwity is abeafc 7400 tf*.   A tmuik MtSask« is 
iMMd 4» «Mfff MWi4«nU«M.   ^f l<Utwtiif wi^ mtmtim 1» UM 
werte doM «f^Mi ih» tutli ^ W vHttl^ is aWtfb SO pw «Mt «f UM 
fetel iMrgf r«lMM.   AM Irm Bvtte«« r«l«tl«i Usi UM IdMÜe 

j, UkM aa telf Um mig^jml, 
,000 tp§,   üdlt tlmi few 

w M* eoMictMrt, it tfmn aaf« U MMM itet tte udtUl M 
wlaelty «ill to Mil em 10*000 f^s. 

MMi «wnr rvlMM. UM« zrm Bvt 
•mrfr 1« (y- D/y •* **• tokbl» «■ 
tto J«t TtlMity t«zM Mi t« to 60, 

Tto li^eiiliit «ft MHfeiag MJ to MlMluUd frM ito «fMÜM of 
•Uto «f «urU fM» «MMiag M MM «M^l Ij fvzttor tilfMBt, aal 
Mlag «MMft iMiitlM (iMttoTMl •ftor«).   A MIM «f 10,000* I U 
MtaiMd.   At BUdai Buou* (tulM tto MAI^ otozft dapkli «f ito MIMP- 
SMMd MOlMT tMi) litil« flrc Ml «bMIMd.    AltlMq» tto MtoTfTMBd 
MOIMT atot la atollMwr, ito tawity aaA fraaiar toci af MporiaaiiM 
af Miik »MaplM ia atoaA MM mngy itaa Miar, M itot ito 

af gTMi IM Mil af fira aaoM «tfLitoly. 

fMUag i» iniiinattil by MMUaiahla air atoak MA itoMMi. 
Ito air atoak arlaM frM tM OSMM«   Flrai, ito Mrth atoak raflaeiad 
at ito aarfaM MMM ito aarih ia riaa, itaa aaiiag M M 
aarU fiaiM«   tto ^aard lalMiiy af Uda piaiM «ill aai 
nfdUUy, aiMt It ia toi^ drivM fMa toMaik igr ito gMai 
flMi air liMk atoald ato» a tla» toaaj trm ito fMlu   laMvar, ito 
paM aaa^a «itk Mlaaiiy «Ida ia MaaUanUy «raaiar itoa thai af 
Mrik riMf Mi «hiak daaay« aMk faaiar, aiaM ito IMM aM MM 
Mail? dMalaMtaA.   Ttaa ito gM-jai iadaMd air blui ttoaU to a 
hi^l pMk falla«ad igr a fairly npid daety. 

Tto MftMi iiaa aaparailoa of UMM i«ö atoeka atoald to itot 
ito aarik atoek raaehiat ito Mrfaea aad ito paM ▼Miiag • 

Aa Miad aarliar, uda ia abaoi 0.2 «illiaacMda»   Bwwur, ito airMftr 
atoak «ill faiekly eaiek op ia aad eaalaae« «itk tto «aakar Ma.   BMM 
at poaliiaM itot aM aafa far iMiriaiiwrta, a «iagla rtarp riaa atoald 
to atoarMd Mlaas tto iaainMBt «jsiM toa rM>MM oMaidartkly ia 

af 5000 eye.   Tkia MaaMiag ia baaad M ito Mpwiaaatally 
MtoYier af tto air klaai at Oafsay aM at tto JAVSS HB 

la tto aaiiaaiM af Jai Mlaeity, it «M aatod itot at ▼Mtiaf 
atoai tolf tto Margjr tod baaa aaad ia «ark afaiaat tto Mrik. Tina 
ato«i 50 par aaaA aM appaar ia air blaat (aad elaM IIM). FrM tto 
BB taata, it appaan ikrt tto affaat af air klaai «M itot af 75 par 
aaaü af tto atorft datoMiad M tto aarfaea. Itoa tto aaargjr ia air 
blaat frM tto Mtergraval taat «ill probably to atoai t«o-tkirda of 
itot fTM 1 KT of 11T. 
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Bjjr iBUfimiing tb» blast «atify flux for tb» 50 por c«it eharg« 
la frM air, it is found that aa «piivmlani «nargf of 1.5 par cant of 
tha boriad eharga doaa not appaar aa air blaat. It la aaatamd that 
thia U iha mmrgy for cload riaa. Tha haljhk of rlaa of tha at<«ic 
cloud maj ba aatiMtad froa Taylor« a rolatioo for a aaddaoljr ralaaaad 
ao«rea of boat. Dalag tha 1.5 par cant aaarsr, anl US Standard Ataoa- 
phara aataorolafleal factor» apprepriata to a 10,000-foot araraga 
cload altltnda, wa «at a rlaa of about 5000 faat. It ia auapaetad 
that thia ia too low, and that two or thraa tlaaa thia Talaa aaj ba 
attaiaad. Of eoiiraa, tha actaal aataorological factor» rathar than 
thoaa of tha ataadard atwoaphara ahoold ba aaad la a canparlaon with 
tha taat. Tha affact aay not ba larga, aiaea tha haigfat of riaa da- 
pcnda «a tha lA-ponar of tha factor». 

3.4 TMUQWOPr AMD MISSIIIS 

CooeoaitaBt with ▼wting ara throwoat tad adaaila phanoaana. In 
«naral, raaalta froa HK ahoi» load to tha aaaavtlon that tha «attar 
ia ajactad along radii froa tha eharga, with a ▼aiocity la» of tha 
fara 

« (ala 6) u t (12) 

\ 

«bora ▼-«A? 1* *•*» «aaith ▼alaeity, X ia tha aealad chai^a dapth, 
thaaäla - 6 ia tha aagla bataaaa horiaontal and I radiaa fro« tha elyu^a, and 

a la an oapcawt probably eloaa to two for JAKILS »oil. ^aoratioally, 
it ia tha aaponaat of praaaart dacay aaar tha eharga, bat iadlraet 
arldaaca froa obaarrad raagaa of aiaailaa at Oagway indieata» taa ax- 
poaMtt ia aoaaahat faallar. Tha eoaataat T^ ia praba^ly bataaaa 100 
and 400 fpa for JAKrIE soil, loading to oxpactad saoith Talooitiaa 
froa 5000 to 20,000 fpa. A fall diacaaaian of tha JapHcatloa» for 
throaoat and aiaailaa la coataiaad ia a fortheoaiag raport j praliai- 
aary raaalta have alraady baaa co—aieatad, aad will aot be diaeaaaad 
hara*^ 

doaa roagh aatiaataa of tha aaaast of throaout bava baaa aada, 
baaad oa tha aatarial coataiaad la tha iatartad coaa of iNuia aqml to 
tha orator opcaiag, ud with vartax at tha ehar^». About 30,000 too» 
af aarth ahaald thaa bo projactod radially fro« tha eharg». Baaod on 
a labaratory aaaljaia, »boat 2000 tooa of thia will ba balow ana 
aiaron ia aiaa, if all tha aarth has boaa dacoharad to Ita eonatltvaat 
partiela». Uttla grladiag actioa la axpaetad, and tha fina» roataitiag 
shoald ba no aera anaarooa than 1B tho aarth and should ba eoosiderably 
laaa. Thaa tha 2000 tons Is «a appar Halt to tba tmsmX  of aatarial 
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that slMald ritin *lrbomt for « loof tiae aft«r th* •zplosi< 

It U also of iatoroot that tho «iMrgjr raqalrad to raiao 30,000 
tons of oarth to an aTozmgo hai^ht of, say, 2500 foot la about fi*o 
par coot of tho total ralaaaa.   Hoaeo vork agalaat grwritj is a «»11 
port of tho total. 

2.5 

Aa tha thrsooat rotvns to tho aarth, it Mjr bo elaaaifiod as 
fall-oat (ballistic ISM)} aottlo-oat (Stokoa* las)} aad drift-oofe 
(Broimiaa aoü« aaspaaaioa). la tha fall-oa* «a iaelado aiaailoa, 
vhick aro troatad ia aaothar roport. 

Tho sottlo-««t ooaqprisos prineipallj tboaa partioloa la tha raaga 
of 1 to 100 aieran aiaa« Thair eaaeaBtratistt dapsads on ha» thoroagh- 
Ij tho azploaien aad Toatiac proeaasaa doeohoro tho oarte; BO aipari* 
waattal ovidMeo for aa oatiaato ia availablo* Aaalyaia of data fraa 
pio-plato eolloetora oaa glvo soaa ardor of aagpitada iaf azaatioa, bat 
this has not baoa andartakaa hora. It ia fairlj eartaia that aoat «f 
tho fall-oot aaaa is ia slsable chaaka frcai ono-foaxth iaeh aad 19- 
«ards. 

Tim bass sargo phoaoanK« is ozpoctod to bo proasot, aad ahoald 
differ bat littlo fraa prodictions basod on HE aztzaqpolatiaa. Tho 
sooreo of tha sar^i, th» eolaac, ahoald show a diaaatar acaling aa 
vV3 bat, owing to tho iacroasod offsets of graTity and air raaiataaoa, 
tha hoight shoald bo loas than that obtaiasd bj sealing. 

Tho colaan is coojoetored to bo ehiaaoj-like ia straetaro, with 
a hollow eoro carrying the hi^üy radioactiva aatorial ejected fraa 
the earth gas babble. As it collapses to fom the sarge, the coatsa- 
inated inner surface is expecteu to aix tarbalootly as the sarge ansh- 
rooas met. However, most of the inner sarface shoald appear at the 
lower sarface of the sarge. Surge constants are best eatlasted fraa 
prerions mtelear and HS data. 

Standard aoteorologieal diffusion theory asy be asod for predict- 
ing the fate of the drift-oat, and ezperieace fraa HE tests shoald 
guide the calculations. 

2.6   HBfil PüfllgQl 

Frca a coosidsratioa of the foregoing the probable altiaste 
m»Tgy partition is as follows, in teras of the total reltaae: 
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BftdiwetlTlty 15$ 

Prttture *•▼» «ad plutlc fhem 30 « or !••• 

5$ 

Air blast 48 Jt or ««re 

Clevl ri»« 2% 
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APPBIDIZ 

LIST Of STOCOA 

A Coeffiel«Bt in prMturv-ndlw rwXaiioa« 

Aa Total arwi of tonsil« itool In eoaeroto slob. 

d Dopth of tsosilo stool in eonersto slob. 

I Iovm,s ■odol'as of oorth« 

g Aeeolormtioa duo to gnnrity. 

h Dspth to eoator of dotoaotlee of ehorfs« 

a EqpoDsat of rodios in prooouro-rsdios rslotisn. Also, 
oKponont IA throwoizt Toloclty rolstion* 

p Poik or shoek prosooro. 

Pjj Prossoro in sorth-fss bobble ot breolawagr. 

PJL Intomol pressure in oqootior of state of earth. 

p0 Reference pressure. 

p. Dynamic tensile strength of earth. 

r Horisootal radios froo groand sero. 

r Horisootal Unit radios for refracted seismic energy. 
a 

r^ Radios of earth gas bobble at broakaoaj. 

r Horisootal lisdt radios for ropture of stool roinf«rosasot 
* in concrete. 

t Thickness of concrete slab. 

W Tine to roach broakamy after detonation. 

T Taqporatoro* 
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Tb Twperaturt la •&rth gu h&bl» «t 

« MftUriAl TÄloclty. 

u^ MKUrlal vtloeity »t hrmkumj* 

0 Shock Tvloeitj. 

OL abode ▼•loclty at brvftluwaj. 

T Velocity of throwoot along radioa froa ehargo* 

T^ Ttrtical Talocity of throwoot for a charf» at a aealod 
dopth of unity. 

T^ Seiaaic Telocity of qpper «trat«a of earth« 

▼2 Seiaaie Telocity of lower strattas of earth. 

w Width of eencrste slab. 

W Wei^it of TNT (pouoda) of glTen coergy releaae. 

Wjj Vei^rt of earth gaa babble at breakaway. 

1 Dynwaic tensile strength of earth. 

s Vertical depth coordinate of crater. 

s Depth of stratos with higher aeiasdc Telocity. 

ft Ratio of distance frow neutral acne to thickneaa, in concrete 
slab. 

X Scaled horisontal radial distance r/W3^3. 

\ Scaled depth of charge h/V^. 

P Density at shock in earth gas bubble or in earth. 

p   Reference density. 

Y  Exponent for density in equations of state. 

a      Plastic strength of tensile steel in concrete. 
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1. SUnfanl HssMrch Institut« f «HS TMtt, OpcntioD JiJKcLS,« laUria 
Baport, October 1951.   Pr^paMd for Office of the Chief of 
agjoeer», «Mhlngtco, 0. C, Contrect M-^9-129-eng-119. 

2. Steaford Research Institute, «BehsTior of Missiles fro« Qtader- 
gtoaad Sxplosioos st Dugraj,* Tecfaniesl Report lo. 5» Vormber 15» 
1V51*   Prepsred for Office of NSTSI Research, Ifcshlngton, D. C, 
Cootrsct M7oor32lC4.    3BCRET* 
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DI3TRIBÜTI0H 

ABUT ACTIVITIES 

CoHT So. 

Asat. Chief of Staff, G-i, DeportMnt of th»» Ara^r, Vauöiln^ton 
25, D. C. 

Aast. Chief of Staff, 0-2, Department of the Anay, Washington 
25, D. C. 

Aast. Chief of Staff, G-3, Department of the Arogr, Washington 
25, D. C. 

Aeat. Chief of Staff, G-4, Departaent of the ATBBT, Washington 
25, D. C. 

Chief of Ordnance, Cepartuent of the hrtqy> Washington 25, D. C. 
Chief Chemical Offlcor, TeKp. Blig. T-7, Bo<» G-522, GrareUjr 

Point, 7a. 
Chief of Engineers, Temp. Bldg. T-7, Room G-^25, Gravelly 

Point, Va. 
The Quartentaster General, Second and T Sts.  SW, Boon 113%, 

Washington 25, D. C. 
Chief of Transportation, Teap. Bldg, T-7, Booo G-6JL6, Gravelly 

Point, Va. 
Chief Signal Officer, Department of the Arny, Washington 

25, D. C. 
The Surgeon General, Main Navy Bldg., Room I65I, Washington 

25, D. C. 
Provost Marshal General, Main Navy Bldg., Boom IO65, Washington 

25, D. C. 
Chief, Aray Field Forces, Fort Monroe, Va. 
President, Arogr Field Forces Board Ho. 1, Fort Bragg, H. C. 
President, Amy Field Forces Board Ho. 2, Fort Snox, Xy. 
President, Angr Field Forces Board Ho. 3, Fort Banning, Ga. 
Präsident, Ar^jr Field Forces Board Ho. k,  Fort BilbS, Tex. 
Cooaandant, The Infantry School, Fort Benning, Ga. 
CoBnandant, The Armored School, Fort Knox, Ky. 
President, Th» ArtlHeiy School Board, Fort Sill, Okla. 
Comaandant, The AA&GM Branch, The Artillery School, Fort Bliss, 

Tex. 
Coamandant, kray War College, Carlisle Barracks, Pa. 
Coonandant, Coanand and General Staff College, Fort Leaven- 

vorth. Sans. 
Comaandant, Axmy General School, Fort Biley, Sans. 
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DI3TBIBOTI01I (Continued) 
:opy No, 

C —IIIIIPS 0«Q»tml, Plrit Ax^y, Governor'• Island, Hew York k, 
H. T. 59- 6C 

Ca«Mndlng Geasral, Second Ansgr, Fort George G. Meade, Md. 61- 62 
Coonandix« General, Bxlrd Arqjr, Port McFheraon, Ga. 63-64 
Coaaandlng General, Fourth Arn^y, Fort Sam Houston, Tex. 65- 66 
Cci—mling General, Fifth AnQr,  1660 £. Hyde Park Blvd., 

Chicago 15, 111. 67- 66 
Cosnanding General, Sixth Anqr, Presidio of San Francisco, 

Calif. 69- TO 
CoBaander-in-Chief, European Cotaaand, APO 403, c/o Postmaster, 

Rev York, H. Y. 71- 72 
Cosawmdar-in-Chief, Far East, APO 500, c/o Postmaster, San 

Francisco, Calif. 73- 74 
Coaaandlng General, Ü. S. Army, Pacific, APO 958, c/o Tosr- 

master, San Francisco, Calif. 75- 76 
Coaaandlng General, ü. S. Aray, Caribbean, APO 834, c/o Post- 

master, Hew Orleans, la. 77- 78 
Coaaandlng Gensral, U. S. Aray( Alaska, APO 942, c/o Post- 

master, Seattle, Wash. 79- 80 
Director, Operations Research Office, 6410 Connecticut Ave., 

Chevy Chase, Md. 8l- 83 
Coaaandlng Officer, Ballistic Research Laboratories, Aberdeen 

Proving Ground, Aberdeen, Md. 84-85 
Coaaandlng Officer, Engineer Research and Development Labora- 

tory, Fort Belvoir, ?a. 86- 87 
Coaaandlng Officer, Signal Corps Engineering Laboratories, Fort 

Monoouth, H. J. ^ 88- 69 
Coaaandlng Officer, Evans Signal Laboratory, Belmar, N. J. 90- 91 
Coaaandlng General, Arsy Chemical Center, Md.    ATTN:    Chemical 

and Radiological Laboratory 92-93 

NAVY ACTIVITIES 

Chief of Naval Operations, Department of the Navy, Washington 
25, D. C.    ATTN:    Op-36 94- 95 

Chief, Bureau of Ships, Department of the Navy, Washington 25, 
DC. 96-99 

Chief, Bureau of Ordnance, Department of the Navy, Washington 
25, D. C. 100 

Chief, Bureau of Medicine and Surgery, Department of the Navy, 
Washington 25, D. C. 101-102 

Chief, Bureau of Aeronautics, Department of the Navy, Wash- 
ington 25, D. C. 103-104 

Chief, Bureau of Supplies and Accounts, Department of the Navy, 
Washington 25, D. C. IO5-I06 

Chief, Bureau of Yards and Docks, DepartmBat of the Navy, 
Washington 25, D. C. 107-109 
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DI5IRIBOTI0H (ContlmMd) 
Copy lo. 

Chief of Naval Persozmel, Dapartaant of tfaa lavy, Waahlngton 
25. D. c. no 

Comaandant cf the Marine Corps, Uaahington 25, D. C. 1X1-113 
ConaaaDder-ln-Chlef, U. S. Pacific Flaat, Flaat Po«t Off lea, 

San yrancisco, Calif. UM 
CoTranander-ln-Chief,  U. S. Atlantic Flaet, Flaat Pott Office, 

Nev Tork, N. Y. 115 
President, Ü. S. Naval War College, Newport, R. I. 116 
Comaandant, Marine Corps Schools, Quantico, 7a. 117-llB 
Chief of Naval Research, Departaant of the Navy, Washington 

25, D. C. 119-120 
CoBaaander, U. S. Naval Ordnance Laboratory, Silver Spring 19, 

Md. 121 
Ccaanander, U. S. Naval Ordnance Laboratory, Silver Spring 19, 

Md.    ÄTTN:    Aliex 122 
Director, U.S. Naval Research Laboratory, Uaahington 25, D. C. 123 
Conoanding Officer and Director, Ü. 3. Naval Ilactronlca 

Laboratory, San Diego 52, Calif. 12U 
Caosianding Officer, U. S. Naval Radiological Defense Labora- 

tory, San Francisco 24, Calif. 125-126 
ToBiasndlEg Officer and Director, David Taylor Model Baaln, 

Vaahlagton 7, D. C. 129 
Cc-naarier, Naval Material Laboratory, New York Naval Shipyard, 

Naval Base,  Nev York 1, N. Y. 130 
Officer-in-Charge,  U.  S. Naval Civil Engiueerlng Research and 

Evaluation Laboratory, U.S. Naval Construction Battalion 
Center, Port Hueneae, Calif. 131-132 

Caanandlcg Officer, U. S. Naval Medical Research Institute, 
National Naval Medical Center, Bethesda Ik, Md. 133 

Cosunander,  U.  S.  Naval Ordnance Test Station,  loyokam, China 
Lake, Calif 131» 

AIH FORCE ACTIVITIES 

Assistant for Atomic Energy, Headquarters, United States Air 
Force, Washington 25, D, C. 135*136 

Director of Operations, Headquarters, United States Air Force, 
Washington 25, D. C.    ATTN;    Operations Analysis Division 137-138 

Director of flans, Headquarters,  united States Air Force, 
Washington 25, D. C.    ATTN:    ÄF0FD-P1 139 

Director of Requlreiaents, Headquarters, united States Air 
Force, Washington 25, D. C, UO 

Director of Researcn and Developaent, Headquarters, United 
States Air Force, Washington 25, D. C. ll»l-ll*2 

Director of Intelligence, Headquarters, Uaited States Air Force, 
Washington 25, D, C.    ATTN:    Phys. Tul. Branch, Air Targets 
Division 1^3-1^ 
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DISTRIBgriOg (Contlm»d) 

Copy Mo. 

Director of Installation«, Headquarters, United States Air 
Force, Washington 25, D. C. 1^5 

Asst. for Derelopaent Planning, Headquarters, United States Air 
Force, Washington 25, D. C. 146 

Asst, for Materiel Prograa» Control, Headquarters, united States 
Air Force, Washington 25, D. C. 14? 

The Surgson General, Headquarters, united States Air Force, 
Washington 25, D. C. 148 

Coonanding General, Strategic Air Coanand, Offutt Air Force 
Base, Bebr. 149-151 

Coonandlng General, Air Research and Development Coanand, P.O. 
Box 1395, Baltimore 3, Md. 152-161 

Commanding General, Air Materiel Command, Wright-Patterson Air 
Force Base, Dayton, Ohio 162-163 

Commanding General, Air Materiel Command, Wright-Pattereon Air 
Force Base, Dayton, Ohio. ATTN: Air Installations Division 164-165 

Commanding General, Tactical Air Command, Langley Air Force 
Base, Va. 166-160 

Commanding General, Air Defense Command, £nt Air Force Base, 
Colo. 169-171 

Commanding General, Air Proving Ground, Eglln Air Force Base, 
Fla. 172-173 

Commanding General, Air Training Command, Scott Air Force Base, 
Belleville, 111. 174-176 

Commanding General, Air University, Maxwell Air Force Base, 
Montgomery, Ala. 177-179 

Commanding General, Special Weapons Center, Klrtland Air Force 
Base, N. Mex. l80-l82 

Coomanding General,  1009th Special Weapons Squadron, 1712 G St. 
NW, Washington 25, D. C. 183 

Coonandlng General, Wright Air Development Center, Wright- 
Patterson Air Force Base, Dayton, Ohio 184-187 

Coanandlng General, Air Force Cambridge Researdb C«mUr,  230 
Albany St., Cambridge 39, Mass. 188-189 

Commending General, Ü. 3. Air Forces In Europe, APO 633,  c/o 
Postmaster, New York, N. Y. 190-191 

Commanding General, Far East Air Forces, APO 925, c/o Post- 
master, San Francisco, Calif. 192-193 

Commanding General, Air Force Missile Center, Patrick Air Force 
Base, Cocoa, Fla. 194 

Commandant,  USAF School of Aviation Medicine, Randolph Air 
Force Base, Randolph Field, Tex. 195 

Asst.  to the Special Asst., Chief of Staff,  United States Air 
Force, Washington 25, D. C.    ATTN:    David T. Griggs 196 

The RAND Corporation,  1500 Fourth St., Santa Monica, Calif. 197-198 
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ABC. Ort Mldfl«, T.nn., A2t0t$ 1^,,^ JcdnMH 

Cojy Äo. 

Chief, Aroed Force« Special Weapon« Project, P.O. Box 2610, 
Wa«hington 13, D. C. 199-207 

Coooandlng General, Field CaauuA, Anaed Force« Special Weapons 
Project, P.O. Box 5100, Albuquerque, H. Mez. 206-210 

Coonandln« Officer, Te«t Coamand, Arsaed Foroe« Special Weapon« 
Prc.lect, P.O. Box 5600, Albuquerque, H. Hex. 211-213 

0THEB ACTIVITIES 

Chalraan, Reeearch and Developaent Board, Departaent of De- 
fense, Washington 25, D. C. 2lk 

Director, Weapons Systea Evaluation« Group, Office of the 
Secretary of Defense, Washington 25, D. C. 215 

Executive Director, Coonlttee on Atonic Energy, Research and 
Development Board, Department of Defense. Washington 25» 
D. C.    ATT»:    David Beckler 216 

Executive Director, Comsslttee on Medical Sciences, Research and 
Development Board, Department of Defense, Washington 25, 
D. C. 217 

J. S. Atomic Energy Ccomisslon, Classified Document Roost, 1901 
Constitution Ave., Washington 25, D. C. ATTH: Mrs. J. M. 
O'Leaiy 218-220 

Los Alamos Scientific Laboratory, Report Library, P.O. Box 
1663^ Los Alamos, N. Mex.    ATTH:    Helen Challenger 221-223 

Sandia Corporation, Classified Document Division, Sandle Base, 
Albuquerque, N, Mex.    ATTN:    Wynne E. Cox 224-243 
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