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ABSTRACT

A method to find approximate solution of an idealized model of the blast

wave problem is developed, the gasdynamic motion is initiated by an instan-

taneous energy release from a point source (or line, or plane source).

Transformation of variables is introduced with a similarity parameter x as an

independent variable along with a quantity less sensitive to the phenomenon.

This reduces the fundamental system of equations of the problem to a manage-

able form for the approximation, which is conveniently performed in a power

series expansion in the variable y and the coefficients of the expansion can be

determined successfully from the systems of ordinary differential equations.

The method has been applied to many problems of the similar type, with

some modifications necessary for each case, to blast wave, the propagation

of the blast wave in the non-uniform medium, exploding wire phenomenon,

magnetohydrodynamics cavitation and thunder.



BLAST WAVE THEORY

Akira Sakurai

1. Introduction

A blast wave is a rather common phenomenon usually experienced as a

"1shock" when some exrposion occurs, and the phenomenon itself is simply a

kind of disturbance in the atmosphere. like a sound wave. The characteristics

of a blast wave are, however, quite different in many ways from those of

ordinary, sound waves. Unlike the velocity of sound c, the velocity of blast

wave U is not constant and i; always bigger than c; usually U is very

large near the source of the explosion and decreases very quickly, approaching

the sound velocity c as shown in Figure 1. The fact implies also the energy

dissipation is more significant in a blast wave than in a sound wave. Secondly,

a blast wave is not really a wave of periodic type like ordinary sourid, but con-

sists of a single pulse distinguished by the presence of the shock wave (The

terminology "shock wave" is used here to indicate the front surface, not the

whole pulse region which we refer to as a "blast wave"). At the frontv the

pressure p, the density p. and so forth, jump abruptly from their values at

the undisturbed atmosphere p 0 , p 0 , ... (Figure 2). Moreover, its wave form

changes shape in the course of pr)pagation in quite a different way from that in

the sound wave case.
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These features result from the non-linearity of the phenomenon, causing

the atmosphere to be so dlsturbed that the pressure, the density, and so forth,

are considerably different from their undisturbed values po0 pO .e. . In the

sound wave case, on the other hand, these differences are small and the

phenomenon can be treated much more simply on a linearized basis.

Although there has been a need to clarify the details of those features for

many years, chiefly with the obvious aim of estimating the effects of explosives,

the attempts at theoretical study of the phenomenon had to face the very dif-

ficult problem of finding the soiution to the non-steady flow of the full non-

linear hydrodynamic equations, satisfying a moving boundary condition at the

shock front.

This situation, however, has been eased to some extent since the Second

World War, the demands of which obviously stimulated renewed interest in the

phenomenon. As a consequence a large amount of experimental as well as

theoretical work was performed. Considerable progress has been made not only

in this particular area, but also in related fields. The investigation has since

been extended to quite different fields by applying the techniques and the re-

sults proved useful in the original problem.

The greatest progress was made probably when the concept of similarity

was introduced, which simplified the problem while retaining the essential

nature of non-linearity. The concept itself is not new, but has been familiar

also in some other fields of fluid dynamics, such as boundary layer theory,

conical flow theory and so forth. The assumption of similarity causes the number

of independent variables to be decreased and thus frequently reduces the
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fundamental partial differential equations to the more manageable ordinary dif-

ferential equations.

The blast wave solution of the equations of gas dynamics was found

(Sedov, 1946, Taylor, 1950) in the form of similarity solution. However the

existence of a group of similarity solutions of progressive wave type had been

known before in connection with the contracting spherical wave problem.

(Guderley, 1942). It should be noted that the similarity in the blast wave

phenomena does not hold exactly, but is valid only while the wave is strong

enough to neglect the effect of the ambient atmospheric pressure. Since it is

obvious that the hydrodynamical representation of the phenomenon does not

hold very near the explosion source, the range where the similarity solution is

valid., is accordingly limited in a very small region (even in the strong blast

wave from an atomic explosion, it is reported to extend between 20 and 180m

(Taylor, 1950)). Sometimes in the case of ordinary explosions there is no such

region. Nevertheless, the concept of the similarity seems to be very useful

since the phenomenon preserves the similarity in some extent ( Sakurai, 1953,

1954) even at the stage where the front shock becomes weaker.

It has been found that the same kind of similarity solutions could be obtained for

otherkinds of explosions (Sedov,1946, Sakurai, 1953,1954, Lin, 1954) such as from a line

source and a plane source, while the ordinary explosion is considered as that

due to a point source. Although the blast wave from the line or plane source

seems to be rather artificial in actual explosions, these solutions themselves

proved to be very useful in many other different fields, especially the applica-

tion of the theory to the hypersonic flow problem ( Lin, 1954, Lees and Kubota,

-5-



1957) where the general principle of similitude (Hayes, 1947) between hyper-

sonic flow and blast wave behavior had been known to hold. Most of the de-

tails on these earlier developments are seen in such books as Sedov (1957),

Hayes and Probstein (1959), and the more extensive treatment on the subject

given in the recent book by Korobeinikov et al. (1961).

While blast wave theory itself has been continually improved, many im-

portant applications of the theory to the various fields of research have also

been taking place. It is the purpose of the present article to descirbe some of

these recent developments. The fundamental idea of blast wave theory itself

will be described in Chapter 2, which is essentially concerned with the trans-

formation of the variables - both dependent and independent - based on the

concept of similarity, and reduces the fundamental system of hydrodynamic

equations to a more manageable form, although they are still non-linear partial

differential equations.

Different methods of finding approximate solutions to the system of equa-

tions will be discussed in some detail. Various applications of the solutions

thus obtained are given in the next Chapter 3. Firstly, they will be applied to

the blast wave problem itself ( Se,,tion 3.1) ; this proved to be quite successful,

especially in describing the strong blast phenomenon resulting from the atomic

explosion.

Suppose that we have an explosion of very large scale, as in astrophysical

phenomena. It would then be necessary to modify the theory so as to include

the effects of non-uniformity in initial fields caused, for example, by gravity,

(Section 3.2). [Applications to the hypersonic flow problems mentioned
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previously are of course indispensable, but the subject may be omitted here

since this should be treated more extensively in an independent article.]

The electrical disintegration of fine wire known as EWP (Exploding Wire

Phenomenon) has been attracting considerable attention in connection with

various fields (seeChace and Moore, 1959, 1962, 1964). The exploding fine

wire may be regarded as an example of the line source and may produce a sim-

ilar situation to that expected from the blast wave solution above ( Section

3. 3).

In the vast field of magnetohydrodynamics ( Section 3. 4), there are many

problems on magnetohydrodynamic shock waves which show blast wave-like

characteristics. Since extra terms are needed to describe the effects of the

magnetic field, the genuine blast wave theory above is usually not applied

directly to these phenomena, but needs to be modified. Some of the problems

are, however, very similar to those of ordinary blast wave type and need only

a slight modification, introducing the magnetic pressure. There is an interest-

ing application of the theory to the problem involving singularity. This is

given in Section 3. 5 in connection with the problem of the collapse of an

empty cavity in water. The procedure to this case is not straightforward be-

cause of the singularity but can be modified by introducing Lighthill' s tech-

nique (1949). Quite recently application of the blast wave theory from the line

source has appeared in the problem of thunder. Observations of this have

revealed that the duration between the lightning and the succeeding thunder, its

wave form, and so forth, are very different from the results expected from the
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theory of sound. A more sophisticated way of treating the phenomenon is re-

quired to take into account its non-linearity, and to regard it as a blast wave

from the lightning as a line source (Section 3. 6).

Apart from the applications mentioned, blast wave theory is mathematically

a kind of transformation of variables to another set where some of the inde-

pendent variables are not sensitive. The extension of the theory along the

line as a technique to handle the complicated problems especially of non-linear

nature, could be very useful and the development of the technique itself may be

an interesting problem for the future.

§ 2. Blast Wave Theory

2.1 Fundamental Equations

Suppose that we have an explosion, following which there may exist for a

while a very small region filled with hot matter at high pressure, which starts

to expand outwards with its front headed by shock wave. The process usually

takes place in a very short time after which an advancing shock wave develops,

which is continuously absorbing the ambient air into the blast wave. Although

some of the explosive products may still remain rearthe center, the amount of the air

absorbed increases with time, and the later behavior of the blast wave may well be

represented by the following model of the shock wave at the front and the purely gas-

dynamic treatment of the motion of the air inside, which is assumed to bear ideal and

non -viscous adiabatic exponent y .

The three types of blast wave ( spherical, cylindrical and plane) all have

features in common and may be conveniently treated in the following

unified manner. The equations of motion, continuity and energy
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of the gas behind a blast wave of one of these types may be written

Du 1 WR (21)
Dt p ft

DE & au . (2.2)
Dt -O(r r

D pp-Y =o , (2.3)
Dt~

where u is the particle velocity, p is the pressure, p is the density and

u, p, p are functions of the Eulerian coordinate r (measured from the center)

and the time t (measured from the hikstant of bxplosion). The coefficient

a has the values:

a = 0 for a plane wave,

a = 1 for a cylindrical wave.,

a = 2 for a spherical wave,

and the expression D/Dt denotes

D = 8 a
Dt •

Equation (2. 3) is conveniei ty transformed into

S= - p ( + ) ? (2 .4)
Dt r

where we have used the equation ( 2. 2).

The position of the shock front is represented by R (measured also from

the center), which is supposed to be a monotonically increasing function of t

and is related with the shock velocity U by

dR =U (2.5)
dt
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At the shock front where r = R, the quantities such as u, p, p measure

suddenly from their corresponding values in the atmosphere (presumed at rest)

with pressure and density pos P0 . The discontinuity conditions is given by

the Rankine-Hugoniot relations (see for example, Courant and Friedricks, 1948)

which for the present purposes, are most conventiently written

2 22 UuCZ
u)r=R =y+l

-) (2.6)

= {-I("'r=R 0 y- 1+ ( U )

where C is the sound velocity given by C= =y P_.q.0 (2.7)

p0

Now we have three equations ( 2.1) , ( 2. 2), (2.3) and the boundary conditions

(2.6) at r = R . We need another condition to determine U (or R) as a

function of t . The condition may, be postulated in various ways depending on

the feature of the explosion. We may assume, for example, a small region of

high temperature and pressure at t = 0, from which blast wave is started. Some

conditions of this type are useful especially, for the purpose of finding the

solution by numerical procedure, where all the complications can be taken into

account under the specified circumstances.

To describe the general features of the phenomenon, the point source model

(line or plane source for a = 0,1 ) has been considered simple and appropriate

for the purpose. It is assumed that a certain amount of energy is released

instantaneously from a point (or line, or plane). Since the total amount of

energy (kinetic and thermal) carried by the blast wave is constant and must
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always be equal to the energy released, the assumption of the instantaneous

release of the energy is conveniently represented in the following way (Taylor,

1950).

I=J 1 (1pu +- ) r* dr , (2.8)0 Y

or
R 1 2 P p ~0 R!+'

EJ* nu + 'd-I +-I

where E is related to the released energy as

Explosion energy per unit area for a = 0

E = (Explosion energy per unit line) ( 2w) for =1 . (2.9)
-1

(Explosion energy) (4w) for a = 2

Although the model is apparently inadequate to represent the actual situation in

the very early stages, where all kinds of complicaticns are involved, it should

be recalled that in this period, the gasdynamical representation of the phenom-

enon is not adequate in any case. The advantage of using the model is two-

fold. Firstly, the model, although it is not adequate in the earlier stage,

becomes more and more accurate at the later stages regardless of the kind of

the explosive or the feature of the exilosion. Secondly, the shock front ap-

pears from the beginning in this model, since the explosion is assumed to take

place instantaneously at a point (or line or plane). Thus we may avoid the

nuisance of the shock formation and at the same time we may expect a kind of

similarity in the flow field. Because of this similarity, the whole system of

equations can be transformed to a mathematically feasible system and thus can

be solved approximately, which will be seen in the following Section 2. 2.

_11-
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It should be noticed that since an instantaneous source is assumed, the

second shock may not be developed in this model. While the second shock or

more shocks appear in actual explosions and they themselves provide interest-

ing effects, their features depend considerably on the sequence of the explosion

and are well understood in connection with specified initial conditions. It

seems more appropriate to use direct method (for example, Holt, 1956) or

numerical method (for example, Goldstein and v. Neumann, 1955, Brode, 1959)

for studying their features in individual cases.

2. 2. Blast Wave Transformation

Let us introduce new independent variables (x, y) defined by

2r c-x9 S , = Y (2.10)

and transform the dependent variables as

u Uf(x,y), p pO y- g( x, y), = pO h( x, y), (2.11)

where f, g, h are new dependent variables to be found ( Sakurai, 1953).

The introduction of x is most important and is based on the similarity

nature of the one-dimensional flow given by Eqs. ( 2.1), (2. 2), and ( 2. 3),

for which a group of similarity solutions depending only on x exists (See for

example, Sedov, 1957). Although none of these solutions satisfies the condi-

tions(2. 6) and (2.8) exactly, there is a .on satisfying them approximately

when the front shock is strong and (p/r=R is negligible. Since the front

shock decays very quickly even in the stronger explosions, iP is necessary to

take into account the effect of the pressure neglected above, for which we need

to retain independent variable other than x . The variable y in ( 2. 10) is

-12-



chosen so as to fit the conditions (2. 6) and (2. 8), which are now written as:

g( l, y) - (- y (2.12)
Y+l Y+l,.

h( 1, y) ±-L ( 1 + 2 y-

and

0( 0+ hf 2 + ,-'L) x dx - Y (2.13)
0

where we have put

R0 =(-2) IA*+l) (2.14)P0 P
0

The transformations (2. 11) are thus partly chosen to fit the conditions (2.6)

and (2. 8), and at the same time, to match the requirements of the similar-

ity solution.

Since y a (p0/p) r-R for a stroag shock ( See Eq. ( 2. 6)), the solution

tends to the similarity solution as y-•O (R--0) . Also as R tends to 00, y

tends to l( U--C) . The condition ( 2. 12) is not much affected by the value

of y , which varies only between 0 and I and we may expect a similar in-

sensitivity to y in condition (2.13) also. Thus the variable y is expected

to have little effect in the solution. As a matter of fact, we can make other

choices of the variable such as R (See Section 3. 2 below), which are expected

to be insensitive to the solution.

By introducing ( 2. 10) and ( 2. 11), the fundamental equations (.2. 1), (2. 2),

(2.3) are now transformed into
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2i ' 5 '8x +( b ty Yh ft

-X +h~ 7 ( (2.15) +)~f g +o

where
SR(2.16)

and X is considered as a function of y only, in fact R is represented by

Eq. (2.13) as a function of y and we find, by differentiation of Eq. (2. 13)

with respect to y ,

d- t+l)i ----- yj -y A (2.17)Y-1 dy

where we have put

f (Y-+* dx =J .(2.18)
0 Y-1x~=

Although the system (2. 15) includes the integral J in (2. 18) through X

in (2. 17) and still looks formidable, it will be seen in the next section that the

system is much more easier to treat than the original one because of its insensi-

tivenessto y

It is also worthwhile to note that the system is represented by three non-

dimensional numerical constants e, -y and Rol in which R0 is most important

and is related to the scale of the explosion.

2.3. Solution in a Series Expansion in y

2. 3.1 General procedure

It is readily seen that if we put y = 0 in Eq. ( 2. 15) i1 is reduced to a

system of ordinary differential equations where X is constant and equal to a + I1

-14-
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while the condition ( 2.12) for this case proviees the boundary values at x = I

and Eq. (2.13) gives the relation between y and R (or U and R) as

y O R+' These are all the immediate results of the similarity solution of the

intense explosion. Now it will be shown for general y that if we express

f, g, h, in power series of y as,

f f(O) +yf(l) +YZf(Z) +...

g g(0) ÷Y9(1) +2 g(2) + (2.19)

h=h 0h) +yh(l) +y 2 h( 2) + ... ,

whee (I) g(i) h
where f ,g , (i =0, 1, 2, ... ) are all assumed as functions of

x only, then these f, (i--, , ... ) can be determined suc-

cessively starting from the similarity solution given by f( 0) g(0) h(0)

( Sakurai, 1953, 1954). It should be noticed that this is not always possible in

a non-linear system, but often quantities for i = I or more appear in the first

approximation, which makes the successive approximation procedure impossible.

Using the expression (2.19), the integral J defined in Eq. ( 2. 18) becomes

formally,

2=JO(1 Y+a y +...) , (2.20)

where we have put

=-f(h 0 ) + 2) x dx
0 Y-

1 0) l(0) f() f(20) h 1) ()
J= f ( -yh ff + h +- ) x* dx (.21)

0 2-I

S 0J Iy (0) f(2) f(0 ) + g(2)a o + Y fh` + h(f( 1) + 2 )x"r dx
0 2

+.1 f h(O)f5l) 2 +2h51)P')fO))-IS-)ad



With use of expression ( 2. 20) Eq. (2. 13) becomes

0+ j + (0- - y÷+2 " (2.22)

which shows the y-R relation more clearly. X in Eq. (2. 17) is also expanded

as
2

X = (a + (+ly+ k2y 2 +. (2.23)

where we have put

)L1 -0jo-
X, 0 1j 0 (0n+1) (y-1)

2 2 4rz(2,,24)

Putting Eqs. ( 2. 19) and ( 2. 23) into Eq. (2. 15) and equating the coefficients of

the terms in corresponding powers of y, we get the following systems of dif-

ferential equations.

From the coefficients of the y" terms,
• -(f(O)_x) h(0) f(O) + 1 (0)' _1f(O) hiO)

(f(0) '-g O = ()h 0
Y

f(O)' +af(0) _ (x _ f(O))h (0)1 (2.25)
( h((0)'

Ly(f(0)) -+- -I(x- f(0)) (

From the coefficients of the y terms,
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10 (10) NQl 0), (h0~ ) (2.26
+I IN+ f( 0) +(X f( 0) .) fl , l-~ ) =( ( ))(0) fh(l) +i IXf()h(2.2)

2 21i- +x"f20 +)Ix- )=}h1(1 0 - ,

Sh(O0) f(l)'-(x-f (0) ) h(l) -_( h() + a h(O)) ) f(l) _1 f(O)' +.& f(O) +&+-l) h11),

(0 (l1)fxll f(Ol gi(l) (g (0), +X Mg(0) f (ll Y1f101 + f(Ol
yg f -(x-f g = -(O + 1 -

x 2

(0))

SSimilarly Eq. (2.12) yield the following conditions:

:•f(O) (1) 2 g (0 01) -9 h(O0)1)V (.7
-Y y-I y+t 'Y-I

2 g(1) h(1) 11) (2.28)

f(2)(l) =0, g(2)(1) =0, h 2 ) 1() =4--• ; (2.29)3(y-l)

The first system of non-lhnear differential equations (2. 25) with the con-

ditions (2. 27) gives the similarity solution (given by Taylor (1950) and Sedov

(1946)), and the value of the integral Jo in Eq. (2. 21) is determined from

these f(O) g(O) h(O) The second system of Equations ( 2. 26), after in-

(0) (0) h(0)serting the values of f , h obtained above, becomes a system of

linear inhomogeneous differential equations for f( 1) (1) h(1) The system

also includes the unknown parameter X, which is related to aI- by the re-

lation (2. 24). The solutions f () U of Eq. (2. 26) subject to the
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boundary condition (2. 28) thus include Xl (or a 1) . Inserting these solu-

tions in the right side of the second equation of Eqs. (2.21), we have an equa-

tion to determine X 1 . With this value of X f ( h' are determined

finally, and we have the second approximation to the prob lem to the order of

y, in the following form,

(0) ) •2

p = (p/y) {g() + y g) + O(y) , (2.30)

P PO {hO +yhll +O(y 2 )) ,

U R =JO [+ y+ OXY2 1] +

The procedire in the third and further approximations is the same in

principle as in the second approximation above, and f(1) g9 0 h(i) )'. for

all I are to be found successively.

While it is naturally not easy to see the validity of the solution in ex-

panded form, some verifications will be ,3btained simply by comparison with

corresponding experimental data as well as with some purely numerical solu-

tions. It is noted that singularities of the form y- in p or y in R

(see Eq. ( 2. 30) ) are removed before the expansion, where only the parts pre-

sumably insensitive to y are concerned. It is not likely, however, that the

expansion is good as well up to y = 1, where all quantities are subject to

another kind of singularity (see Section 2. 4 below).

In fact it is expected that R-- as y--I and accordingly from Eqs. (2.13)
-1 -I

and (2.18), J must approach the value (a+l) (y-l) as y-13, and itis

hardly to be expected that the expansions of J in Y behaves in chis way. The

-18-

•ll 1 l• n ll ll ll • II II• ll II ll 1 • lll I• 1 l ll l l I •• • S•



difficulty will be overcome to some extent in the followinq Section 2. 4. Another

technical way of improving the expansion procedure is to expand p 0 /p instead

of P/P 0 as in Eq. (2.19), which led to the expansion of [1 + 2y/(y-1)] in

Zy/( y-1) ( see Eq. (2. 12) ). Since 2/(y - 1) is usually rather a large number for

ordinary values of y near for -y= 1. 4, the expansion in Zy/( y-l) is expected to

be poor and the alternative way of expanding p 0 /p is supposed to give better results.

2.3. 2 First approximation

Equations (2. 25) are known to have two intermediate integrals and the

resulting first order differential equation is integrated exactly. Multiplying

the second equation of Eqs. (2. 25) by (y- 1) and subtracting the third one

yields,

h (0) 9 g(0) ' Xo

which is readily integrated to give

gl( 0) x _ f( 0) h( O) Y'' -) x& - V_ -1_)
(0Y)lfhx + I " + (2.31)

where we have used the condition (2. 27) to determine the integration constant.

The second integral is, from the energy relation,

2 2Ir€ _-E_. +u]+ r* "•Z P
S[ ,,-1 2 -Y[r 2 2- r-1+y-l 2 ) =0,

which, in the present case, is reduced to

dd [-x +l {1 (0) 1 f(O)h(0) ) + xa f(O) ( g(0) +I f(O) 2h (O))] -0
dx y( y-l) 2 +y- 2

and integrated to give

f (0 f(O) 2 ( (0) f(O ) (0)
2 + Y-1h(0) 2 h(0h ) ' (2.32)
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where we have again used the condition ( 2. 27). Eliminating g(0) and h(0)

from Eqs. (2. 31), (2. 32) and the third equation of Eq. (Z. 25), we get

(40) ___ +P) I-f) (0), 0x F~o + 1- +~ o ,_ ..•( o 1 ), +,x-f -(O)=f(O)__ f(O)

2y x f(O0) x -f( 0 ) Vf(O0) - x x

which is evidently integrated by puttiiig f( 0) /x = F( say) with the result

2 logaft ( 3)(- (1-+1) (- 1 )log Yf( , 0f)2 lo fa+l y-V..l log x -_ Va- x)
(@.)y-( @-l) 2y+O-l

2 2 2 2
S[ +2-+51) v + (-3*2+ 2a+ l)v+ 4(a2-1) g (0+1) V-( -l.f

(zy+*-l) {(o+l) &-(-1)) - a + 3

+logc , (2.33)

where c is the integration constant determined byEq. (2. 27), given as

2 =- (-3) 1 v--1 +2 5) v +( -3a +2z*+l) v+4(a -1)
l+2 l 2y+4--l y+l (2y+*--) {(a+l) y-( a-l)

13a+l-( a- 1)

log '(+3) ( y-l)

It is also known that this kind of exact solution exists for more a general type

of similarity solutions such as the initial distribution obeying a power law in

distance, time dependent energy supply, and so on (for more details for ex-

ample, see Korobeinikov et al., 1961). It is noticed that the solution (2.33)

is not always valid but needs to be modified for some values of y and .

For example y = 2 is singular and the solution (2.33) is modified by applying

a limiting process as y-" 2 namely,

2
(0) 2 (1-F) 4 -a-3f 27 " (2. 34)

a = 2s y = 7 is also singular and the solution is simply given by
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f(O) x g(0) =Z 3, h(O)=_x. (2. 35)4 4 3

The case y = 2 is interesting because plasma under uniform magnetic field is

expected to behave somewhat like a gas with y = 2 (Spitzer, 1956), while
= ()(0) hi0)

y is an appropriate value for water. Graphs of f(0) (x), g (x), h' (x)

in the typical case of y = 1. 4 (air) are shown in Figure 3. Little divergence

{o0 1.0
g(0) c-=l

f(0) cf= 0

0.5

71hi0 a=2

0
0 0.5 1.0

Figure 3

Solution curves of f( 0) (x) g ( 0) (x)

for a=Of is 2 taking y =1.4

-. I-



is found for various values of y . f(O) at x = 0 is always zero, showing

u(0,t) = 0 (2.36)

as required, a condition somdtimes used to determine the flow field for

further approximations ( see below in Section 2.3.4).
Aftr btanig te (0) g(0) h(0)

After obtaining the f h values above, the y - R relation

(or U-R relation) given in Eq. (2. 22) is obtained in the first approximation by

evaluating the integral J0 in Eq. ( 2. 21). Unfortunately, J0 cannot be inte-

grated analytically, but is only found numerically. Since the exact expression

) g(0) h(0)
for , h given byEqs. (2.31), (2.32), (2.33) are ratherin-

convenient to compute it is sometimes more efficient to get their values by

direct numerical integration of the original system ( 2. 25) starting from the

values given in Eq. ( 2. 27) at x = 1 . The most recent numerical data on
f(Q) (0) hO

f g 1 h( ) are given by Jones (1962) for some values of y . J0 values

computed from these data are exact to three digits when compared with the

values obtained by various methods. Some of the values are reproduced in

Table I. The divergence between these values indicates the difficulty in find-

ing the numerical values of f(0) g , h( ) partly because of their rapid

change near x = I .

2.3. 3 Further approximations

It is convenient to introduce new variables 4,(i) ,( 01, ( i = I, 2,...)

by the relations,

f(i) (x0f(l) i (l) 0 (0) M M (0()2f =(- f P 9 -- 4) 1h = ( 2. 37)

Equations (2. 26) to the second approximation are thus reduced to
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(0 a() (0) - f(o) + (f 2 ,)') (2.38)

y 0) -+1 f( 0) )) +1 f(O)

Sf( x -1 ° 1 - ) +( 2
x-f( + xf(O) f

(x - f(O))( 4l)' +1) (e (l 4(1) ( (2.39)

where we have used Eq. (2. 25).

The condition (2. 28) at x = a. becomes

Ip- 'Y. P (1 -- Zy' X (1) =- . (2.41)

Another condition ( 2. 21), eliminating - I by Eq. (2. 24), is transformed into

1 O flOh()w) (0) (1)1 flO2

f{yf(0) (x- f 0 ) h( 0 ) 9) + +Y2 hy O) XI ') )Icdx (2.42)
0 V-2

X, JO + (~)y•

It is readily seen that the combination of Eqs. (2.39), (2.40) written symboli-

cally as (2y-1)x Eq. (2.39) - 2x Eq. (2.40) gives

( x-o . )_,(1) + (0)-1) )] =(@+1)([ql)_2%Il )+ (2y1-)X1) +2X] p

which is integrated to give

V(Z 2 ¢Z + (2y-1) X() + 2XI = (2)L" - 3yl+ 1(243

.exp (f -+W dx)
I f

where the integration congstant is determinec by Eq. (2.41).
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••I 11)n (1)" 0x 1
f (ol + QZ* )X dx +I10 1 + X ( 12.45)

where QI, QZ 09 '02 are given by

f( 0) h(O) (x -1 1f(0 )
•~ Z } '

Q ._(O)2 h(O0 ) + 1 (0)

2 (0 3-ly±
2 h(O) {(2)_ - 1 )R- Z)lXedx10 '2X 2 T f ýl 0) y y-1

Although Eq. (2.44) are linear in ,,(1), p(l) ,and )LI, it is apparently not possible

to find the solutton analytically, except for the very special cases as a = 2

y a 7, to which the first approximation becomes very simple ( see Eq. (2.35)),

and P, 11# P,5 are reduced to simple forms proportional only to x 1 ; thus

(1) (1) are found in the form of a certain power of x . (Morawetz, 1954,

see also Korobeinikov qt. &L 9 1961). Generally, Eq. (2. 44) may be integrated

numerically. The equations, however contain an undetermined parameter "I ,

and are not suitable for numerical integration in their original form in Eq. (2.44),

but may be integrated in the following way. First we split ) 4) into two

parts as

9 = + 1 V2= + X1%P , (2.46)

where ri1 P ) 0() l ( are independent of X1

Substituting Eq. ( 2. 46) from Eqs. (2. 44) and (2. 45) we get the following

systems of equations,

l)e 1. ( 1) , (4(P( ) ()

y4l 5 1 V I + (
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+)p5 {+ (2.48)

(( ) 1) V )

)Lff (Q (1)+ Q ) )X dx + 10 - (2.49)
0

f ( 1) Q2v + 1)x -01 +Y-1)'(0

Eqs. (2. 47), (2.48) may be integrated numerically from the initial values at

x - 1, which are obtained from Eqs. ( 2. 41) and (2. 46) as,

1 (111 2 1) (11) = - (1) ( 1 1 ) (11) = 0 .

Using the values of V'~, 92 tl P thus obtained, X' may be de-
termined, from Eq. (2. 49). Once X, is determined, (, can be eval-

uated from Eq. (2. 46) and X(1) is given by Eq. (2.43). The numerical pro-

cedure has been performed for y =1.4 in each case of = O, 1, 2, and the

values of X obtained are -2.138, -1. 989, -1. 918, respectively, showing these

Table H, -X Values

from Korobeinikov & Chushkin

s/y 1.1 1.2 1.3 1.4 5/3 2 3

0 2.3257 2.2437 2.1862 2.1433 2.0683 2.0143 1.9407

1 2.0866 2.0424 2.0092 1.9836 1.9374 1.9043 1.8632

2 2.0010 1.9666 1.9396 1.9182 1.8785 1.8496 1.8141

values are almost 2. Recently the fact has been verified also for different

values of y by extensive numerical works by Korobeinikov & Chushkin (1963).

These values obtained by them are listed in Table II.
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Functions ,(1), i X for y 1. 4 are shown graphically in Figure 4.

I
5 1

a=2 a =1 a-O.

II
06 0

Fiur .4

\I

0.6 0.8 1.0XI
Figure 4

Solution cu'ves of ,11 €1) • X 1) o

esO, 1, 2 takig y=l.4 I

Exactly the same procedure as above is applicable to the further stages of ap-

proximations. Swigart (1960) carried out the third approximation in the case

yL4# l . The valueof X 2 obtained Is
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X= 2.7373 (for y•1.4, =l) ,

while the )X are shown in Figure 5.

3.0

2.0

(2)2
IWO 

-o .

0.6 0.8 1.0

Figure 5

Solution curves of 9Q(2) •(2) X(2)

for a = 1 taking y = 1. 4. (Swigart, 1960)

2.3.4 Other Methods

It is seen in Figure 5 that X(2) varies considerably and its value is rather
larg copard wth (2) •(2)large compared with 9( 2 ) This indicates, as suggested in the pro-

ceeding section 2. 3. 1.,, that better results will be obtained by expanding in

po/p instead of p/po . In the expansion of pO/p, the quantity corresponding
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to X is zero at x I 1 and may behave better in the whole range.

The quantities I( *),ý (1) as well as (2) t(Z), themselves vary slowly,

but ) ( , ... are not slowly varying. In fact () , () become

infinite as O( x"(+l)), while proper choice of X, satisfying Eq. (2. 49)

cancels the singularity in V(1) . Thus P(1) remains finite at x = 0 . It

should be true to V W for all i since u(0,f) =0 (Eq. (2.36)). The fact may

be used to determine XP as follows

UMr (fi) f)) =0 (2. 50)

or

lim (i) f i fni~te
x-O 0

In fact the value of "I determined in this way coincides with the value above

in Table U. In actual procedure, (1 ) (1), ,) ) (l) are expanded in series

of x near x = 0 and their coefficients are evaluated by fitting these expansion

solutions to the numerical one from x a 1 . After these coefficients are de-

termined, X1 is determined to cancel the singularity. In any case, it is not

( 1) (2)convenient to find 1)- qp which become bigger as x-O because of the

singularity.

An alternative procedure of integration, by means of which the difficulty

may be avoided is as follows; Introduce the notation,

.9A Y Y

-P4-P 5Qi

b=(Y, pS ,. P a] ,\P

( Q2
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Equations ( 2. 44) and (2. 45) are then conveniently written in the following

vector form,

X'=AX + a + I xI, (2.51)

X* dx - + - o (2. 52)
o(&+I) (y.l) 01 1 0 oz00

Now we introduce new functions Y as,

and multiply Eq. (2. 51) by V * from the left and integrate At from zero to one

to oftain
1 1 1J" Y*X dx j Y*'AX dx+ J Y*(a + X b)dx

0 0 0

which yields after an integration by parts,

1 1J( Y1' + Y*A)X dx=[ Y*X]o J Y*(a + Xb )dx (2.53)
0 0

Suppose that we chose Y, so far undetermined, to satisfy the equation,

* +T A=fx , (2.54)

Eq. (2.53), by use of Eq. (2.52), becomes

1 *1 1
" (0[- f' Y*( a+ x b dx

0
(2.55)

Now we choose the value of Y at x = 0 as

[ x *X 0

which is in detail

(1) + ,(1))xO =o0
X=O
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Since 0(1). U) are supposed to be finite at x = 0, we may simply put

V(o) a n (O) =0 . (2. 56)

to satisfy the condition.

Equation (2. 54) does not include "I and may be integrated in a straightforward

way from the initial values (2. 56) at x = 0 . The solution V thus nbtained is

used to estimate the integral and the value of [*Xx=! in Eq. ( 2. 55), from

Lec, ic is determined as,

1 I J _ f 1* dx)

I{[x]J- adx +o (0+l) (Y-l) 0 2 + 0

Once X I is evaluated, Ecq. (2.51) is now integrated from the initial values in

Eq. ( 2. 41) at x = I . The process seems to be much easier than that for Eqs.
(2.4), (.48p sice (1) •(1)

(2.47), (2.48). since ), are expected to vary little in the whole

range of 0< x <l . The process is essentially the same to find X2, X3P"

as well as... in the further approximations.

2.4 Approximations valid in the whole range of y

Although the solution in a series ir y may be good near y- 0, it is certainly

not valid near y'l. It is also noticed that the expression for the y -R relation given

in Eq. ( 2. 22) truncated at a certain power of y, becomes singular at a particular value

of y . In the second approximation, R - Go at -Y = where R is supposed to be still

finite. In the slightly different expansion procedure of expanding l/X instead

of X. ( Korobeinikov etal. p 1961) , namely

(0 + l)/X = 1 - X I y + X' y2 +..,

the y - R relation are obtained from Eqs. (2. 16), (2. 22) as,
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R 1" (R R•l/J) y exp {- kly+ ly +. ,

or (2.57)
R0L +l 1 2

yAR ) = J0 exp {Xy -Xy +"'.1

where the singularity at y = - I/X for the second approximation above may be

avoided, since an exponential factor remains positive all the time. Neverthe-

less, it can not be valid near y-l, where R should be infinite, while R in

Eq. (2.57) terminated after a finite number of terms remains finite at y = I

An attempt to find an approximate solution valid in the whole range of y

(Sakurai, 1959) will be given in the following. Let us first make two assump-

tions;

i) f Cx and ii) Xy 8/Py is negligible in the second equation of Eq. ( 2.15),

hf-x) 8 + Xy&h -h f +afOx a, ax ( x~x

The assumption (i) may be seen in Figure 9 below in Section 3.1. 3, where

u/U = f for the second approximation for * = 2, y = 1. 4 is shown for various

values of y and all curves are actually very similar to straight lines through

the origin x = 0 . The second assumption is based on the following facts: the

term becomes small near y = 0, since y enters in as a factor, it is also small

at y I where X becomes small. Although it is not clear that the term remains

nall in the intermediate values of y, and both assumptions are based on rather

vague reasons, they simplify the whole situation remarkably and thus make it

,ssible to provide an approximate formula valid in the whole range of y

From the first assumption we get simply

f =f 0 x , (2.58)
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where f0 is the functton of y only and given by the condition ( Z. 12) at x = 1,

f .y..(I'y) (2.59)

By use of Eq. (2.58), the second equation of Eq. (2.15), neglecting the term

Xy Oh/Oy according to the assumption (ii) becomes

I Oh 1) f01_l~h 8x __ 0

which is readily integrated to give
m

h=h 0 x , (2. 60)

where we have used the condition (2.12) and put

h0- = Y)-1, M l-f0 (2.61)

With use of f, h given in Eqs. ( 2. 58), ( 2. 60), the remaining function g may

be determined from the first equation of Eq. ( 2. 15), which is reduced to

S= yh0 ffo(I + ix. _fo) + -j xy)xm+1
ex 02 0 y+1

and integrated to give

g =A(xM+2-1) +g 0 g (2.62)

where the condition ( 2.12) is again used and A, g0 are given by

A -yh0 ifO(l +&- f0 ) + 2 XY), go= -a+ . (2.63)
m+20 2 0 +0Y+ Y+

Since fo g, h are all given simply as power functions of x, the integration of

J given in Eq. ( 2. 18) is readily performed and we get

= m+3+ 2 f0 + A) + (y-A

which is more conveniently written in the following form:

J-= P + •O P (2.64)
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where P, Q are known functions given as

yhofo 1 - f0  yh f
m+3+& 2 0•0 (m++)--) + 1)( )go- M+2 0)

-yh I h (2.65)

= yh)(m+Z) m+&'+3 -+ f 20+l 0

Equation (2. 64) is used to eliminate J from Eq. (2. 18),

Y-l Ldy

to obtain a differential equation to determine X . Practically it is easier to

eliminate X, leading an equation for J ,

Q-P a(( +l)jXllJYd AL1- (2.66)

-Q -I

It will be seen from Eq. (Z. 66) that J tends to (a+1) (y-l) when y

approaches 1 and accordingly X--O there. Since f0 , m -*0; got ho- 1 as

y-1 (c.f. Eqs. (2.59), (2.61), (2.63)), we get, fromEq. (2.65),

(cv+4)(y 4)' Q u-3 = ) V as y2
y -l

a~l)( -1) -1 al

from which we get J-(a+l) (y-l) in Eq. ( 2. 66), thus X is guaranteed to

become zero at y = 1 . Equation ( 2. 66) may be integrated numerically starting

from y=O, where X=a+1 and J=J0 given byEqs. (2. 64), (2.65). Equa-

tion ( 2. 66) is, however, singular at y = 0, since

y a =+J(1- l" ydyx X( +-1~-)

and J( I ) -0 as y-0 . To proceed with the numerical integration, it is

then necessary to find the values of (dJ/dy)y=O or (dX/dy)y=O which are related

in the following way:
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jA -O = [d"4 {P+(o+l)Q)y +• d+ yO Q -O (2.67)
dyj u dy (dy ) Y=0 ( iY=0

Using this relation as well as Eq. ( 2.66), it is found

( dk. (+l)[ +(&+I)Q) p)
dy y=0 dy y=0 ) (a+l) (y-l)( y--0O

It is interesting to note the value of (a+l)-1 (dk/dy) y=0 which corresponds

to XI in Eq. (2. 23). For y = 1. 4 this gives -2.32, -1.82, -1.61 for a=O I,2

respectively, and these should be compared with their exact values -2.138,

-1. 989, -1. 918 given in Section 2. 3. 3.

With these values given by Eq. ( 2. 67) as well as (J)y=O = &+I at y = 0,

Eq. (2.66) was integrated numerically for two cases of a = 1,2 and X, ob-

tained finally from Eq. (2.64) is plotted in Figure 6, where X-curves given in

X

3 1st approx.

Approximate theory

2 Goldstine & v. Neumann a=Z
2nd approx.

Ist. approx.

a=1 2nd approx. / •

Approximate theory

0 0.5 1.0 y=(U)2

Figure 6

Decay curves (X vs y) from various results for a = 1, 2
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series of y determined in the proceeding section in their first and second ap-

proximations, and the curve obtained purely numerically by Goldstine and

von Neumann (1950) for a = 2 are shown for comparison. Knowing J as a

function of y, the R-y relation (or U-R relation) is given directly by Eq. (2. 13),

y ---a+l C -

U

or (2.68)

R = )
R 0 C2 (&+1)(y-1)

It is easy to see in this expression that R becomes infinite as y approaches

I because J goes to (a+l) -1(y-1) there as mentioned above. Its asymptotic

behavior near y = 1 is, however, a little different from the exact one, which is

known as,

R-1/2 for a = 0

l-yR for a=l

( log R)V/2R-1 for a = 2

(Whitham, 1950, in Sedov, 1957).

It is noted that the expression (2. 68) itself is exact as far as J is exact, but

J in this approximation is not precise enough at y-1 and 1 - y behaves as

R-(c+l) instead. Nevertheless, Eq. (2. 68) with this value of J is expected

as a whole to give a rather good approximation to the whole range in U-R re-

lation. Its defect at y-l may be improved in a similar way to that given in

Korobeinikov et. al., (1961) by modifying J locally at y--l to fit the exact

asymptotic behavior there.

In spite of their comparatively simple forms, the approximate solutions of
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ft g, h given by Eqs. ( 2. 58), ( 2. 60) and (2. 62) seem to represent the feature i

fairly well (Sakurai, 1959). Because of its simplicity, the g function in I
I

Eq. (2.62) was used to analyze the wave form of thunder, which needed trans-

formation too difficult to perform with the more elaborate formula (Thome, 1962)

(See, Section 3.6). This approximate solution has also been used by Teanmaire

(1963) to study the flow field in T-shock-tube. Another approximation theory

is considered by Osir.4 a (1960). He introduced a concept of "quasi-similarity"

based on the insensitiveness of the functions ft g, h with the variable y and

assumed

§~_1df0  I dgo h= dh0

ey f0 dy By-g 0 dy &,-y h0 dy

where foj g0o ho are given in Eqs. (2. 59) p (2. 63), and (2. 61). Using the

expressions, the fundamental system of equation (2.15) are reduced to a system

of ordinary differential equations where y comes in as a parameter. Using the

above assumption again, dj/dy is reduced to an integration including f, g, h

where y enters as a parameter. The procedure to find the solution for any shock

strength y is as follows: start with a guess to )X and integrate the system of

differential equations numerically with given value of y, the solution is used

to evaluate I, dJ/dy in Eq. ( 2. 17) to get a new X• value, with which we re-

peat the same process until we get the same value as the proceeding X value.

Actual computations were carried out for a = 1 (cylindrical wave) at respective

values of yl/_ U/C = 1.1, 1.2, 1.4, 1.6, 2p 3, 0 . The last two cases have

been found to coincide with the solution in series of y given ir, Section 2. 3.

The solutions were used to compare with his experimental data on the exploding

wire ( c, f. ) Section 3.3).
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§ 3. Application to Various Problems

3.1 Blast Wave

Although application of the foregoing theory to actual blast waves should be

the main subject of this article, it is not easy to give a comprehensive survey

of it with full use of experimental data. An excellent description of the phenom-

enon is given in the book "The Effects of Nuclear Weapons" (Glasstone, ed.)

(1962) and a comparison of the theory with some data is well reviewed in the

book by Xorobeinikov et. ajl., (1961). Only a brief description will be given here,

by displaying the relations which might be usefil for making a comparison with

experimental data.

3. 1. 1 Characteristic lengths, Scaling laws

As long as we assume the point source model, represented by the condition

(2. 8), the only characteristic length that appears in the entire formulation is

R0 given by Eq. ( 2.14), and the features corresponding to the different R0 are

simply obtained by scaling. Since R is proportional to E1( c a+l) and E to

the spherical case is roughly proportional to the weight W of the explosive (of

the same kind, of course), the scaling factor is expected to be proportional to

W1/3 . This is usually known as the Scaling law for blast waves and is known

to hold for fairly wide range of W (or E2) . (See for example, "Effects of

Nuclear Weapons" (1962) pp. 127-146).

It is noticed, however, that R0 is also related to p0 in the form

R/0 OP ( , and there exists another scaling law concerning the ambient

pressure p0 " Since the rate of explosion energy converting into blast wave

energy depends significantly on the ambient pressure p0 (the rate usually
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decreases as the pressure is reduced). this scaling law can not be so accurate

as the last one above, but nevertheless we may expect the scale of the blast

wave from the same source to be magnified as the ambient pressure is reduced.

This fact may be useful in producing a situation equivalent to a strong explosion

in a laboratory experiment with a relatively small explosion, where the ambient

pressure is reduced. The technique was used successfully in the study of a

blast wave from an exploding wire (See Section 3.4 below).

It is stressed that the role of R0 is not merely the scaling factor, but

characterizes the entire phenomenon and much information can be obtained by

simply estimating the value of R0 by the formula ( 2.14). The length R0 itself

indicates a distance in which U/C falls to roughly about 1. 8 for a = 2 (See

Figure 7 below) and this corresponds to about 2.6 of the value of the over-

pressure ratio at the shock front (defined by (p - po)=R/P0o see the shock

condition in Eq. (2.6)). These figures are useful when estimating a rough

picture of the range in which the individual blast wave is effective.

Apart from the ideal model of a point explosion, there are many other charac-

teristic lengths in actual circumstances, such as the dimensions of the explosive

and so on, and some of them are in fact important especially for understanding

some details of the phenomenon, while the length R0 gives an over all feature.

Another characteristic length not directly related to the explosion but important

for applying the point explosion theory to the actual situation is a distance be-

yond which the point source assumption is valid. It is suggested by Taylor

(1950) for the spherical case that the distance should be much bigger than the

radius R (say) of a sphere of ambient air equal in mass to that of the explosive.
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The criterion should be extended also to other the cases of cylindrical and

plane waves.

3.1. 2 Decay of the Blast Wave

The decaying characteristics of a blast wave are usually given by the re-

lation between the shock velocity U and the distance R such as illustrated

in Figure 1. With use of the values Jo0, X11 x), ... given in Section 2. 3. 3

the relation between the velocity U and the distance R ( U-R relation) is

given by Eq. (2. 30). In Figure 7, U-R relations for y 1. 4 are shown to the

U
C

10.

I /aZi

S± , 2nd approx.
a:0

5-
/a=2=

=0 • Ist approx.

01 R
Ro0

Figure 7

Velocity - distance curves from Eq. (2.30)
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second approximation. For a = 1, y = 1.4, we have the third approximation

utilizing the value of X2 = 2. 7373 given by Swigart (1960) (See Section 2. 3.3),

which was used to improve the formula by Lees and Kubota (1957) for the hyper-

sonic flow past a blunt-nosed axisymmetric body.

Sometimes it is more convenient to consider the relation between the peak

pressure P (the pressure at the shock front x = 1) and the distance R (P-R

relation), which car. be derived by eliminating U (or y) from Eqs. (2. 30) and

(2.6) to give

=- - 2+-
0[ + +y+' p0

The formula in the second approximation for y = 1. 4 becomes

(RO 3
1.96 ( + 2.07 for a=2 2

(R0 12
1= 1.33 ) + 2.16 for a =1 (3.1)

0.69 (R + 2.33 for a=O

Equations(3. 1) have been compared favorably with some experiemental data

(Sakurai, 1954).

A P-R curve for a = 2 valid for a wider range established both by numerical as

well as experimental data may be found in books such as "The Effects of Nuclear

Weapons" (1962). Peak pressure P goes down very quickly in the beginning

for small R up to about R =R 0 , where (P/p 0 ) -1 is 2.6 as noticed above.

Beyond that, the rate of decrease slows down and a long distance is needed for

the wave to attain accoustic characteristics. In fact, the over-pressure ratio

goes down to 0(101) when R = 10R approximately and the value of R/R 0

-2reducing the over-pressure ratio to 0(10-) may well be more than 50 . It
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is noticed that the over-pressure ratio for the ordinary sound wave is usually of

the order of 10 in comparison with which the above figure of 10-2 is still

very high and enough to give people a kind of feeling of "shock", although it

may actually give no destractive effects anymore. The region where people feel

"shock" is thus expected to spread over quite a range and the region is also

roughly corresponding to the domain where the non-linearity of the phenomenon

is dominant.

Another important quantity to express the decay feature is X given by Eq.

(2. 16) as:

R d_ 2R dU
y dR U dR

It is stressed ( Sakurai, 1955b) that X is rather useful for both experimental

and theoretical studies of the phenomenon, because the characteristics of dif-

ferent kinds of blast wave, corresponding to different values of a can be com-

pared in a single diagram as shown in Figure 6, where numerical as well as ap-

proximate results for a = 2 are compared with some experimental data.

For a more direct way of plotting experiment data, R - t diagram is used,

in which the theoretical curve can be obtained by integrating Eq. (2. 30). The

relation in the second approximation becomes
R/R 0

R0 "0

K for a 0 1 are found explicitly as, (3.2)

_(-j X)' 3/2{fv(l+v) - log NIv + 4)1 v =Oj XO• for a=0 ,

(_j X ) 1)14 -1{JX (A)-2 1-1, for =1
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K in the first approximation is reduced to

K _2 R )(a+3)/2

and the formula for a = 2 shows a good agreement 'vith the data for an atomic

explosion in the range of I = 20 i85m. (Taylor, 19,0).

Oshima (1960, 1962) thoroughly checked the red 3tior, (3.2) in the case

a = l -y = 1. 4 with his experimental data on blast waves frcm wire explosion

(c. . Section 3. 3 below). Figure 8 (Oshima, 1960) shows the. range where the

Ro

212~ind approx.

1st approx.

0 C'aseI
*Cas.l*Case M

0 Case 17

Figure 8

Experimental data for shock arrival time
compared with various theoretical curves for a =

y = 1. 4 (Oshima, 1960)
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formula is valid, displaying his approximate solution mentioned in Section 2. 4.

3.1.3 Flow Field inside Blast Wave

The velocity, the pressure and the density inside the blast wave are repre-

sented by f, g, h given in Eq. ( 2. 11) and their c. 3nging behavior with respect

to time can be seen in their graphs against x for various fixed values of y

(or U/c). In Figures 9, 10, and 11, these graphs for a = 2 are shown for

various values of U/c . Those corresponding to other cases of a = 0, I are

very similar in nature to the graphs above.

f(a=2)

C
5
3
2\

.0.5

0.0 0.5 1.0

X

Figure 9

f(x,y) for various values of y-./2 ( U/c)
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g(a " 2)

U
~uz 1.0
3
5

0.5

0.5 1.0

Figure 10

g(x, y) for various values of -1/2(u U/c)

5

0.5 0.6 0.8 1.0
x

Figure 11

h( x, y) for various values of y-l/2 (a U/c)
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It is noted that the usual means of measurements of the pressure, in actual
observation, is performed at a fixed point and expressed as a function of time,

while the above curve of g is concerned with a fixed time. Sometimes it is

necessary to convert the above curves to the one corresponding to the fixed

point. (An example of the conversion is given in Section 3. 7).

3. 2 Non-uniform Field

It is sometimes necessary to take into account the non-uniformity of the
medium, through which the blast wave is propagating. Blast wave propagation

in a star is a typical example of this case, where the initial ambient pressure

and density p0 2 PO ahead of the shock wave can not be assumed constant, but

are non-uniform because of gravitational effects. Even in the case of the ter-

restrial scale, for huge blast waves such as those produced by nuclear explo-

sions it is necessary to take into account the fall in pressure and density in the

atmosphere as the altitude is increased.

It is possible to modify the blast wave theory for a non-uniform medium by

simply assuming that the initial density ( and the pressure as well) may be ex-

panded in a power series of R as

PO 0 ao + a R+... ,

where ai( I = 0, i, 2,...) are constants assumed to be known. A series expan-

sion solution similar to that developed in Section 2. 3 is then modified to in-

corporate the non-uniformity effects represented by a1, a2, ... with additional

terms in the series.

The approach will be illustrated below in the case of a spherical shock wave

in a star ( Sakural, 1956). Suppose the initial density distribution in star is
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given by the foUowing Emden' s equation (slightly modified from the original

one, see for example, Chandresekhar, 1939):

-(z Dy'2 _Q) +6 A2 z2 D O (3.3)
dz dz '(3

where we put

PO R E1/3D a .ur, -R I--•A=)/P R L 4WOT j0=(4P

SP pC are the values of pop 0 at the center of the star, and L represents
C3yp p /

a length connected with the dimensions of the star given by L : lw 2
22vpG

while G is the constant of gravitation. We find from Eq. (3. 3),

D l-Az 2 + '13 -5 1 z4 +.. . (3.4)

10

It is also necessary to modify the fundamental system of equations to include

the terms from the gravitational effects. Thus Eq. (2.1) is modified to give:

-~ 01O Gm
Dt p r 8 2r

supplemented by

ar

while tqs. (2. 2), (2.4) are unchanged and

O.P(u + u
Dt 8rp rT

(3.5)

The condition (2.8) for an instantaneous explosion of energy is also modified

to include gravitational energy,
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f(Ruz +i-P-Gin) 4rr

0y-I p41rrd
0 r(3.6)

R PO
(1•, 01 Gm0  2

0 0- R 4RRdRE
where m0 is defined by

0 R 2/

The shock conditions (2. 6) are the same, c is given by (yp 0 /P 0 ) lp and is

not constant in the present case, but a function of R, which will be expressed

in series of powers of z using Eq. (3. 4). We have another condition at the

shock front,

(M) 1=R = MO (3.7)

Now to exprcss the solution in series form, it is not possible to expand it

in series of y(or U 2) as given in Section 2. 3, since U in the present case

is no longer necessarily a monotonically decreasing function of R, but may

even increase as a result of decreasing density and pressure in the equilibrium

state, and would then cease to be single-valued. Accordingly we can not use

y as an independent variable and we use z given in Eq. (3. 3) instead. As

is noted in Section 2. 2, the choice of the variable y is not indispensable, but

any other variables insensitive to the solution can be used alternatively. Thus

we introduce independent variables x, z defined by

r R

and transform u, p, p, m in a similar way as to that applied in Eq. (2. 11),
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I

f(x z P =P(z) ("Q) Z g(" " ) DU Z)xz), D(z) h(xZ)IC (3.8)

m = M(z) n(xpz)
+ lmi+ nC

where we put

_QM 4 3
--=P(Z) -=M(z)p m =_ 3 rpc m

Equations (3. 5) are then transformed into,

(fmx) + ZA +A .1 f 2A__ M n
ex 8z U dzh 8x U2 z x2

On 3z2 D x 2 h (3.9)

(f-.x) h +Azh +zdD 8f - 2fhx 8 h +z D dz 8x x

(f x + + + + -zdU f 2
g8xo g 8z Ddz U dz 4 +7x

while the condition (3.6) gives,
U2D3 2- 2 2

02 D I-ZyA MDz2 K-I a], (3.10)

C

where we have put

J=J( hf 2 + --S)x 2 dx, K= h n1xdx

02Y- 0
Z p 2MD 2

z dz

The conditions (2. 6) and (3. 7) at the shock front (r = R) go to

f(l,z) = () g(lIZ) = 1- -r1 aY+l U1 Y •1 (~ )

(3.11)
h(lIVZ) )j +~it) , n(1, z) z I
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We have thus reduced the problem to finding the solution of the system of

equations (3. 9), (3.10) subject to the boundary condition ( 3.11). In these

equations, such quantities as D, P, M, C, I are assumed to be known in

series of z . The expression for D is given in Eq. (3. 4), from which ex-

pressions for P, M, C, I are derived as

22 4 A4 z4PI- yA z +y 5y +... ,

3 3 2 2 39-15V 4 4
"M"Z 0- A Z + 70 A Z + ... ) , (3.12)

-=l- (y-l) A Z2 +-(Yyl)- AZ4 Z4+
C2

SZv-1 22 4 z4+

y A Z+Th(4y-3)Az..-y =- 1 " 5 ¥ 35 + '

The solution of the system will be found in a similar manner to that used in

Eq. (2.19), in power series of z . We assume first,

f =f(0) + zf(1) + z2 f(Z) + ..

g-g(0) + g(1) 2 (2) , (3.13)

h-(0) + h1) 2 z~(2)+..

Sn -n(0) + zn(l) + z2 n(2) +.. ,

where f 0 g( M h( 1) .n M (i =0,, Of .) are all functions of x to be de-

termined.

Inserting the expression (3.13) in J, K in Eq. (3. 10), they are expanded as

J = J0 ( +az + a2 z2 +...), K =K 0(l+ lz+ P 2z2 + ... ), (3.14)

where Jot I'l a2 "e; K0, Pis P29 "'" are constants given by integrals simi-

lar to J0 , rp o2," .. given in Eq. (2. 21). With use of Eqs. (3.10) ( 3. 12)

and (3.14), U is expressed as

"-51-man • iII ... .. -J • i n u n n • H~nH,.L •" a nu q m -- . - ram -- I



22
-uZ 2 0o T3 1 2 l z-A) 3 •3 3- y-l" !A)z +. . .

(3.15)

Substituting expressions ( 3.12), (3. 13) and ( 3. 15) in Eq. ( 3. 9), and

comparing the same powers of z on both sides, we may get systems of equa-

tions for f(i) g(L) h(). n(i) similar to that given in Eqs. (2.25), (2.26).

In the same way we get from the condition ( 3.11),

f( 0) 2 (0) h) () = ' , n) (1) = 1
() y+I' Y- 1

(3.16)

f(l) (j) =f(2)(1) =g(1)(1)=g(2)(1) =h(1)(1) =h (2)() =0 ,

f( 3) ( 1) =-+-2Jot 9 (3) ( 1) r-.lJ, (3) ""(v-l) •'n3()-
f~~Jt h(1) - Y+ (~)0f(3)-

Now the first system of equations with its boundary condition given in

Eq. (3.16) is the same as the first approximation given in Section 2. 3. 2 except

for the additional equation for n(o) (x)

n = 3x h~o

The second system for ( ), g(1), h( 1 ) n( ' turns out to give simply,

f mg =h( 1 ) =n a) =I =0

Because of this, the following systems are simplified and the fourth system of

equations for f 3), g(3) , h( 3) n (3) and a 3 is reduced to exactly the same

as that for tho second step to the approximation given in Section 2. 3. 3 except

the equation for n (3) . At the same time the third system of equations result-

2ing from the term in z is reduced to a similar but slightly different system,

which can be solved, and the numerical procedure to determine
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f(2 ) 2) (x , h(x) and a 2 is the same as that developed in S-Iction

2. 3. 3, thevalue of a so determined for y = 1. 4 being 0. 182 A2 . With this

value of a2 as well as the values of J0 , Xl for y = 1.4 given in Section 2.3,

the velocity of front shock U given in Eq. (3. 15) becomes,

Cc 2  13 2 23
(-1) =0.596Z (I-0.882A Z -1.14 Z

or

- = 1.30 ( R-3/2 {1 + 0.41A ) 2 + 0.57 (R) 3+
Cc R00 +0 0 0

It is readily seen that functions f( 2) g () h( 2) n( 2) and the constant

a 2 to be determined in the third step are all proportional to A 2, which repre-

sents the effects of non-uniformity in the initial distribution given in Eq. (3.4).

Thus the second order term in z in the series expansion gives the non-uniformity

effect, while the first and the third terms give the ordinary attenuation effect.

In the further approximations beyond the fourth step, the two effects are not

separated but enter in combination.

Many other problems may be treated in a similar way to that illustrated

above as long as the non-uniformity in the medium remains within reasonable

bounds, so that it can be well represented by a series expansion. The expansion

is not necessarily to be symmetric, ( such as above, where it is a function of

R only), but may have terms including variables other than R . The solution

may be assumed in an expansion form fitting the series expansion to the initial

distribution. A good example of the procedure is seen in the problem of a huge

terestrial explosion such as that produced by nuclear bombs, in which the effects

of the density decrease upwards must be taken into account. The initial density

p0 may be assumed in this case as:
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P0 = a. + a 1 4 + ... P

where t is taken as a vertical coordinate, with • = 0 at the center of ex-

plosion and the solution is found in series expansion form as

u/U= f() (x) + Z fP(xo) +o..

v/U i f ()x) e) + (1)

(PP U) 2: gO (x) + g (x,eo) +..,

P/p 0  h (0)(x) + h( (x,)) + ..

where e is the angle between the direction • and the radius r (r cose =0

and,

F R u-dR
R0 dt

while the shape of the shock front is given by:

R R(l+ Z 1 (e) +...)

More details of the procedure are found in Korobeinikov et. al., (1961) with a

slightly different initial distribution of density

p0 = a0 + a1 n n: constant

There is another way of approach to the problem. This is tc find the exact

solutions of the fundamental equation by seeking a similarity solution, which

satisfies the equation for specified initial density, determined from the consis-

tency of the ex'stence of these exact solutions ( see Korobeinikov et. al. 1961,

also Korobeinikov and Karlikov, 1960). Since these solutions are usually valid

at constant Mach number at the shock front, the effects of the changing Mach
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number can be obtained by the perturbation method similar to those used above.

1A simple example of these specified initial distributions is given by p0 C R--W

for certain values of w depending on y , which provides a similarity solution

for a strong shock wave ( See for example, Sedov, 1957). Perturbation from the

similarity solution by series expansion in z (or y) has been treated in a simi-

lar manner to that used above by several authors (most of the works are in

Korobeinikov et. al., 1961; also see Rogers, 1956). Among them, there is an

interesting case to which the solution of the second approximation can be found

exactly where • (3a+ I) + v( I-a)
ew= + 1 (Korobeinikov and Ryazanov, 1959). This

is actually the generalized version of the special case, a = 21 -y = 7 mentioned

in Section 2. 3. 3.

Now the method described is essentially a perturbation procedure starting

from a similarity solution and the method can be applied to many other different

problems. The problem of the propagation of shock wave produced by non-uniform

motion of a piston can be treated in the same way above to find the effects of

the non-uniform motion. The flow caused by a uniform piston motion (not

necessarily a piston in ordinary sense, but possibly a uniformly expanding

cylinder or sphere) can be expressed by a similarity solution and the effects

due to the non-uniform pitson motion are incorporated in the perturbation terms

similar to those above ( c. f. Kochina and Mel' nikova, 1958, 1960). The problem

is also related to the hypersonic flow around a blunt nosed slender body. More

complicated application of the method is seen in the problem of shock propa-

gation due to non-uniform piston motion in a conducting fluid with a uniform

magnetic field. in this problem, two effects, from non-uniform piston motion
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and the non-uniform medium appear at the same time, since the interaction of

the flow with the magnetic field distorts the symmetry and thus induces an

effect similar to that from a non-uniform medium. The problem, though compli-

cated, can be treated by the same method of perturbation as that described

above (Ness et. al. 1963).

In dealing with the propagation of shock wave in stars, we always encounter

the problem of determining the behavior of the shock wave at the surface of the

star, where the density goes to zero and the solution becomes singular, and it

is necessary to find a solution fitting this singularity locally (Gandel' man and

Frank-Kamenetskii, 1956, Sakurai, 1960).

3. 3 Exploding Wire Phenomenon

Shock waves produced by electric wire explosions have been employed by

many research workers as a useful tool in the diagnosis of the exploding wire

phenomenon or used directly for various practical purposes (c. f. Chace and

Moore, "Exploding Wires", Vol. i, 1959; Vol. 2, 1962; Vol. 3, 1964). Since

the exploding wire is required as a line source producing a cylindrical blast

wave similar in nature to the one discussed above, attempts have been made to

utilize blast wave theory for the purpose of studying the phenomenon (c. f. Sec-

tion "Shock Waves" in "Exploding Wires" above), which shows different

features depending on the purpose of the study. Simpie application of the theory

seems inadequate (Bennett, 1959) and only give rise to confusion, suggesting

more careful consideration of the situation. It will be shown below that there

is a proper region for the theory to apply and observation in this range shows

good agreement with theoretical results (Oshima, 1960, 1962). These two
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different features will be given in the following.

3. 3. 1 Applicability of Blast Wave Theory to Exploding Wire Phenomenon

Since the shock wave produced by the exploding wire was noticed to be a

useful tool to clarify the exploding wire phenomenon, various measurements

have been performed to pick up the shock wave by different experimental tech-

niques (c. f. "Explodi • Wires" above). It has been found that measured val-

R2
ues of distance and arrival time of the shock wave plotted in an R - t

diagram are usually almost on a straight line, in accordance with the result of

the theory of the strong cylindrical blast wave (c. f. Eq. (3. 2) ), and the amount

of total energy of the wave estimated fora the slope of the line in R - t

diagram (using the relation ( 2. 14)) agrees reasonably will with the correspond-

ing value expected from the other estimates (Bennett, 1959b, 1962a, Jones and

Gallet, 1962). Nevertheless, it has been shown by Bennett (1959), that there

are some serious deviations between the more detailed results of the experi-

mental data and the blast wave solution. Slopes of the line in R - t diagram

for various ambient densities under the same energy input do not show inverse

square root dependency on the density, as predicted by theory, which gives

R2 1/2
R = ( 1/2)( yE1 /JoP 0 )

(Eq. (3. 2)), (Oshima ( 1960) also noticed that the difference in ambient pres-

sure hardly affects the flow field inside the blast wave in its early stages).

Secondly, the careful examination of the data reveals that vr5/3
" vs t rather

than R2 vs t provides a better fit.

It is known that the relation R n t for n different from 2 holds for a
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strong shock wave from a source with energy addition varying with time accord-

ing to the law E Oc n which is usually attained by an expanding piston

motion, (c. f. for example, Korobeinikov et. al., 1961). Since there are many

reasons to believe that energy is being supplied in the course of growth at

disturbance from an exploding wire, an exponent different from 2 might indicate

a similarity flow with energy addition. However it is not clear whether the ex-

ploding wire behaves as an expanding piston obeying the power law required by

the similarity solution (Bennett, 1959b).

Since the phenomenon would appear to be a far more complicated one than

that given simply by the line source theory, it seems more appropriate to find

the flow field numerically. This was done by Rouse (1959) based on a model

reproducing the anticipated physical situation as precisely as possible. The

numerical results were compared with the experimental data so that we may

justify the postulated physical picture. Although there still exists a limitation

in the capacity in the computing machine, it may be possible to carry out such

a program for elaborate models of the type considered by Bennett (1962b, 1963).

The above remarks, however, do not necessarily rule out the possibility of the

applicability of the blast wave theory to exploding wire phenomenon, provided this

is used in the proper region. It is recalled that the blast wave theory should be applied

to a region of R where the fundamental assumption of instantaneous line (or

point) source is satisfied. The criterion is roughly given by R >>R (c. f.

Section 3.1.1) where R is the radius of a cylinder of air equal in mass to that

of the explosive. Take for example a copper wire of diameter, 0.1mm, which

gives the value of R as about 0. 4 cm; accordingly R should exceed 4 cm or

so in this case.
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Under these conditions we can hardly expect to find any relation between

the experimental data for R < 4 cm and the line source theory to this case.

z
Now there is another limitation due to the relation R O t resulting from the

strong-shock assumption, which neglects O(y) terms and retains only the

first approximation . j. f. Section 2. 3). Suppose we impose the criterion y <0. 1

which corresponds roughly to R < 0. 4 R0 . This limitation can be eased by use

of the higher approximations. Even with these, however, it is usually conven-

ient to use the region near R = R0 to get better fit because of the nature of the

R-t curve. The magnitude of R0 in the cylindrical case is given as

R 0 = ( E_ ) I/2

where E is the explosion energy per unit length of the line source and is ex-

pected to be 5- 100 joule/cm in the typical experiments on an exploding wire.

The values of R0 for this range of energies are 2.8- 12. 6 cm at p0 = 1 atm.

To find the explosion e, -rgy by use of the proportionality relation on the

R2 - t curve, it is essential to use the experimental data in the region for

R>R R< 0.4R0.317

It often happens, however, that when R satisfies the condition R >> R it ex-

ceeds 0. 4 R0 Therefore the region where the proportionality in R- t holds,

may not exist but it should be stressed that this is a situation where the higher

approximations should be used to estimate the energy from the data in the re-

gion of R > 0. 4 R0 . Practically, it may not be easy to find data correspond-

ing to this region, because of limitations in the capacity of ordinary techniques

to pick up the shock wave, since these usually utilize the properties prominent
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in a stronger shock wave such as its luminosity. There is also a more funda-

mental difficulty due to the distortion of cylindrical symmetry in the flow field

at the distances in question. Nevertheless, the measurements satisfactory

for picking up the weaker shock show good agreement with the results of the

blast wave theory as long as the experiments are especially designed to retain

conditions of symmetry. One of this kind of experiments will be given in the

next section.

3. 4. 2 Cylindrical Blast Wave from Wire Explosion

Oshima (1960, 1962) performed an extensive experiment specially directed

forward the study of the cylindrical blast wave produced by a wire explosion.

The experiment was deliberately designed with the intention of studying the de-

tails of the blast wave itself. Firstly, wires were exploded between two plates

(actually inside the chamber of a thin cylinder), so that the flow field could

retain its cylindrical symmetry at any distance from the wire. Secondly, the

explosions were executed under reduced pressures ( See Table III below) which

resulted in attaining larger values for R0 and made it possible to obtain a

region in R satisfying the conditions (3.17).

Another merit of having larger R0 by reducing the pressure is

to have more accuracy in the measurements of the flow field, since the field

is in fact magnified with a larger characteristic length. It is noted that a larger

R0 can also be obtained by putting in more electric energy into discharge, but

increased amounts of energy would more likely give rise to other troubles.

Thirdly, he utilized the Mach-Zehnder interferometer to measure the phenomenon.

The technique is familiar in experimental studies of aerodynamics and can
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provide information on density variation, which is not required to be as pro-

nounced in other methods of observation such as these making use of lumin-

osity., and the measurements could be carried out over a wider range in R

which covers not only the range where the series expansion solution (Section

2. 3) is effective, but outwards beyond that of the very weak shock wave re-

gion. Furthermore, it should be noticed that the measurement supplies the

whole knowledge on the density distribution in the entire field within the blast

wave, and makes it possible to compare the distribution with the one obtained

from blast wave theory, so that more detailed comparison is obtained than in

the distance-time relation (R-t diagram). Bennett (1962) also used the inter-

ferometer but he utilized it to study the exploding wire phenomenon itself

limited to the range of very small R.

Table III

Case I II III IV V VI VII VIII

Range of shock Mach No. 6. 55v-3 2. l-1. 5 1. 5,3-1. 39 1. 13-l. 11 1. 0&8-1. 12 --

Chamber pressure (mm Hg) Y0 40 130 760 760 10

Discharge voltage( kV) 6 6 6 6 4-5 7

Discharge condenser (F) 8 8 8 8 4 8

Wire diameter (mm) 0.10 0.10 0.10 0. 10 0.10 0.12 0.15 0.10

Various cases of reduced pressures as well as other conditions in the experiments

carried out by 3 shima are shown in Table III.

The energy inputs in the cases of I, II, III, NV, and VIII, are almost the

same, but the different values of the corresponding reduced pressures are

effective in producing blast waves of different scales. Density distributions
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4 measured by the interferometer in these different cases reveal that there are

some distinct differences in the flow features at the respective stages of the

blast wave. Some typical data for density distributions at the different stages

are reproduced in Figures 12, 13, 14, from Oshima' s report (1960). These

should be compared with theoretical h-curves given in Figure 11 in Section

3.1. For strong shock such as in Case I (where the Mach number is larger than

about 2 but not so large as to violate the condition R <<R )the flow features

as shown in Figure 12 agree closely with the blast wave theory almost entirely

0' 8 . .

I6

2-

/-H

Figure 12

Experimental h vs x distributions for case I-I (Oshima, 1960)
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Figure 
13

Experimental h vs x distributions for case 11-4 (Oshima, 1960)
1.41

1.2- 2

I .0- i - -4- -

).0 0.8 0. .4 0.2

0.8- Figure 14
Experimental h vs x distributions for case IV-l (Oshima, 1960)
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in the region of x . At the next stage, with Mach numbers from about 2 down

to about 1. 15 ( cases II, III) ( See Figure 13), the rarefaction type region oc-

cupies a considerable part of the center of the blast wave. However, the flow

field of the remaining part agrees well with the point source theorl as long as

we use solutions valid in the wider range of R (or y) given in Section 2. 4)

rather than those given in the strong-shock theory. ( Particularily Oshima used

his solution given in Section 2. 4 for the purpose). At the later stage of the

weak shock region such as in cases IV, VIII (the Mach number is lower than

1.15 as shown in Figure 14) the flow pattern is very much complicated by the

effects of the succeeding rarefaction waves and the secondary shock waves.

Good agreements between the theoretical h-curve and the observed dens-

ity distribution in the range of Mach numbers above, suggest that we may de-

termine the energy value by utilizing the theoretical relation and the experi-

mental data of the distance R and the arrival time t . Oshima did this by

plotting the data in a diagram of R - R/R0 in the following way: First,

U = dR/dt values are computed from the R - t data so that we get an experi-

mental relation between R and U/c . Secondly, theoretical R/R 0 values can

be found for each U/c values from the theoretical U - R relation as given in

Eq. (2. 22) or (Eq. ( 2-57), Eq. ( 2-68)). Suppose we plot ti;ese experimental

R values and theoretical R/R0 values corresponding to the same U/c values.

We may expect a linearty in the (R) exp. - (R/R 0) theo. diagram as far as the

phenomenon carries the characteristics predicted by the point (line in this case)

explosion theory. The diagram given by Oshima, using the second approxima-

tion formula Eq. (2-30) as the theoretical U-R relation, is reproduced in
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Figure 15. In this diagram we can see the linearity especially for the cases of

stronger shocks. It is noted that the deviation from the linearity in the figure
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does not necessarily mean the failure of the point source theory but instead it

reveals the inadequacy of the second approximation to this region. The slopes

of these lines give the values of R0 for respective cases. From the values of

ROO the explosion energy (or, more precisely, the energy equivalent to produce

the blast wave generated from a line source) can be obtained from the formula

2
E = 2w P 0 R0 . To check the E values thus obtained.Oshima estimated the

E values by use of a more direct method of evaluating the energy integral given

in Eq. (2-8). This method used the observed density distribution p and the

values of u, p, estimated from the p values. These E values agree very

well with those obtained above.

. 4 Magnetohydrodynamics

Essential features of the blast wave phenomena in magnetohydrodynamics

are expected to be similar in nature to those discussed above for non-conduct-

ing fluids as both resulted from the same sort of non-linearity. However some

modifications are needed to represent the interaction between velocity and mag-

netic fields. In general two different approaches are used depending on whether

or not electrical conductivity is involved. In the case of low conductivity,

which is usually the situation in laboratory experiments, the modification of

the theory is more or less straiyhtforward and the perturbation method may ef-

fectively be used. It should be noted, however, that the procedure is not uni-

formally valid, but is valid only in the finite region of the space. This procedure

will be given in the subsection 3. 4. 1, where the discussion will be confined to

the specified type of flow preservinq axial symmetry. This is rather typical in

this field of magnetohydrodynamics, since this is conveniently realized with
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axial or azimuthal inagnetic fields in connecting with recent experiments on

pinch effects, exploding wire, etc.

The case of high conductivity may well be approximated by the limiting

case of infinite electrical conductivity, more exactly, infinite magnetic

Reynolds number. Since the magnetic field iE "frozen" in the fluid in this case,

the assumption simplifies the situation. However, this sometimes brings about

confusion leading to erroneous conclusions and hence we must proceed with

caution along this line. It is possible to have a completely different situation

depending on whether or not the initial magnetic field is permeated in the fluid.

These will be the subject of the Subsection 3. 4. 2.

3. 4. 1 Blast Wave Phenomena in the Fluids of Low Conductivity

We consider here the cylindrical type flow. The magnetic and electric

fields B, E consistent with and preserving the symmetry are given by

B(0, BO, Bz), E= (O, Ee, Ez)

where Be, EO; Bz, E are the azimuthal and the axial components and are as-

sumed functions of r and t only. The equations of motion, continuity and

energy given in Eqs. ( 2.1), (2. 2), (2. 4) are now modified to give
Du - Bp_ B B Ba

___ z z ea
SDt -r p.� - - -r (rB 0 ) , (3.18)

Q2. u uDt = - P (a- + -) , (3.19)

Du = - YPOB + u + 2 8 2
Dtr + 2{( -- rB) +( ) )3.20)p4 (r r or (3.20

where a- is the electrical conductivity, p. is the magnetic permeability and

they are assumed constant. These are supplemented by the Maxwell equations,
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S_-B 

(3. Zl)
ar at

0 B

Or - (rEe) at (3.22)

r ar1-8( o -•(zUBO) , (3. 23)

8BB
zOB- = a (u Bz-g0) (3.24)

Since we assume c- is small, the ordinary shock condition (2. 6) may be used

at the front r = R, and the magnetic and electric fields I, E are continuous

there., thus

(8)r=R = (E) r=R =E 0  (3.25)

where BO, E0 are the values of B, E in front of the shock wave presumably

known. They may be functions of R .

Suppose the magnitudes of the given field 8 0 , E0 are small or of the

ordinary order in a sense such that its magnetic pressure is smaller than or at

least comparable with the pressure P09 then it may then be expected that the

interaction effects of these fields to the flow are small. In fact Eqs. ( 3. 23),

(3. 24) show that the qualities

r ar (rJ)'I 8r

are small when a- is small and deviations in Be, Bz from their unperturbed

values B0,B z0 are thus expected to be small. The first approximation to these

deviations may be found by replacing those qualities 1, E, u, (involved in

terms multiplied by a-) with their unperturbed values $0, E0 and u (given by

the solution of corresponding non-conducting motion). Thus we get from Eqs.

(3.18), (3. 20), (3. 23) (3. 24),
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Du r [BC( uB 0 - E 0 ) + B 0 (E 0 +UBe 0 )] +

Dt-Y (y-l) - 0 +uB + 00( B ]
)+ ( u B 0 - E00) (3.26)

r -- (r B) E 0(E+ u Boo)

8B
O z -E )

The last two equations of Eqs. 13. 26) give the disturbance in the magnetic

field due to the interaction and thus we have

r

rr BO =a ~f (E 0 + u B 0 0 ) rdr +RBOO

r ( 3.2z7)

tB - f ru B - E dr + B(

R

The rest of the equations in Eq. (3. 26), supplemented by Eq. ( 3.19), provide

a system to determine u, p, p . The system may be solved in a fashion simi-

lar to Section 2. 3 by expanding the solution in powers of y . After which the

deviation due to the magnetic field comes to the order of a- in their respective

terms as f, M P ) h,1i (i=0, 1, ...a)

This method has been used to estimate the effects of the applied axial mag-

netic field to the cylindrical blast wave produced by exploding a fine wire

(Sakurai, 1962a, Sakurai and Takao, 1963, 1964), in which B0t E0 are assumed

as

Bz0 =B 0 , Be0 = 0 = 0

and B given in Eq. (3. 27) is simplified to,z
r

B =B 0 (I + ý f udr) (3.28)
R
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Suppose we assume the unperturbed flow u is given blast wave theory in Eq.

(2. 11). Then Eq. (3. 28) has the more explicit form

x
B 0 (+ýk- UR ff(x,y) dx) , x<1

1
B = (3.29)

B B0 X I~l

where the expressions (2.10) and (2. 11) have been used. Utilizing the series

expansion solution (Section 2. 3) we have

(0))f=f +yf +...

Su R I - J0 [1 + Xiy +...]

arid Eq. (3. 2) gives

B x( 0  x( ) x( 0
- l+ [fd yjfx - 1 jf dx) +...] , x51z =1 +R f (0) dx + y( ff(I) dx X- ff (0) x+x<

B0 M 1121 1
where we have defined the magnetic Reynolds number R as

m

a- RcR 0
R =

The values of Bz/B 0 computed to the first term (neglecting 0(y) terms) are

plotted in Figure 16. Electric field E0 , derived from Eq. (3. 23) using the ex-

pression for B above becomes singular at x = 0 as 0(1/x) . This shows thez

procedure is not uniformly valid, as noticed above. Perturbation equations for

u, p, given in Eq. (3.26) become in this case,

Du 82p Dt =-ar-- BOu

D_ au u 2 2
= - yp(r + ) +-(y-Bou )(3.30)
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B/B0

0 x

Figure 16

Decrease in axial magnetic field due to
its interaction with cylindrical blast wave

where u (in the terms multiplied by a-) is supposed to be given by

u = U f(xy) = U(f 0  + y f 1)+

It is convenient to introduce new dependent functions f, g, h defined by

u Uflx, Y) P0 = Y gl x, y), p o oh(lx., y),

where upon Equations (3. 30) are transformed into,
2

- -x + Xy- XT) T

ax ay) (3.31)

LLP + - -+ I) = y U + --0 f2

+P0 2

By expanding f, g, h, in a power series in y ,

0) -M+9=9(0) -ýg(1) + ~ 0)y +) +

_ o+y +-.., _ o +yg-1- +..., - 0) + (l)
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and utilizing the relation

rý UR-= R P ... ] ,l
m2 1

we get systems of equations from which to determine f M gP ) h(i) I i=0,1, 2,90.

It is observed that the terms multiplied by a in Eq. (3.31) all originated from

the first power of y in their power series expansion. Therefore the deviations

in f, g, h from the unperturbed f, g, h do not appear in the first approximation

which neglects terms of the order of y (strong shock approximation). The same

kind of perturbation process may be applied to other cases such as

B =rI B =Eo=0 (3.32)00>' zO 0

which represents a situation associated with the problem of a blast wave in-

fluenced by a magnetic field produced by an electric current flowing through the

center axis. It is not necessary that the current be constant with time only that

it is a slowly varying function. More complicated situation like

Bz 0 =B 0 , B0 0 Ccl/r, E0 =0

may also be treated in the same manner. Note that this case is important to the

study on the effects of the applied axial magnetic field to the exploding wire

phenomena, and differs from the previous case as B is not zero. This com-

ponent should be considered in the study of the early stage of the phenomenon,

since the electric current of the exploding wire produces azimuthal magnetic

field for a while.

It is noted that the case given by Eq. (3. 32) can be represented by a similar-

ity solution under the assumption of strong shock and s = constant (Greenspan,

1962, see also Korobeinikov and Ryazanov, 1962). The solution has the following

form,
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U2  I b(x)
u=Uf(x),p P 0 = -2g(x), p =p0 h(x), B0 2  bR (3.33)

While the expressions for u, p, p above are the same as in the ordinary blast

wave theory, the expression for B is obtained so as to fit the boundary condi-

tion to Be in Eq. (3.32)), which can be expressed as

B - R9R I: Electric currentB00 2v-R I

and accordingly we have,

b(l) =1

Substituting Eqs. (3. 33) into Eqs. (3. 18), (3. 19) and ( 3. 20), we get equations

similar to Eqs. ( 2. 25) :

Xdf b da bd
h(-_ + (f -x)d ) =_ - 6 - a(xb)Sdx y dx x d

dh df f
dx= -hdx+-)x) (3.34)

X g + (f-x) jR+ yg (jf+yy- 1) 6Rýmm)
dx dx+ x) m •(•xdx x],

where we have defined

2 2o 2 ' m cRU (3.35)

Eliminating E from Eqs. ( 3. Q1) and (3. 23), we get an equation for bz

R dId dRm dx[xdx b)] = [ (fx)b] . (3.36)

It is readily seen that these equations (3. 34) and (3.36) are consistent with the

boundary conditions (2. 27) based on the strong shock assumption if RU =const.

(=A, say), from which we get

_R- = const.
y dR 2 6 , Rm
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It turns out that the system of equations have two intermediate integrals; one

follows directly from Eq. (3. 16) and the other one from the energy consideration.

These are

R•I d (xb) = (f-x)b + Kmx dx

-x + 1 h f ] + x f[-.(.-L + hf2] " b d
Y( h z 6R b)(bx) = K'

where K, K' are the integration constants. For further developments in seeking

the solution of the system, it was found that the four conditions given in Eqs.

(2. 27) and b( 1) = I are not enough. An additional condition [ xb(x) ] x=O = 1

(a concentrated unit axial current) must be satisfied to have a similarity solution

which is finite and which applies to the entire domain 0 < x <1

It is interesting to utilize the solution to check the validity of the approxi-

mate solution given by the method considered above for small a . It was found

that both agree well for small a- , except for the region near x = 0, where the

purterbation for small a- was found to be not valid.

3.4.2 Magnetohydrodynamlc Blast Waves

Electrical conductivity is assumed infinite in this section. This limiting

case simplifies the problem to approximate the situation of high conductivity.

The interaction between the magnetic and the flow fields is strongest in this case

and the magnetic field is "frozen" in the fluid. In consequence of this fact, the

fluid stays without magnetic field all the time if no magnetic field permeated

initially, and the fluid behaves as ordinary non-conducting fluid. The effect of

the outside magnetic field comes only through the bounding surface acting as

magnetic pressure. An example of this type of flow associated with the blast
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wave theory is seen in the analysis on the transient state of plasma pinch given

by Kuwabara (1958, 1963). In this example the plasma is assumed to be a perfect

conductor and there is no magnetic field permeated initially in the plasma column.

Two different configurations of self-and induced-pinch are considered simultan-

eously. These are caused either by an azimuthal or axial magnetic field, but

they act only as magnetic pressure to press the plasma column inwards at r =R 2

(c. f. Figure 17). This results in a cylindrical shock wave at r = R , which

/
/\

/

I I

Undisturbed
Sregion Sheet current

Shock wave /
\ -

Figure 17

Cross section of the plasma cylinder

converges to the center axis. The motion of the plasma is purely hydrodynamic

as described by Eqs. ( 2. 1), ( 2. 2) and ( 2. 3). Assuming the strong shock condi-

tion ( 2. 27) and the similarity solution given by Eq. ( 2. 25) ( in the range of

x > 1, different from the blast wave case of 0 < x < I), Kuwabara examined the
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sheet current at r = R2 expected from the similarity configuration. He also

examined the ccnverging feature of the column, which revealed that the amount

(R 2 -RI)/R 2 stays small during the process of pinch. This fact is consistent with

the assumption crnsdered by Allen (1957) in which he analized the problem by

use of the snow plough model.

With magnetic field permeated initially, the fundamental equations for the

cylindrical type flow given in Eqs. (3.18) -( 3. 24) are simplified under the as-

sumption of infinite conductivity and we get from Eqs. ( 3. 20) -( 3. 24),

D P =0

8B 0  a
-•+-L uB3 =0, E + uB =0 , (3.37)at at Z 0

8B 1aZB+ --- (ru Bz =0, Ee - u z=0
at ar r"z' 6

while Eqs. (3.18) and (3.19) are unchanged.

Two different cases must be distinguished depending on the condition at the

shock front. First, we consider the case of a = 00 inside the blast wave but

S= 0 outside, which may correspond to the case of ionizing shock front. Since

the magnetic and the electric field should remain continuous in this case, we have

the ordinally shock condition ( 2. 6) to give the jumps in the velocity, the pressure

arnd the density. The second case assumes a = co everywhere, Where upon the

magnetic field may be discontinuous at the shock front resulting from a sheet

curre~it there. More details of the shock condition associated with this case may

be found from the following conservation relations of mass, momentum and energy,
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1 P(U-U)]r=R= P0 u ,

[p + p(U-u) 2 + B ] = P0 +PU + I B0
2 t r=R O 0 0

[p(u-U){f(u-U)+2 + I ( -B2 uU)]
2 y-L p jz r=R

1U PO 1 B2 U
2 Y-1 p()0

supplemented by the "frozen" condition,

[p/B]=R po/Bo

The conditions above lead to the following conditions

r=/U 2 21 2 4( y+l)(2-y) -2U)+U 11_+yY,-+ •I+jy, 4. A-
Y (- 1)2

(P'*) 0 1+Y[U]rR/Uy ) , (3.38)

Po =R r=Rr=

PO/ P) r..R 3B0 /( B) rR 1-[u] rR/ U

where we have defined

p =p+ 1"" B52 2 p A=U B0 .

It is interesting to notice that the condition (3. 38) in the special case of y= 2

we have

Z(U) r=R =--U(I+y)

"" I "" * I
(pr -I) 1 (3.39)

P)r=R = 3p 0 (1+ Zy*)

which has the same form as the ordinary shock condition given in Eq. (2. 6) for

y = 2, provided p is replaced by p . It should be recalled that y = 2 is
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known to approximate the plasma state in a uniform magnetic field (c. f. Section

2.3.2).

Among the various specialized configurations associated with applications,

we first consider the case,

Bz 0 = zonst., B 0 =0, E0 = 0

which corresponds to the situation above in the problem of estimating the effects

of applied axial magnetic field on the blast wave from exploding wire (Sakurai,

1962b). w is assumed infinite everywhere and the shock condition is given by

Eq. ( 3. 38). Equations (3.18), (3.19) and (3. 20) are simplified in this present

configuration to give,

Du I a ' 1 B 2

=- •p • Bz

p Dt ypDt Bz Dt - r'7(ur) . (3.40)

The problem is simplified with a further assumption of y = 2 and Eqs. (3. 40)
become

- 1...~i~L.fla.. -- . (3.41)
Dt P p t 'p Dt *D

BF ~2p D

The system of equations (3. 41) is the same as that given by Eqs. (2.1), (2. 2)

and ( 2. 3) for ordinary non-conducting fluid with a = 1, y = 2. Thus this system

supplemented by the condition (3. 39) provides the same solution as considered

in Chapter 2 on the blast wave. So we can get the cylindrkcal blast wave solu-

tion under the axial magnetic field by simply replacing p by p in the solution

given in Chapter 2. It turns out that Eq. (3.41) with Eq. (3.39) represents a

more general motion of the cylindrical shock wave of a progressive type (Courant

and Friedrichs, 1948) and all solutions given for the ordinary gas are valid in this
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case. In fact Kuwabara (1962) used this system to analyze the transient state

of pinch phenomenon of plasma column in which the axial magnetic field is per-

meated initially. Many other problems may be treated by this scheme by choos-

ing y = 2 to get a rough idea of the features.

It is also known in this case of y = 2 that the more general situation of

Bz0 const., B 00 I/ 4 , E 0

can be represented by the similarity solution for the strong shock assumption

(Korobeinikov, 1962). Also the similarity solution for general values of y is

possible if the magnetic field is purely azimuthal such as given by

Bz0 =0, B0 0 1/r, E0 =0 ,

(Pai, 1958, Cole and Greifinger, 1962, Korobeinikov, 1962).

There is another interesting application of blast wave theory to the phenomenon

called "inverse pinch" (Anderson et. al. 1958, Korobeinikovand Ryazanov, 1960,

Cole and Greifinger, 1961, Liepmann and Vlases,1962). In this situation we have

an applied axial magnetic field permeated in an ideal gas of infir conductivity,

and an electric current through the axis (wire does not explode). Thus we get

an expanding cylindrical vacuum region pushed by the magnetic pressure pro-

duced from an axial electric current on the cylindrical surface which is returning

along the axis. The magnetic pressure acts as a cylindrical piston and results

an expanding cylindrical shock wave ahead. It is interesting to note that there

enters no characteristic length or time in the initial or boundary conditions of

this problem. Thus the solution should have the property of psuedo-steady. In

which case it could be expressed by a similarity solution of blast wave type,

where the shock velocity is constant and the electric current is proportional to

the time.
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3.5 Cavitation

By way of studing the cavitation problem in water, Hunter (1960) introduced

a similarity solution in the final stage of a collapsing empity spherical cavity.

The similarity however requires that the velocity of sound vanishes at the cavity

wall. Although this requirement is satisfied with the fluids obeying a polytropic

law of the form p.Pm with m the index ( Hunter, 1963) , it is usually not the

case in water where the equation of state is conveniently given by the Tait-equa-

tion,

P+B (-P-)Y
B PO

where B is a slowly varying function of entropy and y has a value of 7, say.

The velocity of sound c is given by

C v2-I
C dp entropy PY

and it does not vanish at the cavity wall since p remains finite as the pressure

p goes to zero there. So the similarity solution satisfies the boundary condition

only in the limiting case of p >> B and when the radius of the bubble R becomes

small (or dR/dt becomes large). To improve the solution for larger R. and

still take into account the effect of the finite density at the cavity wall, Holt

and Schwarz (1963) used a perturbation method. This method involved expanding
.dR -1

the solution in a series of ( df ) in a fashion similar to that given in Section

2. 3. It turns out that the procedure is not straightf A because of singular-

ities involved, and must be modified by introducing Lighthill' s technique (1949)

tc% avoid the singularities.

The velocity and the velocity of sound are given by the following equations

of momentum and continuity,
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+t U.r 0 ¥lc(•r
ar ,y-lIar

Oc2 C2 28u 2u (3.42
+ u -;ý-+ (Y-1)c -+k-) = 0

at cia r r

where u. c2, r, t have been expressed in dimensionless forms. Equations

(3.42) are supplemented by the boundary conditions,

u =R, c=l at r=R . (3.43)

It was shown by Hunter (1960) that Eqs. (3.42) have a similarity solution such

that v/R, cI/R are functions of r/R (=x) only, and RR/R = K, (3.44)

where K is a constant to be determined from the regularity of the solution.

Now the solution u/R satisfies the boundary condition u = R by setting

(u/R )x= = 1, while (c /R) x=l has to be put zero since R--oo as R-0 ,

which is however compatible with the condition c = 1 only for small R . To

find the solution valid for a wider range of R, Holt and Schwartz (1963) introduced

a transformation of variables similar to that given in Section 2. 2,

U = RHfl(xjy, Y)P = ~ glX, Y) ,

r c) r=R (3.45)
X =--j, y = •

RH RH H

where RH signifies Hunter' s R defined in Eq. (3. 44). Equations (3. 43) are

then transformed into,

K f + ( -y 0  - l - ' x 
.

C B y Y- x(3. 46)
SOf Zf2Kg + (f-x) -K =-(-)g(x+ L-)

which are very similar to Eqs. (2.15) and their solution for small y may be

found in a similar manner as in Section 2.3.
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Expanding f and g in series of y Z,

f fO)(x) + y 2f ( 1 x) + y 4 f( 2~) W+6*

(3. 47)

tg 9 (0 x) + y g () x) + y g (Z (x) +..

we get from Eqs. (3. 46) the following systems of equations,

0)rX) - 0(0) -Kf ( O) 2f(O) -) +-g(O)(K+ -I-f(O)
(3.48)

f0) x) 2- (0)1 V-O1 Kf g( -2g0)(f 0) x)Y- f(O)

0g 0 dx (0)-I)-Kg((f(f- 0 ))K+x

(( f0)-x) Z-g ] df(x =j1 (X) g 1+ P(Wf

.f(f 0 - x ) 2- ) ( 0 ) d ( 1 ) = ( x ) g ( 1 ) +( 1 ) ( 3 . 4 9 )

where I(x), ... V 4(x) are functions given by f(,)t g(0) . R is considered

as a function of y only and is expanded as

2R =P•{,(I+ ay 2+ ... ) ,9 (3.50)

where a,. ... are constants to be determined.

Utilizing the expansion formulae given in Eqs. (3. 50) and (3. 47), the boundary

condition in Eq. (3. 43) are expanded as,
*[(0) yf0, (l)) a[ zl~ K

u = RHf(() + yZ~f() 0'(1)a,1 + f() ... ] = + ...l + y'a(I-2K)

(1/y 2 ) [g(0)(l) +yZ{g(O)'(1)o& + g(I)(l))+'.'] =1(,

from which we get

f(0)(1) =4, g(0)(l) =0 ; (3.51)

f(1 (1) + aI f(0 ) (1) =al( - 2K), g(1) + al g 0 )(1) = ; (3.52)
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The first approximation of the problem is given by Eqs. (3. 48), (3. 51).

Unlike the blast wave theory in Section 2. 2, Eqs. (3. 48) have two singularities

resulting from zeros of the denominator (f(0) -x) 2 _ (0), which are one at

x =1 and the other one is somewhere at x = x > 1 (say). A singularity ats

x = x appears also in the blast wave equation ( 2. 25), but we had no difficulty

since we were only interested in the region x <1 . It can be shown that there

exists a regular solution at x = I for any values of K . However a special

choice of K makes the solution regular at x = xs, and we can determine the

value of K as well as the value of x by using this fact. The procedure wass

performed numerically by Hunter (1960) for y = 7 and K, xs values thus

determined are -0. 801 and 1. 51 respectively. Note that the procedure is similar

to that for finding proper solution of some other problems like "converging

shock" (Guderley, 1942) , "shock wave at the edge of a gas" ( Gandel' man and

Frank-Kamenetskii, 1956, Sakurai, 1960).
With the value of K as well as the solution f(0) g(0)

, g so determined

Eqs. (3. 49), (3. 52) provide the second approximation to the problem. Note

that the factor ( f(0) -x) 2 _ g(0) appears also in Eqs. (3. 49) and becomes zero

at x =1 and x = x . The equation is singular there. Since the right hand sides of the
s

equations (3.49) do not vanish at these points. This indicates that the expansion

solution in y is not valid there. However, it was fou7idby Holt and Schwartz (1963)that

the regular solution near x = x could be obtained by modifying the expansion

procedure with the use of Lighthill' s technique. This involved the changing of

the independent variables from x, y to z, y . Where,

X x sx+ z +y qI(z) + y 4 q2 (z) +
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and the functions q,, q 2 , """ are to be determined.

The expansion in y is then assumed near z = 0 as

f f (0)(z) + f(l) (z) y2 + ...

g=g(O)(z) +g (1)(z) y +....

The equations for f(0) (0)are the same as given in Eq. (3. 48) in terms of

x . However the equations for f(l) ( 1)are different from Eq. 3. 49) and

are given by

"{[f(O) -x s+z)]2-g(O) f(1)

P p g(l) P2 f(1) + 6q+ 2q
I 1f + 1qA.(3.53)

(0) 2 +Z)] 2 (0) g(l)'

= P 3 g(l) + P4 f) + 6 3 q 1 + 6 4q ,

where 61I 62, 63, 64 are all known functions defined by f(O) (0) K

We are required to find regular expansion solution of Eq. (3.53) as

f() g(1) = B+0 +Bz+ ... 1 (3.54)

so that the right hand side of the equation (3.53) vanishes at z = 0 . Sub-

stituting the expansion (3. 54) into Eq. (3. 53) and assuming that q,=constant

so that qI = 0, we get the following condition,

P3 B0 + 4 A0 + 63 q 0, 1 ), 6i 6(1), i 1,9,...4)

from which we have
B0  A0 ql

P 2  _- = - - - - i__ 2 ý ( 3.5 5)2 •3- P4 61 P3 6 3 •1 4- PZP3•
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where the denominators are all proved to be nonzero at z = 0 . The higher-

order coefficients AP, Bi, •.. can be expressed as known, nonzero multiples

of A0 Hence, expansions of the form ( 3. 54) can be found in which the

coefficients depend on one arbitrary parameter. In this way, one-parameter

families of regular integral curves, for f and g , can be found in the

neighborhood of z = 0

We can also utilize Lighthill' s technique to get a regular expansion solu-

tion near x = 1 and again this solution involves a parameter. The features,

however, are slightly different from that for near x =x described above.S

Assume the expansion near x =1
!a

~~0 y 2q(•

f+y 2 g(l)(•) +f..•

)(0) 2 (1)9 g +y (9 +.•

which leads to equations for f(, g) similar with Eqs. (3.53). We expect

a regular expansion solution near I = 1 expressed as

f CI + Cl +
0 CO-.-

(3.56)9g( D + D +

and this requires

D + C 0 + 61 q= 0 (3.57)

-g(0)(1) D= DO + % CO + 6Z q (3.58)

We have a relation between C and D given by Eq. (3.52)

D0= + K (f(0 '1))'I ..- CO (3.59)

2K+f (0 1)-8
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which reduces Eq. (3.57) to

-I (f()(1) - 3+ 2(K+y) ] D0- 2K-l+f(0) I(I) + K- C q =_0

Y- 0 y-+ Y-1  0"

(3.60)

It can be shown, however, that

y f( 0)1(l) - 3+ 2(K+ -Y) =0

and the condition (3.60) is satisfied for any values of D 0 if q is determined

by
2K-1 + f°)'(1) 2K-1

- --- ¥- +-j- C 0 q 1 =O0

Since C 0 is determined by Eq. (3.59) for a given D 0 and D1 is given
SI

by Eq. ( 3. 58) and so forth for C1, D 2 , 2.., we may have a regular expansion

for any value of D. 0

The parameter D0 as well as the other parameter A0 involved in the

other solution (3.54) can be determined by fitting the solution Eq. (3.56) with

Eq. ( 3. 54) originated from x = x .

Correction to the cavity wall velocity a1, which appears in Eq. (3. 50)

can be obtained from Eq. ( 3. 52), with use of the value of D determined above.

3.6 Thunder

Although one may easily imagine that the thunder is a kind of blast wave

generated by lightning, it was realized only very recently that the phenomenon

was actually different from the ordinary sound wave in some aspects. The

attention to the phenomenon has hitherto been concentrated mostly on the

electrical character of the lightning stroke. Also the way of observing this

unpredictable occurance of the phenomenon has made it difficult to study the
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exact feature of the phenomenon.

Quite recently Kitagawa and Kobayashi (1963) examined their recorded data

on the observed thunder and the change in electric field which were both pro-

duced by the same lightning. This examination revealed that the time interval

between the lightning and the succeeding thunder is in fact shorter than the one

expected from the propagation by the sound speed. This fact suggests that

thunder is a cylindrical blast wave generated by the lightning as a line source.

They also estimated the range in which the propagation velocity was greater

than that of sound and concluded that it spreads over a few hundred meters.

Encouraged by this fact, they tried to estimate the characteristic length R

given in Eq. ( 2. 14). Lightning usually consists of sequential strokes and if we

denote the energy from one stroke as Ws, we get from Eq. (2. 14)

0 Z=•rLp 0

where L is the typical length of the stroke. To get W, they utilized the

formula given by Remillard (1960) as

2 di
wher K s acontan gie pLK (O-) /8

where K is a constant given as 10 3cm /amp . di/dt is the time rate of the

stroke current whose value ranges somewhere in the neighborhood of 10 91010

amp/sec . They obtained value of R0 as 0. l-Im . These figures mean

that actually no damage may be expected from the direct effect of the thunder as

a blast wave except in the near vicinity of the lightning. But it should be re-

called that the range, where the characteristics of the wave is different from
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that of the sound wave, spreads much greater than the length R0 (See Sub-

section 3.1. 2). Although it is not easy to state a definite region for -his, it

is estimated by Thorne (1962) that the distance where U/c becouw• 1. 1 is

about 100m, for the typical lightning stroke. This can be compared with the

conclusion about the range given above by Kitagawa and Kobayashi. This wide

range of results leads us to believe that the phenomenon may be more appropriatly

studied by taking into account the non-linear effects. It is expected that this

approach will give quite different features to the situation than the simple

acoustic theory.

Thome (1962) studied the problem extensively based on blast wave theory

which is regarded as the simplest possible model of the phenomenon. It is

noted however that the range of y= c 2/U2 given in Eq. ( 2. 10), which is im-

portant to this problem is different from the one to the general blast wave

problem. In this problem we are interested in a region where y is almost I,

to which the series expansion solution is apparently inadequate, and a solution

valid for a wider range is needed. For this purpose, Thorne utilized the approxi-

rmation solution given in Section 2. 4 (Eqs. ( 2. 58) -( 2. 68)). Another difficulty

is that the pressure wave form, needed in making a comparison with the observa-

tional data, is to be described as a function of time by an observer at a fixed

point. However, all results given in the blast wave theory are functions of

Xj y and are appropriate to give relation to fixed time observation, and the

,ransformation necessary to get the relation is not straight forward. This dif-

ticulty can be avoided since we are interested only in a region where y is

'ery close to 1 by making use of the fact that the formula can be simplified.
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The solution of Eq. (2. 66) near y = 1 is found as,

( Y•(-l)+) ; ( + - ) ( 1 l-y) + O[(-y)

With use of this expression., we get from Eq. (2. 68)

R0 a+1 z I
(T) "2 (a+l)(a+3)(l-Y) +O[(l-y) 23Y -l

R0

or y( • 2 . (-Y) + o0(l-y) ] for a -,R 4 ¥2_1

which gives

R-% KC (a: 2 (3.61)
C

where we have defined KC = 44N - R 0 .

The approximate formula (.3. 61) proves to be good up to about U/c - 1. 1 (or

y 0. 826), when compared with the numerical solution of Eq. (2. 66). This

is accurate enough for the present purpose. As noticed in Section 2. 4, Eq.

(2. 66) is not precise enough to give the exact behavior of J near y = 1

Therefore Eq. (3. 61) is different from the exact asymptotic behavior near y = 1,

which should be as R-3/4 vI-y . Nevertheless the formula may provide some

rough picture as to the characteristics of the non-linear nature of the phenomenon

which differ from those fecviures given by the sound wave theory. The procedure

may be improved by using the exact asymptotic expression, which requires us

to determine unknown quantities involved in the expression in some way by

fitting it with the known solution. It should also be recalled that we are mainly

interested in the pressure distribution, to which the approximate formula given

in Eq. (2. 62) is rather good in whole range of y
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Now k in Eq. (3.61) has the dimension of the time, and it turns out that

K is very small compared with the time of arrival for most of the observation

made at points reasonably far away from the lightning. Consider the case of

R = 0.1 - Im given above. By taking c.-- 340 m/sec1 y = 1. 4, k becomes

10 - 10- sec. (Thome (1962) used the energy value of 2. xlO10 joules

given in Schonland (1950) and 6. OxlO3 m for L, which gives 2xWO- sec

for k, which is slightly greater because of the larger value for energy). In

any case, the observation time for an observer at, say, 100 meters from the

lightning will be about 0. 3 second which is more than ten times k . Utilizing

this fact, the transformation of the pressure function given in Eq. (2. 62) for

the fixed time scheme, can be performed for t >> k . The result neglecting

small order terms in k/t, is

P/P Vl! k 2 3r

4ycl2tt22 Ct

which gives the pressure distribution observed at a distance from the lightning

stroke r as a function of the time t . It is more convenient to rewrite the

equation in the following form.

2 2 4V2 Er 2 r2

( y+l)( YI .0

where we have used the expression for k and R0 given in Eqs. (3.61) and

( 2. 14). This relation can be expressed in a single graph of pressure versus

time for all observed distances by including r as a scaling factor on the axis.

Such a curve given by Thome (1962) for E I = 3.5xl06 joules is reproduced in

Figure 18, where r is in kilometers.

These results, as well as the frequency spectrum of the n'ressure wave form
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given above were compared with observational data (which are rather rare) and

also with the theoretical study based on linear theory by Remillard (1960). It

was found that the results here are significantly different from those given on

a linear basis, but support recent observational data by Arabadzhi (1952), while

there are disagreements with earlier observations (Schmidt, 1914).

It is rather surprising that very few studies have been undertaken in the

acoustics of thunder from the observational or the theoretical standpoint. It

will be very interesting to see further developments in this fascinating field of

study., which seems to be in its infancy.
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