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ABSTRACT

This report contains all the completed results obtain-
ed in connection with Project 1.9 of Operation JANGLE b
those working on Project RR 340-040, Contract Nonr 222-04,
entitled "Shock Waves in Solids", the report consists of
several chapters of which the first contains a general dis-
cussion of the work done and each of the following chapters
is a complete study in itself. The authors of the chapters
are as follows:

Chapter 2: Professor Morrey, Mr. Parzen, Dr. Lakness;
Chapter 3: Professor Pinney;

Chapter 4: Dr., Stonsham;

Chapter 5: Professor Morrey;

Chapter 6: Dr, Chambré.

Besides containing a general discussion of all the re-
sults, Chapter 1 contains a discussion (see Paragraph 1.3.2)
in support of our belief that the ground behaves like an
slastic solid at distances from the explosion corresponding
to values of the scaled distance (for definition, see
£1.1) which are greater than 4. The necessary mathematical
study has not yet been completed.

Chapter 2 derives the most general possible relation
between the st-ess tensor T and the strain tensor E which
can hold in an isotropic medium. It is assumed merely that
the components of T are single-valusd functions of the com-
ponents of E only. In -atrix potation (see $2,2 for nota-
tions, etc.), the result is as follews: There exist three
scalar functions @,(LM,N), ®9,¢  MN', cad @,(L,M,N) of
the strain tensor such that

T =¢(LMN) I + ¢ (LMN)E + ¢ (LMN) E2,

In Chapter 3, a theory is developed of a hypothetical
material whose mechanical behavior may approximate that of
soil. The material differs from an elastic material in
that a Coulomb friction mechanism is postulated which per-
mits plastic yield when shearing stress becomes too high
with respect to compressive stress. The material cannot
support tensile stress when dry. Rough corrections to
take into account the presence of moisture are given. The
theory is applied to one-dimensional problems of wave

vit
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propagation. An interesting result is that at a finite time
after the energy source cuts off, all motion ceases.

Chapter 4 presants methods, whith use the complex inver-
sion integral of the Laplace tranaforn, whereby one can ob-
tain the exact formal solution for the displacements in an
elastic half-space due to any arbitrary radial pressure-time '
distribution on the surface of a small finite spherical cavi- :
ty within the half-space.

Chapter 5 presents a derivation using methods of statis-
tical mechanics of the equations of mass-motion of a medium
which consists of a very large number of particles any two
of which repel ome another according to a given law of force;
the dogondenco of the equations on the law of force is ex-

R YN ¢

plicit ven. The equations are those typical of liquids
and gases the analysis suggests how the solid state
mnight arise.

In Chapter 6, the assumptions underlying the theory of
dilnnoional analyaia are reviewed and the fundamental Vaschy-
P1 Theorem is stated. Application is made to the
doto tion of the most general functional forms of the
peak values of soil pressure, particle acceleration, velo-
city and displacement.

viil
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GENERAL DISCUSSION OF RESULTS
1,1 PURPOSE OP A THEORETICAL STUDY

The purpose of this project is to develop a theory
of wave motion in the ground which will account for phenomena
already observed in large scale explosions and will predict
phenomena with reasonabis accuracy in future explosions,
Such a theory should also bs useful in suggesting further
experiments to increase our knowledge concerning ground
waves and their effects on structures, etc,

Reasonably accurate empirical formulas for the varia- et
tion with distance from an explosion of the peak accelera- eiead
tion, peak pressure, peak transient displacement, etc,, et
in the resulting ground waves wore developed by Lampson Jodoms
{7”]. The expressions for these quantities in terms of et
the distance from the explosion were all sums of terms of :
the form

a)\-d fﬁ%
where a depends on many sther quantities (see Chapter 6) .- -.
and A\ is the scaled distance defined by

A= r,/'*

in which
r is the distance from the explosion in feet and

W 1s the equivalent weight of chemical high explosive
in pounds,

Although the results of recent H.,E. tests hsld on the

Nevada site, as preported by Doll in [4], do not agree

in detail with those of Lampson, similar formulas seem to
hold, Predictions based on Doll's results and the use of
the scaled distance A\ were sufficiently accurate, izt
least, to enable those instrumenting some of the la*er teats
et that site to select instruments capable of recording

the data,

-1-
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In view of the existence of this fairly satisfactory
empirical theory, we have conceived of our task as the
deeper one of developing a theory of ground as a continuous
mnedium from fundamental principles, This theory would
correspond to the theory of hydrodynamics for liquids, gas
dynamics for gases, and elasticity or plasticity for solids,
The program would then consist in studying the resulting
equations to determine first whether the theory agreed with
experiment and, if so, to draw further conclusions of in-
terest, In particular, it might be possible to find out
wvhat the wave velocity and other similar constants depend
on and to determine the meaning of the measurements of
earth pressure, etc,

1.2 QRIGINAL PORMULATION OF OUR PROGRAM

Our contract (Project KR 340 040, Contract
NONR-222(0 ) ) began on June 15, 1951, The first few
months, before receiving any data, were spent by our group
in acquainting ourselves with the standard theories of gas
dynamics, hydrodynamics, thermodynamics, elasticity, and
one-dimensional elastic-plastic flow and with what theories
of 8s0il mechanics and experiments on soils could be found
in the literature, The material on soils was discouraging:
we encountered a great many widely divergent theories and
widely differing experimental results, However, the re-
sults of Lampson, to which we presently had access, were
more encouraging and had & more direct bearing on our problem
than had most of the preceding material,

After the survey of relevant background material
mentioned above and many discussions of possible important
areag of investigation and after a trip by the project
director to the Nevada site in September 1951, we decided
on the following lines of investigation:

l. An extension tc three dimensions of the present
one-dimensional theory of flow and wave transmission in an
elastic-plastic material,

2. A comparison of the results of this extended
theory with the experimental results of Lampson and of the
more recent tests,

3. An adaptation of the methods of statistical mechan-
ics to the deduction of approovriate mathematical equations
for flow and wave propagation in solls,
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ko, A study of the meaning of the "pressure” measure-
ments taken in the test,

It was rather evident that the fourth study above
would have to await the development of a fairly satisfactory
theory of soil mechanics,

1.3 GENERAL DISCUSSION OF RESULTS OBTAINED

Most of the results of our studies are embodied in
Chapters 2 to 6, In this section we shall discuss these
results in general terms and point out their relations with
our general problem. One incomplete result, which is not
discussed in any of the following chapters, seems to “e of
sufficient interest to be included in this section and is
discussed under paragraph 1.3.2,

1.3.1 The Elastic Character of the Ground

We believe that results in good agreement
with the experimental data will be obtained by assuming
that the ground bshaves like an elastic solid at distances
from the explosion corresponding to values cf the scale
distance ) which are greater than lj, We have come to
believe this so recently that we have not had time to write
up the rather difficult analysis in deteil,

We were led to consider this assumption after in-
spection of the data in Doll's report [4] when we noticed

that the earth pressures were very small and the peak

acceleration (in the first wave) varied like al =2 for
distances corresponding to )\ > 4, After a number of
unsuccessful studies of the equations of motion in an
elastic medium, we found that we could make use of the ver!
important recent work of Professor Pinney on "point source
problems in an elastic half space [13].

One of the problems considered by Professor
Pinney in that paper is the determination of the wave
motion in an elastic half space generated by the instan-
taneous injection of a small spherical hole at some point
in the half-space, He has determined exact formulas for the
resulting displacements on the surface, From this solution
one finds that if one inserts this volume in a finite time

-3-
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according to some law, one can find the resulting continu-
oud wave motion, A rough study of these shows that at suf-
ficlently lerge distances from the explosion the first wave
reach a station should be propagated beyond with little
distortion and that the amplitude should decrease like

aA=2 which is in accordance with Doll's observations,

0f course the ground is not strictly elastic near the
source but the waves sufficiently far out can probably be
thought of as having arisen from some equivalent point
source in & strictly elastic medium,

1.8.2 The General Stress-Strain Relationship

A first result obtained in connection with
the first line of investigation mentioned in §1,2 was the
determination of the most general relation between the
stress and strain tensors which could be possible in an
isotropic medium, These results are set forth in Chapter 2,
the only assumption being that the components of the stress
tensor in Cartesian coordinates are single-valued functions
of the components of the strain tensor only. The object
of this study was to prepare to generalize the present one-
dimensional theory in which it is assumed that the single
component of stress is a f{airly general non-linear function
of the strain, the function being changed whenever the rate
of change of the strain changes sign, However, in trying
to carry through the complete extension to three dimensions,
the difficulty arose of finding the condition corresponding
to the change of sign of the rate of strain, thLere being
8ix components of strain in the three dimensional case, We
were thus led to study other theories of placticity, such
as that of Prager and Hodge [14] in which the stress also
depends on the rate of strain.

1.3. 3 A Theory of the Mechanics of Loil.

These difficulties inspired Professor Pinney
to undertake to develop a theory from first principles,
Ti.is very interesting theory is presented in Chapter 3,

It is very difficult (see below) to check the agreement

of any of the known theories with experimental results,

If however the effect of the surface of the ground 1is neg-
lected (i,e, we assume that the explosion takes place very
far undoriround) the equations are greatly simplified,
Making this assumption, we found that a first draft of

o4
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Professor Pinney's theory yielded a promising agreemant
with the observed variation of peak acceleration with dis-
tance,

1.3.4 An Apirstional Solution for Displacements
in an Elastic Half-Space

In Chapter 4, Dr, Stoneham has generaliszed
Professor Pinney's point source results to the case where
the point source is replaced by a spherical hole of finite
size, Although the results are similar to those of Professor
Pinney, the methods are somewhat different and constitute
& valuable addition to our knowledge concerning the equa-
tions of elasticity,

1.3.5 A Report on the Work on Statistical Mechanics.

The method of statistical mechanics has been S
pursued by Professor Morrey with a view to developing from  ......
first principles a theory of ground as a continuous medium, Pl
Since the ground is actually composed of smell particles = ......
the method 1s not an unnatural one, Several writers on D
soil mechanics have regarded the ground as consisting of
small elastic spherical particles which exert a force uwpon =
one another when in contact according to a law daveloped o=
by Hertz [5)]. 1If this is done and the effecte of friction, :
distortion, and rotation of the particles is neglected,
the model cbtained reduces to the. of a system of point- R
particles (the centers of the spheres) roving according bolevi
to a central force law (the force between two particles o
being zero, of course, when the particles are not in con-
tact), This is a standard model in statistical mechanics,
This program has not been completed but some interesting
results have alrsady been obtained and many aspects of our
method of attack are new, Chaptor 5 constitutes a progress
report on this work,

------

In particular, a complete set of equations has been
obtained which involve the assumed central force law ex-
plicitly. The equations are those appropriate to a non-
viscous 1iquid or gas., However, the analysis gives a
strong indication as to how the method can be applied to
discuss the solid state, The results also suggest that
viscosity is definitely due to the finite size of the parti-
cles; viscosity terms can only be found by making a care-
ful study of the approximations made,

b=
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1.3. 6 On the Application of Dimensicnal Analysis to
nderground Bxplosions.

This chapter presents an informative and
careful study of the conclusions derivable from the ccn-
siderations cf physical dimensions alone.

1,4, IDEAS FOR FUTURE WORK

Our experiences to date suggest that further theore-
tical work be carried out along the following lines:

1, The completion of the study of Pinney's point
source formulas described in paragraph 1.3.1

2. Study of the equations of motion in an elastic
half-space with elastic constants varying with depth with a
view to the determiration of unde~ground effects,

3. A study of the significance of the measurements
of earth pressure, assuming the surrounding ground to be
elastic,

L. A study of the motion in a combined medium con-
sisting of an elastic half-space with air above it, in order
to determine the effects of air blast,

S. A study of Pinney's theory to determine effects
nearer to the explosion than the elastic range,

6, A completion of the study of statistical mechanics
along the lines presented in Chapter 5 and its extension
to include the solid state, mixtures of earth and air,
eto,, and viscosity effects; this might lead to appropriate
equations valid very close to an explosion,

-6-
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CHAPTER 2
THE GENERAL STRESS-STRAIN RELATIONSHIP

POR AN ISOTROPIC MEDIUM
2.1 INTRODUCTION

In the finite deformation theory of continuous media,
a8 developsd by Murnaghan, & general expression for the
stress-strain relation in an isotropic medium is given in
terms of an elastic potential, whose existence and general
functional form ies assumed (see [10), pp. 91-94; [16],
pp. 314-318). In this chapter, we derive such an expres-
sion which is independent of the elastic potentiai and
assumes only the existence of a stress-strain relation
given by a continuous function invariant under rotations.
The resulte of this chapter are summed up in Theorems

2.1, 2.2, 2,3, and 2.4.

2,2 SOME BASIC PROPERTIES OF MATRICES

This section is a summary of the matrix notions and
summation convention used in this chapter. For an elementary
exposition of the detalls of the results stated here, the
reader may consult Sokolnikoff, Tensor Analysis, Chapter 1,
Readogf familiar with these notions may turn immediately
to 2.3

A 3 x 3 matrix A 1s a set of nine real numbers 21

a1> @13 831 8 833 a3) a3y 833, called the com-

ponents of the matrix, which for convenience we write in
the form

%11 %12 %13
A= 1{ep) 8y 85y
®31 %32 %33

or, for brevity, write symbolically
— I
4 'l‘aﬂl,
Throughout¢ thls chapter we make use of the following
w7 -
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sumnation convention: 1if in a term a certain index occurs
twice, this is to mean that the term is to be s2ummed with
respect to that index from 1 to 3, Thus

8, bye= g%f 8., byas Cay X = 2%: Caw X (2.1)
ay " Y§ =) ar °rgr “ar &5 ay # » .
Given two matrices A = |[a,g|| and B = ”baa” , We

define their sum C = A+B and their product D = AB by, for
every choice of a and B,

d = b

L B; ap .aw' Yg*

ap ‘aﬁ * ba
Addition and multiplication of matrices obey all the usual
rules for the addition and multiplication of real numbers,
except that the multiplication of matrices is not commu-
tative,

Equality of matrices 1is defined as follows:

A =B if for every a and B, 8.8 = baB .
Multiplication of a matrix A ==||'aﬁ“ end a number )
is defined by:
AA = "caB” where c o = Aaw .
In the usual way we may associsate with the matrix
A = "‘ap" its determinant
10 Mon Sy
Al = |agg] =8, 8, 23
a a 8
31 32 33

Determinants obey the simple rule : |AB| = |a|[B]|

Matrices derive their importance from the fact that
they are closely related to iinear transformations of a

space coordinatizsd by coordinates (yl,y2,y3) into the

same space coordinatized by new coordinates (y'l,y'2,y13),
Such linear transfomations are defined by the functions:
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yl=a 3y (a=12,3) (2.2)

An especially important matrix
is the identity matrix, denoted by I, defined by

1 0 0

D=0t off = [lsal
0 01

where SGB is the usual Kronecker delta, defined by

l fora=2_§

SQB 0' for a £ B
I possesses the property that IA = Al = A for any matrix A,
The identity matrix is an example of a disgonal matrix,

A matrix A is diegonal if its components are such that
8gp =0 for a #p; 1i.e,

e, 0 0
A =|i0 8,5, o)

0 0 133

Diagonal matrices possess two highly useful properties:
lA l = !11 322 133
*11 %11 O Y
AB = 0 855 b22 0 = BA
0] 0 n33 b33

if B 1s also a diagonal metrix, with diagonal components
D110 Pops P33 o
If to a matrix A, we can find another matrix B such

that AB = I, then it may be shown that B is unique, and that
BA = I, We call B the inverse of A, and denote it by

A"l, The determinants satisfy IA“l =J/1A|. In terms
“9w
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of A"1 = “1;1 " , wWe could show that the y’s of equa-

tion 2.2 may be expressed in terms of the y'’s by the re-
lation

v=aly” (a=x1,2,3) . (2.3)
QY
Not every matrix possesses an inverse, but every matrix
A does possess a transpcse A = “ ’ﬁ" defined by a¥ ap =
#|
85, + It may be shown |a®%| = |a] .

A matrix A is said to be aymmetric ir 8,8 = 8pg for

every a and 8, or equivalently if A% = A, VNotice that an
equation involving matrices 1is equivalent to nine equations
involving numbers,

It can be proved that the condition that the linear
transformation defined by equation 2,2 correspond to what
we mean geometrically by a rotation can be expressed in
matrix notetion by the conditions

-1

A" =2 la] =1 (2.4)
For a rotetion we have by equations 2.2 and 2.3, since
a-l =% = 4
ar  aYy Ya'
|a= Y. = '7
y'i=a ¥y iy =a g (2.5)

There exists a very useful relation between symmetric
matrices, disgonal matrices, and rotations, To every
symmetric matrix E, there can be found a rotation C such

that CEC-l =E' is a diagonal matrizx,

Two matrices E and E' are called similar if they can
be transformed into one another by means of linear trans-
formations which possess an inverse, i,e., there exists a

matrix C such Shat &' = CEC-l, A numerical valued func-
tion of a matrix, f(E), is celled an invariant if for
similar matrices E and E', (L) = (kL

A very important example of an invariant is the character-
iatic polyncmial of a mastrix E, defined by

@, (E) = |E-x1] .
-10-
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If this determinant is expanded in powers of X , it will
be seen to be a cubie polynomial which we write

qJA(E)=A3-Lx2+xx2-N

where the coefficients L,¥,N are functions of E, PFor
similar matrices E and E' = CEC™L, Pi(E) = @,(E') since

|E'-a1] =]|cec-i- A1cc=1]| = |cEc=l-c A1c-1|
=|c(e- anre=1| = fc||&- a1] |c-1]
=|g- a1l .
Therefore

2= L(E') X2+ M(E') A - N(E') = ,x3-L(E) A2+M(E)A-N(E)

......

and since these cubic polynomials agree for all X\ , the
coefficients are equal:

L(R') = L(E) M(E') =¥(E) N(E') = N(E), o
L,¥, and N are explicitly given by, for B = "qu” ,
L(E) = 011 + 02? + 033

M(E) = o) e55-015 821) + {055 033-653 35} + (033 67;-05;019)
N(E) = ,Oaﬁ!

......

2,3 THE STRESS-STRAIN FUNCTION

Consider a continuous medium which 1s undergoing de-
formation, We suppose the body to be coordinatized by a

Carteslan coordinate system, For a given material point F
we let (ala2a3) be 1its coordinates in the initial state and

(x1x2x3) be its coordinates in the deformed state, We
assume that these coordinates are related by differentiable
functions:

xa - xa(alﬁapj) (a = 132’3)0

The point P has then undergone a displacement u, due to
the deformations, whose components are

-1l =
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u€ =ut(ala2a3) = x0(alp2p3) - a8 (@ =1,2,3), (2.6)
AS & measure of the strain associated with the de-

formation in the finite deformation theory we consider the
set of nine quantities

=} s >
ap [ + a0 ‘?:B (2.7)

s8

For the geometric and physical significance of the e4g

see Sokolnikoff, Mathematical Theory of Elasticity (McGraw
Hill, 19&6) PP. 28-32 The quant1t¥es eqp are symmetric,

1.0, 043 = 6gq , and thus they may be taken as the com-
ponents of a symmetric matrix E,

Let the Cartesian system (xl,xzx3) be transformed
into a new coordinate systiem (x'1 é x'3) by a rotation
matrix C = |lcqp| . Now it may be aho-n that the quanti-
ties e,p are the components of a covariant tensor of rank 2

({10}, p. 77; (126}, Pp. 291-299). This means that if P is a
material point at which the strain components in the old and
new coordinate systems are denoted by eaf and eaﬁ respectively,
then

b g
o! (111’112,113);= LN (xl,xz,x3) 2X_ ax*

ap 3x%  ax!
1 2 3
2 3
2y ®vs (%,x%,2°) °sa
since by equation 2,5
Y
ax - — % = -1
";J';'&' = Cay T %a ©ya

The reader may check equation 2,8 for himself by substituting
in equation 2.7

au'd . » u’ .
oa' ey Jab bs
We have shown then that if E!' = ”°&ﬁ‘| i{s the matrix of
-]l - '
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the strains in the new coordinate system, the following
relation holds between the strains in two coordinate systems

which may be transformed into une another by a rotation
Cs

E' = CEC™I, (2.9)

Next consider the set of nine quantitjes
TaB(a,B = 1,2,3) associated with the (xi,x ,x3) coordinate

system which it is known are sufficient to characterize the
state of stress at any point of the medium, Similarly let
T'ap be_the corresponding set of quantities associated with
the (x'l,x'a,x3) coordinate system, The Tgg may be regarded
as the components of both a matrix and a tensor, and we may
obtain an equation for the ThB similar to equations 2,8

eand 2.9 (([15], pp. 44-45):

Tap = %as Tap °ps (2.10)
T =¢ T o-1 (2.11)
where T = “TGB" is the stress matrix,

Now let us suppose that there 1s a relationship be-
tween the stress and strain matrices, defined by means of a
continuous matrix function F as follows:

T = F(E) (2,12)

By this we mean that every component Taﬂ of T is a func-
tion of the six independent components of E:

Tap = foplB) = faa(°11'°22P33ﬁ12923ﬁ31) (2.13)

To say that F is a continuous matrix function is to say that
each fgp is a continuous function of its six arguments. If
the ~sdium is assumed to be isotropic. then the stress-
strain relation must be invariant under rotation ([15],

p. 65)., That 1is, let P be a point in the medium whose
coordinates in a glven coordinate system are (xl,xz,x3), and
are (x'l,x'z,x'3) in a new coordinate system obtsl ned from
the given one by a rotation C, At P, let the strain and

stress matrices in the given coordinate system be denoted
by E and T respectively, and in the new system by E' and T

ol -
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respectively., Then
Tt = P(E') (2.1)
But by equations 2.11 and 2.9
t = crc~l =cp(E)c-1 = cP(c-1B'c)c-! (2.15)
so that equating equations 2.1 and 2,15
c-1r(E')c = P(c-1E'C),
We have thus shown the
Theorem 2.1 The matrix function specifying the stress-
strain relation (of equation 2.12) in an isotropic medium
must be such that, for any symmetric metrix E and any rota-
tion C,
P(c-1gc) = c-lr(E)C, (2.16)

The remainder of this chapter will deal with the prob-
lem of characterizing a matrix function of this kind,

2,4 THE STRESS-STRAIN PUNCTION FOR DIAGONAL MATRICES

We note first that F 1s completsaly determined by its
values for diagonal matrices, For to every symmetric matrix
E, there may be found a rotation C such that CEC-1 =D is
a diagonal matrix., Then by equation 2,16, F(E) = CF(D)c-1,
which establishes the remark made,

However, since for a given E, the rotation C may be
followed by another which carries s first diagonal matrix
into another with its elements permuted, the function F
for diagonal matrices must satisfy certain conditions of

symmetry.

For a diagonal matr'x

a C 0
E =10 b 0
0 0 c

woe have by equations 2.12 and 2,13

- l4 =
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P(E) = “faﬁ(a,b,c)u
It
o 1 o0 0o o 1
c=lo o 1 ¢cl=11 o o
1 0 0 o 1 o0
then
b 0 0 % Gp B
cec’r =flo ¢ o CRE)C™! =1 £3 £33 £y,
A f21 31 i
(2.17)

where f o stand for fop(s,b,c). Forming F(CEC'I), we
CP(E)C~1, Among the

squate it, component by component, to

relations we obtain are

£i1(b,c,8) = £55(a,
rzz(b,c,a) = r33(a,
r13(b,c,a) = tlz(a,
r23(b,c,a) = t13(a,
£5,(b,c,a) = t23(a,
f31(b,c,a) = le(a,
t32(b,c,a) = f31(l,

b,c) so f,5(a,b,c)
b,c) so r33(a,b,c)
b,c) so le(a,b,c)
b,c) so t23(a,b,c)
b,c) so f,;(a,b,c)
b,c) so t31(a,b,c)
b,c) so r32(a,b,c)

=f11(baca‘) (2018)

rzz(b,c,a) = fy,(c,a,b)

tlz(c,l,b)

t13(c,u,b):= £,5(b,c,s)

t23(c,a,b) = flz(a,b,c)

r21(c,a,b) = tlz(c,a,b)

f31(c,a,b) = tlz(b,c,l).

Thus in terms of rll and ’12 the function F may be represented

I£aptaeie)| =

Next, if

£1(a,b,c) flz(a,b,c) rlz(c,a,b)

rlz(a,b,c) rll(b,c,a) rlz(b,c,u)

tlz(c,a,b) flz(b,c,a) fll(c,a,b)

«lf=
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1 0 0 1 0 0
c ={o o 1 ¢c-l =0 o -1

0 -1 O] o 1 0

then

cec"! = jja 0 o 1, f13 T2
0 ¢ O CP(E)c™) = £13 f33 ~fp3]f(2.19)
0 0 b 15 T3 Ty

In the same way that equation 2,18 was ottained from equa-
tion 2,17, we obtain from equation 2,19

tll(.,c.b) = fll(..b,C)
£yo(a,c,b) = t13(a,b,c) 80 f13(a,c,b) = f,o(a,b,c)
tn(a,c,b) = -tlz(a,b,c).

We therefore infer about f that

12

tlz(n,b,c)== -flz(a,b,c),

so that .. = 0, and infer about r.. that

12 11

fll(n,b,c) = fll(a’c’b)‘

Application of other specific rotations gives no new in-
foruation, If we write f instead of rll we have proved

Theorem 2.2 If F(E) is a meatrix function of a
symmetric matrix E such that, for any rotation C,

P(c-iEC) = c-1Pr(E)C,

then for diagonal matrices

- 16 =
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“ia 0 off | f(a,b,c) 0 0
Pllo v of| = 0 f(b,c,a) O (2.20)
I_,O 0 ¢ ) 0 0 f(c,a,b)

where f 1is a function syometric in the last two arguments:

f(a,b,c) = r(a,c,b) (2.21)

2.5 A NECESSARY ARD SUFPICIENT CONDITION POR THE STRESS-
STRAIN FUNCTION

Lemma 2.1 Suppcse f{a,b,c}) is any polynomial of
degree n which is symmetric in b and ¢. Then there exists
polynomials f;(a,b,c) of degree less than or equal to i .
which are symmetric in (a,b,c} such that Somons

......

oooooo

n n'i A
f(a,b,c) = 7 f,(a,b,c)a ", o
i=0 ..

This 18 a special case of the theaorem given in [ﬂ ’ -
p. 132. In fact, since f{a,b,c) is a symmetric polynomial 208°
in b and ¢, we may write

f(a,b,c) = P(a,b+c,be)

oooooo

where P is a polynomial in these three variables [3],
P. 129. We note th-t

oooooo

b+¢c = L-a
bec = a(a-L)+M,

where

L = a+b+c
M = ab+ac+bc,

Hence
f(a,b,c) = P(a,L-a,a(a-L)+N),

By rearranging in the explicit powers of a we obtain
R YA
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n
f(a,b,c) = ¥ gi(L,l)n“'1 Q.E.D,

1=0
Applying this Lemma we prove the following

Theorem 2.3 Suppose the symmetric matrix T is a function
P(E) of the symmetric muatrix K, where the components of T

are polynomials in the components of E, and such that the
relation

cP(B)c-! =p(cEc™Y) (2.22)

holds for all rotation matrices C, Then there are poly-
nomials 9°(L,H,l), ?I(L,!,N), 92(L,K,N) in the in-
variants L,M,¥ such that

P(E) = @p(L,,1)I + @, (L,N,N)B + P,(L,N,N)EZ (2,23)

Proof: Suppose first that E is the diagonal matrix
of Theorem 2,2, then by Theorem 2.2 and Lemma 2,1

-1 0 0

4 = 2 £,(a,b,c) 0 po-1 0 (2,2)
i=0 L
0 0 P

where each f,(a,b,c) is a symmetric polynomial in a,b, ..
It is well known [3], p. 129 that each f{ can be written
in the fora

fi(a,b,c) = “Vi(L,?l,N)

L = a+brc, M =abtac+dbc, N = abe

and where "'1 is a polynomial in L,M,N, Also, from the
definition of matrix products

a4 o 0 a o o|™?
o v o ll=1llo » o
0 o of-! 0 0 =«
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Thus, from equation 2,2l
n -
P(E) = 2 ¢, (L,n,N)E>" (2.25)

One verifies directly that the diagonal matrix E satisfies
thoe relation

B - LE2 + ME - NI = 0

so that, we may express all the powers of E beyond the

second in terms of I, E, and Ez. Making this substitution

in aquation 2,25, we obtain for dlagonal matrices E, the
relation

FE) = @ (L,Y,N)I¢ § (LY, N)E+ P (L, 4, N)E (2.26)

in which q%, qﬁ, qb are polynomials,

But now, suppose E 1s any symmetric matrix, Let C

be a rotation metrix such that sEtc! = E, B' being diagonal,
Let L' ,M' ,N' be the invariaats for Z', thea by §2,2

L=L', M=u', N =N (2.27)

Also we note that

cre™t =1, cectl =5, cEnZ Y =(cerc ) (cerett) = 2,

(2.,28)
Hence we obtain the equation 2,26 for F(E) in general,

If in Theorem 2,3 we replace the word "polynomial®,
w-arever it occurs, by the expression "twice differentiable
and continuous function" then the theorem may be shown to
still hold, 1In its present form, the proof 1s somewhat
tedious, It proceeds by uniformly approximating P(E) by
poiynomial relations F,(E) for which by Theorem 2.3

n n n
Fo(E) = @ (LMN)I + @P)(LMN)E+ @ (LMN)E?. (2.29)

n n n
One then shows that the polynomials q%, 4&, ?b converge

to continuous functions @,, ®y, th, and equation 2,23
is eatablished, It is hoped that in a later report this
-
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work may be simpiified and presented,

Theorem 2.3 admits the following converse, which
follows immediately from equations 2,27 and 2.26:

Theorem 2.4 If F(E) is s relation of the type in
Theorem 2,3 equation 2.23, then it satisfies the relation

F(CBC~l) = cP(E)C-1

for all symmetric E and rotation matrices C,

......
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CHAPTER 3
A THEORY OF THE MECHANICS OF SOIL

3.1 INTRODUCTION

Static and dynamic stress distributions in soils are
important in geophysics, in civil engineering, and in

certain nther fields, Typ.cal oroblems occur in the theories

of building foundations, in earthquake theory, in seismic
explosions, and in the res'stance of structures to earth-

quake motion, In seismological theories of earthquake waves,

the earth is usually approximated as an elastic solid,
While this approximation is probably good at depth it is
questionable near the surface where the pressure is not

great, Moreover, as lndicatad by the Rayleigh wave phenomena,

the aurface effects are especially important in geophysics,
The purpose of this paper is to develop a theory which may
more closely approach the mechanics of soils than the
classical theory of elasticity,

It is, of course, hopeless to expect to determine the
individual behavior of each soil particle, and no useful
theory can involve such detalled knowledge, Our basic date
must be taken as averarss over many particles, and we are
limited to no more specific predictions than those of the
average behavior »f many particles, Roughly speaking we
will be concerned with distances of three orders of magni-
tude, Distances of the order of the dimensions of the
soil particles or less may be called microscapic, Distances
of the crder of the dimensions of the whole soil field may
be called macroscopic, Distances large enough that under
uniform conditions, stresses averaged over areas of these
dimensions have sultably small standard deviations may be
called mesoscoplc, For example, in certain soils, distances
of the order of hundredths of an lnch might be microscoplec,
distances of the order of {nches might be mesoscopic, and
distances greater than ten feet might be regarded as macro-
scoplec,

Experimental data will be mesoscopic because detecticn
instruments are mesoscopic, Our predictions will apply to
at least mesoscopic dimensions, The stresses we will discuss
will be forces applled to at least mesoscoplic areas, unlike
stresses in the theory of continuous media, where the areas
of application are allowed to tend to zero, thus defining
the stresses as point functions, Actually we will also

s S
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speak of stresses as point functions, but will really mean
average stresses averaged over some mesaosccplc area centered
at the point in question, Of course these may differ
widely from the actual stresses at that point,

It will be assumed that the soll is homogeneous in
the mescscopic sense, By this we mean that the particle
arrangements and particle size diatributions, etc,, obtained
from a series of samples of mesoscoplc dimension are the
same within sultably small devietions, The aasumption of
isotropy in a similar mesoscopic sense will ccnsiderably
simplify the theory, although a non-isotropic theory, simi-
lar to the elastic theory of crystals might be developed,
Mesoscopic 1sotropy will Le assumed in the present theory,

The hypotlLetical material discussed here differs
from an elastic so0lid in two particulars, First, it is
L assumed that the material cannot support tension, Second,
..... & Coulomb friction mechanism governing the internal particles
L e 8 is postulated in the plastic yleld conditinn equation 3,13
... and in the assumed form of the frictional loss of internal
T energy.

2, Heuristic arguments for the assumed forms are given,

) based on certain physical considerations, However 1t must
be borne 1n mind that at this pcint adequate exper imental
evidence does not exist as to the relative importance of
various plausible theoretical mechanisms in the mechanlics

of soils, All such theories =23 this are therefore tentatlve;
one is justified in developing them as long as serlous
conflicts between theory and experiments do not arise to
diminish their plausibility,

To save havine to rewrite a number of formulas and
to avoid breaking into the main line of argument, certain
corrections to take into account the effects of water in the
scill are developed before the theory of dry scil is developed,
The arguments employed are very rough--one mizht say semi-
plausible, The final results do not seem unreasonable,
Further experimental guldance is needed,

In § 3,2 a rough analysis of the effects of surface
tension in the soil wu*ter is civen, A similar treatment
of the effect of watsr viscosity is given in §3.,3, In

& 3.4, the c>ndition for plastic ylelding of the soil
is derived,

-22-
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3.2 WET SOIL - SURFACE TENSION

We will now supoose that a sufficlently large amcunt
of water has entered the soll to fill an aporeclabls frac-
tion of the air spaces between particles in a uniform manner
throughout the rezion of interest, Under these circum-
stances the connected bodies of water 1in the soll may be
expected to be of very much larger than microscopic dimen-
sions--possibly of macroscopic dimensions, for the cohesion
of water tends to keep thess bo~les from tresking up, In
such water bodies the pressure dues to surface tension will
be constant, It seems not unreasconable to assume this
pressure to be constant throughout the medium,

The pressure due to surface tension is given by
_ofl . 1)
p—T(ﬁ 'RE/ » (301)

where Ry and R, are the principal radii of curvature of the

water surface, and ars consldered positive or negative
according as the corresponding centers of curvature lie on
the water slde or the alr side of the surface, respectively,
T 1s the constant of surface tension and has the value

73 dynes/cm for water at 20°C,

Consider the water near a point of contact C between
two particles, The principal curvatures of the water sur-
face will be in planes roughly parallel to the plane of
contact, and perpendicular to this plane, The radius of
curvature, R}, 1n the latter plane will generally be small
compared to the other principal radius of curvature Ry, 80
by equation 3.1, R; 1s nearly constant, R; is roushly
proportional to the distance between the two particles at
the water surface, and this 1s roughly proportisnal to the
area of the cross-section of the water in the plans of

contact which 1is therefore roughly constant for all particles
large enough,

Since p 1is constant it would anoear that each suffl-
ciently large particie 1is subjected to roughiy the same
normal force in the rezion arcund each polnt of contact,
this force being roughly independent of the amount of water
present, Smaller particles would be completely lnundated
by water, but in this caso they may be consldered to be
joined to thelr nelchbors into a larger composite "particle®
which will be of tyvpe already discussed,

Statistically we may expect the Individual oarticles
-2 e
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to have numbers of points of contact with other particles
roughly oroportional to their surface area, Therefore in a
rough way, the forces due to surface tensicn acting on the
particles are statistically proportional to their cross-
secticnas, Therefore these forces per unit cross-section
area are statistically constant, and the effect of surface
tension is, according to these assumptions, tc add a con-
stant pressurs to the stress in the medium which is at most
weakly dependent on the degree of saturation of the soil

by the water, Applying dimensional reasoning to equation 3,1,
we might expect this pressure to be given by

where d i3 some sort of statistically derived distance
measurement, such as a mean s0il gralndiameter or something
similar,

If there 1s very little water present, or if the
soil is virtually saturated, these conclusions may not,
of course, be expected to hold, On the other hand surface
tension probably plays a minor role in these cases,

In practice p may be small. By equation 2,2, for
d=0.1mm, p =0,42 lb/ine.

3.3 WET SCIL - VISCOSITY

When the particles of the soll move with respect to
one another, the viscosity of the water may play a role,
To a lesser extent the elastic deformation of the particles
causes motion in the water even when there is no slipping,
and this motion may generate viscous forces, We shall
attempt a crude analysis of the effect of viscosity in the
water on the mesoscopic components of stress,

Consider the ligquid between two particles in contact,
When relative motion occurs it must be expected that the
1iquid in the immediate vicinity of .the points of contact
slips over the solid surface in a semli-sol!d manner, possibly
exhibiting marked internal turbulence, We will not pre-
tend to analyse the behavior of the fluid in this reglon,
but will assume that its effect can be accounted for by
modifying the Coulomb coefficlent of friction of the medium,

Outside this "Coulomb friction™ region we will assume
that the water flows as a classical viscous fluid, The
shearing motion and therefore the viscous effect 1s greatest
where the particle surfaces are nearest together, Suppose

-u-
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we consider the Tlow to be analogous to that between two
parallel plates when one is moving edgewise with a velocity
V relative to the other, In this case each plate suffers

& shearing atress A V/z, where z is the distance between
the plates and & 1is the coefficlent of viscosity of the
water,

We might use the expression ,uV/z for the viscous
drag in this case where z is variable, This is not a very
good approximaticn, but 1t 1s ernormously more convenient
than an attempt to make a very accurste analysis, This
expression probebly overestimates the drag where the sur-
faces are farther apart and less nearly parallel,

We will consider the case of a sphere in contact with
a plane, and will attempt to extrapolate from this case to
the general one,

Let the plane in question be the z = 0 plane in an
X,y¥,2 - rectangular coordinate system, and let the sphere
be of radius R and tangent to this plane at the origin,
Suppose the 'Coulomb friction™ region is a small circle of
radius a about the origin, lying in the z = 0 plane, Near
the origin the distance from the sphere to the plane is

r2/(2R) + O(rh/FB), where r is the distance from the z-axis

to the point in question, Accordingly we will approximate
the stress by

24 VR/r2 [ 14c(r2/R2)).

Integrating this from the Coulomb friction region to a
circle of radius R' about the origin, the total force is

P =Lwuve Ln(R'/a) [1+o(R'2/Ra)]

In general in a soil we will be concerned with the
rate of strain é = V/R rather than the velocity V of one
particle with respect to another, Then dividing F by the
area mRZ of a great circle cross-section of the sphere,

T = bus In(R'/a) [1+o(R'2/R2)] (3.3)

represents a shearing force per unit area of the sphere's
projection on the plane due to the viscosity of the water,

The quantity R' used in this analysis will be taken
near to the radius of the water surface if the sphere is
not immersed, or of the order of the radius of the sphere

-25-
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1f 1t 1s., It will be sssumed that a <« < R, If R' is not
large with respect to a it may be assumed that very little
water is present in the medium and that its viscous effects
will not be important, On the other hand if R'> > a, the
function fn(R'/a) 1s a slowly vary.ng fugction of its
argument. Both the effect of the O(R 2/R2) term ard a

correction for the error of our parallel plate flow approxi-

mation would tend to make the coefficisnt of L«é in equa-
tion 3.3 even more slowly varying than this, We will
accordingly maxe the extrapolation that in general the
viscous shear is given by an expression of the form

T=0Me, (3.4)
where M is & constant of the medium,

The meaning of this is that we will consider the
viscosity of water in the soll to be accounted for simply
by edding to our mesoscopic components of stress the usual
expressions due to viscosity in a continuous liquid whose
coefficient of viscosity is M,

M will be a constant for a mesoscopicelly homogeneous
and isotropic medium, However it will differ from one such
medium to another, It may be expected to depend on the
distribution of particle sizes in the medium and (although
nokstrongly) on the degree of saturation of the soil,

3.4 THER COULOMB FRICTION YIELD CONDITION

Dry soil is incapable of supporting appreciable ten-
sion, Accordingly the three principal stresses will be
assumed to be compressive and, according to convention,
will be non-positive, If one of these should become zero
at an interior point of the medium, the so0ill will break
apart, initiating a new regime,

Assume now that all principal stresses are negative,
Then any mesoscopic surface area supports & non-zero normal
stress, A soll differs from an elastic solid in that it
can sustain only a limited shearing stress on this surface
area without suffering permanent or plastic deformation,
e will assume that the mechanism of yielding and deforma-
tion are similar in nature to those of Coulomb friction

and will use physical arguments based on the idea of Coulomb

friction in justification of the ylelding hypothesis equa-
tion 3,13 advanced,

At any given point in the so0il the ratio R of the
-u-
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tangential to the normeal stress can be calculated with
respect to a mesoscopic surface area oriented in any direc-
tion, Ey varying the direction, R may be made to teke on
its maximum value R,., We will assume that as long as Ry
remains less than a certain constant k (called the coeffi-
ciont of friction for the soil), sliding does not occur,

and the system Is conaservative i, the immediats neighborhood
of the point in question. On the other hand, if R, grows

as large as k, sliding will occur, with attendant loss of
energy by friction, in such a manner as to keep R, from
growing larger than k., Therefore we have

k mey not be equal to the coefficient of friction
between any particular palr of particles, which may vary
considerably from one pair to another if several different
materiesls are present in the soil, It is a mesoscopiec
rather than a microscopic parameter,

uuuuuu

......

......

We will now calculate Ry, Let T;, Tp, T3 be the g
principal stresses at the point P of interest, and assume e
Ty €T < T3 <0, Establish a rectangular coordinate
system with origin at P and axes along the principal direc- '
tions of stress at P, Now consider a olane through P whose RIXRE
normal has direction cosines *ul,-vé,-v3 with respect to :

this system, From the tensor law of transformation of stress,
the component of force normal to this surface is .o
2 2 2 L
LU+ T7, +7;v; , N

uuuuuu

and the square of the magnitude of the total force 1is

Z 2 P4 2 2 2
Therefore P > > 2 2
Vv % Vv
R+l = 4 12+ ¥ g *l} }51 (3.6)
(¥ * 1,7+ T3V,
Moreover
1/2 1/2 £ '
1 + 2 + 1J3 —"'1 (30{)

FProm equation 3,6, equation 3,7 we may write
-27-
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RS + 1 = —Axe3yel (3.8)
(ax+by+1)

2 2
wherex:‘vlz, y::v;_z, A :T1/1'3 -1, B

2 2
wish to maximize this expression as a function of x and y
subject to the restrictions

x 20, y20, x+y¢l (3.9)

It is easily seen that JR/ 9x and 2R/ y cannot
vanish simultaneously except when 7T, = T,, 8 limiting
case we are not now considering, The maximum value of R
must therefore correspond to (x,y) on one of the boundary
lines of the region equation 3,9 in the x,y-plane,

......

IR Suppose x = O, Then by equation 3.8, 3R/ 3y =0 ir

oooooo

B(by+l) - 2b(By+l) =0,

giving ¥y = (B-2b)/(Bb) = '7'3/( T3+ T3), and, by equation 3.8,

.....

.....

. Similarly the meaximum value of R corresponding to
U ¥y =018 R= (T oW LT Ty,

Pinally consider the boundary x + y =1, By equa-
tion 3.8,

......

R2 +1 = (A-B)X+B+1 2'
[( a=b) x+b+1]

Then 3R/ 2x =0 if

(A-B) [(a-b)x+bs1] - 2(a-b) [(a-B)x+B+1] = O,
glving

x = [(A-B)(b+1)-2(a-b)(3+1)] / [(a-b)(A-s)]
and R = | 7;- TZ]//(Lm T, 75).

These three expressions for R have the same f orm;
- 28 =
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the greatest is that in which the two variables are farthest
apart, Therefore R, = |T;- 3|/Q’(h‘71 T3), s0 be equa-
tion 3.5

1-K T
mé—_;}'Sln
where 1

K = cos(2Xx ) = k/v (1+k?). (3.10)

For wet soil, the surface tension correction of ¢ 3.2
may be incorporated, giving, for p a non-negative constant,

-T
2 1-k , P
tanc ¥ = b Ty 4 < -P—‘-T% £ 1, (3.11)

The limiting cases T1=75 and T, = 73 give results
in agreement with this,

------

------

When p=-T T,
24 _ 1=K . P03 1 g2 yay tetee
tan X = m L. F:T:i 4 l, (3012) ;....
the system is conservative, but when
p- ‘r _ l-K _ 2 ....:
5:_?_% - m = tan< % . (3.13) ......

Coulomb frictional yielding may occur with atteadant snergy

loss, This condition is assumed always to hold during e
ylelding, although it may also hold in the transition be- a0
tween the elastic state and the ylelding =tate but just

before ylelding takes place,

3.5 THE MECHANICAL EQUATIONS

We will now derive the fundamental mechanical equa-
tions for our soil model, following the method of Murnaghan
with appropriate modifications,

It will be necessary to study the medium in both the ds-
formed and undeformed condition, A Iecﬁansular Lngrggiiln
coordinate system with coordinates a',a<,a’ will descrlibe the
material points of the medium in the undeformed state, and a
rec tangular Eulerian coordinate system with coordinates x4,
x2,%x3 will describe the material points of the medium in the
deformed state, The Lagrangian system describes events with
respect to the medium, and the Eulerian system describes
events with respect to a fixed reference system,

-a-
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We use mesoscoplc stresses, as defined in §3.1;
otherwise t?} definition of stress is the familiar one,
That is, T*J denotes the component of force in the direc-

tion of the negative xi-axis exerted ner unit surface normal
to the xJ-axis by the material lying on the side of this

surface corresponding to lower values of the coordinate xJ.
In this case, however, the surface element must be of meso-
scopic dimensions,

For brevity we denote A/ 2x% by A,,

In the strained state consider any volume V of meso-
scopic dimensions surrounded by a surface S, Let §xl,

§x2, 4§x3 be virtual displacements of the points of V as
measured in the x-system,

The virtual work due to the surface stresses over S is

Js (+ sap'r‘“ sxPaxPaxds § 7% sxPaxdax’s 5a57a3dx1dx2 )

al B a2
v 03 p 1 o) 3 (BQm)
+(6GET 6x),3dxdfﬂx
- Qo g Qo
jv(sw? dx),, av = SV(T §x,),, 4V,
where the summation convention is used and where
611 = 610_ éx‘r (3015)

I FI,PZ,P3 are components of external force per unit
mass, the corresponding virtual work is

[P 6x, av, (3.16)
P being the density of the medium,

Finally let §U desnote the variation in internal
energy per unit mass corresponding to the variations 6x1,

5:2, 5x3. By the Principle of Virtual Work,

5 [(T“"sxa),, + pFPéxq - ,o&U] av =0,
v

or
-m-

COMFIDENTIAL
Socority informotion




CONFIDENTIAL
Socwity intermstinn

PROJECT 1.9
fv [(T?: + pPC) §Xq + 7 Jxa)"r - p&U]dV =0 (3.17)

Rigid virtual displacements of the medium are character-

ized by
(611),5* (éxj),1=0. (3.18)

In particular, translations are characterized by

(5!1),3 = 0, (3.19)

Under a rigid displacement of the medium the internal energy
is unchanged, so §U =0, By equation 3,17, equation 3.19,
since &x, is arblitrary,

117 + pF' =0, (3.20)

ror

By equation 3,17 for a rigid displascement, using equation
3.20

af_.Ba ap -
JV(T » )(éxu),‘3 av + ‘fvT [(6xa),p+ (éxﬁ),a]dv 0

By equation 3,18, the right-hand integral vanishes, Since
(dx,) q 1s arbitrary we must have

? r N L (3.21)

That 1ls, the stress tensor is symmetric, as usual,

Equation 3,17 may now be written
J‘V [Tnﬂ ((S Xa),B = PéU} dv =0, (3022)

3.6 THE INTERNAL ENERGY U

The virtual change §U in the interna. enerzy is given
by

SU = SW+ SW' + gwW", (3.23)
where $W 1s the change in elastic energy, &W' is the

change in energy due to viscosity in the water, and §w"
is the change in energy due to Coulomb frictisn loss,

W is the elastic ensrgy of the body whsn distorted,
-31-
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and depends on the degree and manner of distortion of the

body, A measure of this distortion 1s obtained by comparing
the differential of distance in the strained and unstrained

states,
Let 48, and ds dsnote the differentials of length in

the undistorted and in the distorted states respectively,
Then

ds°2 =4,, da” daT , daz = 5chx“de, {3.24)
or
daoz =4, .. ‘Ta‘rﬁ dxudxa, d32 = éaax‘;xﬁ’? da”da’?. (3,25)
Therefore
as? - as 2 = 2 € gpax®ax® = 2 deae”, (3.26)
where
€y = 45 14- 5, ,0718]4), (3.27)
My =% (%a 2x¢ axP . 615) (2.28)
aal 2al

By equation 3,26

— T
€15 = Tor®1%,5 o

o2
= 3x0 2P ‘ (3.29)
1) 2 aaI aaj

The Juantities €4, and‘711 measure the distortion

of the body and are components ol the Eulerian and Lagrangian
strain tensors respectively, W may be expressed as a func-
tTon of the three Eulerian strain invariants 11’12’T3’ or

the three Lagrangian strain invarlants 31,32.33. where

| g% Kéyy | — %+ 111{2+121(+13, (3.30)

3

2
| g+ KEyy ) =K+ Ty W+ NI, (3.31)

These invariants are simply related, By equation 3,27,
equation 3,28,
-32-
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1 2x* axP
Tyt X 51J!= 8 | dap 3:1 321 - (1-2%) "13'

2

"
o [0

dap - (1-2%) 5440 'aa'B' ‘—a?

| 2xf

IxV

aaE

3| Sap + (1-200(2€ g5 5p)

Cp * 1T Sap
fore

Therepfrom equatlon 3,30, equation 3,31,
2
[,énlx?u-zx 41, % (1-2 )2

:(1-27()3

3 2 r
+J +J *J, = | 8X_
W IS 3 l Jak

+1 (1-21)3] )

Equating the coefficients of like powers of 1:?
.g.’.:_; ? = 1/(1-211+u12-813), (3.32)
J, = (11-u12+1213)/(1-211+u12-813),
Iy, = (12-613)/(1-211+u12-813), (3.33)

= [) -Il- - 0
J3 I /(1 21, 41, 813)
W is a function of J J J3, and therefore of the ‘713,

or by equation 3,33 it is a function of I,,I,,1 3 and
the refore of the eij We may write

sW=_9W g¢ .= 3N - .
9€qp S & e L

The operator § represents variation of a function
of a glven material point, It is therefore $independent of
the operators 3/9al, Therefore

1 1

-3 -
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Therefore by equation 3,28
r B a r r g
§7., =4 8g(5x ) 22X IX  , (g5xa) 2L 29X
Trr aﬁL LA v ae  zal

::i[(éxa),ﬁ + (.pr):a] _?___xa ___axB

26 3aT
On the other hand, by equation 3.29,
677' -5605.252 _..12-« eﬁ[(éxﬁ) ax ~2x’
oaY g oa” aa’

r
" lsax®,, 22X _333}

Q B

80

Segp = H[(82) 4+ tsxy) a} - 87T ey, (8x)

B,

Qo

B

- 50’7 Ewﬁ(éxf)'a

By the symmetry of the invariants,
Ju __ oW oW __ _ oW
%ap  PCpa ' lr 97,

so by equation 3,34

sw= _o% 2x% oxP
ey o8 24t (6%a),p

(3.35)

-| 2N - ao oW
"[ J€qap 28 ‘"—:‘zg;](éxa).ﬁ.

whor~ W ig a function of JI’JZ’J3 or of 11,12,13‘

dW' is readily available from text books, It may
be derived from [11;519.41), and iz g..en by

W =/ (8% _+ 6% )(sxg) 5, (3.36)

-3‘-
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where & dot above a symbol incicates differentiation with
respect to time,

FPinally we require an expression for SW*, Coulomb
friction in the medium will be assumed to be & linear func-
tio>n of the expressions on the left-hand side of equaticn
3,18, which are measures of the distortion of the medium,
In fact we will write

sW = (1/p )N ( §xg)q. (3.37)

where N9 1s s symmetric tensor, N2 =0 whenevsr equa-
tion 3,12 heles, By the Second Law of Thermodynamics,
SW' 20, so by equation 3,37,

NP §gy 27, £ O, (3.36)

.'I‘h§o f<8>m of Haﬁ will be considered more specifically in
3.0,

Substituting equation 3, 365-equation 3,37 into equa-
tion 3,23 and substituting the result into equation 3,22
we have, since (6xa),B is arbitrsry,

) 2l gt (3.39)
where
TiJ:paw _lé_?}é+l(airij+53'ii),
Yrv 8 oe 1 !
. (3.40)
oW io w o. 4 Jo. 1
='°(_375'5 - a9 % —g_e,: R Rt SRR T SO0

3,7 THE TENSOR T1J

W may be expanded in a triple Taylor series in I,,
I5,1I3, only a few terms of which need usually be used, To
terms of the chird crder we may write

PN =i + i(;\+2,a+37)112 - 2(u+¥)I,
+ 3O +W+ gr-ah)xl + 2(b-7)1I, + qly,

- 35 =
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Y, Ao, A ,h,q being constants, and AP, being the density
in the unstrained state,
By equation 3.30,
*
Il = ‘aﬁﬁ aB? 12 = *12 o ‘} 8“ g at Cp.—
- €2 63 ez (3.42)
12* 23" S C11€227 €22€337 €33¢€ 1
Iy = | € | ,
and
oI, 1y oI 1] la 3B
.—.a_.é.;; = & . -—S-E;-J- = 116 - & s Caﬂ,
(3.43)
a1
—% = e,
1)
whers EXJ 1s the cofactor of €, In , € ] . From equa-
tion 3.41 J 3
A oe - = [‘r-o-( A+7)Ip + (X +X+ %7)1124-2(&1-7 )12] 51d
J
i |
+2[,u+'r+(7 -h)Il:[ S ¢ 5”%5 + gE J,
o oW _ ia _JB
/oos G'r -—3_6;; = [’r+()«+’r)11] § § € ap
s20utr) s 50T B o,
T ap

dropping terms of the third order in the strain components,

The density ,~ 1s that of the material in the strained
satate, and p is “he density in the unstrained state, If

dV and 4V, are volume elements in the two state,
= av,

Jak
axY

\f

“herefore by equation 3,32,
-“-
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1,441,-81,) %2 (3.44)
P '.:Po(l"z 1"‘4 2743 ’ O

80
2
P =F(1-1,421,= } I +eee),
By equation 3,40
e 2 i
rif - [74- ALy #1314 +2hIz] s

2[a-eremn] s1o  3Be o qpld (3.45)

W

Ulus+r)glogibor €qe Epr + M( s¥al, Ji'\ii).

where I1 and 12 are given by equation 3,42, where ElJ 14
the cofactor of €4 in , eijl » and where the Bulerian
strain components are given in terms of the displacements

ui = xi - li (3oh6)
by
eij = 2 81#“?1 + 4 81,\1;'1 - iéaa\:?i u?J . (3.47)

Equation 3,47 1is an immediate consequence of equation 3,27,
3.8 THE TENSOR N1J

The components N1J vanish when equation 3,12 holds

and when equation 3,38 cannot otherwise be satisfied, However

in the yielding state they must be such f?nt equation 3,13
holds, 3ince there are six components N-J, it is clear

that equition 3,13 cannot determine them entirely, and that
more restrictions must be added,

At the present time adequate experimental informe-
tion as to the proper choice of restrictions does not exist,
On the other hand, how should one design experiments to
obtain such information? Experimentation without theoreti-
cal guidence usually proves to have concarned itself with the
wrong things, Usually it i{s not feasible to establish by
direct experiment what the proper fundamental postulates
of a physical theory should be, 1Its author must choose
them on some basis which seems reasonable, and must develop

- 37 =
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the theory to a point where experimental comparison becomes f
practicable, In this choice he may be guided not only by 3
such incomplete experimental facts and physical principles 3
as do apply, but also by the desirability of simplicity. ]
The simplest theories should certainly be tried first,

A theory developed on this basis not only tells the
experimenter what to look for, but often helps him form a
new one if it falls,

Accordingly we shall use an argument based on the ideas
of Coulombd friction to reduce the six unknown quantities
N1J to only one which may be determined by equation 3,13,
Prom the standpoint of simplicity it 1s highly desirable
that 'rij and ¥1J have the same principal directions,

At any given point in the medium construct the axes
of principal stress and let y‘,yz,y3 denote the corresponding
coordinates, Let Ty» Tz, 13 be the corresponding principal
stresses ordered so that Ty &« Tp ¢ T3 €0, By §¢§3.2,
3.4, when the material ylelds and T) < T, < T3 <0, slipping

may occur in the two planes whose normals have direction
angles %/2 + % , w/2, X with respect to the y!,y2,y3-axes,
respectively, When T; < Tz = T3 <0, slipping may occur
in any of the infinite number of planes whose normals have
the direction angle w/2 - X with respect to the yl-axis,
When 7T, = To< t3 < 0, slipping may occur in any of the
infinite number of planes whose normals have the direction
angle X with respect to the y3-axis, When T =T2 =173,
slipping doos not occur except in the singular cese T; =

TZ = 1'3 =p =0, This condition is encountered on the
boundary of a dry sand,

The ensrgy loss due to Coulomb friction is propor-
tional to the shearing stress in the plane of yield, We
will sssumes an equi-partition of energy among the different
possible planes of yield in each case, With each plane of
yield we may associate a tensor defined in such a manner
that in a rectangular coordinate system having the yleld
plane as one plane of reference, the only non-zero compon-
ent is a sheari.g component in that plane, the direction
of the shear being toward the principal axis of minimum stress,
Giving all such shear components the iame magnitude in the
various possible planes of yleld, N1) will be defined
as the sum of all such tensors,

w38 =
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The components of Nij in the principal coordinate
system of the tensor 113 may be expressed readlly, nil
has, in fact, the same principal axes, 30 we need onl
express the principal velues %;,N,,Nj of the tensor N J.

It is a simple consequerse of the tensor law of transforma-
tion that

Ny =H, Hy=0, Ny= -N (3.48)
when Ty< Tp< T340,

Ny =R, ;= 4N, Ny= -§X (3.49)
when T1<¢ 1) =T, < 0,

Ny = dN, N,= §N, N;= -N (3.50) .7

......

......

when T, = T, ¢ Ty ¢ O, where N 1s a non-negative factor

that vanishes whenaver equation 3.12 holds or whenever  : .-
equation 3,38 cannot otherwise be satisfied,

N is determined by means of condition equation 3,13. i .-
Let T),T,,T, be the principal values of the tensor ), :
i.e., the roots of the equation o N

|Tid - sy § =0 (3.51) S:f::E

cccccc

arranged in the order T, £ T, & T3. Equation 3,51 may
also be written

3. - =
P ®1r2 * @, -8 =0, (3.52)
where

® =l 122 4 133, (3.53)

pll pl2| 122 p23 33 31
®2 = | * + (BQSh)

p12 p22| |23 933 31 pll

- 39 -
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tll 212 913
®3 = |pl2 p22 p23 (3.55)
13 923 733 |,
Then for 1 = 1,2,3,

In csase Ty = Tp or T = Ty, the effect of N in
equation 3,49 or equation 3,50 is to bring T, and T,
nearer together than are T, and T4, If T, and T3 are al-
ready near enough together to satisfy equation 3,12 with

tl"tJ replaced by T;,T3, reapectively, then N =0. If
uot, N 1s determined by condition equation 3,13,

When T} < Tp < T3 the same process applies but with
one complication. Consider the quantities T; + N, T,,

T3 - ¥, which a e of the forms of Ty1,7T2,T3 , respectively,

when tho rogllo equation 3,48 applies, As N increases from
gero, ons of the two extreme quantities may come into
coincidence with the middle guantity T, before N grows

large gnough to satisfy equation 3,13, In this case the
regimepequation 3,48 will no longer apply, but either
equation 3.49 or equation 3.50 must be used to bring T,
and 13 near enough together to satisfy equation 3,13,

It appears that a number of cases must be analysed
separately, depending on the initial ranges of the quanti-
ties T1,T2,T3. All may be verified by straightforward

calculations to fit into the formula

Uy = Ti + '16 (3.57)
for 1 =1,2,3, where

+%§§po. ['1‘2 -31%3:2 - K (p _E;Sl)] (3.58)
%%E pos [ 33521 - Ty - K (P - 21;22)] ’

- 40 »
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f T4+T T,+T
- 1
2 [ T1+T T1+T

+-§-:-§ pos | T, - ?—1%22 - K (p - T—I-EB)J (3.60)

-

g T1+T T14T3) |
-%‘;Epoa ——2-}1 -Ta-K<p--—2—11 )J,

(3.59)

where by equation 3,38,

5 - .1 .2 .3
=0 1r ‘1“,1 + Mzu'z + !31.1.3 >0,

1 .2 .3 (3.61)
§d=1 1r "1“,1 + "2“,2 + H3u'3 <0,

If y',y2,y3 are principal coordinates and x',x2,x3
&re general coordinates, the components of the tensors
i) and T1J are given by

i j i b i 3
i oy, 29X ax0 ¢ 23X, X5, o -’3‘; X, (3.62)
s o ShAL S s - R fm
i =T1‘2111'L£% *TZJ'%'L%*TB"L;;J:?:- (3.63)
vt 5y oY ay Y 2

3.9 BOUNDARY CONDITIONS

Boundary conditions are imposed at the exterior

boundaries of the medium in the form of prescribed externally

applied surface tractions or displecemsnts, At the (in
general moving) interior boundaries between the conserva-
tive and ylelding regimes, the displacement components

u1 must be continuous functions of position and time,

In the particular case whern the exterior boundary is
free, acted upon by no externally applied surface tractions,

- 4§l -
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the compressive traction normal to the boundary is p, the
surface-tension pressure, Suppose x? is a rectangular
coordinate normal to the surface, 'Then by equation 3,62,

o () oo (35 - o (45

= T.'P = 0.

(3.64)

The medium cannot support tension greater than p, so
TP ¢ TP £ T3-P &0, (3.65)

The quantities 2x1/53}, 2x1/0y%, 5x1/oy> cannot
vanish simultaneously so by equation 3,6l ons, at least,
of the quantities T3-p, 7T2-p, T 3-p must vanish, In

particular, by equation 3.65, T3-p =0, Therefore
‘Tl-p = 0, for neither equation 3,12 nor equation 3.13

could otherwise be satisfied, Then by equation 3,65,
Ta=p =0
2 .

Theorem 3.1 The stress distribution on a free ex-
terior boundary is completely characterized by

or by
! :pg’"1 . (3.67)

Equation 3,67 1s derived from equation 3,66 and
equation 3,62,

Theorem 3.2 Whenever equation 3,67 holds, then

7l 4 122 4 933 = 3p, (3.68)
Conversely, when equation 3,68 holds, then

w1 =1l g (pom el ¢ (p-T,)EP, + (-1, >0, (3.69)

v1d - pgld ir <P°T1)"*f1 R <p-rr2>a§2+ <p-T3)a33 <0, (3.70)

Proof, By equation 3.63, T11 + 122 + 133 =1 4T ey,
-4 -
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To derive equation 3.68 from equation 3.67, note that
equation 3,67 is equivalent to equation 3,66, Equation
3,68 then follows by adding equations 3,58, 3.59 and 3,60
and substituting into equation 3,57,

Conversely, suppose equation 3,68 holds, Then

end

Tz-l'l_*z.!}-x(p-?_l;l)zu-x)(p-zgﬂ) .
T—]%E}--TZ-KG-S]-'}T}-):-(%K)(P-?%T}).

Substituting these into equations 3,58-3,60 and noting that
pos(x) - pos(-x) = x, we easily asee that My = -Ti+¢p,
quations 3.69 and 3,70 then follow from equations 3,57 and
3.61,

In the yielding regime the condition in equation
3,70 1s satisfied, It then follows that equation 3,68 1is
equivalent to equation 3,67, so that the boundary conditions
on a free exterior surface in the ylelding regime are com-
pletely characterized by condition equation 3,68,

3.10 UNI-DIRECTIONAL DISPLACEMENTS IN DRY SOIL

Possibly the simplest case to analyse is that in
which all displacements are in only one direction, say
parallel to the x-axis in an x,yz-rectangular ccordinate
system, and depend on x and t {(time) only, This case arises,
for example, when a rigid cylindrical container is filled
with soil and compressed by a piston at one end,

We take xt = X, x? = 5 x3 =z, By equation 3,47,

€, € = u, - % uxz, (3.71)

and all components of strain are zero, By equation 3,42,
Il= € , 12 = 13 = 0., Also gll = 0. By equation 3.&5,
since M = O,
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™ -y (N+2u)e + (XN+2) 62 ,
TYY =722 - % + Ne + AN el (3.72)

T X¥=732 = T77°% = 9,
where _«’z-(h+A+3u+27),

We are interested in compression only, so € <0,
Then for «“3 0 or for € sufficiently small TXX  TYVY
= T2Z, Therefore by equations 3,52-3.55, equation 3,72,
T,= %, T, = Ty =T =T1%%, Also, of course, T **

=Ty, TV = %% =15, ™ =19 =7%% =0, By
equations 3,57-3,61, equation 3,71, equation 3,72, since

p=0,
...... v = P[5y +0as20) € + OXv24) €2],
et (3,73)
mi Tt = B avecaeme v X
oar
K> "'[/“'-K(l*-/-')] (-€) +[-/4’+K(1'+/4’):| €2 >0
':- :' 0 (307“»)
: .:.S and € < O:
: .... . While
T =7 + (Ae2u) € + (X424 €2,
(3.75)
T” :‘rzz =YV + le + ):62
otherwise,

Equations 3,73,3.74 correspond to the yielding
regime, and equation 3,75 to the elastic regime, It will
be convenient to discuss the plane in which - 7** is plotted

as ordinate against - € as abscissa, Only the first quadrant
will be of interest,

In successive transitions from the elastic to the
yielding condition &nd bazk it will usually be necessary
to change the constants apoearing in equations 3,73, 3,75
in successive appearances of the same regime, It is clear

-““
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that at the beginning of the initial deformation of a soil,

1 =0 when € =0, so »* =0. On the other hand, for
later deformations when the soil has received psrmanent

set we must have » # O, Since the adjustment of 7>~ is
necessary in any case, since this is by far the simplest
constant to adjust, and in the absence of experimental
evidence to the contrary, we w#ill henceforth in the present
paper adjust only this constant, regarding it therefore as
a parameter and considering A, «, ), «° to be ccnstants

of the material which are not changed in spite of the
compaction of the material, Of course this hypothesis may
require modification when more 1s known about soil mechanics,
but for the present its simplicity recommends it,

In the (-T*X,-€) plane, the first of equation 3.73
represents a family of ylelding curves obtained by varying
the paremeter » , and the first of equation 3,75 similarly
represents a family of elastic curves, The second condi-
tion in equation 3,74 can only be satisfied if the point

(- 7*X,-€) is moving to the right in this plane, so yleld-
ing can only occur when this is the case, A reversal of

direction initiates an elastic regime, the point then follow-

ing the particular member of the elastic family passing
through the point where the reversal occurred,

However for yielding to occur it is not only neces-
sary that the point (- T™X,- ¢€) be moving to the right,
but also that the first condition in equation 3,74 hold.
We will now determine the part of the -7*%*,-& plane
where this condition holds,

Consider the point (-T**,-€). If this is on a
yield curve, the corresponding value of Y 1s obtained by
solving the first of equation 3,73, If this 1s substituted
into the first of equation 3,74 we get

T L (/) [Lul- €)-p- €)2] (3.76)

of
It follows that ylelding, described by the regimepequation

3,73, can occur only between the parabola

-T2 (1K) [l €)= €)2] (3.77)

and the -¢ axis, and only for points (-T*X,- ¢) moving
to the right, All points moving to the left, and all points
in the first quadrant outslde this parabola correspond to
elastic deformation, described by the regime of equation 3,75

- 45 =
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The case of practical interest is that in which

K cu/(a+u) or k &u /.,/[)\()HZ/A)] , (3.78)

in which, as will be seen later, the ssismic velocity in

the ylelding state is lower than that in the elastic atate,

In this case the elastic curves of equation 3,75 have, at

-¢ = 0, a greater slope than do the ylelding curves, A
typical situation is shown in Fig. 3.1. The dotted curve

is the yield limit parabola »f equation 3.77. The solid lines
are members of the elastic family of equation 3,75, end the
dashed lines are members of the ylelding family of equation

3.73.

Now suppose the end of the dirt column is rammed
& number of times, each time -1 XX being raised to a value
... T and then returning t zero, The stress-strain curve
'.eess f0llowed by the phenomenon zig-zags up and down in Fig, 3.2,
. «¢ tending toward the right-nand side of the yield limit
..ees parabola, and approaching the elastic line through
.: P(0,4/u’), where the yleld limit parabola meets the -¢

ceeee 8X1s, This model therefore exhibits the familiar behavior
% of soil when tamped to a more solid condition,

"% 3,11 A ONE-DIMENSIONAL WAVE PROBLEM

reles We may apply the theory of §3,10 to study the one-
teeece  dimensionsl transmission through a semi-infinite dirt
‘. column of a wave due to the application at the end of the

: ,: column of a force T per unit area for an interval of time
it ty, the force being then removed, For simplicity we will

s+ employ the linear theory obtained by setting X' =0, «'=0
in §3.10 and P = p  in equation 3,20. This implies
that the entire stress-strain history of the material re-
mains near the lower left-hand corner of the parabolic
ylelding region in Fig. 3.1.

The external forces are inertial: FX = -uy,

FY =0, F* = 0 in the coordinate system of $3,10, The
origin is taken at the end of the column, By equation
3.71 we may approximate

By Qquationﬂ 3.20, 3.73’ 3.75)
°2“xx - Uy =0 when u, >0, (3.80)
- 46-
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and
c'zuxx - Uy = 0 when uy < 0, (3,81)
where

2 = (n+2a)/ pg ©12 = (32 +2/4)(1+x)/[(3-x),o°]
(3.82)

Instead of the stress-strain diagram of Pig, 3.1,
we now have one like that shown in Fig, 3,3, where the

straight lines {of slope c'2) parallel to OP are ylelding

curves, and the straight lines (of slope c2) parallel to
PR are elastic,

In thiz problem the initisl compression of the medium
must correspond to a displacement along the line OP in
Pig, 3,3, carrying, say, to the point P, The following
decompression will be along the line PR, During the com-
pression the ylelding regime described by equations 3,73,
3,79, 3.81 holds, while during the decompressioa tne elas-
tic regime described by equations 3,75, 3.79, 3.80 holds,

Writing u = u(x,t) we may now give boundary condi-
tions at the end x = 0 of the column, During the interval

0 <t <ty,, -t* =T, corresponding to the point P, say,
in Fig, 3.3, The corresponding strain is given by equa-
tion 3,73, For t > ty, - v** =0, corresponding to the

point R in Fig., 3.3. The corresponding strain is given
by equation 3,75, In view of equation 3,79 we have

ug(0,t) = - T i.}% when 0 < t < tg,

3N 2
(3.83)
- T _ T -K +
ux(o,t) -— W B-irzz/—“— i when ¢t > too
In the yielding regime, the wave equation 3,81
holds, so the initial disturbance is propagated in the
positive x-direction with a velocity c¢', In fact, u=
fun{x-c't), By the first of equation 3,83,
= T -K .
u(x,t) + m %:K pos(c't-x) (308,4)
in the ylslding regime, The ylelding regime can be taken
- 48 =
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as holding until the decompressicnal wave arrives, This
begins at time ¢t = t, at x = x, and propagates in the

positive x-direction with velocity ¢, It overtakesa the
compressional wave at time t = t,c/(c-c') at x = tyec'/(c=c'),

Since equation 3,84 is linear in x and t, it suggest
that the elastic regime might be described in terms of
another linear function, This, in fact, proves to be the
case, The constants are determined by the second of equa-
tion 3,83 and the fact that u(x,t) must be continuous at

= cl(t-t,)., We have altogether,

U(X,t) - ETTW ;K (c't‘x) (3085)

when 0 ¢ t ¢ toc/(c-c') and pos [c(t-to)] ¢ x &c't, and

- T -K = ! ] o A '2 '2 (3086)
u(x,t) = mﬁx [1 %_ c't (1 9?)”%_ to]

when t, < t < toe/(c-c') and 0 <« x < c(t-ty).

In equation 3.85 and equation 3.86 u is plotted as
& function of x and t in Fig, 3,4. Here

t; = t,e/lc-c'), xy =c'ty, (3.87)

For t > t) the material is at rest, maintaining the dis-
plecement profile PRS it had at ¢t =t;, This profile then

represents the permanent displacement of the soil due to
the original impulse, For 0 <t <tj, x>¢c¢c't, u=0
in Pig, 3.4.

The energy imparted to the soil by the impressed
force has spent 1tself in the time t;. The deformation

of the soil due to this excitation does not penetrate be-
yond x =x3, A permanent deformation of the soil is left

which is a lineasr function of the distance from the source,
3.12 A GRAPHICAL SOLUTION OF A ONE DIMENSIONAL

Suppose the problem of & 3,11 is extended in the
sense that at the end x = 0 of the column a variable force

T(t) per unit area is applied, By plotting - t*X in three
dimensions against x and t, a graphical representation of the

stress may be made, The curve - TX* =7(t) is plotted in
the (- T*X,t) plane as in Pig, 3.5. Where this curve has
- 50 -
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a positive slope, the stress is increasing and the yielding
regime upplies inside the yleid 1limit paradbola, When this
curve has a negative slope the elastic regims applies,

When the maxima of T{t) are fairly low the segments
of the stress-strain curve corresponding to - T** =T(t)
may be approximated by straight lines with appropriately
chosen average slopes, The slopes of successive elastic
or plastic stress-strair curves in this diagram may differ
in different parts of the plastic region.

Impulses will be propagated through the medium with
the velocities indicated by the square roots of the slopes"
in Pig, 3.6, Let A,B,C be maximum, minimum, maximum,
respectively on the T{t) curve in Fig, 3.5. Impulses during
the compression regime 0A on T(t) will propagate with a

.... velocity equal to the square root of the slcpe 0A in Fig,
el 3,6, and will generate a ruled surface OAE in Fig. 3.5.
:..... Impulses during the decompression regime AB propagate with
------ the higher velocity equal to the square root of the slope
.0 of AB in Fig., 3.6. These also generate a ruled surface ABE
------ in Pig, 3.5, which intersects the first ruled surface
... OAE in the line AE, 1iwpulses from the compression regime
BC and from the decompression regime CD in Fig, 3.5 pro-
,,,,, pagate with velocitlies similarly obtained from BC and CD
%" 4in Pig, 3.6, and generate similar ruled surfaces BCFG or
: HJK and CDK, which intersect along a line CGK, 1In this
second case, however, there is a differonce, The parti-
" cular curve T{t) chosen for the diagram was such that part
2ei.i of the original compression was unneutralized by the suc-
's ceeding deccmpression, This reinforced the sec nd com-
pression, resulting in the superposition region FGJH which
is not a ruled surface,

------

nnnnnn

The horlzontal surface BEF is interesting and is a
result of the discontinuity in slope between AB and BC
in Fig. 3.6.

—52-
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CHAPTER 4

AN OPERATIONAL SOLLTION FOR DISPLACEMENTS IN
AN ELASTIC HALF-SPACE

L.l INTRODUCTION

In this chapter we shall develop general solutions for
the vibratory motions of an elastic half-space with given

boundary conditions in the form of complex inversion integrals

of the Laplace transform.

The solution will be developed in such a manner that any
type of pressure distribution may be given on the surface of
a small sphere below the boundary surface of the elastic
half-space. In the past, many considerations have been made

for a continuous harmonic point source in the haif-space where-
in final study is made of the complicated integrals that arise

in order to determine the various types of waves propagated
by reflection back into the half-space as well as along the
surface, In order that these procedures be of any value in
the study of explosive disturbances in such a medium, the
solutions due to a harmonic source would have to be formed
into a pulse by means of Fourier procedures. Due to the
complicated nature of the solution in the form of definite
integrals, this is seldom done.

Using the solutions developed in this chapter, one can
consider the effects in the half-space and in the surface
layer of a unit pulse function applied to the source below
the surface, or any other pressure-time function as applied
to the interior surface of the spherical cavity.

Professor E. Pinney, at the University of California,
has considered the same problem from another point of view,
His paper is soon to be published with a considerable amount
of numerical work which has been done by a computing project.

One should point out that in order to solve the boun=-
dary value problem exactly where the spherical source below

-55-
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the boundary surface has & finite radius, one must consider
the tertiary reflections from the spherical source. However,
we shall assume that if the spherical source is sufficiently
small we may neglect the tertiary reflections as being less
dominant features on the instument records compared to the
offect of the primary and secondary waves when measurements
are being considered fairly close in to the source.

Specifically, we consider the exact solution for any
pressure distribution on a small spherical surface in an in-
finite medium and show how generally this may be used to
solve exactly the problem in the half-space.

It is well known that if an elastic body is suddenly
loaded the body takes up a mode of vibration about the posi-
tion of static displacement whick the body would assume if
the load had been applied slowly. Therefore, if we have
chosen a unit pulse in the elastic half-space, we know the
displacements in the medium oscillate about the position of
static equilibrium. Therefore, we could solve the static
g:rt of the problem and know this part of the displacement

forehand; however, the general solution presented will
autcomatically include this term in the integral solution.,

4.2 STRESS FUNCTIONS FQR THE ELASTIC EQUATIONS OF MOTION
IN COMPLEX LAPLACE TRANSFORM INTEGRAL FORM.

If u, v and v are the rectangular compopents of dis-
placement in the x, y, and z directions respectively, then
the equations of motinn are (9]

2% = 2
e (u,v,w) = (N+A4) | 4 , 2,2 “(u,v,w)
Patz u,v [ax = O A]-&/'V

(4.1)
where €= density,

- U, 2v,aw ,
A 9x+ay+ = (4.2)

is the so-call>d dilation, ard
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the Laplacian operator. Let

u = (‘3—} +u') T(t)

v —(L?- +v') T(t) (he3)

v = g—% +w'> T(t)

where § =&(x,y,s) is a "stress function". Then by equa-
tion 4.2 we find

s =(w8&+8) TL) (hok) 00
wiiere o

foou! 1 "L)

A = %; + ?‘i + 38 (“os)

ooooo

For each component we have typically @ ... :
Pf;: (Fput)T(e) = (A9 W& AW T(t)r ¥ 3 T(thux* u'.T(t) T

and if we set A'= 0, then we find S
. L (>+%#)LL,_A‘_Z’1.+“ U (4.6)

where m is some arbitrary constant. Separating, we have

PT"HnZT =0, (4e7)
m real or complex, and
(Freat) 3 (a)
i (2*+¢%) w=0 'b) (4-8)
where
-7 -
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o = l a__m°
-q:::z;? and A= —

(4.9)

A particular solution of A' =0 , suitable for the symmetry
desired, is

u

'=g?-13£z y ¥ =

P ¢

2’ 2

_ 34
y WS g;¥+/s"gr

(4.10)

where ¥ = ¥(x,y,s) is a "stress function™ and equation 4.8

requires that

(a+p) ¥ =0

(4.11)

Finally, we may express each component of displacement as

.....

wu=(8 + ¥_ )¢
v o F )

w={(%+ Y., tr'¥ JT(t)

(4.12)

where T(t) satisfies equation 4.7, $(x,y,z) and ¥(x,y,z)

setisfy equation 4.8 (a) and 4.11 respectively, with o
and /3 defined by equation 4.49.

When we build solutions

which satisfy prescribed boundary conditions, we must rejuire

that u,v,w -0 for s - oo .
form for T(t) as

.....

T(t) = &5

then the solutions 4.12 can be written in the complex
inversion transform as

1=

Yy -

1
2mi
1

2n4

4
2ni

‘n»i/‘.st [Qx*?xz ds = L-l( - "P“_ )

St

? r-ip

1lim J.N‘ﬂo't [ §§ * Y}z ds = L-l( !3 + Y},)
3 oo y-i —

lim
Are I
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where ¢ (x,y,s,8) and ¥ (x,y,s,s) are continuous differen-
tiable functions of &, analytic in the half-plane Re(s)> ¥
expressed in terms of its values along the line y-ig—~>> + i
forisge siitable fixed » . The functions & and ¥

satis

(v- %2) 8 =0 wd (0~ 2)y=0  (ha5)

where we have introduced

e =V E° V= & (4.16)

ve = velocity of the compressional wave and Vg = velocity
oi the shear wave, Incidentally, since
2
x=p (v -2n})
and o,\ >0, we concludle e
',:,J-—‘; >V 2. (4e17) o
In particular, we find that B
1 T -l 2
— e——— ."L st 2 o~ esmsume °
A = pl_”o =3 j' %t s $ds 2 (s“ ®) (4.18)
Y-ip c
Since the stresses are _
T,, = NA+2 4 Fa m [y A i
xx J x (T,g A (a‘} '*3’ ) Banood
To.= AA + 24 2 )*' = dar 4 Jasr\
1 7y Z T T ) (4.19)
- dar = P
Typ= M+ 2 22 Tox /“(3%4-5’_;_)
/

we calculate and find
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G [ s Z (20 8)])
§r”=r'{r~: B+ 2 ;;_‘I (8 + *f;)]} (4.20)
(st M g von 2 (209)- 228 1] ]

:z,«l.'{j-%' (% + q,)g

FRIEF-AC AR SR

~

o 3 X (4.21)
MR SRS CRS ALF B M)
.; which
;i Then for scme type of boundary conditions have stresses
_.: thatare prescribed functions of time, we write
o 7. =1L1" Qf(s)} - L 1w fm St £(s) ds. (4.22)
3 o ¥ 27y s> 00 .
RO -iB

The function f(s) will therefore be determined by the bon-
dary conditions on some portion of the elastic medium. ‘o

' complete the solution wa take linear combinations of the

fundamental solutions of equation 4.15. The coefficients

:..:.s of these linear combinations are determined from the boun-

dary conditions using equations 4.20 and 4.21. These

' coefficients are replaced in equations 4,20 and 4.21

and we have the complete solution, Let us consider in some
detail the case in spherical coordinates where the essential
coordinave is radial.

4.3 RADIAL MOTION

In this section we shall develop the solution for the
case of an arbitrary radial pressure cn the interior of a
small spherical cavity in an infinite elastic medium, In
particular we shall derive the solution by the method of
section 4.2 for a unit pulse in the spherical cavity. We
have basically,

_ 20 2U (4.23)
A= Syt 3
with U(R) = radial displacement,
-~ 60 =
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the strains and the stresses

—(7\+2/<)

+ 2)\‘9
R

=320 U
T )‘JH + 2()+/u)-i 5

The equation of motion is

P

Fv _
Ittt

and if we set

2 ®
dR

then R*® satisfies

e :Ei (R ®) = ()'*17“

Let us set

Re®= ,_,,1/91- j

Then equation 4,27 gives

or Q(R) satisfies

If we take the aolution

then we find

(M +2x) % (4)

1 i
..-.-"'R SR%(R. @) ’

2

2R

(R ®).

O [a(r)]

- 2
Ll[szQ-vg dQ]?—”O ’

g

dr2

Q(R) =

Ve

ar?

Q =0 .

" e Ve R ’

- 8l =
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(425}

(4.26)

(4,27}

(4.28)

(4629)

(4.30)
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U(R,t) =L~1(AF, + BP,) (4431)
= 5 = 11 (ar, + BF,) (4.32)
R 3 b *
vhere
rl=_§"‘(' ';!:’c-i ), P, = iqtf’"“"(":ﬂlé -4

(4.33)

-9 2 _ g2
Sl C A NN S 5

In order that we consider only progressive waves, we take
u(R,t) =1 [B ) (434 )
and
—_— 2
Ty = L[ 2. Br s -.581'2] . (4.35)

If we take the pressure function in the form
p(e) =17t [f(s)] (4.36)
then for R=a, some initial radius, set

T.n = =p(t), for t>0,

RR
=0, for t<0 ,
and so
-L‘l[f(a)] o [()\ + 2,u)BFh(a,a)+3-%- BF,(s,a)
or
B = =f(s)
()\*Z,u)!'“(s,l)-r-iz Fz(ﬂ’a) (Le37)
hence, finally
-2 =
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U(R,t) = 11 -f(s) Fa(s,R) .
(At ga)l",’(a,ah .2% F,(s,a) (4.38)
=0 t¢0

In detail this solution is

2 (t-B=2)
- v.a3(Rs +v,.) .a -W',! f(s) ds
U(R,t)-z—%g.?"j c ¢

t>0
r_‘,pnz [()+ 24)(a8)? + hun(as) + k,anﬂ ’
(4.39)
We see that these are progressive waves out from the sphere.
If we set
p(t) =17 [ po/s]
then

p(t) =po ’ £t >0
:p°/2 , t=0
=0 , t<0.

Using thie form of f{(s) in equation 4,39, we find for a unit
pressure pulse,

u(g,e) =B [ ()22 (8] % omn ({-n e san ) (bl

+ "'—3—'"(” o =" Tain :.E)‘Lr,] >0
R a
=0, T<0
-63 e
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vhere
‘Z':t-'("n':‘l, 7:——.—; Y = J-LZ"___
'c f l+l— ) A 1+ A
am 24
(bok2)
and Y
5 =2 \/l+%—
% (4eb3)

We sees that the total displacement consists of three terms

one static and two oscillatory. The first decaying as 1/Rb
and the second as 1/R. If we assume that a is small and R

fairly large, then the dominant oscillatory term is

2 -
U(R,t) =8 Po : % AR Ty 7, T30 (bukd)

%«]H—}&

=0, T<0 .

We observe amplitude <L , pressure, area of cavity,
1/rigidity of medium, frequency =(v, ¥, /2wa)cc, velocity
of wave propagation, l/radius of cavity, and if N =4«
the damping is high, hence the motion is in the nature of
a pulse of duration

vo v
At:%%.-:c , fe=3 .8 (keh5)

bLelp EBLASTIC HALP-3SPACE.

From the spherical case, we have for any pressure
time distribution at R=a, the radial displacement

-1 -1 ~8/W: )R
U(R,t) =L""[BF,] =L [Bﬁ (_sT_" )] (4od6)

In eylindrical coordinates, this becomes

u, = Eﬁt, w = E‘iﬂl (LohT7)

- 64 =
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for Myu disturbance located at s= -d with
R= + (s4d)%. For a spherical disturbance located at

gz=d, we have analogously

- U = U'{g-
U= S v, = (ho48)
where R! - I/rz-s-(:-d)2 and U'(R,t) 4s a solution
like esquation 4.48.
If we combine the two solutions, we have
) 1 - -
[ B (ugruy) v 2o (o) | =T =0 (k.49)

at 3=0, or this means that we have zero shear stress froa this
If we forx the cylindrical components of dis-

sum at g =0,
placement, we have

- 8/ )R-
weuit g & (B
and
_ -(8/h, )R]
o =vt[s ey ()
Noting that
A S B2

equations 4.50 and 4.5]1 may be written

-1 [. - S, R
= 2 /o
u, L B Fr (Rg) ¢
and E .‘1
R | -Y~ R
wo =L B ;ii (S ¢ )

(&.50)

. (h.51)

(ho52)

(he53)

(454)

From Watson's Bessel Functione Dﬂ using p.416, 13.¢7
equation (2) and p. 80, 3.71 equation (13), taking u=o,
y=%, a=(z+d), b=r and z=8/v,, we have

-85 =
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~(2+d) e

e Jo(7r)d73 (2+d) >0

XY @
£ =)

Y

°

(4.55)

where o = V%*+ Y42 . This integral is clearly
uniformly convergent. By differentiat.ing under the
integral sign, und using thigz in equations 4.53 and 4.%54, we

have
— ¢=1 0 i ~(x+d)a
u, =L [-B jo Z e T ('l')‘{’[] (4.56)
and (2¢d)>0
_ ..1[ =2 - (z+d) o }
w,. =1L -B (4 (l#057)
0 fo 7 &, (gnd7y
For the image located at = ={ , we have similarly
- * _ld-2)
S - ("l")d"l] (4.58)
and (d-1)50
w =17 |8 J’w e ¥ g (4.59)
1 - Fo) 7 °(7r)d7 )

where we have chosen B to be of the same form for
equations 4,88 and 4.39 as in 4,56 and 4.67 in order
that 4,49 be satisfied. In cylindrical coordinates,

we must have zero vertical stress at z = 0. Explicitly,
this reauirement on the displacements is

b

(v =2w2) (32 + #)e v 22 =0 (4.60)

d2

Let us take the displacements given by equations
4,358 through 4.59 and combine with

S Y * A a2 . ]
=1 |5 [ AT e (4.61)

- 66 =

CONFIDENTIAL
Secarty ifarsaton




CONFIDENTIAL
Secartty intorustinn
PROJECT 1.9

el oo
w, =L [B J; 7 C(’7)c‘l J,('yr)d?]

where o = \/'7",‘.5! , A=yt f,fl and A and C are functions

cf which we shall determine by equation 4,80 in order that we
have zero shear stress and zero normal stress at s =0. Physi-
cally, this amcunts to assuming that when the primary cospres-
sionai disturbance, originating at the sphere, impinges on
the surfzce s =0, ic gives rise to waves of the compressional
ag well as shear type. Now we determine A(%?) and C{7) so

that

u=u°+u1+n2 ’ o ::'°+'1 +'2

are displacements which produce zero shear 7., and sero
vertical stresses at s =0, Having dcne this, we obtain the
formulae valid for is) < ¢

=1 had -
ulr,3,8) =L [B Uo 2 £ (andq
= ) (k.62)
2 ~d(red
-, F a0
/31 -ad

g d
~+ A @7 )

=0

and t< 0

O oo
=it B[ T e o
0

T F T 3 Jo("[")d'? (1.63)
Lk.63
_jwf et 7
5 T ');(7")47
_ fw _,,a.(z.#—d)
o 7€ J;(”?")d'yz:] ¢ >0
=0
t <o

-67 =
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where
_ 1 a _ bl
P(7) = (17 + ,\—f:() e 5", {4.64)
f(-y?):(-l‘?l*' :\"—:i)-}qd’ﬂ‘?l'; ('0065)

P =V .

We have assumed here that the initial function f(s) is so
chcsen as to represent some impulsive type of pressure on the
spherical surface. The squarec roots are taken positive whenfy
is ¢ and positive. We can show by differentiation that
these displacements are derivable from the stress functions

and

&= J; ‘_:{L Cosh au.‘c"‘dj;(,?,.)d?

oo
= 4 T o o (2d) (l#066)
J; -;‘1 ( ? :/S})/ 3‘) e J. (7 ") d 7
and 1 (4.66)
‘!' - = a /‘31-“‘ (‘&067)
J;) 7 (‘7 "i}‘)c I, (7rydn

Equations 4.62 and 4.63 give the exact solu*ion for the
displacements in an elastic half-space due to the application
of an arbitrary radial pressure-time pulse on the surface of
a small spherical cavity of radius a imbedded in the half-
space a distance d from the surface. Previously, solutions
have been given for a unit pulse in the elastic half-space
considered as the instantaneous injection of a small volume
in the medium. However, using this solution to build an
arbitrary shaped pulse would require further integration
procedures. ith the forma given here an arbitrary type pulse
can be initi g given on the surface and is expressed in the
operation L~ R . 3pecifically, we have for the
surface displacements, plafing =0,
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=1~1 -3 -
wroel =t [B ?(f i ( "fv)) “J.C‘z')"l}], ¢>0
=0 (‘a68,
= -1 oo t <0
w(r,0,t)=1L [B% amk, S -asty \ -ad
j\ca ( [ f’?) (’Vg‘ F(‘?\)e J.("?’)d'zglk.69,
=0 t>0

t4L O

These may be written with only J ("z r) appearing as

-1 d oﬂ-‘ _3¢d
u(r,0,t) =L [B {TI _:,{?./ as jZ).a.d
Fd, XF) ¢ S (9nd
7 A% ! 731”"(4.70)

=0

and > the
0,t)=1" Bg' 7 (192 j.f.) 257 -

w(r,0,t) [ A (“? " oad) | TR )€ J(7r)d7§j’ ’ ”?k -

=0

s t<O
In these expressions
1y\2 o

FQ) = (27% 35) -yt 35 - /77 A 70 (k.72)

which has bran ints at 7, = (% v, 7,=(%/~3 /and a
pole 7%= (-sg/v,g)(l 08762) for )\_/q . Lamb h/u lhm for

G(m) = (2m2-k2)2-4Vn2-h2 o m2-n?

that G(m) is a cutic in m%/k® and if h and k are real then
we have one essential real root and two extraneous complex
conjugatea. These last two roots make no contribution. If
we write

6(1m) =(20%k2)? - Wfok? «Vath® . a2

then for the case on hand, we ident.fy k =8/v., h =8/v,,

im= ard F(%)=G(im). 'We have therefore :5 consider the

evaluation of the integrals around a suitabiy chosen coi-
-89 =
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tour enclosing the three singularities. From this integra-

tion with respect to;z , We obtain functions of s euqlr only
when we &re at the surface s=0. Then by appiying L™ éo--
we introduce whatever type c¢f pulse we would consider. Evalua-
tion of these integrals rst remajins and this is to be done

at soae future time.

- -

COMFIDENTIAL
Socurity informetion




CHAPTER 5
A CLASS OP CENTRAL PORCE MODELS IN STATISTICAL MECHANICS

5.1 IKTRODUCTION

The object of this chapter is to study carefully the
particular class of models in statistical mechanics described
in § 5.2 with a view to deriving the equations of the mass-
motion of the particles of the system considered as a con-
tinuous medium, The resulting equations constitute & sort
of theory of hydrodynamics corresponding to the given model,

Since a finite system of particles is not a “continu-
our medium®" some way must be found to pass from the discrete
to the corntinuous, The method of this chapter is to con-
sider an infinite sequence of particle distributions in which
the number N of particles becomes infinite, Of course as
N i{s varied, the laws of force acting between the particles
must be adjusted In order to preserve the important character-
istics of the system; this is done by choosing the potential
$y(r) (r =dlstance) of the N-th force law to satisfy

where K is a constant having the dimensions of the square of
velocity and

H'—'Nmn, nN::.DG' .

M being the total mass, By the mass of a single particle,
D a czonst¢ant having the dimensions of & denslty, oy &

scale length, and &(p,) is a fixed function, K,M,D, and
P being independent of N,

The particle distributions are handled by considering
the Fourier-3tielt jes transforms of the distributions of
mass, momentum, and energy which transforms have desirable
continuity and differentiability properties in the trana-
formed y-space, Some very interesting theorems concerning
the existence of the limits (as N —» oo) of these transforus
which vary contInuously with time also zre proved In

-7l =
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The remainder of the chapter is devoted to the determina-
tion of the equations satisfied by the limiting distributlions,
These are seen to be the Fourler transforms of the desired
equations which are as follows:

.1
+ 1 =0
Pt Px"

- =a

=a
ut+u uxﬁ«fpxa::o, a =1,2,2

+ T +-l(a+ﬁa)“0
e\: E‘J\:‘l e qxﬂpxa-

in which a repeated Gresk index in a term indicates a summa-
tion of all the terms obtained by letting the index run
from 1 to 3 (see also § 2.2; we use this summation con-
vention for Greek indices throughout this chapter), © is

the density, uI,Ee, and U3 are the components of mass-velo-
city, £ is the internal energy per unit mass, p is the
pressure, ql,q2, and qJ are the components of the heat flux

’ [ H S — ———
vector, all bei:g functions of the time t and the rectangular
coordinates xl, ,x3. The following relations also define
p and q% in terms of the other functions p, G%, and €

and the constant K and the function § entering into the
force laws of the model:

= (/) §u [e-8(p)] /3 + Kol /m) /]

q¢ = ( pu%/2) {S [e—a( (o)] /2 + KpPA(E/K)/D + KpeC( €/K)/D
-2p/p -ZEZ

where A(s), C(s), and B( ) are functions determiized by
the force law and

A(s) = ln LO:Z $(w) exp [-33 §(')/2] dw,

C(s) (ku/B)j -’ $'(w) exp [—33 é(w)/Z:} dw;

we have not determined the explicit form of the function
B(L ) but believe that it is given, at least for convex
functions § , by
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> 2,12, 72 ¢ t
B(p) =K 2 $|(J2+kC+ e+ sk+ 3{+kf) (3FD/hw o)
Jokolz"‘”

where P is the numerical density of the densest packing of
spheres, i.e.,

F=V2 [3 Arc cos(l/})-!] , 3P4 = ,186128,

We have also determined the form of the density function
for the distribution of coordinates and velocities as follows:
=3/2 i - 2
n(t;x,u) = e(t;x) - [B( E,pe)/n] / exp |-B( £, @) |u-t(t;x)| ]

b

where

B(E,p) =3/ [e-8(p)] .
We note that

oo

S w(t;x,u)du = p(t;x), S

- 00 -

oo

cg“w(t;x,u)du =peu .,

The explicit forms of the functions p, q%, A{s), C(s),
and 7 were obtained by making a series of assumptions which
are set forth and underlined at various points in the deri-
vation, Most of these assumptions are in the nature of
approximations which the writer beli ves are valid in the
limit; unfortunately, at this writing, the writer has not
investigated them carefully, However, we have made a funda-
mental assumption, stated as Assumption 5 in §5.5 whick is
closely allied with the famcus Ergodi:c Hypothesis, It 1is
probable that this will not be proved by anybody in the
foreseeable future; the best that can be hoped for 1is to
supply a good deal of heuristic evidence in its support,

The equation~ which we nave obtained are the standard
ones for iiquids and gases, although the writer believes
that the explicit determinations of the "equations of state"
are new, The writer beliecves that the solid or perhaps
plastic states correspond to cases where £ 1is very close
to its lower limit B( ). For notice what happens to the
function m in such cases; tuls indicates that the random
motions of the particles with respect to their mass-velocity
become very small, This in turn points to a definite break-
down of assumption 5 on account of the inability of the
individual particles to change their relative arrangement.
This is an exceedingly interesting line of investigation
which we wish to pursue further, We believe also that our

- 73 -
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Assumption 1 on the nature of the function ¢ rules out the
poasibiliity of a 1liquid state for our model, Thers are no
terms which involve viscosity in our equations; accordingly,
if our approximations are valid the viscosity effects arize
from the finite size of the particles so thelr determination
will require a further investigation of the approximations,
Some of these involve the neglect of terms of the order of

oy and CTE which might be fouvnd without too much troublfj
however, sc many of them involve terms of the order of oN

that it {s rrobably hopeless (and also unnecessary) to carry
an expansion \n terms of cu.to terms beyond the second
power,

We have already alluded to the summation convention
with respect to repeated Greek indices which we shall employ
throughout this chapter, We shall make extensive use of
superscripts and subscripts, and tae superscripts will be
located in the places usually occupied by exponents, Super-
acripts will sometimes denote exponsnts and such cases will

usually be clear from the context, &s in (B/h)3/2, etc., and
in connection with the exponentisl function which we write
alternatively as

el or exp z

the latter being used if 2z 1s some complicated expression,
We shall also use double subscripts or superscripts such as
'qu, etc,; a comma 1s to te understood tstween the subscripts

or superscripts and will be inserted if #ither p or q is
complicated,

We shall frequently use single letters, possibly with
subscripts, to denote vectors, the components of a vector

(in 3 space) will be designated by superscripts; thus x?

denotes the a-th component of the j-th vector, The inner
product of two vectors y and x will be denoted by

y o x =y%x¢

and the length of a vector wby |w /|, We shall write

’x3 )’ Otco

r(xl,o--,xN) for r(x%,xf,xi soe xéﬁxN <
We shall use the term cell (in 3-space) to denote the
set of all (x x3) (or some other letter) satisfying
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a® .nga Lba » e =1,2,3,

for fixed numbers a® and b2 and will denote cells by the
letter R, possibly with subscripts, Cells in b-space are
defined similarly, Parts of the boundaries have been left
off so that cells can be fitted together without counting
boundary points several times (particles on the common
boundaries of several cells otherwise would be counted in all
these cells),

Multiple integrals will frequently occur and will be
denoted by & single integral sign except where it is de-
sired to express a multiple integral as the result of several
repeated (possibly multiple) integrals, Thus an expression
such as

5; dx, 5 dx, S h(xl,xz,ul)du1
1 sz 53

will denote the result of integrating h first with respect
to the variables in u; (each letter may denote several vari-

ables) over the domain of integration S3 (which might depend
on x; and x5) holding xj and x, constant, then intesrating
that result with respect to x, over S,;, and last with respect
with respect to x; over 3,,

A function f of several variables, say (t;y) =

(t;yl,ya,y3), will be said to satisfy a Lipschitz condition
on & set S if there 1s a constant L such that

ey J-L(t -t V24l =y 12
]r(tl.yl) r(tz.y2)| £ L[(t2 t )43,y | }

for any two points (tj;y;) and (tp;y2) on 8, If S is a

cell (or the whole space, etc,) and the partisl derivatives
are continuous and uniformly bounded on 3, then f satisfles
such a conditior but the converse is not necessarily true,

5.2 PARTICLE DISTRIBUTIONS

The models which we consider in this chapter consist
of N identical particles, each of mass m, any two of which
repel one another with a force

-n° ' (r)

(1f &'(r) > O the particles attract one another), Let
-5 -
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N

B(xy,**+,xy) = 3 Jz;_'_:l Slrye), ryp =|xng-x|.(5.1)
’J#k

Then the equations of motion of the system are

n'x'J“ = -m an/ax',‘z , @=1,2,3, J=1,¢¢°.K, (5.2)

or

i; = uj" and aj“ = - 2H/ ija' , (5,3)

where dots denote differentiation with respect to time,
We may think of these equations as determining the motion
of a single particle of mass

.n; = Nm
in the 6N-dimensional space of the vectors Xj,+es,Xy &nd
...... us,***,ug. This space is called the phase space and the

particle 1s called the phase particle,

From equations 5,3, it follows that all the quantities

...... N a N a a N a B B a
R Suem gt )em T (xguyxyuy) (5.4)
. - N 2

are constant in time along each trajectory of & phase parti-
cle., The first and third quantities in equation 5.4 give
the components of the total momentum and angular momentum
(about the origin) of the system of particles and the first
and second terms in equation 5,5 are the total kinetic and
potential energies of the system, respectively. The three
componer:ts of angular momentum are obtained by setting

(a,8) = (2,3),(3,1), and (1,2).

We are interested in the distributions over the x-space
of mass and the other quantities mentioned above, These are
determined by a knowledge of the total mass, momentum, etc.,
of all the particles in each cell R of the x space. The
total mass in R at a given instant of time is just m times
the number of particles in R at that instant and the com-
ponents of momentum and angular momentum and the kinetic

- 76 =
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energy are given by the aums

. YA uja, m Z'I' (xfujﬁuxfuf), % % lujlz (5.6)
b

where the sums are extended cver the particles x; which are

in R at that instant., I%* is customary to define the potentlal
energy of the single J-tk particle by

2 .
B2 Ery); (5.7)

this merely assumes that ths potential energy between two
particles is shared equaily between them, It is 3een that
the total potentlal energy of the system 13 then just the
sum of that of all the particles and so we define the poten-

tial energy of the particles ir R as the sum of their separate
potential energiles,

Obviously these quantities for any fixed cell R vary
discontinuously with time as particles enter and leave R,
Moreover, 1t 1s obvious that these distributions are not
integrals over R of continuous functions of x, In order to
derive equations for the density, mass-velocity (or momen-
tum-density), and local energy, considered as continuous
functions of t and x, we must somehow pass from the "dis-
crete” particle distributions just described to "continuous®
distributions in which the mass, momentum, etc., in a cell R
are triple integrals over R of density, etc,, all of which
are continuous and have continuous first derivatives with
respect to t and the x9,

This is frequently done by considering a c¢ontinuous
family of particle-systems, in other words a continuous
famlly of phase particles, and then introducing s welighted
average in the phasa-space over this set of phase particles,
This introduces such a degree of arbitrariness into the
situation that it is difficult to draw ¢>~clusions of physical
significance, We shall study particle distributions by means
of their Fourier-Stieltjes transforms which turn out to have
desirable continvity and differentisbility propertiss, OQur
method of passing from the discrete tc the continuous consists
in considering sequences of particie diztributions in which
the number N of particles becomes infinite. A very general
theorem concerning the existence of limiting distributions
is proved in §S5S.4, We then present a heuristic argument,
based on certain assumptions which are set forth in the course

- -
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of the argument, which leads to the form of the equations
satisfied by the i1imiting distributicns,

In Statistical Mechenics, it 1s frequently desirable
to consider the distributions of the quantities mentioned
above in the 6 dimensional (x,u) space, These are defined
by equations 5,6 and 5,7 where the sums extend over all J
for which (x:,uj) is in the cell R in the (x,u) space; in
other words for all j for which we have simultaneously xj

in R, and uj in Ry, Rl and RZ being the projections of R

on the x and u space, respectively, If we denote the total
mess in such cells R by T{R), then T 1is called the simul-
taneous distribution of coordinates and velocities, The
distributions in the (x,u) space of momentum, angular momen-
tum, and kinetic energy can be expressed formally in terms
of the distribution T by means of the Stieltjes integrals

2 oot Suﬁ(ﬂT, S(xﬁuﬁ-xﬁuﬁ)dn, and %J !uIZCﬂT :
: R R R

the potential energy cannot be so expressed, In case 1T
...t were a "continuous distribution™, i.e, if there were a con-
*** tinuous function w(t;x,u) such that

TT(R) =5R w(t;x,u)dxdu
all the other distributions wouid be continuous, reducing to

‘:-'-: Suaw(tu,u)dxdu, SR(xauﬁ-xﬁu“)ﬂ(t:mu)dxdu. and
U R

% (Q{ulzﬂ(t;X,u)dxdu,

respactively, The distribution T s therefore also of
considerable interest,

5.3 sz&uzucss OF PARTICLE DISTRIBUTIONS; A THEOREM ON

We wish now to consider sequences of particle distri-
butions in which N is allowed to vary and we shall wish to al-
low N (which 1s very large anyway) to tend to infinity, In
order for there to be limiting distributions of a reasonable
sort, we shall assume that the total mass, momentun components,
and energy remain constant, Thus we must attach & subscript

- 78 -
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N tomand § and must have

Na, = M (5.8)

independently of N, It is convenlent to introduce a distance
acale factor oy having the dimensions of a l:ngth defined by
3
m'N = D ¢N (509)
where D has the dimensions of density, Since ®e are inter-
ested in systems in which the potential energy is important

(dense gases, liguids, and solids), we need to choose the
form of @&y so that the potential energy term tends to a

limit as N —5 o0 ., We choose QH so that
me &y(r) = K¥(r/ o)

where K must have the dimensions of the square of velocity
and ¢ 1is a fixed function independent of N,

The equations of motion then become

. a a . a -1 . a_a
X, =y and = Loy él é (rjk/rN)(xj x'k)/rjk’ (5.10)
k¢
The components of total momentum and the total energy become
1 N a 1 N 2 N

k2]

and these remain constant with time, We note here the pre-

sence of the factor val in the expression for uJ“ . From

equations 5,8 and 5.9 we see that oy —> C as N o

This suggests that the u-components of the motion of the
phase particle vary more and more rapidly as N — o0 , It

also raised the question as to what quantities remain bounded
and what quantities have bounded time derivatives as N —» 00,
In this connection we first prove the following theorsm:

Theorem 5,1 Suppose ¢§( pP) 1s continuous and differenti-
able for all e > 0 with

-n-
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§(p) 20 asna F(e) 20 if p >0, (5.12)

and suppose there is a number n > 0 such that

0£-p8(e)en®lp) for p>0, (5.13)

Suppose a particle distribution has total energy E and sup-
pose at some instant .,, we have

N 2
M. =C .
* ;éi}xj! < oo
Then, for all times we have

- .
M- g El|xj‘2 < C+23/%CE)1/2't-tol+mE : |t-t°!2 (5.14)

.....

where
n' = the larger of 2 and n, (5.15)

Proof, If we let r(t) denote the left side of equa-
tion 5,1, then

e N
g £1(t) =2M- 2 Jél(XJ'UJ):

N 5 )
t(t) = 2»% JZ.—.1,“” + zu-% 1§1 xj“ﬁj“

using the equations of wmotion 5,10, From the equations
of motion, we obtain

N q.a -1 N
R PR Rl W |
J2k

Noting that the intercnange of j and k in this double sum
changes the sign of the term in brackets, we may add a dup-
licate of this sum with j and k Interchanged and divide the
result by 2 obtaining
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1 N aa

N
1 - a, .1._ 0- a & . 0- a
2N 5 Jél xu, =M ol e g J,§=1 (x.1 x ) [ é(rjk/uu) (x, xk)/erA!
I#x

-t

R
—w, & /
= MK § j,§=1['(rjk/°'!) Q(rjk/cr')] R
"
Using equations 5,12, 5,13, and 5.15, we sse that
N
. 1 2 1 ¥
0 =f.(t) éh". 2N JZ=1 luJ, + 2neMKe 2N . -1 Q(rjk/an) .
P e

.....

......

£ 2n'E,

------

for all t, By the Schwartz Inequality

N by ;
1 -1 2 -1 o
¢ 222},

The result follows,

Prom this result, it follows that all the “second momentas"
of the distributlion | of coordinates and velocities, such as

1 N
Me W Zi b 4

a a B 1 Y ap
(ISR J

N
B 1 5 a
b ¢ Me = Xx,u and Me = u.u
g WL oy AT
remain bounded on any finite time interval,

We remark that any function &(p) of the form
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$(p) =Ap'n , n>0

satisfies the conditions of this theorem, Many other func=-
tions do as well, No doubt one can obtain a boundedness
theorem for a much more general class of functions ¥ in-
cluding some which change sign but this question requires
further study,

S.4 THE FOURIER-STIELTJES TRANSPORMS; LIMIT THEOREMS

In this section, we introduce the Fourier-Stielt jes
transforms of the distributions of mass, momentum, and total
energy over the Xzspace, These are the complex-valued funce
tions of t and y defined by

N
Pt;3) = Mo % 7 exp [1(y-xj)] (1°= -1)

-1
lea 1 b a
(t;9)=Me § 72 ueexp 1(y~xj)] » @ =1,2,3, (5.16)
i=1
5 r N
Y (¢ .
(t;y) = z'g- f “ J] + K kzzl Q(rjk/aNﬂ exp[i(y xj)]

k£]

h The Pourier-Stieltjes transform of the distribution I of

coordinates and velocities is defined by

% % [i(J-xJ v.uj)] :j:(p[i(y-x v-uﬂ d.n’(x:
N B (5.17)

We notice that the partial derivatives of « are continuous
and given by

H

Pt;y;v)

‘?}a :“‘I‘% Zx‘; exp bi(y-xji» Vau:j)J

~ -

a
‘P'a :1!-% Zuj exp -“y.xj*v.uj)
- 82 =
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q?y“yﬂ = -u.-;‘-‘- ) x‘;xg oxp ‘ii(y-x'1 v v-uj)_] (5.18)
— l B L ] [ ]
G el Zip o B vy

‘P'avﬁ = -u.% ba u(;u‘; exp [i(y.x.1 + v.uj)]

Prom these formulas, we 86é also that

Pe33,0) = P(E53) , Balt;3,00 =17 (857), a=1,2,3

.....

We note that the functions tfl,---, \(5 are ¢gifferentiable.

with respect to t as follows:

Y2(t37) =1y% 1 *%(¢

;)

14a, .. 0y —mioPn—t ¥ ap .
Yt (t;y) =Miy N 32;'1 uJu.1 exp [1(3' xj)

N N of
k# (5.19)

—. N
Yt(t.y)—(iy /N) Jz";. u exp[i(y-xj)]

%o
1

x B ¢ . N '3 - —] QB
+(1yﬁ/2N)jz=:1 uy exp\:l(y xj)] él E[iy (xk xj)j 'jk

k#J
where
P "
oj=(W2)UuJ| +Kk251 Q(rjk/vx)}
k#j
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ap _ a a g B 2
'jk -IK!:(!'Jk/oN) i'(rjk/aﬂ).(xj-xk)(xJ-ﬁ()/rjk} (5.,20)

E(z) =2 " [oxp z - 1] if 270, E(0)=1,

We note that o enters into the derivatives of the

in equetions 5.19 alla 5.20 only inside ¢ or in the combina-
tion

-p8'(p) withe=rjk/o- .

Suppose now that & setisfies the conditions in equations
5.12 and 5.13 and suppose we have any sequence of particle
distributions in which N-> oo , ths total energies Ey remain
bounded as goes the quantity on the left side of equation
5.1} st some instant of time, all the bounds being indepen-
dent of N, Then, since |exp (16)| =1 for all resl o, it
followys from theorem 5,1 and equations 5,19 and 5,20 that Yl
to Y% and their first derivatives with respect to t and thd
¥y are uniformly bounded independently of N for all y and all
t on any finite interval, Hence we have the following theorem
as an immediate consequence of Ascoli's theorem:

Theorem 5.2 Suppose we are gliven a sequence of pa
distributions of the type described above, gnen therepizt:gle
infinite subsequence of the given sequence of N such that the
functions ¢ tend uniformly on any bounded part of (t y)
space to limiIting functions $r, vy =1,¢0e,4, each of wﬁich
satisfies a uniform Lipschitz condition on any bounded part
or tne (t,y) space, The function Y' is continuously dirtreren-

::agl;gwith respact to time and satisfies the first equation

vhe derivative of YéS) involves third moments and strange
crosys moments which we have not proved to be bounded in time,
However if the energy distributions tend to zero uniformly at
infinity and uniformly on any finite time interval (something
which seems vrgy likely if 1t holds at one instant), then the
func tions ?ﬁ are squi-continuous over the y-space anyway.
Most probatly there are sequences of particle distributions
in which the required additional) mgments are bounded in time
which would allow us to include Y-~ in the theorem above,
The second derivatives of iho Y (¥ =2,¢++,5) are seen
to involve the factor oy' which gbggosta that the first
derivatives of the ¥ ' , thcugh bounded, oscillcte more
and more rapidly with respect to time as N lncreases, Thus

-84 =
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theorem 5.2 is interesting in that it shows that for any time
interval, however small, the time averages of the time deriva-
tives of the w;” tend to limite, namely the difference
quotients of the limit functions,

It is also found that fhes {irst time derivative of
®(t;y,v) for v#0 also contains the factor o> so that
also varies more and more rapidly as a funccion of time as N
increases, But if we have a sequence of particle distribu-
tions as above we note (from equations 5,18) at least that
the @, and their partial derivatives up to the second order
in the y's and v's are uniformly bounded over the (y,v) space
on any bounded time interval independently of K, Let us con-
sider the functions

X (t:5,v) =St cpx(s;y.') ds,

Yo

.....

Then the functions X, Kyya and Xy g and their derivatives e

with respect to t, yP, snd vP are all uniformly bounded on oo
any bounded part of (t,y,v) space, Hence we obtain the fole- R
lowing theorem: o

Theorem 5,3 Suppose we are given a sequence of particle
distributions as in theorem 5,2, Then there is & subsequence
of N such that Xy, xNya, and Xy.a 211 converge uniformly to
limiting functions X, xla' and 1 a on any finite part of (t,y,v)
space; the limiting funttions sa!isfy uniform Zipschitz condi-
tions in (t;y,v) on any finite part of (t;y,v) space,

.....

The interest of this theorem lies in the observation that

t+7T
Xn(t+T;y,v)=Xy(t;y,v)
N Y, = N\ 3V, - '-]F S l};‘(ssyﬂ) ds,
t
1,0, 1s a time average of §., Thus we conclude from the
theorem that there 1is a subgoquonco of K such that the time
Averages over every time interval however short tend to limits,
Finally, since the limit functions X, X,a, and Xya all satisfy
Lipschitz conditions, it can be shown that there is a set of
measure zero of values of t such that if ty is not in this set,
then X.(t,,y,v) exists for all (y,v) simul%anoously and satis-
fies a Lipschitz condition in (y,v). Since t does not enter
into the equations of motion, one would expect that X, would
exist and be continuous for all t but this has not boin proved,
In this case, we would call the corresponding distributions of

-85 =
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coordinates and velocities quasi-stable,

5.5 DETERMINATION OF THE LIMITING EQUATIONS; THE FUNDAMEN-
TAL ASSUMPTIiON.

In this and following sections we wish to determine the
forms of the limiting functions obtained in theorema 5,2 and
5.3 obtained in the preceding section,

We now make the following assumptions:

Assumotion 1: @ satisfies the conditions in equations
5.12 .nd 5013.

Assumption 2: We are given a sequence of particle dis-
tributions such that their energies Ey and the quantities C
on the left side of equations 5.1 are bounded end indepen-
dently of N at some instant,

Assumption 3: The particle distributions are such that
the functions WY,..., Y} are all uniformly bounded, have
uniformly bounded first derivatives, and converge uniformly
to functions Y,...,y7 on each bounded part of (t;y) space
a2 in theorem 5.2,

The assumptions 2 and 3 above can always be satisfied,
except possibly that about %% , not yet proved, The next
assumption reflects our desire to obtain equations governing
the distributions in the x-space,

Assumption 4: The functions #, ee.., 5 have continuous
first derivatives and are the Fourier-Stieltjes transforms
of continuous distributions in the x-space the density func-
tions of which have continuous derivatives,

For each N in our sequence, let D;'(t;R) be the distri-
bution corresponding to Wg'(t;y) and let ﬁy(t;n) correspond

to V’Xt;y). From the theory of Pourier-3tieltjes transforms
it follows that the distributions are uniquely determined and
that the convergence of Dy (t;R) to DY(t;R) is uniform for all
cells and for all t on any finite interval, he distributions
D' and D', are Lhose of mass, the Dl+a and Dy'*® are those of
momentum, and D’ and DN are those of energy. By assumption
ly, and equations 5,16,
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DY(t;R) = j‘(?(t;x)dx, pl*%(¢;R) = S(o(t,x)?xc(t;x)dx,
R R

Ds(t;R)== Y e(t;x)dx,
YR

e(t;x) being the total energy function and u%(t,x) being
the components of the mass velocity vector; also

Ytit;y) = S_ao(’(t;x)oxp [i(y-x)] dx

PHe(esy) = fmﬂt;xﬁ“(“")“p [”"X)] ax

Yo (t;y) = j e(t;x)oxp[i(y-x)]dx

For each N, choose a finite number Ry,c**,Rp, P = Py,

of non-overlapping cells which together contain all the
particles of the distribution D'y, We assume that Py —> &

and the diameter of each cell —» 0 as N —» oo but so slowly
that

m o/« (Rg) =0, lm DR(t;Ry)/ uiRy) = plt;xy),
N> N>

(5.21)
m Dy C(6;Rg)/u (By) = p(£5x)T (t5x0);

N>ce

5
1im  Dy(t;Ry)/ «(Ry) = e(t;x,),

N >

whenever Ry 1s any cell selected from the N-th collection,
so chosen that the cells close down on the point x,, We

may also assume that the ratlo of maximum to minimum dia-
meter of each cell 18 < some fixed number & independent

of N,
Now, consider the manifolds My in the N-th phase

space conslsting of all phase particles whose corresponding
distritutions coincide with the DK (ty,R) at time t, for all

cells R of the N-th %Pt For all of these it is seen that
the corresponding ‘fN (ty3y) differ very little from those
- 87 =
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of the given D; . The derivatives with respect to time

may differ considerably but those for ¥ from 1 to [ are
bounded indepsndently of N, It is likely that as N —y oo,
the proportion of phase particles on such "My for which
the derivatives of the ‘V5 rungtions fail to be bounded
tends to zero, Since thess {y, are bounded independently
of N and we have uniform convergence, it follows that every
phase particle remains on nearby such manifolds for an
appreciable length of time, independently of N, On the
other hand, the factor o " in the equations of motion .10
suggests that the total speed of a phase particle becomes

large with N, This suggests that the total motion of the
phase particle is compounded of a rapid motion along a

manifold 7RN and & slow motion into neighboring maenitolds,
Since there seem to be no other functions besides Wa,-°°, ?S
.. which vary slowly with time, it would ssem that there are
" no "invariant submanifolds®™ of My so that the projection
on "My of the phase particle would come close to every
point on ?hn in a short time interval in the manner stated

in the well-known Ergodic Theorem, This is reinforced by

the fact that there are N! indistinguishable phase parti-
cles obtained from one another by permuting the indices

of the particles, The Ergodic Theorem states in such a
case that the time average over a sufficiently long time
interval, which in our case may tend to zero as N—p oo ,
would be equal to the sy .ce average over 7NN of any given

point function on My, We therefore make the following
fundamental assumption.

4
Assumption 5: The derivatives Y, (t;;y) are equsl,
respectively, to the limits as N — oo of the averages
over My of the expressions in terms of the x and u

for the derivatives of \Pgt(t;y) given in equations 5,19,

The averages over My are, of course, to be taken
with respect to an appropriate "surface measure” on 'M.N.
Since the flow in the phase space defined by the equaticns
of motion 5,10 is known to preserve volumes, this measure
on My is "invariant" as is required in the Ergodic

Theorem,
- 88 =

CONFIDENTIAL

Secunity lnfermstion




CONFIDENTIAL
Secerity infermatin

PROJECT 1.9
5,6 FIRST STEP IN THE AVERAGING PRQCESS.
Assumption § reduces our problem of finding time
averages to that of finding the space averages of certain
functions over certain manifolds, a type of problem which

is rather standard in Statistical Mechanics, Since this

1s so and since the formulas are complicated, we shall not
carry out this work in all detail,

The expressions in equations 5,19 are seen to ba
symmetric in the indices, Since each ‘mn has the same

property we may replace the 1/N times each single sum by
one term with j = 1 and the sumg involving k # j by N-1

times the single term with k =2, Thus the averages over
vnN of the expressions for y;t are equal to those below

1yPexp [1(y-x)] {Mula' uf +(H-1)E 1y (x-x) )] vig/zz ,

for Y =1+ a

1yBexp [1(?-1:1)] {uf 3’1+(N-1)uf' E[iy-(xz-xl)] ':_2/2§ ,
for ¥ =65

where E(z) and vig are defined in equations 5,20, and

5, = (W/2) Dulgzmm-n §(r,,/ o,,)]. (5.23)

Since we already know that the equations for ?t holds in

the limit, we have omitted it here, Each of the gquantities
in equations 5.22 and 5.23 is a function 3f (xy,x5,u;) for

each fixed y, In order to average a function f(xj,x2,uj)
over a manifold 7 , we first find

X (x ) = o)) " [ (5.2
10Ty T AT A x1”‘2"“1)] 2)

in which « 18 the surface measure and MM (x;,X,,u;) de-

notes the section of M for which x3,x», and uj have their
given values, The averace 1s then given by

£(xy,%5,u,) N(xqy,%,,u,)dx,dx.d .2
SG X)X, uy) AN(xq,%5,u,)dx, x,duy (5.25)
-89 =
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G being the projection of M on the (xl,xz,ul) space.

For simplicity let us hold N fixed for the moment and
denote My by m and the N-th set of cells by Ry,***,Rp.

FProm our definition of "™ and of the various distributions,
we ses that M consists of all (xJ,uJ) in the phase space
such that

(1) there are Np particles X in Rp where

Np = !lD%(tl;Rp)/u, P =1,ec¢,P

(11) §uf = 58,% = NDy "% (ty;R ) /N
» . (5.26}
(111) ? gujl + Wy(x) =2NE, =2NDN(t1;Rp)/l(, where
N
wp(x) = K ;Z kZ=1 i(rjk/cru)p
k #)
—n . . .
Ep = Dy (tl,Rp)/Dl"(tl,Rp)

and the sums on J are over those j for which Xy is in Rp.

We wish to reduce the problem of finding the func-
tion N(xy,x5,u;) of equation 5,24 to simpler terms, We
see from the previous paragraph that MM breaks up intoc a
number of symmetrically placed manifolds 1"3 where JJ stands
for a permutation

MTSTAAAYEW FEERFIVAMAFRFN A ASAER) IS URAAFRS 8 MO

and Jp,ln"'an,Np are those j for which X4 lies in Rp,

p =1,+¢¢,P, All the manifclds obtained by permuting the
jp’u mong themselves for each p are identical so that the
7 are distinct only when the sets J, , a“e not all
identical, The number of ways in which these P sets of
Nl,---,NP objects can be selected is well known to be

- 90 -
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E_T!LTT_I (N = No#oootNy)
1...' P 1 P

Now, suppose that xy, 1s in Rp and x5 is in Rq. Then
My(xy,X3,u;) is empty unless . is such that 1 occurs in

the p-th set and 2 in the gq-th set. The number of J for
which this is the case 1is

oco(N-g)! re e ir p =q’ and '-2)
10 p H Po 1'000 p- Seee q- seee pe

it p #4q.

Hence if x, 12 in R, and x, is in RZ’ we have

P
%;Np_l)Kpp(xl,xa,ul)/l(ﬁ-l) if p = q,

)(xl'xz'“l) = (5027)

Nququ(xl.xz,ul)/N(H-l) if p # q, where

‘qu(xl,xz,ul) = [/‘ (""J)_J yZ [‘MJ(xl,xa,ul)]

for a fixed J for which 1 is in the p-th set and 2 is in Javase
the gq-th, .

5.7 DETERMINATION OF THE FUNCTIONS X,

In this section, we sketch briefly the detemmination
of the functions 'qu. There are really only two diastinct

cases: p =q and p # Q. Since the results must come out
in terms of the constants N, Np, ﬂ%?, and Ep, we may take

P=q =1 1n the first case and p =1, q =2 in the second;
the results for the general p and q may then be read off,

In order to avold complicated notation involving the
Jp,k» we introduce a double subscript notation for the
b 1 4 n
x’s and u's in which xpl""’xp,up are the x s in Rp for

each p, Since we wish to exhibit the dependence on x,,xp,
and uj we assume the alternative notations

-9l -
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Xy = xl-ﬁf u, = ul'nl in both cas-s

(5.28)
x, = xl,Nl-l ifp=q =1, and X, = xz’uz

itp=1, q =2,

and shall use these notations interchangeably, Our given
manifold 7n3 can then be described by

x in Rp fer § = 1,-",Hp and p =1,¢°°,P;

i(upj ) -O a =1.293; P =1)"'.P;

\ (5.29)
- |2 - = |12y =
jéi’“pl'“p| * Wp(x) = n;(2B-[W %) =20 B2
where
N . |
'p(X) =K J’él §(lxpj'xpk’/o'u)+x & Jé k§ i(}l’pj'qul/cn)
Jxk 3#p
. _ = 2 (5.30)
p Ep .upl /2.

The derivation of the last equation makes use of the fact
that

& AT A R

this follows immediately from the first equations,

Since all we want is ths surface ares of M ; and
7nJ(x1,x2,ul), we maey introduce new variables Vo, 4 de~

fined by
'a - ‘n - aa ° (5031)
P,d P, P

The equations 5,29 can then easily be solved for v;i ’
2 and ';2 in terms of the other v- j and all the

Ps
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Xq, ke For each p, we obtain 2 soultions so 77; and
7nJ(x1,12,u1) break up into 2P parts of equal area on each
of which the solutions above are single-valued; we have
chosen our variables so that X1sX2, and uy are among the
indepenrident variables, The element of surface area on 7&:
and My(xy,Xx5,u;) can be found by standard formulas; one
can then find the area of Mj(x,,x5,u;) by integrating the
area element with respect to all the independent variables
except Xx,,X,, and u; and can then find that of ‘an by
integrating that result with respect to (x;,x,u;).

More specifically, suppose that G is the projection
of My on the (xy,xy,u;) space and, for each set (x;,xy,u;’
in G, suppose G(xy,xy,u;) is the projection of Ms(x;,x;,us)
on the space of the remaining Xp4e Having chosen x,,x5,
and u) in G a&nd & set of remaining x4 in 3(xq,Xp,u;1), it
turns out from the fact that the solutions for v“l and '32
depend only on the 'gj of the p-th set that the area element
is a product of functions of the b3 only and that the
domains of integration of the Vpy are independent, Thus

the integration with respect to the v’s breaks up iuto a
product of integrals of the form

A
j; rp(xl,xz,ul,xlz,vpj)dvpJ

r

shere the Sp are ellipsoids whose positions and dimension
depend on (xl,xz,ul,ﬁlz) ard the rp are simple functions of

the v,4; here %12 denotes all the Xp4y except x; and x3,
The result is

“[matrpmeny)] = (5.32)

A N -
S 81(X1,X2,u1,X15) =+ +8p( X}, X5, 41, X15)dX) 5,
M(xyaxpe0y)

where
- 93 =
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£ - '2 9 (3“1'8}/2
8 = Kl [l-vl(x)/‘El - uy-uyd /ZEI(Il-l)]

(3M,-5)/2
- - * P
gp-Kp[l Vp(x)/Ep] (5.33)

3(N,-2)/2 (3N -5)/2
K, = 2Y/2(m-1)"3/2 "2 (28] 1 rE(nl-z)/zj

» P 21,

_ J1/2,-3/2 3(Wp-1)/2 (3K _-5)/2
K = 2/ % (2K ES) /r [3“: -1)/2] el

Vp(x) =Ip(x)/21!p » P =1,°°¢,P,

.and [ (z2) is the gamma function. Sincs we are ultimately

letting N (and hence each Ep by equations 5,21) =% <
we replace 8, by its very accurate asymptotic formula

‘31\ -8)/2

g, =K [1 -V (x)/E"l exp [}a(x)}ul-ﬁliz} , where

(5.34)
a(x) = 3/4 ! I -V (xﬂ

We now wish %o exhibit the behavior of the integra)
in equation 5,32 as a function of (x;,xp)., We assume first

that J is such that x; and x2 are both on Ry, By referring
to the definition of lp(x) in equation 5,30 and of Vp (x)
in equation 5,33, we may write

Vi(x) =K f(rlz/o'x)/l‘l + Vl(x) (5.35)

where Vl(x) conteins all the remaining terms, We write

[1-v1(x)/31*] = [l-l( Q(rlz/ o—N)/RlEf] . [l-vl(x)/klu], where
(5.,36)

» .
E,” =E, - K !(rlz/<rN)/N1

Using the standard sasymptotic formula in the preceding
paragraph, see that we may write

-“-
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- o] (3F -8)/2

- exp l:-a(x) |u1-51!2]

Since the first exponential factor does not depend on the
variables of integration in equation 5,32, we may take it
out in front of the integral, In & similar way, 1if Xy is

in R; and x, is in R,, we find that we may define Vl(x)
and V,(x) properly to obtain

(3§ -8)/2
g, =k exp[BK Q(r /o )/uE] [1-‘.1 (x)/B ] .

- exp L-a.( x) ‘ul-ﬁﬂ 2:]

» (3“1'5)/2
8, =K20xp[-3K Q(rlz/on)ﬂmz] "1- ( ) /B ]

and the first exponential factors may be taken out in front
of the integral,
We wish to exhibit the dependence of _« E"J(xl'xZ’“

on u;. We can think of the integral in equation 5.32 as
equal to an average value of the exponential involving 1,

times the integral of the remaining factors, We need to
discuss this average value. 3Since we have assumed that
oy 1s small in comparison with the dimensions of Rp, we
note that the sums

q#p

are all small in comparison with
N

I Eg,px ]/ oy
k#j
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except for j such that Y is within a distance comparable

with oy of the boundary of Ry provided that ¥( ) tends

to sero as P —> o rapidly enough, Thus it would seem
that we might replace the funstions 'P(x)_in equations
5.30 (and hence the corresponding Vp and Vp) by the first

sums without making much error in the desired average, We
formalize this in the following assumption:

Assumption 6: In calenlating the asymptotic value as
N —) oo of the average value of the factor oxpf -a(x) - |u1-61|2]
in the integral 1a equation 5.32 for A[I;(:l,;z.ul)] i
it 1s possible for each N to replace the funstions V, (x)
[md V.(x) and Vz(x)] by the functions Vp'(x) cbtalmd by
omitting all terms of the form Q(]xp’ 'xq,xl/"'u) for q #p
and simultaneously to choose proper 1ndopondont domains of
integration Gp(xl,xz,ul) for the Xpge

......

.....

: When this is done the integral breaks up into a
... product of integrals Ip in which 13,...,19 are independent

of (xy,x,5,u;) and I, is independent of u;. In the case
where xq and X, are both in Rl, 12 is also independent of
(xl,xz) and have

.....

_ r » » 2
I1 = r.loxpt-BK Q(rlz/crn)/2E1] 561 [oxp -a (x) |u1-u1| ]

(5.37)
(3N,-8)/2
[1 vl(X)/El ] dxl’l"‘dxl’N,-z
in which E;' i{s defined in equation 5,36 and
- - N-2
Vy(x) = il-. jél [@( le,j'xl‘/ oyt ‘!(lej-le/o-‘)]
Ny=-2
. 'K_ J,Zk_-_l Q(:xlj-xlkl/"").
1 sz
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To simplify this further, we assume

Assumption 7: In computing an asymptotic formula for
the average of the exponential factor in the integral I, of
equation 5.37, we may replace VI(x) by the function

Ny-2
V“(x)—rl-_? J;k:l ® (x)4-xyy|/ o)y (538)
Jrk

simultaneocusly enlarging the domain of integration Gy to
include all ’11"”’1,31-2f°r which

B £V (x) -xl =E} -K&r /o )/m.
f being the minimum of Vl for the given values of oy and
Hl .

When this substitution is made, the intogral I, de-
penda on (xl,xz) only through the value of El which tends
to El . To investigate this integral, let ’“i (N\) be the
measure of the manifold

L, ]
Vl (111,...’11,‘1-2) - )\ » 3 é )\ é ll

and let us denote RI. by h, Then the integral in I1 becomes

h -
- (3N,-8)/2
Sexp [—-3|u1-'ﬁ1,2/h(h-)\ )] « (1- Mm) 1 /‘(ll()‘)d)‘ .
p .

(5.39)

The high power of (1- A/h) occurring in the integrand
suggest strongly that an asymptotic formula for the average
of the exponential factor in this integral would be obtained
by setting A = f. On the other hand, as N, —» oo , the

functions /“N (N\) may tend rapidly to zero for small

velues of \ , What happens awaits a further study of
these functions y,. However, in order to obtain a definite

result we make the assumption:
-9 -
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Assumption 8: An asymptotic value for the average
value of the exponential fesctor in the integral in equa-
tion 5,39 is obtaired by setting )M =8,

If this assumption 1s not made, the average value
would occur for some other intermediate value ) which
might depend on uj) as well as on f and h, In this case
the average would not be exactly an exponential function
but would behave somewhat like ono and, at any rate would
depend only on $, h, and l“l'ull

Acceptance of this assumption focuses attention on B.
Pram the form of Vi*(x) (equatioa 5,38), it follows that

if the size of Ry 1s increased and oy 1s simuitaneously

increased so that of/ «(Ry) 1s kept constant and if N,

is fixed, then § Js unchanged, Also, if the shape of Rj;

is held in bounds as described in the original selection of
the Rp and if &(pe ) — O rapidly enough as p—>» o , it
is practically evident that B will depend essentially only
on the combination

A =¥, og/m(Ry) = M- (N /H) /a(Ry) = DX(65R)/4(R;)  (5.40)

But we have seen in equation 5.21 that

Plzlil D! (¢t

1= Dy Ry //A(R) =g°(t1;x°)

x-ow

if the Ry are selected to close down on the point x
we make ths assumption:

0° Hence

Assumption 9: Asymptotically

B = B( (ol) where #h .—D;(tl Rl)/,a(R

Using assumptions 6 through 9, we find that if x; and
X, are doth on R,,

/“["’(llpxzo )] =K "'KPOIzto-I ol »
(5.41)
) oxp[;B(fa,El )|u1-ﬁ i -3K @(r /cr )/2E ]
- 98 =
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where

BB = 3[E} -8 )]

o Y (5.42)
1 = S 1 (1-)\/3'1') 1 Ay CNa,
Ble,) X

Since ﬂ(mJ) is the integral of ﬂ[nJ(xl,xz,ul)] , WO
see that the function X;, defined in equation 5.27 must

bs some constant times the exponential fuaction in equa-
tion 5,41, the constant chosen so the integral of X;;

with respect to (xj3,xp,u;) is 1, But the form of this
function shows that we may extend the original projection G
of My on the (xy,x5,u;) space to include all u; and all
x] and x» on Ry (previously x; and xp had to remain at some
positive distance apart —> 0 as N —» 0° and [u;-W;] had to

remain less than some lirge number —» o> as N —) o© )
without affecting the asymptotic formula for 7{11. Supposing

7(11 = A exp [—B|u1-u’1| Z-BK ¢ (rla/ 0'1')/22;]

and the integral of 7(,, with respect o (xl,xz,ul) is 1,
we obtain

= Ajgldxl Lloxp [-3K ¢ (ry,/ o,)/zx'{z] dx, S-o:;:p [—B Iul-ﬁ.l]z]dul.

Since, by & well known formula

j:oxp[-Blurﬁllz] d“l = ('/5)3/2

and since the exponential involving ¢ 1is practically 1
except when rj, is of the order of oy and since g/ A(R,)
—5 0 we see that we may write, asymptotically,

M1(%y,35,8y) =
» 3/2 -2 - 2 »
[B(pl,nl)/v] [,u(n])] exp[—Bl]ul-ull -3k &(r ./ cr')/le] .

An entirely similar argument shows that
- ” -
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= w o 13/27 -1 -1
", -[B( o e /)2 [arp] ™ [uiny)]
. oxp[Bllul-ull -3K i(rlz/ a'u)( .-1 E;-l)/h]o
We may therefore read off our general results:
Xpp = (Bp/m > 2 [ a(ry]] oxp [—Bp 13K §(r1p/oy) /283
(5.43)
_ 3/2[ }-1 5\
1y =8 /m2 | um ) [/«n )]

..xp[.ap|u1-upg -3K E(ryp/ o ) (B 4By 1)/&]

5.8 THE LIMITING EQUATIONS.

In this section we apply the roaults of the preceding
sections to determine the quantities “Vt(t y) and will

also determine the form of the function ¢(t;y,v)=
X¢(t;y,v) of §5.4, These, in turn, wili lead to our

proposed equations of motion in the (t;x) space and to the
form of the limiting distribution of coordinates and velo-
cities,

We first determine @(t;y,v)= X, (t;y,v) which will

be determined, using the fundamental esasumption 5 &nd the
symmetry of " as the limit of the average over 7 of

M exp l:i.(ynxli'v-ul)]

According to equatiors 5,25, 5,27, and 5,43, this average
will be given by the limit of

j A(xy,xp,u;)exp {:1(y-xl+v -ul)] dxydxpduy

P
Zy et [en] 2 eofitrm] on

- 100 =
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-

‘ J Oxp[B Q(rLz/c,)/zx dxp -

. j oxp[i(' “1)] (B /1)3/2 -Bp |ul-t1‘f] du,

P F -1
* L q; (Ppr (/M [ 4tRy) 5,' oxp [“"‘1)] i
qs#pP
. - -1
jR%oxp[-B Q(E; "'+l* )/h]dxz
* 2 2
. S- :DXP [1( v ul)] ( BP/I)B/ exp !:-Bp|u1-u1| ]dul

where O, was defined in equation 5.40. Now Ky+eee+ Ny =¥,
and pp - p(tl;xo) and [aoo equations 5,30, 5,26, and 5, 21]

1n B} = E(ty5x,) = o(tysx)/p - |alegix)| /2

as Ry closed down on x,, where T(t;x) 1s the mass valocity

vector and E£(t;x), dei’ined by this equation:, is the speci-
fic internal energy per unit mass, In the limit, since the
exponsntial involving & 13 1 most of the time, we obtain

e ]
Q(t;y,v) = S P [1(y XtV ul):] C(t; xl)(B/!)‘?'/2
oxpL-B]ul-u(t x)’ ]dxldul (S.4s)
where B =B(€,(=) = 3/14[_€-ﬁ(f’)].
This is seen to be the Fourler transform of the function

n(t;x,u) = (<>(t:;x)-(13/1!)3/2 exp E-Blu-ﬁ(t,;x)lz] (5.45)

which is the density function for the distribution of
coordinates and velocities,

We may read off the averages of

lulnulaoxp[i(y-xl)] and qu!ul |2 exp [1(y.xl)]
- m -
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from the result in equation 5,44 by expanding the exponential

in powers of the v® and carrying out the integration with
respect 0 uj or by carrying through the averaging process

directly; ths latter process evidently gives

g pr [i(y.xl)} P(z;xl)dxl S_ZB/I)3/2u:ugoxp[-B ‘“1‘ﬁ]f] clu1

oo

'-'-5 exp {1(1-11)} elt;x,) [ﬁ“(t;xl)ﬁﬁ(t;xlh 5“5/23:]&1
(5.46)
oo a0
S exp [i,(y.xl)} p(t;xl)dxlg "(OB/')B/Zupl‘u]JZ exp E-Bluloﬁ]}?] du,

o® 2
=S exp[i(y2y)] pltix) [-ﬁil"‘ﬂ r5y/28 Jax,

_—

------

......  where 5“‘5 is the usual Kronecker delta defined by

3 l if a =8
8% = {
0 ir a # B,

.....

In order to complete the determination of the ‘P: ’
we see from equations 5,22 and 5,23 that we need to
compute also the srverages of

......

i KM(R-1)uf &(r),/ oylexp[1iy-x,)]
(N-1)E Ey-(xz-xl)] v‘;_g oxp [i(y-xl):] (5.47)
p
{lol)u: E[iy-(xz-xl)] V:Z exp [i(y-xl)]

We note that, in carrying the averaging process in
equations for these quantities, we may first carry out the
integretions with respect to uy;, In the first and third

quantitie; in equations 5,47, this results merely in tne
constant factors G,P and ﬁp“ which can be “aksn entirely
outside the integrals along with Pp; in *he second the
result of the integration is just 1, Also the fa:tor

exp [ify'xl)] is the same for all terms in the sum, If we

-8 -
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denote the anrasoa of the respective guantities imn equa-
tions S.47 by Ql , Q;a, and QBﬂ, we therefore obtain

P
QIB =2z Pp‘-‘: j “9[1(7"1)}“‘1)“1
p=l Ry

P
% - pZ_1 fp jﬂ oxo[1(y-2y)] (3,108,
- r

°3p B p% Ppﬁ; Sr:_:" [”7“1’]"“3""‘1"’11

where

(x,) %
A b
Xy &

(oM Sx'x(u-x) 8(ry,/ o) -
4
*
+ OXp [‘31( 5(1'12/ 0'!;)/1¥3;‘3K Q(rlz/ a'n)/hsq] d.XZ

c®(y;x,) = 5 (e, /M) 5 K(N-1)
1 qZ=i o Ry
* 6Xp ["BK !(1'12/ ¢N)M;‘3K Q(PQ/G,)M;] o

, a a, B B2}
. El:iy-(xz-xl)] [-(rla/ crn)'i(rlz/a')'(xl-xz)(xl-xz)hn]'
- dx,

In order to evaluate these integrals, we set ¢ = (xa-xl)/o-'.
Then
3

3 -1
dx, ~ opdf and (N-1) g =M(1-K )/D (5.48)

and the integrations are now extended ove™ new cells R'q

each obtained from the original R<l by first translating it
through the vector -Xy and then magnifying the result in

the ratio o-x . Of these new cells, only R' contains
the origin and the others are all far from the origin
- 103 -
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unless X is within a distance comparable to oy from the
boundary of Rp. Hence, if x, is confined to the part of
Rp at a distance 4 from the boundary which remains as ¥ —

oo comparable with the dimensions of Rp, we see that all
the Rt'l go off to infinity and the integrals over thea con-
tribute nothing to the integrali in the limit while R!

expands to include the whole ¢ -space., S3ince |B(1z)l £1
for all real y and E(0) = 1, we see us equation 5.48
that the limiting values of A(x;) and C%¥(y;x;) are

A(x)) = -;;2 S K&(1&l )oxp[-BK ()&l )/ZE;]dg =
hn'KL”'Z ® (w)exp [-BK Q(w)/ZE;]dw = K.A(K;/‘K) FP/D

c®(y,x )= 5F0 (5%/3) b | #(w)oxp[-3x 3(w) /225 aw =
s2PRC(ED/K) ¢, /D

where A(s) and C(s) are dimensionless functions of s only
explicitly defined by these equations in terms of s snd

the potential function & ., Therefore, the limiting values
of the Q’s are

le(y) = (K/D) S QFZE‘A( E/K)exp [1(y-x)]dx

Q;’(Y) = (X/D) GQB I_:PZC( E/K)oxp[i(y-x)]dx
Py = /i [ a (5

QB (y (X D)J:w("zn C e/K)oxpl:i y x)]dx

Inserting these results in equations 5,22 and sdding
in the equation for qg(t;y), we obtain
a yl+a
Wiy =1y T () (5.49)
l+a *® _a p
Y, (t37) = iyﬁS €u quxp[i(y-x)] dx +
- 0o
- m-
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+ (1,“/2)f p[a‘l*x‘oc( e/n)/n]oxp[u:-x)]dx
£ 2
Yi’(t;y) = (1ya/2)J coeﬁp {:Iul +5/2B+K p Al E/K)/Dvlec(s,’x)b]
- 8Xp [1(7-:)]61
Since ?l,---, Ys are the Fourier transforms of

e, eil, eu?, ea3, and e(t;x) = e[e(t;x)ﬂulz/Z] »

we see that the equations 5.49 are just the Pourier trans-
forms of the equations

Ce *+ ((oﬁa)xa =0

-a -a-B -
(ea%, + (e %) o +p 4 =0 (5.50)

+ {(GB ﬁ“'Z*S/ZB*Ke‘( € /K) /D+EoC( e/‘K)/Du:o
oX .

where we have defined the pressure p by

p = 3/2)[3‘1-«&(,0( 3 /K)/D] = (f/Z){h[E, -B(¢ )]/B#K(:C(S/P)/Dz
(5.51)

By using the firat equation in 5,50 to simplify the second,
using the first and second to simplify the third, and

introducing the heat flux vector q% defined by

e = % (ﬁ°[5/28+xfa( €/ p)/DHeCLE /0 )/‘D-M] -pis  (5.52)

we obtain the standard equeiions

-1“1-
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6 * (p{i:‘)xa =0

& + ﬁaﬁa + =0
=, (5.53)

LI

€+ 8%€_ + -1 1q® 4pu® | =0
t x@ ¢ x“pux“}

.....

......

.....
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CHAPTER 6
OX THE APPLICATIOE OF DIMENSIONAL ANALYSIS

TO UNDERGROUHD EXFPIO3IOES

h,1 INTRODUCTION

Dimensional analysis tresats the general forms of
equations that describe naturel phsnomena, It arises from
an sttempt to apply the concepts of geometrical similarity,
ratio and proportion to a physical problem. In the follow-
ing we are specifically concerned with the application
of dimensional analysis, in contrast to dimensional reason-
ing, to the problem of analysing the movement of sarth
waves due to underground explosions,

Dimensional reasoning is by no means new in this
field, Model laws derived in this wzy were apparently
first proposed by C. W, Lampson [7}] and since then have been
used by other investigators. However thsir mode of dsrivstioz
leaves something to be desired from an over-all point of view.
It ise felt that a more general discussion of the principles of
dimensional analysis and their application would be of help to
others faced with similar problems.

In the following the assumptions underlying the theory
of d mensional analyais are reviewed and the fundamental
Pi theorem is stated, The method of computing the unit-
free relations i{s expleined and spplication is made toc the
problem of determining the most general dimenzionless
function forms for underground explosions. Prom these,
the model laws used by previous investigators, easily
follow,

6.2 THE P1 THEOREM

The assumptions underlying the theory of dimensional
analysis have been summarized by G, Birkhoft [1]
They are: (I) There are certain independent "fundamental
units®™ g3 such that for any positive real number

ag(1 = 1e++n) we can "change units”™ according to the formu-
la

- 107 -
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?(qq) =0a4qq4 (ay > 0) 6.1

{In the following qi are length, time and mass). II)
There are "derived quantitiss™ Q. (2ucbhb as density say)

which are homogensous in the sense that under equation 6,1
esck Q; 1s multiplied by a “conversion factor™ given by

‘Jn

‘jl
T(Qy) = Qq0;" *-- ap (6,2)

The expozents aj, sre called the "dimensions™ of Q4. If
they are all gerc, then Qi is called dimensiocnless, 1I1I)
The quantity Qi1 is determined by Qy°°*Q, through a relation

Qy = £(Qy°*+Q,) (6.3)

IV) Rquation 6.3 1s unit free in the sense of being pre-
served by any transformation of equation 6.1, V) The
quantities Q;°°°Q, involve all n fundamental units,

With these assumptions the Pi theorem of Vaaschy and
Buckingham may be formulated as follows,

Theorem 6.1. Let tho positive variables Q;--°Q,
transform by equatica 6,2 under all changes of equation
6.1 in the fundamental units qj°*q, . Let m < n be the
rank of the matrix |jasy|| defined by equation 6.2. Then
the assertion that

g(Qy+++Q,) = 0 (6.4)

is & unit-free relation, is equivalent to a condition of
the form

QT e T ) =0 (6.5)

r-m

for suitable dimersionless power products 7T1---1Tr_‘ of
the Qio

The proof ¢ the theorem, including a criticsl dis-
cussion of tho asyumptions can be found in [1] .
6,3 SYSTEMATIC DETERMINATION OF THE T 's

The systematic calculation of a complete set of
dimensionless products may proceed as follows, Consider

- 108 -
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the "derived quentities" Qj(j = leeer) which are derived,

for example, from the three "fundamental units® qq4 1,s., the
length [L], the time [T] and the mass [M] . The
dimensions of the quantitiles QJ can be written as

r a a a
a [ 2 T13:]

5 o 5 A B (6,6)
% [ L‘rl l‘rz T‘r3]

In order to obtain a dimensionless power product of the Qj
one may write

([ a1 a2 a3y arl 8r2 83 "]
T [Lowopo] = {_(L ) ver BT w2 g )
(6.7)

The exponents Xyooex, of the dimensionless product are
solutions of the set of homogeneous algebraic eguations

r
z 85Xy =0 (k =1,2,3) (6,8)

J=1
Prom the rank of the matrix [lasx| and the number of vari-

ables Qj one obtains the number of dimensionlsss products
in the complete set,

Bridgman {2] has shown that any fundamental systam of
solutions of equation 6.8 furnishes exponents of a complete
set of dimensionless products of the Q;'s. There is arbi-
trariness in the determination of a fundamentel aystem of
solutions ot equation 6.8. The result can however be msade
unigue by specifying that the matrix of the solution sheall
have the following form.
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0 1 0 ¢c0c0 O X3 poael X2,r-me2 °°° T2,r
0 0 L++0 0 . . ‘ (6.9)
'y ° ° \\ & ° . e d
° ° ° \’\ L4 bt * *
0 0 0cec0 1 Xrwrail Saroe’’’ Nar

Bach row of the matrix, which incidentally reprssents a
particular solution of equation 6.8, is a set ¢ exponents
in a éimensionless product of the Q¢ s, The complete set
of édimensionless products determined by this particular
matrix construwtion has the property that each of the
variables Q;°°*Q, occurs in only one dimensionless grouping,

This property .ias the advantage for the experimentalist

in that it permits him to vary a specific dimensionless
product wbile he can keep all others constant, This facili-
tates the study of the importance of a specific dimension-
less grouping in a physical phenomenon as well as the
representation of experimental data by graphical means,

6., APPLICATION TO UNDERGROUND EXPLOSIONS

The determination of the model laws for underground
explosions requires a decision as to what variables enter
into the problem, If variables are considered which do not
really affect the phenomenon too many dimensionless group-
ings will appear in the final equations, If essential
variables are omitted the final equations may not describe
the phenomenon correctly, The protlem as to what the
neceseary and appropriate variables are rests basically
on the following factors,

Obviously one requires enough knowledge about the
problem on either theoretical or experimental grounds to
decide which variables influence the phenomenon, For
example if the appropriate differential equations are known
one can immediately determine the proper variables, Un-
fortunately a successful theoretical model is unavailable
at this time, On the other hand the experimentalist has
supplied us with a nupber of parameters which appear to
be of importance in the description of the explosion

- 110 -
CONFIDENTIAL
Seserity Inlormation




CONFIDENTIAL

Secwity inlgrmetion

PROJECT 1,9
phenomenon, These are listed later,

The second factor to be considered is that the choice
of variables and the test of their importance is in many
instances governed by expediency (military, economic, et).
If say variables descriptive of the soil characteristics
are chosen it is well to keep in mind that experimental
checks as to their importance may well be impossible,
Choice of test sites have in the past been based _on_other
considerations than approprisate soll conditions [12 .

In the choice of the appropriate parameters we have
been guided by the experiments of C. W, Lampson (7] and
E. B. Docll [4]. The phenomenon c¢f underground explosion
has been experimentally described in terms of peak values
of the pressure p[lL'lT'R], the particle acceleration a
(LT=2], particle velocity v [LT-l] and particle displace-
ment d {L]. We must restrict ourselves in the following
10 positive values of the peak parameters since by theorem
6.1, the Q;'s are assumed to be positive., The acaling of
a complete wave profile is open to question. The param-
eters are determined as functions of the distance r (L]
from the center of the explosion and the time t [T]. It
is found that the phenomenon ddpends on the mass of the
explosive W (M], a characteristic speed ¢ [LT'll with
which a signal of small intemnsity travelg through the
mediums as well ae on the demsity /2 [ML"Y] of the ground
It has furthermore been found that the decay of say the
peak quantities depends ultimately on the depth s[L] of
burial of the explosive bLelow the surface, Shallow surface
explosione are commonly coupled with air blast effects.
The latter despite their short duration are of consider-
able importance since they introduce undesirable scale
effects [4]. An additional parameter is needed to
describe the effectiveness E[MCLO°T®] of the blast pro-
ducer. The explosive characteristics have been rated in
the past with T.N.T. as a base. It is open to question
at this time if the effectiveness E can be successfully
correlated with the physico-chemical characteristicas of
the explosives.

In addition to the above we propose a parameter which
we feel describes in many respects the energy degradation
in deep underground explosions, Such a parameter appears
to us of importance.since it should characterize the maximum

olll =
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stresses and strains which might arise in the medium, If
for example a large portion of the explosive energy is
utilized in creating a cavity or fissures in the soil, the
residual stresses in the soll may have fallen to such
small values that the medium conceivably exhibits elastic
characteristics, (This of course can alaso be caused by a
shallow burial explosion in which an appreciable amount of
energy spends itself in air blast effects.,) On the other
hand if the medium resists the creation of a cavity the
residual stresses may remain large enough for the medium to
exhibit plastic characteristics, An appropriate parameter

is perhaps the mean work per unit volume Q[lL'lT"z] which
is needed to expand the shot hole to a final state of rest,
It has been found, in an analysis of the cavitation in
which spheres were fired into clays, that the mean work

per unit volume was constant over a wide range of striking
velocities [6]. This seems to indicate that Q represents a
characteristic soil parameter which is apparently independent
of the intermediate time variation of the shot hole radius.
Last it has been assumed by previous investigators that the
environment of the experiment (i.e. the air and earth) is
homogeneous. In the case of air this is a valid assumption
but for the earth this may not necassarily be the case. If
local so0ii varia‘ions exist proper account of these must be
taken in modeling of experiments [4].

The relationships between the dimensionless grouping
are readily derived from the above considerations, Con-

sider as a2 specific example the following functional re-
lationship,

t(p,r,s,t,Q,E,W,c,P) =0 (6,10)

The dimensional matrix is

(1) (2) (3 () (5) (6) (1) (8) (9!

p r s ¢ Q E w c P
M 1 0 0 0 1l 0 1 0 1l
L -] 1 1l 0 -1 O 0 l -3 (6,11)
T -2 0 o} l -2 0 0 -1 0
-1l2 =
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The rank of the matrix is three and since there are nine
variables, the number of dimensionless products is six,
The exponents of the variables which form the dimension-
less products are the solutions of the following set of
equations:

x1+xs+x,+x9::0 .
Xy + X3 + X3 - Xg + Xg - 3xg =0 (6,12)
-leﬁ-xh-ZxS-xa:O
Solving these equations for x.,, Xg and 19 there results
x7=-}xz-}13-%xh
183'211*Ih-215 (6.13)
39=-xl+}xz+}x3+}xh-xs.
With
xlzl; x2=13=xh=x5=x6=0
the equacions 6,13 yleld
x7=0; xa=-2; x = -l.
With
x, =1 xlsz=xu=xS=16=O
these results
x7=--}; xg = 0; xXg = $-

Continuing this process one can construct the matrix of
the solution which has the following form

-l -
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(x)) (x3) (x3) (xy) (xg) (xg) (xq) (xg) (xg)

P r s t Q B w c r

m |1 0 0 0 0 0 0 -2 -1
My, | O 1 0 0 @ 0 -} g ¢
Wy | © 0 1 0 0 0 - 0 $ (6.14)
M, | O 0 0 1 0 o - 1 $
g | o 0 0 0 1 0 0 -2 -1
g | O 0 0 7 0 1 0 0 0
The dimensionless products are then

m, =p(s)2p-1 m, = wt ot

M, =t ot Mg =a(8)2 e (6.15)

According to theorem 6.1, tnere ressuits consequently a
relat ionship of the form

o( 2z @) @ e g 8) e e

@) s @ e

and sssuming the possibility of solving equation 6.16 for
the group (p/ (382) we obtain for the peak pressure

p = A5 )3 r(x". A et ta(.e.)* , ';?! , B). (6.18)

By #imilar arguments one obtains the general functional
equatigus for the positive peak values of the particle

e 14 =
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acceleration, velocity and displacement:

. -_-(6)2(-‘-)* 8 ( Xpwr Xgue tzs({.)* . ’(;22 , E) (6.9)
v=23 h(\-' Ay’ te({’-)i , _257 , E) (6,20)

a= (_!F)‘ z(k,., Nens w“,_)i , .;:12 , n). (6.21)

The appropriate model laws and scale factors are readily
determined from equations 6.18 through 6.21.

The dimensionless parameters )‘R’ Mg have been used

in the past to correlate experimental results, Theuse
parameters are related to A” and )." by setting p =1

in the latter expressicns, The correlation of experimental
results for different soils is undoubtedly effected by
this cholce,

Special forms of the general functional equations
6.18 through 6.21 for the peak parameter, for example
polynomial expressions in A r+ have been used in corre-
lating experimental data for both deep as well as shallow
underground explosions with considerable success [7], [4].
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The complete set of partial differential equations goveruing the
flow of the medium behind the spherically symmetrical shock front has
been reduced by Kirkwood and Brinkley to a pair of ordinary differential
equations.

One of the most obvious difficulties in applying the Kirkwood-
Brinkley method to the theory of underground explosicns, as outlined
here, is that the radiation effects in the initial, high-pressure phase
of the explosion are not taken imto account. On the other hand, the
ssthod has the advantage of providing a direct attack on ths problea
of underground explosions, since it presupposes only data which are ex-

measurable. However, it should be pointed out that the
offort involved in the actual numerical integration of the two Kirk-
wood-Brinkley differential equations is trifling compared with the
effort in constructing ths tables for the Hugoniot function and Kirk-
wood~Brinkley enthalpy ‘

Bsfore applying tl.: method to an earth medimm, its application
to air, as an intermediary step, would be desirabls. In this way, the
solutions could be compared with results that have been carried out
by other msthods, and also serve as a guide in developing the more
complex underground case.
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APPLICATION OF THE KIRKWOOD-BRINKIEY METHOD
70 THE THEORY OF UNDERGROUND EXPLOSIONS

1.1 INTRODUCTION

The problem of predicting the sequence of eventz in an
axplosion depenxis ultimstely on the solution of the partial difrerenti-
al equations ¢ hydrodynamics, subject not only to proper initial con-
ditions, but also to & moving boundary constraint represented by the
Huguniot conditions at the shock front in the earth. A very serious
problea arises from the difficulty in writing an equation of state for
the earth medium. On the basis of a rough ;rt”uro-dmity curve for
earth and an assumption on the energy, Griggs‘'“/has estimsted shock
velocitiss and peak pressures in an umierground explosion for a plane
shock. Unfortunately, it is difficult to estimate the effects of the
approximations made, and the method does not admit of obvious exten-
sion toward greater accuracy.

1.2 TH KJRKWOOD-PRINKLEY DIFFERENTIAL EQUATIONS

The complete set of partial differential equations governing the
flow of the medium behind the shock front (of planar, cyundrt , @
spherical symmetry) has been reduced by Kirkwood and Brinkley‘\</ to a
pair of ordinary dif ferential equations. These differential equations
(which are exact) are, in the case of spherical symmstry,

IR A R 3 ORI

dD

dr

= Rz L(p) , (1b)

where R, the radius of the shock front, is the independent wvariabls.
The depsndent variable p is the overpressure at the shock front (the
pressure in excess of the pressure p, of the undisturbed medium), The
dependent variable D is a quantity such that a non-vanishing value of
its gradient implies an entropy increment of the msdium duwe to passage
of the shock; it will not be particularised further since it is defined
by Eqs. {1) as a function of R. The functions L(p), M(p), N(p) are

defined by
1) See Project 1.9-2, JANGIE Report Series
(2) S. R, Brinkley, Jr. and J. G. Kirkwood, Phys. Rev., T1, 606 (1947).
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L(p) =P, h(p), (28)

-1 G .

M(p) = P—;ﬁz (Teg)s (2b)
N(P) = &lalf) + 20-fo/F) 6 , (2¢)

2 (l4g)-G

in which 2

G=1- (;gg) > g:l-%g, (3)

where U is the velocity of the shock fromt, £ is the =. dty of the
undisturbed medium, /° is the density of the disturbed medium at the
shock front, c is the sound velocity[(9p/80)g] 3 of the disturbed
medium at the shock front, and h(p) is the Kirkwood-Brinkley enthalpy
B change (characterised in more detail later). The quantities L(p),
Bk e M{(p), ¥(p) can be expressed as functions of the overpressure p in the
disturbed sedium at the shock front by virtue of the Hugoniot rela-
s tions and the equation of #tate of the medium. The qumtity}) is defin-

..:... d b’

e *
o Ve [ PRYIP @7)u RT) 45
..... A ® p(R,0) u (R,0)

where the reduced time 7 is

oooooo

000000 (5)
et T - {.ﬁ]_n {rz (,t) p'(R,t) (R,t)}] J [t-to (B)])
8t
t =t (R)

in which r is tl» Eule coordinate of the particles which are at the
shock position R at the time t =t (R), p' is the cverpressure (above
P‘) and u' is the particle velocity in the region behind the shock
front. Note that the denominator of the integrand in Eq. (4) is simply
the peak value (st the shock front) of ‘“a numerstor.

The integramd of J) in Eq. (4) involves quantities (indicated by
primes) evaluated in the reglon behind the shock fromt, and thus)) can-
not be determined without a imowledge of flow conditions behind the
shock., The Kirkwood-Brinkley & tion (as distinct from the
Kirkwood-Brinkley equatims }1) consists in assuwing that this inte-
grand is a function only of T . BExplicitly, if tle integrand is taken

2
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as o7 ; oge has V21, an emplrical valus of slightly wider applica-
bility 4a ¥ = 1 - exp (3'/p,). This approximation comstitutes &
sinilarity assumption, which maku Ks. (1) depend only on quantities
evaluated at the shock front.

Equations (1) contain p and D as dependent variables, with the
radius R of the shock front as independent variable. To integrute
these equations for a ral medium, one mwt express the two ancill-
ary variables v ( m1/“=specific volums) and h as functions, v (p) and
h(p) respectively, of p. Thus ons mst have:

(a) The equation of state for the medium,

(b) The Hugoniot function for the medium, which fixes the

specific volume v(p) at the shock front.,

(¢) The Kirkwod-Brinkiey enthalpy function h(p), which appears

explicitly in Eq. (2a).
The Hugoniot condition is obtained from the canservation conditions at.
the shock front and is

H(p,v) = .(Ps') - o(pPosV) + ("") P+ Po =0 (6) I
——

where ¢ is the specific interml energy of the disturbed medium at the ...
shock front and sero subscrips refer to the undisturbed mediwm. To CETAN
fix v = v(p) from the Hugoniot condition, it is nscessary to kmow the

specific internal ensrgy ¢ as a function of pressure and specific wl-
ume, Since ¢ is a function of two independent state-coordinates, in
general, its tabulation requires a two-argusent table (that is, s book)
The relation e = e(p,v) amounts to an equation of state. Note that the
Hugoniot oonditian is likewise essential to specify the quantity
[{ap/ {o (which appears explicitly in G of Eq. (3))as a functiom LW
of p. specify the Kirkwood-Brinkley enthalpy function h(p), consid-
or Figure 1. The (irreversible) shock front moves the initial state-
point (po,vc) <f the medium up the Hugoniot curve to the point (p,v).
After the shock has massed, the medium undergoes an adiabatic expan-
sion from the point (p,v), ultinttoly reaching the iritial pressure
Po at the point (po,vf). The Kirkwood-Brinkley enthalpy function
h(p) is defined as the enthalpy increment in going from the point
(po,¥o) to the point (po, vz(py}. This function can be written as the

integrel
h(p) = [ TeP)
cp(pc,r) aT )]
T

L]

oooooo

where c, is the specific heat at constant pressure and T is absolute
temperature. Alternatively, one can write from Figure 2,
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S¢(P)
h{p) = T (p,8) 43 (8)
8

o

where § ia the entropy and S, is its fimal valus after ths adiabatic
expansion. The most convenient method of computing h(p) remins to
be detersined, ard it seems worth while to explore othsr possibilities
besides thoes given.

The thermodynamic data to determine the Hugoniot function and the
Kirkwood-Brinkley enthalpy function for an earth medium can be obtained
from:

(a) Measurements of Bridgeman and others(3) on compressibilities
and expansion coefficients for ;uioua rinerals, extending up
to a pressure range of about 10’ bare and covering a restrict-
od range of teaperature. , .

(b) The theory of a Permi gas(k) applied to material under high

eo?oni? (over about 107 bars).
The region 10’ - 10¢ bars, not covered by the sources of data above,
can at present be determined only by reasonahble interpolation. Howewver,
reoent discussions with Professor P. M. Morse have indicated some
promise of extending the Fermi-Thomes theory down to this vange of
pressure.

The various ssthods of handling the initial conditions on the
solution include (in order of probable u,-tulnou):

(s) Taylor's similarity solution(5),

(b) Isobaric sphere behind shock front at an initial time.

(e¢) Point source solution (i.e. not of similarity type).

1.3 DIFFICULTIES IN APPLYING THE METHOD

It remsins to point out soms obvious difficulties in applying the
Kirkwood-Brinkley method to the theory of an underground crxploo%zg. As
outlined hers, the msthod takes no account of radiation effects in
the initial, high-pressure phase of the explosion. At ‘~termediate
pressures, the possibility of plastic deformation and pusse transi--
tions in the earth mdium causes complications whose effect is dif-
ficult to assess. At low pressures, the method presupposes a simple
and adequate equation of state for an earth medium.

Before applying ths msthod to an earth medium, it wuld be desir-
ablg pf”nbly, to apply it to air., In the case of air, the necessary
tables over much of the requisite range are already availadle.
Although shock calculations for air have been carried out by other
sethode, application of the Kirkwood-Brinkley method to air is of con-
slderable interest, not only es a check but also as a guide in the more
complex underground case.

ﬂ’ W z’” next page.
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(3) F. Birch (Editor), Handbook of Physical Constants (Geological Socie-
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W. U. Elsasser, Science, 113, 105 (1951); N. Metropolis and J. R.
Reitz, J. Chem. Phys. 19, 555 (1951).

(5) Ge. I. Taylor, Prac. Roy. Soce A 201, 159 (1950).

(6) Stanford Research Institute, Technical Report No. 1, Contract
N7onr32104 (and demorandum: Estimate of Revisions of Technical Re-
part No. 1) Dec. 15, 1950 (SECRET-AEC RESTRICTED DATA).
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1.4 ADVANIAGE OF KIRKWOOD-BRINKLEY METHOD

The Kirkwood-Brinkley methed has the advantage of providing a direct
attack on the problem of underground explosions. It pre-supposes only
data which are experimentally measurable, and its procedure is independ-
ent of analytical artifice for its execution. However, a salient feature
cf the method should be emphasized. The labor involved in the gctual mi-
merical integration of Eqs. (1) is trifling compared with that of con-
structing the tables for the Hugoniot function and Kirkwood-Brinkley en-
thalpy. As pointed out, one requires a book of tables (a two-argument
table) to determine the Hugoniot function, and at least a single table to
determine h(p). Furthermore, no solutions of the hydrodynamic equations
are available until the tables are completed. This feature of the method
is a handicap in applying it to a medium (such as earth) for which relie-
ble asymptotic or approximate solutions are not (as yet) availabie. It
should be noted, of course, that the need for these thermodynamic tables
is not peculiar to the Kirkwood-Brinkley intepration scheme, since all
integration methods require essentially the same thermodynamic data. It
similarity solutions, for example, the role of the tables is taken by a
suitable approximation for Y (specific heat ratio).
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Figure 2 Alternately Specifying the Enthalpy Function (See Eq. 8)

é
RESTRICTED
Sacurity informetion

g v R i SRS 2 1 A ol




Soowlly nfemetin

OPERATION JANGLE

Project 1,9-2

-----

Fiws it

NOTES ON SURFACE ARD UNDERGROUND BURSTS o

------

;;;;;;

By

'''''

D. T, GRIGGS

[

aaaaaa

el ST A



A MRSy

<R

W G

Sooully informpiien
PROJECT 1,9=2

The oconcapts employed in this report originated with Dr. Bdward
Teller. While he should not be held responsible for the whole treat-
ment, he has aided materially in its execution.
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ABSTRACT

A orudes first order theory is applied to derive the shock condi-
tions resulting from a point energy source in an infinite homogensous
medivm having characteristics similar to soils. Approximate pressure-
distance-time values are determined. Some comparisons are made be-
tween the effects of surface axd shallow underground bursts.
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BOTES O SURFACE AKD WNDERGROUMD BUBJYS

1.1 INTRODUCTION

The chlef aim is to derive apprcximate values ‘ar the ground
effects resulting from surface vs. shallow bursts. It seess clear that
the key to this question lies in the early history >f the explosion

when the propagation in the earth is in the form of an intense shock
wmve.

It is concluded that a surface burst will produce about the same
earth disturbance as a shallow burst (scaled to 50 feet burial for 25
KT) of approximately one~tenth the energy releases.

1.2 APPRIXIMATE SHOCK CONDITIONS IN A DEEP BURST

-----

|||||

For a short time after a deop underground nuclear explosion the e,
energy will be propagated outward as a trus shock wive, since the energy  -....
of compression far exceeds ths energy of distortion. The character-
istics of this shock wave propagation can be derived approximately froam
the Hugoniot conditions, the equation of state of Feynman, Metropolie,
and Teller for highest pressures, and compressibility measurements in
the intermediate pressure range.

The Hugoniot conditione foar conservation of maseenl somentum '
887008 ::.o:mk front mav ha writtan 42 kha fn 11t ne Savne. o o

strong ! Ngel- Buation (1) should reyh

/P

Py
L JN Y - :
° Po (n-9°5

d‘q;‘ﬁ
"P?::N' Equation (2) should reads

- Wca A:-;(?-l-'-’l)

\ PMPo

The four lines following Equation (2) should reeds
where: vy = 8

shook
disturbed dens where: v, = shock velooity, P £ peak pressure in the y
shock front, k Py = \mdi:tnrbed density of the earth, Py © density immediste-
ghoek. g iy benind the shock front, A ® internal energy incresent per

unit mass across the shocke

Feynman, Metropolis, and Teller's calculations for the appropriate
atomic weight, .Bridgman's data on compressibility, and rough estimates
on the compaction of typical soil in the low pressure range yield a

1
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relationship between density and pressure which is plotted in Pig. 1.
Pros this and equation (1) the shock velocity may be derived as a
function of pressure. This is plotted in Fig. 2. Ir the pressure
range of about 100 to 1000 bars, the shock will be transformed into a
distortional “earth pressure wave® of the type observed by Lampson,
This transition is indicated very roughly by the dashed 1'.ne on Pig.
2., The undisturbed scil density is assumed to be 1.8. For other
initdal densities, the hhcﬁrof M intense shock will vary s

A * mumwaru—-mumm
uwuuu-um 'n.!nu-.umur-‘
m"uc

mm&wuum«maramwn
obtained to a rough ipproximetion from the above and equation (2
assuming tiat the emirgy per mnit ames is constant within the shock
and that the total energy is:

-

gﬂf

l-ﬁl!,

where V is the wolume mside the shoek fromt. Shock velocity is
plotted vs. radius fora 1.25 KT shot in Pig. 3. Integrating graphi-
cally, shock radius as a function of time is obtained and plotted in
Pig, L (lower curve). For comparison, the shock radius of a similar
shot in air is plotted (upper curve) scaled from data on the SANDSTONE
X-ray shot.

1.3 COMPARISON CP SURFACE AND SHALLOW BUBSTS

The propagation of a shock from a point source explosion at the
earth-sair interface may be derived to a rough approximation by assum-
ing that the pressure is constant within the shock front., The initi-
al condition for shock propagation may be taken as the end of the phase
of predominant propagation by radiative transport. At this time the
radius of the shock front in air is approximately 5 meters, while the
penetration incto the ground will be negligible due to the high opacity
of the soil and the comparatively slow velocity of shock propagation.
From this time until the pressure in the soll drops sufficiently so
that propagation of energy occurs by the distortional plastic wave,
the shock velocity in air remains mudi higher than that in ground.

The pressure versus radius in air may then be approximated by Taylor's
expression:

_’____01” = Shan 1953
?, (;—5} Y ob.

2
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The valocities in air, in ground, and their retio are given in Table 1
as a function of radius far a 1.25 KT burst.

TAHE 1
Velocitise As A Yunction of Radiwe

ooooo

vy is calculated from the Hugoniot equations for an ideal gas with
T = 1d; v, 10 sbtained frem Fig. 2. 3

The ratio of the rete of doing work on the air and on the ground
is: . Carkected S hak. 1953 - Qe

2
2w Py

-.3'_'.].

a¥lat’
.4' R

This ratio is nearly constant at 50:1 out to the point at which the
propagation in earth is distortional in character. Froa this point on,
the effect on the earth pressure wave of the shock wave in the air
will be small since it will act only to prolong slightly the duration
of the strain impulse. This reasoning then implies that the energy in
the earth pressure wavc from a surface burst will be about 2 per cemt
of that from a deep source of the same energy release. This is to be
compared with about 20 per cent for a surface vs. deep TNT explosion.

A 1.25 XT explosion at a depth greater than 3 meters will produce

3
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r P " " 1‘-
(meters) | (ata.) (in/sec) (ikn/vec) s
5 1.3x10° 110 4.0 2
10 1.6x10° 39 1.5 2 Sy
15 4ax10* 21 0.8 25
20 2010 W 0.56 25 8o
0 6.0x10° 7.5 0.3 25 o
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offests sixilar to an aqually energetic TNT explosion at the same depth
™he only important difference would appear to be the heat energy left
in the initially veporised earth when it has expanded to atmocapheric
pressure. 3imce the surface of the earth will be breechsd while the
shoek wave is still intense, ths energy coupled to the ground will de-
pead on the loss of energy to the air rather than on the initial char-
sster of the source. It is estimated thet some 20 per cent of the
mclear energy Will be wasted in a shallow burst, as compared to an
equally ensrgetic TNT explosion.

Using Lampson's coupling factor as a measurs of the energy coupled
to the graund, and the above correction, a 1.25 KT shot bur‘ed 18 ft.
would produse about 25 per cent as energetic an earth pressure wave as
e deep 1.25 KT shot. The surface shot is thus estimated to be roughly
one~tenth as efficient in coupling energy to the ground as a shot at a
astle depth of 18 ft. £49L.25 KT or 50 ft. for 25 KT.

he intwas) mergy inepwent AN ot the shesk frent may be woed

ap-o Tlterica Sy iing the rediw of wrth vagorisstion and

Tofilee oo an wadovevamad shot. The heat th ven-—igg .oﬂ_ is ‘PM‘
astaly 3000 cal./gn., and %o walls 14, 490 eal./ga. AT = 3000 J = 3000 cal./
"/ o resies of I end 400 cal./ge. at %' meters. It thus
tint ia the odllow dot, buried 5.6 meters, an incandescent
reball will just breech the surface. Caruried SharS3 - 9eb

It seams certain that both umderground shote will produce suffici-
ently dense clouls to settle after a small initial rise, producing a
"base surge.” The height of rise will be somewhat less, and the rate
of settling somewhat larger than far an equivalent TNT shot, due to
the greater density of the final products in the nucl~ar case.

In the surface shot on the other hand, since 98 per cemt of the
energy is smpent on the air, one would expect the history of the clowd
to be mot greatiy different from a tower shot. The material ejected
from the crater, however, will largely settle to the ground, and it
mY be expected to carry some 5-10 per cent of the fission products.
The history of these fragments is not obvious to me because of the
complications of the afterwind associated with the rising hot air mass.
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FREFACE

The text of this report is substantially that of Technical Report
No. &, "Predictions - U Test - Operation JANGIE,® by V. Salmon, Novem-
ber 8, 1951, prepared under Office of Maval Research Contract N7omr-
32104. The substance of the present report differs from the former ane
by the addition of material used during an orel presentation at a pre-
test symposium at Mercury, Nevada, on 27 November 1951.

The results are presented with a minimm amomt of the amalysss
by which they were developed. A much more detailed, gensral, and com~
Plete report on phenomens associated with undergromd meclsar explo-
sions is in preparation and will include a comparisom with such results
as are available.
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ABSTRAC?T

Results of an analytical treatment, together with condensed
statements of assumptions, are presented with a minimum of analytical
details for the mechanical phenomens ensuing from the underground
detomation of a nmiclear weapon. Conditions have been iuealised by
sssuming the instantanecus release of 1 KT of energy (TNT equivalent)
in a very small voluse and in a dry silica soil. A modified form of
Bethe's small) (Y - 1)theory is used to obtain rough numerical estimates
of preasures, temperstures, velocities, and dimensions associated with
the breakmmy bubble, wave phencmena in the earth, venting of earth
gas, air-blast energy, height of atamic cloud, throwout velocity,
breakup of surface targets, return of throwout, and energy partitiom.
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CHAPTER 1

1.1 S0QPR OF STURX

A genersl study has been mads of underground nuclear explosions

by tracing the phenomena from their very early stages out to the finmal
effects. This report presents the predictions resuliting when the

analysis is applied to the Underground Test of Operstion JANGIE. In

addition, the values obtained are compared, whenever possible, with

results obtained from other analyses or from extrspolation of data

from HE explosions. Confidence limits for the results are not knowm;

a two-to-one uncertainty is not out of the question. The analysis

should be considered an introductory guide to the phenomena, which may

be studied more carefully when sufficient experimental data become

available. This study embraces mechanical phenmmena ouly; thermal and e
maclear radiation are not considered. e

1.2

The explosion phenomena are considered under six headings: e
1. Breaksway of pressure wave from gas bubble. —
2. Transmission (wave) phenomena.

3. Venting of gases.

4+ Throwout and missiles. U
5. Return to earth of material thrown out. 3:3:2

......

6. Energy partitiom.

2R8I CONPRITIONS AJSUMED
The nuclear explosion is assumed to have a total ensrgy release

of k.2 x 1019 ergs, equivalent to that from one kilotom of TNT. Of
this ensrgy, 15 per cent is assumed to be in delays! radicactivity not
available for prampt mechanical effects. The gadget is idealised to
8 source of energy sufficiently small so that poimt source theory may
be used. The effective center of the explosion is taken at 17 feet
below the surface of a sandy soil, which is assmed homogsneous for
the moat pert. The soil is sssussd to have & poresity of 30 per cent
and to be 25 per cent saturated. The solid constituent is assumed to

- 5 o
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be wholly silice of veidless density 166 1b/ft]. it depths below 10
foot the wit weight of soil is taken as 110 1b/ft3, with a seliemic
velocity of 3000 fps. For purposes of predicting certain anomalies
expected in tho free-earth phencmena, & seimmic velocity of 4500 fpe
1s asswmed to exist below a depth of 100 feet.

loud rise calculations, the average cloud altitude above sea
taicen as 10,000 feet, and the characteristics of the US Stand-
Atmosphere are evaluated &’ that altitude.

3
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2.1 IEBAKANAY

Whers the energy relessed by the anclear detomatiom reaches the
sarth surrounding the weapon, the emergy density is so great that the
sarth is quickly converted to a highly emergetic mixture of muclear
particles, ioms, atoms, and photons. At this stage particle and
rediation actions and interactions are inelastic in the sense that
the boundary containing the energy grows by comverting the solid mate-
rial exterior to it to more particles of the same type, rather than by
outward radial motiom of single particles. The material within the
boundary will be called earth gas. Eventually, however, the energy
density falls so much that elastic impacts appear, becaome more mmer-
ous, and finally predaminate. Somewhere in this process the surround-
ing earth is finally able to transait elastic wave signals faster than
the boundary grows by engulfing material. At this stage the pressure
wave breaks svay from and outruns the earth-gas bubble, which from
then an grows principally by the ontward motion of the particles in

its boundary.

As used here, breskamy is arbiirarily defined by the conditions
for which 50 per cent of the axygen atoms are singly ionised. The
precise conditions may be evaluated by a modified application of
Bethe's small (¥ - 1) theory. Here ¥ is the exponent in the equation
of state of earth gas,

P P .Y
5 (-9:) : (1)

The results of this analysis, when applied to the test in question, .
depend an the ensrgy release appearing as redioce.tivity. Since this
represents energy not promptly available for mechanical effects, it
is subtracted from the total release to give the energy with which we
are cancerned. In the absence of a camplete evaluation of GHEENHOUSE
data, the prompt (mechanical) energy has been taken as the earlier
figure of 85 per cent of the total release.
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The amalysis then predicts the following paremsters of the gas
bubble at breakmmy:

Y= 1.6,

Tempersture T, * 220,000° K
Prounropb- 3.2:1()8 pei

Relative density st bowndary pp = k.l
Shock veloeity Uy = 1.3 x 10° fpe
Material velocity w, * 1.0 x 10° fpe
Time to reach breaksway t, = 12us
Weight of earth W, =5.6 tons

Radius of bubbdble 5, 2.9 1t

------

> ¢ There is reason to believe that this calculated pressure is kigh
e and the breskaway rediws low. The amalysis implicitly assumes that the
sise and weight of earth affected is comsidersbly greater than that of
gadget. It is probable that this ssswption will mot be valid at

epoch.

......

aaaaaa

41

: mmd%hMMtummmMim
T for point explosions.

e It is of interest that at breakmmmy, radiation comprises about
0.001 per cent of the energy released. Its importance as an energy
2 o9 transport mechanism at breakmwvay is greater than this value indicates,
. and may be estimated by the fcllowing. Assume the temperature at
* breakmay to remain comstant for the 0.1 millisecond. Using
2700 calories/gm as the energy to vaporise (under ordinary conditions)
earth from the solid, calculate the engulfment increase in radius from
the radiation flux; the value turns out to be cne foot. However, in
tle same time, the material velocity would have advanced the radiws
10 feet. Hence it is seen tha:t radiation transport in the earth is not
too important after breakaway.

2.2 ZRARSUSSION RIENOMERA

We are here concerned with the pressure in the trws earth shock
leaving the bubble of earth gas, and its subsequemt decay. A subsid-
iary result is a theory of crater formation founded on Westergaard's
ideas. :
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It is firet necessary to form a rough equation of state for highly
compressed earth. In the Tait form this is

(3)

high value of Yy corresponds to the high incompressibility of earth,
the voids have been removed. These constants give a seismic ve-
of some 6700 fps; for sandstone the velocity lies between 4500
,000 .MnMiathhouluoforth.Wpi
are not too mreasomeble.

L
%

;3

this equation of state, and assmming contimuaity of preesure
material velocity, the pressure in the sbock dslivered to the
can be calculated. It turns out to be 6.4 x 108
also of imterest that since the earth is stiffer than the
breskmay a positive pressure pulse goes radially back-
gas bubble. Almost camplete reflectiom obtains, indi-
"nismatch® between source (gas bubble) and loed (the earth).
,th.hock-umtieimdmopoumuﬂhhmumtma
the gas bubble at bdreakmmnay.

The initial earth shock is assumed to decay according to iscther-
mal sphere explosion_theory wuntil the "TNT radius® of 17 feet has been
reached. Then a 1/r> law is joined cn, yielding an expression for the

gt
gz
i}

:
th
:

4
3

with the later peak of a wave form degenerated by reflectiom, hyster-
esis, and plastic flow effects. If the earth pressure results from

5w
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»
thom-ztntl are corrected for gage depths and are extrapolated to

& one Kkiloton explosion, there results

9
pe -3-3;%9— (pe1, ft) (5)

This is about one-eighth the pressure predicted from nuclear consid-
erstions, and may indicate the effect of the reflsctions which were
neglected in that anaiysis. The pressures are expected to lie closer
to the values extrepolated fram the HE-2 test than to those predicted
from the breakavay snalysis. This tends to confirm the suspicion that
the above breslaway parameters, computed from Bethe's small (v - 1)
theory, are samewhat too energetic.

Expressions have been obtained for the compressional, kinetic, and
plastic-flow energy per unit volume in the pressure shock wave. Thsse

are respectively

-4 i

. pl-% . P -
wraliplaeg e ae Y a1y, @

P P i
ok-;{(l*;;)v-l}: (1)
ops%x{l*ln—-(———jnlz_v }. (8)

In Equation 8, Y is the dynamic compressive yield stress, E is Young's
modulus, and v is Poisson's ratio for earth.

When the pressuro-distance relation (5) and the parameters of (3)
are substituted, it turns out that p = p, st r = 46 feet, and that at
this distance the compressional energy dénsity is only seven per cent
below the kinetic. At lower pressures they approximate p2/2yp,, matil
st about 130, feet boih are equal to tae plastic flow enerey defisity of
about 5 x 108 erg/ft’ for JANGLE soil. These calculatioms arc

# Superscript numbers refer to .eferences given in the Bibliography at
the end of the report.
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uncertain to the extent that the pressure law and the effect of high
Pressure on earth ™viscosity® ar¢ unimown. The latter in particular

is questionable, since it is kmown, for exampie, that at extremely
high pressures, lubricating oil has practically the viscosity of copper
at ordinary conditions. Hence plastic flow will probably use more
energy than anticipated, especially near the charge.

At p= p;, at r = 46 feet, the predicted earth shock velocity is
8200 fpe. Thus the seismic regime exists throughout the region in
which measurements are possible.

An approximate theory of cratering has been developed, based on
Westergzard's ideas of the tension wave resulting from the reflection
of a pressure wave at the surface of the earth. It is assumod that
the boundary of the real crater is the locus of points for which the
peak magnitude of the tension wave is equal to the sum of the dynamic
;.:mila strength of earth plus the geostatic pressure. The relatiom

{r® + (b + 3%} 2 {p, *+ res} =4, | (9)

where r and z are the boundary coordinates, h is the depth of charge,
Pt is the tensile strength of earth, p is the density of earth, and
the constants n and A arise from the pressure relstion p = A/ré.
Owing to the disturhance created by the wave, it is probably a good
approximation to assume that the earth within the crater has been so
decohered that it acts as a viscous liguid. This partially justifies
the use of the geostatic pressure without modification by the elasto-
plastic properties of soil. In order to obtain the tensile strength
of JANGIE earth, an estimatie was made of the radius of the real crater
for the HE-2 shot; exirapolated to a ome kiloton shot, this is 180
feet. The value then obtained for the tensile strength was 340 pei.
It is of interest that the dynamic tensile strength of concrete is
about 300 pei, indicating that either the analysis is incorrect or
else the dynamic tensile strength is much greater than the static
(this is true for water).

When this tensile strength is used in the theory to predict the
crater depth, a value of 150 feet is obtained. This is consideradbly
in excess of the 62.5 feet estimated by extrspolatiom from HE-R. A
partial explanation for the large discrepancy is that the crater
radius predicted by the theory is not that of the real crater, owliyg
to collapse of the walls near the surface. However, if the depth is
to be predicted as equal to that from HE extrapolation, then the
offective redius to be used will be less than balf that extrapolated,
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and the tensils strength obtained will be unreasonably high. In view

of this, the extrapolated predictions are probably more reliable. To

6:';]!;“, the estimated true crater diameter is 360 feet and the depth
oot.

It is knowm that the earth at the site shows a fairly repid change
of seismic velocity at depths around 5, = 100 feet. By standard geo-
physical calculations ( the velocitics v; and v, in the upper
and lower layers respectively), it is predicted that beyond a distance
r!, trensmission will be primarily from a path dovm to the interfacs,

the interface, and up to the surface. The distance is given by

. Yo tvy, 1
.,,‘-zs.(;:-—_—'i)z . (10)

Beyord r_ the direction of arrival should be predominantiy vertical.
Also, sifice seismic energy trapped by the wave-guide action of the
interface spreads in two dimensions only, this path should have less
atteoustion than the direet ane. Thus it is predicted that beyond r,
the verticel oamponent of the accelerstion should decay mmch less
rapidly than nearer the charge. With v, = 3000 fps and v, = 4500 fpe,
we got ry =450 feet, or A = 3.6. In HE-1 and HE-2 shots, this
phencaencn was actually observed. The "turn-over" distamces wers
about L8O faet and ALO feet respectively. The distance for the under-
ground mclear test will of course depend on the actual underground
profile, but 450 feet appears to be a good working value.

Values for the acceleration have nol been predicted in this
report, for no theory of spherical iransmission in a finite elasto-
plastic earth has been developed. Ordinarily it is assumed that the
acceleration is proportional to the pressure gradieat, which :guld
make the exponent in the acceleration law equal four for a 1/r’ pres-
sure law. Actually, in the HE shots, most of the exponents were near
two. No explanation is advanced to explain this, although the viscos-
ity t-m in the Navier-Stokes relations may bs large enough to account
for the difference. Values extrapolated from HE experience should be
used.

¥When the pressure wave hits a horizontal target lying on the
surface, such as a reinforced concrete higlamy, it is of interest to
estimate the effect of shattering. An analysis based om Newmark's
theory of creck width in shock-loeded concrete beams has been devised.
If the energy delivered to the concrete is supposed to be equal to the
Kinotic energy density in the earth shock, there results

-8 =
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2 >
Y "Cx” iy (1)

s al.dn:ie
r_ is the limiting distamce inside whick all reinforcing bars
ruftured; 6 is the ratio (distamce frem newtral some)/(thickness);
t is the thickness; w is the width (here 10 feet); A and n are the
constants i1 the pressure relstion p «A/rB; o is the plastic strength
dthni-tmium.l;l.hthomdtho-tul;dhthoddpth
of the tensile stesl; Y and p; are the constants in the equation of
Mogfﬂﬂhwchthﬁmumthblwmﬁichﬂn
the o

Hexe
are

%

the constants apprepriate to the wnderground nuclear test
,ittmoutthtr.hnbut?Of«t. Thus imside this

cencrete will probably be in pleces le=; than six-imch
of the reinforcing mesk. Beycad this
This informatiom aids in predicting the sise and
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the shock reaches the surface,
meots the expanding gas bubble. From the theory it
this sheuld occur about 2-1/2 feet below iae surface,
between the shock reaching the
The gas velocity is difficult
th mach assurance, but it appears that the Laval mossle
12,400 fps. Ancther estimate is based on the expansion
bubble im wvhich the pressure at the boundary is
the instant of vemting, in accelersting the earth
beundary velocity is approximately doubled on
about 30,000 fps. A third estimate is based on calculatioms
pressure at vemting; with approximately 200,000 psi «t venting,
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50 per cent charge
of 1.5 per cent of
buried charge does not appesr as air blast. It is assumed that

lation for a suddenly relsesed
source of heat. Using the 1.5 per cent energy, and US Standard Atmoce-
phere meteorolegical factors appropriate to a 10,000-foot average
cloud altitude, we get & rise of about 5000 fest. It is suspected
that this is too low, and that two or three times this valae may be
sttaimed. Of course, the actual metecrological factors rather than
those of the standard atmosphere should be wsed in a camparison with
the test. The effect may not be large, since the height of rise de-
penis en the 1/h-powor of the factors.

3.6 THROWUT AXP MISSLLES

Concomitant with vemting are throwout and missile phencmsna. In
goneral, resuits from HE shots lead to the assumption that the matter
is ejected along redii from the charge, with a velocity law of the
form

V':%(th)n, (12)
A

where v__A"R 1s the semith velecity, A_ is the scaled ckarge depth,

0@ 1s the between horisontal and & redius from the charge, and

B is an exponent probably close to two for JANGIE soil. Theoretically,
it is the exponent of pressere decay near the charge, but imdirect
ovidence fram observed ranges of missiles at Dugvay indicates the ex-
ponent is somevhat smaller. The emtkumubnmmo
and 400 fps for JANGLE soll. leading to exvected semith velocities
frem 5000 to 20,000 fpe. A full discussion of the implicatioms for
throvwout and missiles is comtained in a forthcoming report; prelimi-
ults have already been commwnicated, and will not be discussed

5
¥

Soms rough estimates of the ameunt of threwout have bon made,

on the material contained in the inverted cone of base squal to
crater opening, and with vertex st the charge. About 30,000 tous
of earth sheuld thws be projected radially from the chargs. Based on
8 laberatery analysis, about 2000 tons of this will be below one
micron in sise, 1f all the earth has been decohared to its comnstitusnt
particles. Iittle grinding actiom is expected, and the fines resulting
should be no more mmserous than in the earth and should be cousiderably
less. Thus the 2000 tons is an wpper limit to the amount of material

4
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that should remain airborme for a long time after the explosion.

It 1s also of interest that the energy required to raise 30,000
tons of earth to an average height of, say, 2500 feet is about five
per cent of the total release. Hence work against gravity is & smll
part of the total.

2.5 EKEEE

As the throwout returns to the earth, it may bde classified as
fall-out (ballistic laws); settle-owt (Stoles' law); amd drift-out
(Browmisn motion swspeasion). Im th! fall-out we include missiles,
which are treated in another .

The settle-out comprises principally those particles in the ramge
of 1 to 100 micreas sise. Their comcentratiom depemds en how thorowgh-

1y the explosion and venting processes decohers the earth; no experi-
nental evidence for an estimate is available. Amalysis of date frem
o pie-plate collectors cam give some order of magnitwde infermation, but
eetos this has not been undertaken here. It is fairly certain that most of
the fall-out mass is in sizable chunks frex one-fowrth imch and up~-
wards.

The base surge phenamenon 1s expected to be present, and should
differ but little from predictions based on HE extrapolation. The
s e of the surge, the column, should show a diamster scaling as
Wl/3 but, owing to the increased effects of gravity and air resistance,
the height should be less than that obtained by scaling.

The column 1s conjectured to be c ~1ike im structure, with
a hollow core carrying the highly radicactive material ejected from
the earth gas bubble. 4is it collapses to form the surge, the contam-
inated immer surface is expecteu to mix turbuleatly as the swurge mash-
rooms out. However, most of the inner surface should appear at the
lower surface of the surge. Surge constants are best estimated from
previous nuclear and HE data.

Standard meteorclogical diffusion theory may be used for predict-
ing the fate of the drift-cut, and experieace fram HE tests should
guide the calculations.

2.6 EEEROY PARTITION

From a consideration of the foregoing the probable ultimate
energy partition is as follows, in terms of the total rel:ase:

- 12 -
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Eadiocactivity
Pressure wave and plastic flow
Throwout against gravity
Air blast
Clowd rise

15 %
30 § or less
5%
8 % or mers

2%
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LIST OF SDMBOLS

A Coefficiant in pressure-redius relstioa.
A, Total ares of tensile steel in concrete slab.
d Depth of tensile steel in concrete slab.
E Young's modul'as of earth.
€ Acceleration dus to gravity.
.. h Depth to center of detonation of charge.
n Exponent of radius in pressure-redius relatiom. Alse,
----- . exponerit in throwout velocity relatioa.
P Peak or shock pressure.
P, Pressure in earth-gas bubble at breakaway.
S p; Internal pressure in equatior af state of earth.
Po Reference pressure.
e p, Dynamic tensile strength of earth.
- r Horisontal redius from ground sero.
r, Horisontal limit radius for refracted seismic energy.
r, PRadius of earth gas bubble at breakaway.
ry Horisontal limit radius for rupture of steel reinfercement
in concrete.
t Thickness of concrete slab.
"b Time to reach breakawsy after detonation.
T Temperature.
- -
RESTRICTED DATA SECRET

ATOMIC ENERGY ACT 1046 Sosantly inferaption

P TVPRS G IR - sk R e et = '-‘er"-rﬁ




PR T I Tyl eI o iior et Mot gl 4 P L N s e -

Sowly Sleatis

FROJXO? 1,9-3

Temperature in earth gas bubble at breakawny.
Material wvelocity.

Material velocity at brwakmway.

Shock velocity.

Shock velocity at breakmnmy.

Velocity of throwout along radius from charge.

Vertical velocity of throwout for a charge at a scaled
depth of unity.

Seismic velocity ef upper stratwm of earth.
Seismic velocity of lower stratum of earth.
Width of concrete slab.

Weight of TNT (pounds) of given energy release.
Weight of earth gas bubble at brealaway.
Dynamic tensile strength of earth.

Vertical depth coordinate of crater.

Depth of stratum with higher seismic velocity.

Ratio of distance from neutral sone to thickness, in concrete

glab.

Scaled horisontal radial distance r/wl/3.

Scaled depth of charge h/AWY/3,

Density at shock in earth gas bubble or in earth.
Reference density.

Exponent for density in equations of state.
Plastic strength of tensile steel in concrete.
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€ Strain on surface of concrete slab st rupture of temsile
steel.

6 Angle betwesn horisontal and redimes from charge.
v Poisson's ratio for carth.

-----
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