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The dynamical equations of motion are formulated for a body during

re-entry into the atmosphere. With the assumption that the translational

.md rotational degrees of freedom may be treated independently, an analysis

is undertaken of the oscillatory motion of a re-entry vehicle Vhich is

spinning about its longitudinal axis. The influence of the spin rate And

the static margin upon the stability of the transient solution of the

equations of motion is considered, and it is concluded that satisfactory

dynamical behavior of the re-entry body may be anticipated ify

f'the static margin of the vehicle is less than zero)

the spin rate is in the range 0.5 to 2 radians per second)

the lift curve has a slope equal to or greater than zero.

An examination of the precessional and nutational motion of the vehicle is

also made, and the effect of initial conditions upon these modes of

oscillation is indicated. The influence of spin rate and static margin

variations upon the forc a utions of the equations of motion is con-

sidered, and the following onclusions are drawn:

o spin rates on the r of 0.5 to 2 radians per second effectively

'average out' re-entry-body asymmetries.

o for a spin rate of one radian per second the lateral displacement

of the re-entry body from the original trajectory plane is con-

siderably less than a thousand feet at impact if the static margin

is of the order of minus six inches or less.

Finally, a brief analysis is made of the planar re-entry case, and the

results are ccpared to those obtained by previous investigators.
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I. U OMWrUo I ON

One of the problms wich arises during the re-entry Into the a&1os-

phere of a body is the dispersion of the trajectory due to aerody-amic lift

forces. Such unvanted forces might result from asy~ztries in mass distri-

bution, aaywetries of the body about the longitudinal axis, or other causes.

Since very mll lift forces can cause errors at impact on the order of

several miles, it is desirable to eliminate, or at least to reduce, the

effect of these forces upon the re-entry trajectory.

Ote means of doing this is to reduce the dispersion of the re-entry

vehicle by causing the lift vector to precess about the velocity vector.

The lift and drag forces exert torques upon the re-entry vehicle, vbich,

if the body is spun about the lowgitudinal axis, urill cause precession

about the velocity vector, A high precession rate tends to "average

out* the lift vector, thus reducing dispersion.(i)

Although precession of the lift vector about the velocity vector soma

to offer a solution to the problem of dispersion due to aerodynamic forces,

the dynamic stability of the re-entry body is influenced by the spin rate

and thus should be investigated. Furthermore, it may be anticipated that

spinning the re-entry body vill introduce a unidirectional side force vhich

vill cause a lateral displacement of the vehicle. This effect is similar

to that vhich occurs in the case of projectiles fired from rifled guns.
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LI. D .VA ION OF E EQUATIONS OF MW"YON

Figure 1 defines the coordinate systezB and s of the vari es

pert ineit to the analysis of tba rotational notion. of the sp inning re-entry

body The X axis in the reference plan is aligned in the direction of the

valocity vector at the bginning of the problem and is considered to be an

inertial referenu. The orientation angles, , and *, relate the position

of the re-entry boiy ortoagonal axes, x5, ys and z., to the inertial reference

szms, X, Y Ma Z. M* angles Z and 0. sptify the position of the velocity

vector vith respect to the inertial reference vhile the angles and relate

the position of the velocity rector to the re-entry body axes.

Referenceplane \ /

Y

Y SN
n gV

Fig I- Re -entry geometry
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A ccplete analysis of the re-entry problem vould require the solution

of ai. coupled equations. Hoverer, if it is assumed that the three

rotati]l degrees of freedm have a negligible effect upon the translational

motion of the center of gravity of the vehicle, then two sets of three

equations each may be solved independently. Solutions to the flight path

equations m=st be obtained before solving the rotational equations of

motion.

The three trenalational and the three rotational equations of motion

are, respectively:

RV g sin ( + )- (iO))
p

MVO ug Cos (0 0+ 0)- 6 (2)

nv Cos Op a - L (3)

where D is the drag, L.the lift due to , the lift due to B, and 00 the

angle betveen the reference and horizontal plane.

I-I M

X x

I-I M4

Y Y

I -I 14
I X I (6)

Z z

where M, Xy and 1Z arm the torques about the x, y and z axes respectively.

The relationship between body angular rates and the rate of change of

the orientation angles may be deduced by an examination of Fig. I:
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L) s~-''in 9 (7)

(Ay "Qcos, +'sn cos a (8)

(jo -co oo - 0 sinv (9)

With the aSsurpti= that the angles of attack and side &Lip are maLl, the

folloving expreasios may be found by an inspection of Fig. 1:

a~ Q + Cos)

The form of Eq. (4-6) indicates that the re-entry body &=es are

prLcipal axes. In Fig. 2, the relationship between the principal axes and

the axes of synrwtry of the vehicle is indicated. With a nonuniform =so

C 0 S

Fig 2-Re-entry body axes

distribution, the origin of the principal axes, 00, may be displaced trom

the longitudinal axis, x , while the x, z axea may be rotated through &n

angle. F6 vith respect to the x a, % , axes. Moreover, it may be expected

that the mnts of inertia about the y and axes ould not be equal.

However, if & and E are mall in magnitude, their products vith other s9=11£
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quantities, such as&ad , my be neglected, azd the difference, for a

syzetrical body, betveen I and I beco;!s nglIgible.y z

The torques about the x, y and z axes are thus

I y-A - . (12)
x x

I2 ,,-P CA) (13)
y y y

M
N AZF y ( (14)

z z

where A is the static margin of stability and 5 i the displaeaant ofx z

the center of mass of the re-entry body from the longitudinal axis of

sy3xetry. The parameter % is related to the stability deriativea, Cm

q

andC

The components of lift and drag a&long x, y and z are

F - D ('5)

F Y cos - sin, -Dm sin + D cos (1c4

F - L1 sin * -Lc cosv -Decos - D o sin + DC (17)

Upon asuming an exponential atmosphere, L.,, L and D have the followng

form-

Le ALe v 2 M (18)

L uAL e V' (19)

D AD e ihV (
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vhero k is a negative number.

The parsaet*rs AL and A~ Dmy be Vritten

2L = po Aret f L (21)

and

ACD Are (22)D) rf.
ICL

Vhem is the lift-curve slope, CD is t d coefficient, O is the

sea-lJ air denity and A ef is a reference area.

The particular set of mriables utilized to exain re-entry body

stability is at the discretion of the investlator. Thus one ight use Y7

and Ct)z, 0 and Y, or OCandi 0. By Conisidering Sq. (2) and (3), in conjun~ction

vith Eq. (5-20), rex ssicas my be obtained for and 3.

Combining Eq. (2), (10) and (18) and differen t&ting yields

kh.V (23)

Utilizing Eq. (5), (6), (8) and (9 e find for 0

.. co , M -""*" "(  "--

.. m I-I

Equation (214) may be sinplified by the substitution of Eq. (3) and (114),

in conjunction with Eq. (8) and (9) and E9q. (15-20). Thus

2~(+AD)2Q K jc± vA. X ]Sal W]

+ FR) 2 2k h) cos (25)Z (X
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Hovwmvr, frcm Eq. (3 ) and (1.)

T'k]2~e (2t)
U

The introduction of Eq. (25) and (26) Into Eq. (23) leadB to a aecorid-order

equation in OC, with a and 0 coupling tu .

In a =anner identieal to that indicated above, the corresponding

equation in 0 m&Y be obtained. Thus

(X- + d, V C M+K MV0 +1 (27)
AL

z x) Vo x

+0 2 ( D) A~X khek L

0 0+LM: V a~ 13 [t + K M n2 (28)

- (,-R) +"- V e - -R A z ... AX) sin

where

x ,A,,2kb

1-1

R -- X

S~Cos 0as -BV

Ln deriving Zq. (7-) and (28), the foliloving asumptioms have been made

(I the angles QC. b, ~ ~and' 'are Bsmnl arinleg'; (2) the aerodyniatc
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Pexrzeters AL and An are time-invariant; the ment of inertia about y is

equal to the xent of inertia about z; the osciLLatory moation of the reh,.cle

hAs no effect upon V or Oss' the stea&y-state fligbt-path sann)e.

It ray be noted that for the cae of a ncn-spinntn re-entry body, Eq

(27) reduces to the planar form vhich h" been treated by H Julian Allen

and r. ( 2 , 4 )

Equations (27) and (26) axe coupled, and, for the case £v, whichw '.a
x

equal to a constent, linear with variable coeffIcients. The spin rate, ,I

is constant if the torque about the x axis is zero, since, vith I equal toY

I , -o cross-coopling due tow. and W) occurs. From Eq (12) and (1, ; it
z y z

can be see that a displace rnt of the CG from the axis of sy=etry gives

rise to a torque, M However, asmning that 5 is a =al quan'_ity, tbeI z

torques which arise from such an effect may be safely negAected s~nce ter.ms

of 8z oor z 0 are second order. Furtheramre U is an oscllatory function

vhich on the avertge. approaches zero.

By ccbin:in Eq. (- (10) and (Ll) we find for I)

xx

- 0 - - 0 * P-'~ 2

If ve again eglect blh-order terms, v is equal to W

in Appendiix A, the hazog-eaeous solutions of Eq ( ') and K2-e, are

considered, vtiLe the forced olutions are treated in AppeMndlx ApperdA

C ccnAiders the aerodyu ca terms aud their relative magnitudes f-)r a

re-entry body.

A planar re-entry analyis is examnlaed in Appendix D, a&d the results

are compared with those of previouz stuadies.

There is one vpeca. case of Interest when it is aecessary to retain
at Least the second-order terms of Eq. (29' That ia wher A is equai tc

zero Undar tois cond4tian Eq. (,'- and (26) are coupled in-.inear equ.. ions
with time-4spondent coeffic.ents.
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III. DISCUSSION OF THE RZLTS

The Transient Solutions

The hmoeneous solutions of Eq. (27) and (28) as indicated in Appendix

A have the following form:

P d 2R -6-2

7ao x 1/ t 2 +

d + x d t

t3,0 1 2 4/ 2

. k2+ J s Z (o)>

td

+ +t

-/2 con I3 z3 (0 j 0

an

axhe[r2EI ci (o. (3)
R2 dt

1/ e -ol O ( o)]f2hr (31)x 2
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If the fortbody of the re-entry vehicle is conical, then the aerodynamic

paranketerB of Sq. (30) and (31) my be written as follovs.

d e V - c -1) + 36TIN X B]cot B] (a)

2 "- cot 2 B Y e (b)
n I 2O1

c= P g (cot 2 B-1) V e (c) (32)

IXIj Ax 0X gco 2B V 2 e kh + 2G dt (d)ZI 21 + / I 2N4g co%2]

FI I 2)
Z I A O cot 2 B V2 ekh x Xjdt (e)

As it is noted in Appendix A, the two exponential damping terms are very

nearly identical, except when the static margin, Ax, approaches zero. Thus

for most cases the stability of the transient solution =ay be deduced by an

examination of the termi

0
e

[2 +

The integral of the damping term may be approximated as follows:

2 ddtz r [cotB1) + 6 . (33)ot
036TrIN sin B sx

sin"i
h = -V sin

See Appendix C
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Down to altitudes of .50,000 feet or so, the steady-state flight -path angle

changen very islowly. Thus

t5d dt Z o [ot2 B1) + ~+ j ctB(ek - e 0 )

0 BB951Ti

(34)

vhere sin OS is an average quantity over the altitde interval considered.

Since k is negative, the anplitude of the exponential term viii decrease with

decreasing altitude as long as the quantity vithin the bracket is positive.

For cone half-angles of 4i5 deg or lesis, this condition is always fulfilled.

Figure 3 is a plot of the normal~ized exponential exponent as a function of

the cone half-angle for a particular re-entry body configuration. An

exazination of Fig. 3 indicates that for a vehicle with a A xof -0.5 feet,

zero dSZ:pilg occurs for a cone half-angle of 55 deg.

N: 140
M: 100 slugs

1160 slug-ft2

C

E X :0 5ft
0

-~ 0 AX :-Ift_

0

0 0 300 450 600 750

Z Cone ho" -ong le , B (degrees)

Fig. 3- Normalized damping function vs
re-entry cone half-angie
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The reasining factor affecting the axplitude of the oscillatory mtion

is the term, 1  CL)2 + Y]1, . From Zq. (32b), it can be seen ta-(

approaches zero at very high altitudes. Thus, since the initial conditions

are establiahed vbe G)2 is approximately zero, the naxim value attained
n

by ~~ 1/4tr i 2.
by the term 1/ I3 + is V2/Rx1'2. As a result of this fact, even

with zero damping, the mxbm axplitudes of C or 3 never exceed the initial

value of the envelope of the oscillatory action. Although the magnitude

of G) decreases after the peak in dynmsic pressure has been passed, it

never becomes zero at altitudes below this point. Figure 4, a plot of

normalized frequency function versus altitude, illustrates this point.

For the special case in which the static margin is zero, Eq. (30) and

(31) simuplify to the following forms:

AM kh oL ( e k )

k s i s sC oz k s i 0 .

0( -e sin Ro t +X e- (35)

X 0

(M (a -e h0) - (AL (e -e h

ek sin AL 4 sn0a
as co t + RM (36)

x x

There are now two distinct exponential terms which influentae the stability

of the solutions. She exponent containing AM4 arises due to CM , and thu
q

this term is alvays convergent. The secoad exponential, however, is a

function of the lift curve slope, CL , which, for a conical body with cone

half-angles greater than 45 deg, can have a negative value at hypersonic
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N : 140

m: 100 slugs

0

W

C

U

C

a-

0

E 0

0
CO

3 E
Z

c\

c4 __ _ _ _ _ _Al t t de h (t housonds of ff t______

250 200 150 100 50 0

Fig 4- Normalized frequency function vs altitude
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speea". With a cone half-angle greater than 45 deg, Zq. (35) indicates that

C- has a divergent, non-oscillatory solution. Of course, if ax is positive.

the re-entry body is subjected to a de-stabilizing moment, and divergence

vill occur.

Before considering the initial conditions of the problem, it is

desirable to select a sequence of events in the operation of the attitude

control systez of the re-entry body. Let us assume that after the last

stage of propulsion has ceased, the vehicle is rotated by reaction forces

until the longitudinal axis is aligned with the direction the velocity

vector will have upon re-entering the atmosphere. After the vehicle is

stabilized in this position, an angular acceleration is imparted until a

predetermined angular rate about the longitudinal axis is achieved. At

this point the control period is terminated.

The initial conditions that have been selected in the study of the

transient behavior of O and A are:

at t U t or h =h

0~=; pz~o

= ; p:0
00

With an ideal attitude control system, all of the fuitial conditions would

be zero, and only the forced solutions of Cand P would exist. For an

actual control system, rate and position errors in both X and 0 should be

expected. However, since the primary motion of the longitudinal axis of

the re-entry body during the control period is in the plane containing L,

The dynafics of the spin-up have not been included in this report.
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0o and 0 should be small in magnitude, and my be neglected.

If the residual body rate is very s=1l coapared to the position error,

then Eq. (30) and (31) may be approximated as follows:

c

co.~[z3- z3(Co c

ared

d + x. x dt
Rc2

o z

where it ha been assumed that R > >0O.x
The total transient angle of attack is thus appr-os

go-~~~2 c' - Rd]4I5 3 O

d + . . .. dt

l2 
2 +

A. ox (39)

Equation (39) indicates that with an initial C of z.ero, the lift vector

precesses about the velocity vector, but nutation does not occur. The rate

of precession may be found by differentiating the angle whose tangent is

Te/. trs

1 2 R2
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Utilizing Eq. (37), (38), and (39), we find forp

R R 2
P Z X = -+i + (41)

2

F'rm Eq. (41) it can be BeeA that as Agoes to zero, p approaches zero. As

A is increased in a negative sense, p approaches W for a fixed value ofz

R - The coupling parater R hc seqa oI~p is primarily a

function of the spin ratej4. Previous Studies have indicated that a spin

rate of frx 0.5 to 1 red/see is required to reduce the effect of steady-

state trim angles of attack which arise due to various 1:ypes of re-entry-

body asymetries. Thus'a range of values for R of from 0.5 to 2 rad/see

vould seem adequate from such considerations. With A equal to Wnus 0.5

feet or larger, and with R in the range of values indicated above, CJ is
x n

very large cupared to R . Under such conditions, in the altitude regionX

in which the peak dynamic pressure occurs,(J , and thus p, might be on the

order of 30 rad/sec. A precession rate of this magnitude is more than

sufficient to average out the transient lift vector.

Figuzes 5, 6 and 7 are plots of A as a function of altitude for

various combinations of static margins and nose-cone half-angles. The

effect of the spin rate, 6) , upon A oCis Indicated in Fig. 8.

If the body angular rate at the end of the control period is such that

o is not negligible, the Lift vector viU. nutate as yoU as precess about

the velocity vector. In order to simplify the problem the altitudes considered

vill be restricted to 200,000 feet and below. With G) much larger than Rn

Eq. (30) and (31) become:
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t

dt

fw~t

The total angle of attack is r

t

1 f d dt

[1

and the precession rate is ('

aQ R t 2 t

e 0 R2 0

+ -1 4O sin2 s 2

An examination of Ec. (144) and (45) indicates that rnutation becomes important

T)

n +I



Vbsa 0 has a very large maiitude, or when Rx is small. The exact nature

of the precessional motion depends upon the relative magnitudes of ao' Rx

and w . It can be seen from Eq. (45) that p =ay actually be negative over
n

portions of the period. When a is zero, p equals minus w " Thus the time
0 n

history of the motion of the longitudinal axis about the velocity vector

is, in general, very complex.

The envelopes of the maxium and mini=w4zpltudsof the oscillatims

of A are plotted as fumctions of the altitude in Fig. 9. For the special

case in which a is finite, A in zero, and R is equal to cae, the envelope
0 0 x

In utilizing Fig. 5-9, it Wxmld be kept in mind that the =all angle

approximations that vere made in the derivation of the equations of motion

in Sectio II, break down at altitudes on the order of 30,000 to 50,000 ft.

An examination of Fig. 5-9 indicates that increasing the spin rate

increases the aplitude of A,. A comparison of Fig. 5 of Section II and

Fig. 10 of Appendix D illustrates the differences between the spinning and

non-spinning cases. In the limiting case as R approaches an infinite valuex

we see from Eq. (30) and (31) that

AL (e - e 0)

m k sin Oss

AaO = a e (6)

Thus for very large values of R (or conversely for very low values of )
X

the stability of the oscillations is dependent only upon the lift curve

slope CLa.

The normal acceleration load acting on the re-entry body is

ng w A ~ (cot B-1)V 2 kh (47)a 11 2N



Normofzed transient angle of attack envelope. (A a /,JG )env

0 0 0 0

0 NO 0) C 0
0 '

-n

"tA

(0

0 0

-

W 0o
0D CD 0 0 0

0 0 0 C- .o I_ , \ N, -,° - - _

0f 0

< C

0 -

D 0

It I

0

CD

0

C I

0 0

0

T-59O-4'



26

Even for a very large value of the initial angle of attack, such as 20 deg,

tbe maxim value of n for a typical re-entry body varies between zero and

five. Zero occurs for B equal to 45 deg.

The Forced Solutions

From Eq. (B-7) and (B-8), we find for the steady-state solutions

as 4 2 AL+A~ D A
n n

3s X + AD z x sinc t (49)

n

Equations (48) and (49) are good approximations at altitudes of 250,000 ft

and less, and if Ax is greater than zero. At very high altitudes where the

aerodynamic terms of Eq. (27) and (28) approach zero, or when A is zero,x

the forced solutions are:

dt.S ee Cd 0s (50)
ss 0as

8 --o (51)

Let us first consider Eq. (48) and (49). The terms containing areZ

those that arise due to asyletries in the mass distribution of the re-entry

vehicle. In both equations the terms are multiplied by sinusoidal functions,

which depend on the spin rate, . Reference 1 indicates that with (0
xX

ranging from 0.5 to 1 rad/sec, the miss distance of the vehicle at impact

is approximately one per cent of the value which occurs without spin. The
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rem-inin two terms of Eq. (48) are due to the lag betveen the angular

motion of the velocity vector and the longitudinal axis of the re-entry

body.

The first term of Eq. (49) arises due to a coupling between the spinning

body and the aerodyamic and gravitational forces acting on the body. It

is a unidirectional effect which with a non-zero lift-curve slope will

cause the vehicle to depart from the original trajectory plane.

Revriting Eq. (49)

-kh
I C0 g cos e A (5 +CA )
X xs .( 2 ) Z I sin Q t (22)

as V(AIAD)VA x

Fran Eq. (52) it can be seen that the sign of the unidirectional term depends

on the sense of the spin, Cd, and of the static margin, A . Ln the case of
X x

a projectile fired from a gun with right-hand rifling, the direction of

departure is to the right of the trajectory plane, since A is positive forx

a bullet. A re-entry body with a positive spin vould move to the

left if it is statically stable and has a positive lift-curve slope. The

approximate magnitude of the effect may be found as follows:

2 k I sa AL
M:s 'M A (e A(T

Integrating Eq. 53 yields the rate of departure fr- the original trajectory

plane. Thus

s- xX( . (C)A

S dM A (AL+AD) Uuna-o80 0 -->

The lateral displacement, as a function of time is:



5= t1AD (085 -0 0 )dt (55)

Initially, 0 is 16 deg, while at impact 0., is 90 deg. An order of

magnitude value of S may be obtained by approximating (0 - 0), since

the integral of Eq. (55) may be expressed as follows:

t
t as - €0) dt- t (0 a - 00) (50

For a typical re-entry body, with N equal to 140, a mass of 100 slugs, and

I equal to 160 slug-ft2 , we find for S

s = x (775) (57)

x

With a 60 deg cone half-angle, an R of 2 and a A of minus 0.5 ft, 8 is a
x

positive 620 ft. It should be remembered that Eq. (57) is not valid when

A approaches zero. However, from an examination of Eq. (B-5) and (B-b) it

is evident that A may become very small before the approximation is no

longer applicable. Thus the unidirectional sideslip term can lead to large

values of lateral dispersion.

When A is zero, Eq. (50) and (51) represent exact solutions of the

steady-state equations of motion. The only forced disturbance with a static

margin of zero is in cs"

Frc a coma&rison of Eq. (49) and (51), it appears that as L becomes

small the magnitude of the unidirectional term increases until a maximum

is reached. As A continues to decrease, a also decreases until it is

zero with A X equal to zero.
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IV. CONCLUSIONS

From the analysis of the transient and forced solutions for OC and 0,

it is possible to draw certain conclusions concerning the dynamics of the

re-entry vehicle's angular motion:

1. Unless the static margin is positive the envelope of the

oscillations of a re-entry vehicle whose forebody is conical

will never diverge if the cone half-angle, B, is 45 deg or

less. For large negative values of the static margin, B may

be larger than 45 deg and the envelope will still be convergent

(see Fig. 7). Unless the parameter R is very large, or thex

static margin is very small, spinning the vehicle has no effect

upon the dynamic stability of the body.

2. The amplitude of the oscillations increases as R increases.x

At altitudes on the order of 200,000 ft or less, the frequency

of the oscillations is completely determined by the magnitude

of the static moment unless R is very large or Ai is very small.x x

3. The effect of the forced or steady-state solutions of C and 0

due to mass asymmetries is reduced by incre.sing 0), since spin

tends to 'average out' the lift vector. However, the

unidirectional sideslip term increases as R increases.
x

A value of R of from 0.5 to 2 rad/sec is adequate from the viewpoint.x

of averaging out re-entry-body asymmetries. With R in the above range,x

the unidirectional sideslip term is of little importance unless Ax, the

static margin, is very small. However, tne problem of dispersion becomes

relatively unimportant if the re-entry vehicle is designed so that the
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lift-curv, slope, %C, is zero.

Spin about the longitudinal axis is desirable, even with CL equal to

zero, in order to prevent a large initial value of 0 from arising due to

small residual rate errors at the end of the control period.

Under all circumstances it is necessary that A be less than zero.x

Frn q., (37) and (38) it can be seen that a A o zero does not imply

divergent oscillations. However, the damping of the maion is very weak,

and as a consequence relatively large values of 0 or A might occur in the

lover atmosphere. This would be undesirable due to the problems associated

with aerodynamic heating.
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APPENDIX A

The Homogeneous Solutions of the Equations of Motion

With the assumption that the rotational motion of the re-entry body

does not affect the time history of V, h and 0, these variables may be

determined from the three flight-path equations of motion. Equations (27)

and (28) are thus coupled linear equations, the coefficients of which are

known functions of time.

Revriting Eq. (27) and (28) in the homogeneous form

O+ d6 +A OC+ R + c 0-0 (A-1)

+ d +JA- a - R + a 0 (A-2)

vhere
d ALV ekh

m

+ d (L k h  AL V e

R =-= -R

x I z

C L-Ve

m

As an example of the method oL solution that is to be employed, the

plana oscillation of the re-entry body without spin is of interest. With

=0

+ d OC+Ar~c = 0 (A-4)
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Let us ass as the solution of Eq. (A-5) the folowing expression: 01

=A e ;A = con t. (A-k)

Differentiating Eq. (A-4) and substituting into Eq. (A-3) yields

2 2N+ X + dN\+j-t - (A-5)

If the coefficients d andft_ were constants, then tvo roots which are

particular solutions of Eq. (A-5) are

d 1 2 4 (A-6)

2 2

Howwver, since the coefficients are time variables>\equal to a constant

does not satisfy Eq. (A-5).

At this point, let us make the following transformation:

= a + J WD (A-7)

Substituting Zq. (A-7) into Eq. (A-5) and smplifying yields

S2 j2 2

+2 a W- + a + j 0+d a+J d+f = 0 (A-8)

Separating the real and imaginary parts of Zq. (A-8)

d y (A-9)
~2 2W.

and

2 + 2 + 4 a + (A- 1)

Fry. Eq. (A-9) it can be seen that even if there were no aerodynamic damping

of the re-entry body, i.e., d equal to zero, the variable coefficients affect

the axplitude of the oscillations through the change and the rate of change



of tbe damped natural frequencyJ. CebIning Eq. (A-9) and (A-1o) yields

for G)

2 2 dd 3. 2
2  d 5 W _2+2.i. (- ) - w (A-1-1)

Since the real pan of/h, as given by Eq. (A-9) vill integrate

directly, the solution of Eq. (A-3) Is

I' = -l/2 1d e 2 Adt + C 2 • 1 (A-l2)

The d natural frequency,(), re=is to be deteram . Before any

solution for W)may be obtained from Sq. (A-11), it is necessary to knor -

and d an functions of time.

Uo an examination of the relative magnitudes of the terms of Sq. (A-l.),

it is found that, at least for conical re-entry bodies

>>jd + dA~3

That is, the rate damping of such a vehicle is so smll that the damped

-q) and undamped natural frequanciea are for all practical purpoase identical.

F.urthermore, from the definition of-.. 2 on page 31 it is evident that

-9) 2 2(A-14)

Thus au a first approzimation to the solution of Sq. (A-11)

Equation (A-15) represents the exact solution of Eq. (A-I) (still neglecting

tle eziteiy mall d 2 and d terNi) if

2
3___ w U-n ~ (A-16)

n

See the discussion of the 4-ping tems in Ref. 2. Also, see Appendix C.

.-M ~-
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where the subscript 'I' indicates the first approximtion of the coefficient

A. If for the particular conditions under consideration the derivative

terms of Eq. (A-16) are not negligible coupared to Q 2, then a second
n

iteration must be utilized. Thus

__ (A-17)2 es

nI n

and

2 2

1,2 + 2 63n 2

The iteration process my be caiinued until 2 is as close toW 2 as is
1 n

desire4. For the problem at hand, the following expression has been found

to be quite adequate:

+o * 2 +1 k2 V2 .2 €(-g
CjM ( + 13 k2 V sin 0 (-9

Mhe q2 tera under the radical of F.. (A-19) is much larger (on the order of

a factor of 100 at 250,000 ft altitude) than the remainng term except at

the extrme altitudes at which the initial concitions of the problem must be

established. Equaticn (A-12) thus becmes

1/4 2

(~~) y2T sino COS (z0 (A2

0 2 + i 2 k2V 2 sin2 Co (Z'Z 0 (A-20)

where

Z = +CW dt
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In obtaining Eq. (A-20), it has been assumed that re-entry starts at an

altitude of approximately 500,000 ft. At this altitude there is an angle,

o 0,between the velocity vector and the longitudinal axis of the vehicle.

The rate of change of 6 is initially zero.

The planar case is considered in greater detail in Appendix D.

Let us return to Eq. (A-1) and (A-2) and consider the coupled case in

which the re-entry body is spiming about its longitudinal axis. If the

coefficients of Eq. (A-1) and (A-2) were constant, solutions might be

obtained by any one of several methods. Perhaps the zost convenient approach

is to assume an exponential solution for both 0 and 0 and then derive the

secular equation (e.g., see Ref. t-). The secular equation may then be

solved for the required roots. An analogous procedure may be used for this

particular problem, even though the coefficients are functions of time.

Let us assume solutions forOC and 1 of the following form:

Ae = A e (A-)21

-B e->dt (A-22)

where A and B are arbitrary constants.

Substituting OC and 0 and their derivatives, as obtained from Eq. (A-21)

and (A-22), into Eq. (A-I) and (A-2) yields

A O+2 + d +r) + B R +c)o (A-5)x

2 2-A R + c) + B (.,\ d-.,) 0 (A-24)

This is true since the problem represents the so-called 'degenerate
case-' That is, with zero coupling theoC and 0 equations would have
identical solutions.



xx.1863-1
36

vith A and B known conteants, a non-trivial solution exists only if the

determinant of their coefficients equals zero, thus

2 2 2 2
++ R (\+c) 0 (A-25)

Again taki ,\ to be a ccmplex quantity

= y + jc3 (A-26)

Substituting Eq. (A-26) into Eq. (A-25), and separating the real and

i=Mainar parts yields

R c

-y d4-__ (A-27)
26)+ R 2(4+R 2C+ R

X x x

and

R c d 2 2 2
2- ___ -d( ) d2+ C20-; R 20: R 20 + R (20; R )2

I X I X

d) 4d. - 2R c do 4 R
+2 2 2

20+ R (2CJ; R (20; R (20C R )

R 2 c2  R c 2+ Ix .. + .-A + 3)G (A-28)
(20;R x)2 - 20;R x (2; R )2 2C); R

If we examine the magnitude of the various terma of Eq. (A-28), it is

apparent that those containing c and d are very small compared to.

As a first approximtion oftcwe find

R FG 
R+ 2 (A-2)- -- +
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An examination of the ) darivative terms of Eq. (A-28) reveals that Eq.

(A-29) represents a satisfactory approximation over an altitude range of

500,000 ft to sea level. Thus the four frequencies of oscillation are:

x + 2 + (a) (A-30)

C2 2 + (b)

R
x 2 (c)3 n

22

The corresponding a's are

d R d R c d 2
a 1 2 2  dt (a) (A-31)

S 2 2 R R2 x 2

4 +-- 2 i +- " +

a 2

RRd R c d 2 x
dX X ~Tn 7 1 b

2 2 2 2 R 2 2 R()

2+ R 2  x R
+2 +"

- ai  (a)

4= +
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Equation (A-31), (a) through (a), reveala that the two sets of roots are not

identicaly damPed. However, an investigation of relative numitdes indicates

that the aiddle two terms of Eq. (A-31), (a) and (b), may be neglected in

4omparison to the remining terms in the range of altitudes from 250,000 ft

to go& level. Thus the solutions of Eq. (A-1) and (A-2) hays the following

form:

[c + R2111/ , Cos - + A2 in Z1 + A3 cos Z3 + A4 ain Z3  (A-32)

2SZ-dt 23
B os Z 1+ B 2sin Z + B 3Coa Z 3+ B sin Z 3A33

wher/4

Z1 =SaQL dt

Of the eight constants of integration that appear in Eq. (A-32) and

(A-33), only four are independent, since only four total initial conditions

may be specified. The choice of initial conditions is dependent upon the

&ssumed performance of the attitude control system which positions the vehicle

for re-entry. Thus if at the end of the control period, the body has both

an error in attitude, and a residual body angular rate, then the following

set of initial conditions are reasonable:
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0 =0

0 01% = 0

0

If such a set of initial conditions in selected, the following constants

of integration may be obtained from Eq. (A-32) and (A-3) when the initial

altitude is such that the influence of the aerodynaxic terms is negligible.

A 0 (a)

A2 ,, (b) (A-35)
R 1

x

a R 1/2

A - (d)

X

and

a

B -- (a)
1

x

B 40 (b) (A-3')

2

B3 + -j/2-- (c)

X

xlR 1/12
B4  o x.... (d)

172
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For th6 asuad conditions, the solutions of Zq. (A-32) and (A-35) zay

be written as follovi:

, 2 in 4(o a+ 0 Cos [ z 3x o (o (A-37)

2 R X2 ]1/4 R112V2 - a rz 3 (o)

and R /2.-' 3z(XJ
It
f d dt(

SR 1/2

a x sin Z3 -z3 ()] (A-38)

vOfij

In obtaining the approximate solutions for C and 0 as given by Eq. (A-37)

and (A-38), it has been asaumed that the term containing the static m rgin,

S2 is predcainaz t frw= approxmately 250,000 ft to sea level. For the

special case in vhiab the static margin is zero, the four roots are:

X,' " - X + J RX (a)

X2 - X3 = c (b) (A-39)

X, -- j R x(c)

With the initial conditions given by Eq. (A-34) the six constants of integration

are:



A, o (a)

A2 = (b) (A-4O)x

A 3 2=-- (C)

and

B 0- (a)
x

B = 0 (b) (A-41)

B -(c)3 R
x

For the case of zero static margin, Eq. (A-32) and (A-33) have solutions

of the folloving form:

-SKN dt .0 fe t
c e T-sin Rx t + o e (A-42)

R x

and -e-KM dto 0 - c dt

e-coo Rx t + e (A-t.-)
X R
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APPENDIX B

The Forced Solutions of the aqw i ef Motion

Fro Section I, the coupled equations in £* and 0 are:

2 A D (5Z+CA)
+3 + c~(~ Cos* (B-1)x S g|

and

+ . j -R (c% -R + (--) Z sin* (B-2)X X 58 '1 (AL+A DX

In Appendix A, the hbonoeneous solutions of Eq. (B-I) and (B-2) are examined.

Once the h~otsneous solution of a linear differential equation has been

determined, it is always possible to find the complete solution, at least in

ean integral form. In the preent case, the integrals involved in determining

the forced, or particular, solutions are very complex, and as a result,

approximate mthods must be utilized.

One of the first approximations that might be made is to neglect the

derivative terms that occur in Eq. (B-I) and (B-2). An examination of the

various forcing functions of Eq. (B-i) and (B-2) indicates that the forced

or 'ste6dY state' solutions should contain primarily very low frequency

cponent s. Thus

-'+ R c~ Co(-32 x Aas. cos (B-)

and

2 2 (b +CA_
13 R (-) x sink (B-4)asP s x s n AL +A x



Solving Eq. (B-!) and (B-4) forZss and as, and simplifying yields,

respectively

2 ss J x As

-2 2
x

- R c W n2 ((8) (.z+ x ( A sin
x n AL+A D

J14 +R2 2
x

and

R '6 2 D (6 + )1.

ass ~s x2 (0 ~ z s injI+ R xC as + R x 0 s

55 J4+R~c2
xx

(x xL A D x

+ 1 2 2 2
x

For the usual case in which the term representing the static moment is

predominant, Eq. (B-5) and (B--:) reduce to the follaving form:

n8 %_2 + ( A D ) ) ( B - 7 )
n n x
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and

____Os A D (bz+A *(-)

By differentiating Eq. (B-7) and (B-8) and introducing the results into

Sq. (B-i) and (B-2), a second approximation for OC and 0 may be obtained.
SB8£

However, unless the static mazgin of the vehicle is very close to zero,

Sq. (B-7) and (B-8) are excelient representations of the forced solutions in

the altitude range fro 250,000 ft to sea level.

From the definition o Q 2 given on page 8 , and of R given on page

31 ve find for 06s and 13

- ( - g ( i -oh A

#(AL+A (Av2
D D

and

-kh
I W1 g Cos e AD (6Z +6A

pa M 55 x( as + X sin (3-10)
A x (A)) V5 AL(-o

From 9q. (B-9) and (B-10), it can be seen that as a approaches zero,

the steady-stte values of and A app.oach i.nfinity. But as A goes to zero,

J n2beccnes very small and the original approximation is no longer validn

since the derivative terms become significant.

For the speci l case in which A is zero, the exact forced solutionsx

for O and P may be deduced from Eq. (B-1) and (B-2). Thus

-Sfc dtjfc dt
Oei a e d 8(B-11)
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&nd

13 ssV- 0(B-12)

Upon considering Eq. (B-10) and (B-12), it appears that as axbecom~es small,

irdtiaetly the forced solutions increase in magnitude until the point is

reached where the derivative terms become important. From that point until

A xis zero, the magnitude of the forced terms decrease.
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APPEPIDI C

The Aerodyn=ic Parmeters

On page 7 the lift and drag forces are defined in terms of two

paramters, AL and AD. These parameters, as indicated by Sq. (ai) and (22),

are functions of the sea level air density, a body reference area, and the

lift curve slope and drag coefficient, respectively.

Thus

kh
Itc= L (a)

kh
L 0= AL e V (b) (Col)

kh
DfADe V2  (c)

where

AL - i p A f CL

1
A pA CD 2 0o ref. CD

The damping coefficient, K., may be defined in a similar manner. Thus

kh
4AMVe (C-2)

where (C+C )
q 7

AM 21 pAre.f.

and is the length of the body.
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If a conical re-entry body is considered, then at hypersonic speeds

impact theory yields the folloving expressions for CL ) C, C and C n
q

C = 2 (cos - sin ) (a)

CD 2 in 2 B (b) (C-3)

8 22

2cos B (c)mq coB ref

q---->o

ore
q --)1 0c =o (d)

0

where is the distance fram the nose of the cone to the center of gravity
cg

and B is the cone half-angle. In terms of the static margin, a X we find

for
Xref

(c-' )
cosB

Utilizing Eq. (C-3) and (C--4) we find for AL, AD and A

AL = po Aref (cos 2 B - sin2 B) (C-5)

D P O Are f sin2 B (C-')

A2 2
OO ef o x Aref 2

AM= 2 + cos B (c-7)
18lTI sin B I

See Ref. 2.
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The loading parameter, N, is defined as follows

A M C - E (C-8)
ref D 2 Aref sin B

By substituting Eq. (C-8) into Eq. (C-5)-(C-7), the reference area may be

eliminated. We are nov in a position to evaluate the relative magnitudes of

the coefficients of Eq. (A-1) zAd (A-2). Thus:

1) The danping term

A4 kh 2 ()2 A2 2

d -Ve + =V e B-1) (co B-l)+ + x' cot
72TI sin6 B 2 N I

(c-9)

2) The uuamped natural frequency

qut 2+ d Ae,+k
'~1idM Mm

X P 0 g 2 2kh Pog 2k h
- O cot 2 B 2 e +O (cot2 B-1) e + h V e (C-0)
I 2N 2N

p A 2) 139o2kh

(cot 2 B-1) 0 ( -)2 + 0 . cot 2 BV2e

_72TIN sI n 2 N I

The expression for A may be further simplified by recognizing the

folloing relationships:

V = -V 2 e + g sinsm s

and

h = - V sin s
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3) The aerodynamic coupling term

AL 0 P 9 2
Se -- Z (cot B-I) V e (C-LI)

m 2 N

An inspection of Eq. (C-9)-(C-11) indicates that for a cone half-angie

of 45 deg, the expressions for d,At and C are greatly simplified. This is

due to the fact that impact theory yields a lift curve slcre equal to zero

for such a case.

The comparative magnitudes of the three terms which constituteJ_2 may

be seen in the following table for a typical re-entry cone:

Table C-1

A =005t 2Ni 2 2N d AL kh 2 AL kh
gV2e n P0 gV2 e p Poeg K2-V

B = 30 deg

N 140

m 1 100 slugs

h 500,000 ft 4.6 x 10 - 2 2.46 x 10-5  5.57 x 10- 1 2

23Oooo 4.69 x 10- 2  2.46 x 10 - 5  1.57 x 10- 7

50,000 4.69 x 10- 2  1.52 x 10 - 5  5.73 x 10 "4

From Table C-i it can be seen that even with a static margin of 0.3

of an inch, the Q 2 term is, under the least favorable circumstances, larger
n

than the remaining terms by a factor on the order of 100. Under the same

conditions, the damping term, d, and the coupling term, c, are roughly one-

tenth the magnitude of C2. Thus terms containing the square of c and d,

or their product, which occur in Eq. (A-28) may be neglected as compared to

(z22 A negative increase in A serves to increase the disparity in magnitudes
n 2

between (2and the other terms.
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APMIX D

1Re10:1itr An&3.yt±s

The similarity between the planar solution obtained in Appendix A and

the results obtained by other investigators is not isme diat obvious.

By solving the problem vith altitude rather than time as the indpendent

variable, the degree of equivalenee of lq. (A-20) to the results of Ref. 2

becomes more apparent.

Noting that

dLL rnV sin (D-1.)
dt as

Zq. (A-3) my be trmnsformed to the folUoving form

CC d. ,o .o+ k

2 sin V

j " x ------- e -+2)
Y- sin 2 s V2 s3in 2 OS dtm

AM AL eac1m

a i n 2

See page 8, Re. 2.
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where the second-order terms have been neglected. As a first approximation,

x ( (D-4)

Substituting CX (h) andCJ'(h) into Eq. (D-3) indicates that Eq. (D-4) is a

good approximation as long as

I eh>) 1 (D-5)

For a A of -0.5 ft or larger (in a negative sense), the inequality ofx

Fq. (D-5) is valid for altitudes from 250,000 ft to sea level.

If the 2 6-n2 - term of Sq. (D-2) is neglected we find for a(h):

Thus for

1 M m______2 k sin s

e e + c 2 e (D-7)

[X s) ekjl/4

where 0., is assumed to be a constant. A comparison of Eq. (D-7) with Eq.

(15e) of Ref. 2 reveals that the terms which affect the amplitude of the

oscillation are identical except for a constant which may be absorbed in

c and c2 .
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In Ref. 2, the point is made that for a high-drag body, it would be

possible for the exponent of Eq. (D-7) to be positive, and thus for divergence

to occur. However, an examination of the origiii of the drag term which occurs

in the exponent of the a .ponential in conjunction with the implicit assumptions

that have been made by neglecting . - term of Eq. (D-2), indicates
V2 sin2 ss

that divergence due to a high-drag configuration is not a sericus problem.

As an intermediate step in the transformation of Eq. (A-3) to Eq. (D-2)
C

by the use of Eq. (D-1), we find, for the coefficient of L , the following

expression:

(I V+ cot~ doa d
V dh asdl V sin Pa

Under the assumptions of Ref. 2, 0ss is a constant, thus dos/dh is zero, and

the speed as a function of altitude is approximated by

A D kh

v=v e SB (D-8)o

where the component of g along the flight path has been neglected. With

dc'
these approximations, the coefficient of L reduces to the form uscd in

Eq. (D-6). However, the method of solution adopted in this report does not

require the above approximations.

Thus - AL

a(h) - + cot s e - (0-9)



and

(L+ Ae

2 k sin -/ d.j(h) dh-4(h dhi

c e o V j e + c 2 e (D-io)

Unless the lift curve slope is negative, the exponent of the exponential

term of Eq. (D-1O) is never positive. The ratio (V t 2 of Eq. (D-10)

corresponds to the exponential drag term of Eq. (D-7). Although V can become

quite small compared to V , it never approaches zero. The terminal speed of0

almost any conceivable re-entry body would be on the order of 500 ft/sec.

In Eq. (D-7), the component of g along the flight path has been neglected,

and as a consequence, V may approach zero, and the amplitude of oC may thus

approach infinity. Considering just the envelope of the oscillation, as

given by Eq. (D-10), we have

( AL (e k  _ e okh ) kh

(~ ) n e -
2  k ain (VV l/2 e 41 - 1,;;- - e £ -,(D-11)

env. k_

4e

Equation (A-20) of Appendix A is equivalent to Eq. (D-11) if the initial

conditions are established at an altitude of ?PO,000 ft where the k2 term is
-tdswhrL)2becomes very smallsmall ccompared to (Jn  At hither altitudes, where 3n

we find for tLe envelope:



R4- 1865 -1

+ ) (e kh)

2 k sin

sin e

(b env. L 2 + 2 V2 n2 [4

Figure 10 is a plot of as a function of altitude.env.
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