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ABSTRACT 

Formulations ame presented for the second quantized versions of 

the field theories which lead to Corben's equations of motion.    It .*•"// 

demonstrated that an indefinite metric is required to guarantee positive 

energies for all the particles,   but that otherwise the theories are 

physically unambiguous-    The number and properties of the resulting 

particles Mt studied and compared with the conclusions from previous 

work.    Alternative formulations Me also discussed. A- 
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1.        INTRODUCTION 

A set of relativistic wave equations have recently been proposed 

whose solutions yield the mass spectra of free particles and their spins 

in the range 0,   1/2,   1,  3/2,  or 2. '1,2)   It has been argued*1,2) that the 

quantum theories which incorporate these equations connect in the corres- 

pondence limit to the classical,   relativistic theory of spinning particles 

derived some time ago by Bhabha and Corben.'   '   A few recent reports 

have been devoted to showing that the quantum mechanical version of this 

theory--i.e.,  a set of wave equations--implies a collection of particles 

whose masses,  charges, and spins show an impressive similarity to those 

of the stable particles and resonances presently observed. 

In this paper the structure of the Corben theory is studied in detail. 

The field theories which lead to these equations are shown to allow a 

physically consistent second quantization,   and the number and properties 

of the particles which emerge are re-examined from this viewpoint. 

The four Corben equations,  together with the spins of the associated 

particles,  are 

-r Y    Ö    + m + i i   »^   |i 4      o   \iv    \xv (i- v.. 8..  + m + ^ m^ r _  (r'^ ) v|i =  0 (spin 0,   1) (1) 

(iv     d    fm+im     er      ß     )v|i=r0 (spin 1/2,   3/2) (2) 

{Iß    d    +m  + imß      o-     )^=:0 (spin 1/2,   3/2) (3) 

(-ßa+m +  mß      ß1    )^        =0 (spin 0,   1,   2) (4) 
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The V  ,  v',   ß i  ß*   are all to be considered as acting on separate vector 
f* f* r^ r^ 

spaces,   and hence the dimension of each ^ is the product of the dimen 

sions of the two such operators which occur in the equation.    The y    and 

v1   are four dimensional and fulfill the Dirac anticommutation rules, V 

V^vj = [v^vj =-2v (5) 

whereas the  ß    and ß*   are either one,  five,   or ten dimensional and 

(8) satisfy the Dxxffin-Kemmer-Petiau relation typified by 

ßßß+ßPß=-p6-ß6 . (6) 

The Y  »   v* »   ß  »   ß'  are all chosen to be antihermitian,  and 

(T 
J1V 

= "T FY  *  Y  ]»   ß       ~ i   fß'P    I w^^ similar relations for the 

primed matrices.    Each of the Eqs. (1-4) has two parameters,   m and m   . 

Although the best "fit11 to the observed particle spectra is obtained by 

giving these parameters somewhat different values in the four cases,   we 

do not make this distinction.    Each of the four equations will be discussed 

separately,  and it will always be clear from the context to which equation 

the parameters refer. 

In Sections (II-V)  we discuss in turn each of the theories which 

incorporate Eqs. (1-4).    The theory corresponding to Eq.   (1)  is studied in 

Sec.  II.    Two alternative formulations are presented,   but the first formu- 

lation is considered the more natural;  all the solutions to Eq. (1) are 
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I retained,  and a parity suggests itself for all the resulting particles.    The 

charges also are determined if the electric current proposed by Corben is 

employed.    In contrast to this approach,  we then note in the second formu- 

lation that almost none of these conclusions are actually necessary if all 

we require is the existence of a field ij/ satisfying £q. (1).    There exists 

the freedom, consistent with this requirement,  to retain arbitrarily few 

of the solutions to Eq. (1) and to designate independently the charges and 

parities of the remaining particles.    When this freedom is utilized,  how» 

ever,  the field + assumes a rather remote role,  which is difficult to 

understand if Eq. (1) ip to be the basis of the theory. 

In Sees* (III-V) we display the structure of the theories corresponding 

to £qs. (2-4) from a viewpoint analogous to the first formulation in Sec. II. 

The properties of the solutions are presented in detail,  and they are shown 

to be different,  in some respects, from what was believed previously.    In 

particular,  we shall see that for each mass and spin the multiplicity of the 

solutions is not in agreement with the observed particle spectrum,  and 

that it will be difficult to rule out only the unwanted solutions in a general 

manner.    However,  we emphasize that these theories could also be formu- 

lated in analogy with the second approach in Sec. II.    If this were done,  and 

the unpleasant feature referred to above were accepted,   it would then be 

possible to retain only those solutions which can be made to correspond to 

observed particles.    From either point of view,  the spin of a solution is 

fixed by the theory. 
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II.        FIELD THEORY OF EQUATION (1) 

A.        First Formulation 

In analogy with the conventionaJ Dirac theory,  the field Eq. (1) 

suggests a Lagrangian density 

> i      \i 

with 

sty* = m + x m    «^       o*1 c 1 4      o    uv    u 

and 

^ = / Yrt Y'    • o 'o 

From the Lagrangian density in Eq. (7),  the expressions for the energy 

momentum four vector,   and for the generalized angular momentum tensor 

can be derived in the standard manner.    There results 

P.     =   :   T dx 4^ YO 7 Bj + :   , 

H      =  :   fdx 5 (l • i   y   + ^U*     . 

(9) 

(10) 

and 

J        =:    \dx^v    (x    4a    -  x   I 3    +4(r       +|o-f)^: 
|JLV J       —   ^     »O   ^|1    IV Vl^l Z|1V 2}JLV' 

MD 
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The double dots on both sides of these expressions indicate the normal 

ordered products obtained by moving all destruction operators to the right. 

From Eq. (11) we see that the spin of the particles contained in the field ty 

is  1/2 (a + cr1) and it is therefore either 0 or  1.    Complying with the TCP 

(9) theorem»   ' we postulate the commutation rules 

[+(x),   ?(y) YJ = Mx-y) . (12) 
o    ^o 

To see more clearly the decomposition of the field tj/ into its normal 

modes (i.e. particles),  we describe the theory in momentum space.    Once 

this is accomplished, it will also be easy to check that all the particles 

yield a positive contribution to the energy in Eq. (10).    We write 

+ (x) = —^    r d4 p + (p)eip,x     . (13) 
(2trr    ^ 

and observe from Eq. (1) that ^(p)  satisfies 

(V P +^1)  +(p)  = 0   , (14) 

which,  for zero three momentum,  reduces to 

V0 >ni   +(0, W)  =  W* (0, W) . (15) 

If we multiply Eq.  (15) with the matrix y   ^fi »  we obtain 

W2 41 (0, W)  = m(m + m    £ •  a') * (0, W)   , (16) 

sothat«1'6» 
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W     = m(rn - 3m  ), (o^ •   a1  =   -3,   spin 0) (17a) 

W     = m(m  + mo) . (or_ •  ^   =      1,   spin 1) (17b) 

represents the mass spectrum. 

In case ^IVa),  there are four linearly independent states corres- 

ponding to the four combinations of the signs of W and of the eigenvalue 

(either +1   or  -1)  of y   yl .    In case (17b) there are twelve such states 

which reflect the same alternatives separately for each of the three 

orientations of the total spin.    If we let a indicate the mass and spin 

orientation and display the sign of -y   V1   explicitly,  we can write 

+ (0, W)  = \   ([a
+<Q)u+ (a) + aja)u (a)] 6 (W) 

+ [b| (a) v+ (a) + b^ (a) v^ (a)] 6 (-W) j 6(W2 - m^ ) 

where  G(W) is one for  W positive and zero otherwise.    The m   designates 

either of the two solutions in Eq. (17),   and the a   (a)  and b   (a)  are destruc- 

tion operators m the Hilbert space for the corresponding particle and anti- 

particle states. 

In terms of u   (a)  and v   (a),   which describe the particles and anti- 

particles at rest,  we can construct the solutions for arbitrary momenta by 

applying the appropriate Lorentz transformations.     That is,  defining 

u+ (£.(1)   =  exp^pr    ((ri4+  ^ ) ÖQ (p) ]  u+   (a), (19a) 

v^  faa)  =  expfy^   (ai4   +  (rj4) ea (p) ] v+   (a) , (iQb) 

[18) 
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where •   (p) « «Inh*   pfma ***& jp * Jjljjl '   »there follows 

(V •   P0 + foi)\ fa *\ m Q (*Y •   Pa + /TL^y^. (£. a) « 0   . {20) 

where Pa 
Ä Ugt V£   ^ m )•   We can now write 

♦ [hi (-£• a)v+ (-p, a) + b^ (.pf a) v   (-p, a)]e (.po)j6(p2.m^ . 

(21) 

and by substituting this expression into Eq. (13) 

i|i(x) « w\   \ ^— ( [ax(P»a)uj. (£• a) + a   (P» a)«(P» a) ] « 
(2w)3 ^ J  2 Wa (p) lL + + -   ~ -       } 

-ip*x> (22) 
f lb+ (£» a* v+ (Pf a* + bt (P* a* v- (E* aM e ] • 

2        2\1/2 

where   «  (p) s &   + mJ 

The orthogonality properties of the u. (p, a) and v+ (p, a) are derived 

in the Appendix,    With a convenient normalization, they can be expressed as 

u+ (p. a) YL U   (pf a') = 0   . u^ (g, a) y' v   (-g, a«) = 0, 0 + of*- (23a) 

v! (& a) y'o v- {£' 0,)  = 0   • u! (& a) Vo v+ (-E. ö1)  = 0. 

and 

< (E'o) Y; u+ (2. «A = t Z Wa (p) 6oa, . 

v+ <£• 0) y'o v+ (£. rf) = +  2 «Q (p)   6aQ,   • 
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These relations then allow Eq. (22) to be inverted 

*+ ^ ^ S  " fee'1** ul (£. a) Y; + W (24a) 

b+ (£, a) = +  ^ dx +' (x) y; V± (£, a) e"ipx    , (24b) 

so that from Eq. (12) we have the commutation rules 

[a+ (£, n). a^ (£', a')] = [b+ (£f a), bj (£», a')]   ^ i2 Wa(p)(27r)3  6^. 6 (£ - £')    (25) 

AU other commutators are zero.    We note in particular that the operators for 

the modes with the negative signature (sign of Y   Y*) demonstrate the ^wrong" 

sign in their commutation rules.   Before we discuss this feature,  let us look 

at the expression for the energy in Eq. (10) when expressed in terms of these 

elementary creation and destruction operators.    By substituting Eq, (22) into 

Eq. (10) and employing the relations (23),  we obtain 

H =    j y   \    £— a^ (£, a) a+ (£, a) + b| (£, Q) b+ (£, a) 

"   (p) (26) - a_ (£, a) a    (£, a) - b_ (£, a) b_ (£, a) 

We observe that m both Eqs. (25 and (26) the terms involving the 

modes with the negative signature appear with a sign opposite to what is 

conventional.   In both instances this situation would be corrected if we could 

simply interpret a    (£, a) and b^ (£, a) as not the Hermitian adjomts of 

a« (E
1
 

a) an^ ^^ (£' a''  ^ut tJle negative 0^ t^e Hermitian adjoints;    Formally 
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this can be realised if we think of the theory at quantised with an indefinite 

metric.   That it, if the usual Hermitian adjoint is denoted by an asterisk (*), 

we can define 

l|l       « T|    »|l     Tl    , (27) 

where the metric i\ is 

+      -1 i) = T|   s T|     a exp 
t(2ir)J   ^ ^ 2 « <P)1   " ' " " " 

Let us think of the theory as quantised with this indefinite metric, but realize 

that it is simply a formal device for reinterpreting the (+) adjoint.   For the 

positive signature modes, the (+) adjoint and the Hermitian adjoint are the same. 

With this reinterpretation, the theory defined by the Lagrangian density 

(7) is characterised by a positive definite energy, and with a positive norm for 

all states.   As a free field theory,  it is therefore physically consistent. 

We now discuss the charges and parities of the particles.  We have seen 

that there are eight particles in the theory, four with spin 0 and four with 

spin I.    £q. (17) shows that the masses of the particles depend only on their 

spin and that the spin 1 particles are the more massive.   As has been 

suggested,      the parameters m and m    can be adjusted to fit the masses of 

the spin 0 and spin 1 particles to the observed masses of the K and K   mesons. 
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The electric current which has been proposed* ' for the theory of 

£q. (1) is 

and the operator for the charge is therefore 

Q = e:   (*dx If Vo ^ . (30) 

In order to make clear the charges carried by the various particles,  we 

express £q. (30) explicitly in terms of the elementary creation and 

destruction operators.    By decomposing the fields ^ and vjJ in £q. (30) 

according to £q. (22),  and making use of the relations (23),  we obtain 

Q = ^   )    \ ^—   U    (p, Q) a (p, a) - b* (p, a) b    (p, a) 
(2ir)3 V ^   2 w JP)   L 

- *   (p, a) a^ (p, a) + b^ (p, a) b^ (p, a) 

The charges carried by all the particles are now apparent,  if we compare 

Eq. (31) with £q. (26) and remember that all the modes must contribute a 

positive energy.    The particles destroyed by the operators a    (pf a) carry 

the charge e,   whereas those destroyed by the b    (p, a) have the opposite 

charge.    In particular,  none of the particles are electrically neutral (if 

the electric current is given by (29) ),  and thus it is inconsistent to conclude 

that the theory (as formulated here) describes the K and K   mesons. 

(31) 
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If space inversion (i. e. parity) in to be represented by a simple 

transformation of the field I|I , the natural choice which suggests itself is 

P:   iMx. t)  -  Y0Y; * (-*• t)   . (32) 

From Eq. (24), it follows from this definition that 

a+ (fca)   -*  - a+ (-£. Q) 

P : 

b+ (B a)   -  tb+ (-Ba)    , (33) 

and the eight particles divide into two scalars (these with positive signature), 

two pseudoscalars, two vectors (with negative signature), and two pseudo- 

vectors.   As before, these conclusions do not allow the theory, as it stands, 

to describe the K and K . 

B.       Alternative Formulation of the Theory of Equation (1) 

We now construct the theory described by Eq. (1) in a manner 

which will make more clear the connection between the formulation in part A 

and the conventional field theory of particles with spin 0 and 1.    We consider 

Eq, (1) as the requisite feature of the theory and see what freedom is allowed. 

Let us write the field ^ as ty a , a four by four matrix, where the ap 

unprimed Oirac operators act on the first subscript and the primed operators 

act on the second.   It can readily be verified, after considerable algebra,  that 

if we define 



PaKo 12 

«|»(x)  5 1/4 ^.Mx)  W^e(x) Y. 

/m + m 
-V_T_Jl(Vii(x)-i78ii4.(x))v(t 

fmTrn 

r-      - ■    I ;; 

V    (x)  = V —r   Trace  Micr, v    v_ + -L a    + cr, u. m+m i Y   2 Tu T5      m    m Y   Z 
^ 

o > ,:>      ^    H- 

then» to within four divergences,  the JLagrangian in Eq. (7) is equal to 

*£   ~ - 1/2    8    6*8   A + m(m-3m)d>+<)) 
^   '      ^ 

L ji      ^ o7 

+    1/4 (8    V* - 8„ V+)(8    V    - 8    V ) 

+  1/2 m{m + mj V+ V 
o'    ji    jxJ 

-    1/4 (8   A+ - 8   A+)(8   A    - 8   A ) 

+  1/2 m(m + m ) A+ A 

(34) 

so that 

^ (x) = is/_ Trace | * <r2 J (35a) 

6 (x) r ^/X Trace [ ♦ ^ Y5] (35b, 

(35c) 

AU W = ^TOi: Trace ( * ^2 Vtt V5 " 4 V * ^2 V5> (35d) 

(36) 
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Except for the signs of the terms involving the fields 9 and V   , this is a 

conventional Lagrangian for four uncoupled fields, two of spin 0 and two 

of spin 1,   whose masses agree with £q. (17). 

An alternative point of view can now be adopted which still allows 

£q. (1) to be satisfied.    We take the Lagrangian as given by Eq. (36), but 

with the terms involving 0 and V    changed in sign.    These changes of 

sign have the same effect as the introduction of the indefinite metric in 

part A.    The equations of motion are not altered,  and hence the field + 

as defined in Eq. (34) still satisfies Eq. (1).    In fact,  if all we require is 

Eq. (1), we can ignore in Eq. (36) the terms involving as many of the fields 

$,  6,  etc.   as we please,  providing that (|i in Eq. (34) is expressed only in 

terms of the retained fields.   It is also clear that the charges and parities 

of the remaining particles can be fixed arbitrarily«    The electric current 

and the parity transformations would then not necessarily be given by Eq. (1). 

In particular,  it is possible to assign the charges and the parities of the 

eight particles described by Eq. (36) to conform to those of the K and K 

mesons. 
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III,      FIELD THEORY OF EQUATION (2) 

Here we formulate the field theory of Eq. (2) in analogy with part A of 

Sec, II.    The Lagrangian is given by 

^   =  . if (Y    i   a     + ^f ) ^  . (37) 
It   X u *• 

with 

and 

^2S» + ImoVV (38) 

T,    = -1 -2pf (|x = 1,  2.  3. 4)   . (39) 

The operators <r      and ß      have beer defined in Sec. I.    From Eq. (37) we 

obtain the expressions for the energy-momentum four vector and for the 

relativistic angular momentum tensor 

P.  = : Cdx $Y    i 8. + : (40) 

H =: ^dx ^(x- i£T^2) + : (41) 

J      rifdx+Y    (x   id    - x   i 8   + itr     +p      )ty: (42) 
JJLV        t     — TirO|iiv       vi    ji     2|j.v   r^v ' x 

If,  in analogy with the conventional definition of £,  we define 

21  =t.i.Pi.   (no sum), (43) i ijk rjk   ^ ' *    ' 



8665.6006-RÜ-000 
Page 15 

then the particle spins are given by 

S 2 j £ + S   . (44) 

From Eqs. (6) and (43), it follows that £2 (£2 - 2) a 0, and hence the D 

spin can be either 0 or 1. The total spin in Eq. (44) is therefore either 

1/2 or 3/2, and we thus choose the anticommutation rule    ' 

U(x)t   ^(y) Y0] =   «(x-i) . (45) 

x   =y o   7o 

We again describe the theory in momentum space in order to check 

that all of the particles yield % positive contribution to the energy, and to 

observe more clearly the features of the implied particles*    For the J> ~ 0 

Fourier components, we have in analogy with Eq. (15) 

Y0 ^2 *«>, W) r W + (0, W). (46) 

The solutions to Eq. (46) are listed in Table 1 of reference 6.    As in Sec. II, 

we denote the positive and negative  W  solutions of Eq. (46) by u    (a) and 

v   (a).   Here a refers to the choice of mass |W| ,  and to the choice of spin 

and its orientation--both of which can be diagonalized simultaneously with 

the operator "HQ^KJ *** Eq« (^6).   The -  sign refers to the eigenvalue of 

Y   y\* •   For each mass and spin, there are solutions corresponding to both 

the eigenvalues +1 and -1 of this operator. 
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As in Sec. II,  the wave functions u   (p, a)  and v   (p, a) for finite 

three momentum can be constructed from the u   (a)  and v   (a)  by Lorentz 

transformation, 

u+ (p, a)  = exp ^i<7^i4+Pi4»ea<P) 

A     ,1 
v+ (p, a)  = exp    p. (jo^ + Pi4) ea (p) 

and hence 

u± (a) 

v+ (a)   . 

(47a) 

(47b) 

(Y  #   Pa 
+  ^2'U+ te> Q'  =  0      (-V  *   PQ +  ^2,v+ ^ a)  * 0# (48) 

The unit vector p and the angle 6 (p) are defined after Eq. (19). We could 

now write the general solution of Eq. (2) in the form of Eq. (22), except that 

here the sum on a would refer to the masses and spin appropriate to Eq. (2). 

From the Appendix,  we have the orthonormality relations 

w+ (£» a) ^ u. (£. a1)   =  0   . u+ (£, a) TI4 V+ (-£, a1)  =  0   , 

v4. <£• a> ^4 v- <£' a')   =  0   , u^ (£, a) r\A v+ (-£, a1)   =  0   . (49a) 

and 

n\ (£• a) ^4 u+ (£, a«)  =  -  2 a)a (p) 6Qal 

v^ (£. a) ri4 v+ (£, a1)  = +   2 ^ (p) 6a Qf (49b) 
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The equivalent of Eq. (22) can now be inverted to yield 

% (fr a) * ' Jd5e'iPX u+ <£' a) ^4+ (x) 

b+ (£. a) = + fdx ++ (x) ^ v+ (£, a) e-ipx     . 

•o that from Eqs. (45), (49), and (50) 

fa^ (£. a)9 a^ (£«, a>)J    «    lh_ (£. a), b^ (£*. a«) 1    = 

« - 2 w   (p)(2ir)3 6        6(£ - £«)    . 

AU other pair*» of these operators anticommute.    Observe, that due to the 

anti-commutation rules,  the relationship between the sign of the anti- 

commutator and the signature of y  r\4 differs for the operators b   (£, a) 

and b   (£, a) from the corresponding expression in Eq. (25). 

Next, we employ the equivalent of Eq. (22) and Eqs. (41,  (48), and 

(49) to obtain 

H s  5" )   \  2—     a^ (£, a) a   (£, a) + b+ (£. a) b    (£, a) 
{Zftr Lf J    2w (p)   I 

- a^ (£, a) a   (£, a) - b^ (£, a) bf (£, a) I a)a (p)   . 

We note in this case that the terms involving a   (£, a) and b   (£, a) occur 

with the wrong sign in Eqs. (51) and (52).   As in Sec. 11,  we resolve this 

difficulty by reinterpreting the (+) adjoint of these operators to be the 
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negative of the (♦) Hermitian adjoint.      *     ' Formally,  this can be accom- 

plished by employing the definition (27) with t] given by 

tl = exp -li     \ f      d£       [a^ (£. a) a   (£f a^ + b+ (£ a) b+ (£, a)| ) 
(Zir)3   ^J   2^    (p)   l JJ 

(53) 

Once this reinterpretation is understood» all the particles yield a positive 

contribution to the energy in Eq. (52).    To this extent the theory is physically 

admissible. 

(6) ... The electric current proposed by Corben1 ' is 

+ e 
V ÄI f : * V(1 + V * : (54) 

where r\-  = t]   t)- r\~ T}.  , and the -  sign depends only upon the representa- 

tion of the P   .    Each of the solutions to Eq. (46), and therefore the u   (£, a) 

and v   (£, a) defined in Eq. (47) are eigenstates of TU .    We denote by 

6    =  tl, 0 the eigenvalue of - 1/2(1 + TU) and write the operator for the 

total charge, 

Q = t ^ e   :  ^dx^yo{l + ^g) *  : (55) 

in the form 

Q =      e  ■  Y 6    I ^—    at <£• Cl, a+ <£• a* " b+ <£' tt) b    <£• a> ' 
(2ir)3   ^   aJ   2w (p)   L 

- a^ (£, a) a^ (£, a) + b^ (£. a) b+ (£, a) (56) 
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By comparing Eq. (56) with Eq. (52), and remembering that all the modes 

yield a positive contribution to the energy,  it is evident that the a   (£, a) 

destroy particles of charge e 6    and the b   (£, a) destroy particles of 

charge -e 6 . 

We have already mentioned that all the solutions are composed of 

doublets» both members of which are characterized by the same mass and 

spin but by different eigenvalues (either +1  or  -1) oi y   r\*.    This situation 

is analogous to the occurrence of both signs y    Y*   in &e theory discussed in 

Sec. II.   in that case» the natural interpretation was that every particle had 

its couterpart differing only in parity.   A similar interpretation suggests 

itself here.   Under space inversion» the field + would then transform as 

P  :    + (x. t) -YO t14 * (-*• t)   . (57) 

It has been suggested that this theory describes the nucleons,  the H 

particles, and the N.^ pion-nucleon resonances.    '.    This definition of 

the parity would suggest, that for every one of these particles, there should 

exist another with the same mass and spin but with opposite parity.   Since 

such counterparts apparently do not exist, we must conclude that half of 

the solutions are unaccounted foi physically. 

Finally, let us emphasise that the theory discussed in this Section 

can be formulated in a manner analogous to part B in Sec. II.    It is thus 

possible to satisfy Eq. (2),  retaining only half its solutions and adjusting 

arbitrarily the charges and parities of the retained particles to conform to 

the nucleons, the S baryons,  and the N.* resonances. 



8665-6006-RU-000 
Page 20 

IV,      FIELD THEORY OF EQUATION (3) 

The field Eq. (3) follows frorr the Lagrangian 

with 

(58) 

J'i. s m + i m    ß     <r (59) 

and >i> the same as in Eq. (38).    The energy-momentum four vector is 

P. = : Jdx + ßo ja^: (60) 

H = : Cdx?^- iV+^3)+ : (61) 

and the relativistic angular momentum tensor is 

J      = ;   Cdx Ifß    {x   id    - x   id    +ß      fio-    )i|/:    . (62) 
jjLV J      — O      p.    1    V V   I     |i r\iv Z     \IV    ^ 

As in Sec. Ill,  the spin matrices are given by Eq, (44),  and the theory 

describes particles of spin 1/2 and 3/2. 

In Eq. (3) a new feature appears.    The coefficient of the time deriva- 

tive is the singular matrix ß   ,  and as a consequence, the solutions of this 

equation do not constitute a complete set.   At each instant,  the quantity 

^£ ' "r 5? + ^V ^ must be orthogonal to the subspace belonging to the null 

eigenvalue of ß    .    That is,   it must be an eigenstate of ß    corresponding 

to the eigenvalue +1.    The anticommutation rules satisfied by ^ and *f 
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must be constructed to allow arbitrary variations of only those fields which 

satisfy this constraint.    We therefore require 

[(£ • T 2 + ^3) * W. i (y) ßl    = Po (fi.' T 2+ ^3) «i • Z)  • <63) 
X   sy 

O   7o 

In analogy to our procedure in the two previous theories, we first 

look at the Fourier transform of £q. (3) restricted to zero three momentum, 

^♦(O. W) = WßoiM0, W)   . (64) 

The solutions of £q. (64) are distinguished by the representation of 

the ß    and by the eigenvalues of W,   the spin and its orientation,  and 

Y   r\* .    There are no solutions in the  1x1  representation of the ß   . 

In the 5x5 representation,  there are solutions corresponding to four 

particles of spin 1/2 and with mass m    =   |w|   given by^  ' 

Wstm/IiMElir   , (65) 
l-2b 

where b = m /m.    These solutions differ in the sign of W and in the 

eigenvalue (either +1 or -1) of v   ^U •    In this representation of the ß   , 

the solutions to £q. (64)  or £q. (3) occupy only eight of the twenty dimen- 

sions in the direct product space of the ß   and \  . 
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In the 10 x 10 representation of the p    t  24 of the 40 dimensions are 

spanned by solutions of Eq. (3).    Eight dimensions correspond to solutions 

with spin 1/2 and sixteen with spin 3/2.    The eigenvalues of W ^ are 

W = t m f^m^Ml^ (8pin UZ)   . (66) 
1-20 

and 

W = ^ mis/ l+2b (spin 3/2)    , (67) 

Both signs of the eigenvalue of y    r\* occur in this case also. 

We denote the positive (negative) W  solutions of Eq. (40) by 

u    (a)fv    (a« where the  - sign indicates the eigenvalue of ^y    t^-  and the 

symbol a denotes the other distinguishing features of the solutions.    The 

wave functions for arbitrary three momentum can be constructed from 

these u    (a) and v    (a) in accordance with Eq. (47),  and the field + can 

be expanded in the form of Eq. (22),    From the orthogonality rules 

discussed in the Appendix, 

u+ (E' Q)
 Y0 P0 

U
. (£» <*•)  = 0   , u^ (£, Q) VO P0 V+ (-£, a1)  = 0 

% <£' a) ^o Po v- (H' a,>  = 0   • u! <£• a) V0 P0 v+ (-^ a')  = 0 

and 

u* (£. a) yo Po n+ (£, a')  =  -   2 WQ (p)   6a af 

% <£' Q> ^o Po V
+ ^ G,)   =   ^   2Wa(p)   6aa'   ' 

(68a) 

(68b) 
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(69a) 

(69b; 

(70) 

we obtain, by inverting the equivalent of Eq. (22), 

a+ (£. a) = t J dx e_ipx uj (E, a) vo P0 + (x) 

b   (£. «) « + f dx ♦* (x) YO Po v+ (£, o) e"ipx 

From Eqt« (63),  (68) and (69)» and by integrating by parts and making use 

of the equations 

(p..pa f ;>/3) u+ (£. a) = 0  t (-p. Pa+ >;/3) v+ (£, o) = 0  t 

we obtain 

|*t (£• a)t a^ (£% a«)j  = (b^ (£. a), b^ (£«, aMj   = - 2«a(p)(2ir)3 6aal 6(£«£M   (71) 

All other combinations anticommute.   Finally»  Eq. (61) and the equivalent of 

£qj(22) allow us to write the total energy as 

H =-Vy f T-^n k(*a)a+ (frQ) + b-^a)b-(^a) 
(2ir)     LJ *>   2 u   (p)  I 

- a^ (£t a) a^ (£t o) - b+ (£» a) b+ (£f a) wa(p) (72) 

£qs.(71) and (72) are the same as £qs.(51) and (52) in Sec« III.    The 

need for reinterpretation of the (+) adjoint and the method for accomplishing 

this with the metric in Eq. (53) are applicable here exactly as in Sec. III.   All 

the particles then give positive contributions to the energy in Eq. (72). 

The total baryonic current proposed for this theory is 

b^ = : T P^ + :    . (73) 
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and hence the bar yon number B is 

B = :  f dx +        , f74| 
o 

By substituting the equivalent of £q. (22) into £q. (74),  and employing the 

relations (68),  we obtain 

B = r   /   \  ~      a^ (p. a) a    (p, o) - b+ (p, a) b    (p, a) 
(2ir)J   ^ v   2       (p)   L  + + 

- SL   (£f o) a^ (£f o) + b+ (£t a) b+ (£, a) 

Comparison of £q. (75) with £q. (72)  reveals that the particles destroyed 

by the a   (£, a) carry positive baryomc number, whereas those destroyed 

by the b    (£, a) carry negative baryonic number. 

(6) The electric current which has been suggested^  ' for this theory is 

j    serifVcß    41 •   •    Although it is conserved,  this form is not a 

plausible candidate in the second quantized version for two reasons: 

(1)   If,  as seems most natural,  the field ^ (x, t) -* y   ^4 + (-x, t) under 

parity, then this current is a pseudovector.    Of course this definition of 

space inversion is not required; the theory discussed here could also be 

formulated in analogy with part B of Sec. I, and this apparent problem 

could thea be avoided.    However,   (2)f  the ,,charge,,  Q = c : \ dx If \5 ß   ^ * 

is not diagonal in the one particle states of this theory.    The particles 

corresponding to the operators a   (£, a) and b    (£, a) would not carry 

definite amounts of charge,  and this feature is of course physically 

inadmissible. 

(75) 
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It has been suggested that the theory of Eq. (3) describes the  A   , 

the Y* (1405 MeV,  spin 1/2), and the Y*3 (1520 MeV,  spin 3/2).   Although 

the neutrality of all the particles was concluded from the above definition of 

the electric current, nothing stops us from retaining this conclusion but 

rejecting the current. 

Once the neutrality of all the particles is adopted,  it becomes possible 

to assert that three of the six particles contained in the theory are those 

mentioned.    The particles corresponding to the other solutions are identical 

to those in mass and spin, but apparently do not occur physically. 
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V.       FIELD THEORY OF EQUATION (4) 

The Lagrangian censity is 

**-■   =  - ^ (^ T 8u + >^4> *  ' (76) 

with 

(79) 

(80) 

^ 4 - m + mo p^ ß^   , (77) 

and 

+ = / ^ T)4 (78) 

The energy-momentum four vector takes the form 

P.  = :  (dx^Ö   id. v|/   : J J    - Y Ko x   j ^ 

and 

J       = :   T dx Ip ß    (x   i 8    - x   i 8    + p      + ß'   ) +   : (81 

We note again that the matrix ß    is singular and that the solutions to Eq. (4) 

do not constitute a complete set.    We can repeat here the arguments leading 

to Eq. (63),  with the exception that since the spin is integral we postulate 

commutation rules, ^  ' 

1 - 1 2 1 

x   =y 
o   ' o 
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The Fourier transform of Eq, (4)t restricted to zero three momentum, 

is 

>^4*(0f W) « WpoiK0, W)    . (83) 

The solutions of Eq* (83) are distinguished by the representations of ß    and 
i* 

p1   and by the eigenvalues of W,  of the spin» and of r\* f\\  (either +1 or -1). 
f* 

AU of these possibilities occur and have been tabulated extensively in 

references 4,  6, and 7. 

If the sign of the eigenvalue of ^^ is indicated explicitly» we can 

write the positive and negative W solutions of £q. (83) as u+ (a) and v   (a). 

We can then construct the wave functions for arbitrary three momentum, 

u^ (£. o) = exp   Ifcj (pi4 + P!4) ea (p)Jut (a) {84a) 

vt (£. o) = exp f Pj (P.4 + p[4) eo (pMv^ (a) . (84b) 

where p and 0 (p) have the same meaning as stated after Eq. (19).   It 

follows that 

(85) (ß •     pa  + ^i4)u+ (£, a)   n   0 .     (-P   •    pa   +   >;(4)V+ (£, O)   n   0 

As discussed in the Appendix, the orthogonality relations are 

u* (£. o) ni P0 u. (£. d) = 0   , uj (£, a) ^ Po v+ (-£, a')  = 0   , 

v+ <£• a) 14 P0 v_ (£. rf) = 0   , u* (£, a) n4 P0 v+ (-£, a«)   = 0   .        (86a) 
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and 

*l (£. ^ ^4 P0 u+ (£. a') -  - 2cüa (p) ^oaf 

% (£' a) ^4 PQ v+ <£' a,)  r + ^ a ^) 6aQ'     ' 

When the field V)J is decomposed in the form of £q. (22),  the relations (86) 

can be employed to obtain 

(86b) 

a+ (£, a) =  t Jdxe"ipx   u^ (£, a)^ ßo ^ (x) 

b+ (£. a)  = + f dx / W^ ßo v+ (£. a) e"ipx     , 

(87a) 

(87b) 

from which, making use also of  £qs.  (82), (85),  and (86), 

a+ (£, a),  a+ (£', a') b+ (£, a),   b; (£«, a») 

= t 2 a)    (p)(2ir)3 6 6(£ - £«) aa' (88) 

Finally,  by substituting the equivalent of (22) into Eq. (80),  the total energy 

can be written as 

(Zirr ^J   2 w (P) 
a+ (£, a) a+(£, a) + b+ (£, a) b+ (£, a) 

a a 

+ ,        .        .        .     , •♦■ - a_ (£, a) a^ (£, a) -b_ (£, a) b^ (£, a) WQ <P) ' (89) 

We observe that Eqs. (88) and (89) are the same as Eqs. (25) and (26). 

The theories of Eqs« (1) and (4) should hence,  formally,  be quantized in the 

same manner.    The discussion after Eq. (26) and the form of the metric in 

Eq. (28) apply to both theories. 
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The electric current which has been proposed   *   #   ' for this theory is 

ip* jf.yPptt +n's)*i   • (90) 

All the u+ (£, o) and v+ (£, a) are eigenstates of ii*   with the eigenvalue +1 

or *1» and for a given mass and spin» the four particles corresponding to 

positive and negative  W solutions,  and to the two signs of r\* r\\,   all have 

the same sign of this eigenvalue.   From £q. (90), by decomposing the fields 

I|I and ip according to £q. (22) and employing the orthogonality relations (86), 

we can write the charge Q as 

Q « -S yf C     d£ a! (£. a) a   (£, e) - b^ (g^a) b. (£, a) 
(2ir)3   ^  J 2 WJp)    L +  " +  ^ +   ^        +  ^ a 

- a^ (£, a) a_ (£f a) + b^ (£f a) b^ (£, a) (91) 

where the primed sum includes only those terms with the eigenvalue +1 of   r^L • 

Comparing £qs. (91) and (89)» we see that of the particles included in the 

primed sum, those destroyed by the a    (£, a) have the charge e whereas those 

destroyed by the b   (£, a) carry charge  -e • 

Table 2 of reference 7 displays the essential features of the particle 

spectrum arising from Eq. (4).   It has been emphasized there that the two 

parameters m and m    can be adjusted to fit the masses and spins to those 

of a large number of the observed strangeness zero bosons«    The multiplicity 

of the solutions, however, does not agree with experiment.    The theory 

actually contains four particles for each mass and spin; two corresponding to 

both eigenvalues of I* 14»  an^ another factor of two because of both positive 

and negative frequency solutions. 
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The experimental situation requires that for charged particles there 

should be two degenerate solutions corresponding to both signs of the charge. 

The theory thus contains twice as many particles as are actually observed. 

For neutral particles no degeneracy is required» and hence there arc four 

times as many solutions as can be accounted for physically.    Exceptions 

to this latter conclusion»  reducing the factor of four to a factor of two»  occur 

in two cases when the solutions of this theory are related to the observed 

particles as in refcrcce 7.     There» the u and p    correspond to the two 

degenerate,  positive frequency solutions which differ only in their eigen- 

value of T^A^A -    The two negative frequency solutions are hence the only 

two with this mass and spin which are unaccounted for physically.    Similar 

remarks apply for the f and B    resonances. 

Finally» let us note that if in analogy to the previous theories (see, 

for example»  £q. (32) )»  space inversion is given by 

P:    iMx, t)    - T^iM-x, t) (92) 

then the p   and u would have opposite parities,  as would also the f and B  . 

Since these conclusions a?e in contradiction to experiment (at least for the 

p and (j) the definition of parity in £q. (92) is incompatible with the interpre- 

tation of these solutions in reference 7. 
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VI.     SUMMARY 

We have seen that the field theories which lead to Corbcn's equations 

of motion can be made physically consistent, but that the multiplicity of the 

solutions imply considerably more particles than have been observed.   It is 

possible to adjust the parameters m and m    to fit the masses and spins to 

experiment surprisingly well«   On the other hand, the number of particles 

predicted at each such set of values does not agree with the experimental 

situation. 

Our viewpoint has been to take seriously the field theories which lead 

to Corben's equations of motion and to examine in detail the number and 

properties of the particles which result.    Let us emphasize again that this 

is not the only possible approach.    We could, for example,   simply demand 

that the Corben equations be satisfied without retaining all the solutions.    In 

part B of Sec. II we saw how this procedure jould be formalized for the theory 

of £q. (1).   It is clear that similar methods could be applied to the other 

equations.    We should keep in mind also, that in addition to the four equations 

discussed here, the Corben point of view actually suggests many more 

equations reflecting the fact that the term involving m    can couple together 

arbitrary spin matrices. If the theories corresponding to these additional 

equations are studied, most of the solutions will describe particles of high 

spin   (s > Z) and with masses above the present experimental observations. 

There will be some solutions, however, which refer to particles with spins 

and masses in the range considered in this paper.    It seems likely that when 
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these additional solutions are taken into account,  a reinterpretation of the 

particles predicted by Eqs. (1-4) will be suggested,  and it is possible that 

the multiplicity of the solutions existing then will suggest a simple, 

plausible scheme for ruling out those which do not fit in the observed 

particle spectrum. 
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APPENDIX 

In thin Appendix we indicate the derivation of the orthogonality 

relations employed in Eqt. (23),  (49),  (68), and (86), which refer, 

respectively, to the theories of Eqs. (1 4). 

A.       Equation (23) 

It follows from the definition of   u   (a)   and   v    (a) in Sec. II that 

Y0 ma u+ (a) - ^j % (a)      » Y0 ma 
v

+ <a)  =  ^ % (a) 

^o ma U4- <Q)  S  ~ ^1 U+ (a,   ' Yo ma v+ (a)  = ;>'l % ^   ' (A* ^ 

If we apply the exponential operator in £q. (19b) to the relations in (A. 1) 

we obtain after some algebra 

(Y • pa +^) u+ (£. a)  = 0        , (-Y • p^ tfy^ v+ (£. a) = 0 

(- Y' • Pa +A/J) u+ (£, a)  = 0 . (+ Y' • PQ +^1) v+ (£, a)  = 0   . (A. 2) 

To prove the orthogonality relation involving   u   (£, a)   and  u_ (£t a), 

consider 

u+ <£• *) (-l' * £ +^n) u. <£• a,> = " wa« <P) K <£' a) v; u_ (£, af) 

=    WQ (p) u+ (£, a) v^ u_ (£. a1)   , (A. 3) 

where both equalities arise from (A. 3); the first expression from applying 
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("1* ' P +^fi) 1° the right, and the lower expression form applying it to the 

left.    Clearly,  both equalities can only be valid if u   (JJ, a) y* u   (£r o')  = 0, 

which is the first of the relations in Eq. (23).    The corresponding relation 

for the negative frequency solutions,    v   (p, a) y* v   (pv a1)  = 0,  can be 

proved similarly. 

Eq. (A. 2) can also easily be employed to prove the orthogonality 

relations involving u   (£, a) and v   (-£, a1).    Consider 

u+<£» Q) VoYo ^ * £ ^^ v+ (-£' a,) 

+ 
^a'<P> U+ (£' a, Yo % ''£'  a,> 

+ 
-    wa (P) u

+ '£» a> VQ v+ (-£» a,)   » (A-4) 

where again the first equality arises from applyin^       • £ +7^.) to the 

right and the second from applying it to the left.    It follows obviously 

that   u    (p, a) Y1 v    (-p, a*)  = 0,  which is another of the relations in 
T      *" O        T ~ 

Eq. (23a).    The final orthogonality relation in Eq. (23a)  can be proved 

similarly. 

To show that   u    (£, a) "y*  u    (£, a1)   oc   6      , ,  we consider 

K (£J a) V0Yo (l ' 2.+^) \ (£. a*) 

=   wai (P) u+ (£, a) YQ U+ (£, a») 

=   U)Q (p) u+ (£, a) YQ U+ (£,  a1), (A   5) 

where again the upper and lower terms on the right come from acting with 

^ • £ + /^   ,  to the right or left,   respectively.    Except for the factor - 2 w   (p). 
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the first version of £q. (23b) follows from comparing the two forms of (A. 5) 

That v    (£, a) Y' V    (£, a')   oc 6      ,   can oe shown analogously. 

Finall/ we must verify the  -  signs appearing in Eq. (23b).    Take, 

for example, 

u+ <£• a) VQ \ (& ») 

1 A   ,       .    . I / 

s   u+ (a)e VQ e % (a)' (A-6) 

where we have made use of Eq. (19).    Taking into account the definition of 

6    (p) after Eq.(19),  Eq.(A.6) can be rewritten as 

+ 
<£. a) To % (£. a) 

+ 
«1 (a) f"0 t(P) + '14 Pi' 
u+ 

\ 
ma •)"t 

(a) 

= ^ (p) m;1 u^ (a) v; u+ (a) (A. 7) 

=      u>a (p) ma    u4 {a))7tl u+ (a) 

The second version of (A. 7) follows from the first since   (* A> V V  y = ^ 

and hence v.*  does not connect two states belonging to the same eigenvalue 

of Y Y*  .    The third version follows from the second by (A. 1).    The 

possibility of choosing the normalization of the   u    (£>a) according to the 

- sign in the first form of (23b) is now apparent since /^t.   = m + ^ m   c     (r1 

is a positive definite operator (for the values of m and m   actually employed). 
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This positive definiteness can be easily proved (it is obviously true for 

small enough m ),  but we do not discuss the proof here.    It turns out 

that ft   is positive unless m   is large enough to produce complex m   in 

Eq.(A.l). 

B.       Equation (49) 

To demonstrate the orthogonality relations involving u    (£, a) and 

v    (-£, a') we make use of Eq. (48) to write 

u+ <£' a) V0 ^ (l • £ +7^) vf (-£, a«) 

=  -«ai (p) u£ (£, a)^ v+ (-£, a1) 

= wa (p) uj (£, a) n4 v+ (-£, a«)   , (A. 8) 

where the first and second equalities arise from acting with (^ • £ +/^) 

on the right and left,   respectively.    The desired relation follows immedi- 

ately,  and the corresponding expression involving   u    (£, o) is proved in 

an identical manner. 

The proof of Eq.  (49b) follows m complete analogy with that of 

Eq. (23b).    Instead of (A. 5) we have 

= wat (p) u+ (£, a) n4 u+ (£, a*) 

= wa (p) u^ (£, a)^ u+ (£, a1)      , (A. 9) 
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CQ,• 
which demonstrates that the left side of Eq. (49b) is proportional to 6 

To show that the u   (£, a) can be normalized according to Eq. (49b)t 

consider 

u+ (£# o) r\4 u+ (£. a) 

+ . .    Pi 4'i4 Pi4) ea <P» Pi <i'i4 + Pi4> ea (P) , « u+ (a) e TI4 e * u+ (a) (A. 10) 

in analogy with (A, 6).   If y*   in Eq. (A. 7) is replaced by m , the various 

versions of (A. 7) follow identically,  and we obtain 

u
+ (£» a) ^4 u

+ <£• o) a * «ö (p) m^   u+ (a) ^ u+ (a) . (A. 11) 

The positive definiteness of the operator % (which can easily be proved) 

then implies our result. The corresponding expression involving v (£, a) 

can be demonstrated similarly. 

Finally we must show that u   (£, a) t). u   (£, a) = 0, and also that 

v+ tef a^4 v   IE* a) * ^'    ^c note ***** these relations are trivially true 

for all the solutions except for the pair corresponding to the proton and 

the pair corresponding to the N.- in Table 1 of reference 6,  since the two 

members of every other pair occur in different representations of the ß  • 

Consider the matrix element of r\* written in the form of (A, 10).   Since 

r\* anticommutes with p.., this expression can be written as 

«+ (£t «) 7\4 u^ (£f a) = uf (a) 7)4 (wa (p) + <ri4 p.) m^   u^ (a) . (A. 12) 
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The term involving   w   (p) does not contribute,   since it commutes with 

v   ii4 and hence doesn't connect eigenstates of -y   r\4 belonging to different 

eigenvalues.    Further,  the TJ^ can be replaced by y     (since TJ.   =  1   and 

u+(a)  = u+ (a) V0TI4) to yield 

^+(E» ö)TI4 U_ (£, a)   =   Pi^1 u^ (a) YO <ri4 u^ (a) 

=   p^Zmj"1 u^a) [Yol <ri4] u_ (a)   . (A. 13) 

We now use the fact that the u   (a) are solutions of Eq. (46) with W  = m 

to rewrite (A. 13) as 

«+(£. a)Ti4 u^ (£, a)  = p. (2ma)      u^(a)  [^ o^ j u^ (a)   . (A. 14) 

If we define A.   = p.. ,   T,   = cr.* ,  and employ 2).  defined in Eq. (43) to 

express 

^:>=m+imor     p      = m + m    (o- • 2 + T • A)   , (A. 15) 

we can make use of the commutation rules 

[V Tj] =i£ijk\    •     [^-^j] =[Ai' Ajl ^'ijk^k • 

K- 'jl =i£ijkTk •   [Ai' zj] ^Sjk^ • <A•,6, 

to rewrite (A. 14) as 

u*(£fa)Ti4 u^ (£, a)   = mo p. (2ma!      u^(a)| [f; * 2,  T.j   + [T • A, T.j) uja^ . 

^ J (A. 17) 
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From (A. 16) we can readily verify that [l# A* T41   « - [£ • 2, A. j . 

Therefore, 

u^(£. a)^ u^ (£. a) « m0pi (2mJ)     u^(a) [£ • £,  {ri - A.)] u   (o) .    (A. 18) 

Now it turne out by explicitly looking at the solution« of Eq. (46), that for 

the two pairs of solutions for which the left side of (A. 18) is not trivially 

aero (the pairs for the proton and for the N. ? in Table 1 of reference 6) 

the solutions are also eigenstates of the operator £ • 2 .    The commutator 

in (A. 18) does not therefore contribute to the matrix element. 

C.       Equation (68) 

The orthogonality relations involving the u (£, a) and the v (-£, a) 

are proved easily as in the two previous cases. We observe, for example 

that 

u+ <£• a) VoVIL- £+^3) v+ (-£, a') 

»  -wa, (p) u^ (£, a) YOP0 v+ (-£, a') 

s wa(p) K (£' a) YoPo v+ ('£' a,)    ' (A-19) 

where again the first and second forms on the right follow from acting with 

(£ • £ + ^) on the v    and on the u   ,  respectively.   As before, the desired 

orthogonality relation is proved by equating the two equivalent forms of 

(A. 19). 
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To prove that  u   (JJ, o) y   ß   u   (£, a) t or the corresponding 

expressions involving v   (£f a) ,  is proportional to 6        , merely repeat 

the discussion of (A, 9) but with (^ * £ + ^) replaced by (£ ' £ +^3).    The 

proof that the -  signs in Eq. (68b) can be chosen as shown is also similar 

to our procedure in the two previous cases.   Since r\*p    s ß , we can 

write 

u+ & a)v0P0 V£, a) 

+ \ 4 ^4 + Pi4) ea<P> ^i(I<ri4 + Pi4) ea ^ s<<a>Y0t14e    lZ    l4       l4    a      ßoe
l214       l4    a       ^(£.0,        (A.20) 

where we have used the fact that v   TI. anticommutes with both or.,  and •o '4 i4 

ßi4 .   Evaluating the product of ßo and the two exponentials in (A.20),  and 

replacing yQ^A by its eigenvalues  - 1 ,  we obtain 

u^ (£, a) Yoßo u^ (£, a)  = - ^^(pju^a)^- £+ßoWa(p))u+ (a)   . (A. 21) 

Only the second term on the right hand side contributes,   since ß.  anti- 

commutes with v  TI4 and therefore can't connect two eigenstates of this 

operator belonging to the same eigenvalue.    The second term can be 

rewritten by realizing that u   (a) is a solution of Eq. (64) with W s m    . 

We obtain 

u+ (£• 0) voß0 u+ (£» o)  =  - mQ"    u+ (Q)^3 u+ (a)   . (A. 22) 

and the positive definiteness of ^  (which we again do not prove in detail) 
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assures us that the choice of si^ns in the first form of Eq. (68b) is correrl. 

The second form can be verified similarly. 

Finally, we must prove the orthogonality relation involving the 

u+ (£t a) and u^ (£, a).    Eq. (A. 21) also is valid if the  -  sign on one of the 

Ujja) are reversed.   In that case only the first term on the right of (A. 21) 

contributes (since [Y   ^4»  P    j   = 0), and we have 

u+<£• G) Y0P0 w. (£» a) « t uj (a) ß. u^ (a) p.wj1 (p)   . (A. 23) 

We have not been able to find a simple proof that the right hand side of 

(A. 22) vanishes.    We have,  however, verified that it is zero by calculating 

straightforwardly with the solutions to Eq. (64). 

D,       Equation (86) 

We prove first the orthogonality relations involving the u   (£, a) and 

the v   (-£, a) .    We note 

ut<E* a)^!* (£' £^)v+(-£, a«)  = -«a((p)u*(£f a)V4Pov+(.£, *') 

3 V^VE« Q)V4P0v+(-£, a').    (A. 24) 

where,  as before,  the first term results from acting with (£• £ +/?4) to 

the right,  and the second from acting with this operator to the left. 

Clearly,  both forms are compatible only if u^ (£, a)Tl,4p0
v

4 (-£» at)  = 0« 

It is also clear that a similar relation holds with u     replaced by u   . 
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The proof of £q, (86b) is essentially identical to our previous procedures. 

In (A. 9)  replace y    ^y ^4»   1 • £ ^V £ • £»  an<* ^y by %f* .    We then have 

immediately that the left sides of {86b) are proportional to 6        .    The  - 

signs in (86b) are also verified as before.    If we replace in (A. 20),  (A. 21), 

and (A, 22) y    by V4» T0"-* ^y p!^» and/^ byML, the signs in (86b) follow 

as a result of the positive definiteness of fit*. 

The proof of the orthogonality relations involving u   (£, a) and u_ (£, a) 

proceeds as in the previous case, i.e. £q. (68).   We can readily obtain that 

U
+<E' tin4?* u   «£' a) s ^ ut<a) P, u   <0'Pi   ' lA'Z5) 
I '   u   + I *   +        * 

Again,  we have not been able to construct a simple proof that the right side 

of (A. 25) is zero, but that this is indeed true can be verified by looking 

directly at the solutions of Eq. (83). 
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