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FOREWORD

This report presents the results of one segment of an
experimental program for the investigation of hypersonic flow
separation and control characteristics being conducted by the
Research Department of Grumman Aircraft Engineering Corporation,
Bethpage, N. Y. Mr. Donald E. Hoak of the Flight Dynamics
Laboratory, Research and Technology Division, located at Wright-
Patterson Air Force Base, Ohio, is the Air Force Project
Engineer for the program, which is being supported primarily
under Contract AF 33(616)-8130, Air Force Task 821902.

The experimental data obtained (pressure distributions,
aerodynamic heating rates, and six-component force data) are
extensive and must be presented in a series of data reports, of
which this is one. These data reports are presented without
analysis for the purpose of disseminating all the experimental
information as rapidly as possible.

The author wishes to express his appreciation to the staff
of the von Karman Facility, ARO Inc., for their helpfulness in
conducting the tests and particularly to Messrs. Burchfield and
Deitering for providing the machine plotted graphs of the
experimental data included in this report. The tabulated data,
not included herein, are available to qualified Air Force
requestors as an Appendix to this report. These Appendices can
be obtained on loan from the Flight Dynamics Laboratory ‘(Research
and Technology Division, Air Force Systems Command, Wright-
Patterson Air Force Base, Ohio).



ABSTRACT

Heat transfer data were obtained at Mach 3 for a winged
re-entry configuration with several types of aerodynamic con-
trols. The basic model consisted of a clipped delta wing with
an overslung cone-cylinder body. Most of the tests were con-
ducted with partial span trailing edge flaps. The effects of
tip fins, a hemisphere-cylinder body, a full span trailing edge
flap, and a full span, plug-type, trailing edge spoiler were
also investigated. The partial span flap deflection were
varied between + 39 degrees in an angle of attack range of
+ 20 degrees. Selected configurations were used to examine the
angle of attack ranges of -30 degrees to -50 degrees and + 30
degrees to + 50 degrees. The major portion of the program was
conducted at a unit test section Reynolds number of 3.3 x 10 6/t
with limited comparative testing be%ng done at a unit test
section Reynolds nnmber of 1.1 x 109/ft

This report has been reviewed and is approved.

WAS&

Colonel USAF
Chief, Flight Control Division
AF F’light Dynamics Laboratory
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Figure

11 Conftguration I,
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Figure

13 Configuration I,
c) NUA/RE;'vs.
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Configuration IV, a = 0
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Configuration IV, a = 410
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INTRODUCTION

The Fluid Mechanics Section of the Grumman Research
Department is currently engaged in a research program directed
at determining flow separation effects and the effectiveness of
aerodynamic controls on hypersonic flight vehicles. The program
congists of theoretical and experimental research on "basic"
configurations (flat plates with flap and wedge type separators)
and representative hypersonic glide configurations (a clipped
delta wing-body combination and a pyramidal body). The configu-

rations to be investigated in the over-all program are shown in
Fig. 1a.

This report presents the results of one segment of the
experimental program. It treats a winged hypersonic glider con-
figuration consisting, in basic form, of a clipped delta wing with
an overslung cone-cylinder body. This configuration was used for
obtaining pressure and heat transfer data on various aerodynamic
controls at hypersonic Mach numbers. The heat transfer data are
presented herein, and the pressure data are presented in another
report (Ref. 1). The controls investi ated were partial span
tralling edge flaps, with a deflection range of -39° to +39°; a
full span flap with a deflection of 4+20°; a full span, plug-type,
treiling edge spoiler and tip fins. An overslung hemisphere-
cylinder body was also tested.

The experimental work was done at the AEDC 50-inch Mach 8
Hypersonic Wind Tunnel during July and August of 1963. Descrip-
tions of these test facilities can be found in Ref., 2. Heat
transfer data were obtained at a unit Reynolds number of 3.3 x 106
with selected points at a Reynolds number of 1.1 x 106, This same
model was also used to obtain pressure data in the AEDC 40 x 40~
{nch Supersonic Tunnel at M, = 5.0, and in the AEDC 50-inch Hyper-
sonic Tunnel at M, = 8.0. A geometrically similar model, instru-
mented to obtain force and moment data, was tested in this facility
at an earlier date. Another geometrically similar model, with
limited pressure instrumentation, was tested in AEDC Hotshot 2
Hypervelocity Tunnel. The results of the last four investigations
are presented in Refs, 1, 3, 4, and 5.

Manuscript released by the author July, 1964 for
publication as an RID Technical Documentary Report




DESCRIPTION OF MODELS
General

Six test configurations were built up from a basic model that
consisted of a clipped delta wing with an overslung body. The
clipped delta wing had a spherically blunted apex, cylindrically
blunted leading edges, and a blunt base. Of the control surfaces
to be tested, three partial span trailing edge flaps were built
into the wing, and attachments were provided for mounting a full
span spoiler. The two outboard flaps were of the aileron type,
deflectable in the positive and negavive direction, while the
central flap was of the split flap variety, deflectable only in
the positive direction. When all three flaps are deflected in the
same directirn, and to the same angle, they form a full span flap.
The flap-type control surfaces were remotely actuated from outside
the tunnel. ‘ihree-view drawings of the test configurations are
presented in Figs. 1lb through 1g. The dimensions of the basic
configurations are shown in Fig. 1lb and are the same for all other
configurations. The other configuration drawings show dimensions
only for the components added to the basic configuration. A
summary of the geometric properties of the various model compon-
ents is presented in Table 1.

Two of the heat transfer models tested in this program are
geometrically similar to force models which were previously re-
ported (Ref. 4). Four additional models are reported on herein
for which force data are not available; they were developed by
changing the forebody shape from a half-cone to a half-hemisphere.
Eressu;; data are available for five of the six test configurations

Ref. .

Controls and Sign Conventions

Each flap-type control was driven by a 28-volt dc, gear
reduced, electrical motor through a 1/2 inch-10 acme thread drive
screw which was connected to the flap bell cranks by push-pull
rods. Control deflection measurements were obtained through cali-
brated linear potentiometers. The three motors with their atten-
dant potentiometers and drive screws were located in a water cooled
housing immediately behind the model. The drive screws were con-
nected to the flap bell cranks by push-pull rods that passed through



the front of the actuator housing and into the base of the model.
This actuation system produced a deflection rate of 1 degree/sec
and permitted the independent operation of each control surface.
The control surfaces were calibrated cold, that is, when the model
was installed in the tunnel, and checked frequently. The cali-
brating was done with pre-cut templates varying from 0 degrees to
40 degrees in 5-degree increments. A specially cut template was
used to calibrate the 39-degree deflection angle. The potentio-
meter outputs, used in setting flap angles during the test, were
recorded visually from Leeds and Northrup Midget Model D indica-
tors. This calibration was also recorded into the digital com-
puting equipment at AEDC for use of the computer during print-out.
We were thus capable of testing asymmetric, as well as symmetric,
control configurations.

The sign convention for denoting the angle of attack and the
control deflection angle can be obtained from the basic model, a
flat plate, clipped delta wing with an overslung body. The de-
finition fixes the flat plate surface of the wing as the lower
surface. Thus, the angle of attack is positive when the flat
plate surface is the windward surface of the model. The control
deflection angles are also defined with respect to the lower
(flat plate) surface of the model. If we consider our model at
zero angle of attack (flow parallel to the lower flat plate surface),
then the positive trailing edge flap deflections are obtained by
deflecting the trailing edge down. The outboard, partial span,
trailing edge flaps, designed to operate independently of each
other, had a maximum travel angle of + 39 degrees, and could be
calibrated to yleld any deflection angle in this range. The cen-
tral flap section, which operated independently of the other flaps,
had a maximum ‘travel of 0 to +20 degrees.

Model Designation

All the test configurations consisted basically of a clipped
delta wing with an overslung body. The instrumented portion of
the overslung body consisted of a half-cylindrical after section
and a half-hemispherical foresection. An uninstrumented conical
fairing was attached over the foresection of the body to provide
a body shape that was geometrically similar to the body shape used
in the force tests described in Ref. 4. This wing body combina-
tion was one of two major configurations of this test program and



1s referred to as Configuration I. The second major configuration
was obtained by adding a set of tip fins to Configuration I and is
referred to as Configuration IV. These tip fins were clipped
deltas in elevation and were attached in such a way as not to alter
the aspect ratio (of the configuration). Configurations I and IV
provided the heat transfer data corresponding t o the pressure and
force data previously obtained (Refs. 1 and 4).

In the force test phase of the program, each of these major
configurations was expanded into three additional control models,
ylelding eight test configurations. It was not feasible to attempt
heat transfer testing on such a large scale, due to the operational
problems and time limitations. Therefore, the heat transfer tests
were limited to the two major configurations previously mentioned
and to four additional configurations that would provide useful
data on: 1) the effects of a strong shock generator, and 2) trail-

ing edge controls that would induce strong separation effects.
The strong shock generator was a blunt forebody section on the

overslung body, and the separation inducing trailing edge controls
were a full span flap and a full span, plug-type spoiler.

As with the force tests, described in Ref. 4, an adequate com-
parison point between the partial span flaps and the other trail-
ing edge controls (full span spoiler and flap) would be at a flap
deflection angle of +20 degrees. The height of the full span,
plug-type, trailing edge spoiler was designed to be equal to the
vertical displacement of the trailing edge flaps when they are
deflected +20 degrees. This spoiler was attached to the lower,
flat plate surface at the trailing edge. The full span flap was
developed by building into the model a third, partial span, split
flap to fit between the outboard, aileron type flaps. When all
three flaps were deflected +20 degrees, they formed a full span
flap.

The overslung body was built in two sections. The first was
a single, instrumented body consisting of a half-hemispherical
forebody and a half-cylindrical afterbody. The second section was
an uninstrumented conical fairing that could be attached over the
blunt, half-hemispherical, forebody of the first section and simu-
late, on a smaller scale, the conical forebody used in the force

tests.

Working on the assumption that the effects of the blunt body,
spoiler, and full span flap would be uncoupled if the body and



spoiler, or flap, were placed on opposite surfaces of the wing,
we developed four configurations. The first model consisted of
a wing-body combination with a full span, plug-type, spoiler
attached at the trailing edge of the lower surface and an over-
slung body composed of a half-hemispherical forebody and a half-
cylindrical afterbody. The blunt forebody was obtained by re-
moving the conical forebody fairing. This configuration was
called Configuration VII. The second model, Configuration VIII,
was obtained by adding tip fins to Configuration VII. The third
model, a wing-body combination without the spoiler, but with the
half-hemispherical forebody was denoted as Configuration IX.
Configuration K was obtained from Configuration IX by deflecting
all three partial span flaps to +20 degrees. A complete defini-
tion of the models is presented in Table 2. The model designation
system maintains continuity with the previous experimental work
reported in Refs. 1 and 4.

Model Construction and Instrumentation

The wing for these configurations was fabricated of an inter-
nal stainless steel frame, which served as the .basic load support-
ing structure, and instrumented surface panels, which served as
the data gathering units. The flaps were also fabricated the
same way; 1.e., an internal frame with attached instrumented
panels. The flaps were connected to the wing structure by hinges
and actuated from the actuator housing by a system of bell cranks
and push-pull rods. All internal frame work was made of 416
stainless steel, and the surface panels were pressure relieved,
silver braised, honeycomb cections; the face sheets, core, and
frame were of 321 stainless steel. Where a thermocouple was to
be spot-welded to the inner surface of the honeycomb face sheet,
the back sheet was drilled away and the cell cleansed of solder
by washing with concentrated nitric acid. This left a clean,
solder-free surface upon which to spot-weld the thermocouple.

The body and the conical fairing were fabricated of 321 stainless
steel sheet, while fins and spoiler were made of solid 321 stain-
less steel. The actuator housing, which served as the connection
between the model and the sting, as well as the housing for the
actuation motors, was made of 17-4PH stainless steel.

The model was instrumented with 38 thermocouples distributed
on the upper and lower surface of the wing and on the half-
hemisphere cylinder body. The thermocouples were made of 30 gage



chromel-alumel wire and were spot-vielded to the inner surface of
the outside honeycomb face sheet (face sheet exposed to the flow).
The location of each thermocouple, the skin thickness at the
thermocouple station, and the distance from the virtual apex of
the model to cach thermocouple are listed in Table 3 and shown in
Figure lh. When the conical forebody fairing was installed, five
thermocouples (669-673) were covered; and when the spoiler was
installed, four thermocouples (528, 538, 548, 588) were covered.
Installation of the fins did not inactivate any instrumentation.



EXPERIMENTAL DATA

Description of Wind Tunnels and Test Conditions

This segment of the experimental program was conaucted in the
50-inch Mach 8 Hypersonic Wind Tunnel located at the von Karman
Facility of the Arnold Engineering Development Center. A complete
description of the wind tunnels and their associated measuring,
recording, and tabulating equipment is given in Ref. 2. The tests
were conducted at a nominal test section Mach number of 8.0 and
test saction unit Reynolds numbers of 3.3 x 106 per foot and 1.1
x 106 per foot. (gost of the program was conducted at a Reynolds
number of 3.3 x 10° per foot and the lower Reynolds number data
were used for comparative purposes only.) Due to the tunnel
operating conditions, the actual test Mach number was 8.09. The
variation in each Reynolds number was less than 1.5 per cent.

The two main configurations (I and 1V) were tested most
extensively, while experiments with the other configurations were
restricted and were used only to provide comparison data with the
main configurations. Configurations I and 1V were tested through
an angle of attack range of -20 to +20 degrees, for symmetric,
partial span, flap deflections of -39 to +39 degrees. For zero
flap deflection angles, data were gathered through an angle of
attach range of -50 to +50 degrees. Configurations VII and VIII
ylelded data on the effect of a full span, plug-type, t+-ailing
edge spoiler; and information on the effect of a strong shock
generator on the aerodynamic heating characteristics of deflected,
partial span, tralling edge flaps was obtained with Configuration
IX. The effect of a full span trailing edge flap was determined
using Configuration X. These Configurations (VII-X) also provided
the information on the effect of a strong shock generator on the
aerodynamic heating characteristics of a flat plate wing panel.

A complete tabulation of the experimental program showing the
angle of attack range, control deflection, and flcw cor.ditions is
presented in Table 4. The angle of attack range was obtained by
using two different pre-bend angles on the water-cooled split
sting that is standard tunnel equipment. The two pre-bend angles
used were 12 degrees and 39 degrees, which provided an angle of
attack range of 0 to +50 degrees. The negative angles of attack
were obtained by inverting the model.



Cooling shoes were installed in the Mach 8 Tunnel in order to
obtain aerodynamic heating rates by the thin wall, transient
temperature technique. Tunnel conditions were stabilized for the
desired free stream Reynolds number; the remotely controlled flaps
were set at the desired angles, and the model was pitched to the
required angle of attack while inside the cooling shoes. The
cooling shoes were then rapidly retracted (full retraction from
the tunnel centerline to walls within 0.8 second), and tempera-
ture of each thermocouple was recorded for 4 seconds at intervals
of 0.05 second. The shoes were then closed, the model cooled to
approximately 520°R, the flap angles set, and the model pitched
to the next desired angle of attack where the process was repeated.
In this manner, all of the heat transfer data were obtained for a
given configuration and Re /ft through the angle of attack range,
while limiting the amount of heat absorbed by the model. The
experimental data are.preésented graphically, in the form of

NuA/Rex}

Data Reduction and Accurecy

Thin wall approximetions were used to obtain the transient
aerodynamic heating rates from the recorded temperature-time
histories. The equation used for calculating the heating rates
was &w = Carc dtw , aund the temperature derivative was obtained

by fitting a polynomial through any 11 consecutive points of the
temperature time curve and differentiating the polynomial at the
mid-point interval. The very thin wall and the absence of heat
sinks at each thermocouple installation (see table), which was
made possible by the use of honeycomb sandwich construction of
the test panels, allowed a very rapid response to the aerodynamic
heat input. This made it possible to reduce the data at t = 1.00
second after the start of cooling shoe retraction. At this time
interval, the honeycomb correction factor ({ was equal to 1.00.
Representative thermocouples were monitored during the heat
transfer tests and indicated that all starting effects caused by
the opening of the cooling shoes were dissipated prior to the
time at which the data were reduced. The aerodynamic heating
rates were then nondimensionalized in the form:




4, x
k
Nu To‘Tw 00
V. R A
K

The values of x, as well as the skin thickness and non-
dimensionalized location of each thermocouple, are tabulated and
presented in Table 3, . Due to the strict time schedule, it was
not possible to provide check-runs to determine the error limits
in the measured heating rates and assess the inaccuracies in the
calculated values of Nu/\,fRe,. The discrepancy in the plotted
data due to the use of automatic plotting machines should not
exceed £ 0,20 per cent of the maximum scale. Each graph has been
inspected and questionable points have been checked with the
tabulated data.




RESULTS AND DISCUSSION

This program was designed to provide the heat transfer data
needed to complement the controls information previously obtained
on a basic type of hypersonic flight vehicle; namely, a clipped
delta wing-body combination. Data are presented at positive and
negative angles of attack for the case of an overslung body.

This configuration was tested with tip fins on and off,
with partial span and full span trailing edge flaps, with a full
span trailing edge spoiler, and with a blunt instrumented body as
well as the conical body used in the force tests. The experi-
ments were conducted at Mach numbers of 8.08 and 8.09 and with
limited Reynolds number comparisons. Due to the tight test
schedule, only the symmetric flap deflection cases were tested,
whereas the force data of Ref. 4 presents both symmetric and
asymmetric cases.

The basic wing-body combination was designed to provide heat
transfer data for configurations having either overslung or under-
slung bodies. For convenience we have chosen the overslung body
configuration as our reference, and defined the coordinate system
and control deflection angles with reference to this basic con-
figuration. Thus, the positive angle of attack regime for the
overslung body provides the data for the underslung body at
negative angles of attack. The sign of the flap deflection
angles for the underslung body case must be reversed in order
that both cases be viewed in the same reference system.

The data are presented in the form of Nu/Re, plotted as
functions of nondimensionalized chordwise (streamwise), and
spanwise, coordinates (X' and Y'). The chordwise coordinate is
measured from the virtual apex of the model, and the spanwise
coordinate is measured from the vertical centerplane of the
model. The data obtained on the upper and lower surfaces of the
test configuration are presented separately for each set. Thus,
for each test configuration, all the data are presented in four
graphs (two graphs for the chordwise plots and two graphs for
the spanwise plots).

The data for Configuration 1 are presented in Figs. 3

through 14; for Configuration IV in Figs. 15 through 28; for
Configuration VII in Fig. 29; for Configuration VIII in Fig. 30;

10




for Configuration IX in Figs. 31 through 37; and for Configuration
X in Fig. 38. The complete test program is tabulated in Table &
and the specific conditions presented in each figure are noted in
the 1list of 1llustrations in the front matter.

11
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TABLE 1

CEOMETRIC CHARACTERISTICS

Wing:

Clipped Delta Wing with Blunt Apex,
Leading Edges, and Base

Root Chord

Tip Chord

Span

Apex Radius

Leading Fdge Sweep
Leading Edge Radius

Wing Thickness (Cunstant)
Planform Area

Aspect Ratio

Taper Ratio

Thickness Ratio (Root)

Control Area - Outboard Partial Span Flaps

Body:

Half Cone - Cylinder
(Base Mounted Flush with Wing Trailing Edge)

Cone Angle
Cone Length
Cone Radius (Maximum at Tangency Point)
Cylinder Length
Cylinder Radius
Fairing (Cone to Cylinder)

Length

Radius

Included Angle
Total Body Length (Half-Cone Cylinder)
Planform Area (Half-Cone Cylinder)
Hemisphere Radius
Total Body Length (Half-Hemisphere Cylinder)
Planform Area (Half-Hemisphere Cylinder)

Tip Fin:

Clipped Delta Wing with Blunt Leading Edge
Root Chord

Tip Chord

Span

Leading Edge Sweep

Leading Edge Radius

Thickness (Constant)

Area

Aspect Ratio

Taper Ratio

Thickness Ratio (Fin Root-Wing Center Plane)

13

12.350 inches actual
13.00 inches virtual

2,608 inches
12.00 1inches
0.650 inch
60 degrees
0.650 inch
1.30 1inches

953 mekess
97.6 inches

1.542
0.211
0.1052
12,75 inches2

13 degrees
5.49 {nches
1.269 inches
4,415 inches
1.30 1inches

0.292 inch
1.30 1inches
13 degrees
10.20 1inches
17.81 finches?
1.30 1inches
5.715 inches

14,145 inches2

3.275 inches
0.990 inch
4.160 inches
50 degrees
0.325 inch
0.650 inch
9.27 inches’
1.862

0.3025

0.199

actual,
virtual




TABLE 1 (Cont'd)

GEOMETRIC CHARACTERISTICS

Spoiler:

Full Span, Plug Type with Cylindrical Lower Edge
Chord (Constant)

Span

Height

Planfora Atea

Bottom Cylinder Radiua

Central Flap:

Split Flap - Central Section of Full Span
Trailing Edge Flap

Chord

Span
Planform Area

14

0.650 inch
10.70 {inches
0.611 {nch
6.96 1inches
0.325 inch

2.220 inches
2.600 inches

2

5.772 inches®

b4 |
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Configuration

TABLE 4

TEST SCHEDULE FOR
THE 50-INCH HYPERSONIC WIND TUNNEL
AT MACH 8.08
Trailing Edge Re‘/ft x 106
Control

Partial Span
Flaps

5,

Spoiler off

Conical
forebody

Fins off

COO0O0OOODO0OO

IV

Spoiler off

Conical
forebody

Fins on

COO0O0OO0O0OO0OCO

VII
Spoiler on

Blunt
forebody

Fins off

VIII
Spoiler on

Blunt
f orebody

Fins on

IX

Spoiler off

Blunt
forebody

Fins off

COO0OO0O0OO0OO0O0O0O

) et WD A WD D

e o ® & o e e o+ o o

A D D e WD W

X
Spoliler off

Blunt
forebody

Fins off

Full span flap




Separated Flows ahead of a Ramp
Fore and aft flaps, end plates
3 separate models:

1) Pressure and heat transfer, AEDC Tunnels
A&B, M=5%&8

2) Controlled wall temperature, pressure,
AEDC Tunnel B, M = 8

3) Pressure and heat transfer, Grumman Shock
Tunnel, M =13 & 19

Wedge - Plate Interaction
Small and large fins with sharp
and blunt leading edges
2 separate models:

1) Pressure and heat transfer, AEDC Tunnels
A&B, M=56&8

2) Pressure and heat transfer, Grumman Shock
Tunnel, M2~ 13 & 19

Clipped Delta, Blunt L.E.
Center body, T.E. flaps, drooped nose,
spoller, tip fins
) separate models:

1) Pressure and heat transfer, AEDC Tunnels
A&B, M=5¢48

2) Pressure, AEDC Hotshot 2.
MZ19

3) Six component force, AEDC Tunnels
A&B, M=5¢68

Delta, Blunt L.E., Dihedral
T.E. flaps. canard, ventral fin
3 separate models:

1) Pressure and heat transfer, AEDC Tunncls
A&B,M=5¢4§8

2) Pressure and heat transfer, Grumman Shock
Tunnel, M >~ 19

3) Six component force, AEDC Tunnels
A&B, M=5¢438

Fig. la General Outline of Models and Remarks for Over-all Progran
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0634

0636
0637
0638

Upper Surface

_ == 673
- 672, 6660 6670
- 6540 6560 6570

[ _ e,
R £ :
Side Elevation

I R R T O T

0 0.2 0.4 0.6 0.8 1.0

o Thermocouple

pr— 0 = ¥’

Lower Sursace

Fig. 1h Thermocouple Location and Model Coordinate
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