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Nomenclature

Constants

Membrane number, see Eq. {16)

Bond number, see Ea. {16)

Amplitude of the nm sloshing mede

Potential of the solid-liquid-gas interface

Potential of the edge load acting on the rim of the

tank bottom

Gravitational acceleration, time dependent, see Eq. (6a)
Mean local gravitational acceleration

Amplitude of ths imposed axial acceleration
Nondimensional gravitational acceleration, see Eq. (15)
Membrane thickness

Nondimensional free surface shape, see Eq. (15)
Functionals, see Egs. (36}

Bessel functions of first kind

nm root of the equation j.ﬁ:“\g.o

Depth of liqud

Nondimensional depth of liquid, see Eq. {15)

Pressure energy in nondimensional form, see Eq. (41)

Lagrangians in nondimensional form, see Eqs. (43), (44)

Matrix
Midplane stress resultant

ot sloshing frequency for rigid tank, see Eq. {57)

Pressure

Nondimensional pressure, see Eq. (15)
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Pw, Yy
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Radius of the tank

Cylindrical coordinates, see Fig. 1
Nondimensional cylindrical coordinates, see Fig. 1
Surfaces, see Fig. 1

Time

Modal matrix

Transverse deflection of membrane
Nondimensional transverse deflection of membrane, see Eq. (15)
Vertical coordinate, zee Fig, 1

Nondimenasional vertical coordinate, see Eq.(15)
Nondimensional amplituds of the imposed axial acceleration,
sees Eq. (15)

Constants, see Eq. {59)

Boundary curves of Sl' S3 respectively

Constants, see Eq. (66)

Free surface shape

Asimuthal coordinate

Mass ratio, see Eq. {16)

Conatants, see Eq. (54a)

Constants, see Eqs. {51), (52)

Density of membrane

Density of llquh’i

Surface tension

Nondimensional time, see Eq. {15)

VYelocity potential

Nondimeneional velocity potential, see Eq. {15)

Forcing frequency




ABSTRACT

The stability of a fluid contained in a circular cylindrical
tank with 2 flat, flexible bottom under a periodic axial excitation
is studied. An analytical difficulty for the solution of the linearized
equations in the form of infinite series ia discussed. A variational
approach is formulatead. An approximate solution results in 2 pair
of coupled ordinary differential equations with periodic coefficients.
A method of handling the stability of the solutions of such a system
of equation is presented. Numerical results will be discussed in a

later article.
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Eigenvalues, see Eq. (57)
Frequency parameter for the membrane, see Eq. {16}

Frequency parameter for surface tension, see Eq. (16)

¢

Two dimensional Laplace operator ( -%.V‘ aP= '\1:}"7% .,J‘:; 2

in cylindrical coordlnates)

L4

Three dimensional gradient opsrator ("‘2.7*5 ;C’v%-*%gf%?%
in cylindrical coordinates. For the free surface and

the membrane, ignore the ‘%;‘?—% term.)
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1. Introduction

Dynamics of large liquid-fuel rockets natarally involves the

motion of a liquid in a flexible container., The symmetric modes B -
of the fluid motion, which influences the pressure at the tank bottom, \'

1.;-:&;\.-

* ”

aad thence influencing the pressure in the pump, combustion chamber,

and thrust and rocket acceleration, have an important effect on the i
S o -
B
rocket-structural dynamics. In some instances the longitudinal o
oscillations were go serious as to affect the safety of the vehicle. “ e
A

For this reason the analysis of the forced oscillations of the liquid
container is important.

At ground level perhaps the effects of the flexibility of the
tank wall and the surface tension of the free surface are negligible

g
oa fuel |lonb§ng. At reduced gravity conditions these effects will ;;
bacome more evident. It is the purpose of this article to cvaluate éﬁ )
the effects of tank flexibility and surface tension on the stability of ’ ?H?
liquid motion in the symmetric modes. «M

Sloshing of liquids has been studied by many authors. Most ’
of them considered rigid containers, see Ref. 4. However, Miles
{Ref. 1) conoidered bending modes of a flexible container. Bleich
(Ref. 2) investigated the longitadinal modes approximately. Receatly w

Bhuta and Koval (Ref, 3 and 15) studied the coupled oscillations of a

-

lquid in a tank with a flexible bottom. They defined the normal modes
of the system, and treated the orthogonality and expansion theorems.
However, the difficulty concerning the convergence of several infinite

series, to be explained in Section 5 below, was not considered. In
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Refs. 16 and 17, Bhuta and Yeh considered the problem of arbitrarily
assigned velocity distribution on the tank bottom:; in this case the
difficulty referred to above does not appear.

On the other hand, there is substantial literature about the
{nfluence f surfzce tension on sloshing; see Yeh's bibliography, Ref. 18,
and papers by Bond and Newton (Ref. 19), and Reynolds (Ref. 20). How-
sver, most of these studies are concerned with {res oscillations, very
little has been done about the influence of surface tension on forc?d )
oscillations. No work seems to have been \dono on the coupling with
the flexibility of the tank.

In the preaent plper a clrcular tank with a flexible bottom under
verdcal poiriodit.l excitation is studied. The problem was first formulated
in thc form of differential equations and then in the form of a variational
principle. An approximate solution is presented, which resultaina
rair of coupled ordinary differential equations with periodic coefficients,
The stability of the solutions of these equations is discussed.
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2. Statement of the Problem

A circular cylindrical container with rigid side walls and a
flat, flexible bottom contains a liquid with a free surface. The tank
walls are subjected to an oscillatory axial acceleration, in addition
to a constant mean\-local-gravitadonal accelsraﬁon which is directed
along the axis of the cylindor. A gas ':‘vith constant pressure exists
above the liquid surface., No external force acts underneath the tank
bottom. The situation {8 pictured in Fig. 1. The problem is to
determine the motion of the liquid; in particular, its stability.

The fluid properties including the surface tension are assumed
to be uniform, constant, incompressible, and inviscid,

The mean free surface of the liquid shall be assumed to be a
plane perpendicular to the cylinder axis., In low gravity and finite
surface tension one may have to consider a curved mean free surface,
The governing criterion is the Bond number defined below. In this
paper we ghall assume that the Bond number is sufficiently large so
that the free surface is approximately a plane., The case of low Bond
number will be investigated in a separate article,

As a further gimplification we agsume that the deviation from
the static equilibrium condition is small, so that the deflections of
the free surface and of the tank bottom, the fluid velocity, and hence
the velocity potential, may be considered as infinitesimal quantities
of the first order. Under this assumption all the equations can be
linearized, and the mathematical problem is relatively simple. A
number of interesting nonlinear problems are ruled out by this assump-
tlon. But as an investigation of the initial tendency toward instability,

the linearized theory should be adequate.
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3. Maﬂxematica%r Formidlation -

»

L]

Consider a quantity of inviscid liquid situated in a cylindrical
coentainer of radius T, 28 is shown in Fig. 1. The cylindrical polar
coordinate system is choscn so that the positive z-direction is directed
upward away from the ligquid, the zero on this axis being fixed on the
mean {ree surface. On assuming the fluid to be inviscid, incompres-
sible, and the motion to be irrotational, the equation of continuity

may be expressed in terms of the velocity potential <}> :

Edr By ¢ =0 ()
and the velocity compopents Q, ¥, W are
=1 - 4’ {2)
G=q,  V=d§ W=y

The usual gubscript notation is used to denote partial differentiation.

The kinematic conditions at the tank walls and the frze sur-

face are
== o on  T=0 3)
g=2b_ oW
Ve g et e “

W= %: %% on iz0, (5)
wheres w denotes the deflection of the tank bottom, and Vl denotes the
deflection of the free surface, both positive in the positive z-direction,
and both are assumed to be infinmitesimal.

Since the motion 18 irrotational, Bernoull{'s equation is satis~
fied throughout the liquid domain. In particular, at the free surface,

we have
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B L@eT-gon- g ety o
g6r= g, ~ 3, = ot (62)
whers c{t} is an arbitrary function of time, g, ia the mean local gravi-
tational acceleration, gy coswt is the imposed axial acceleration¥ both
taken as positive if they are directed toward the tank bottom (along the
negative z-directicn), and p is the pressure just inside of the interface,
The pressure p is related to the pressure just outside of the liquid, Pge
by the relation

mn
ch -b=c K
where (5 is the surface tengion, and Xis the total curvature of the

free surface., In linearized form, under the assumptions that ‘1/1'0 <4l
and lgradfl\L 1, we have

K= 9=+ 28~ h % ®

If the pressure of the gas Pg is a constant, then without loss of gener-
ality we may set p, = 0. The function c(t} can be absorbed in ¢t' We
can also neglect[':'i;rin Eq. {6) and evaluate 4’ ¢ on the surface z = 0

under the scheme of linearization. Thus we obtain the linearized free

surface condition,

%51,1 - (?%)é” - 3(&))2 )

Here we just write out a special form of imposed axial acceleration.
The method developed below can bs applied to a general periodic im-
posed axial acceleration.
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Similarly, Bernoulli's equation gives the pressure on top of ;

the bottom wall |

U’){.):_R*w = p\- (&), =90 (-t+w)) (10)

No other forces will be assumed to be acting on the tank bottom. If
the tank bottom is very thin and is prestressed so that it behaves

like 2 membrane, then the equation of motion of the bottom is

Ne VP = ‘)‘k[ %WL + 8&‘] 495:-51«»0 ; {11)
where Nr is tho tensile stress resultant in the tank bottom, and is
assumed to be & constant. f’ is the density of the tank bottom
material, b is the tank bottom wall thickness, so that ‘oh is the
mass per unit area of the tank bottom.

A combinatic: of {10) and (11) gives the lincarized squation

of motion of the elastic oottom 28 a membrane
- W
Neviw= (’g?;—{z -hgon - f‘@)és-g +(\>9\~?.Q) & az

In reality, a tank with flat bottom will develop both bending
and stretching stresses under fluid pressure. Eq. (12) is a good
approximation only if 2 membrane tension i8 built-in at the edges by
atretching the bottom onto a rigid cylinder before the two are

welded together.



[

it is necessary to specify the boundary conditions for Y( and W

at the edge r = Y3 . We choose

w= 0 when =Y, (13)
24 - when - (14)
3 =° ¥=Yo

The last condition is a special case of zero capillary-hysteresis.
It is conaistent with the simplifying assumption that the undisturbed
free surface is a plane z = 0, In very low gravity condition the mean
{free surface is curved and Eq. (14) should be replaced by the condition
8W8r = )’Yl at the wall, where ) is a physical constant,

These equations define the linear, inviscid problem of sloshing

under appropriate initial or periodicity conditions.
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4, Dimensionless Equations

Taking the radius of the cylinder <, as the characteristic
length, the gravitational acceleration 8g 28 the characteristic accel~
eration, and <> as thr ~haracteristic frequency, we define the

dimensaionless variables

_ - L -4
R=w, 2=+%v , L=%, T=wt (
-2 =L W % (15)
@"'E}-, H— L W=—f;: °(=E
oot
&Cc)f' -3-__3.\__ ‘P:__ _L
de ’ [N
the dimensionleas parameters
Bond number = B = M
T s
2
Membrane sumber = BM =—m-
N
¢
. - PuTo,'LD‘
Frequency parameter for surface tension = Qq_ = 22 (16)

o

3
Frequency parameter for the membhrane = 52_:'4 = LG

Ne
Mass ratio = A\ = -g%
e'0
and the operator
_l2 (a2 N\ 12t - o
V=g a\z(Raav* Rye T oV a7

Then the equations become

(%;_‘_z'* V?‘> 5 =0 (18)

v —“Q;(?%)z-_: PeGH=0 (19)
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VWAL (), B e -At)BLGn =0

(20)
with the boundary conditions
SR~ O on R=\ (21)
28 W -
33°3C on Z=-L (22}
é§ 1A on = 23)
33 35T 2=0 ‘
W=0 on R= | (249)
aa =0 oa R=\ (assuming ¥= 0) (25)
Eqs. {18) - (25) show that the problem of sloshing depends on
the parameters
2 %
SZ“'JBQJO() nM’BM)xJL‘
These dimensionless parameters are not all independent; for
% [\ *
= =X (26)
ﬂ"\ N' n!‘ ; b’\ =~ Ne Bﬁ“
Hence
B o @
Be 5%

2 1
However, we retain the symbols 94,5«)‘ Qu,bdbecause these two

pairs of parameters are not likely to be both important.

N
QM) &,"ﬂ)if the tank bottom is rigid

W
Q,)'Bs—nc 1if the surface tension has no effect.
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5. aAn Analytical Difficulty

It is not easy to construct an exact solution for the system of
equations {18) - {(25). To construct a solution in the form of an infinite
series, as a direct extension of Benjamin and Ursell's solution for
a rigid tank, cncounters certain basic difficulties. Consider symmetric
modes of motion in which :ﬁ)H) Y are independent of the angular

coordinates & , A solution of {18) may be posed as

¥ . oo A . .
b= dZHOTE 33#@[%‘%‘}%_ ¥ dm%ﬁ—_ (28)

Then Eqs. (22) ana (23} give
H=de + T d (T)%&Q)
* rco &l (29)

= » £ - " 0)
N= d efere T b [do- om] Te-e) @

Both Eqs. (21) and (25) are satisfied if the k. s are the roots

of the equation

Jky=o0, n=4, 2 3 --o-. (31)

Eq. (24) is satisfied by taking
3 Y hy —_
dor 3t {dm- @] Tk =0

. AB.R)T
%g) :()\-H__,\L -%%

ffR) is the static deflaction of the membrane. We assume that if B

{(32)
and

M
is positive, "_B-M is less than the first root of J‘o(x) = 0, namely,

2.4048. To satisfy Eqs. {19}, i20), we substitute ® , H, W from
(28) - {30), collect terms and represent the left hand side as

Fourier-Bessel series in Jo( ',;nR). Since the geries vanish,
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every coefficient i I,(y-.ﬁ)) n=,2,---- must vanish., Tbus from

(19} we obtain the necessary conditions

N5 (ot By gdgo=0 (33a)
ST 0l + Kntomdh koL LI+ B6G@] dumy = o (33b)
And from (20) and {33a)
Jz 40 ot SB.Q-%(%Q“ BIT=0 (34a)
03 (e cthBL) £ S Gl &,
+ k.,[x.\ - 5“&&]@“—({,‘) =282 3() xX_ L @T (34b)

T8 )5l B-ky
Thus all differential equations and boundary conditions are satisfied
by the assumed form of §J H»’ W  provided that &, , d. satisfy
Eqs. (32), (33), and (34).

A difficulty beconm s apparent when one examines the Egs. (32)-
(34). If we truncate the infinite series (28) - {30) to N terms, we see
that Eqs. (32) - (34) always impose N+} conditions on \| unknowns,
which in gencral have no solution,

The difficulty appears to have risen from the condition W= 0O
at the edge of the tank bottom. The same difficulty would have
appeared {n Benjamin and Urseil's rigid tank case if one asgsumes a
" stuck'' condition at the edge of the free surizce, =0 when R=l,(physically
realizable with certain fluid and wall material). Mathematically, the
condition We=o requires certain discontinuity in the second derivatives
of é at the edge of the tank bottom. For, we have the boundary con-
ditions
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%%::o for R=i, -L¢2=<0 (@
and

a—%:'a—v‘t‘_ 'go\' OsRﬁl s 2="L (b}
Hence

s w28 _2 b

5 Gr)= 5253 =aa\§'§'\) for OsRel, A=-L (o)

Now if g&% were continuous everywhere we must have, from (a),

that ?E(bb—%)so at R=‘,,2="L: . Heace (c) yrelds %_(%)f:o

at R=|, 2=-L, i.e. %% = const. at R=} Z2=-], . Ths

is inconsistent with the condition \N = () atthe same point.. Hence

we must conclude that —3%%2 must not be continuous at the corner
Q =\ , 23_ L . This requires that the series (35) and ita firat and

second derivatives be uniformly convergent everywhere, except for
%;?} , which loses its analyticity at the corner R=} , 2=~}

This demand singles out the question of convergence of the series (35)

to the foreground. We note, in particular, that any truncated series

of (35), (taking the first N terms), will not have the desired property.

* The linearizred equation can admit only one boundary condition. The
condition W=0 is chogen in Eq. { 24. ) on physiczal basis,
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The difficulty considered here seems to be caused by the
ilnearization of the governing equations. If linearization was not
made,the kinematic conditions on the free surface and on the
bottom are, instead of Eqs. { 22 }and { 23 ), the following:

LaH28 , 1oH2d _ 28
3% SRIX Y RI66 -3 F

2W M8 1owdd 28
3C  oR SR “R39 36 ~ 3%

In the nonlinear form the problem is undoubtedly much more difficult,

o

z

!

but the particular problem referred to above disappears.
If we relax the demand for an exact solution, we could turn
to variational methods, In the following the variational principle

and approximate solutions will be discussed.
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6. The Variational Principles

If we multiply Eq. (18) by 5O , (19) byn\.SH , (20) by
J‘\SW + and integrate over the entire fluid volume VV , the free surface
S, . the bottom surface ,53 » respectively, and transform with

appropriate integration by parts,we obtain

_gjé(v@zdv . 6 [Lﬂ)mc 8ot BGH s,

- W' ARE oWy 228 - A
1, 2 20, - B

A0 ByG W] ds, + SS (25 -W)spag+ SS%% 284S,
L[ 2, Wiss dsz*?\&g&%gswdo,4§-:gr'§gsnde.

L[ L 2o W) 2wt lus, - g 2(58) ds, = o
(35)

where Sz is the rigid side-wall surface, [I”, is the edge of S, , I';

is the edge of 55 . This suggests the following functional

IEHAWE TAT.~T,+T, (36)

where

2
- \"/ . (36a)
I, .Sv &—?:él dv
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I QTS.iw*R«(ﬁ) H+E{'G‘ ] (36)

I;= SZMg {WW) Z\E‘M( ) QM(EJE W
- Bné?_‘_ﬂ +Qr)Bug W —Bqﬁg]dss (36c)
IA }t‘_ﬁr F(H 0, t)dQ + g F(WJG tJ d‘e (364)

It is easy to verify that the vanational equation

E gtlj[é) H;WJ TJ d'r_ =0 (37)

under arbitrary variations of @ R H 5 W, with the stipulation that
SQ)S\-\-JSW vanish at X=T, , and T="T. , yields

L
&(%-( Eskey - 4 | [vh-216D),.; Retinas,
My

o;“"z“*\ﬁ% B2E),  Pua W-B,& (L] WS,

o (B0, B B
+§~1L€Sr(é§ )+ g (%\xgmﬁ)awdos-_o

(38)




-5«
Since S@J SR,SW are arbitrary over V, S,,Ss respectively,
we obtain the differential aquations (18), (19),{20}, and the following

boundary conditions:

Oa S, ; Either

g% 4] or Yé:o

=0 or 5§=o

o 2
On 53 Either S - 5%.:' or 5‘§=O

On Y" ; Either ‘5% é%‘-— or Sh=o

On S, y  Either

Qo)
o 8

(39)

On r_’,: Either bE %f}_oor SN:O.

The conditions on the left hand column are the natural Loundary condi-
tions; those on the right hand side are the rigid boundary conditions.
From physical considerations of our problem we impose the natural
boundary conditions over 5“ Se s S! and P' , but the rigid boundary
condition W=0 over r?’

The terms in the functional I have the following physical sig-
mficance. The first term represents the kinetic energy o: the flmd

{in dimensionless form). The terms

H

L (@) L ( @ L (a8 jawe
R&Ss.(_‘f ds, , Q?qg_c,;L:‘.)dSB, 9155;% (%%) 455

repreaent the change of surface ecergy of the fvee suwrf~:c .2 change
of elastic energy of the bottom, and the kinetic energy of the bottom,

respectively.
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To interpret the meaning of the other terms, we write the

pressure 1a dimensionless form

J

~

o

R

N

A

)
~

( I

,——J»A
ojo/
] ‘%6'/

4 %H G2 + 3@ &) E (40)

Then the work done byP through a displacement H is

H
( P(ro,2,004d2

On evaluzating this integral, ond neglecting third order infinitesimals,

we gee that it ig equal to .
-4 2@, - Bae T ]

(Note that _%____ Bu ]. Simlarly, the terms

[;zh(aﬁ)z__ W BM@D_— 1 BaW - B\«ﬁ«)——]

are equal to the integral of P(Z, E.S,T) between =)+ and -l
with the sign reversed because the pressure P acts on the upper side
of the bottom. Tinally, )\%QW reprcsents the work done by the
inertia force due to the gravitational acceleration (Q(T) througha
displacement W.
F| R F; are the potential of the vertical forces (positive

upward} acting on the free surface and the tank bottom, at the edges

P, and G respectively. F‘ arises from the capillary surface
energy; FS normally arises from the reaction of the wall on the
membrane, but it can be imposed by an external agency. U F, is
assumed to be proportional 0 Hl . then the so-called capllarv-

hysteresis 1s obtained. Eq. (14) and Eq. (25) presuppose F = 0o .
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7. An Alternate Form of the Variational Principle

It i3 xnown that an appronriate functional from which the equa-
tions of fluid mechanics can ba derived from the calculus of varations

[

16 tie ‘'pressure energy''

== S? dv (41)

integrated over the entire volume of the fluid. See Bateman, (Ref, 13)

Wang (Ref.|4 ). With this information, we consider 2 functional
T= Lo+ Laal, (42)

where L‘ 18 given by (41), with P expressed in Eq. (40); wheraas L,

i

and L3 are the Lagrangian functions of the free surface and the bottom

membrane, respectively:

L.= R;g LHids, ~ ng.dQ (43)

L

ul>

2, [50- 2B ame 1 ey

{44)
It can be verified at once that | so obtained from (42) is exactly what
s given in (36), except for the term
e
22 42] ds
Ss‘ I L °C !
which makeino contribution to the variational equation (37). It is im-

poriant to note that the volume integral in (41) means

w8
(" prszmrdzdeds
° T aw

The variable limits for 2 must be accounted for]

In practical apphications, it is common to choose .@ which
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in Eqs. (36), (36a) as
=) N
I‘=J(S,@ 2—%)2=ods,+ L@ Tl Lg@%%)&-g% o

Then L. contams surface integrals only.
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8. An Approximate Soluticn

An approximate colution baced on the Rayleigh-Ritz-Galerkin
procedure will be given below. We chocse @1 B and W in the fol-

lowing form

§-dmz + x0T o) Lo DL bt ]

skl e (452)
_ o duf2) To 6R)
H=dio+ =2y (ast)
) . YA
W= de) ~ bk [ a0~ 40] Tk -l Io(;g:)] (450}
Sc

which satisfy Eqs. {18), (21), (22), {23) and (25). Eq. (24) is satisfied
by taking

dr) = e - d..tt)] J&) (46)

Eq. (19) is satisfied if we impose
Q7 GE) » B GEYdE) =0 (472)
23 &) + L. Tand L:.L[&b&,é;«) d=0 (47b)

Eq. (20) is not satisfied, whereas £q. {38) now becomes

553{ PRI p2BB) -t g LofSw dss o
8

Now we shall satisfy (20) in the sense of (48) by choosing
W= 4 (T4 5.2 (49)

Then (48) yields
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R (L M%) Cn = T (T L 405 dor et B.4)(C-d.)
- )l}« éi. el jo(ﬁqﬁ"\ \ - _@—-
== LL“\)ZIMT& T Bﬂ’*i]wti‘-""’"

A gubatitution of (46) into {50) gives

3k (ne Em-vnéi,ct))*r fu (13- Bugo) (- 4] 51)
=- LVREE e yood)
whore FE AT AN = Sl

Mi:‘ (qu\k\l.* 2>\‘kh+k‘\l~
{52)
Yo = dbl <2 )k~ kol

The central problem lies in the solution of Eqs. {47b) and (52).

These equations can be put in a neater form by letting
=% , cu=hak, (53)
Then we have

>.<. 4+ M X+ oot M, L= X DT MSQ\* LY (59

where

- [* - Mo ~Au
X=(%), WM=(%" -%

0-Spf + A (54)

[ w.
— | = tTAuL X
Mz“ ( P RSN B, 7:.%1%)(“& ‘{4\\
‘3' < n}\-}.o&“\]n Tf—& ﬁ‘" v\~
(\—%)t.‘a.&g,l_ -1’7-” U /

LA R
L, = IR E;‘LM-: _XB.‘)
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i3 M\ 18 positive definite and has two distinct positive eigen-

- k3 .
values Q, , ,L, then there exists & nonsingular matrix, U, such that

- _ {8 o _
U'Mu = (0 m}«-D. (55)

Let Y:U“Xthen Eq. {56) assumes the normal form

Y =~ DY~ 0eertMU Y =t UM, ou, (56
3 y

which will be studied in the following two sections.
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9. Free Oscillations
Consider the special case of free oscillation of the system, i.e.
the case {=QO, or C\’ =| . In this case Eqs. (47b), (51) become two

linear differential equations with constant coefficients. By patting

(T :
co=C,e . duej=D,e T

we get
-Rg VCh + v taddl (x5 Du=0
(- pans 0 = -] €+ [RGB D=0,

The eigenvaiues of .Q.zare
e
.y I
)

b= by Gl b (n‘mﬂyz
] n:

X[

X —“f,l(‘%‘-;*’v’:r:)‘- NN J 57

where

It is recognized that T)ﬂw is the circular frequency of sloshing of a
liquid in a rigid container. In case ?: <<.[\»/v,\ , {which is usually
the case for a rocket in Earth's gravitational field), we can write

in the following form

Pap e AR M\ -p- i A VY. - ¢ (57a)
= - (%)~ )EE T -
Since & >) \ﬁl\ is always less than @m ; which means that the
Y
tank flexibility lowers the natural sloshing frequency. Note also that,
when either [\, -390 , (rigid tank) or X.|, — 0o S (the deep

water case, or a high mode) R‘ tends to ".\ .
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10. Stability of the Solution

To study the stability of the solutions of £q. (56), (Refs. 11, 12)
%*
we shall consider tne following more general system of equations
Ou

e . t
é‘-f \;5:" ane(l" 3‘ “+ i. Ah.‘e a‘= 0

Wz-m0

- o0 Lant : (58)
§or 2. Be g S, By =0

Waepq

where B, A0, B.ro |, A=B,=0 ,g_f..
(whore [3,= V_\“‘ e B ) is an absolutely convergent series.
Eqs. (58) are invariant when T is changed to 14 W ; therefore if gt)
is a solution of Eqs. (58), Ylk+n) is also a solution. By Floquet

theorem {Ref. 9), Eqs. (58) have solutions of the following form

= € st Yy

where .
8= (5) . v= (&)
\l&) is periodic function ‘Wed(m). If E,E,-o’ ¥-50 as tore an unbounded
solution exists, which is saidto bz unstable., For a periodic solution
W\odtﬂ\ to exist, I\‘\E must be equal to an integer, whereas Q '{ = 0.

Let us assume a solution of the following form
it 2o \
8\*‘—_ e Z Kenznt‘
Wacoo

0 tant
az(ﬁ = ev:;t Ty € >

(-2

20 "~
where 12 n Y,, , H';ﬁgn“ Vo are apsolutely convergent series.
Wreoo S -

% This 18 an extension of Hill's method (see Ref. 12, p. 413) to a
system of two equations.
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Substituting into equations (58), we get

. 2 ¥yt X oo t+ 3¢
i L@E~3Ye R, g é,,“em pd T'mf(m >
— it Viooe
ho 2ait o (ani+ LT
"‘;‘5. Azn_‘e ‘ \qgoo EM < =0

ho . Qe T ) :
< Gt (Zm-*z)}e % i" szezm (‘Z {:n“ebfmﬂf (59)

s~ uy-po Mz 7

g nit 4 T)T
T2 b e F o, P
t 9.9 Mz~ e

On rearranging the terms of the absolute convergent series, and

equating the coefficients of éz“'“:i)t to zero, we obtain

. x Ho
(L% ~2n) Aw
= on o ~Gn* .*M‘-;M Av- 4n*

TZJ\*V“ — 0

GE-2) = B (60)

T A T T \‘;.\lﬂ-\«\_o

provided that A.—lwxﬁeoa Bo-4w%0. The divisors A.-Q—n", B dn-
are introduced in order to make an infinite determinant, which will
be formed below, to be convergent.

Equations 1n (60) are a set of homogeneous equations. For T
to have rontrivial solutions the determinant formed by the coefficients

of the equations must vanish. Call this determinant A(ig); then
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AR = \“ag] =0 (61)
where < _ A. - («'§~_2n)j:_
e fro — 4wt
P - GE-amt
2 ) Ay = ‘-"—“‘"—""'""
' B, - am”
Pam-
Rimn = ﬁ for 2m-n%o

m,n = O, %y, L2
We consider anothet infinite detormmant A‘(‘ §\ = l@ 8 l where

B =1 {62a)

(5 - o Azan-n
2m, N - . s —————— Shee
" dxm‘lm Ay - @ ;-vZN)" , N0 (6Zb)

szu = %N*;'\ = &mw\-n
P 20 B (iS00, M-ato (62¢)

o0 2
Since P b3 converges provided does not
Jo o=, 2 8.\ ges p 3
have such a value that one of the denominators of 8 (s & ) vauishes.
”n
Thus the infinite determinant A‘(;‘S) is absolutely convergent.
Then (Ref. 7)

fA (- hn)][B (‘E ""ﬂ
AP =40 ‘»)g;; JT (Po-aw) (B.-aw)

= 44i%) -3 (ER) -1 (3 18) o (i3 - B ) a-T (RE+T8,)
> ER) ER,)

(63)
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We note some interesting properties of A.ﬁ{) : (1) A,(‘-g)
is 2 meromorphic function of & and tends to ! as £ ¥ +0;
{2) AfiY) is a peziodic function of g with period 2( . If we form
another function
Foy=4lis)- K [t 3(5+0R) - ot (i3-1R)]
L ACEICIUNERESICIVAY
=Byl FGE 4JB) - ot $(i§-{B,)) (64)

- Bulet LEE 7B+ ot 2T -1By)) ,

where B"s are so chosen that F{¥) has no poles at 3= :E,,t SE‘, .

Since AUE) is a periodic function of § , it follows that F(%) has

no poles at
¥ =2n tJA, , 20¢[E, M=y, t2-rmn- -

Thus F{g\ is a meromorphic function with no pole on the entire
plane, F(‘S) is certainly bounded, therefore, by Liouville's
theorem, H¥) must be a constant, say C . As & § - + 09, AkY=h
Therefore

C=]+2(E+E) 0o R —>0°

=) -2 (RtR Ot 00 Ky —-7

Hence Ezq-g:-_-o » and F(3)=|] for all’;- . Using this result
and Eqs. (63) and (64) we get

sipye I

52 (3R s (L1B,)

{65)
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where 5’ are some constants relating to K:\IS R Ao and Bo .

Put (Jzo,4 and 1 in {65) 2and we get
. L
S= A 3L R,) ¥ (2B

2% = |+ % GR) o GE) [a) ~an] (661

25,2 4o W (TR BN ah- 400 -0

In a special case, if the coefficients of {58) are even functions of ¢,
then (58) is unchanged when we change t to-1 ; we seethatif g

is a solution, then »_2 is also a solution. Therefore, if A(IZ): fo)
when aw{itg)% O , then Sz-o . Therefore, when we want to find

the roots for AGX)=0 , we always have 54 p(m.)=0 and the roots of

{65) can be written out in a simple form,

) = 5ot 5T, Z

For 2 bounded solution, i.e. for & $=0 , we must have
1281 %-% 20 (68)

In Eq. (65) by putting AlY)=0, we can compute “§ . and de~
termine whether this is an unbounded solution or not. Then from {60}
we can compute (.. , and obtain the complete solution of Eqs. (58).
For a periodic solution we must have x6y=o or Al{V)=o

If a periodic solution of an inhomogeneous counterpart of Eq.

(58) is considered, c.g.

3T Ay = Bey

where @) is 2 column matrix with its elements as periodic function,
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we can uss (59) by putting z-.-. o , whereas Eqs. (60) become inhomo-
geneous. If Auy% o » we can solve for Yy, umgquely. If Alo)=o
we aro on the boundary wherc Eqs. (58) have an unbounded solution.
Therefore for such an inhomogenecus equation, as in our problem in

Eq. (57), the zone of instability is determined by the homogeneous

golution.
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11. Concluding Remarks

In the above the formulation of the problem of stability of a
liquid in 2 cylindrical container is given. The analytical difficulties
that occur in this problem are pointed out. Variational approach is
favored for approximate solutions. The resulting mathematical
analysis is carried out, but numerical results are not included in
this report. The trends of fluid stability in low gravity conditions,
as influenced by tank flexibility and surface tension, will be pre-

sented in a future report.
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Fig. 1. Geometry of the Problem in Nondimensional Variable.




