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SUMMARY

1
The dynamicel equsetions of motion are formulated for & body during

re-entry into the atmosphere. With the assumption that the translational
and rotational degrees of freedom may be treated independently, an analysis
is undertaken of the oscillatory motion of 8 re-entry vehicle which 1is
spinning sbout its longitudinal axis. The influence of tbe spin rate end
the static margin upon the stability of the transient solution of the
equations of motion ig considered, and it is concluded that satisfactory
dynamical behavior of the re-entry body may be anticipated iff

)gf\the static margin of the vehicle is less than zer?)

# the spin rete 18 in the range 0.5 to 2 radisns per seconé) ]

€4f' the 1ift curve has a slope equal to or greater than zero.
An examination cf the precessional and nutational motion of the vehicle is
aiso made, end the effect of initial conditions upon these modes of
oagcillation is indicated. , The influence of spin rate and static margin
variations upon the forc \;h%utions of the equations of moticn 18 cone
sidered, and the following fconclusions are drawn:

0 8pin rates cn the r of 0.5 to 2 radians per second effectively
'average out' re-entry-body asymnetries.

o for a spin rate of one radian per second the lateral displacement
of the re-entry body from the original trajectory plane is con-
siderably less than a thousand feet at impact if the statiec margin
is of tbe order of minus six inches or less.

Pinally, a brief snalysis is made of the planar re-eantry case, and the

results are compared to those obtained by previcus investigators.
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STHMARY

S ——

The dynsmical equations of motion are formulated for & bedy during
re-entry into the atmosphere. With the assumption that the translational
and rotational degrees of frmedca may be treated independently, an analysis
is undsrtaken of the oscillatory motion of a re-entry vehicle which i3
spinning about its longitudinal sxis. The influence of the spin rate apd
the static margin upon the stability of the transient solutiom of the
equations of mostion {3 considered, and it is concluded that satisfactory
dynamical behavior of the re-eatry body may be anticipated if:

0 the static margin of the vehicle is leas than zero.

o the gpin rate is in the rangs 0.5 tc 2 rasdiens per second.

0 the 1ift curve has a slope equal to or greater than zero.

An exsmination ¢f the precessional and mitationsl moticn of the vehicle is
algo meds, and the effect of initiel conditions upon these meodes of
osciliation is indicated. The influsnce of spin rete and static margin
varistions upon the forced solutions of the equsticns of motion is con-
sidered, and the following coanclusiocns are drawn:

0 &pin rates on the order of G.9 to 2 radians per second effectively

'average out' re-entry-body asymset:ries.

o for a spin rate of one radisn per secand the lsteral displacement
of the re-entry body fram the original trajectory plene is con-
siderably less than a thousand feet at impact if the static margin
is of the order of minus six inchas or lsss.

Finally, & drief analysis is made ¢f the planar re-entry case, and the

resulta are coapared to those cbtained by previous investigators.
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SPEILS

Be-entry Body Parameters
B - cone half-angle

[
[ ]

4
2
piteh or yaw moment of inertia {slug-ft~)

I_ - roll moment of inertia (slug-ffz)

mags of vehicle (slugs)

s
;

N -~ leading parsmeter .
gtatic margin of stability (ft)

=g
L]

8 - aisplacement of the c.g. from langitudinal axis (ft)

Aerodynamic Terms :

QZ,B - totai angle of attack |

AD - drag parameter

AL « 1{f% raramater g
i

Ap Ky - damping mament paramete$s

o - drag coefficient i

H

oC, - lift-curve slope .

% ¢ |

ol ’ Lel

D - aerodynanie drag

L - sercdynamic 1ift

A - angle of attack '

B - angle of side-slip

Reference Angles and Aogular Rates
Y-

Q@ § - orientstion angles relating re<entry body

¥ - axes to the inertisl reference axes
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? « crisnteticn angles relsting the position of the veloaity !
4

¢p - vector vith respect to the inertial reference axes

[

¢o - angle between th reference plane and the horizontel plane

¢as - the steady-state flight-psth engle
1

Wt - ]
x
n >_tmgulnrrtxtcsvﬁ.thr.'es'pecttoanmer'tialrefarvz':.nce; 1/sec
b 4
about the re-entry boedy orthogonal axes
W, |-
Coordinate Axsas
s
X! -
reference axes fixed with respect to the earth and considered
Y7 -
to bte insrtial
z| -
x;}!..
ra~goiry body axes of sywmetry
Iep~ .
2 f-
8
LY
1'1
x -
re-entry body central principal axes
Yy
zJ-

Miscellaneous Terms

acceleration of gravity (rt/seca)

g

h - sltitude (£t)

k - atmosphere density exponentisl (a negative number)
re-entry-body speed (ft/sec)
cpin rate parzmeter equal to

<
i
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I. IRTRODUCTION

One of the problems vhich arises during the re-enmtry into the ateose
pbere of & body is the dispersion of the trajectory due to asrodyzsanmic lift
forces. Such unwvanted forces might result from asyrmetries in mass distri-
butica, aaymwetries of ths dbody sbout the longitudipsal axis, or other causes.
8ince very smell 1ift forces can cause errors at impact on the order of
several mileafl) it is desirsble to elimineste, or at least to reduce, the
effect of these forces upen the re-eatry trejectory.

Cos means of dolrg this is to reduce the dispersion of the re-entry
vehicle by causing the 1ift vector to precess about the velocity vector.
The 1ift and drag forces exert torquse upon the re-entry vehicle, vhich,
1f the body is spun about the longitudinal axis, will cause precession
about the wvelocity vector. A high precession rate tends to “average
out” the lift vector, thus reducing diapersion.(l)

Although precession of the lift vector about the valocity vector sosas
to offer a solution to the problem of dispersicn due to serodynamic forcss,
the dynamic stability of the re-entry body is influenced by the spin rate
and thus should be investigated. PFurthermore, it may be anticipeted that
spinning the re-entry body will introduce a unidirectional side force which
vill cause a lateral displacement of the vehicle. This effect is similar

to that which occurs in the case of projectiles fired from rifled guns.
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1I. DERIVAYIOR OF THE EQUATIONB OF MOTION

Pigure 1 defines the coordinate systems and some of the variadbles
pertinent to the analysis of thes rctaticnal motica of the spinning re-entry
body The X axis in the reference plsne is aligned in the direction of the
velocity vector at the beginning of the problex arvd is cansidered to be an
inertisl reference. The orientation angles, ¥, © and v, relate the position
of the re-eatry body orthogonal axes, X, ¥, and Zgs to the inertial refarence
saxes, X, Yand Z. The a.nalcsz and ¢p gpecify the position of the velocity
vector with respsct to the inertial reference vhile the anglies ¢L &and 8 relate

ths position of the veloeity vector to the re-emtry body axes.

Reference
plane

Fig | — Re-entry geometry
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A complete analysis of the re-entry problem vould require the solution
of siz coupled equations. Rowever, if it iz assuoed that ths three
rotaticnal degrees of freedom have & negligible effect upon the translational
rotion of the center of gravity of the vehicle, then two sets of three
equations each may be solved independently. Boluticns to the flight path
equations must bte obtained before solving the rotationsl equations of

motion.

The three translational and the three rotational equaticns of moticn

are, respectively:

v = mg sin (8, +#,) - D (1)
mV¢ = mg cos (¢° + ¢p) - L (2)
(3)

nv'? cos ¢p = - Lﬁ

vhereDisthsdrag,Iuthelirtdmt.oo(.,LS

angle betvesen the reference and horizoatal plana.

thelirtduetos,and¢otha

I -1 M
G+ ton 7 (&)
x x
IX-IZ M
Qy M N -I-I (5}
Y y
I -Ix Nz
W, * I Wy Wy = T: (6)

where Mx’ )(y and Mz are the torques about the x, y and z axes respectively.
The relationship between body engular rates and the rate of change of

the orientation angles may be deduced by an examination of Fig. 1:
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ux-é -Y sin @ (7)

Qy-0c03v+}:’suv<:oae (8)

Uz-’b’coswcosc-Gainv (9)
¥With the assumption that the engles of attack and side slip are ssall, the
folloving expressicns nay be found by an inspection of Fig. 1:

gc,,o+¢p (10)

B = (3+7) cos ¢p (1)

The form of Bq. {k-6) indicates that the re-entry body axss are
principal axes. In Fig. 2, the relationship between the principal axes and

the axes of symmetry of the vehicle is indicated. With & nonuniform msass

v LOS u_

- T
a /T N ;A
LI b \
x’/i(‘/)((: . f”\t\ i |
2 ~._1 |
. 7\\

Fig 2 ~Re-en'ry body axes
distribution, the origin of the principal axes, OO, may be displaced from
the longitudinal axis, X while the x, z axes may be rotated through an
engle £ vith respsct to the X, t , axes. Moreover, it may be axpected
that the moments of inertia about the y and z axse would not be equal.

However, if & and € are smnall in magnitude, their products vith other amall
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quantities, such as ol and £, may be neglected, and the difference, for &
syrmetrical body, between Iy and Iz becomes nagligible.

The torques about the x, y ard z axes &re thus

N 8

p 4 z

-—‘-’-?_

Ix ny

i(Z Ax bz
Is-in—+?xT-Ewa
y Yy y

M 4

T X
I 1?yI -K.sz
£ z

H

where 4 18 the static margin of stability and bz is the displacement of
the center of mass of the re-entry body from the longitudinal axis of

symaetry. The parameter L“ is related to the stability derivatives, Cm
Q
and C
R

The components of 1ift and drag along x, y and z ars

F =-0D
x

Fy Lﬁcoaw-La‘ sin v - Do sin v + D B com ¥

Fz"Laun"L“ cos v - Dx cos v - DB sin v + DE

Upon assuming an exponential atmosphere, Lat. , LB and D have the following

form-

La(. kL ekh ‘12(1,

~

LE-ALeKhV‘ﬁ

~

D!ADQuV

(12)

(13)

(1)

(15)
(1e)

(17)
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1
vhere X is a negative mumber.
qursAIMADmbewim
1
AL =§°o Amf(;n') (22)
and
1
AD =2 oo cD Arei‘. (22)

!

vhmm—uthelirt-enmnlope,cn

sea~lovel air deansity and Amf is a refersnce ares.

is the dreg coefficient, po is the

The particular sst of variables utilired to examine re-entry body
stability is at the discretion of the investigator. Thus one might use (_.Jy
ead W, @end 7, orK azd 8, By considering Eq. (2) snd (3), in conjunction
vith Bq. (5-20), expressicus may be osbtained for £ and 8.

Coabining Zq. (2), (10) and (1.8) snd differentiating yilelds

o B G )

Utilizing Eq. (5), (6), (8) and (9), ve find for ¢

Aok

.. X N P &S §
O =glcosy-gstny -7y - 4% (25)
Equatica (24} way be simplified by the substitution of Bq. (13) and (14),

in conjunction with Eq. (8) and (9) and Bq. (15-20). Thus
.. A . . g0 141
0 -i-’-‘;(AL»,AD)vze“ac. -x"[ar.+}Vekha(-¢8J -l’{v-—f—’-‘-w;l

. (bz +€Ax) (;2 7 ekh) cos ¥ (25)
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Hovever, frem Bq. (3) and (11)

Y"an

- R Ve B (2¢)
The introduction of £q. (25) and (2€) into Eq. (23) leads to a sacond-order
equation in ., with B and é coupling terms.

In a manner identical to that indicated sbove, the corresponding

equation in B may be obtained. Thus

&+&%Veu+x};]+¢éz(}Vekh)+xu§"—-*lekh+wn2] (27)

+£
+(v-8)[§+ﬁ‘-Ve :l K.M¢“ .s A:DADG AJ:)cosv

é+é‘[;—‘A}-VenexJ‘BE:—€(§L—7ekh;¢K“%Vakb'w2 (28)

vhere

¢ - 3- cos ¢“

n deriving Eq. (27) and (28), the folloving assumptions have been mads

(1) the angles X . 8, ﬁp, Z and ¥ are 'small angles’; (2) the sercdynamic
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porsmaters ﬁ and LD &re time-invariant; the moment of inertia adbout y is
equal to the momant of icertia about z; the oscillatory motion of the vehicls
hes no effect upon V or ﬁw, the steady-state flight-path angle.

It may be noted thst for the case of & nen-spinring re-entry body, Eq
(27) reduces to the planar form vhich has been traated by B Julian Allen
and e’them.(?’s’h)

Bquatious (27) end (28} are coupled, asnd, for the case ip which W is
aqual to s constent, linear vith variable coefficients. The spin rate, i.-Jx,
i3 constant {f the torque about the x axis {8 zero, since, witkh Iy equal to
Iz. 0 cross-coupling due to c..)y and (.Jz occurs. From Bq (12) and {1.) it
cdn be seen that a displacemsnt of the (G from the axis c¢f symeetry gives
rise to a torque, Mx. Bowever, assuming that Bz is & small quantity, the
torques vaich arise from such an effect may be safely neglectad s8.nce terms
of txz( or 625 are second order. Furtharmore Hx is an osciilatory function

vhich on the aversge, approeches zero.

By combining Bq. (7). {10) and (11) we find for -

W ox e BReBY - 8P AP - S (o)
2 B B¢p ¢p ¢; fa%;ﬁt s 7¢p y

*

If ve again neglect high-ordsr terms, v {8 equal to uz

In Appendix A, ths homogeneous sclutions of Eg (7 and (28 are
cansidered, vhile the forced scolutions are treated in Appendix ¥  Appendix
C ccnaiders the asrodynsmic terms and their relative magnitudes for = tyjicel
re-antry body.

A plansr re-entry analysis (s examined in Appendix DU, and the results
are compared vith those of previous studies.

There {8 cne specia. case of interest vhen it is necesgsary to retain
at lLeast the secondi-order terms of Bg. (29, That i{s vhen w18 equal tc

zero Undar this condition Eg. (27" and (28) are couplad nou-.insar equ. fons
vith time-dependent coeffl:.ents.
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III. DISCUSSIOR OF THE RESULTS

The Transient Solutions

The homogeneous solutions of Bg. (27) and (28) as indicated in Appendix
A have the following form:

r v R 4 -2 C
-f%+ X s at
o, R2
d 7 4 fw +-'E
a..2 {_o o ? ainZ-Z(o)]
o RZ2 1/ 172/._ 1 1
% + Rx 2 1
L ti; 2R c¢-R d
.f 5+ X at
° 82
hwe +"‘E -
-a - sin  Z; - 2, (0)‘J
t
rd 2BXC-R d
"zt X—lat
o w/2 R 2
a Rl/a l‘ B +T
+ 0O X e
7 cos (Zs - 2 (oﬂ (30)
and f
%
2R ¢ -R ¢4
d
R
) w/g R 2
5 b n+T a'o -
= e
Rk 7[5 ]
n & X
.
aoRxl/e [
- 7 sin ZS-ZS(Q)]
y 4 R d-2R ¢
-f 5+ X lat
, 1 » R2
“W *+T 3
a
-—2__ . cos[Zl z, (o)
1l/¢ - o]
R V2 1

Y

vhere Rx > 0.
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If the forebody of the re-entry vehicls is conical, then the aerodynamic

parameters of Eq. (30) and (31) may be written as follovs.

2 2
P8 2 n_ g Ax B 23 ()
kh "o + cot a8
d=Ve o (cot B'l)“sénmsm‘% 1
02 -ix.fg_l;_.g.cotzﬁvzekh (b)
n I 2
P 8
C = ;n (cot® B-1) V &2 (c) (32)
2. .2
I W /A p mg I "W
X X X 0 2 2 kh X X
2.1- ._2I+-I o cot BV e +*:-I—é-‘— dt (d)
2.2
IQ A p mg I
X X X "0 2 kh X X
2= )|- & +¢T = cot BV e +h12 at (e)

As it is noted in Appendix A, the two exponentisl damping terms are very
nearly identicsl, except when the static margin, Ax’ approaches zero. Thus

for most cases the stability of the transient soluticn may be deduced by an

e 0
= 2791
2 Tk

The intezral of the damping term ey be approximated as follows:

-

exzmination of the term
4 dt

% 2 2 _| B
P g 2 A "mcot™ B kh
-%gddtz—g-i— (cot® B-1) + 2-E z + X = jJ emdh (33)
361TIN sin” B sin §,,

(o]

o/

since .
hrosin¢
88

——epeee
See Appendix C
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Dovn to altitudes of 50,000 feet or so, the steady-state flight-path angle
changes very slowly. Thus
t 2 2
e 8 2 4 meot B kh
-%det‘é’ °__-_ (cot28-1)+ =g 3 + = (ekh-e °)
) 4 HXx sin ;S“,_ 36TTIN sin B I
(3%)

where sin ¢ss is an sverage quantity over the altitude interval considered.
fince k is negative, the amplitude of the exponential term will decrease with
decreasing altitude as long as the quantity within the bracket is positive.
For cone half-angles of 4S5 deg or less, this condition is always fulfilled.
Figure 3 is & plot of the normalized exponential exponent as a function of
the cone half-angle for & particular re-entry body configuration. An
exanination of Fig. 3 indicates that for a vehicle with & Az of - 0.5 feet,

zero damping occurs for a cone half-angle of 55 deg.

8 o T — T T Tt T N -

'
ddt>

/

(9]
!
t
R

N:=140
m = 100 slugs
I 2160 slug-ft?

+ B -~
|
'
!
|

— o e e . -

2k sin ¢ N
o 9 ekh

H
¥
)
|
|
I
‘.

A, :~0 5ft ' !

-1 . J
Y /\/ 30° 45° 60° 75°

Cone ho'*-ongle, B (degrees)

Normolized domping function, <_

Fig. 3— Normalized damping function vs
re-entry cone half-angle
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1y
The remaining factor affecting the amplituds of the oscillstory sotion
, R2|1/h .
istheternl/&)n +-1’-:- . From Eg. (32), itcanbeseenthat:@n

approaches zerc at very high altitudes. Thus, since the initial conditions

are sstabliahed vhen C%a is epproximately zero, the maxiruz value attained

2 R 2 1/1& 1/2
by the term 1/ AN +-—E is V§/Rx . As a result of this fact, even

vith zero damping, the maximm amplitudes of & or B never exceed the initial
valus of the envelope of the oscillatory motion. Although the magnitude
of G)n2 decreases after the peak in dynamic pressure has been passed, it
never becomes zero at altitudes below this point. Figure %, a plot of
normalized frequency function versus altituds, illustrates this point.

For the special case in which the static margin ies zero, Bq. (30) snd
(31) simplifty to the following forms:

kh kh
e, Sr AL
- e R—x-sin th+p<°e (35)
and
""f'n‘—"—-— (ekh - Gkho). . -"A'l"":-:— (ekh - ekho)
B =n - ek - ’ss ‘;—;3 c;s Rx % +§—°~ em k tn ¢” (36)
x x

There are now two distinct exponential terms which influence the stability

of the solutions. Tne axponent containing A“e.rises due to Cm , and thus
q

thie term is alvays convergent. The second exponential, however, is a

function of the 1ift curve &lope, CI‘K , vhich, for a conical body with cone

half-anglses greater than 45 deg, can have a negative value at hypersonic

>N w?
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108 ‘

N=140
mz= 100 slugs

, hormalized frequency function

[

2N w?
x )po mg cot? B
o

3 A
I

(

Altitude,h (thousands of ft)

250 200 150 100

50

Fig 4- Normalhized frequency function vs altitude
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speeds. With a cone half-sngle greatsr than 45 deg, Bq. (35) indicates thtt
A has ». divergent, non-cscillatory solution. Of course; if Ax is positivs,
the re-entry body is subjected to a de-stabilizing moment, and divergence
will e¢ccur.

Before considering the initial conditions of the problem, it is
dssirable to select a sequence of eventsz in the operation of the attitude
control system of the rs-entry body. Let us assume that after the last
stage of propulsion has ceased, the vehicle is rotated by reaction forces
until the loagitudinal axis is aligned with the directiocn the velocity
vector will have upon re-entering the atmosphere. After the vehicle 1is
stabilized in this position, an angular acceleration is imparted until a
predetersined angular rate about the longitudinal axis is achieved. At
this point ths coatrol period is terminated.

The initial conditions that have been selected in the study of the
transient behavior of X and B are:

attwt,orh=h
(o] o

d:ﬂo; ﬁno

Ked ;s B=0
¥ith an ideal attitude control system, all of the f{uitial conditions would
be zero, and only the forced solutions of & end B would exist. For ean
actual comtrol sywtem, rate and position errors in bothX and P should be
expacted. However, since the primary motion of the longitudinal axis of

the re-entry body during the control period is in the plane containing X ,

*'Ihe dyneaics of the spin-up have not been included in this report.
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50 and Bo should be small in magnitude, and may be neglected.
If the residual body rate is very smell compared to the position error,

then Eq. (30) and (31) may be approximated as follows:

a 2Re -Rd
-§§+_}__.___§_ at

’ 2 Rx2
LYW ™~ +
1/2 n T

“’= X cos|Z_ - Z, (o) (37)
£, [2 R 2]1/k [5 5 ]
\/_2_(.vsl)1 +—§
and
2Re¢e-Rd
- %_*_ X X dt
o R 2
) +-§
g 1/2 a
e
oﬁz_,»;_ x 5i.n[Z3-Z3 (oﬂ (38)

o R 2| 1/4
2 X
V—é C‘% +—H:|
vhere it has been assumed that Rx> >0.

The total transient angle of attack is thus approximately

a 2Rc-Ra
-5§+_._§___=_<_ i

1/2 ° hv&)z + Rx2
. n &

ol R e
AﬂC;‘S =v— , Rxﬂ 1/4 (39)
2 E% + 5
Equation (39) indicates that with an initiel x of zero, the lift vector
precesses sbout the velocity vector, but nutation does not occur. The rate
of precession may be found by differentiating the angle whose tangent 18
& [B. Thus
p =5t Izaok : xé‘j (ko)
X"+ B
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Utilizing Bq. (37), (38), and (39), ve find for o

* . RA 2 Rx2
pzzsz- 2+an +-E (hl)

»

Prom BEg. (41) it can be seen tht’at as Ax goes to zero, ;Japproachea zero. As
Ax is incrsased in a negative sense, p approaches C-)n, for a fixed value of
Rx’ The coupling paraaster Rx’ which is equal to Ixc")x/I’ is primarily a
fimction of the spin rate ,&.; » Previous studies have indicated that a spin
rate of from 0.5 to 1 rad/sec is required to reduce the effect of steady-
state trim angles of attack which arise due to various {iypes of re-entry-
body ssymsetries. Thus a range of values for R of from 6.5 to 2 rad/sec
would zeem sdequate from such consideraticms. With Ax equal to minus 0.5
feet or larger, a.ndwitthintherange of values indicatedabove,con is
very large compared to Rx' Under such conditions, in the eltitude region
in vhich the peak dynsmic pressure occurs,&)m, and thus ;), might be cn the
order of 30 rad/sec. A precession rate of this magnitude is more than
sufficient to average cut the transient 1lift vector.

Figures 5, 6 and 7 are plots of Aéﬁ,ﬁ/xo as & function of altitude for
various combinations of static margins and nose-cone half-angles. The
effect of the spin rate,d) , upan Jk’a/oao is indicated in Fig. 8.

If the body angular rate at the end of the control period is such that
o.Co is not negligible, the lift vector will nutate as well as precess about
the velocity vector. In order to sixplify the problem the altitudes considered
will be restricted to 200,000 feet and below. With(%1 much larger than Rx’

Eq. (30) and (31) becone:
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1/2
R V2 g Rt
Jo x cos !:Z - ’2{ ] 9o X (42)

] Z sin
amws 211 > cOos |
0 +Rx /2 R W 2
Wy 3 |
t
. %f d at '
° o« rY2 Rt| /2 & Rt !
Ba -—-—L—-é:i 7 S X gin|z - }2: + 1[20 sin Z sin -—Jé‘- (43)
R 2 R
2 + X X
Wn TJ
where h § 200,000 £t and
Z N?—/T (A, + An) .
- wn at =
° ksl iss
The total angle of attack is
t
1w
ag Rxl/2 e ° l: ¥ g Rt Rt b g2 o Rb 1/2
r /|14 sin <=~ cog —>~ + sin
a,B ﬁ[w9+%2_]1/ R a 2 2 ,:r"ﬁao "
and the precesasion rate 1is . (44)
2cz w_[q.\2 Rt
(w Rx) - —2 ginZ cos 2 - "'%(52) in -’-é‘-
ooz 9 X 0
ph o= ()
bo Rt Rt 1.\2 Rt
o X X L o 2 'x
1l + 3 sin 5 cos 5 + -é-(a») 8in <
X o0 Rx (o}

An examination of Ec. (44) and (45) indicates that nutation beccmes important
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vhan a, has = very largs magnitude, or vhen Rx is s=al)l. The exact nature
of the precessional motion depends upon the relative magnitudes of Gb, Rx
epd w . It can be seen from Eq. (45) that p mey actually be negative over
portions of the period. When a, is zero, p equels minus uﬁf Thus the time
history of the motion of the longitudinal axis about the velocity vector
is, in general, very complex.

The envelcopes of the maximum and minimes axplitudesof the oscillations

of Ab are plotted as functions of the altitude in Fig. 9. For the special
s

g
case in which qo is finite, ﬂ% is zero, and Rx is equal to cpe, the envelope
of R Ag ,8/20, as a funstion of altitude 1s given by Pig. >-T.

In wtilizing Pig. 5~9, it should be kept in mind that the small angle
approximations thet were mede in the derivation of the equations of motion
in Section II, bresk down at altitudes on the order of 30,000 to 50,000 ft.

An examination of FPig. 5-9 indicates that increasing the spin rate

increases the amplitude of Ah A comparison of Fig. 5 of 8ection II and
»

at
Fig. 10 of Appendix D {llustrates the differences between the spinning and
non-spinning ceses. In the limiting case &as Rx approaches an infinite value

ve see from Bq. (30) and (31) that

kh
:L_____..__(ekh-e 0)

mk sin §
88
Aa,ﬁ:aoe (4¢)
Thus for very iarge values of Rx (or conversely for very low values Of‘“b)

the stability of the oscillations is dependent only upon the lift curve

slope CL .
o}
The normal acceleration loed acting on the re-entry body is

P 8

ng =4 o % (cot® B-1) V2 o<B (47)
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Bven for a very large value of the initial angle of attack, such as 20 deg,
the maximm value of n for & typical re-entry body varies betwveen zero and
five. Zero occurs for B equal to 45 deg.

The Forced Sclutioms

Prom Bq. (B-7) and (B-8), we find for the steady-state solutions

g, ¢ (5, +€2 )
d“ '5082 + KHQ ga + (A:?AD) 2 i X cos Q t (48)
n n

Rg} 5 {6 +€4 )
x'ss  , D_, f—%-sin g ¢ (49)

88 an AL'“LD X

Equations (48) and (49) are good approximatiocns at altitudes of 250,000 ft

W
t

and leas, and if Ax is greatar then zero. At very high altitudes vhere the
serodynamic terms of Eq. (27) and (28) approach zero, or when b 15 zero,

the forced solutions are:

-fc at gc at
P Y

B =0 (51)

88

88

It us first consider Eq. (48) and (49). The terms containing & are
those that arise due to asymmetries in the mass distribution of the re-entry
vehicle. In both equations the terms are multiplied by sinusoidal functions,
vhich depend ca the spin rate, Q)x. Reference 1 indicates that with (J..)x
renging from 0.5 to 1 rad/sac, the miss distance of the vehicle at imp;sct

is eppraximately one per cent of the value which occurs without spin. The
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rezaining tvo terms of Eq. (48) are due to the lag between the engular
motion of the velocity vector and the longitudiral axis of the re-entry
body.

The firat term of Bq. (49) arises due tc & coupling between the spinning
body and the serodynamic and gravitational forces acting on the body. It
is & unidirectional effect which with a nom-zero lift-curve slope will
cauge the vehicle to depart from the originsl trejectory pla.ne.(s)

Rewvriting Eq. (49)

-kh
I W gcosP e (8 +€4a )
Bss= X X S8 A__I_‘%A_D, ___E__Z;_Binoxt (-2)
x

A
From Bq. (52) it can be seen that the sign of the unidirectional term depends
on the sense of the spin,c)x, and of the static margin, Ax' {n the casge of
& projectile fired from a gun with right-hand rifling, the direction of
departure is to the right of the trajectory plane, since Ax is positive for
a bullet. A re~entry body with a positive spin vould move to the

left 1f it is statically stable and has a positive lift-curve slope. The

approximate magnitude of the effect may be found as follows:

kh Ixux ésea AL

2
A Vie B = (52)
AL 88 Az TKL"'&D)
Integrating Eq. 53 ylelds the rate of departure from the original trajectory
plane. Thus
- x © A
S - m A (ﬁ"’AD) ¢°) (%)

The lateral displacement, as a function of time ig:
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t
LY A
S = mxAx (AL‘PAD) & (¢ss - ¢o) dt . (55)

Initially, ¢° is 16 deg, while at impect ¢88 18 90 deg. An ordar of
magnitude valus of S may be obtained by approximating (¢83 - ¢°), since
the integral of Bq. (55) may be expressed as follows:

t
& 8, -8)at -t (F_-p) (5¢)

For & typical re-entry body, with N equal to 140, & mass of 100 slugs, and
I equal to 160 slug~ft2, wve find for S

2
Rx (1L -~ tan” B)

% (77.5) (57)

b o

S =

With a 0 deg cone half-angle, an Rx of 2and & Ax of minus 0.5 ft, 8 is &
positive 620 ft. It should be remembered that Eq. (57) i{s not valid when
s, approeches zero. However, from an examination of Bg. (B-5) and (B-6) it
is esvident that Ax may become very small before the approxima‘ion is no
longer applicable, Thus the unidirectional sideslip term can lead to large
values of lateral dispersion.

¥hen 4_ is zero, Eq. (50) and (51 ) represent exact solutions of the
steady-state equations of motion. The only forced disturbance with a static

margin of zaro 18 in a%s'

From a comparison of Eq. (49) and (51), it eppears thet as &, becames
small the magnitude of the unidirectional term increases until a maximum

i8 reachbed. As Ax continues to decrease, Bes also decresases until it is

zero vith Ax equal to zero.
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IV. CONCLUSIOHS

From the analysis of the transient and forced solutions for  and B,

it is possible to draw certain conclusions concerning the dynamics of the

re-entry vehicle's angular motion:

1.

(@}

Unless the static margin is positive the envelops of the
oscillations of & re-entry vehicle whose forebody is conical
will never diverge if the cone half-angle, B, is 45 deg or
less. For lsrge negative values of the static margin, B may
be larger than 45 deg and the envelope will still be convergent
(see Pig. 7). Unless the parameter Rx is very large, or the
static margin is very small, spinning the wvehicle bas no effect
upon the dynamic stability of the body.

The amplitude of the oscillations increases as Rx increases.

At altitudes on the order of 200,000 ft or less, the frequasncy
of the oscillations is completely determined by the magnitude
of the static moment unless Rx ie very large or Ax is very small.
The affect of the forced or steady-state solutions of X and B
due to mass asymmetries is reduced by increasing Ci, since spin
tends to 'average out' the lift vector. However, the

unidirectional sideslip term increases as Rx increases.

A value of R of fram 0.5 to 2 rad/sec is adequate from the viewpoint.

of averaging out re-entry-body asyrmetries. With Rx in the above range,

the unidirectional sideslip term is of little importance unless Ax’ the

static margin, ie very small. However, tne problem of dispersion becomes

relatively unimportant i{f the re-entry vehicle is designed so that the
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lift-curve slope, C‘L&, is zero.

8pin about the longitudinal axis is desirable, even with CL‘( equal to
zero, in order to prevent a large initial value of & from arising due to
eanll residuanl rote errors at the end of the control period.

Under all circumstances it is necessary that Ax be less than zero.
From %q. (37) and (38) it cen be seen that a 4 of zero does not imply
divergent cscilletions. However, the damping of the motion is very weak,
and as & consequance relatively large values of & or B might occur in the
lover atmosphere. This would be undesirsble dus to the problems associated

with serodynamic hasating.
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APPENDIX A

The Homogeneous Solutions of the Equations of Motion

¥With the assuzption that the rotational motion of the re-entry body
does not affect the time history of V, k and §, these variables may be
determined from the three flight-path equaticns of motion. EBquatioms (27)
and (28) are thus coupled linear equations, the coefficients of which are
known functicns of time.

Revriting Eq. (27) and (28) in the homogenecus form

b.C+d0.C+_r\%0(+RxE+cé]=O (A-1)
.. 5 ;
p+dap+m B - Rx[}'" c%a 0 (a-2)
wvhere
AL
d:—EVe +KM
2 2 a M. om kh
.I\.:C.% +a—€(-~Ve )+KM%Ve
Iq( .
= XX _ ..
F(x T -V Rz
cuﬁL—-VeRh
m

As an example of the method of solution that is to be employed, the
plenar oscillation of the re-entry body without spin is of interest. With

w:v:o

&+dd+f\2d=0 (A-2)
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32
Let us assume as the solution of Bg. (A~3) the followving expressiom: of
b{
_,(}dt
X =A4Ae ; A = const. (A-%)

Differentisting Bq. (A-4) and substituting into Bq. {A-3) ylelds

q 2 2
AN+XN +dAN+/L =0 (4-5) 4
If the cosfficients 4 andn? were constants, then two roots which are

particular soluticas of Eg. (A-5) are

A= - %;é- fa2 - 5P (A-6) '

However, since the coefficients are time variables A equal to a constant
does not satisfy Eq. (A-5).
At this point, let us make the following transformation:

A=0+JW (A-7)
Substituting Xq. (A-7) into Eq. (A-5) and simplifying ylelds

P+ 2 0 +0+) WA o+ ]AWrre =0 (A-8)

S8eparating the real and imaginary parts of Bq. (A-8)

4 g )
o""a ew (A9)
and
we -+ Cido+a (A-10)

From BEqQ. (A-9) it can be seen that even if there were no aerodynamic damping
of the re-entry body, i.e., 4 equal to zero, the variable coefficilents affect

the amplitude of the oscillations through the clhiange and the rate of change
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33
of the damped natural frequency,(J. Combining Eq. (A-9) and (A-10) ylelds
.'or(Je
2 2 dF a4 3,02 1w .
U\ﬂ-g-z*g(a)-'éw (A-11)

Since the real part of )\ as given by Bq. (A-9) w11l integrate

directly, the solution of Eq. (A-3) is

e ° 1/2gd d Jg(,)dt -ngdt :
24 -(:)—175 1 +c,0 (A-12)

The daxped natural frequency,(), remains to be determined. Before any
solution for G) may be obtained from Bq. (A-11), it is necessary to kmowv._"\.
and 4 as functions of time.

Upan an examination of the relative magnitudes of the terms of Bq. (A-11),

it 1s found that, at least for conical re-entry bodies

2
Q4 d
fd»g *3 (A-13)
That is, the rate damping of such a vehicle 1s so small that thas daxped
and undasped natural frequancies are for all practieal purposes idcntic;l..
Furthermore, from the definition of.f%on page 21 it is evident that
2 2
TauEiAl (A-14)
Thus as a first appraximation to the soluticn of Bq. (A-11)
(4) -*(% (A-l‘:)

Bquation (A-15) represents the exact solution of Eq. (A-11) (st1ll neglecting
thamn-nlyn&udae.nddum)ir
2 2 3 n 1l ™n :
- apr (=) +2— (A-16)
N Qi g

*
See the discussion of the A=mping terms in Ref. 2. Also, see Appendix C.

RM-18 2.
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vhere the subscript 'l' indicates the first approximation of the coefficient
J\g. If for the particulsr conditicns under consideration the derivative
terms of Eq. (A-16) are not negligible compared to(%e, then a second

iteration ust be utilized, Thus

O 2 L E
R R = wa
n n
and
o |
o ‘2 IR o
2 2,318 @) % w ]
Ny =Q ”*‘L("“}n) (8) 2|0, " W (4-18)

The iteration process may be comtinued untilI\I2 is as close to(%a as is
desired, For the problem at hand, the following expression has been found

to be quite adequate:

W = t/(:%%-igzzvzngs (A-19)
The 0%2 term under the radical of Eq. {A-19) is much larger {on the order of

a factor of 100 at 250,000 ft altitude) than the remsining term except at

the extreme altitudes at which the initial conditions of the problem must be

1/4 '%fd“
ié) Vkv sin e °

[un + 32 %% V¥ atn glﬂ

Z = +‘S‘CJ dt

establizhed. Equation (A-12) thus becomes

cos (Z-Zo) (A-20)

where
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In obtaining Bq. (A-20), it has beern assumed that re-entry starts at en
aititude of appraximately 500,000 ft. At this altitude there is an angle,
0(.0, between the velocity vector and the longitudinal axis of the vehicle.
The rate of change of (X is initially zero.

The planar case is considered in greater detail in Appendix D.

Let us return to Eq. (A-1) and (A-2) and consider the coupled case in
vhich the re-entry body 1s spimming about its langitudinal axis. If the
coafficients of Eq. (A-1) and (A-2) were constant, solutions might be
obtained by any acne of several methods. Perhaps the most convenient approach
is to assume an exponentisil solutior for both X and B and then derive the
secular equation (e.g., see Ref. ¢). The secular equation may then be
solved for the required roots. Ar analogous procedure may be used for this

N

particular problem, even though the coefficients are functions of time.

Let us assume solutions for & and B of the following form:

g)\dt

(x =Ae (A'?—l)
g)\dt

8 =Be (A-22)

where A and B are arbitrary constants.
3ubstituting X and B and their derivatives, as obtainsd from Bq. (A-21)

end (A-22), into Bq. (A-1) and (A-2) ylelds

AO.\+>\? +<1>\+f'€)+BRx A+¢) =0 (A-23)

-A R ()\+C)+B().\*>\2*d)\‘_r\2.)-0 (A-2n)

*

This is true since the problem represents the so-called 'degenerate
cage That is, with zero coupling the & and B equations would have
identical solutione.
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with A and B knovn congtents, a non-trivial solution exists only if the

dsterminant of their coefficients squals zero, thue

. 2
()\+)\2 + a/\uf) + Rxa (¢ c)2 =0 (A-25)
Again taking N\ to be a complex guantity
AN=0+ 30 (A-2¢)

Substituting Bq. (A-26) into Bq. (A-25), and separating the real and
imaginary parts ylelds

. Rxc
LA
PR X B © Nl (a-27)
20+ R 2w+ R 20+ R
X X X
and
R c¢d 2 y 2,2
UQIRXQ):I%‘: x_ - d_(")-?." d_w + df‘) 5
20+ Rx 20+ Rx 20+ Rx (20)+ Rx)
] 'y _2R cdl 4R e
_d(:) +1¢d€.:)(..)2+ x- 2; X_ >
20+ R_ (200+ Rx) (20L)+ Rx) (2% ax)
2 2 : .2 ..
R c R ¢
+ = + X s W - (A-28)

(207 R )° " 20T R (201 R )2 207 B
X b 4 X X
If we examine the magnitude of the various terms of Bq. (A-28), it is

apparent that those containing ¢ and d are very small eampared 1:ofl2 .

As a first approximation of(jve find

‘4
mikw

R
t e, X
(‘% + N (A"f)g)
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An examination of the . darivative terms of Bq. (A-28) reveals that Zq.
(A-29) represents a satisfactory approximstion over an altitude range of
500,000 £t to sea level. Thus the four freguencizs of cacillation are:
Rx > Rxg
W= 35+ (Jn + -3 (a) (A-30)
Rx 2 R:a:2
C\)gz -—é- - C% + "‘E (b)
Rx > Rx
Oy~ + 4 (o)
R . Rx2
ov-3fatot @
The corresponding o's are
d R d R ¢
g B e .- X + £ - (a) (A‘Sl)
1 2 5 5
R R
2 X 2 x
h/@n + 5 2 Lt L
e sz
R d R ¢ a JjO ~ +
o -3, X - X Lgle 5 g
2 2 - 2
R 2 R 2 R 2
e 2 X 2
I (.)n + —f (..)n + 5 Qn +
cJ3 = 02 (c)
Ou d Ul (d)

e st e e
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Bouatien (A-31), (a) through (d), reveals that tha two sets of roots are not

identically damped. However, an investigation of relative magnitudes i{ndicates

that the middle two terms of Bq. (A-31), (a) and (b), may be neglected in
¢omparison to the remaining terms in the range of altitudes from 250,000 ft

to ss& level. Thus tha soluticns of Eq. (A-1) and (A-2) have the following

form:

o = 2 p Al cos Zl + A2 3in Zl + A3

B. cos Z. + B sin

z =$ a
1 Cﬁ. ¢

Z, =St03 at

cos Z:5 + Ah 8in Z3

——— p +B,cosaZ, +B sinlZ
g; Sam] L p * By sinZ) + By 3By 3
2,
n

o

Of the eight constants of integration that appear in Bq. (A-32) and

(A-33), only four are independent, since cnly four total initial conditions
Bay be specified. The choice of iaitial conditions is dependent upon the
assumed pexrformance of the attituds comtrol system which positions the vehicle
for re-entry. Thus if at the end of the control period, the body has both

an error in attitude, and a residual body angular rats, then the following

set of initlial conditions are reasonable:

(4-32)

(A-32)



QO:OG

aozao
=0

BO

B =0

(o)
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(A-34)

If such a set of initial conditions is gelected, the following constants

of integration may be obtained from Eq. (A-32) and (A-33) when the initial

altitude is such that the influsnce of the aerodynamic terms is negligible.

and

S
w

>
w

o
i

(2)

(v)

(e)

(a)

(a)

(v)

(c)

(A-35)

(A-32)
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For the assumed conditions, the solutions of Bq. (A-32) and (A-33) may

bs written as follovws:

h]

v

1
- Ej: d 4t . ¢ R 1/2
a-= {2 sin [Zl-zl(o ;J + 22 __ cos [23-2.3 (o]
Ln2 + %2 ]l/h Rzl/?‘/5 ) V2 ]
N .2 inr -2 (o)]
and Rxs 272 LZ3 3
t 4
- if d 4t -
e ®% ﬁo P
o » B2 n R 1/3{5t¢°' [o572s(0)] - con [Zl'zl(")]J'
&%‘ + 5 ! h 4 3
1/2
a R
L2 X gin [zz,)-z3 (o)] .
V2

-

(A-37)

(2-38)

In obteining the spproxizmate sclutions for @ and B as given by Bq. (A-37)

and (A-38), it has besn assumed that the term containing the static margin,

2
wn

, is predominant from spproximately 250,000 £ to sea level.

For the

special case in vhich the static margin is zero, tha four roots are:

A ==K+ IR
in)\3=-c
Ne=-Ky-JR

(a)

(v)

(c¢)

(A-39)

With the initial conditions given by Bq. (A-34) the eix constants of integration

are:
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k1
Al = 0 {a)
&
A, =3 (v) (A-40)
X
Ay =0¢, (c)
and
0o'2
B, = - =2 (a)
1 Rx
}32 = 0 (v} (A-41)
o
By = ﬁg (e)
X

For the case of zerc static margin, Eq. (A-32) and (A-33) have solutions

of the folloving form:

-S'KH dtd’ -fc at
X = e §2 sin Rt 4+ e (a-42)
X
and f
- it . -fc dt
KM “0 &b z
£ - -e ﬁ-—coath+§—e (A-42)

X X
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APPENDIX B

The Forced Solutions of the Egunnicms of Motion

From Section II, the coupled equations inX and B are:

- . . .. . A (8_+€8 )
3:440(.4,{%0(.4»1{1 (§+cﬁ)=¢88+xﬂ¢u+@n‘ (Af.]:AD) ZA X coe V¥

b 4

and

8_+€4
)(z x)f.si.nw

2 A5
AL +Ap 8

In Appendix A, tha homogeneous solutione of Bq. {B-1) and (B-2) are examined.

.. C 4 . . |
-R - - .
3 +dp+B-R (X+ca R ¢ss*%

Oace the houcgeneous xolution of a linear differential equation has been
determined, it is always possible to find the ccmplete solution, at least in
on integral form. In the prezsent case, the integrals involved in determining
the foreced, or particular, sclutions are very complex, and as a result,
approximate mathods must be utilized.

One of the first approximations that might be made is to neglect the
dsrivative terms that occur in Eq. (B-1) and (B-2). An examination of the
various forcing functiocns of Eq. (B-1) and (B-2) indicates that the forced

or 'stealy state' soclutions should contain primarily very low frequency

components. Thus

- : (8, +€8.)
als’r\z"+nxcBss-¢ss+&¢sa+%2(kz&n) zAx %= cos ¥
and

5 . 2 A.D (Bz+66x)
Bs ~Re e ass = - R ¢88 + Q) (ALM'D) 8, sin v

(8-1)

(3-2)

(B-3)

(B-4)
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Solving Bq. (B-2) and (B-k) for(xss and B, and simplifying ylelds,

regpectively

.. : (5,+€8 ) .
f%[%s * K)( ¢ss +(‘¥12 (A:.?lD) zA %~ cos {i+ Rx2 ¢ ¢as
X -

X

.f\lf + sz c2

5 AD (e+eA)

o) Ta T e

JL + R
x

-R cco

and

- (6 +€a_) .. .
.f'\?[} Rx ¢ss+(‘)02 (kLAI:A’D) sz = st+Rxc¢aa+RchM¢es
B =

88
_flh+R202
p'e
o A (5z+ebx)
*Rxc% (A'L*AD) i cos ¥
f\‘_‘q&Rece
x

For the usual case in which the term representing the static moment is

predominant, Eq. (B-5) and (B--:) reduce to the following form:

g K,‘é A, (5 +eb. )
88 =®8; + ) 288 A"#L‘)——-LA cos ¥
n

n

[ 4

(3=~

(B-¢)

. (B-7)
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and

R ’ 8 +£4 )
x¢as+(kz'i)1_n}(zb b sin ¥ (B-8)

X

Pes = - W2
a
By differeantisting Bq. (B-7) and (B-8) and introducing the results into
Rq. (B-1) and (B-2), & second approximation for ot“ and B__ may be obtained.
However, unless the static zargin of the vehicle is very close to zero,
Bq. (B-7) and (B-8) are excellent repregentations of the forced soluticns in
the altitude range fram 250,000 ft to sea level.
Prom the definition of G)°, 588 given on pege 8 , and of R_ given on page

3
1l ve find for “ss and B”

-kh
d
» :;ﬁ'(g cos ¢ss)e'kh _KHSCQB ¢§£€’ . ( 4 ) (5{’(’:[‘::),‘:08 ‘ (8-9)
88, A AL"AD 4
£ (aghy) ¥ T Upty) '
and
-kh
W gcos P e A, (5,+€8 )
Pes = * ) — ey (B-10)
3 Ax (AL#tD) v3 AI, RD X

Froo Bq. (B-9) and (B-10), it can be seen that as 4 spproaches zero,
the steat'ly-mte values of & and B app.oach infinity. But as b goes to zero,
an beccmes very small and the originsl approximation is no longer valid
since the derivative terms become siguificant.

For the special case in which Ax is zero, the exact forced salutions

far & and 8 mey be daduced from Eq. (B-1) and (B-2). Thus

-jc dt,( fe at
Cgg = © € d ¢ss (B-11)
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B =0 (B-12)
88

Upon considering Bq. (B-10) and (B-12), it appears thst as 8, becomes small,
initially the forced solutions increase in magnitude until the point is
reached vhere the derivative terms become important. From that point until

Ax is zero, the magnitude of the forced terms decresse.
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APPENDIX C

The Aerodynamic Parsmeters

On page 7 the 1lift and drag forces are defined in terms of two
parameters, A and A,. These paramsters, as indicated by Xq. (21) and (22),
are functions of ths sea leval air density, a body reference area, and the

11f% curve slope and drag coefficient, respectively.

Thus

kh

Ly=4 e v % ()
kh

LB=ALe vza (v) (C-1)
kh

D=Aje Ve (c)

vhere

1
ADBEDOAref.CD

The daumping coefficient, KM’ may be defined in a similar manner. Thus

kh
Ky = A Ve (c-2)
vhere
(Cm + (':m ')
q [r 4 12
Ay = - o1 Po Aer. £ rer.

and (,ef 18 the length of the body.



If a8 conical re-entry body is considered, then at hypersonic speeds

impact theory ylelds the following expressions for CL , QD, Cm

C, =2 (cos2 B - sinzB)
oC
A—>0

o = 2 sin® B

&> ©

and C
n
&

(a)

(b)

(c)

()

(c-3)

where ch is the distance from the nose of the cone to the center of gravity

and B is the cone half-angle. In terms of the static margin, Ax, ve find

2,
fer ?—? :

re

’x ,2
Z;&I;—3c053

Utilizing Bq. (C-3) and (C-4) we find for AL, Ay and A

2 2
A = o, Aref (cos“ B - sin“ B)

2
AD = po Amf sin™ B

2 2
oo A retl oo Ax ref 2
AM = 5 + cos B
18TI sin" B I

’Sae Ref. 2.

{(C-4)

(c-=)

(C-t)

(c-7)
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The loading parameter, E, is defined as follows

g - e
F =1z 5 (c-8)
ref D 2 A sin B

ref

By substituting Eq. (C-8) into Bq. (C-5)-(C~7), the reference area may be
eliminated. We &re nov in a position to evaluate the relative magnitudes of
the coefficients of Eq. (A-1) sud (A-2). Thus:

1) The damping term

2
kh khip & > po(ne)a p, A ™
d=e==Ve +K =Ve --2-3--(cot B-1) + z— + ~—— cot“ B
R 721111723111 B 2N 1
(c-9)
2) The undamped natural fregquency
kh kh
> 2 a M A
aw -(_,,}1 +3% (= Ve )+ LM —;-V e
4 p mg kh p g [} kh . k%]
X 9 2 2 o) 2 . -
= - 7 35 cot“B V< e +2B(cot B-1)|{Ve +khVe {c-10)
5 2 1
o 8 o (mg) p A% mg 2h
+[%i (cot? B-lﬂ 2 5 + ° X — cot?B|vie
72TTI N~ sin" B 2K I

The expression for_(\a. may be further simplified by recognigzing the
following relstionships:

éa“f—quekh*" ain¢
m g 88

hn-Vsinﬁu
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3) The asrodynamic coupling term

kh o g kh

o) 2
c=—=Ve =2N(cot B-1) Ve (c-11)

An inspection of Bq. (C-9)-(C-11) indicates that for & cons half-angle
of 45 deg, the expressions for d,.fl2 and C are greatly simplified. This is
due to the fact theat impact theory yields a 1ift curve slowe equal tc zero
for such a case.

The comparative magnitudes of the three terms which constitute./‘\? may

be seen in the following table for & typical re-entry cone:

Table C-1
oN ol  on a M, ]| o AL . kn
Axa~0.025ft vémon 2kha-t—(mVe vz—th“-EVe
P, & e o, 8 Ve P g 8
B = 30 d&s
N = 1%0
m = 100 slugs
h = 500,000 £t |b.6& x 1072 2.46 x 1077 5.57 x 10712
250,000 4.69 x 1072 2,46 x 1077 1.57 x 1077
50,000  |k.69 x 1072 1.52 x 10 5.73 x 107"

From Table C-1 it can be seen that even with a static margin of 0.3
of an inch, the an term is, under the least favorable circumstances, larger
than the remaining terms by a factor on the order of 100. Under the same
conditions, the damping term, d, and the coupling term, ¢, are rougbly one-
tenth the magnitude of cf. Thus terms containing the square of c and 4,
or their product, which occur in Bq. (A-28) may be neglected as campared to
(an. A negative increase in A): serves to increase the disparity in magnitudes

betveen (ql? sand the other terms.
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APPRADIX D
Fianst Re-solry Analysis
The sizdilarity between the plankr solution obtained in Appendix A and
the results obtained by cther mveatiga‘t-ora' is not immediately obvious.
By solving ths problem with altitude rather than time as the indspendent
varisble, the degree of equivalence of Eq. (A-20) to the results of Ref. 2
bacomes more apparent.
Boting that
ah
'é}:ﬂ -V Sin ¢88 (D‘l)
Eq. (A-3) may be trsnsformed to ths follovirg form
xh
g_‘fg. , o’ - -<AL/" i ‘\Dekh (p-2)
dh dhim sin 88 sin ¢” sin gas
b (Rprip) AL
X 1 d Xh
+3- e + (=ve )
i'Iainﬁﬁ T
88 88
+ -—A—H—-—A-Ia‘——-—-— aa{h X O
x 8in® ¢
ss
By the method utilized in Appendix A, we find
o (m) % - X (Arty) w3 [6611;]2 _ ;’%"h} (0-3)
I .2 y Lo 2 O(h

"Bee page 8, Res. 2.
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where the second-order terms have been nsglected. As a first approximation,

(
(h)__f_. ‘1*‘1)) b

(D-4)
s1n° ¢
Bubstituting () (h) a.nd(..,\;_(h) into Bq. (D-3) indicates that Bq. (D-4) is a
good approximation as long as
) 2
-‘-;— AL% e, (p-5)
8in? ¢
For a 4 of -0.5 ft or larger (in a negative sense), the inequality of
Eq. (D-5) is valid for altitudes from 250,000 ft to sea level.
If the -2~—5-§—-—- term of Bq. (D-2) is neglected ve find for a(h):
VS sin ¢
o)« - A2 (%4 - 1gm) (p-6)
= 2msin § " Teln §__ 2 (Xh
Thus for X
Ay A Kb
ilE
2| k stn ¢sa
sf() an -fw(n) a
A = £ {e, e te, e (D-7)
8, (A | 1/4 -
I 2
sin ¢ss
\/ U

vheare ¢ss is assumed to be a constant. A comparison of Eq. (D-7) with Eq.
(15¢) of Ref. 2 reveals that the terms vwhich affect the amplitude of the

oscillation are identicel except for a constant which may be absorbed in

cl and c2.
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In Ref. 2, the point is made that for a high-drag body, it would be
possible for the exponent of Eg. (D-7) to be positive, and thus for divergence
to occur. However, an examination of the origiu of the drag term winich occurs
in the exponent of the e ponential in conjunction with the implicit assumptions

—_
V2 sin° )

88
that divergence due to a high-dreg configuration is not a sericus problem.

that have bean made by neglecting term of Eq. (D-2), indicates

As an intermediate step in the transformation of Eq. (A-3) to Eq. (D-2)
aK

by the use of Bq. (D-1), wve find, for the coefficient of 3 » the folloving
axpression:
dp
14y 88 4
GFa@m* oot P o Vsin¢83) :

Under the essumptions of Ref. 2, ¢ss is a constant, thus d¢88/dh is zero, and

the speed as a function of altitude i1s approximated by

TEelm g °

VeV e 88 (D-8)
vhere the component of g along the flight path has been neglected. With

these approximations, the coefficient of %g:reduces to the form uscd in

Eq. (D-6). However, the method of solution adopted in this report does not
require the above approximations.

Thus

G(h) = -‘12"'

ay + cot ¢ d¢ss (fg - AH) =

dh gs dh  sin ¢88 L

é%% (D-9)

<i+-
-
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(2. 4 )=

ettt s, et et
e

2k sin §__ —1/2[ sfon) an -K(n) an]
R ]
1/% v 1

+c_e i (D-10)
A
E-—"f (hsy)

1 2
Unless the 1ift curve slope is negative, the exponent of the exponential

L

tern of Eq. (D-10) is never positive. The rf.z’ci,o(-v—f":-)l/2 of Bq. (D-10)
corresponds to the exponential drag term of Bgq. (D-7). Although V can became
quite smell compared to \f'o ; 1t never approaches zero. The terminal speed of
almost any conceivable re-entry body would be on the order of 500 ft/sec.

In Eq. (D-7), the component of g elong the flight path has been neglected,
and as a consequence, V may approach zero, and the amplitude of X may thus
approach infinity. Considering just the envelope of the oscillation, as

given by Eq. (D-10), we hLave

kb
(B a) @ kn,
2 k sin ¢88 v \1/2 A
(g‘:\)em. - e x(vc-)\)l = Q (D-ll)
4
e

Equation (A-20) of Appendix A is equivelent to Eq. (D-11) if the initial
conditions are established at an altitude of 290,000 ft where the k2 term is

-~ Y
small campared to (Jn‘ . At higrer altitudes, where (,Jn“ becomes very small

ve find for thLe envelope:
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ta)
(—E"'ﬁﬁ ekh_ekho
st—Bsa
y-kV' sin § e
55) - o (p-12
"0 Jenv. A
VO 2[-—-]]-?(A.L-&.O.D)Vzelm~1»:—1L—'-\:'l_£2\’2sng1

es a function of altitude.

Pigure 10 is a plot of %
o/ env.
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