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Nomenclature

Constants

Membrane number, see Eq. (16)

Bond number, see Eq. (16)

Amplitude of the nth sloshing mode

Potential of the solid-liquid-gas interface

FPotential of the edge load acting on the rim of the

tank bottom

Gravitational acceleration, time dependent, see Eq. (6a)

Mean local gravitational acceleration

Amplitude of the imposed a-tial acceleration

Gm Nondimensional gravitational acceleration, see Eq. (15)

.Membrane thickness

Nondimensional free surface shape. see Eq. (15)

1.,I,,Ia,11 1 q. Functionals,. see Eqs. (36)

I., UBessel functions of first kind

nth root of the equation "

Depth of liquid

L Nondimenslonal depth of liquid. see Eq. (15)

L1  Pressure energy in nondimensional form, see Eq. (41)

L , Ls Lagrangians In nondimensional form, see Eqs. (43), (44)

MI/ H M,3  Matrix
Ny- Midplane stress resultant

th

n a sloshing frequency for rigid tank, mee Eq. (57)

Pressure

Nondimensional pressure, see Eq. (15)



r Radius of the tank

(Y 8' ) Cylindrical coordinates, Bee Fig. I

(R, , ) Nondimensional cylindrical coordinates, see Fig. I

S"S' , S3 Surfaces, see Fig. I

t Time

L Modal matrix

W Transverse deflection of membrane

\N Nondimensional transverse deflection of membrane, see Eq. (151

Vertical coordinate. aee Fig. I

3 Nondimensional vertical coordinate, see Eq.(15)

o.. Nondimensional amplitude of the imposed axial acceleration.

see Eq. (15)

rConstants, see Eq. (59)

T. , Boundary curves of S 1 . S3 respectively

. Constants, see Eq. (66)

yFree surface shape

& Axmuthal coordinate

X- Mass ratio, see Eq. (16)

A.. Constants, see Eq. (54a)

9. Constants, see Eqs. (51), (5Z)

eDensity of membrane

Density of liquid

Surface tension

Nondimensional time, see Eq. (15)

Velocity potential

Nondimensional velocity potential, see Eq. (15)

Forcing frequency



ABSTRACT

The stability of a fluid contained in a circular cylindrical

tank with a flat, flexible bottom under a periodic axial excitation

is studied. An analytical difficulty for the solution of the linearized

equations in the form of infinite series is discussed. A variational

approach is formulated. An approximate solution results in a pair

of coupled ordinary differential equations with periodic coefficients.

A method of handling the stability of the solutions of such a system

of equation is presented. Numerical results will be discussed in a

later article.



E genvalues. see Eq. (57)

JFrequency parameter for the membrane, see Eq. (16)

Frequency parameter for surface tension, see Eq. (16)

Two dimensional Laplace operator

in cylindrical coordinates

Three dimensional gradient operator s +

ini cylindrical coordinates. For the free surface and

the membrane, ignore the aterm.)
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1. Introduction

Dynamics of large liquid-fuel rockets naturally involves the

motion of a liquid in a flexible container. The symmetric modes

of the fluid motion, which influences the pressure at the tank bottom,

and thence influencing the pressure in the pump, combustion chamber.

and thrust and rocket acceleration, have an important effect on the

rocket-structural dynamics. In some instances the longitudinal

oscillations were so serious as to affect the safety of the vehicle.

For this reason the analysis of the forced oscillations of the liquid

container is important.

At ground level perhaps the effects of the flexibility of the

tank wall and the surface tension of the free surface are negligible

on fuel sloshing. At reduced gravity conditions these effects will

become more evident. It is the purpose of this article to evaluate +

the effects of tank flexibility and surface tension on the stability of

liquid motion in the symmetric modes.

Sloshing of liquid has been studied by many authors. Most

of them considered rigid containers, see Ref. 4. However, Miles

(Wef. 1) considered bending modes of a flexible container. Bleich

(Ref. Z) investigated the longitudinal modes approximately. Recently

Bhuta and Koval (Ref. 3 and 15) studied the coupled oscillations of a

liquid in a tank with a flexible bottom. They defined the normal modes

of the system, and treated the orthogonality and expansion theorems.

However, the difficulty concerning the convergence of several infinite

series, to be explained in Section 5 below, was not considered. In



Refs. 16 and 17, Bhuta and Yeh considered the problem of arbitrarily

assigned velocity distrlbution on the tank bottom; in this case the

difficulty referred to above does not appear.

On the other hand, there is substantial literature about the

influence )f surface tension on sloshing; see Yeh's bibliography, Ref. 18.

and papers by Bond and Newton (Ref. 19), and Reynolds (Ref. ZO). How-

ever. most of these studies are concerned with free oscillations, very

little has been done about the influence of surface tension on forcod

oscillations. No work seems to have been done on the coupling with

the flexibility of the tank.

In the present paper a circular tank with a flexible bottom under

vertical periodial excitation is studied. The problem was first formulated

In the form of differential equations and then in the form of a variational

principle. An approximate solution is presented. which results in a

,;air of coupled ordinary differential equations with periodic coefficients.

The stability of the solutions of these equations is discussed.
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Z. Statement of the Problem

A circular cylindrical container with rigid side walls and a

flat. flexible bottom contains a liquid with a free surface. The tank

walls are subjected to an oscillatory axial acceleration, in addition

to a constant mean-local-gravitational accelsration which is directed

along the axis of the cylinder. A gas with constant pressure exists

above the liquid surface. No external force acts underneath the tank

bottom. The situation is pictured in Fig. 1. The problem is to

determine the motion of the liquid; in particular, its stablity.

The fluid properties including the surface tension are assumed

to be uniform, constant, incompressible, and invlscid.

The mean free surface of the liquid shall be assumed to be a

plane perpendicular to the cylinder axis. In low gravity and finite

surface tension one may have to consider a curved mean free surface.

The governing criterion is the Bond number defined below. In this

paper we shall assume that the Bond number is sufficiently large so

that the free surface is approximately a plane. The case of low Bond

number will be investigated in a separate article.

As a further simplification we assume that the deviation from

the static equilibrium condition is small, so that the deflections of

the free surface and of the tank bottom, the fluid velocity, and hence

the velocity potential, may be considered as infinitesimal quantities

of the first order. Under this assumption all the equations can be

linearized, and the mathematical problem is relatively simple. A

number of interesting nonlinear problems are ruled out by this assump-

tion. But as an investigation of the initial tendency toward instability,

the linearized theory should be adequate.
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3. Mathematical Formznation

Consider a quantity of inviscid liquid situated in a cylindrical

container of radius r 0 as is shown in Fig, 1. The cylindrical polar

coordinate system is choscn so that the positive z-direction is directed

upward away from the liquid, the zero on this axis being fixed on the

mean free surface. On assuming the fluid to be inviscid, incompres-

sible, and the motion to be irrotational, the equation of continuity

may be expressed in terms of the velocity potential 4

and the velocity components U., , ( are

The usual subscript notation is used to denote partial differentiation.

The kinematic conditions at the tank walls and the free sur-

face are

(4)

64 (5)

where w denotes the deflection of the tank bottom, and I denotes the

deflection of the free surface, both positive in the positive z-direction,

and both are assumed to be infinitesimal.

Since the motion is irrotational, Bernouli's equation is satis-

fied throughout the liquid domain. In particular, at the free surface,

we have
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(6)

ah= . -, cM cat (6a)

where c(t) is an arbitrary function of time, go is the mean local gravi-

tational acceleration, g, cosc.t is the imposed axial acceleration? both

taken as positive if they are directed toward the tank bottom (along the

negative z-directicn), and p is the pressure just inside of the interface.

The pressure p is related to the pressure just outside of the liquid, pG0

by the relation

;- 3 -K (7)

where T is the surface tension, and Zis the total curvature of the

free surface. In linearized form, under the assumptions that /r 0 <4 1

and -grad Z[ 1. we have

If the pressure of the gas PG is a constant, then without loss of gener-

ality we may set p 0 = 0. The function c(t) can be absorbed In t" We

can also noglectl,4fin Eq. (6) and evaluate 4 t on the surface z = 0

under the scheme of linearization. Thus we obtain the linearized free

surface condition,

=(9)

Here we just write out a special form of imposed a=al acceleration.
The method developed below can be applied to a general periodic im-
posed axial acceleration.
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Similarly. Bernoulli's equation gives the pressure on top of

the bottom wall

No other forces will be assume d to be acting on the tank bottom. If

the tank bottom is very thin and is prestressed so that it behaves

like a membrane, then the equation of motion of the bottom is

where Nr is the tensile stress resultant in the tank bottom, and is

assumed to be a constant. e is the density of the tank bottom

material, h is the tank bottom wall thickness, so that fh is the

mass per unit area of the tank bottom.

A combination oi J10) and (11) gives the linearized equation

of motion of the elastic oottom as a membrane

In reality, a tank with flat bottom will develop both bending

and stretchng stresses under fluid pressure. Eq. (12) is a good

approximation only if a membrane tension is built-in at the edges by

3tretching the bottom onto a rigid cylinder before the two are

welded together.
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It is necessary to specify the boundary conditions for I and wq

at the edge r = We choose

0 when wy 0  
(13)

= 0 when T " (14)

The last condition is a special case of zero capillary-hysteresis.

It is consistent with the simplifying assumption that the undisturbed

free surface is a plane z = 0. In very low gravity condition the mean

free surface is curved and Eq. (14) should be replaced by the condition

8 V8r V at the wall, where )) is a physical constant.

These equations define the linear, inviscid problem of sloshing

under appropriate initial or periodicity conditions.
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4. Dimensionless Equations

Taking the radius of the cylinder 'I as the characteristic

length, the gravitational acceleration go as the characteristic accel-

eration, and Co as th, -haracteristic frequency, we define the

dimensionless variables

R kI L= I ((15)

the dimensionless parameters

Bond number = T

Membrane number = =
r

Frequency parameter for surface tension = (16)a-

Frequency parameter for the membrane = JIM ="

Mass ratio = . -

and the operator

P,~~ b(?_ a - R' (17)

Then the equations become

( -.-. = 0 (18)

f-01 (19)
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I~r- -- L(20)

with the boundary conditions

.P-on - (21)

on (22)

on 0(23)

on (U4)

0 Oa =.\ (assuming 0 0) (25)

Eqs. (18) - (25) show that the problem of sloshing depends on

the parameters

These dimensionless parameters are not aU independent; for

D = T- .4 -T E*(26)

Hence

(27)

However, we retain the symbols ) 'lbbecause these two

pairs of parameters are not likely to be both important.

SQA, E>* 
"9
Oif the tank bottom is rigid

B6-a-o if the surface tension has no effect.
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5. An Analytical Difficulty

It is not easy to construct an exact solution for the system of

equations (18) - (25). To construct a solution in the form of an infinite

series, as a direct extension of Benjamin and Ursell's solution for

a rigid tank, encounters certain basic difficulties. Consider symmetric

modes of motion in which 2 , R, are independent of the angular

coordinates A solution of (18) nay be posed as

. • (28) k '

Then Eqs. (22) ana (23) give

= d.c) 41Z) + T.- C.(] (30)

Both Eqs. (21) and (25) are satisfied if the k S are the roots

of the equation

Eq. (24) is satisfied by taking

(32)
and

UfR) is the static deflection of the membrane. We assume that if BM

is positive, 7"BM is less than the first root of (X) - 0. namely,

Z. 4048. To satisfy Eqs. 119). '20). we substitute , H, W from

(Z8) - (30). coUect terms and represent the left hand side as

Fourier-Bessel series in To ( .,R). Since the series vanish,
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every coefficient h = 1 2. --- , must vanish. Thus from

(19) we obtain the necessary conditions

Jj. , - qtJALI~ 2 ~3 -~ (33b)

And from (20) and (33a)

2.-

Thus all differential equations and boundary conditions are satisfied

by the assumed form of ~,j~ 4 provided that C, JL. satisfy

Eqs. (32), (33), and (34).

A difficulty beco,-, s apparent when one examines the Eqs. (32)-

(34). If we truncate the infinite series (28) - (30) to N terms, we see

that Eqs. (32) - (34) always impose N+I conditions on W unknowns,

which in general have no solution.

The difficulty appears to have risen from the condition 0A - 0

at the edge of the tank bottom. The same difficulty would have

appeared in Benjamin and Ursel's rigid tank case if one assumes a

I stuck" condition at the edge of the free surixceHjO i R4A, (physically

realizable with certain fluid and wall material). Mathematically, the

condition \Aiau requires certain discontinuity in the second derivatives

of I at the edge of the tank bottom. For, we have the boundary con-

ditions
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=0 To (a)

and

ST j-. ,1r (b)

Hence

Now if were continuous everywhere we must have, from (a),

that I ) at ? L . Hence (c) yields Z 0

at R=I, .- L i.e. const. at R=I, Thi-L Ths

in inconsistent with the condition \ Q at the same point. Hence
we must conclude that must not be continuous at the corner

. L L This requires that the series (35) and its first and

second derivatives be uniformly convergent everywhere, except for

A I which loses its analyticity at the corner I, -L

This demand singles out the question of convergence of the series (35)

to the foreground. We note, in particular, that any truncated series

of (35), (taking the first t terms), will not have the desired property.

* The linearized equation can admit only one boundary condition. The
condition V- 0 is chosen in Eq. 24 ) on physical basis.
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The difficulty considered here seems to be caused by the

linearization of the governing equations. if linearization was not

madethe kinematic conditions on the free surface and on the

bottom are. instead of Eqs. ( 22 } and 2 35 ). the following:

In the nonlinear form the problem is undoubtedly much more difficult,

but the particular problem referred to above disappears.

If we relax the demand for an exact solution, we could turn

to variational methods. In the following the variational principle

and approximate solutions will be discussed.
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6. The Variational Principles

Uwe multiply Eq. (18) by * (19) by..SH. (20) by

and integrate over the entire fluid volume V , the free surface

* the bottom surface 5., , respectively, and transform with

appropriate integration by partswe obtain

where $ is the rigid side-wali surface. , is the edge of S, ,

is the edge of S,$ . This suggests the following functional

i [(y> tQ -&i d -67C 36

where
- 5V . (36a)

whr sterii iewvlsrae s h deo
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e- +~4 '(X LE4 IB. ds , (36b)

It is easy to verify that the variational equation

T- 0(37)

under arbitrary variations of W ) with the stipulation that

W vanish at -C=t , and "C= -C , yields

+ ( 8)

(38)



Since *fD, are arbitrary over V, S,,' respectively,

we obtain the differential equations (18), (19), (2 0), and the following

bouinnary conditions:

On0. Either 40 or

On S, Either - 5=0 or

On S;Either *bi - W= or0
'W ar(39)

On T3, Either LI

The conditions on the left hand column are the natuzal 'boundary condi-

tions; those on the right hand side are the rigid boundary conditions.

From physical considerations of our problem we impose the natural

boundary conditions over , and ,but the rigid boundary

condition W0 over

The terms in the functional 1: have the followin3 physical sig-

nificance. The first term represents the kinetic energy o-- die fluid

(in dimensionless form). The terms

represent the change of suerfae coergy of the fr- sua&-zc , hbange

of elastic energy of the bottom, and the kinetic energy of the bottom,

respectively.
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To interpret the meaning of the other terms, we write the

pressure in dimensionless form

t S r) (40)

Then the work done byp through a displacement 4 is

~d

On evaluating this integral, ,nd neglecting third order infinites imals,

we see that it is equal to

(Note that ]. Similarly, the terms

-L -B z.' LZ er VJ - 4cl

are equal to the integral of ) between -L-4i and -

with the sign reversed because the pressure P acts on the upper side

of the bottom. FnUy, Vj represents the work done by the

inertia force due to the gravitational acceleration Cj() through a

displacement W.

f: C are the potential of the vertical forces (positive

apward) acting on the free surface and the tank bottom, at the edges

r. and fl) respectively. F1 arises from the capillary surface

energy; F3 normally arises from the reaction of the vall on the

membrane, but it can be imposed by an external agency. If J, is

assumed to be proportional co ui , then the so-called capillarv-

hysteresis is obtained. Eq. (14) and Eq. (25) presuppose F, 0
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7. An Alternate Form of the Variational Principle

It i3 known that an approorzate functional from which the equa-

tions of fluid mechanics can be derived from the calculus of variations

1 t:'e 'pressure energy"

L, =- d v (41)

integrated over the entire volume of the fluid. See Bateman, (Ref. I)

Wang (Ref.4). With this information, we consider a functional

I = L, % t1 1 L -1 (42)

where L, is given by (41), with P expressed in Eq. (40); whereas Lx

and 1- are the Lagrangian functions of the free surface and the bottom

membrane, respectively:

It can be verified at once that T so obtained from (42) is exactly what

to siven in (36), except for the term

which makeino contribution to the variattonal equation (37). It is im-

portant to note that the volume integral in (41) means

The variable limits for must be accounted for.

In practical applications, it is common to choose w which



in Z~qs. (36), (36a) as

Then Z contains surface integrals only.
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8. An Approcimnate Solution

An approximate colution bared on the Rayleigh-Ritz-Galerkin

procedure will be gven below. We choose , 4 and W in the fol-

lowing form

dC.k . (45b)

(45c)

which satisfy Eqs. (18). (21), (22). (23) and (25). Eq. (24) is satisfied

by taking

d~r) 1?c-~cr~- dh~J ~(46)

Eq. (19) is satisfied if we impose

- ,z. e)" .; , L+,, (r) = (47a)

Eq. (20) is not satisfied, whereas Eq. (38) now becomes

bwx i _C -% (o-] w as- 0
(48)

Now we shall satisfy (20) in the sense of (48) by choosing

Then (48) yields
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n ~ ~ ~ ~ ~ ~ ~ T (50),4X~.)~. '~

A substitution of (46) into (50) gives

The central problem lies in the solution of Eqs. (47b) and (51).

These equations can be put in a neater form by letting

Th"en we have

where

11: (53)

(('AI M



f Nf 's positive definite and has two distinct positive eigen-

values 2jthen there exists nonsinglar matrix. UJ such that

o- ," -D . (55)

Let Y='rXthen Eq. (56) assumes the normal form

which will be studied in the foUowing two sections.
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9. Free Oscillations

Consider the special case of free oscillation of the system. i.e.

the case 0< 0= , or (-I = I . In this case Eqs. (47b), (51) become two

linear differential equations with constant coefficients. By putting

c-M) C., e ;' '  ~ c-D i '

we get

The eigenvalues of S.Zare

where

It is recognized that is the circular frequency of sloshing of a

liquid in a rigid container. In case * (which is usually

the case for a rocket in Earth's gravitational field), we can write

in the following form

54W V __(57a)

Since , . is always less than ; which means that the

tank flexibility lowers the natural sloshing frequency. Note also that,

when either f--o , (rigid tank) o," kL---> , (the deep

water case, or a high mode) fZ, tends to V-.
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10. Stability of the Solution

To study the stability of the solutions of Eq. (56), (Refs. 11, 12)

we shall consider the following more general system of equations

o et (58)

where bA.0  0 . , 0 Z

(where (3,, tM ) is an absolutely convergent series.

Eqs. (58) are invariant when T is changed to t-i IT ; therefore if

is a solution of Eqs. (58), tc*-) is also a solution. By Floquet

theorem (Ref. 9). Eqs. (58) have solutions of the following form

where .(j) - ()

4t) is periodic function 'ModLTI). If - s ' , an unbounded

solution exists, which is saidto be unstable. For a periodic solution

V Io~T to exist. -, must be equal to an integer, whereas 2x 7-

Let us assume a solution of the following form

where 0 -orn 4  are absolutely convergent series.

4 This is an extension of Hill's method (see Re!. IZ, p. 413) to a
system of two equations.
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Substituting into equations (58), we get

, e i

On rearranging the terms of the absolute convergent series, and

equating the coefficients of to zero, we obtain

SA.- 4'

5 _ (60)

provided that P,.-44i*o O -4-4J0. The divisors A-44j -

are introduced in order to make an infinite determinant, wvhich will

be formed below, to be convergent.

Equations in (60) are a set of homogeneous equations. For Yr

to have nontrivial solutions the determinant formed by the coefficients

of the equations must vanish. Call this determinant ( then



-S

where , _ . -

,to OIL

-1 4I t

Weav casvider tha on ofthedeomnaor wf@, , )~he

Thosi another infinite determinant wh y eren

I (62a)

Te - -9e 7(

(62c)

Since TrV~ converges provided does not

4ave -3uch a value that one of the denominators of ~, vanishes.

Thus the infinite determinant 44k-) is absolutely convergent.

Then (Ref. 7)

(63)
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We note some interesting properties of , :(1)

is a meromorphic function of 9 and tends to I as - -';

(Z) Akij) is a periodic function of with period 2-C If we form

another function

q; 4,.) + t 1 -JAo)

where are so chosen that F)J) has no poles at 4.,

Since AjkZE ) is a periodic function of , it follows that F(I) has

no poles at

I=an ± r. ari±Bo , -......

Thus F is a meromorphic function with no pole on the entire

plane. Fc , is certainly bounded, therefore, by Liouville's

theorem, F') must be a constant, say C . As £ - ,
Therefore

C (9

Hence _ , and F('-I for all Using this result

and Eqs. (63) and (64) we get

(65)
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where i are some constants relating to / , A. and "

Put o, - and I in (bb) and we get

In a special case, if the coefficients of (58) are even functions of t

then (58) is unchanged when we change t to - t ; we see that if

is a solution, then -' is also a solution. Therefore, if ) 0

when ) 0 , then S--O. Therefore, when we want to find

the roots for A'J) 0 , we always have A(.'Q, )=o and the roots oF

(65) can be written out in a simple form,

For a bounded solution, i.e. for Z= 4ro , we must have

I -,-5. 13 0(68)

In Eq. (65) by putting - we can compute , and de-

termine whether this is an unbounded solution or not. Then from (60)

we can compute T , and obtain the complete solution of Eqs. (58).

For a periodic solution we must have L= o or A ()-

If a periodic solution of an inhomogeneous counterpart of Eq.

(58) is considered, e.g.

where ett is a column matrix with its elements as periodic function,
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we can use (59) by putting -- o , whereas Eqs. (60) become inhomo-

geneous. If 4 k6) o , we can solve for Y- uniquely. If A(o) =-o

we are on the boundary where Eqs. (58) have an unbounded solution.

Therefore for such an inhomogeneous equation, as in our problem in

Eq. (57), the zone of instability is determined by the homogeneous

solution.
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11. Concluding Remarks

In the above the formulation of the problem of stability of a

liquid in a cylindrical container is given. The analytical difficulties

that occur in this problem are pointed out. Variational approach is

favored for approximate solutions. The resulting mathematical

analysis is carried out, but numerical results are not included in

this report. The trends of fluid stability in low gravity conditions,

as influenced by tank flexibility and surface tension, will be pre-

sented in a future report.
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Fig. 1. Geometry of the Problem in Nondinensional Variable.


